Swarm-GAP: A Swarm Based
Approximation Algorithm for E-GAP

Paulo R. Ferreira Jr. and Ana L. C. Bazzan

Instituto de Informatica
Universidade Federal do Rio Grande do Sul
Caixa Postal 15064 - CEP 90501-970
Porto Alegre / RS, Brasil

{prferreiraj, bazzany@inf.ufrgs.br

ABSTRACT

Coordinating efforts of teams of professionals to search and
rescue victims of emergency situations is a key point in dis-
aster management. The disasters scenarios have been mod-
elled as a distributed and large scale Extended Generalized
Allocation Problem (E-GAP). We propose a novel algorithm
to approximate the solution of E-GAP based on the theoret-
ical division of labor models from colonies of social insects
(swarms), called Swarm-GAP. This algorithm uses a proba-
bilistic decision model, based on the social insects tendency
of performing certain tasks. Each agent has an individual
threshold used together with a stimulus associated with the
tasks to compute that tendency. The Swarm-GAP means
low communication and uses simple mechanisms. We show
that the Swarm-GAP achieves rewards very close to the ones
achieved by a greedy centralized approach.

Keywords
large scale multiagent systems, task and resource allocation
in agent systems, collective and emergent agent behavior

1. INTRODUCTION

Agents technology is part of the global effort of improving
disaster management. Multiagent systems offer a wide range
of tools and techniques that have been used as a new way
to design information systems to provide decision support
in emergency situations.

When fire fighters, paramedics, and other professionals work
in teams to search and rescue victims of disaster these teams
must coordinate their actions considering the others’ activ-
ities and the general performance of their efforts. This kind
of situation is dramatically dynamic, with new fire spots
appearing while others are extinguished, streets closing by
landslide or flooding, etc. Besides, disaster always involves a

large number of people, both as victims as well as rescuers.

The motivation for studying coordination among actors in
a rescue scenario can also be found in the multiagent sys-
tems’ community. The research regarding multiagent sys-
tems coordination through distributed task allocation has
shown significant advances in the last few years [14, 11, 15].
Dynamic and large scale environments introduce new chal-
lenges in this research. Traditional approaches are very inef-
ficient in this kind of scenario and there are few new studies
regarding this subject [17].

The task allocation problem in disaster rescue can be seen as
a Extended Generalized Assignment Problem (E-GAP)[17].
E-GAP is an allocation problem which examines the assign-
ment of tasks to agents maximizing a total reward. This
total reward is computed dynamically. Tasks demand re-
sources and classes of capabilities to be allocated. The
agents have a certain amount of resource and different levels
associated with each class of capability. The tasks can be
interrelated and their total number or required capabilities
can change over time.

We propose a novel approximation algorithm to E-GAP
based on the theoretical models of division of labor in social
insects colonies, called Swarm-GAP. This algorithm intend
to be simple and effective to solve large scale instances of E-
GAP where the allocation is achieved in a distributed fash-
ion. Cooperative agents running Swarm-GAP are allowed
to coordinate its actions with low communication.

We focus on a approach based on colonies of social insects
(also called swarms), where plenty of evidences of ecological
success exist, despite the apparent lack of explicit coordi-
nation. These hundreds of thousands insects adapt to the
changes in the environment and to the needs of the colony
using the plasticity in division of labor. There are well ex-
perimented theoretical models that captures this plasticity.
We adapt and extend this models to use in Swarm-GAP.

Swarm-GAP was experimented in a simple centralized sim-
ulation environment. First, we empirically define the pa-
rameters of the adopted swarm model that maximizes the
system reward. After, we compare the performance of the
Swarm-GAP with a centralized greedy algorithm. As ex-

pected, the centralized approach outperforms Swarm-GAP.
However, our algorithm performs well in the E-GAP sce-
nario achieving rewards 20% lower (on average) than the
greedy ones. Finally, we measure the impact in the Swarm-
GAP performance when tasks are several interrelated. Our
extension in the swarm model to deal with the tasks inter-
relation improves the average performance in 25%.

This paper is organized as follows: Section 2 describes the
E-GAP is details; Section 3 discuss the relevant aspects of
labor division in social insect colonies; Section 4 introduces
the Swarm-GAP; Section 5 shows the empirically evaluation
of Swarm-GAP; and Section 7 presents our conclusions and
future directions of this work.

2. GAP AND E-GAP

The Generalized Assignment Problem (GAP) [18] is a gen-
eral allocation problem which examines the assignment of
tasks to agents, respecting the agents capacities, maximiz-
ing a total reward. The GAP was extended by [17] to cap-
ture dynamic domains and interdependencies among tasks.
This extension is called Extended-GAP (E-GAP). As said
before, the task allocation in large scale and dynamic envi-
ronments can be modelled as an E-GAP. Next, we describe
and formalize GAP and its extension, which is the focus of
this paper.

The gap can be formalized as follows. Let us define J as the
set of tasks to be allocated and Z the set of agents. Each
agent ¢ € Z has a limited amount of resource r; to perform
all tasks (a single type of resource is used). When a task
j € J is executed by agent i, task j consumes c;; units of
i’s resource. Fach agent i also has a capability to perform
each task j given by k;; (0 < ki < 1).

The allocation matrix A, where a;; is the value of the i-th
row and j-th column, is given by Equation 1.

(1)

| 1 ifjis allocated by i
%5 =\ 0 otherwise

The GAP examines the maximum profit matrix A, which
maximizes the system reward given by 2, subject to the
agents resource limitations and the constraint of having only
one agent allocated to each task.

A = argmazx 5 Z Z kij * a;j (2)
i€Z jeT
such that
Vi€ T, ZCij * a5 <715
JjeET
and

VjEJ, ZQijgl

i€z
E-GAP improves GAP in two different ways:

Allocation constraints among tasks. Tasks in E-GAP
can be interrelated by an and constraint. All interre-
lated tasks by this constraint must be allocated at the

same time to be considered by the reward computa-
tion.

Following [17], let us define <= {a1,...,ap}, where
ar = {jky,--rk, } denotes the k-th set of AND con-
strained tasks. Thus, the partial reward w;; for allo-
cating task j to agent 7 is given by Equation 3.

ki]’ * Ay Zf VOék €, j ¢ [

kij * Qi Zf Jdag € wzthg car N (3)
Vik, € o, Qijy,,, #0

0 otherwise

Wij =

Reward dynamically computed over time. The total
reward W is computed in E-GAP as the sum of the
reward in the last ¢ time steps. In this case, the se-
quence of allocations over time is considered against
the single allocation used into the GAP. Additionally,
a delay cost d; can be used in order to punish the
agents when then task j was not allocated at time t¢.
The objective of the E-GAP is to maximize W given
by Equation 4.

W=3"30 3 wixal =Y >0 (1-al)*d

t teTt jtegt t jtegt
(4)
such that

vivit € T¢, Z cﬁj * aﬁj <l
jtejt

and

vivite gt Y ai; <1

itert

3. DIVISION OF LABOR IN SWARMS

Social insect colonies show evidences of ecological success
due to their organization which is observed in division of
labor, specialization, collective regulation, etc. [2]. The
needs of the colony change over time. These changes are
associated with the phase of colony development, time of
year, food availability, predation pressure, and climatic con-
ditions. Despite this drastic variations in colony’s condi-
tions, social insects do have ecological success.

A social insect colony with hundreds of thousand of members
operates without any explicit coordination. An individual
worker cannot access the needs of the colony; it just has a
fairly simple local information, and no one is in charge of co-
ordination. From individual workers aggregation, the colony
behavior emerges without any type of explicit coordination
or planning. The key feature of this emergent behavior is the
plasticity in division of labor inside the colony [16]. Colonies
respond to changing conditions by adjusting the ratios of in-
dividual workers engaged in the various tasks.

Theraulaz et al. [19] present a model for task allocation in-
spired on the plasticity of division of labor in colonies of so-
cial insects [16]. Interactions among members of the colony
and the individual perception of local needs result in a dy-
namic distribution of tasks. This model describes the colony
task distribution using the stimulus produced by tasks that

need to be performed and an individual response thresh-
old related to each task. The intensity of this stimulus can
be associated with a pheromone concentration, a number of
encounters among individuals performing the task, or any
other quantitative cue sensed by individuals. An individual
that perceives (e.g. after walking around randomly) a task
stimulus higher than its associated threshold, has a higher
probability to perform this task.

Assuming the existence of J tasks to be performed, each
task j have a s; stimulus associated. If Z different indi-
viduals can perform them, each individual ¢ have a response
threshold 6;; associated to a task j. The individual ¢ engages
in the task j performance with probability:

2
_ %
2 2
55+ 07

Teij (Sj) = (5)

The physical specialization in social insect societies is called
morphological polyethism or simply polymorphism by biol-
ogists. The polymorphism has a key rule to determine the
division of labor in ant colonies [9]. The soldiers of an ant
colony are usually the largest ants with big heads and sword-
like jaws. Usually, other ants are medium sized and forage
for food. This is quite adequate to its normal activities. By
differentiating individual thresholds, it is possible to capture
this physical variety in the theoretical model. The individ-
ual thresholds for the tasks decreases proportionally to the
individual capabilities to perform this tasks. In this sense,
individuals with large capability for a set of tasks have a
higher tendency to perform tasks of this set.

The social insects behavior seems to fit the requirements of
dynamic and large scale environments. Agents can decide
which task to perform just as social insects do. The Swarm-
GAP algorithm is based on the theoretical models shown
in this section, including the probabilistic decision process
guided by the tendency and the polymorphism.

4. THE SWARM-GAP

The aim of Swarm-GAP is to allow the agents to decide indi-
vidually which task to execute, without any kind of commu-
nication. Asin [17], we assume that the communication does
not fail, and that the agents know all tasks that should be
executed as well as the number of agents involved in the allo-
cation process. This assumption is reasonable if one thinks
that this knowledge can come from the fact that the agents
know the repertoire of tasks and this can be learned only
once. As for the communication, in the future we intend
to relax this assumption and perform tests with unreliable
communication channels.

Agents in Swarm-GAP decide which task to execute based
on the same mechanism used by social insects. The ten-
dency of the agent i to execute task j is given by its internal
threshold 6;;, the tasks stimulus s, and the coefficient of ex-
ecution z; of task j which is related with others by an AND
constraint, as shows Equation 6. The constant w is used as
a discount rate to decrease the weight of the coefficient of
execution on the computation of the tendency.

2

Teqij (S) = + wx; (6)

2
s2 +9ij

Each task has the same associated stimulus, there is no pri-
ority on task allocation. The stimulus s is the same for every
task j and its value was empirically determined to maximize
the system reward. This was done through the experiments
discussed in the next section. The execution coefficient z;
associated to the task j is computed using the rate between
the number of allocated tasks and the total number of tasks
which are related to task j by means of an and relation-
ship. The terms |n;| and |N;| represent these parameters
respectively.

1+|n;
oo R se Il # IN | Al > 1 o
! 0 otherwise

Swarm-GAP uses the polymorphism to setup the agents
thresholds according to the agents capabilities. Equation
8 set the agents threshold 60;; as 1 minus the capability
capacity;(j) of agent i to perform task j (because Threshold
and capability are inversely proportional), given by Equa-
tion 8.

0:; = 1 — capability;(j) ®)

Agents running Swarm-GAP communicate synchronously
using a token based protocol. When an agent receives the
token, it has the right to determine which task it will exe-
cute. Once it is done with the execution, it sends the token
to another agent. To complete the allocation, all agents
must receive the token and take its decision.

The token message also carriers a set of tuples (4,7) with
pairs of agent and task. This message informs the agents
about which are the available tasks and which agents re-
ceived the token yet (to avoid deadlocks). As we can see,
the number of changed messages in the algorithm is equal
to the number of agents. The size of the token message is
proportional to the number of tasks. Figure 1 shows the
linear growing in the number of messages changed among
the agents to achieve an allocation.

At each time a different agent starts the process, creating
the token and sending the first message. The agents selects
randomly the next agent to send the token. This is impor-
tant to allow all agents to make their decisions with different
amounts of available tasks.

Figure 2 shows the communication process starting with
agent C, which determines the tasks it wants to execute.
After, C sends the token to agent A, randomly selected.
This process finishes when all agents receive the token.

Algorithm 1 details the Swarm-GAP implementation. The
agents start with a unique integer identification to allow the
alternating token creation. The agents thresholds are set

3,50E+03

3,00E+03

2,50E+03

2,00E+03

1,50E+03

number of messages

1,00E+03

5,00E+02

0,00E+00

500 1000 1500 2000 2500 3000
number of agents

Figure 1: Number of changed messages according to
the number of agents

A A
o} L
B o o n B O/ o n B 5 e} C|) n
c* o« °E ¢” o °E c® o "E
D D
(M (2) (t=n)
Figure 2: Illustration of agents’ communication

process

according each agent capability, implementing the polymor-
phism given by Equation 8.

Each agent controls whether it is its time to initiate an allo-
cation (line 8). If it is the case, the agent creates the token
message including all tasks and pointing that no task is al-
located yet (line 11). If the agent is not in charge of token
creation, it wait until receives a token message (line 14).

Once each agent has received the token message, they all
decide whether or not to execute one task (line 18) accord-
ing to their tendency to execute this task, given by equation
6. This decision also depends on whether the agent has the
resource which is required by the task. The token message
is modified to contain the information that the agent is exe-
cuting its selected tasks. The quantity of resource one agent
has is decreased by the amount required execution of the
task (line 20).

At the and of this process, the token message is sent to an
agent randomly selected among those agents which have not
received the token in this allocation (lines 23 to 25).

5. EXPERIMENTAL RESULTS

To execute the experiments, a specific simulator was imple-
mented in Java. In each experiment we have 2000 tasks and
change the number of agents. The rewards are computed
over 1000 rounds, where in each round one allocation is per-
formed. The rewards shown in the graphics are the average
over 20 runs of the simulation.

A first experiment was performed to find the stimulus value
(Equation 6) that maximizes the reward when the number of
agents changes proportionally to the number of tasks. In this
case, there is neither a variation in the capabilities required

Algorithm 1 Swarm-GAP (int agentId)
1: allocCounter « 0;

2: loop

3: J « set of all tasks

4: 1 —
avaliableResource();

5 for all j in J do

6: 0; «— 1 — capability(j)

7: end for

8: if allocCounter % agentld = 0 then

9: tokenMsg = newTokenMsg()
10: for all j in J do

11: tokenMsg.add(j, -1)

12: end for

13: else

14: tokenMsg = receiveMsg()
15: end if

16: 7 « tokenMsg.getAvaliableTasks()
17: for all tin 7 do

18: if rouletteWeel < Ty, (s) and r <=
requiredResource(t) then

19: tokenMsg.set(j, agentId)

20: r < 1 - requiredResource(t)

21: end if

22: end for

23: T < tokenMsg.getAvaliableAgents()
24: i« getRandom(Z)

25: sendTokenMsg(i)

26: allocCounter++

27: end loop

for each task, nor any task related by an and constraint.

Figure 3 shows the achieved reward for different values of
stimulus and different number of agents. We use different
quantities of agents to experiment different proportions re-
lated to the number of tasks (100 means 5% of the 2000
tasks, 500 means 25%, 1000 means 50%, 1500 means 75%,
2000 means 100%, 3000 means 150% e 4000 means 200%).

As we can see, when the number of agents is equal to or
greater than the number of tasks, the stimulus that max-
imizes the reward IS 0.02 (i.e. for 2000, 3000, and 4000
agents). However, when the number of agents decreases,

1200000 -

—=—100

1000000 =2\ —a—1000 |

’ \\ ®- 1500

A PO - =- 2000

800000 —¥——~ —o—3000

. /& —=—4000
600000 —= /

400000 +— —

200000

reward

0,01 0,02 003 004 005 006 007 008 0,09 0,1
stimulus

Figure 3: Comparing stimulus and achieved rewards

0,12

0,08

.;E 0,06

0,04

0,02 —a

0

P PP LS PSSP S $ & $
LSS S \Q@ \\@ o {b@ \‘)@ R \4@ \%QF & '19@

num de agentes

Figure 4: Best stimulus for each number of agents

the stimulus related to the best reward increase. This ex-
periment shows that, to maximize the rewards, the stimulus
must variate according the proportion between the number
of agents and the number os tasks.

Figure 4 shows the stimulus values, labelled s*, that maxi-
mizes the rewards for each number of agents. Here we do not
use more than 2000 agents because in this cases the stimulus
is constant.

We fit the Equation 9 that captures the relationship between
the best stimulus values and the number of agents. Figure
4 also shows the curve of this equation, labelled s. As men-
tioned in Section 4, we adopt this empirically build equation
to compute stimulus in Swarm-GAP.

—0.5
numAgenies
1—e 10int(log1g numTarefas)
5= 9)
10

In the second experiment, we evaluate Swarm-GAP com-
paring its results with the results achieved by a greedy, cen-
tralized algorithm. In this experiment we change the task
requirements but there is no AND constraints.

The greedy algorithm allocates the best qualified agent
(available and having enough resources) to each available
task. As expected, the greedy approach outperforms Swarm-
GAP. However, Swarm-GAP performs well in the E-GAP
scenario achieving rewards 20% only lower (on average) than
the greedy ones.

The last experiment measures the impact of computing the
rewards, this time considering the AND constraints between
tasks. In this experiment, 60% of the tasks are AND con-
strained in groups of 5.

Figure 6 shows the expected decay in Swarm-GAP perfor-
mance when we consider the AND constraints and several
values for w (Equation 9). The rewards grow when w # 0,
improving the average performance in 25%.

6. RELATED WORK

1600000 -
1400000 e

1200000 /

1000000 —
% / /./
800000
§ //
600000 ‘//
400000
= Greedy
200000 —
~#- Swarm GAP
0
500 1000 1500 2000 2500 3000

number of agents

Figure 5: Comparison OF rewards of Swarm-GAP
and a Greedy strategy

1200000

1000000

800000

600000

/ —e—no AND

400000 // no [
——0
—e—03
—a—05

200000 _m-08 [

-e-1

number of agents

0

500 1000 1500 2000 2500 3000
reward

Figure 6: Rewards for different values of w

Swarm based approaches for optimization problems have
been presented before in the literature. The Ant Colony Op-
timization algorithms [6] are successful centralized solutions
for several problems on this area [7, 12]. However, there is
a lack of studies about distributed versions of optimization
problems. Few distributed approaches are reported, manly
focused on simple problems.

A distributed approach for manufacturing dynamic schedul-
ing based on social insects model was proposed in [3] and
extended by [4]. In this case, wasp like agents represent
multi-purpose machines capable of processing different jobs.
There is a cost to setup the machine from one type of job to
another. New jobs arrive in a production line. The machines
should choose whether or not to process the job. Their tar-
get is to minimize the setup time in order to minimize the
total processing time.

To achieve this minimization, each of the machines should
specialize in performing one or a few types of jobs. This
specialization is achieved by a mechanism inspired by the
adaptive task allocation behavior of swarms. Their results
show that the social insect model is competitive, or in some
cases superior to previously successful agent based systems.

The Swarm-GAP uses basically the same probabilistic
swarm task allocation model used in [3, 4]. However, in
Swarm-GAP the agents are specialized by default because
the information about the agents capabilities is part of the
problem definition. Through this capabilities we specialize

the agents using the polymorphism model shown in Equa-
tion 6.

Furthermore, we propose to modify the tendency equation to
deal with the interrelationships between the tasks, as shown
in Equation 6. In [3, 4] the tasks are totaly independent.

The work that introduces the E-GAP ([17]) also presents
an approximation algorithm to solve instances of this prob-
lem called Low-communication Approximation DCOP (LA-
DCOP). An E-GAP can be modelled as a DCOP, which
means that algorithms to solve DCOPs can be applied to
solve the E-GAP. DCOP algorithms are the state-of-the-
art in task allocation under the multiagent community per-
spective. Several algorithms with different approaches were
recently proposed (e.g. ADOPT[14, 13], OptAPO[11] and
DPOP(15]). Studies regarding this algorithms performance
under complex scenarios show that to search for the opti-
mal solution in this kind of problem is expensive in terms
of communication and computational time [10, 8, 5, 1]. In-
stances of the E-GAP modelled as DCOP result in problems
dramatically more complex then the ones cited above.

To deal with large scale teams of agents solving E-GAP is
necessary to minimize the communication among the agents
as much as possible. Besides, in this kind of problem, it is
better to get an approximated solution as fast as possible
than to find the optimal in an unfeasible time.

LA-DCOP is a DCOP algorithm developed to deal with this
E-GAP special characteristics. E-GAP is solved by LA-
DCOP in an approximated fashion. The algorithm dynami-
cally computes a minimal capability threshold for each task,
based on the problem specific details (all agents capabilities,
task requirements, available resources, etc), and use this to
maximize the expected total reward. Agents decide to allo-
cate a task if its capability is grater then this threshold.

LA-DCOP uses a token based protocol to improve commu-
nication performance. An agent receives a token, decides
which tasks to execute using the threshold communicated in
the token message, and send the token to another randomly
chosen agent. Additional tokens, called potential tokens, are
used by the agents to make commitments regarding the al-
location of an AND constrained tasks. The authors shown
that LA-DCOP outperforms other approximate DCOP al-
gorithm in communication and total reward quality.

Swarm-GAP differs from LA-DCOP in several ways:

e LA-DCOP computes the threshold used by the agents
to decide their actions based on global information,
including all agents capabilities. Our algorithm uses
only local information. Each agent decides which task
to allocate based only on its capability and the number
of tasks and agents in the system.

e The LA-DCOP threshold is global, which means that
one agents computes the threshold, as commented
above, and communicates it to the others. The Swarm-
GAP threshold is internal to each agent and reflects
the agent’s capabilities.

e Agents decision in Swarm-GAP is probabilistic accord-
ing to the swarm’s model of division of labor. Even
when the probability of executing a task is large, if it
is not one, than an agent can decide not to execute
it (with small probability). In LA-DCOP, the agent
always selects the task when its capability is greater
than the threshold.

e Swarm-GAP uses a simple token protocol to allow
agents to synchronize. Through this protocol each
agent knows the available tasks and communicates its
actions to the others. LA-DCOP also uses tokens to
improve communication efficiency, but its protocol is
more sophisticated. The token messages carries com-
mitments information and the computed threshold,
which is used by the agents to decide their actions.

e LA-DCOP deals with AND constrained tasks through
communication, increasing the number of token mes-
sages (potential tokens). Swarm-GAP uses a simple
model that modifies the agents’ tendency according to
the AND constrained tasks allocation.

One can broadly compare the results achieve here with those
achieved by LA-DCOP and DSA (approximate algorithm
for DCOP)[17], since the experiments were performed with
parameters as close as. Figure 5 shows that our approach
is equivalent to the DSA, achieving piratically the same re-
wards. The LA-DCOP statistically outperforms the Swarm-
GAP. The greedy method implemented both by us and the
one used to evaluate the LA-DCOP did not achieve the same
results. This can be explained by unintended differences in
the implementations.

7. CONCLUSIONS AND FUTURE WORK
The approach introduced here deals with the Extended Gen-
eralized Allocation Problem (E-GAP) based on the theoret-
ical models of division of labor in swarms. The presented
algorithm, called Swarm-GAP, solves E-GAP in an approx-
imated and distributed fashion. The E-GAP has been used
in the literature to model scenarios of search and rescue in
emergency situations, where actors must coordinate their
actions to help in disaster management.

Swarm-GAP intends to be a simple and effective algorithm.
The experimental results show that the probabilistic deci-
sion, based on the tendency and polymorphism models, al-
lows the agents to make reasonable coordinated actions. The
Swarm-GAP performs well, achieving rewards, on average,
only 20% worse than the ones achieved by a greedy cen-
tralized approach. The execution coefficient improves the
average reward in 25% in E-GAP instances with several in-
terrelated tasks.

In the future, we intend to compare the performance of
Swarm-GAP with DSA and LA-DCOP in a way that runs
all algorithms in the same simulation environment with ex-
actly the same setup. this may confirm the present results,
achieved by a rough comparison.

Besides, we intend to introduce failures in the simulation
regarding the communication channel, agents task percep-
tion, and incomplete knowledge about others capabilities.

This failures contribute to a realistic analysis of all algo-

rithms.

The idea is to evaluate our intuition that swarm

like algorithms are able to deal with failures with simple
mechanisms.

8.
1]

2]

[4]

[6]

7l

REFERENCES

S. Ali, S. Koenig, and M. Tambe. Preprocessing
techniques for accelerating the dcop algorithm adopt.
In Proceedings of the fourth international joint
conference on Autonomous agents and multiagent
systems, pages 1041-1048, New York, NY, USA, 2005.
ACM Press.

E. Bonabeau, G. Thraulaz, and M. Dorigo. Swarm
Intelligence: From Natural to Artificial Systems.
Oxford Univ Press, 1999.

M. Campos, E. Bonabeau, G. Thraulaz, and

J. Deneubourg. Dynamic scheduling and division of
labor in social insects. In Adaptive Behavior, volume
8-2, pages 83-96, 2001.

V. Cicirello and S. Smith. Improved routing wasps for
distributed factory control. Journal of Autonomous
Agents and Multi-Agent Systems, 8(3):237-266, May
2004.

J. Davin and P. J. Modi. Impact of problem
centralization in distributed constraint optimization
algorithms. In Proceedings of the fourth international
joint conference on Autonomous agents and
multiagent systems, pages 1057-1063, New York, NY,
USA, 2005. ACM Press.

M. Dorigo. Optimization, Learning and Natural
Algorithms. PhD thesis, Politecnico di Milano, 1992.

M. Dorigo, G. Di Caro, and L. Gambardella. Ant
colony optimization: A new meta-heuristic. In P. J.
Angeline, Z. Michalewicz, M. Schoenauer, X. Yao, and
A. Zalzala, editors, Proceedings of the Congress on
Evolutionary Computation, volume 2, pages
1470-1477, Mayflower Hotel, Washington D.C., USA,
6-9 1999. IEEE Press.

P. Ferreira Jr. and A. Bazzan. Distributed meeting
schedule through cooperative mediation: analysing
optapo’s performance in a complex scenario. In

A. Meisels, editor, Proceedings of the Sixzth
International Workshop on Distributed Constraint
Reasoning (DCR2005) - Nineteenth International
Conference on Artificial Intelligence (IJCAI2005),
pages 101-113, July 2005.

D. Gordon. The organization of work in social insect
colonies. Nature, 380:121-124, 1996.

R. T. Maheswaran, M. Tambe, E. Bowring, J. P.
Pearce, and P. Varakantham. Taking DCOP to the
real world: Efficient complete solutions for distributed
multi-event scheduling. In Third International Joint
Conference on Autonomous Agents and Multiagent
Systems, volume 1, pages 310-317, Washington, DC,
USA, July 2004. IEEE Computer Society.

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

R. Mailler and V. Lesser. Solving distributed
constraint optimization problems using cooperative
mediation. In Proceedings of the International Joint
Conference on Autonomous Agents and Multiagent
Systems, 3., pages 438-445, New York, 2004. New
York, IEEE Computer Society.

D. Merkle, M. Middendorf, and H. Schmeck. Ant
colony optimization for resource-constrained project
scheduling. IEEE Transactions on Evolutionary
Computation, 6(4):333-146, 2002.

P. J. Modi, W. Shen, M. Tambe, and M. Yokoo.
Adopt: Asynchronous distributed constraint
optimization with quality guarantees. Artificial
Intelligence, 161:149-180, January 2005.

P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo.
An asynchronous complete method for distributed
constraint optimization. In Second international joint
conference on Autonomous agents and multiagent
systems, pages 161-168, New York, NY, USA, 2003.
ACM Press.

A. Petcu and B. Faltings. A scalable method for
multiagent constraint optimization. In IJCAT 05,
Edinburgh, Scotland, Aug 2005.

G. E. Robison. Regulation of division of labor in
insect societies. Annual Review of Entomology,
37:637-665, 1992.

P. Scerri, A. Farinelli, S. Okamoto, and M. Tambe.
Allocating tasks in extreme teams. In Proceedings of
the fourth international joint conference on

Autonomous agents and multiagent systems, pages
727-734, New York, NY, USA, 2005. ACM Press.

D. B. Shmoys and E. Tardos. An approximation
algorithm for the generalized assignment problem.
Math. Program., 62(3):461-474, 1993.

G. Theraulaz, E. Bonabeau, and J. Deneubourg.
Response threshold reinforcement and division of
labour in insect societies. In Proceedings of the Royal
Society of London Series B — Biological Sciences,
volume 265, pages 327-332, 2 1998.

