

REVISÃO GEOQUÍMICA DAS ROCHAS ULTRAMÁFICAS DOS TERRENOS PORONGOS E PUNTA DEL ESTE

MARCELO AUGUSTO BECKER DALLMANN¹; MATEUS DOS SANTOS²; MATHEUS HEBERLÊ ARAUJO³; VITER MAGALHÃES PINTO⁴

¹Universidade Federal de Pelotas – marcelodallmann369@gmail.com ²Universidade Federal de Pelotas – mateusdossantos115@gmail.com ³Universidade Federal de Pelotas – heberle.97@gmail.com ⁴Universidade Federal de Pelotas – viter.pinto@gmail.com

1. INTRODUÇÃO

A geoquímica é a ciência responsável pelo estudo da química da terra e seus componentes, podendo ser dividida em várias áreas, como geoquímica de isótopos, litogeoquímica e entre outros. A litogeoquímica é o foco deste trabalho e consiste na quantificação e análise dos elementos químicos presentes nas rochas, com o objetivo de estudar as condições de cristalização, da gênese, sua classificação e o ambiente tectônico que as rochas analisadas são formadas.

O trabalho se desenvolveu a partir da proposta de investigação de complexos ofiolíticos com aplicação de métodos de litogeoquímica para determinar se os ofiolitos Arroio Grande e os da Antiforme Capané. pertencem a dois terrenos geológicos distintos, o Punta del Este e ao Porongos, respectivamente, no Cinturão Dom Feliciano/Escudo Sul riograndense (Figura 1).

Os ofiolitos são definidos como fragmento do manto superior e crosta oceânica, deslocadas tectonicamente de sua origem ígnea primária de formação por convergência de placas. Eles são representados por uma associação de rochas geneticamente relacionada a peridotitos do manto superior, parcialmente a totalmente serpentinizados, cumulados ultramáficos crustais, (meta) gabros/basaltos, unidades vulcânicas com ou sem diques laminados e rochas metassedimentares de origem marinha (RAMOS; KOESTER, 2015).

O ofiolito de Arroio Grande, consiste em uma associação de rochas meta-ultramáficas-máficas-sedimentares, intrudida por rochas graníticas e afetada por zonas de cisalhamento dúctil (RAMOS; KOESTER, 2015). Enquanto, os ofiolitos da Antiforme Capané, consistem em um variado conjunto de rochas metaultramáficas. metavulcânicas е metassedimentares submetidas deformação milonítica. As rochas supracrustais deste complexo são divididas em dois grupos: (I) sequência metavulcânica, que aflora no flanco oeste e possui origem de vulcanismo em parte explosivo e sub-aquoso, sendo interpretado como produto de subducção de crosta oceânica sob um continente; e (II) següência metassedimentar que ocorre nas porções central e leste da estrutura, sendo interpretado como produto de sedimentação marinho raso (MARQUES et. al., 2003).

A Suíte Metamórfica Porongos de acordo com JOST; BITENCOURT (1980) e MARQUES (2003) é uma faixa de rochas supracrustais de orientação NE com cerca de 150 km de comprimento situada na porção central do Escudo Sul-rio-grandense. A Suíte é bem descrita na porção norte do Rio Camaquã, na qual estão localizados a Antiforme Capané. Já o ofiolito Arroio Grande é considerado por RAMOS et. al. (2017), pertencente ao Complexo Arroio Grande, composto essencialmente por rochas metassedimentares (xistos pelíticos), com mármores, xistos magnesianos, gnaisses e anfibolitos, subordinados.

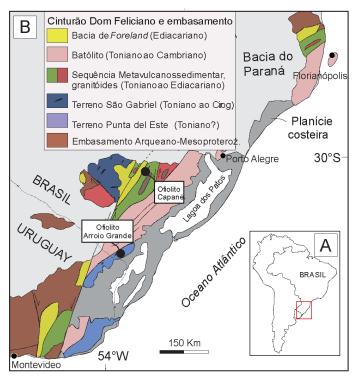


Figura 1 – A) Localização do Cinturão Dom Feliciano (CDF) na América do Sul; B) Principais unidades geológicas do CDF e localização das áreas estudadas (modificado de WERLE et al., 2020).

2. METODOLOGIA

A execução do estudo consistiu na coleta de dados de análises geoquímicas realizadas em trabalhos anteriores na região. Os dados referentes a Antiforme Capané, são de MARQUES et al. (2003), enquanto de Arroio Grande, de RAMOS; KOESTER (2015). Os dados foram trabalhados no software livre GCDKit, no qual os diagramas foram gerados para posterior interpretação. Aqui nós apresentamos apenas uma demonstração preliminar do tratamento geoquímico.

3. RESULTADOS E DISCUSSÃO

Entre os diagramas de óxido de magnésio (MgO) vs elementos maiores e menores, destacam-se os diagramas MgO vs SiO2, Cr, Ni e Zr (Fig.2A). As amostras de serpentinitos da Antiforme Capané apresentam maior percentagem em peso de MgO (~35 a 45%) e teor de Zr em relação a Arroio Grande. Ambas as amostras apresentam elevados valores em ppm de Cr e Ni, entre 1500 a 2000 ppm, em média, indicando uma origem mantélica ou manto primitivo.

No diagrama log Ti/1000 vs. V, adaptado de SHERVAIS (1982), Figura 2B, utilizado com o objetivo de detectar o ambiente tectônico original, as amostras estabelecem relações menores de 10, pois apresentam teores extremamente baixos de Ti. O que classifica as amostras com boninito. Boninitos são rochas máficas, formadas pela fusão mantélica, geralmente em ambientes frontais de arcos, originados em zonas de supra subducção.

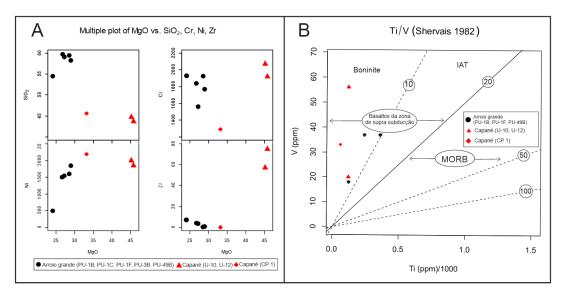
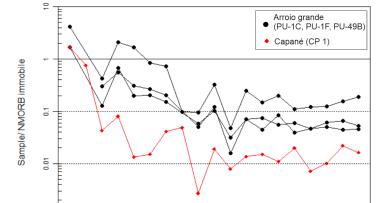



Figura 2: (A) Diagrama MgO vs SiO2, Cr, Ni, Zr. (B) Diagrama modificado de SHERVAIS (2014). As amostras em preto pertencem a Arroio Grande e em vermelho, região de Capané.

Apesar de analisarmos oito amostras, apenas três de Arroio Grande e uma de Capané, possuem todos os elementos traços para análise total dos elementos terras raras e HFSE (Nb, Th). Através do diagrama spider (Figura 3A) normalizado pelo NMORB (PEARCE, 2014, tendo como base SUN & MCDONOUGH, 1989), observa-se que as amostras apresentam padrões paralelos. Observa-se anomalia negativa de Nb-Ta, Zr-Hf e Ti em todas as amostras. Na amostra do Capané, há também anomalia de Ce e Y. A anomalia negativa de Ti indica o fracionamento de minerais acessórios como a titanita e rutilo, que são corroborado pelo diagrama de Shervais ao indicar a diminuição de Ti em relação ao V. As anomalias negativas de Zr, Hf e Y, como são elementos compatíveis, podem ser relacionados conjuntamente a fluidos gerados a partir da desidratação de material fundido pela crosta subductada. A anomalia negativa de Nb-Ta é tipicamente relacionada ao ambiente de subducção de crosta oceânica.

Spider plot - NMORB immobile (Sun & McDonough 1989 in Pearce 2014

Figura 3: Spiderplot normalizado pelo NMORB para elementos imóveis, cf. PEARCE (2014). Amostras em preto de Arroio Grande, em vermelho, de Capané.

4. CONCLUSÕES

Por meio dos diagramas elaborados a partir dos dados de análises químicas disponíveis, observa-se que os ofiolitos pertencem a zona de subducção e são de dois grupos cogenéticos: Capané e Arroio Grande. Esses grupos são atualmente considerados como pertencentes a terrenos distintos: Porongos e Punta del Este, respectivamente. Porém, é necessário estudos mais aprofundados na região, especialmente com maior número de análises químicas da região de Capané, além de estudos geocronológicos e isotópicos para determinar se realmente pertencem a terrenos distintos, apesar de apresentarem evoluções químicas similares.

5. REFERÊNCIAS BIBLIOGRÁFICAS

JOST, H.; BITENCOURT, M. de F. Estratigrafia e tectônica de uma fração da Faixa de Dobramentos Tijucas no Rio Grande do Sul. Acta *Geologica Leopoldensia*, v. 4, n. 7, p. 27-60, 1980.

MARQUES, J. C.; ROISENBERG, A.; JOST, H.; FRANTZ, J. C.; TEIXEIRA, R. S. Geologia e geoquímica das rochas metaultramáficas da Antiforme Capané, Suíte Metamórfica Porongos, RS. *Revista Brasileira de Geociências*, V.33, n.1, 83-94, 2003.

PEARCE, J.A. Immobile Element Fingerprinting of Ophiolites. **Elements**, 10(2), p. 101-108, 2014.

RAMOS, R. C.; & KOESTER, E. Lithogeochemistry of the meta-igneous units from Arroio Grande Ophiolitic Complex, southernmost Brazil. *Brazilian Journal of Geology*, v.45, n. 1, p.65-78. 2015.

RAMOS, R. C.; & KOESTER, E; PORCHER, C. C. Chemistry of chromites from Arroio Grande ophiolite (Dom Feliciano belt, Brazil) and their possible connection with the nama group (Namibia). *Journal of South American Earth Sciences*, v. 80, p. 192-206, 2017.

SHERVAIS, J. W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. *Earth and planetary science letters*, v. 59, n. 1, p. 101-118, 1982.

SUN, S. S.; MCDONOUGH, W. F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. *Geological Society, London,* v. 42, n. 1, p. 313-345, 1989.

WERLE, M.; HARTMANN, L.A.; Oceanic crust and mantle evidence for the evolution of Tonian-Cryogenian ophiolites, southern Brasiliano Orogen. **Precambrian Research**, v. 351, 2020.