

NANOCLUSTERS SUBNANOMÉTRICOS DE Pt_n (n = 2 - 7 ÁTOMOS): UM ESTUDO VIA DFT-PBE

OCTAVIO RODRIGUES FILHO¹; JOÃO PAULO CERQUEIRA FELIX²; MAURÍCIO JEOMAR PIOTROWSKI³

¹Universidade Federal de Pelotas – octavio.fisica.lab@gmail.com ²Universidade Federal de Pelotas – joao.felix@ufpel.edu.br ³Universidade Federal de Pelotas – mauricio.piotrowski@ufpel.edu.br

1. INTRODUÇÃO

Em 29 de dezembro de 1959, o Físico norte-americano Richard P. Feynman (1918-1988) realizou uma palestra para a Sociedade Americana de Física intitula-da "Há muito espaço lá em baixo" (FEYNMAN, 1960). Nesta palestra, Feynman levantou questionamentos a respeito das possíveis formas de manipular e rearranjar átomos, abrindo assim precedente para estudos e desenvolvimento em Física de nanomateriais.

Entre a classe dos nanomateriais, temos os nanoclusters (NCs), que são agregados atômicos, de ordem nanométrica ou subnanométrica (1 nm = 10⁻⁹ m, ou seja, um bilionésimo do metro) e, em geral, constituídos de poucos átomos e que, atualmente, são estudados de forma ampla por apresentarem propriedades diferentes das propriedades observadas em macroescala (ALONSO, 2000). Em especial, nanoclusters de metais de transição (MTs) são mais eficientes e reativos quando aplicados em nanocatálise, quando comparados as mesmas espécies em macroescala (FERNANDO; et al., 2015), e possuem aplicabilidade em diversos campos de estudo dentro e fora da Físico-Química como, por exemplo, na catálise, em biosensores (SHELLAIAH; SUN, 2017), em tecnologias farmaco-medicinais como o "drug delivery" (CAPELETTI; et al., 2014), entre outros. O aumento na eficiência e na reatividade desses materiais nanométricos, quando comparados as suas fases cristalinas, se deve ao aumento da razão de átomos superficiais, o que permite uma maior interação com o ambiente que os envolve (ALON-SO, 2000). Com isso, podemos encontrar alterações estruturais de acordo com o ambiente, favorecendo o estudo de ambientes químicos e de interações com moléculas (FELIX; et al., 2021).

O estudo desses sistemas é governado pela Mecânica Quântica (MQ). Porém, se tratando de um problema de muitos corpos (considera-se aqui um sistema de *M* núcleos e *N* elétrons), que é um problema sem solução analítica em MQ, é conveniente o emprego da Teoria do Funcional da Densidade (DFT) (HOHEN-BERG & KOHN, 1964 e KOHN & SHAM, 1965), a qual faz uso da densidade eletrônica, n(r), que é uma função de três variáveis espaciais, na descrição das propriedades observáveis desses sistemas, tornando dispensável a utilização das funções de onda eletrônicas, assim reduzindo um problema de três 3*N* variáveis a um problema de 3 variáveis espaciais.

Neste trabalho, é feita uma investigação sobre Ncs subnanométricos de Pt, de 2 a 7 átomos, a respeito das suas propriedades estruturais, eletrônicas, magnéticas e de coordenação. A Pt é considerada o principal metal utilizado nos eletrocatalisadores. Todavia, seu alto custo, entre outros fatores, limitam sua utilização em diversos processos, consequentemente, uma alternativa é a utilização de

nanopartículas de Pt atuando em processos catalíticos e em reações em ambientes químicos.

2. METODOLOGIA

O problema de um sistema de muitos corpos em MQ se torna tecnicamente insolúvel através da equação de Schrödinger, como dito anteriormente. Logo, é necessária, como alternativa, a utilização de simulações computacionais na obtenção das propriedades desses sistemas.

Para tais simulações, utiliza-se o VASP (*Vienna Ab initio Simulation Packa-ge*) (KRESSE *et al.*, 1993 e 1996), que é um pacote de simulações de sistemas quantum-mecânicos, através de cálculos (computacionais) de primeiros princípios, e o funcional de troca e correlação DFT-PBE (PERDEW; *et al.*, 1996), que utiliza uma aproximação nos termos quânticos através da densidade eletrônica e de seu gradiente generalizado. Com isso obtém-se, dentro de um conjunto representativo de estruturas construídas através do Avogadro, que é um *software* de edição e dinâmica molecular clássica, as estruturas de mais baixa energia e suas propriedades eletrônicas e estruturais.

3. RESULTADOS E DISCUSSÃO

A Figura 1 mostra as estruturas de mais baixa energia obtidas para os nanoclusters de Pt, para cada tamanho (2-7 átomos), obtidas através do funcional DFT-PBE.

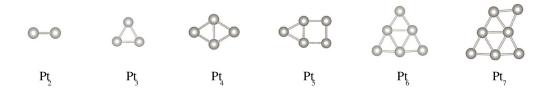


Figura 1: estruturas mais estáveis de nanoclusters de Pt (2-7 átomos), utilizando DFT-PBE.

Observa-se que as estruturas de Pt, entre 2 a 7 átomos, tendem a se estabilizar em conformações espaciais triangulares com configurações planares, devido a efeitos relativísticos, com exceção da Pt₄, que tende a se estabilizar como uma estrutura não planar "butterfly" (111,47°), o que está em total acordo com a literatura (CHAVES; et al., 2017). A Tabela 1 mostra as propriedades de energia de ligação (E_b), comprimento médio de ligação (E_b), número de coordenação efetivo (ECN) e momento magnético total (E_b) das estruturas de mais baixa energia para os nanoclusters de Pt, para cada tamanho (2-7 átomos), obtidas através do funcional DFT-PBE.

Tabela 1: propriedades referentes as estruturas mais estáveis de Pt (2-7 átomos), via DFT-PBE.

n	$E_b \text{ (eV/átomo)}$	d_{av} (Å)	ECN	$m_T \; (\mu_B)$
2	-1.70	2.33	1.00	2.00
3	-2.34	2.46	2.00	2.00
4	-2.63	2.50	2.49	2.00
5	-2.89	2.47	2.39	2.00
6	-3.14	2.48	2.86	2.00
7	-3.20	2.49	3.04	2.00

A Figura 2 mostra o comportamento desses sistemas estudados, em termos de suas propriedades tabeladas acima (E_b , d_{av} , ECN e m_T) em função do número de átomos. A energia de ligação (E_b) representa o ganho energético que um sistema de n átomos livres tem ao formar um nanocluster de n átomos, o que permite discorrer sobre a estabilidade de cada um desses sistemas.

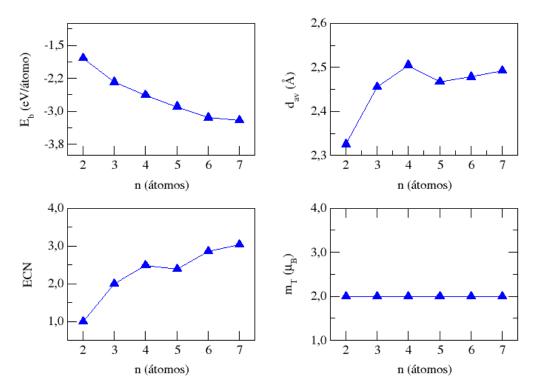


Figura 2: relação entre estruturas e as propriedades obtidas via DFT-PBE.

 E_b é um parâmetro de estabilidade para esses sistemas, e indica que há a tendência de estabilização à medida que o tamanho da estrutura se aproxima, com a adição gradativa de átomos, da fase cristalina (n suficientemente grande), o que está de acordo pelo fato de nanoclusters serem mais instáveis e reativos. Os gráficos de d_{av} e ECN indicam que há uma tendência global, com algumas flutuações associadas a efeitos relativísticos e estruturais, de crescimento desses parâmetros à medida que átomos são adicionados de forma gradativa ao sistema, o que é esperado. Em relação ao momento magnético total, m_T , observa-se que, em geral, nanoclusters de Pt_n (2-7 átomos) possuem momento magnético total não nulos e iguais a 2,0 μ_B.

4. CONCLUSÕES

Neste trabalho foi realizada uma investigação, via DFT-PBE, a respeito das propriedades eletrônicas e estruturais de nanoclusters subnanométricos de Pt de 2 a 7 átomos e as variações dessas propriedades de acordo com o tamanho dos nanoclusters. Nos próximos passos, serão realizadas adsorções moleculares de espécies químicas como N_2 , CO, NO e O_2 (que se adsorvem fraca, moderada e fortemente) sobre nanoclusters de Pt_n , onde n será determinado a partir do critério da função estabilidade, $\Delta^2 E$ (função esta que compara a estabilidade entre os tamanhos das estruturas de mais baixa energia).

A realização da adsorção molecular possibilita uma investigação mais ampla sobre a dinâmica e as características da interação dessas moléculas com os sistemas de NCs de Pt_n. Com isto, deve-se verificar o princípio de Sabatier, que diz que o catalisador ideal deve ser atraído moderadamente pelos intermediários da reação, que neste caso são as moléculas adsorvidas.

5. REFERÊNCIAS BIBLIOGRÁFICAS

ALONSO, J. A. Electronic and Atomic Structure, and Magnetism of Transition-Metal Clusters. **Chem. Rev.**, v. 100, p. 637-677, 2000.

CAPELETTI, L. B.; et al. Tailored silica-antibiotic nanoparticles: Overcoming bacterial resistance with low cytotoxicity. **Langmuir**, v. 30, p. 7456-7464, 2014.

CHAVES, A. S.; et al. Evolution of the structural, energetic, and electronic properties of the 3d, 4d, and 5d transition-metal clusters (30 Tm_n systems for n = 2-15): a

density functional theory investigation. **Phys. Chem. Chem. Phys.**, 2017, **19**, 15484.

FELIX, J. P. C.; et al. Uma investigação sobre a estabilidade de nanoclusters de Ag, Pt e Au 2 - 7 átomos via Teoria do Funcional da Densidade. **XXIX Congresso de Iniciação Científica**, 2020.

FELIX, J. P. C.; et al. Adsorção molecular sobre nanoclusters subnanométricos de Ag e Au 2-7 átomos. **XXX Congresso de Iniciação Científica**, 2021.

FERNANDO, A. et al. Quantum Mechanical Studies of Large Metal, Metal Oxide, and Metal Chalcogenide Nanoparticles and Clusters. **Chem. Rev.**, v. 115, p. 6112-6216, 2015.

FEYNMAN, R. Há mais espaços lá embaixo. **Caltech's Engineering and Science**. 1960.

HOHENBERG, P.; KOHN, W. Inhomogeneous Electron Gas. **Phys. Rev. B**, v. 864, p. 136, 1964.

KASPAR, J. et al. Automotive catalytic converters: current status and some perspectives. **Catal. Today**, v. 77, p. 419-449, 2003.

KOHN, W.; SHAM, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. **Phys. Rev. A**, v. 40, p. 11331, 1965.

KRESSE, G.; HAFNER, J. Ab initio Molecular Dynamics for Open-shell Transition Metals. **Phys. Rev. B**, v. 48, p. 13115, 1993.

KRESSE, G.; FURTHMÜLLER, J. Efficient Iterative Schemes for Ab initio Total energy Calculations using a Plane-wave Basis Set. **Phys. Rev. B**, v. 54, p. 11169,1996.

PERDEW, J. P.; BURKE, K.; ERNZERHOF, M. Generalized Gradient Approximation Made Simple. **Phys. Rev. Lett.**, v. 77, p. 3865, 1996.

PIOTROWSKI, M. J. et al. Adsorption of NO on the Rh_{13} , Pd_{13} , Ir_{13} , and Pt_{13} clusters: a density functional theory investigation. **The J. of Phys. Chem. C**, v. 116, n. 38, p. 20540-20549, 2012.

SHELLAIAH, M.; SUN, K. W. Luminescent Metal Nanoclusters for Potential Chemosensor Applications. **Chemosensors**, v. 5, p. 36, 2017.