
FEDERAL UNIVERSITY OF PELOTAS
Technology Development Center

Postgraduate Program in Computing

Thesis

Enhancing Embedded Software in the Internet of Things Domain: Exploring
JavaScript on Resource-Constrained Devices

Fernando Luis Oliveira

Pelotas, 2023

Fernando Luis Oliveira

Enhancing Embedded Software in the Internet of Things Domain: Exploring
JavaScript on Resource-Constrained Devices

Thesis submitted to the Computer Science Pro-
gram of the Federal University of Pelotas as a
partial requirement to obtain the Ph.D. degree in
Computer Science.

Advisor: Prof. Dr. Julio Carlos Balzano de Mattos

Pelotas, 2023

8QLYHUVLGDGH�)HGHUDO�GH�3HORWDV���6LVWHPD�GH�%LEOLRWHFDV
&DWDORJDcbR�QD�3XEOLFDcbR

2��H 2OLYHLUD��)HUQDQGR�/XLV�GH
2OL(QKDQFLQJ�HPEHGGHG�VRIWZDUH�LQ�WKH�LQWHUQHW�RI�WKLQJV
GRPDLQ���H[SORULQJ�MDYDVFULSW�RQ�UHVRXUFH�FRQVWUDLQHG
GHYLFHV���)HUQDQGR�/XLV�GH�2OLYHLUD���-XOLR�&DUORV�%DO]DQR�GH
0DWWRV��RULHQWDGRU��f�3HORWDV�������
2OL����I�

2OL7HVH��'RXWRUDGR��f�3URJUDPD�GH�3eV�*UDGXDcbR�HP
&RPSXWDcbR��&HQWUR�GH�'HVHQYROYLPHQWR�7HFQROeJLFR�
8QLYHUVLGDGH�)HGHUDO�GH�3HORWDV�������

2OL���(PEHGGHG�VRIWZDUH�����,QWHUSUHWHG�ODQJXDJH����
,QWHUQHW�RI�WKLQJV�����-DYDVFULSW��,��0DWWRV��-XOLR�&DUORV
%DO]DQR�GH��RULHQW��,,��7dWXOR�

&''������

(ODERUDGD�SRU�6LPRQH�*RGLQKR�0DLVRQDYH�&5%���������

Fernando Luis Oliveira

Enhancing Embedded Software in the Internet of Things Domain: Exploring
JavaScript on Resource-Constrained Devices

Thesis presented as a partial requirement to obtain the Ph.D. degree in Computer
Science, Postgraduate Program in Computing, Technology Development Center,
Federal University of Pelotas.

Defense Date: May 4, 2023

Examination Board:
Prof. Dr. Julio Carlos Balzano de Mattos (advisor)
Ph.D in Computer Science from the Federal University of Rio Grande do Sul
(UFRGS).

Profa. Dra. Lisane Brisolara de Brisolara
Ph.D in Computer Science from the Federal University of Rio Grande do Sul
(UFRGS).

Prof. Dr. Marcio Seiji Oyamada
Ph.D in Computer Science from the Federal University of Rio Grande do Sul
(UFRGS).

Prof. Dr. Mateus Beck Rutzig
Ph.D in Computer Science from the Federal University of Rio Grande do Sul
(UFRGS).

Prof. Dr. Ulisses Brisolara Corrêa
Ph.D in Computer Science from the Federal University of Pelotas (UFPel).

I dedicate this work to my wife Eliana and my children
Miguel and Lucas for their support, patience, and en-
couragement.

ACKNOWLEDGMENT

Reaching the end of a work as complex, profound, and exclusive as a doctoral
thesis requires considerable effort, dedication, and emotional and physical preparation
from the student. Therefore, the support of other professionals is essential because
we cannot accomplish anything alone.

I would like to express my gratitude to my advisor, Dr. Julio Carlos, who provided
me with the right guidance to develop this work. I would also like to acknowledge all
the professors and administrative staff at UFPel who have contributed in some way to
the completion of my Ph.D.

I would also like to extend my heartfelt thanks to my family, especially my wife,
Eliana, for her unwavering support, encouragement, and understanding throughout
the past four years. I am also grateful to my children, Miguel and Lucas (by the way,
Lucas was born during the course of this work). Your support has been instrumental in
my success in completing this work.

ABSTRACT

OLIVEIRA, Fernando Luis. Enhancing Embedded Software in the Internet of
Things Domain: Exploring JavaScript on Resource-Constrained Devices. Advi-
sor: Julio Carlos Balzano de Mattos. 2023. 131 f. Thesis (Doctorate in Computer
Science) – Technology Development Center, Federal University of Pelotas, Pelotas,
2023.

Embedded software development for the Internet of Things (IoT) has predomi-
nantly centered on compiled programming languages, such as C and C++, with C
being the most widely used. However, the C language has downsides, including
lack of object orientation, absence of exception handling, no garbage collection,
manual memory management, and other aspects that can make software develop-
ment challenging, considering the increased complexity of the embedded software
requirements. In contrast, interpreted languages like Python and JavaScript (JS)
have emerged as alternatives to improve the software quality and abstraction level
of applications. Although interpreted languages can bring advantages to embedded
software, such as flexibility and ease of use, their execution model (interpretation) can
demand higher resource consumption, restricting their use in resource-constrained
devices. This study investigates methods to enhance the performance of embedded
software to reduce resource consumption in the IoT context, focusing on devices with
limited resources. In particular, we chose JavaScript as an alternative to C language
and performed investigations to enhance its performance. To do that, we begin with a
systematic literature review to understand the relationship between JS and IoT. Then,
we analyzed the JavaScript language to understand its impact on constrained devices
and performed experiments using benchmarks and real-world applications. As a
result, we produced a set of guidelines to improve code quality, a tool (JSGuide) to
detect code smells, and developed a framework (JSEVAsync) based on asynchronous
functions to help developers build better-embedded solutions. Our findings show that
using an interpreted language in embedded software development is feasible and
improves design-time metrics, such as maintainability, readability, and code reuse.

Keywords: Embedded Software. Interpreted Language. Internet of Things. JavaScript.

RESUMO

OLIVEIRA, Fernando Luis. Enhancing Embedded Software in the Internet of
Things Domain: Exploring JavaScript on Resource-Constrained Devices. Ad-
visor: Julio Carlos Balzano de Mattos. 2023. 131 f. Tese (Doutorado em Ciência
da Computação) – Technology Development Center, Federal University of Pelotas,
Pelotas, 2023.

O desenvolvimento de software embarcado para a Internet das Coisas (IoT)
tem se concentrado predominantemente em linguagens de programação compi-
ladas, como C e C++, sendo C a mais utilizada. No entanto, a linguagem C tem
desvantagens, incluindo falta de orientação a objetos, ausência de tratamento de
exceções, sem mecanismo automatizado para alocal e liberar memória (garbage
colletor), gerenciamento manual de memória e outros aspectos que podem tornar o
desenvolvimento de software desafiador, considerando o aumento da complexidade
dos requisitos de software embarcado. Em contrapartida, linguagens interpretadas
como Python e JavaScript (JS) surgem como alternativas para melhorar a qualidade
do software e o nível de abstração das aplicações. Embora linguagens interpretadas
possam trazer vantagens para software embarcado, como flexibilidade e facilidade
de uso, seu modelo de execução (interpretação) pode demandar maior consumo de
recursos, restringindo seu uso em dispositivos com recursos limitados. Este estudo
investiga métodos para melhorar o desempenho do software embarcado para reduzir
o consumo de recursos no contexto IoT, com foco em dispositivos com recursos
limitados. Em particular, escolhemos o JavaScript como alternativa à linguagem
C e realizamos investigações para melhorar seu desempenho. Para fazer isso,
começamos com uma revisão sistemática da literatura para entender a relação entre
JS e IoT. Em seguida, analisamos a linguagem JavaScript para entender seu impacto
em dispositivos restritos e realizamos experimentos usando benchmarks e aplica-
tivos reais. Como resultado, produzimos um conjunto de diretrizes para melhorar
a qualidade do código, uma ferramenta (JSGuide) para detecção de code smells
e desenvolvemos uma estrutura baseada em funções assíncronas (JSEVAsync)
para ajudar os desenvolvedores a criar melhores soluções embarcadas. Nossas
descobertas mostram que o uso de uma linguagem interpretada no desenvolvimento
de software embarcado é viável e melhora as métricas de tempo de design, como
manutenibilidade, legibilidade e reutilização de código.

Palavras-chave: Software Embarcado. Linguagem Interpretada. Internet das Coisas.
JavaScript.

LIST OF FIGURES

Figure 1 IoT Analytic market forecast (IOT ANALYTICS, 2023). 17
Figure 2 Thesis organization. 22
Figure 3 Results Organization. 23

Figure 4 Compilation and interpretation flow adapted from (SCOTT, 2000). . 31
Figure 5 Overview of IoT architecture (FARHAN et al., 2017). 33
Figure 6 Overview of the JavaScript execution/optimization pipeline. 35
Figure 7 JavaScript memory model. 35
Figure 8 JavaScript runtime model. 36
Figure 9 Moddable approach (MODDABLE TECH, 2023). 40
Figure 10 Basic string search. 42
Figure 11 Papers selection process. 42
Figure 12 Papers selected by step. 43
Figure 13 Amount of papers by year. 44
Figure 14 IoT – JS taxonomy. 46

Figure 15 Code-synchronized measurements example. 52
Figure 16 Overview of the validation flow of experiments. 53
Figure 17 Garage door opener architecture integration. 54
Figure 18 Google homegraph message. 55
Figure 19 Garage door opener overview. 56
Figure 20 Garage opener: Cyclomatic complexity analysis. 62
Figure 21 Comparison of available memory. 63
Figure 22 Garage opener: Execution time. 64
Figure 23 Garage opener: Energy consumption. 64

Figure 24 Goals of the study of guidelines. 68
Figure 25 Comparison between old and new JavaScript API. 69
Figure 26 Overview of the JavaScript language analysis process. 70
Figure 27 Code smells: execution time. 73
Figure 28 New features: execution time. 73
Figure 29 Code smell: memory consumption. 74
Figure 30 New features: memory consumption. 74
Figure 31 Code smell: energy consumption. 75
Figure 32 New features: energy consumption. 76
Figure 33 JSGuide - Architecture overview. 77
Figure 34 Code smell detection. 77
Figure 35 JSGuide class diagram. 78

Figure 36 JSGuide: report example for Listing 4.2. 80
Figure 37 JSGuide: CLBG report example for Listing 4.3. 81

Figure 38 Overview of JSEVAsync. 85
Figure 39 Type of events. 87
Figure 40 Alarm System: Application flow. 88
Figure 41 Alarm System: Experimental setup. 88
Figure 42 Alarm System: cyclomatic complexity analysis. 92
Figure 43 Alarm System: Energy consumption by implementation. 95

LIST OF TABLES

Table 1 Pico model for the framing question. 42
Table 2 Inclusion and Exclusion Criteria. 42
Table 3 Papers by topic. 46
Table 4 JavaScript engine for IoT. 47

Table 5 Microcontroller specifications. 51
Table 6 Technical software details. 51
Table 7 Garage opener: Halstead metrics. 61
Table 8 Garage opener: Memory consumption (bytes). 62

Table 9 Evaluated JavaScript Features. 70
Table 10 JavaScript language analysis results. 72

Table 11 Alarm System: Halstead metrics. 92
Table 12 Alarm System: Energy consumption by language. 93
Table 13 Alarm System: Energy consumption by language using hardware

interrupt. 94
Table 14 Alarm System: Energy consumption by language with delay. 95
Table 15 Alarm System: Memory consumption (kB). 95

LIST OF ABBREVIATIONS AND ACRONYMS

API Application Programming Interfaces

AST Abstract Syntax Tree

BLE Bluetooth Low Energy

CLBG Computer Language Benchmarks Game

CPS Cyber-Physical Systems

CPU Central Processing Unit

CSS Cascading Style Sheets

DOM Document Object Model

EC Exclusion Criteria

ESx ECMAScript(verison number)

ET Event-Triggered

FIFO First in First out

GB Gigabyte

GND Ground

HTML Hypertext Markup Language

I/O Input / Output

IC Inclusion Criteria

ESP-IDFEspressif IoT Development Framework

IoT Internet of Things

IT Information Technology

JS JavaScript

JSC JavaScriptCore

JSON JavaScript Object Notation

JVM Java Virtual Machine

kB Kilobyte

LIFO Last In First Out

MCU Microcontroller

MDF Modified

MHz Megahertz

mJ Millijoule

ms Milisecond

ns Nanosecond

OS Operation System

PICO Population, Intervention, Comparison and Outcomes

PLCs Programmable Logic Controllers

PPK Power Profile Kit

RAM Random Access Memory

RF Radio Frequency

RFID Radio Frequency Identification

ROM Read-Only Memory

RQ Research Question

RTOS Real Time Operating System

SDK Software Development Kit

SMU Source Measure Unit

SoC System-on-Chip

STD Standard

TCP/IP Transmission Control Protocol/Internet Protocol

TLS Transport Layer Security

TT Time-Triggered

VIN Voltage in

VM Virtual Machine

XS Extra Small

CONTENTS

1 INTRODUCTION . 16
1.1 Motivation . 18
1.2 Hypotheses and Research Questions 20
1.2.1 Contributions . 21
1.3 Thesis Organization . 21
1.3.1 Research Structure . 21
1.3.2 Organization . 22
1.3.3 Disclaimer / Scope Delimitation . 24

2 BACKGROUND AND LITERATURE REVIEW 25
2.1 Embedded Systems . 25
2.1.1 Embedded Systems Characteristics . 26
2.1.2 Embedded Software . 28
2.1.3 Software Quality Metrics . 29
2.1.4 Compiled and Interpreted Languages 30
2.2 Internet of Things (IoT) . 32
2.3 JavaScript . 34
2.3.1 JavaScript For Embedded Systems . 37
2.3.2 Moddable XS JavaScript engine . 39
2.4 Systematic Mapping Review: JavaScript Applied to IoT 41
2.5 Summary . 49

3 ANALYZING JAVASCRIPT CODES . 50
3.1 Hardware and Software Setup . 50
3.1.1 Overview of the Experimentation Flow 53
3.2 Case Study Description . 54
3.3 Results of JavaScript and C programs 56
3.3.1 Code Quality Analysis . 56
3.3.2 Resource Consumption Analysis . 62
3.3.3 Related Work . 65
3.4 Summary . 65

4 JSGUIDE: GUIDELINES TO IMPROVE EMBEDDED SOFTWARE FOR IOT 67
4.1 Guidelines . 67
4.1.1 Selection of code smells . 68
4.1.2 Guidelines Results . 71
4.2 JSGuide: A tool to detect code smells 76
4.2.1 JSGuide Results . 79

4.3 Related work . 82
4.4 Summary . 82

5 JSEVASYNC: A FRAMEWORK TO DEVELOP EMBEDDED SOFTWARE
USING ASYNCHRONOUS UNITS . 84

5.1 JSEVAsync Proposal . 84
5.2 JSEVAsync Validation . 89
5.2.1 Code Quality Analysis . 91
5.2.2 Resource Consumption Analysis . 92
5.3 Related work . 96
5.4 Summary . 97

6 DISCUSSIONS . 98

7 CONCLUSIONS AND FUTURE WORK . 102
7.1 Future Work . 104
7.2 Publications . 105

REFERENCES . 106

1 INTRODUCTION

In recent years, we have witnessed many technological advances, leading us to a
world that is becoming increasingly connected and dependent on technology. We are
moving towards ubiquitous and pervasive computing, wherein computer systems be-
come seamless and work to anticipate and respond to users’ needs (ABDULSATTAR;
AL-OMARY, 2020).

Computer systems are part of the daily life of modern society. They help people in
their routines, whether through computers, smartphones, or other electronic devices,
with processing capacity. When combined with other equipment or as part of a larger
and more complex system, such devices can be understood as Embedded Systems
(ES) (BRISOLARA; MATTOS, 2009).

Embedded systems are specialized computer systems designed to perform spe-
cific tasks. For instance, they can be used to control a vehicle Anti-lock Braking Sys-
tem (ABS) or airplane altitude control. Therefore, they must be efficient and reliable
(WOLF, 2017). Nevertheless, embedded systems can also be used for standard and
routine tasks, whether to automate a task or monitor an environment. Therefore, it is
increasingly common to find these systems in objects that make up our daily lives, and
this combination of computing and everyday objects can be referred to as the Internet
of Things (IoT).

The Internet of Things arises from the integration between embedded systems and
internet connectivity. In this paradigm, ordinary objects become smart with compu-
tational and networking capabilities, using sensors and actuators to interact with the
environment, fostering new services, products, and opportunities to innovate (GUBBI
et al., 2013). Thus, the IoT transforms traditional objects into smart ones by exploring
underlying technologies to detect their execution context, analyzing it, and exchang-
ing information to enable a more productive, safe, and comfortable environment (AL-
FUQAHA et al., 2015).

The Transforma Insights Institute (2020) argues that there will be 24.1 billion active
IoT devices by 2030, with a growth rate of 11% per year. In a similar positive forecast,
IoT Analytics (2023) predicts a 19% growth in the global IoT market size in 2023,

17

despite the economic downturn. Figures 1 show the forecasts of the IoT market.

Figure 1 – IoT Analytic market forecast (IOT ANALYTICS, 2023).

The perspective of the Transforma Insights Institute and IoT Analytics confirms
the wide range of applications for IoT devices. However, this diversity of equipment
presents several challenges in the embedded domain, including reliability, security,
storage, communication, and software development.

Software is one of the most critical components of an IoT device. It controls the
hardware and applies the functional requirements (NAKAGAWA et al., 2022), where
programming languages play an essential role in building embedded applications.

Choosing a programming language is a complex and not trivial decision that soft-
ware engineers must make (BHATTACHARYA; NEAMTIU, 2011). Several factors might
impact the decision-making process, such as implementation cost, quality of the result,
learning curve, maintainability, and the language ecosystem. Therefore, each lan-
guage has different characteristics that should be taken into account when selecting a
suitable programming language (FARSHIDI; JANSEN; DELDAR, 2021).

When we bring this discussion to the embedded domain, most designers choose
compiled programming languages over interpreted ones (AZIZ; ULLAH; RASHID,
2021). The authors argue that this decision is made because IoT devices are com-
monly constrained in terms of processing, memory, storage, and power consumption.
These characteristics require a software development process that takes into account
these resource limitations, forcing developers to consider several issues to meet appli-
cation requirements and environment constraints (THOLE; RAMU, 2020).

Historically, embedded software development has focused on compiled program-
ming languages like C and C++, with C being the most widely used (SEVERIN; CULIC;
RADOVICI, 2020; ECLIPSE FOUNDATION, 2020). However, the C language has

18

downsides, including a lack of object orientation, absence of exception handling, no
garbage collection, manual memory management, and other aspects that can make
software development more challenging (PAPADOPOULOS et al., 2018). In contrast,
interpreted languages like Java, Python and JavaScript (JS) have emerged as alterna-
tives to improve software quality and the abstraction level of applications.

Interpreted languages are considered easy to learn and use, making them acces-
sible to beginners and new developers. Moreover, they can provide rapid develop-
ment and prototyping, interactive debugging, and flexibility, which make them platform-
independent, allowing developers to write code once and run it on multiple platforms
(OLIPHANT, 2007).

While interpreted languages can bring some advantages to embedded software,
e, their execution model (interpretation) can demand higher resource consumption,
restricting their use in resource-constrained devices (LUBBERS; KOOPMAN; PLAS-
MEIJER, 2022). Therefore, adopting strategies or tools to save resources and improve
embedded software became essential.

In this context, there are open opportunities to foster the use and improvement of
the execution of interpreted languages for developing embedded software. Thus, this
work investigates ways to improve the performance of embedded software by reducing
resource consumption and enhancing source-code quality.

In this thesis, we use JavaScript as a programming language to code resource-
constrained devices since JS supports multiple programming paradigms, including the
event-driven, which is strongly related to the IoT context. Moreover, we have con-
ducted investigations to find ways to enhance the performance of the algorithms. As a
result, we produced a set of guidelines and a framework to aid developers in building
embedded software for the IoT domain.

1.1 Motivation

The search for improvements in application development for Internet of Things has
been investigated in detail by researchers (PRABHU; KAPIL; LAKSHMAIAH, 2018;
IWATA et al., 2019; TORRES et al., 2020; HONG; SHIN, 2020; JUNG et al., 2021;
KIRCHHOF et al., 2022; WANG; YEN; CHENG, 2023). Many techniques, approaches,
and methodologies contribute to better software development. However, the use of in-
terpreted languages in IoT devices, particularly those with limited resources, presents
ongoing challenges. Therefore, further investigations addressing these issues are re-
quired.

Embedded software development is more challenging than enterprise development
because environments traits like limited resources (processing, memory, storage), long
operation time, and battery-powered, to name but a few, requiring that the developers

19

consider these limitations on software development (AZIZ; ULLAH; RASHID, 2021).
Thus, these issues can lead to building specific hardware platform-based solutions.

Moreover, embedded software designers have been facing difficulties in designing
solutions for modern applications due to the increased complexity of software require-
ments (LUBBERS; KOOPMAN; PLASMEIJER, 2022). For instance, according to the
application domain, the embedded solutions must meet different needs, mixed-critically
and safely on real-time application or energy for the battery-based systems. Thus,
software development became challenging and the programming language assumes a
fundamental role in this process.

The programming language is so relevant that different studies have proposed
Domain-Specific Languages (DSL) for the IoT context Eterovic et al. (2015); Koop-
man; Lubbers; Plasmeijer (2018); González garcía; Zhao; García-díaz (2019); Cac-
ciagrano; Culmone (2020). While these studies can achieve satisfactory results, they
are designed to consider specific goals and are limited to certain situations (SALMAN;
AL-JAWAD; TAMEEMI, 2021). Furthermore, a significant number of researchers Pat-
tanayak; Patra; Puthal (2013); Salihbegovic et al. (2015); Valsamakis; Savidis (2018);
Fabian; Maurice; Christian (2019); Morales; Saborido; Guéhéneuc (2021); Hirasawa
et al. (2022) have focused on JavaScript as the basis for their strategies, highlighting
the potential and relevance of JS within the developer community.

JavaScript is a high-level, dynamic, and untyped scripting programming language
that supports event-driven architecture (FLANAGAN, 2020a). According to Stack Over-
flow (2022), for ten years in a row, JavaScript has maintained it as the most commonly
used programming language.

The JavaScript has become an attractive programming language in the IoT field
because it supports event-driven programming, and the JS runtime environment pro-
motes non-blocking concepts through asynchronous functions. This allows for more
efficient handling of events and I/O operations (JUNG et al., 2021).

However, the JavaScript language by itself is not enough to guarantee the balance
between performance and design-time metrics. Nonetheless, the way the software is
developed directly impacts the consumption of resources, being decisive in the success
or failure of projects (NAHAS; NAHHAS, 2012).

Application performance is strongly related to code quality (PAPADOPOULOS et al.,
2018), but sometimes the abundance of hardware resources can disguise bad coding
practices. For instance, if an application runs on a platform with an abundance of
resources, hardware can offset the pitfalls of JavaScript (LÓKI.; GÁL., 2018). Thereby,
poor coding is more evident on constrained devices and demands attention.

Programming languages enable developers to create different solutions using lan-
guage resources, including a specific set of functions, utilities, and statements de-
scribed in the language Application Programming Interface (API) (NASCIMENTO et al.,

20

2020). Thus, algorithms need to be reviewed since part of the performance issues
comes from code that could be written more efficiently (SELAKOVIC; PRADEL, 2016).
Furthermore, except for a few cases, developers know little about the impacts of API
use because JavaScript engine improvements ensure satisfactory results. Hence, per-
formance regarding coding is a little explored.

In the context of constrained devices powered by batteries, even tiny improvements
can mean hours of extended lifetime. This is particularly important for interpreted lan-
guages that already require more resources (LÓKI.; GÁL., 2018). Thus, investigating
approaches to improve application performance became vital to maintain interpreted
language competitive to the compiled ones.

1.2 Hypotheses and Research Questions

Typically, in the context of embedded systems, compiled languages perform bet-
ter than interpreted languages, leading designers to choose compiled languages and
overlook interpreted ones. However, the choice of a programming language should not
be based only on performance issues. Other factors, such as time-to-market, mainte-
nance, and code reuse, must also be considered.

This research work has sought solutions for using interpreted languages with
high levels of abstraction in embedded devices. We propose the hypothesis that
even though an interpreted language, which was not initially designed for embedded
software development, might be used as a suitable alternative for coding resource-
constrained devices. Furthermore, through the utilization of suitable techniques and
adherence to good programming practices, developers can enhance design-time met-
rics and minimize the performance disparity between interpreted and compiled lan-
guages.

The main goal of this thesis is to explore ways to enhance embedded software for
the Internet of Things using the JavaScript language, focusing on resource-constrained
devices.

Finally, this work answers the leading question: Can an interpreted language be

used to develop high-quality embedded software for devices with limited resources?.
By answering this research question, we are exploring ways to enable the use of an
interpreted language that is not commonly applied in embedded software development,
particularly in resource-constrained devices. However, this language has the potential
to offer benefits in terms of enhancing the development and maintenance of embedded
applications in the Internet of Things context.

21

1.2.1 Contributions

The main contributions of this thesis are summarized as follows:

• Programming cost: We demonstrate how much it costs to program using an
interpreted language compared to a compiled language. This knowledge aids the
designers in understanding the impacts of using JavaScript language for coding
embedded software;

• JSEvAsync: We developed a framework to assist developers in designing ap-
plications for IoT devices using JavaScript language. Our approach combines
the benefits of Time-triggered (TT) and Event-triggered (ET) architectures, using
JavaScript’s non-blocking concept as a development interface to structure algo-
rithms into asynchronous events;

• JSGuide: We developed a tool that generates guidelines for embedded software
development using JavaScript. Our investigation focuses on identifying tech-
niques or aspects of the JS language that can improve application performance,
memory usage, security, and energy consumption,

1.3 Thesis Organization

This section describes the research organization and structure of the thesis content.
We have divided the research according to each contribution. Therefore, we provide
an overview of the general research process and specific descriptions for each step.

1.3.1 Research Structure

In this study, we performed exploratory research. Stebbins (2001) argues that ex-
ploratory research helps researchers investigate existing problems without conclusive
results yet. The author also highlights that this technique allows a deeper understand-
ing of a specific problem to answer related questions. Thus, we segmented the inves-
tigation into phases to answer the research question: Can an interpreted language be

used to develop high-quality embedded software for devices with limited resources?.
Figure 2 shows an overview of each phase.

We selected the JavaScript language as a case study to validate interpreted lan-
guages as an alternative to code IoT devices. Therefore, the research steps consider
activities related to it. In particular, the adopted research flow can aid in understanding
the problem, performing experiments, and proposing enhancements. In the following,
we discuss each research step in detail.

22

JSEvAsync

2019 2022

Systematic Mapping Review

Investigating how JavaScript
can be applied to the IoT context

State-of-the-art

- Opportunities
- Challenges

Experimentation Proposition

JSGuide

Literature Review

Algorithm comparison to discover
how much it costs to program IoT
devices using interpreted language

Comparison of Programs

Identifying the impact of statements
on resource consumption and valida-
ting well-known bad smells

Guidelines

Applying software quality tools
to measure program over
design-time metrics

Static Code Analysis

Figure 2 – Thesis organization.

• Literature review: This phase aims to investigate the topics of interest for the
research to identify opportunities and challenges. We conducted a Systematic
Mapping Review to obtain the state-of-the-art regarding using JavaScript in the
IoT context; the full literature review can be found in Section 2.4.

• Experimentation: This stage represents experiments with technologies or inves-
tigations about some approach, method, or technique discovered in the previous
phase to improve JavaScript performance. Some studies have helped us to de-
termine which direction to take. For instance, we obtained positive results by
applying WebAssembly technology in embedded programming (OLIVEIRA; MAT-
TOS, 2020a). However, considering the typical IoT applications that usually per-
form sensing, we concluded that it might not be feasible for constrained devices
because it can bring a considerable overhead for simple actions; the experiments
exploring this issue are discussed in Chapter 3.

• Proposition: This phase addresses the design and evaluation of the proposed
approach or tool to improve or optimize JavaScript performance in the IoT context.
In particular, we focused on understanding the impact of language when applied
to resource-constrained devices. Furthermore, we created a framework to aid
developers in building more efficient algorithms through asynchronous events.
The proposed tools are presented in two chapters: JSGuide in Chapter 4 and
JSEVAsync in Chapter 5.

1.3.2 Organization

The results are divided into three segments according to the investigation goal and
proposition. Based on the thesis structure, specific tasks were performed to build
knowledge about the research topic and translate theoretical knowledge into practi-
cal applications. Furthermore, this structured approach ensures that the findings align

23

closely with the research objectives, enabling a focused and coherent presentation of
the results. Figure 3 shows the proposed organization of the results.

Results

Comparison of programs Guidelines / JSGuide JSEVAsync

Halstead

Cyclomatic Complexity

Home automation system

Google Smart Home Platform

C
od

e
qu

al
ity

D
et

ai
ls

Legacy System

Different forms of interaction

ESP8266 / PPK / EspruinoH
/S

M
ea

su
re

m
en

t

Memory

Execution time

Energy

--

--

JavaScript language analisys

Code Smells

New Features

Detection of optimization entries

ESP32 / PPK / Moddable

Halstead

Cyclomatic Complexity

Framework

TT / EV approaches

Asynchronous function

JavaScript runtime model

ESP32 / PPK / Moddable

Memory

Execution time

Energy

Memory

Execution time

Energy

G
oa

l Compare programs written in the C
language with JavaScript.

Improve the JavaScript language by
validating well-known code smells in
a resource-constrained context.

Develop a framework to assist developers
in embedded software development.

Figure 3 – Results Organization.

Figure 3 represents the segmentation of the results, containing the respective goals,
the metrics adopted to measure the data, the resources measured, and the hardware
used to perform the research experiment. The first segment explores a comparison
between the C and JavaScript languages. The second one explores the JS language
based on code smell and the detection of it. Finally, the third segment presents the
results based on a new approach to modeling embedded software using asynchronous
units based on an event-driven approach.

This structured organization ensures that the findings are presented coherently and
logically. Moreover, this allows the reader to easily follow the progression of research
and understand how each segment contributes to the overall conclusions. The results
regarding the comparison of programs can be found in Section 3.3, while the results
related to guidelines and JSGuide are presented in Sections 4.1.2 and 4.2.1, respec-
tively. The results for JSEVAsync can be found in Section 5.2.

The remainder of this thesis is structured as follows: Chapter 2 presents the fun-
damental concepts related to the research topic and related work. Next, Chapter 3
presents an evaluation of the JavaScript language in the IoT context. In the following,
Chapter 4 explores the validation of code smells in embedded software scenarios and
also proposes a tool for their detection. Chapter 5 describes a framework designed

24

to assist developers in improving their algorithms by utilizing an event-driven paradigm
with an asynchronous approach. Chapter 6 presents a critical discussion of the re-
search and the achieved results. Finally, Chapter 7 concludes this work and provides
an outlook on future research.

1.3.3 Disclaimer / Scope Delimitation

The results presented in this study were obtained through the execution of exper-
iments using the Espruino (ESPRUINO, 2023) and XS (MODDABLE TECH, 2023)
JavaScript engines. Most of the results utilize XS because it is the only virtual machine
designed for resource-constrained microcontrollers that has nearly full conformance
(99%) to the most recent ECMAScript specification.

This thesis did not make any changes to the JavaScript virtual machine. Instead,
we restrict ourselves to changing chunks of code, taking into account devices’ limited
resources to evaluate potential improvements in performance, memory, or energy con-
sumption.

Considering the significant heterogeneity of IoT devices in terms of resources and
our focus on resource-constrained devices, we chose microcontrollers with limited ca-
pabilities, including only a few kilobytes of RAM/ROM memory and restricted process-
ing capacities, but with networking access, to conduct our experiments. Thus, the
results in terms of performance may vary if the experiments reported in this work are
reproduced using different JavaScript engines or more powerful microcontrollers. How-
ever, the outcomes of the design-time metrics remained unchanged.

2 BACKGROUND AND LITERATURE REVIEW

This chapter provides essential background concepts to help readers better under-
stand the topic at hand. We survey the most directly relevant subjects related to this
work, including embedded systems, compiled and interpreted languages, JavaScript,
IoT, and a systematic mapping review of the literature.

2.1 Embedded Systems

The miniaturization of computer systems has enabled their integration into ma-
chines and objects, allowing for the control and optimization of processes. These inte-
grated systems are commonly referred to as Embedded Systems (ES) (MARWEDEL,
2021).

Embedded systems are designed to serve specific purposes within larger systems.
Therefore, they have a wide range of applications, such as cars, trains, airplanes, com-
munication, industry, home automation, to name but a few (WOLF, 2017). Moreover,
embedded systems have diverse functionalities and, at the same time, need to be effi-
cient in their tasks. For instance, a smartphone needs to be able to make calls, browse
the Internet, take photos, among other functionalities, while maintaining a good cost-
benefit relationship between the features performed and battery consumption (BRISO-
LARA; MATTOS, 2009).

Similarly, Aloseel et al. (2021) defines embedded systems as units that integrate
processing capabilities into physical objects to control their functions. Moreover, the
success of these systems is mainly due to the inclusion of Programmable Logic Con-
trollers (PLCs), microcontrollers, and microprocessors that enable designers to develop
custom solutions similar to traditional IT systems.

Beyond the computer system, and due to its close relationship with the physical
process, the integration between computers and the physical world in order to expand
their capabilities is known as Cyber-physical Systems (CPS) (BAHETI; GILL, 2011).
CPS is not about the union of computers and the physical world. Instead, it is about
the intersection of both, regarding the behavior of the cyber and the real world (LEE;

26

SESHIA, 2017). Thus, CPS represents one segment of the embedded system.
The improvements made to CPS can range from simple issues until to controlling

critical tasks. For instance, an airplane’s altitude control system needs to be efficient
and reliable because a failure in this system can result in physical damage or loss of
life. Therefore, these systems are situated on a tenuous line and must be resilient in
the face of the challenges posed by context awareness (WOLF, 2018).

Embedded systems face numerous constraints, mainly due to the context in which
they are inserted. These limitations are often associated with hardware capabilities that
affect the logical components of the solutions, such as programming, data processing,
and storage (HEATH, 2002).

Given this context, developing and designing solutions for embedded systems in-
volves physical aspects and, above all, considerations related to the context. There-
fore, solutions are increasingly designed to be sensitive and adaptable to the context
in which they are inserted (KNAPPMEYER et al., 2013). Moreover, an embedded
system has common characteristics that should be considered when building efficient
applications to meet software requirements.

2.1.1 Embedded Systems Characteristics

Most users are not aware of embedded systems because they are integrated
with equipment, making them invisible. Furthermore, embedded systems are natu-
rally different from each other, but they share common characteristics that distinguish
them from traditional computer systems (BARKALOV; TITARENKO; MAZURKIEWICZ,
2019). Moreover, Brisolara; Mattos (2009) argues that projects involving embedded
systems must consider several characteristics, which may vary depending on the sys-
tem’s application area. So, some of these traits are highlighted as follows:

• Reactive system: In general, most embedded systems are reactive. Through
sensors and actuators, these systems monitor and interact with the environment.
When a specific event occurs, the system is triggered to perform a particular
action or function to handle it;

• Reliability: In critical systems, any failure that occurs in an embedded system
can result in damage to people’s physical integrity, loss of information, or damage
to expensive equipment;

• Real-time: Some applications have a maximum response time for specific situa-
tions; in this sense, embedded systems must respond within the given period. In
addition, timing is critical to the correct execution of this kind of system. If it does
not meet the deadline, it can lead to failure;

• Code: Generally, embedded systems are designed to be integrated into a single

27

system-on-chip (SoC) with limited processing and storage capacity. Therefore,
the source code for the application logic needs to be compact and efficient. Ad-
ditionally, the development of constrained devices is dominated by the use of the
C programming language;

• Performance: Embedded systems naturally have limited resources. However,
the system must be able to perform its tasks efficiently and within the expected
time;

• Consumption: In battery-powered devices, one of the main concerns is energy
efficiency. An embedded system must be able to perform its tasks while consum-
ing as little energy as possible. However, there is a paradox in which resource
consumption conflicts with performance. That is, saving resources can imply not
achieving high performance;

• Size: Devices are often part of larger, more complex systems. Therefore, fac-
tors such as size and weight must be considered as elements in the design of
embedded systems;

• Update: Some systems do not have mechanisms that allow their program (soft-
ware/firmware) to be updated remotely, which means that the device needs to
have a communication, processing, and storage interface for this purpose;

• Project time and cost: Each device has a time to market, which can directly
impact the cost and design of the device. If it takes less time to reach the market,
the cost of developing the solution will likely be higher.

Beyond these characteristics, embedded systems demand attention to dependabil-
ity and efficiency requirements. Dependability concerns the physical tasks that the
devices perform. For instance, the devices can eventually fail, and therefore, they re-
quire repair. Moreover, the equipment should be available as much as possible and
operate normally. Efficiency, on the other hand, refers to the optimal use of resources,
avoiding waste, and achieving the system’s goals (MARWEDEL, 2021).

Dependability is essential for embedded systems because they are often used in
critical applications, such as medical equipment, aerospace traffic control, and nuclear
power plants. Failures might harm humans and the environment or cause faults in the
underlying systems. One way to achieve dependability is by applying fault tolerance
techniques (SAHOO et al., 2021).

Fault tolerance is the ability of a system to continue operating despite faults oc-
curring in some of its components (OBERMAISSER, 2005). Therefore, fault tolerance
for embedded systems can be achieved through component redundancy or diversity,
which involves having more than one item capable of executing the same function.

28

However, this approach may increase the cost and complexity of the application while
reducing the probability of failure. Failures can be caused by hardware failure, envi-
ronmental factors, power disruptions, and mainly by issues in the embedded software
code.

2.1.2 Embedded Software

The logical part of an embedded system comprises the software that con-
trols the device or represents the program’s algorithm. Typically, the solutions are
static and integrated with the device (SANGIOVANNI-VINCENTELLI; MARTIN, 2001;
VANOMMESLAEGHE et al., 2021). Another fundamental aspect of the development
of embedded solutions is related to the logical environment of software execution. This
includes whether the platform uses an operating system, whether device drivers are
supported, and which programming languages are recommended (BRISOLARA; MAT-
TOS, 2009).

In this way, according to Taivalsaari; Mikkonen (2018), devices can be classified
into seven categories:

• Simple device: Most devices are straightforward. Some equipment such as
smart lamps, thermostats, smart sockets, and sensors, in general, do not require
complex software stacks. Moreover, they do not need an operating system, and
the software is developed specifically for the device;

• Real Time Operating Systems (RTOS): This model is similar to a general-
purpose operating system. However, in this type of architecture, response time is
more important than running several tasks simultaneously;

• Language-oriented architecture: Some devices are designed for specific lan-
guages or to support virtual machines. Typically, this architecture has more abun-
dant resources such as memory, processing, and storage. For instance, the Es-
pruino1 and Tessel2 boards are devices created with support for executing the
JavaScript language;

• Complete operating system: In this category, devices already have the comput-
ing power to support a complete operating system. In addition, the predominant
system is based on Linux, and a good example are Raspberry Pi boards (RASP-
BERRY PI COMPUTERS AND MICROCONTROLLERS, 2023);

• Application-oriented architecture: These are devices that can be worn like
Android Wear, smart band, and Apple watchOS. These wearable devices have

1www.espruino.com
2tessel.io

29

support for third-party libraries, and they are compatible with other devices like
smartphones. However, there are minimal hardware restrictions for their execu-
tion;

• Container-oriented architecture: Usually used in cloud service layers or server
processing (back-end), the container is an executable, portable, and autonomous
model that allows the isolated execution of applications, facilitating their publica-
tion and maintenance.

The first applications for embedded systems used Assembly language, and the goal
was to achieve high levels of optimization and performance. However, as the require-
ments of embedded applications became more complex and dynamic, languages such
as C and C++ began to be used in embedded applications (BRISOLARA; MATTOS,
2009).

Although compiled languages are quite efficient and widely used, they require ad-
vanced technical knowledge to obtain good performance and generally take longer to
develop and maintain. However, they achieve high levels of integration with hardware
and perform well (SEVERIN; CULIC; RADOVICI, 2020).

Advancements in hardware technology, such as processing power, storage, and
memory, have enabled the use of new programming technologies for embedded sys-
tems development, including interpreted languages like Java, Python and JavaScript.

2.1.3 Software Quality Metrics

Software quality metrics are measures used to assess the quality of a software sys-
tem. These metrics provide objective insights into various aspects of software devel-
opment, including code complexity, maintainability, reliability, and efficiency (OLIVEIRA
et al., 2008a). One of the commonly used software quality metrics is Halstead and Cy-
clometic complex metrics

Halstead metrics, developed by Maurice Halstead in the 1970s, are a set of soft-
ware metrics that quantify different characteristics of a program based on its source
code. These metrics focus on the size and complexity of the code rather than its func-
tionality. The primary goal of Halstead metrics is to provide a quantitative assessment
of software complexity, aiding in predicting potential difficulties and identifying areas for
improvement (HALSTEAD, 1977).

Halstead (1977) states that his theory is formed by four principles:

• Program Length (N): It represents the total number of operands and operators
in a program. N provides an indication of the program’s size, with larger values
suggesting increased complexity and potential for errors.

30

• Program Vocabulary (n): It refers to the total number of unique operands and op-
erators used in a program. A higher program vocabulary indicates a larger set of
unique elements, which can impact program comprehension and maintainability.

• Volume (V): Volume is a measure of the program’s overall complexity and is cal-
culated using the formula V = N * log2(n). It estimates the effort required to under-
stand and maintain the code. Higher volume values indicate increased complexity
and potentially higher maintenance costs.

• Difficulty (D) and Effort (E): Difficulty and Effort are derived from Volume and
provide insights into the program’s complexity and the effort required for software
development. Difficulty (D) measures the cognitive effort needed to understand
the code, while Effort (E) estimates the development time required based on D
and Volume.

Another important metric is Cyclomatic complexity. Cyclomatic complexity analysis
is a software approach developed by Mccabe (1976). It measures the complexity of
a program by examining the control flow of the code. The metric is based on the
number of independent paths through the source code, indicating the number of unique
decision points and potential execution paths.

The control flow graph provides a visual representation of the program’s control
flow, with nodes representing decision points, loops, and other program constructs,
and edges representing the flow of control between these nodes (MCCABE, 1976).

Oliveira et al. (2008a) argues that the use of software quality metrics allows devel-
opers to gain insights into the structural complexity of the code and identify areas that
may be prone to errors, difficult to understand, or challenging to maintain. Thus, these
metrics provide valuable insights for software teams to facilitate refactoring, improve
code quality, and deliver reliable and maintainable software solutions.

2.1.4 Compiled and Interpreted Languages

The concepts of interpreter and compiler are inherent to how programs are exe-
cuted. The application logic or business rules are described using a programming
language that can be run through a compiler or an interpreter. However, each program-
ming language adopts an execution model, whether a pre-processed version, compiled
or analyzed at runtime (SCHILDT, 1997).

In theory, it is not the programming language that determines how a program will
be executed; rather, it is the language designers who make this choice during the
language’s development. Each language has particularities, advantages, and disad-
vantages that may make it better suited for one scenario than another (SCOTT, 2000).
For instance, the C language may be more suitable for embedded computing if the

31

objective is performance. However, a high-level language like JavaScript can be better
if the focus is on event handling, abstraction, or reuse.

An interpreter is a program that executes instructions written in a high- to low-level
language. Two approaches can be used to translate the source code: either by ex-
ecuting it directly and translating it just-in-time or by decoding it into an intermediate
representation (bytecode), which is generally more efficient. Moreover, interpreters typ-
ically work with programming languages that facilitate the implementation of complex
solutions, thereby promoting a high level of abstraction and reducing low-level con-
trols (SCHILDT, 1997). For instance, memory management becomes transparent and
actions such as memory allocation and deallocation are no longer the programmer’s
responsibility. Therefore, developers can focus on building the business logic.

Furthermore, the execution time of an interpreted program is often longer than that
of a compiled one. This lag occurs because the interpreter must analyze each line of
the program individually and translate it into a language that the processor can under-
stand. In contrast, the compiled code is translated once and runs without overhead.
However, for each change in the program, the entire software needs to be compiled
again (SCHILDT, 1997; SCOTT, 2000). Figure 4 presents an overview of the execu-
tion of the compiled and interpreted program.

Execution

InterpretedCompiled

Source code
C, C++ ...

Source code
Python, JavaScript ...

Compiling

Machine code
Executable

Ready to runInput output

Ready to runInput

InterpretingVirtual machine

Machine code output

Execution

Figure 4 – Compilation and interpretation flow adapted from (SCOTT, 2000).

The Figure 4 shows that compiled solutions are translated into machine language
only once, whereas interpreted languages are translated at each execution. During
the compilation phase, the compiler analyzes the source code and can introduce opti-
mizations according to the target platform. In contrast, interpreted languages produce
a bytecode that is interpreted by the virtual machine (VM) at runtime. The bytecode
allows running embedded software on different architectures (ÅSRUD, 2017).

Some languages, such as Java, have a mixed model in which source code is com-
piled and interpreted. The algorithm is compiled into a bytecode using Java compiler.
The bytecode is not a machine code but rather an intermediate representation de-
signed to be executed by the Java Virtual Machine (JVM), which interprets the byte-

32

code into machine code instructions that are executed on the target environment. This
approach is interesting because it allows the same code to be executed on different
platforms (GOSLING et al., 2000).

Although interpreted language code goes through more steps, it simplifies program-
ming by allowing developers to write and test solutions quickly. Interpreters can also
improve performance by analyzing the source code at runtime to identify frequently
used code (hotspots) and perform optimizations. However, these optimizations can
increase CPU usage, leading to higher power consumption (SHULL et al., 2019).

Another difference between the language spectrum is regarding debugging. De-
bugging compiled code can be more challenging because it is translated into machine
code, making it more difficult to read and understand. Additionally, any changes to the
algorithm require recompiling the entire program, which can be time-consuming. In
contrast, debugging interpreted code is usually easier because it is not compiled into
a machine code. Consequently, the code can be run through the interpreter stack, al-
lowing developers to identify and fix errors quickly. Furthermore, changes to the code
can be made and tested immediately (SCOTT, 2000).

Regardless of the execution model adopted by the language, it is executed or inter-
preted in the final device. One of the environments that has emerged in recent years
and gained attention from industry and researchers is the Internet of Things (IoT).

2.2 Internet of Things (IoT)

According to Ashton et al. (2009) the term Internet of Things (IoT) initially referred
to the connection of all physical objects to the Internet, which would have the capacity
to capture information through radio frequency identification (RFID) and sensing tech-
nologies. Hence, this would allow objects to observe, understand, and interact with the
world independently of people.

For Gubbi et al. (2013) IoT is a paradigm in which “objects that surround us will
be on the network in one form or another.” These objects or “things” can be devices
like lamps, sensors, televisions, and cell phones. These devices are identified and
connected to the internet in order to exchange information and make decisions, without
human intervention, to achieve common goals.

Similarly, González garcía et al. (2017) claims that IoT is characterized by giving
ordinary objects the ability to connect to the network, making them “smart” and capa-
ble of capturing, computing, storing, sending, and displaying information. Therefore,
objects become able to interact with the environment, generating data in a large quan-
tity, variety, and specificity. From a conceptual point of view, smart objects are based
on three pillars related to their ability to (i) be identifiable, (ii) communicate, and (iii)
interact with each other (MIORANDI et al., 2012).

33

In the past few years, the Internet of Things has become increasingly common
in many fields of knowledge, driving numerous research projects around the world
(PULIAFITO et al., 2019). Terms such as Internet of Services, Internet of Machines,
Internet of People, Internet of Knowledge, Internet of Health Things, Social Internet
of Things, and Internet of Everything have emerged based on the IoT concept. This
technology connects people, machines, and knowledge through the internet, sensors,
and actuators. Figure 5 shows an overview of IoT applications and architecture.

Figure 5 – Overview of IoT architecture (FARHAN et al., 2017).

From Figure 5, it is possible to observe the heterogeneity of IoT devices. In addition,
this ecosystem requires support from the underlying layers to transmit, process, and
store data. Thus, there are many opportunities to act upon, and challenges to be
solved. For example, how can we standardize embedded software coding to reduce
time-to-market, decrease costs, and improve design time? Questions such as this still
require attention and further investigation.

Given the wide range of actuation of IoT solutions and the diversity of devices, some
challenges have emerged. Typically, they are associated with computational, commu-
nication, and energy capacities. Therefore, IoT applications must prioritize resource
consumption and efficiency (ATZORI; IERA; MORABITO, 2010).

Programming IoT devices needs to be simple in order to achieve success (NAMIOT;
SNEPS-SNEPPE, 2014). However, coding means translating multiple rules onto a
heterogeneous distributed system. Consequently, programming has been a complex
puzzle composed of different types of devices and layers (RILISKIS; HONG; LEVIS,
2015).

In this context, IoT systems work in line with other applications such as servers,
mobile clients, or the cloud. Typically, these applications adopt multiple programming

34

languages, increasing the complexity of the development process since the devel-
oper needs to know different languages or requires multidisciplinary teams working
together, which can sometimes be challenging to achieve (FARSHIDI; JANSEN; DEL-
DAR, 2021). Nevertheless, to address this challenge, we can adopt a single program-
ming language across all application layers, and for this, JavaScript could be a fitting
programming language.

2.3 JavaScript

JavaScript is a scripting programming language whose specifications are provided
by Ecma International, a European association that standardizes information and com-
munication systems (ECMA INTERNATIONAL, 2023). In addition, the ECMA-262
group defines the standards and regulations for JavaScript. For this reason, JS is
also known as ECMAScript, its official name.

Scripting languages are becoming increasingly popular for developing applications
in different areas, with the JavaScript language being a notable example (STACK
OVERFLOW, 2022; FARD; MESBAH, 2017). Initially designed for the web, JavaScript
has been applied to other contexts and modern web browsers on desktops, game con-
soles, tablets, and smartphones incorporate JS interpreters, making it a widely used
language (CROCKFORD, 2008; FLANAGAN, 2020b).

The success of JavaScript can be attributed to its flexibility and its status as the
official language for web applications (WORLD WIDE WEB CONSORTIUM, 2023). As
part of the set of standards that define the technology of the World Wide Web, JS en-
joys tremendous popularity (GASCON-SAMSON; RAFIUZZAMAN; PATTABIRAMAN,
2017a). A significant factor in its success is the use of efficient virtual machines (VM)
to interpret JS code (GAVRIN et al., 2015).

The most popular interpreters for JavaScript are the JavaScriptCore (JSC) engine of
WebKit (APPLE JAVASCRIPTCORE, 2023), SpiderMonkey (written by Brendan Eich,
the creator of the JS language) (MOZILLA FOUNDATION, 2023), and the V8 engine
of Google Chrome (GOOGLE, 2023). In particular, V8 is the core of Node.js, the
most popular server-side execution environment for JavaScript (PARK; JUNG; MOON,
2015).

From a technical perspective, JavaScript is a high-level, general-purpose program-
ming language that supports multiple programming paradigms, including functional-
oriented, object-oriented, and event-driven paradigms. Also, the JS engine can be im-
plemented as a standard interpreter or just-in-time compiler that compiles JavaScript
into a bytecode (FLANAGAN, 2020b). Figure 6 provides an overview of the JavaScript
program execution environment.

Figure 6 presents the typical execution flow of a JS program. First, the source code

35

JS source code

parse

AST Unoptimized
code

Optimized
code

Compile

JS analysis
to improve

performance

Figure 6 – Overview of the JavaScript execution/optimization pipeline.

must be analyzed to convert the text format into tokens and generate an Abstract Syn-
tax Tree (AST). Then, the engine performs an analysis of the code to check if anything
is running slow or if there are bottlenecks or access points that can be optimized. Al-
though this approach is powerful, verifying the code and making decisions about what
to optimize requires CPU usage, which can result in higher power consumption. Thus,
this extra power consumption can be a significant issue for IoT devices that are typically
powered by batteries.

Another relevant trait of JS is its memory model. JavaScript segments memory into
two parts: call stack and heap. The call stack area stores primitive values, such as
numbers, strings, booleans, or addresses the heap section. In contrast, the heap area
stores nonprimitive data, such as objects, functions, and arrays. Figure 7 shows an
example of a basic memory model.

JS source

Memory

JavaScript Engine

Address value
00X23F12A2B 23

02C5A3412A10 'John'
00HA1300FC00 10XG221AF67

Call Stack Address value
10XG221AF67 []

Heap

RTOS/Firmware

Variable Identifier
Age

Name
Children

Figure 7 – JavaScript memory model.

The call stack area stores static data that is immutable. Immutable means that data
cannot be changed after it has been created, and to modify its content, the creation of
a new object with the desired change is required. This strategy allows the engine to
determine its size at compilation time; thus, the engine can allocate a fixed amount of
space. In contrast, the heap stores mutable objects. The size of an object cannot be
determined beforehand; therefore, it occupies more space than necessary because its
size is determined at runtime. Therefore, the engine typically allocates memory to the
entire heap (ECMA INTERNATIONAL, 2023).

Memory management is a critical issue for system performance, being one of the

36

main contributors to lower performance and increased power consumption (WOLF;
KANDEMIR, 2003). Dynamic allocation can increase peak memory usage and pro-
gram runtime if it is not efficiently used. Moreover, detecting this type of problem
is complex and requires specialized tools for deep profiling (BYMA; LARUS, 2018).
Therefore, memory management is a relevant topic that deserves attention from the
scientific community to improve this process.

Behind the memory system, JavaScript and its virtual machine solve a traditional
problem in computer science, program blocking. Conventional programming languages
such as Java, PHP, or C work in a blocking manner by default (NODE.JS, 2023). For in-
stance, if we need to make a network request or read a file, thread execution is blocked
until the response is completed. In contrast, the JS strategy uses asynchronous func-
tions to solve the problem using a single thread and event-driven programming. Figure
8 illustrates the JavaScript runtime model.

- Ajax
- Http
- Timer
- Event listener ...

Memory
heap

Callback queue

Call stack

cb cb cb

Event loop

EventPromise

API

Ja
va

Sc
rip

t e
ng

in
e

As
yn

ch
ro

no
us

JS source code

Figure 8 – JavaScript runtime model.

Figure 8 represents the simplest anatomy of a JavaScript runtime environment.
First, the source code requires a virtual machine to interpret it. The VM is composed of
a call stack and a memory heap. The call stack is responsible for tracking the functions
to control what process is running or waiting for any return. In addition, the stack
follows the Last in, First Out (LIFO) principle (MOZILLA DEVELOPER NETWORK,
2023). In other words, the first function pushed into the stack will be the last function
to be executed and popped off. Thus, the call stack performs the operations in a single
thread. Consequently, only one piece of code can be executed at a time, and the data,
variables, and other structures surrounding this process (program context) are stored
in the memory heap (FLANAGAN, 2020b).

Some operations can be time-consuming and could block the execution process. In
this case, asynchronous functions are used to handle them. Asynchronous functions
allow operations such as fetching data from a server or getting network status to be

37

performed asynchronously. In this approach, functions can be registered to handle
the response of the operation; for instance, a function (callback) for success, error,
or completion status. For that, the JavaScript runtime environment delivers additional
features (API) that vary according to the execution context. For instance, Document
Object Model (DOM) resources are available in a browser, and sensor/actuator manip-
ulators can be found in an embedded environment (WORLD WIDE WEB CONSOR-
TIUM, 2023).

In general, when an asynchronous operation is initiated, the call stack continues
its processing until it completes all functions on the stack. Meanwhile, when an asyn-
chronous operation finishes, the callback associated with it and the operation’s results
are sent to the Callback queue. Unlike the call stack, the callback queue uses the
First-In, First-Out (FIFO) principle and is managed by the event loop (MOZILLA DE-
VELOPER NETWORK, 2023).

The event loop monitors the callback queue, and when possible, pushes the call-
back functions to the call stack for processing. A callback is only processed if the call
stack is empty, so functions will wait until the call stack has finished processing all the
items.

Asynchronous behavior can originate from networking events, digital/analog ports,
sensors, actuators, timers, and promises (HODDIE; PRADER, 2020). A Promise rep-
resents the eventual completion of an asynchronous (future) operation, and the result
is ultimately handled by a callback scheduled by the event loop (FLANAGAN, 2020b).

Although JavaScript is quite popular among developers, its application field focuses
on desktops, servers, and mainly on the web. It is a little explored for embedded sys-
tems due to the hardware requirements. Therefore, bottlenecks related to performance
still need to be investigated to improve JavaScript support, especially for resource-
constrained devices.

2.3.1 JavaScript For Embedded Systems

Over time, the interpreted languages have been used in embedded systems con-
text. For example, research such as Clausen et al. (2000), Oliveira et al. (2008a), L;
Julian (2015), Pinho; Couto; Oliveira (2019), Han et al. (2019), Mudaliar; Sivakumar
(2020) and Cho; Delgado; Choi (2023) explores languages like Java, Rust, JavaScript,
and Python from various perspectives as alternatives to the C language. However,
these studies have in common the use of equipment with significant computational re-
sources that are capable of running an operating system (OS), such as a Raspberry Pi
board (RASPBERRY PI COMPUTERS AND MICROCONTROLLERS, 2023) or even a
personal computer.

In contrast, resource-constrained devices comprise equipment with limited com-
puting capabilities, with only a few kilobytes of memory, and cannot support an oper-

38

ating system. Therefore, the use of interpreted languages in these devices requires
specialized analysis and adaptations to optimize resource consumption. In particu-
lar, JavaScript language requires a virtual machine design that considers the target
environment’s limitations.

Beyond being limited in terms of hardware, IoT devices typically operate under
an event-driven model in which actions and responses are guided by inputs and out-
puts (I/O) from sensors, actuators, or networks (KIM; JEONG; MOON, 2017). In other
words, IoT devices are event-friendly, and embedded programmers can create count-
less handlers for events that can be periodically fired by users or through sensors.
Therefore, coding programs over an event-driven model is a natural choice for IoT de-
vices.

JavaScript becomes attractive as a programming language in the IoT domain be-
cause it supports the event-driven programming model, where functions can be regis-
tered as event handlers. In addition, functions are viewed as objects in JavaScript and
can be declared anonymously, making it easier to bind them with the event handler
(HODDIE; PRADER, 2020).

In addition to supporting the event-driven model, JavaScript brings to the embed-
ded context the possibility of working with non-blocking routines through asynchronous
functions. This allows common actions such as reading data from sensors or sending
data over a network to be performed asynchronously (JUNG et al., 2021).

From a design-time perspective, JS can enable rapid prototyping and maintainable
code, while also increasing the portability of embedded programs (UGAWA; IWASAKI;
KATAOKA, 2019). It means that JavaScript applications can be embedded into hetero-
geneous environments (ANDREASEN et al., 2017).

Regarding security, the JavaScript language provides mechanisms that allow se-
cure coding and execution. For instance, common security bugs in native code, such
as uninitialized memory and buffer overruns, do not occur in the JS. Moreover, the
language is constantly being updated, with new features released each year to im-
prove security and simplify coding aspects. The specification also has a rigorous and
well-structured process to evolve the language (ECMA INTERNATIONAL, 2023).

JavaScript supports Transport Layer Security (TLS) to transfer data from IoT de-
vices to server/cloud systems, ensuring the privacy of generated data and preventing
tampering with sensitive user data. In addition, it is possible to establish secure com-
munication with other devices using standard protocols such as ZigBee and Bluetooth
Core Specification (BLE). Furthermore, executing scripts in the sandbox model is fea-
sible and allows the creation of specific security policies (FLANAGAN, 2020b).

Finally, the JavaScript language we expose is the same language used for general
purposes; it is important to motivate developers to use it. However, JS has also been
concerned with embedded systems. The first JavaScript API specification for embed-

39

ded systems was recently released (ECMA INTERNATIONAL: TECHNICAL COMMIT-
TEE 53 , 2023). The ECMA-419 specification brings JS closer to hardware, promoting
standard access. This approach allows for the writing of portable scripts that can be
deployed on different devices. Therefore, JS has taken a significant step forward in
strengthening its application to embedded software development.

Naturally, the use of JavaScript depends mainly on hardware capabilities. However,
the progress of virtual machines allows for the use of modern JS in constrained devices.
XS engine (MODDABLE TECH, 2023) is an example of a virtual machine designed for
microcontrollers.

2.3.2 Moddable XS JavaScript engine

To support JavaScript in embedded systems, a virtual machine is required to inter-
pret the scripts. Some engines focus on embedded systems such as Espruino (ES-
PRUINO, 2023), JerryScript (JERRYSCRIPT, 2023), Ducktape (DUKTAPE, 2023) ,
QuickJS (FABRICE BELLARD, 2023) , and mJS (MONGOOSE OS, 2023); however,
they are limited. To keep engines small and compact, they restrict their support to only
a subset of the JavaScript programming API. This means that part of the resources of
the language cannot be covered, and therefore, are not available for use.

In the opposite direction of other engines, one company developed an engine cre-
ated exclusively to serve resource-constrained microcontrollers. Moddable Tech Inc.
maintains the XS engine, which has some characteristics that make it unique. From
this point, all the information related to Moddable SDK and XS engine was provided by
the authors themselves and were extracted from their official repository (MODDABLE
GITHUB, 2023) and website (MODDABLE TECH, 2023).

First, the XS engine is the only engine that implements more than 99% of the
most recent version of the JavaScript language specification (i.e., more than some
browsers). Second, Moddable provides a complete toolchain to support all steps of
JavaScript development, including tools and runtime software to create IoT applica-
tions using standard JavaScript on resource-constrained microcontrollers.

The traditional JavaScript engine for the desktop or server side has a main focus
on speed, which conflicts with the IoT domain because the high-speed demands extra
resource consumption to achieve a speed-up. In contrast, the XS engine is designed
to minimize resource usage, especially RAM. Therefore, XS uses a distinct approach,
similar to mobile development, where the application is described using a manifest
and the code is compiled into an optimized and small bytecode that is interpreted on
the Microcontroller (MCU). Figure 9 presents an overview of the development process
using Moddable SDK.

Moddable’s philosophy supposes that embedded software development is not a
standalone activity. Typically, embedded developers build the application using a per-

40

JS source code

XS
compiler

XS
linker

XS
assets

Bytecode

ECMAScript
Runtime C native code Platform

compiler

C resource map

Firmware

Resources

...

Figure 9 – Moddable approach (MODDABLE TECH, 2023).

sonal computer that has significantly more performance than an IoT device. Therefore,
the Moddable toolchain explores the extra power to compile and optimize the bytecode
at design time.

First, the XS compiler parses the source code and builds bytecode. Next, the XS
linker analyzes the bytecode and pre-executes it, selecting the built-in objects and re-
moving the unused objects to reduce the required ROM space. Also, it is possible for
the JavaScript code to call functions written in native code (using C language) targeting
performance, and XS handles the calls between languages.

Optionally, if the application uses assets like audio, images, XML, or another kind
of file, XS has a specific encoder to map the resources. Finally, the XS platform com-
piler generates firmware with the application. All of these steps are executed using a
command-line tool that facilitates and standardizes the developer process.

Moreover, several improvements are applied during the compilation phase to opti-
mize the algorithm. For instance, all built-in functions, classes, and prototype objects
are saved as native data, which is flashed into ROM instead of RAM. Furthermore, to
achieve performance and optimize memory usage, the scope of the variables is an-
alyzed, and a syntax tree is produced to assign variables by index instead of having
to look up identifiers. As a result, in some cases, we can execute JavaScript with
performance closer to the native language.

If performance remains a problem, XS allows the integration of native code into
JavaScript projects. The XS interface in C enables the use of C code to optimize time-
consuming routines or reuse existing C and C++ libraries to improve the algorithm
performance (HODDIE; PRADER, 2020).

41

2.4 Systematic Mapping Review: JavaScript Applied to IoT

This section describes the literature review regarding the application of JavaScript
in the context of the Internet of Things. Our review was performed in two periods. The
first one was executed in 2019 and considered papers written from 2009 to 2019 (10
years). The second phase represents the review update that includes the most re-
cent publications on the research topic. Therefore, the final literature review considers
research published in the last thirteen years, representing the state of the art in the
integration between JS and IoT.

We conducted a Systematic Mapping Review of the literature to get an overview of
the research area. To do that, we followed the guidelines proposed by Petersen et al.
(2008). Therefore, the leading question that motivated this research was: How can

JavaScript be used in programming for the Internet of Things?

In order to simplify the investigation, the general question was broken down into a
smaller set of research questions (RQs):

• RQ1: What are the purposes of using JavaScript in the IoT?
- The goal of this question is to discover the motivations for applying JavaScript
to IoT.

• RQ2: What are the most investigated research topics, and how have they
changed over time?
- The goal is to group the researchers by areas and analyze how research topics
have evolved over time.

• RQ3: Which JavaScript interpreters (virtual machine) are found? What level of
JavaScript API is present?
- The goal is to define which engines are used and which features are available..

• RQ4: What are the biggest challenges in developing IoT applications using
JavaScript?
- The goal is to identify JavaScript’s limitations and opportunities for application
in IoT.

• RQ5: What tools or plugins are available for JavaScript in the Internet of Things
context?
- The goal is to identify the available resources to support integration among
technologies or tools to enhance the development process.

To conduct the research, a set of keywords was generated based on the research
questions. To systematize this step, Kitchenham et al. (2010) suggests using the PICO
process, which stands for Population, Intervention, Comparison, and Outcomes. Table
1 presents the generated keywords, while Figure 10 shows the basic search string.

42

Table 1 – Pico model for the framing question.

Criteria Goal Words

Population IoT devices IoT OR Internet of Things
Intervention JavaScript Interpreter JavaScript
Comparison not applied
Outcomes Integration between JavaScript and IoT JavaScript AND IoT

Internet of Things

IoT

JavaScript

JS

Interpreter

AND
OR OR

Papers

Figure 10 – Basic string search.

Regarding the data sources, we choose the IEEE Explore3, Elsevier4 and ACM
Digital Library5 as libraries, and Scopus6 and Engineering Village7 as indexers.

As an instrument for selecting or excluding papers, we utilized specific filters. Table
2 shows the criteria that were used, and Figure 11 illustrates the search process.

Table 2 – Inclusion and Exclusion Criteria.

Type Ref Description

Inclusion IC1 Papers written in English or Portuguese
IC2 Peer-reviewed articles in journals and conferences
IC3 Published from 2009
IC4 Papers related to JavaScript language applied to IoT

Exclusion EC1 Duplicated papers
EC2 Papers not available for downloading
EC3 Paper lies outside the IoT and JavaScript language domain
EC4 Paper written by us

1 - Data Sources1 - Data Sources 2 - Exclusion of
duplicates

3 - Selection based
on abstract

4 - Selection based
on full text 5 - Data extraction

Figure 11 – Papers selection process.

3https://ieeexplore.ieee.org
4https://www.elsevier.com
5https://dl.acm.org
6https://www.scopus.com
7https://www.engineeringvillage.com

43

The paper selection process was divided into four phases. The first phase involved
executing the research based on the search string. The search process allowed for
applying inclusion and exclusion criteria, although this could vary depending on the
search interface of each data source. In the second phase, duplicate items were re-
moved from the indexed databases. The indexer typically retrieves papers that have
already been searched in the digital libraries. The third phase consisted of reviewing
the title and abstract of the papers to select those that align with the research’s goals,
thus choosing papers for deeper analysis. Finally, the fourth phase involved analyz-
ing the full text. Figure 11 also presents a fifth step, representing data extraction from
selected papers. Figure 12 shows the number of papers selected at each step.

2009 2022

Engineering
villageScopusElsevierACMIEEE

St
ep

 1

101 779 483 104

Papers by step

St
ep

 2

101 779 391 83

St
ep

 3

8 011 12 7

St
ep

 4

7 09 5 0

Total selected papers: 21

Figure 12 – Papers selected by step.

Based on the 21 selected papers, an analysis was performed to answer each re-
search question. During the data extraction process, the same paper may have been
used to answer more than one question. Figure 13 depicts the temporal distribution of
the publications.

44

N
um

be
r o

f p
ap

er
s

0

1

2

3

4

5

6

7

2009
2010

2011
2012

2013
2014

2015
2016

2017
2018

2019
2020

2021
2022

Figure 13 – Amount of papers by year.

RQ1: What are the purposes of using JavaScript in the IoT?

The use of JavaScript in the context of the Internet of Things can be viewed as a
natural choice because it enables the event-driven paradigm, which is one of the most
commonly used models for IoT (KIM; JEONG; MOON, 2017).

Although it may seem like an empirical analysis, it is possible to verify that adopting
JS as a language in IoT development results in an environment communicating through
a single programming language. Also, another reason to use JS in the IoT context can
be summarized as follows:

• Ubiquity: JavaScript is one of the most widely used programming languages
in the world, ensuring a robust and active community. This means that much
support is available, including libraries and frameworks, which can simplify the
development process;

• Familiarity: Many developers are already familiar with JavaScript, which makes
it easier to start with IoT development. It can also help to reduce the learning
curve, as programmers do not need to learn a new language from scratch;

• Code reuse: Using the same technology in both application layers (IoT device,
server, and client) allows for code reuse, simplifies logic, and reduces the time
and cost of development;

45

• Teaching programming: JavaScript can be used to teach programming through
physical objects, contextualizing theories and practices;

• Debugging: JavaScript, as an Interpreted Language, can favor application de-
bugging because it allows developers to step through the code line by line, and
debugging techniques provide valuable insights into code behavior, helping de-
velopers identify and fix bugs more efficiently.

One of the activities that we believe will be a trend is contextualized programming
teaching. For instance, Peterson; Vogel (2018) used JavaScript in their work to teach
programming through physical objects, thereby correlating theories and practices.

Another fact that caught our attention is that some research Gascon-samson; Rafi-
uzzaman; Pattabiraman (2017b); Gavrin et al. (2015); Li et al. (2018); Heo et al. (2015);
Kirchhof et al. (2022); Ugawa; Marr; Jones (2022) investigates virtual machines to im-
prove existing machines or create new ones. It is clear that engines are a hot topic in
this context and are critical to expanding JS support on resource-constrained devices.

RQ2: What are the most investigated research topics, and how have they
changed over time?

Each paper can cover different topics and have discussions on several subjects.
To classify and group them, we assigned each paper to only one area to facilitate the
identification of research trends and opportunities. Thus, each paper was framed within
a specific topic, as follows:

• Security: It fits in this category of papers that address security aspects in the
execution of JavaScript;

• VM: Comprises papers that propose some virtual machine or improvements in
the execution of JavaScript in the IoT context;

• Migration: This set of articles deals with migration and stateful challenges, as
well as the serialization of information for the JavaScript language that needs to
be transferred to another device;

• IoT/JS: This category includes papers that discuss both IoT and JavaScript with-
out a specific focus on either topic;

• Prototyping: Papers that focus on prototyping IoT solutions considering the
JavaScript scripting language to teach programming;

• Interoperability: It fits in this category of papers that address interoperability
through JavaScript;

46

• Interface: We consider the papers that present some application interfaces as a
platform in which JavaScript is used as the basis for constructing IoT solutions. It
may include the use of case studies.

Figure 14 shows the generated taxonomy from the research and the number of
papers that fit inside each category, while Table 3 lists the included papers.

JavaScript Applied to IoT

Security
1

VM
7

Migration
2

IoT/JS
4

Prototyping
1

Interoperability
3

Interface
3

Figure 14 – IoT – JS taxonomy.

Table 3 – Papers by topic.

Topic Papers

Security Sahu; Singh (2016)
VM Gascon-samson; Rafiuzzaman; Pattabiraman (2017b), Gavrin et al. (2015),

Li et al. (2018), Heo et al. (2015), Grunert (2020), Morales; Saborido;
Guéhéneuc (2020), Ugawa; Marr; Jones (2022)

Migration Kwon; Moon (2017), Gascon-samson et al. (2018)
IoT/JS Jaimini; Dhaniwala (2016), Guinard et al. (2010), Baba-cheikh et al. (2020),

Wang et al. (2022)
Prototyping Peterson; Vogel (2018)
Interoperability Gascon-samson; Rafiuzzaman; Pattabiraman (2017a), Ghosh; Jin; Mah-

eswaran (2014), Gascon-samson; Jung; Pattabiraman (2018)
Interface Lee et al. (2017), Baccelli et al. (2018), Bak; Chang; Choi (2018)

Regarding the evolution of the research topic over time, it was initially observed that
the research did not focus on JS or IoT, as addressed in Guinard et al. (2010)’s study.
Instead, such technologies act as underlying support for other projects or applications.
However, the concept of intelligent objects has gained prominence, and challenges,
such as interoperability, security, and resource consumption, have emerged. Further-
more, the relationship between JS and IoT gained strength in 2015, coinciding with the
release of the new JavaScript specification (ES6). We believe that the new version was
motivated to expand the language to several areas, including IoT.

RQ3: Which JavaScript interpreters (virtual machine) are found? What level of
JavaScript API is present?

This question explores the alternatives for enabling JavaScript execution on embed-
ded systems. Table 4 presents the identified options along with their size characteris-
tics and resource coverage, according to the ECMA-262 specification.

47

Table 4 – JavaScript engine for IoT.

Engine Size (kB) JS Version Compliance (%)

WebletScript 103 5.1 <60
v7 120 5.1 100
JerryScript 160 5.1 100
Duktape 184 5.1a,b 99,4
Espruino 231 5.1b <70
Moddable XS 64 c 13 99
a Partial/initial support for ECMAScript version 6
b Partial/initial support for ECMAScript version 7
c The size is defined according to the API used.

In this research, a controversial point was identified when discussing virtual ma-
chine for IoT devices. Some devices are limited in technical terms, and as a result,
the WebletScript interpreter (LI et al., 2018) chooses not to implement some language
specification definitions in order to produce a smaller binary file. On the one hand,
reducing the size can enable the interpreter to be used on a higher number of de-
vices. On the other hand, not covering certain technical aspects of the specification
may restrict the adoption of the interpreter.

Some language features are not commonly used, but they are still part of the lan-
guage and should be present. It is a difficult decision to make whether to prioritize a
greater number of supported devices and limit the language’s capabilities or to imple-
ment all the features of the specification and reduce the number of supported devices.
One effective strategy to mitigate this problem is to adopt Moddable’s strategy, which
performs pre-execution of the script to remove unused objects and reduce the footprint
size (see Section 2.3.2).

Over time, devices have improved their technical capabilities, and therefore, it is
best to implement as much of the language specification as possible. This allows the
virtual machine to be compatible with a larger number of libraries and, consequently,
gain community confidence and credibility.

RQ4: What are the biggest challenges in developing IoT applications using
JavaScript?

The IoT poses many challenges in several dimensions, including hardware het-
erogeneity, different operating systems, programming languages, APIs, and various
communication protocols (LI et al., 2018). Moreover, the lack of a standard implies
dealing with distributed and complex systems (GASCON-SAMSON; RAFIUZZAMAN;
PATTABIRAMAN, 2017b).

Indeed, the biggest barrier to enabling JavaScript on embedded devices is the com-
putational limitation of these devices. For instance, some devices are already designed
to be extremely limited, with resources only sufficient for performing a single activity.

48

Also, these devices often have size requirements, such as those used in the health-
care area, where they need to be as small as possible. Therefore, certain devices will
always have technical limitations that restrict the use of JavaScript as a programming
language (TAIVALSAARI; MIKKONEN, 2018; MIRAZ et al., 2015).

Resource consumption is a significant concern when using JavaScript on IoT de-
vices. This issue is not unique to JavaScript and is a recurring problem in many pro-
gramming languages. However, the fact that JavaScript is an interpreted language can
further exacerbate this problem on devices with limited resources. Therefore, it is cru-
cial to consider factors such as energy efficiency, bandwidth, and memory usage when
developing IoT solutions using JavaScript (LI et al., 2018; GUBBI et al., 2013).

We identified a promising trend in the computational processing at the IoT edge.
The advancement in the processing and storage capabilities of devices now enables
local processing of some information on the edge device, rather than sending it to an
external agent such as a cloud service. This approach innovates the classic IoT cloud-
centric model (GASCON-SAMSON; JUNG; PATTABIRAMAN, 2018; TAIVALSAARI;
MIKKONEN, 2017) by avoiding network overhead and reducing the response time be-
cause of the local processing of data. Thus, investigations into object state migration
support distributed processing in an IoT context.

One of the great challenges of the Internet of Things is to understand and anticipate
the wishes of end-users. To achieve this goal, objects need to monitor and observe
user movements, gestures, locations, and contexts (MIRAZ et al., 2015). From this
data, opportunities for action emerge. Artificial intelligence techniques can be applied
to understand human beings, the environment, and interact appropriately.

RQ5: What are the tools or plugins for JavaScript in the Internet of Things con-
text?

By answering this question, we are exposing the technologies and tools identified in
this survey. However, we do not address virtual machines because they have already
been discussed in Research Question 3. The remaining technologies are as follows:

• SmartJS: JavaScript-based middleware; that provides an environment of exe-
cution and development of IoT solutions (GASCON-SAMSON; RAFIUZZAMAN;
PATTABIRAMAN, 2017b).

• ThingsJS: JavaScript-based middleware abstracts many issues from large-scale
distributed systems, such as scheduling, monitoring, and self-adaptation, us-
ing a rich constraint model, a multidimensional resource prediction approach
(GASCON-SAMSON et al., 2018).

• Jade: It is a framework that allows a developer to mix C and JavaScript, and

49

the result is a hybrid language to develop IoT applications (GHOSH; JIN; MAH-
ESWARAN, 2014).

• ThingsMigrate: It is middleware for the migration of stateful JavaScript applica-
tions across IoT devices (GASCON-SAMSON et al., 2018).

• Opel: It is an IoT platform that enables developers to implement several services
swiftly and efficiently via JavaScript (LEE et al., 2017).

• Smart Block: It is a visual programming environment. Smart Block enables un-
technical users can write their application on this platform quickly (BAK; CHANG;
CHOI, 2018).

• iThem: iTherm enables programmers to create complex algorithms that can con-
nect various IoT services and fully utilize the capabilities of a general program-
ming language (WANG et al., 2022).

Although JavaScript has a consolidated status in web and server-side program-
ming, it has been little explored in some contexts, such as IoT, due to hardware re-
quirements. For instance, the device must have sufficient resources to support the
JavaScript engine and run algorithms. Therefore, in order to enable the use of the
JavaScript language in IoT programming, it is necessary to implement techniques or
tools to improve its performance.

2.5 Summary

In this chapter, we have aimed to provide the reader with a comprehensive under-
standing of the essential basic concepts to facilitate the comprehension of the proposed
improvement approaches.

We start by introducing the concept of embedded systems and explaining the dif-
ferences between interpreted and compiled languages. Furthermore, we present the
Internet of Things as a variant of embedded systems. Moving on, we delve into the
JavaScript language and explore its ecosystem, including the virtual machine. Next,
we provide an in-depth overview of the XS engine by Moddable, highlighting its unique
features.

Finally, we presented a systematic mapping review that includes the latest research
on the use of JavaScript in the IoT context. The literature review offered a comprehen-
sive overview of the research area involving JavaScript and the Internet of Things. It
revealed new opportunities and challenges that could be explored further. Also, it al-
lowed us to analyze the scenario comprehensively and propose contributions that can
advance knowledge and collaborate with the scientific community.

3 ANALYZING JAVASCRIPT CODES

In the context of embedded systems, the trade-off between performance and soft-
ware development strategies, which need to cater to software requirements, is con-
flicting due to device-constrained properties (GRESSL; STEGER; NEFFE, 2019). It
means that certain structures, functions, and paradigms cannot be used, requiring
particular analyzes of source code to achieve the balance between development and
resource consumption. Therefore, investigating the behavior of a programming lan-
guage becomes essential to understand all scenarios of performance and resource
consumption.

This chapter analyzes the performance of the JavaScript language in IoT applica-
tions. We compare applications written in JavaScript and the C language to deter-
mine the resource consumption of each language. The analysis provides practical
insights into developing applications for embedded contexts using an interpreted lan-
guage. Furthermore, it offers valuable information regarding possible enhancements
and optimizations to reduce resource consumption.

3.1 Hardware and Software Setup

This section provides an overview of the hardware and software used in this study.
We describe the equipment that is shared across all experiments. Specific components
such as sensors or actuators are defined in the experiments in which they are utilized.

Given the high heterogeneity of IoT devices in terms of resources, we used the RFC
7228 (RFC 7228: TERMINOLOGY FOR CONSTRAINED-NODE NETWORK, 2023)
classification as a reference for selecting devices for the experiments. The RFC 7228
document categorizes constrained devices into three classes based on their compu-
tational capabilities. We specifically chose microcontrollers that shape into Class 2,
comprising devices with limited memory and processing capacities and networking ac-
cess.

The empirical studies were conducted using ESP8266 (ESP8266 NODEMCU-12E,
2023), ESP32 (ESPRESSIF SYSTEMS, 2023) as the microcontrollers. These are

51

popular development boards integrated with a Wi-Fi communication chip; table 5 shows
their technical specifications. According to the RFC 7228 parameters, these MCUs are
considered constrained IoT devices.

Table 5 – Microcontroller specifications.

Specification ESP8266 ESP32

MCU Xtensa single-core 32-bit L106 Xtensa dual-core 32-bit LX6
Wi-Fi (802.11 b/g/n) HT20 HT40
Bluetooth - 4.2 BLE
Typical Frequency 80 MHz 160 MHz
SRAM 160 kB 521 kB
Flash 16 MB 16 MB
GPIO 17 36
Hardware/Soft. PWM -/8 Channels 1/16
SPI/l2C/l2S/UART 2/1/2/2 4/2/2/2
ADC 10-bit 12-bit

Regarding code quality, we conducted a static code analysis using the Halstead-
Metrics-Tool (SOFTWARE ENGINEERING RESEARCH GROUP AT POLITECNICO
DI TORINO, 2023) to collect Halstead Metrics, and the Lizard tool (TERRY YIN, 2023)
to collect Cyclomatic Complexity. These tools allowed us to evaluate different lan-
guages that use distinct paradigms based on the statements used in the algorithms
from the same viewpoint. Table 6 describes the other software used to support the
investigations.

Table 6 – Technical software details.

Software (version) Description

Espruino engine (2.09) JavaScript engine and firmware packaging
Espruino IDE (0.74.1) Web IDE to develop the JavaScript application
Arduino IDE (1.8.13) IDE to develop the C application
ArduinoJson (6.0) JSON library for embedded C application
Halstead-Metrics-Tool (1.0) Tool for static code analysis (C/JS)
Lizard (8.9) Tool for Cyclomatic Complexity Analysis (C/JS)
rc-switch (2.6.4) Library for management Radio Frequency (RF) commands

for C language
Moddable SDK (3.8.0) JavaScript engine and firmware packaging
Power profile (3.5.5) Application for use with Nordic Power profile kit to measure

power consumption
ESP-IDF (4.4.3) Espressif IoT Development Framework to compile

ESP8266/32 version

Concerning power consumption, we have chosen the Power Profile Kit II (PPK)
(NORDIC SEMICONDUCTOR, 2023) to measure energy consumption. The PPK can
be operated as an ampere meter or source measure unit (SMU), with a sampling rate
of 100,000 kilo samples per second. The Power Profile Kit enables the measurement
of low sleep currents, higher active currents, and short current peaks. We used PPK

52

to supply the MCU at 5V. The input pin (VIN) and negative pin (GND) of MCU are
connected to the positive voltage outlet and ground on the PPK. Thus, the SMU allows
us to measure the current flow and report the data on the specific software provided by
the vendor of PPK.

Moreover, we perform code-synchronized measurements to determine the exact
consumption of each experiment. The PPK can convert digital inputs into a logic an-
alyzer. Therefore, before starting the specific execution, the device can send a digital
signal to mark the precise entry point where the algorithm will begin. Then, in the end,
another signal is fired, delimiting the area of interest for analysis. Figure 15 illustrates
the code-synchronized markers.

Area of interest for analysis

Sign to mark the starting point Sign to mark the end point

A B

Figure 15 – Code-synchronized measurements example.

Figure 15 shows the threshold of the code being measured for power consumption.
In particular, this figure presents two areas defined for analyzing energy. Section (a)
represents an execution with a duration of ⇡ 3.5 seconds, while section (b) represents
⇡ 0.5 seconds. This example uses logic port number 2 to control the signals, and
before starting the specific routine, a high signal is sent, and at the end, a low signal is
transmitted to determine the end of consumption. In special, the end of the section (a)
and the start of section (b) may appear to be the same. However, it is just a perception;
due to the PPK’s high precision, the interest area’s delimitation is clearly present in the
consumption records. As a reference, each measurement result generates a 1.3 GB
file containing approximately 50 million records.

53

3.1.1 Overview of the Experimentation Flow

The experimentation in this study involved several steps. First, we carefully de-
signed the experiments, including selecting the appropriate IoT devices and underlying
sensors/actuators, setting up the experimental environment, and defining the variables
and metrics to be measured. Then, we implemented the proposed improvement ap-
proaches using JavaScript and compared them with the classic approach. Figure 16
provides an overview of the experimentation flow.

Algorithm / Benchmark Real world application

Coding

Input

C version

JS version

Deploy in
microcontroller

Development

Run experiment

Performance data
extraction

Output

Energy consumption
record

Figure 16 – Overview of the validation flow of experiments.

Figure 16 represents a generic validation flow applied to perform the experiments.
Of course, some tests had particular variations according to the goal of the investiga-
tion; however, this model can be used to illustrate the overall validation process.

Experiments can be performed using algorithms developed in C and JavaScript,
benchmarks, or microbenchmarks. Regardless of the input, they were deployed on
the device, and during the execution of the tests, the device was monitored to extract
metrics using a data-only cable connected to a personal computer. A power supply
was provided by an ampere meter.

We conducted multiple rounds of experiments, carefully controlling and varying the
parameters, and collected data on the performance and other relevant metrics. Each
experiment was repeated at least 30 times to ensure data consistency and to obtain
more accurate statistical information. Thus, the performance data represent the aver-

54

age of all the executions. Finally, we capture the energy consumption using a dedicated
ampere meter.

3.2 Case Study Description

To better understand the relationship between interpreted and compiled languages,
we implemented an application to examine the behavior of the JavaScript language,
identify any potential limitations or restrictions, and gain an overall understanding of its
performance. In order to understand the behavior of a conventional solution, we also
developed the same application using the C language. This enabled us to compare the
performance and code quality of both applications.

The application consists of a home automation system integrated with the Google
Smart Home platform (GOOGLE ACTIONS, 2023). It allows users to control their
devices through the Google Home app, Google Assistant, and custom applications. In
particular, this automation proposal controls an automatic garage door opener through
a 433 MHz frequency. Figure 17 presents an overview of the architectural integration
between the in-house software and the Google platform.

Assistant

Surface

Speech

Recognition

Natural

Language

Understanding

TTS (speech) Response

Smart

Home

HomeGraph

Google Architecture

Application

Back-end

(JavaScript)

IoT Device

(C/JavaScript)

Application proposal

Command Status

Execute

Intent

Figure 17 – Garage door opener architecture integration.

Figure 17 shows the integration of the application proposed with the existing
(legacy) system. When users send commands to devices with Google Assistant, the
server receives an intent that describes the action and the devices to act upon. This
intent can be executed on a device via voice commands such as ”Hey Google, open
the garage door,” and through custom apps or web interfaces.

Communication between components and devices occurs through specialized mes-
sages in a specific format called Google HomeGraph. Each command from the server
to the IoT device, and vice versa, is represented as a JavaScript Object Notation
(JSON), which describes the request, device, and action to perform. Figure 18 il-

55

lustrates an example of a message used for system communication.

Device

Action

Code to open
 the garage door

Google intent

Figure 18 – Google homegraph message.

As illustrated in Figure 18, the Google HomeGraph format describes actions us-
ing pre-established constants and can carry out several instructions simultaneously.
Furthermore, we included an extra parameter (RFCode) in the original model, which
contains the binary code to interact with the garage opener. Finally, we collected the
RF code to open and close the door using an RF receiver sensor.

Regarding the Hardware, we choose ESP8266 (ESP8266 NODEMCU-12E, 2023)
as microcontroller (MCU) and the FS1000A RF transmitter (COMPONENTS INFO,
2023a) for wireless communication between the IoT device and the embedded garage
door circuit. Figure 19 presents an overview of the garage door opener application.

Figure 19 shows that the user can start the interaction by saying a command. It
is processed in the Google cloud, which finds an intent and sends it to the application
server, and finally, it notifies the IoT device. This process could be initiated without a
voice command using the Google Home app or any in-house application. If the user
has Google devices on the same network, the command may not need to be processed
on the cloud server because these devices can load and run custom applications (writ-
ten in JS) upon themselves. From that point, the communication is over Wi-Fi, reducing

56

the latency and increasing reliability (GOOGLE ACTIONS, 2023).

Execute
Intent

MCU
Context Awareness

PPK

Power Meter Power Supply

RF
433MHz

Application
Back-end

(JavaScript)

IoT Device

CJS

Hey google

Google Cloud

Command Status

Figure 19 – Garage door opener overview.

For this experiment, the Espruino engine (ESPRUINO, 2023) was selected as JS in-
terpreter. Espruino is an open-source JavaScript engine for microcontrollers with com-
plete coverage of ES5 and partial coverage of ES6 features. Furthermore, Espruino
provides firmware with support for the ESP8266 board and a Web IDE for development.

Finally, regarding the performance analyses, we collected runtime and memory us-
age data using the JavaScript performance API. For the C language, the metrics were
extracted from the Espressif IoT Development Framework (ESP-IDF), and the power
consumption was recorded using a dedicated ampere meter.

3.3 Results of JavaScript and C programs

Programmers can propose different solutions to the same problem. We developed
the algorithms to keep the source code as simple as possible, by defining only the
necessary structure and importing the relevant libraries to facilitate development. This
section presents the results related to performance and code quality.

The algorithms comprise a web server implementation that receives and processes
POST requests. We created two endpoints, RF and STATUS, to send radio-frequency
commands and get the device status, respectively. All requests contain a JSON object
for data interchange between the application layers, following the Google HomeGraph
format.

3.3.1 Code Quality Analysis

Listings 3.1 and 3.2 present chunks of the source code from both algorithms; con-
figuration and device controls have been suppressed, keeping the focus on business
logic.

57

1 // ...
2 void loop() {
3 server.handleClient ();
4 }
5 bool isOpened () {
6 return digitalRead(magnet_switch) == HIGH;
7 }
8 void handlerStatus () {
9 if (isValidRequest ()) {

10 const size_t bufferSize = 2 * (JSON_ARRAY_SIZE (2) +
JSON_OBJECT_SIZE (6));

11 DynamicJsonDocument requestArgs(bufferSize);
12 deserializeJson(requestArgs , server.arg("plain"));
13

14 DynamicJsonDocument doc (128);
15 doc["success"] = true;
16 doc["requestId"] = requestArgs["requestId"];
17 doc["isOpened"] = isOpened ();
18 sendResponse(doc);
19 }
20 }
21 void handlerRF () {
22 if (isValidRequest ()) {
23 const size_t bufferSize = 2 * (JSON_ARRAY_SIZE (4) +

JSON_OBJECT_SIZE (11));
24 DynamicJsonDocument requestArgs(bufferSize);
25 deserializeJson(requestArgs , server.arg("plain"));
26 DynamicJsonDocument cmd = requestArgs["inputs"][0]["payload

"]["commands"][0]["execution"][0];
27 const char* action = cmd["command"];
28 const int perc = cmd["params"]["openPercent"];
29 const long RFCode = cmd["params"]["RFCode"];
30 if (strcmp(action , "... commands.OpenClose") == 0) {
31 bool executed = false;
32 String message;
33 if (perc == 100) {
34 if (!isOpened ()) {
35 executed = performRF(RFCode);
36 message = "Opening the door";
37 } else {
38 message = "Door is already open";

58

39 }
40 } else {
41 if (isOpened ()) {
42 executed = performRF(RFCode);
43 message = "Closing the door";
44 } else {
45 message = "Door is already close";
46 }
47 }
48 DynamicJsonDocument doc (128);
49 doc["success"] = executed;
50 doc["requestId"] = requestArgs["requestId"];
51 doc["message"] = message;
52 sendResponse(doc);
53 } else {
54 server.send (400, "text/plain", "Invalid command");
55 }
56 }
57 }

Listing 3.1 – Garage opener implementation using C language.

Listing 3.1 represents the C implementation in which the endpoints are defined in
the “handlerStatus” method (lines 8-20) and “handlerRF” method (lines 21-56). Entry
parameters and return are expected in JSON format, and therefore, it requires manual
management of memory space in order to allocate the data (lines 10; 23).

Moreover, Google’s operating model presupposes that the garage door control has
an open percentage level. In this sense, we consider the value of 100 percent to open
the door, and any value different from this to close it. Listing 3.2 shows the JavaScript
implementation.

1 // ...
2 const LightExpress = require("light -express");
3 const NodeMcu = require("node -mcu");
4 const node = new NodeMcu ();
5 const server = new LightExpress ();
6 server.post("/rf", (req , res) => {
7 const cmd = req.body.inputs [0]. payload.commands [0]. execution

[0];
8 const result = node.performRF(
9 cmd.command ,

10 cmd.params.openPercent ,
11 cmd.params.RFCode

59

12);
13 if (result) {
14 result.requestId = data.requestId;
15 res.end(JSON.stringify(result));
16 } else {
17 res.writeHead (400);
18 res.end("Invalid command");
19 }
20 });
21 server.post("/status", (req , res) => {
22 const data = req.body;
23 const result = {
24 requestId: data.requestId ,
25 isOpened: node.isOpened (),
26 };
27 res.end(JSON.stringify(result));
28 });
29 server.listen (80);

Listing 3.2 – Garage opener implementation using JS language.

It should be noted that the business logic is apparently different between the two
algorithms. For instance, the logical process from lines 30 until 47 in Listing 3.1 does
not appear in Listing 3.2. This is because the chunk of code was isolated in a common
class to be reused in other application layers. Listing 3.3 exposes the standardized
code.

1 class ExecutionHandler {
2 performRF(action , perc , RFCode) {
3 if (action == "... commands.OpenClose") {
4 let message;
5 let executed = false;
6 if (perc == 100) {
7 if (!this.isOpened ()) {
8 this.sendRF(RFCode);
9 message = "Opening the door";

10 executed = true;
11 } else {
12 message = "Door is already open";
13 }
14 } else {
15 if (this.isOpened ()) {
16 this.sendRF(RFCode);

60

17 message = "Closing the door";
18 executed = true;
19 } else {
20 message = "Door is already close";
21 }
22 }
23 return {
24 success: executed ,
25 message: message ,
26 };
27 }
28 }
29 }

Listing 3.3 – JavaScript standard class.

The class ExecutionHandler encapsulates the application logic, and it should be
noted that the methods “isOpened” and “sendRF” do not exist in this class. In this
case, we follow best practices for development by adopting the Template Method de-
sign pattern, aiming at a specific implementation in a separate class. This is essential
to promote flexibility and contribute to interoperability among layers since each mi-
crocontroller may have distinct hardware specifications. Finally, Listing 3.4 shows the
specific board class.

1 class NodeMCU extends ExecutionHandler {
2 isOpened () {
3 return digitalRead(D2) == 1; ;
4 }
5 sendRF(code) {
6 require("RcSwitch").connect(6, D4, 3).send(code , 28);
7 }
8 }

Listing 3.4 – JavaScript ESP8266 class.

Listing 3.4 represents the custom implementation for the ESP8266 board. For in-
stance, if we needed to implement it on another microcontroller, such as Raspberry Pi,
we would only need to create one class to provide the abstract methods, and the rest
of the structure could be reused. Table 7 presents the static code analysis of the algo-
rithms; the values inside the table represent a number on a magnitude scale according
to each criterion.

As before illustrated, the measures shown in Table 7 point to the overall quality
of the produced programs. We conducted the code analysis over the C file and all
JavaScript files; the JavaScript measurements are the average ones. In contrast to

61

Table 7 – Garage opener: Halstead metrics.

Metric C JavaScript

Program length 803.0 440
Program vocabulary 140 100
Estimated length 905.56 567.29
Purity ratio 1.13 1.29
Volume 5724.81 2923.30
Difficulty 52.03 45.00
Program effort 297887.75 131548.35
Time to program (h) 4.6 2.03

the performance examination, JavaScript surpasses C in all items, and in some cases,
the results can be almost twice as much. Next, we describe each index used in the
Halstead metric:

• Program length: The size of the program;

• Program vocabulary: Number of operators and operands that compose the pro-
gram;

• Estimated length: Metric of size estimated by removing everything from the
program except operators and operands;

• Purity ratio: This metric assesses the code length based on its actual length.
This is an optimization indicator, so the lower the ratio is, the greater the chance
that excessive code implements functionality, and a higher ratio (above 1.00) in-
dicates optimized code;

• Volume: Measures the size of the implementation of an algorithm;

• Difficulty: Difficulty level or error proneness of the program is calculated from
the number of unique program operators;

• Program effort: Represents the mental activity a programmer performs to trans-
form an algorithm into a program;

• Time required to program: Represents the time to develop or understand a
program.

Regarding the cyclomatic complexity index, this measure represents how complex
each code was considered. Empirical verification shows that the C algorithm had a
higher complexity index than the JS implementation. Figure 20 shows the detailed
complexity analysis.

From Figure 20, the acronyms mean NLoc (Number of lines of code without com-
ments), Token (Token count of functions), and CNN (Cyclomatic Complexity Number).

62

0

25

50

75

100

125

NLoc Token Funct. count

C JS

0,0

0,5

1,0

1,5

2,0

2,5

CNN

C JS

Figure 20 – Garage opener: Cyclomatic complexity analysis.

Although the advantage of JavaScript over the C language is clear, it was conducted
from a source developed and proposed by us. Thus, we decided to apply the same
tools over an external set of algorithms to compare the results and find some be-
havior patterns. For that, we selected the Ostrich Benchmark Suite (KHAN, FAIZ
AND FOLEY-BOURGON, VINCENT AND KATHROTIA, SUJAY AND LAVOIE, ERICK,
2014). This benchmark provides some facilities for evaluating JavaScript against C
because it gives the same implementation of the algorithm in both languages.

The results of the code analysis from the Ostrich benchmark (Appendix B) show that
JavaScript exhibits balanced or superior behavior. This analysis is consistent with the
results obtained from the code produced in this experiment, which gives us confidence
in the achieved outcome.

3.3.2 Resource Consumption Analysis

Assuming that the Alarm System application was built using a web server, the per-
formance results were obtained by executing a predefined set of requests (as previ-
ously established, 30 in total). Table 8 lists the details of memory usage.

Table 8 – Garage opener: Memory consumption (bytes).

Language Memory used (%) Free memory Available memory Total memory

C 5924 (11,09) 47512 53436 96000
JS 19880 (62,12) 12120 32000 96000

The results indicated significant performance variations in memory consumption.
The JavaScript solution attained a much higher memory consumption compared to the
C algorithm. Specifically, JS consumed more than three times the amount of memory
to perform the same algorithm. This difference is attributed to the overhead of the
JavaScript engine and its practice of reserving memory space for the entire heap, even

63

if only a small portion is used.
Although both algorithms were deployed on the same hardware, meaning they have

the same amount of memory, the available memory for each algorithm was distinct.
Figure 21 shows the difference in the available memory.

M
em

or
y

(k
B

)

0

25

50

75

100

C JS

Available to use Used Reserved (unavailable)

Figure 21 – Comparison of available memory.

The ESP8266 microcontroller has 160 kB of RAM memory, of which 64 kB is allo-
cated to IRAM (for instructions) and 96 kB to DRAM (for data). In this scenario, both
solutions start with an equal amount of available memory (96 kB). However, the C so-
lution had ⇡ 53 kB of available memory, whereas the JavaScript approach had only 32
kB. In both approaches, the firmware (RTOS) and ESP8266 SDK occupy part of the
memory space to support Wi-Fi and communication protocols such as TCP/IP.

Therefore, we can consider the overhead of the JavaScript solution to be around
21 kB. In other words, using the C solution as a reference, this amount represents
48.84%1 overhead. This is a significant result because we are working with resource-
constrained devices.

Regarding the execution time, we measured how long it took to process each re-
quest and clustered the results by algorithms. Figure 22 summarizes the execution
time by language.

Figure 22 presents the average execution time for each endpoint. Each graph
shows the JavaScript results twice because Espruino sets the ESP8266 clock to 160
MHz by default, whereas the C algorithm operates over 80 MHz. Therefore, we decided
to present all the data.

Section “a” in Figure 22 reports the experiment in which the 433MHz RF transmitter
is used to open or close the garage door. The C algorithm took longer than the JS

1((21 * 100) = 2100 / 43 = 48.837209302325581

64

(a) RF request (b) STATUS request
Figure 22 – Garage opener: Execution time.

algorithm. Upon closer analysis, we found that most of the time was spent sending RF
commands through the RC-switch library (RC-SWITCH LIBRARY, 2023). Therefore,
the extra time is related to a third-party library and not specifically to business rules.

In contrast, section “b” reveals that C is at least four times more efficient than
JavaScript at getting the status. After inspecting the source code, we discovered that
most of the time was spent on processing requests from the web server. In addition, the
I/O operation to read the digital port is as fast as in the C algorithm. Therefore, once
again, the slowdown is caused by libraries that are likely to be designed for general
purposes and are not optimized for embedded contexts. Finally, Figure 23 presents
data regarding energy consumption.

(a) RF request (b) STATUS request
Figure 23 – Garage opener: Energy consumption.

In general, JS consumes more energy than C when performing the algorithms.
There are two hypotheses to explain this phenomenon. First, it may be because the
JavaScript engine performs optimizations to enhance performance, which leads to di-
rect CPU usage and an additional energy cost. This is a common strategy used by JS
engines to improve their performance. Second, extra consumption is likely due to the
high memory consumption and slow response time when handling requests from the
web server.

65

Overall, C performed better than JavaScript, as expected. However, the JS applica-
tion produced a satisfactory outcome that was not too far behind a compiled language
and achieved good results regarding design-time metrics. Therefore, the decision to
use JS should not be based solely on performance issues but should also consider
other aspects of the coding process and post-development, such as maintenance,
readability, and code reuse.

3.3.3 Related Work

The majority of research in the literature focuses on code analysis from the perspec-
tives of desktop, server, or web applications. We have selected works that specifically
address code analysis in the context of embedded systems.

Joshi; Gurumurthy (2014) investigate optimizations at the source code level for
ARM processors in the embedded system context. Their research focuses on loop
transformation techniques, and their results indicate a 40

Kienle; Kraft; Nolte (2012) explore static code analysis for a specific industrial em-
bedded system developed using the C language. They present a case study and report
insights that can complement more generic code analysis tools.

On the other hand, Oliveira et al. (2008b) investigate the relationship between qual-
ity metrics for software products and physical metrics for embedded systems. They
use the Java language and establish a strong correlation between quality metrics for
traditional software products and performance metrics for embedded systems.

Typically, code analysis approaches for embedded systems focus primarily on de-
vice performance, sometimes overlooking software quality metrics. Therefore, it is cru-
cial to evaluate the impact on the source code beyond just performance, considering
other perspectives such as the developer or software engineering viewpoint.

In this study, we explore JavaScript as an alternative programming language in
the context of the Internet of Things. Additionally, we investigate the advantages and
disadvantages of JS compared to the C language, specifically focusing on resource
consumption and software quality metrics such as complexity, maintenance, and reuse.

3.4 Summary

The text discusses the analysis of JavaScript codes in the context of embedded
systems, particularly in IoT applications. The trade-off between performance and soft-
ware development strategies is examined due to the constraints of device properties.
The chapter aims to find a balance between development and resource consumption
by analyzing the behavior of the JavaScript language.

The comparison between JavaScript and C languages is conducted by implement-
ing an application for a home automation system integrated with the Google Smart

66

Home platform. The architecture and communication flow between the application,
Google platform, and IoT devices are explained. The Espruino engine is used as the
JavaScript interpreter for the experiments, and runtime, memory usage, and power
consumption are measured for performance analysis.

The results of the program comparison are presented, focusing on code quality
analysis. Chunks of the source code for both the C and JavaScript implementations are
provided. The JavaScript implementation demonstrates better code quality, obtained
from Halstead and Cyclomatic complexity metrics. Overall, the analysis provides prac-
tical insights into developing IoT applications using JavaScript and highlights possible
enhancements and optimizations to reduce resource consumption.

4 JSGUIDE: GUIDELINES TO IMPROVE EMBEDDED SOFT-
WARE FOR IOT

Embedded development requires developers to have a good working knowledge
of hardware and programming languages, as well as an awareness of resource con-
sumption to build efficient applications (KRAELING, 2013). However, finding qualified
professionals can be difficult, or in large projects, building efficient solutions can be
challenging. An alternative to mitigate this problem is the use of guidelines.

This chapter analyzes the JavaScript language using code smells. We validate
well-known code smells established for other contexts, such as desktop, web, or server-
side, and suggest new ones based on the latest JavaScript API. Additionally, we intro-
duce JSGuide, a tool for detecting code smells in the IoT context.

4.1 Guidelines

Guidelines can help developers to make algorithms more efficient and lead to the
correct use of Application Programming Interfaces (APIs) (KRAELING, 2013).

Developers have been using guidelines to achieve performance, suit code style,
satisfy conventions and improve user experience. Thus, guidelines can improve the
source code by showing or transforming the chunks of code in order to fix or enhance
any aspect (LÓKI.; GÁL., 2018).

Lacerda et al. (2020) argue that finding a source code optimization or code smell
entry is a significant challenge for engineering. Also, some items are only found under
specific conditions or when combined with or close to other architectural character-
istics, making them hard to detect. In addition, code smell detection can be identi-
fied through human perception, rule-based strategies, search-based methods, metric-
based approaches, and software visualization. The static analysis technique is a way
to facilitate the detection of code smells related to the source code.

In this context, this specific study aims to identify and validate code smells for
embedded development and automate their detection process. Figure 24 shows an
overview of this investigation.

68

Validating code
smells

Detecting code
smells

Well-known code smells

New JavaScript features

Static code analysis

Improvement policy

JS source code

Guidelines

Figure 24 – Goals of the study of guidelines.

This investigation had two goals. First, it aimed to analyze the JavaScript language
based on well-known code smells traditionally used in desktop or server-side applica-
tions and validate their applicability in the embedded system domain. Second, it sought
to create a tool capable of performing static code analysis to detect the bad smells iden-
tified in the first step or to detect situations according to specific performance policies.

4.1.1 Selection of code smells

Regarding traditional code smells, we selected the tests inspired by the following
studies: Fard; Mesbah (2013), Lóki.; Gál. (2018), and Saboury et al. (2017). Further-
more, we chose tests that could be applied to the embedded system domain, excluding,
for example, those suggested for Document Object Model (DOM) because they do not
fit into the IoT context. Also, some code smells are simply recommendations to improve
code quality, such as avoiding variable re-assignment to enhance readability; thus, they
were also discarded. Therefore, we composed a set of tests based on situations that
allow us to identify code labeled as bad smell and suggest corrections/improvements.
In the following, we present the selected code smells.

• Arrow function: To use arrow functions to reduce the syntax applied to scenarios
when a non-method function is needed;

• Binary literals: Choose to use binary literals avoiding conversion of types;

• Inline function: This is a legacy optimization that helps to save function calls
instructions;

• Iterator: Iterators are recommended because they can provide an optimization
way to iterate over all items, saving memory;

• Long parameters: Reducing the number of method parameters can increase
readability and backward compatibility;

69

• Loop iterator: It helps to reduce execution time by reducing the number of itera-
tions and loop test instructions;

• Map: It gives a more suitable structure to manipulate objects that hold key-value
pairs;

• Template string: It gives JavaScript the ability to create new strings based on a
previously defined template;

Beyond validating well-known code smells, we also introduce new ones based on
the latest JavaScript specifications. The ECMAScript specification is released annually,
typically announced in June. We considered features published from ES9 (2018) until
ES12 (2021) for this experiment.

The selection of test cases was based on the specification that presents new ways
to develop existing routines or introduces new syntax for well-known structures. For
instance, to execute a search for a match in a specified string, we would use the “exec”
method combined with a “while” statement to iterate over the results. ES11 introduced
a new method called “matchAll” that provides an alternative to searching in strings.
Figure 25 demonstrates the difference between JS APIs.

Old API

New API

Figure 25 – Comparison between old and new JavaScript API.

In other words, ES11 creates a new way to develop the same existing function
through a novel API. In particular, the “matchAll” method returns an iterator instead of
an array with all the matches. The iterator is, theoretically, more efficient because it
does not load the entire collection into memory to iterate over it. Table 9 summarizes
the JavaScript new features analyzed.

To perform the validation of the code smells and produce guidelines, we established
a test process. First, we determined the set of code smells and the newest JavaScript

70

Table 9 – Evaluated JavaScript Features.

Feature Version Description

Rest ES9 Allows a function to accept an indefinite number of arguments as an
array.

Spread ES9 Allows an iterable, such as an array or string expression, to be ex-
panded in places where zero or more arguments.

fromEntries ES10 The method transforms a list of key-value pairs into an object.
flat ES10 The method creates a new array with all subarray elements concate-

nated recursively to the specified depth.
trimStart / trimEnd ES10 The method removes leading and trailing whitespace from the string.
matchAll ES11 The method returns an iterator of all results matching a string.
Nullish coalescing ES11 It is a logical operator that returns its right-hand operand when its

left-hand operand is null or undefined and otherwise returns its left-
hand operand.

Optional Chaining ES11 It enables to read the value of a property located deep within a chain
of connected objects without checking that each reference in the
chain is valid.

replaceAll ES12 The method returns a new string with all matches of a pattern re-
placed by a replacement.

Logical assignment ES12 A new way to represent the logical AND assignment.

features for evaluation, and then we made microbenchmarks. Figure 26 shows the
overview of the language analysis process.

Set of code
 smells

Code smell
definition JavaScript new

features extraction

Checking the
literature

Coding
microbenchmark

Set of new
features

Algorithm
standard

Algorithm
modified

Deploy on device

Avaliation

Report

Figure 26 – Overview of the JavaScript language analysis process.

Figure 26 depicts the language analysis process flow. We extract the feature to val-
idate and put it inside a specific class that represents a microbenchmark. Its execution
follows the previously established execution flow (30 times) to guarantee the statistical

71

data. Finally, we extracted the energy data, summarized the findings, and generated
the report.

Each microbenchmark consists of a class with standard and modified methods that
expose the original and new or changed code, respectively. Microbenchmarks always
have the same input (recreated for each execution) and must produce the same out-
put. These classes are submitted to an in-house measurement framework created
exclusively to measure execution time and memory consumption through Moddable’s
instrumentation API. Listing 4.1 presents an example of a microbenchmark, and Ap-
pendix A exposes all microbenchmarks used.

1 export class Iterator {
2 static standard () {
3 const arr = [1, 22, 13, 1, -2, 3, 6, 0.78];
4 let sum = 0;
5 for (var i = 0; i < arr.length; i++) {
6 sum += arr[i];
7 }
8 return sum;
9 }

10

11 static modified () {
12 const arr = [1, 22, 13, 1, -2, 3, 6, 0.78];
13 let sum = 0;
14 for (let value of arr) {
15 sum += value;
16 }
17 return sum;
18 }
19 }

Listing 4.1 – Iterator smell.

Listing 4.1 shows a microbenchmark to validate which technique is more efficient
- a typical loop using a for statement or using a for-each loop. Although the code is
encapsulated inside a class, the methods are static, ensuring they are not invoked
through an object to avoid overhead while validation occurs.

4.1.2 Guidelines Results

We analyzed the JavaScript language using microbenchmarks to validate code
smells and explore new JS features. For that, we used ESP32 as MCU and Moddable
SDK to support JavaScript on the device. As a result, we examined eight code smells
and ten new features.

72

The general objective of this analysis is not to establish that the new version is
superior to the old one but to evaluate which option is the most optimal in terms of
resource consumption. Therefore, we discuss the most significant differences between
these approaches. Table 10 summarises the results.

Table 10 – JavaScript language analysis results.

Mem. (bytes) Exec. time (ns) Energy (mJ)
STD MDF % STD MDF % STD MDF %

Code smells
Arrow 304 320 5,00 1886,27 2005,03 5,92 0,81 0,86 6,10
binary 0 0 0,00 627,73 399,53 -57,12 0,27 0,17 -57,45
inline function 96 112 14,29 452,67 497,07 8,93 0,20 0,21 8,77
Iterator 168 296 43,24 1951,77 2381,10 18,03 0,84 1,01 17,04
Long parameter 112 112 0,00 497,10 490,00 -1,45 0,21 0,21 -2,30
loop 0 0 0,00 999,80 1033,40 3,25 0,43 0,44 2,73
map 81 260 68,82 1277,83 991,53 -28,87 0,55 0,42 -29,19
template string 200 216 7,41 674,43 684,23 1,43 0,29 0,29 1,26
New features
Rest 352 208 -69,23 1811,63 1627,80 -11,29 0,78 0,70 -12,10
Spread 128 160 20,00 1153,87 1115,30 -3,46 0,49 0,48 -1,90
From entries 264 392 32,65 1694,73 2405,13 29,54 0,72 1,03 30,19
Flat 1424 560 -154,29 5658,07 2409,33 -134,84 2,43 1,03 -136,10
Trim start 540 52 -938,46 2887,70 676,57 -326,82 1,24 0,29 -326,62
Match all 1760 1964 10,39 6112,93 8014,73 23,73 2,63 3,45 23,76
Nullish coalesing 0 0 0,00 369,40 352,43 -4,81 0,16 0,15 -5,22
Optional chaining 112 112 0,00 749,47 721,93 -3,81 0,32 0,30 -7,70
Replace all 680 296 -129,73 3069,10 1000,60 -206,73 1,31 0,43 -206,62
Logical assignment 0 0 0,00 402,57 399,80 -0,69 0,17 0,17 -1,19

In Table 10, STD and MDF refer to standard and modified codes, respectively. The
percentage value is calculated based on the original code. Therefore, a positive value
indicates that the original code is better than the modified one, while a negative value
indicates the opposite.

First of all, it should be noted that some benchmarks do not have memory data
(showing zero). This is not a problem; rather, it is related to the Moddable’s approach
and its principles for optimizing applications on microcontrollers. In summary, vari-
ables can be stored in ROM instead of RAM to improve performance and reduce mem-
ory usage. The instrumentation API only measures data in the heap memory; thus,
some entries present zero in their results because they were stored in ROM. More-
over, JavaScript’s new features yielded good results compared to the results of code
smells. Many of these features are more energy-efficient than the previous API. Fig-
ures 27 and 28 illustrates the execution between the generations.

One test that performed poorly was the From entries code. This function can be
seen as a utility function that transforms a list of key-value pairs into an object. The
difference in memory consumption was significant at 32.65%, and the execution time
was 29.54% longer. Therefore, it is recommended, even though it may be difficult to

73

Ti
m

e
(n

s)

0

500

1000

1500

2000

2500

Arrow
binary

inline function
Iterator

Long parameter
loop

map

template strin
g

Standard code Modified code/new ones

Figure 27 – Code smells: execution time.

Ti
m

e
(n

s)

0

2500

5000

7500

10000

Rest
Spread

From entrie
s Flat

Trim
 start

Match all

Nullish coalesing

Optional chaining

Replace all

Logical assignment

Standard code Modified code/new ones

Figure 28 – New features: execution time.

read, to use the classical annotation with key and value.
The fastest tests were trim and flat. While it represents a simple action, the trim test

removes empty white spaces at the beginning of a string using a conventional regex-
based approach, which significantly impacts performance. On the other hand, the flat

test uses a specialized implementation to flatten array items to the same level instead
of using recursion as in the “reduce” approach.

74

Figure 28 still indicates that the match all method performs slower. Theoretically,
this method should be more efficient, but the measures show the opposite trend. This
occurs because the structure of the iterator is optimized for scaling larger outputs. For
example, instead of returning an array to interact with, the method returns an iterator to
handle a few items. Thus, in this experiment, it resulted in slower performance. Figures
29 and 30 illustrates the consumption of memory.

M
em

or
y

(b
yt

es
)

0

100

200

300

400

Arrow
binary

inline function
Iterator

Long parameter
loop

map

template strin
g

Standard code Modified code/new ones

Figure 29 – Code smell: memory consumption.

0

500

1000

1500

2000

Rest
Spread

From entrie
s Flat

Trim
 start

Match all

Nullish coalesing

Optional chaining

Replace all

Logical assignment

Standard code Modified code/new ones

Figure 30 – New features: memory consumption.

75

Regarding memory, the iterator and map tests showed the worst consumption. Un-
like “for” loops or the “map“ function, the “forEach” method does not provide many
optimization opportunities for JavaScript engines to optimize the loop (FLANAGAN,
2020b). This can result in suboptimal performance in some cases. On the other hand,
the map test presented unexpected results because “map” is often considered to be a
concise and memory-efficient mechanism to manipulate array elements.

The iterator test measures different ways to iterate over an array. The results in-
dicate that the traditional approach, where the developer has complete control over
the execution, is better than the new one. Therefore, the alternative syntax (foreach)
should be avoided.

The template string test performed worse than the traditional string manipulation.
On the one hand, considering the performance aspect, it should not be recommended;
although there is a slight performance difference, strings are often used. On the other
hand, template strings make the code more explicit, improving readability and main-
tainability. Therefore, we need to be aware of their costs to decide whether to use
them. Figures 31 and 32 shows the consumption of energy..

E
ne

rg
y

(m
J)

0,00

0,25

0,50

0,75

1,00

1,25

Arrow
binary

inline function
Iterator

Long parameter
loop

map

template strin
g

Standard code Modified code/new ones

Figure 31 – Code smell: energy consumption.

In general, the results indicated that adopting code smells can contribute to reduc-
ing energy consumption. However, codes that utilize regular expressions are slower
and tend to consume more energy; therefore, their adoption in resource-constrained
environments needs to be carefully evaluated.

Based on the results, if there is even a slight improvement in the algorithm, we
would suggest adopting it, as even a small progress can make a significant difference

76

E
ne

rg
y

(m
J)

0,00

1,00

2,00

3,00

4,00

Rest
Spread

From entrie
s Flat

Trim
 start

Match all

Nullish coalesing

Optional chaining

Replace all

Logical assignment

Standard code Modified code/new ones

Figure 32 – New features: energy consumption.

on constrained devices. However, it should be noted that these recommendations are
dependent on the technology used, such as virtual machines.

Next, we discuss the second part of the guideline study, which is concerned in
identifies code smells.

4.2 JSGuide: A tool to detect code smells

In addition to the knowledge gained from identifying code smells, there is still the
arduous task of finding code patterns within the source code of applications and de-
pending on the size and scope of the system, this activity can be tiring and prone to
errors (FARD; MESBAH, 2013). Therefore, it is essential to adopt a tool to automate
this task.

JSGuide is a static code analyzer tool that identifies code smells based on the
embedded system context. The framework also uses a heuristic-based approach to
detect smells and produces a report suggesting how to improve the embedded soft-
ware. Furthermore, JSGuide was developed using the Java language and Mozilla
Rhino (MOZILLA FOUNDATION, 2022) as a JavaScript parser. Figure 33 provides an
overview of the framework architecture.

Figure 33 illustrates the primary pipeline for detecting and reporting code smells.
First, the code is submitted to the parser. If the algorithm is parsed, it generates an
Abstract Syntax Tree (AST). Next, the Task agent analyzes the AST and produce a
report with the recommendations.

The Task agent effectively carries out code analysis. A Task agent is a generic ab-

77

Task agents

Code analyzer

Source code
Report

parser ...

Figure 33 – JSGuide - Architecture overview.

straction that describes the patterns for finding smells. Each agent can be implemented
to consider distinct goals. For instance, it is possible to create an agent to improve per-
formance, energy savings, security, or other dimensions according to an optimization
strategy. This approach allows flexibility in the evolution or creation of personal profiles
to customize applications. Figure 34 shows the flow used to detect smells.

Parse
JavaScript code

Generate AST
no

Yes

Parse?

Yes

No
Has

Next?

Find pattern/smell

No

Yes

Match?

Registry smell
location Chek TaskAgent

Generate report

Loop

Figure 34 – Code smell detection.

Figure 34 demonstrates the execution flow of the JSGuide algorithm. In summary,
the AST elements are analyzed to find chunks of code that match the task agent’s
criteria. Next, the program iterates over all agents. If any code is consistent with the
smell definition, its location (file, line, column) is registered, and a report is generated.

To abstract the detection of code smells or patterns in the code, we created an
interface to standardize the actions for finding the code and another one to model the
results, considering all the information needed to locate the code snippets in the report.
Figure 35 represents a class diagram of the JSGuide.

The interfaces ILocation and ITaskAgent abstract the common behavior used to

78

<<Interface>>
ILocation

+ getLine(): int
+ getFileName(): String
+ getPosition(): int

<<Interface>>
ITaskAgent

+ hasSmell(): boolean
+ getPosition(): ILocation
+ findSmell(): CodeSmell

SmellLocation

+getAddress()

CodeSmell

- type: String

- name: String

- pattern: String

TemplateStringSmell ConstSmell

SmellDetector

- astNode: AstNode

- agentList: List<ITaskAgent>

+analyseObjecsList() : void

+analyseAstNode() : void

+analyseNameNode() : void

+analyseObjectNode() : void

JsGuide

- smellDetector: SmellDetector

- report: ReportBuilder

+PerformAnalyses(List<ITaskAgent>

+Parse(String) : List<AstNode>

+generateReport(List<CodeSmell): v

br.edu.ufpel.jsguidecodesmell.impl

RegexSmell ConstSmell
...

ReportBuilder

- HTML: String

- tags : List<Node>

- name: String

+ buildHead()

+ processHTML()

+ generateReport()

Figure 35 – JSGuide class diagram.

detect and identify code smells. The class JGuide represents the executable (main)
from which the code is parsed, and the report is built. Moreover, the class SmellDetec-

tor is responsible for analyzing the AST nodes and validating the TaskAgents. Finally,
the classes inside the package "br.edu.ufpel.jsguidecodesmell.impl" represent specific
implementations to find particular code smells.

We designed the tool based on interface abstraction instead of concrete classes,
which enhances code modularity, extensibility, and maintainability. This implementa-
tion promotes loose coupling between components and allows for easier substitution
of implementations. Moreover, it enables developers to switch out implementations
without affecting the rest of the codebase, facilitating flexibility and adaptability.

79

4.2.1 JSGuide Results

The basic operating principle of JSGuide is to analyze the source code of the pro-
gram (static source analysis), looking for patterns compatible with the metrics estab-
lished in each task agent. When a pattern is identified, the location of that item is
recorded and later highlighted in the report.

Therefore, to validate JSGuide, we analyzed benchmark code extracted from The
Computer Language Benchmarks Game (CLBG) (THE COMPUTER LANGUAGE
BENCHMARKS GAME , 2023) and scripts used in our in-house embedded projects.
Listing 4.2 shows the code for the temperature reader.

1 import WiFi from "wifi";
2 import Analog from "pins/analog";
3 import { Request } from "http";
4 new WiFi(
5 {
6 ssid: "xxx",
7 password: "xxx",
8 },
9 function (status) {

10 if (status == WiFi.gotIP) {
11 // network is ready
12 let value = readTemp ();
13 sendData(value)
14 }
15 }
16);
17 function sendData(temp) {
18 let request = new Request ({
19 host: "api.thingspeak.com",
20 path: ‘/update?api_key=<HIDE >=${temp}‘,
21 response: String ,
22 });
23 request.callback = function (message , value , etc) {
24 if (Request.responseComplete == message) {
25 // go to sleep
26 sleep();
27 }
28 };
29 }
30 function readTemp () {
31 let readedValue = Analog.read (0);

80

32 return ((readedValue / 1024.0) * 3300) / 10;
33 }

Listing 4.2 – JavaScript temperature reader.

Listing4.2 shows the in-house code that performs periodic temperature readings
and sends them to the network. This example is interesting because it reads the sensor
data, sends it over the network, and then goes into the sleep mode. Putting the MCU
in idle mode is a typical strategy to save energy because it allows components such as
the modem, sensor, and other elements to be turned off, thereby conserving energy.
Figure 36 illustrates the report generated for this code.

Figure 36 – JSGuide: report example for Listing 4.2.

Figure 36 illustrates the produced report, which is built using HTML and CSS and
can be accessed via internet browser. The identified code smells are presented (lines
12, 20, and 31) and described to help the developer understand the issue and promote
refactoring. Listing 4.3 shows a benchmark code from CLBG.

1 const fs = require(’fs’);
2 function mainThread () {
3 const regExps = [
4 /agggtaaa|tttaccct/ig,
5 /[cgt]gggtaaa|tttaccc[acg]/ig,
6 /a[act]ggtaaa|tttacc[agt]t/ig,
7];
8 let data = fs.readFileSync(’/dev/stdin’, ’ascii’);

81

9 const initialLen = data.length;
10 data = data.replace (/^ >.*\n|\n/mg, ’’);
11 const cleanedLen = data.length;
12 for (let j = 0; j < regExps.length; j++) {
13 const re = regExps[j];
14 const m = data.match(re);
15 console.log(re.source , m ? m.length : 0);
16 }
17 const endLen = data
18 .replace (/tHa[Nt]/g, ’<4>’)
19 .replace (/aND|caN|Ha[DS]|WaS/g, ’<3>’)
20 .length;
21 console.log(‘\n${initialLen }\n${cleanedLen }\n${endLen}‘);
22 }
23 mainThread ();

Listing 4.3 – CLBG JavaScript exemple.

The benchmark represented in Listing 4.3 is not embedded code, but rather a
server-side script. However, the framework can be applied without restrictions, but
the results are considered based on its execution over the embedded domain. Figure
37 presents the detailed report.

Figure 37 – JSGuide: CLBG report example for Listing 4.3.

The second report highlights restrictions related to the use of regular expressions.
Overall, the framework worked as expected, but it required the developer’s judgement
regarding adopting suggestions and performing code refactoring.

Adopting these suggestions can lead to better code quality, affecting design-time
metrics such as readability, maintainability, and code reuse, as well as design-runtime

82

factors such as performance and energy consumption. Furthermore, the level of im-
provement may vary depending on the number of code smell occurrences. Therefore,
even if refactoring goes unnoticed in terms of general application performance, a minor
enhancement can still significantly impact resource-constrained devices.

4.3 Related work

Due to the origins of JavaScript, the majority of works found in the literature primar-
ily focus on guidelines for the web context. Therefore, we have selected works that
discuss guidelines associated with server-side or IoT applications.

Lóki.; Gál. (2018) investigated JavaScript performance issues in relation to EC-
MAScript 6 elements, comparing them with ECMAScript 5.1 variants in order to pro-
vide guidelines and optimizations. They analyzed multiple JS engines, ranging from
server to embeddable engines, and examined some legacy guidelines. The authors
emphasize the importance of using guidelines, although they note that the results for
embeddable JavaScript engines are inconclusive due to the engines not fully support-
ing the spectrum of ECMAScript 6. They recommend reviewing the guideline results
as they depend on the evolution of JavaScript engines.

Based on open-source projects, Liu (2019) propose a static analysis framework
called JSOptimizer. This framework performs analyses on JavaScript source code,
searching for nine performance issues and potential bugs. Additionally, the tool allows
for automatic code changes. The experiments were conducted on a desktop computer,
although the specific JavaScript engine used is not specified. The author reports an
improvement in speed of approximately 300

Fard; Mesbah (2013) presented a tool for detecting code smells in JavaScript. They
employed metric-based smell detection through static and dynamic analyses, and pro-
posed 13 JavaScript code smells. The empirical evaluation revealed that lazy objects,
long functions, closures, and coupling between JavaScript, HTML, CSS, and global
variables are the most prevalent code smells.

Given the context, JavaScript guidelines and code smells are relatively unexplored
in the IoT domain. Therefore, this work distinguishes itself by providing an extensi-
ble framework for analyzing JavaScript code, specifically targeting code smells and
optimization/bug entries within the embedded context. Additionally, we incorporate
guidelines based on the latest ECMAScript API.

4.4 Summary

This chapter discusses the use of guidelines to improve embedded software devel-
opment. In addition, the chapter also explains the methodology used to validate the

83

code smells through microbenchmarks and discusses the results, including execution
time, memory consumption, and energy consumption.

Furthermore, the text introduces JSGuide as a static code analysis tool for detecting
code smells in embedded software. It describes the tool’s architecture, which is based
on Java and the Mozilla Rhino framework. The tool uses a heuristic-based approach to
identify code smells and provides a report with suggestions for improving the software.

5 JSEVASYNC: A FRAMEWORK TO DEVELOP EMBEDDED
SOFTWARE USING ASYNCHRONOUS UNITS

IoT devices commonly operate using an event-driven model, where actions and
responses are determined by inputs and outputs (I/O) (KIM; JEONG; MOON, 2017).
Consequently, IoT devices are well-suited for event-driven programming, allowing em-
bedded programmers to develop applications following this paradigm. Therefore, cod-
ing programs using an event-driven model is a natural and fitting choice for IoT devices.

This chapter introduces a framework that assists developers in building embed-
ded software from an event-driven perspective, allowing actions to be performed asyn-
chronously. Furthermore, this approach is based on the JavaScript runtime execution
pipeline.

5.1 JSEVAsync Proposal

Commonly, on resource-constrained devices, the programs follow the Time-
Triggered (TT) architecture, in which algorithms are invoked periodically at specific
intervals (NAHAS; NAHHAS, 2012). In practice, the programs are structured in two
sections i) initialization/configuration and ii) while loop (polling); usually, they are writ-
ten using the C language (EBERT; JONES, 2009). Although this approach can be
seen as simple, the system always operates at full power, which might lead to signifi-
cant energy consumption (NAHAS; NAHHAS, 2012).

In contrast to the TT approach, the Event-Triggered (ET) architecture proposes
modeling algorithms for response events (NAHAS; NAHHAS, 2012). The events are
unpredictable and aperiodic. For instance, a click event of a physical button represents
a situation in which it is impossible to know when the event will happen. Neverthe-
less, the arrival of several events at the same time can cause overload and crashes
(SCHELER; SCHROEDER-PREIKSCHAT, 2006).

Considering the countless forms for architecting and developing embedded soft-
ware, we define the hypothesis that an alternative design that considers the main char-
acteristic of the target environment, specifically events for IoT, might be more energy-

85

efficient if integrated with a suitable programming language, even if it was not originally
designed for that environment.

Therefore, we propose a strategy that combines time- and event-triggered architec-
tures to build optimized applications focusing on energy saving. Energy consumption
has become a key issue in embedded systems (GERHORST et al., 2020) and consid-
ering a context based on events such as the Internet of Things, it would be natural to
develop applications in an event-driven model.

This section introduces JSEVAsync, a framework to help developers design appli-
cations for IoT devices using the JavaScript language that combines the best parts of
the TT and ET strategies. This approach uses JavaScript’s non-blocking concept as a
development interface to structure algorithms into asynchronous events.

JSEVAsync was designed as a discrete event-based model of computation. The
framework generates and processes events over time using a JavaScript virtual ma-
chine. We assume that functional requirements, I/O operations, and communication
actions could occur through events. Thus, the design of the application should follow
an event-triggered architecture. However, the framework must also be able to handle
multiple events. To address this, we introduce a time-triggered approach to ensure
correct event handling. It means we leverage the single-threaded nature of the call
stack, along with the combination of the callback queue and event loop mechanism, to
manage and handle multiple events. Figure 38 provides an overview of this approach.

Memory
heap

Call stack

cb cb cb

Ja
va

Sc
rip

t e
ng

in
e

Source code

Event 1

Event 2

Event N

...

Behavior

Detection

Handling

Event parts

Callback queue

JavaScript Environment

JSEVAsync

Event loop

Figure 38 – Overview of JSEVAsync.

Figure 38 illustrates the basic conceptual architecture of the JSEVAsync framework
and its integration with the JavaScript runtime environment. The system behavior is
modeled over an event-driven perspective. Therefore, algorithms must be designed
to split their concerns into fragments that can be executed and monitored individually.

86

Indeed, events are transformed into promises to be executed in the future. Once a
promise is resolved (finished), its result is associated with a function (callback function)
responsible for handling the result. Finally, the event loop pulls a callback into the call
stack to be processed.

The JavaScript runtime environment facilitates the integration and scheduling of all
events. Its conceptual principle of being single-threaded ensures that only one event
can be handled at a time. Based on this, events can be queued and processed through
the JS execution pipeline, optimizing the use of the CPU and saving energy.

Overall, the execution of the application follows the JavaScript runtime flow. This
methodology makes the ET architecture quite attractive because its execution model
allows us to create multiple events to implement functional requirements and delegate
their control to the JS virtual machine. In contrast, the single-thread strategy adopted
for the call stack is compatible with the TT strategy, ensuring that only one event is han-
dled at a time and supporting the handling of multiple events (the available hardware
resources determine the limit). This helps to ensure the predictability of the algorithms,
which is an important design requirement for embedded software (NAHAS; NAHHAS,
2012).

Once an event is detected, it needs to be handled. According to the previous dis-
cussion, the event is handled asynchronously. Thus, a callback function will be queued
to be processed in the call stack. In other words, the event loop fetches the events,
executes them, and may register new events into the queue.

For instance, suppose there is a sensor whose data needs to be sent to the server
periodically. The initial event registers a function to read the sensor. When the oper-
ation is completed, a trigger is fired containing the result. Finally, another callback is
registered to send the data over the network.

In order to use JSEVAsync, the concerns of the application need to be mapped
into events. Inspired by Rahman; Ozcelebi; Lukkien (2018)’s work, we created a set
of four events that represent common situations in IoT applications, namely: a) events
that repeat continuously, b) one-shot execution, c) events fired on demand, and d)
functions that repeat after a certain period. Figure 39 exposes the events type.

Each event can be used to cover specific system requirements, and its execu-
tion (behavior) is determined according to the event’s type. Thus, the developer must
choose which event best fits the application logic. In the following, we detail the pur-
pose of each kind of event mapped.

87

Looping

On demandOne-shot

Periodicallycb cb

Event loop

Call stack

(a)

(b) (c)

(d)

Callback queue

Figure 39 – Type of events.

• Looping: Represents a classic super loop logic. This event runs indefinitely
without delays, with each interaction encapsulated inside a promise.

• One-shot: Equivalent to a situation where the execution is required only once,
such as setting up hardware.

• On demand: This event represents a situation where actions must be performed
several times but not in constant or cyclic situations, such as sending data to the
server over the network. The task may not be deterministic, depending on the
application logic;

• Periodically: Similar to a looping event, but with a specified time interval in mil-
liseconds (delay) between each interaction.

To validate JSEVAsync, we applied the framework to build an IoT application. To
measure the effectiveness of the solution, we created two versions of the same appli-
cation - one using JavaScript and the other using the C language - and compared their
results. The application is an alarm system that monitors the environment and notifies
the user when motion is detected. Figure 40 provides an overview of the proposed
application.

Figure 40 demonstrates the requirements of the developed application. This sce-
nario requires the system to monitor the environment continuously, and if a violation
occurs, the device should notify the application server. Communication between the
device and server demands extra power; therefore, we simulated some violations per
test. Furthermore, each algorithm was deployed individually on the device, and the

88

MCU
Context Awareness

HC-SR
501

IoT Device

CJS

Cloud server

User notification

Figure 40 – Alarm System: Application flow.

data extraction was performed for eight minutes. Eight minutes is the limit of the am-
pere meter, considering the maximum sampling rate (100k per second). The server
side of this application will not be covered in this investigation, kipping the focus on the
embedded software. Figure 41 illustrates the experimental setup.

PPK
sampling speed

MCU

C

JS
Compile /
Firmware

Generation

Data
 Extraction

Deploy
Power meter

(a) (b) (c) (d)

Lizard

HC-SR
501 sensor 100 kS/s

Figure 41 – Alarm System: Experimental setup.

Figure 41 depicts an overview of the experiment setup. In section (a), the source
code is developed to maintain the same behavior in both algorithms. Furthermore,
this section represents the execution of static code analysis to obtain software qual-
ity metrics. For example, we use the Lizard tool (TERRY YIN, 2023) to collect the
Cyclomatic Complexity metric. Next, section (b) represents the code compilation
phase and firmware packaging. The C code is compiled using the Arduino IDE, while
the JavaScript program is processed, optimized, and compiled using the Moddable
toolchain. Subsequently, the application is sent to the device. Section (c) illustrates
the device setup and the application’s execution. We also emphasize the use of the
ThingSpeak service (JUNG et al., 2021) as a cloud server. Finally, section (d) de-
scribes the data collection and reporting of energy consumption.

89

5.2 JSEVAsync Validation

JSEVAsync introduces a novel approach to model algorithms as asynchronous
events. The key concept is to leverage the optimized consumption of resources pro-
moted by the event-driven strategy mixed with the JavaScript runtime to ensure proper
execution of the applications. Therefore, developers must split the application require-
ments into events and handle them as promises, which will be managed within the
JavaScript runtime pipeline.

As a proof of concept, we created an Alarm System using JSEVAsync and C lan-
guage and compared the results. Specifically, the proposed experiment required peri-
odic readings from a motion sensor. If a motion is detected, a local siren should ring,
and a message must be sent to the server. We chose the ESP32 and Raspbery Pi Pico
W as the MCU, Moddable SDK as the JavaScript engine and the HC-SR 501 sensor
(COMPONENTS INFO, 2023b) for motion detection. Listing 5.1 provides the key parts
of the C algorithm.

1 int sensorPin = 5;
2 // ...
3 void setup() { ... }
4

5 int sendDataToServer(float status) {
6 HTTPClient http;
7 String url = "thingspeak.com/<HIDE >& field1=" + String(status);
8 http.begin(url.c_str());
9 return http.GET();

10 }
11

12 void loop() {
13 if (WiFi.status () == WL_CONNECTED) {
14 int val = digitalRead(sensorPin);
15 digitalWrite(sirenPin , val);
16 if (val == HIGH) {
17 sendDataToServer(val);
18 }
19 //delay (1000);
20 }
21 }

Listing 5.1 – Alarm System implementation using C language.

Listing 5.1 represents the C implementation of the Alarm System. Some code frag-
ments (configuration and underlying functions) were removed to focus on the central
part of the code. This algorithm is a classic example of a super loop (NAHAS; NAH-

90

HAS, 2012). Although it sounds simple, its execution may consume more power be-
cause it always runs at full capacity. Moreover, it should be noted that the invocation
of the method “SendDataToServer” (line 17) could block the program because this
method performs actions that can be time-consuming and use I/O resources. Listing
5.2 shows the JavaScript version of the algorithm.

1 import { JSEVAsync } from "jsevasync";
2

3 const app = new JSEVAsync ();
4 app.setup(...);
5

6 app.addTask("sendToServer", (data) => {
7 let request = new Request ({
8 host: "api.thingspeak.com",
9 path: ‘/<HIDE >& field1=${data.value}‘,

10 });
11 });
12

13 app.createMonitor ({
14 pin: 5,
15 onChange: (context) => {
16 const value = this.read();
17 Digital.write(context.ledPin , !value);
18 app.invokeTask("sendToServer", { value });
19 },
20 });

Listing 5.2 – Alarm System implementation using JavaScript language.

Listing 5.2 represents the algorithm modeled through the JSEVAsync framework.
First, the program was coded following the object-oriented notation. The main object,
“app,” (line 3) refers to an instance of the JSEVAsync class, and from this reference,
the program is organized to meet the application requirements.

Except for the setup method (which has been removed), Listing 5.2 presents the
rest of the JavaScript program without deletions, demonstrating that the code is com-
pact, which simplifies understanding and future maintenance interventions.

In particular, we created a monitor to read the motion sensor signal (line 13). The
Monitor is a special class from the XS engine that can act as a listener for changes in
digital ports; in this case, port number 5. A monitor can detect changes in digital input
value (from 0 to 1 or 1 to 0) and trigger a specific callback.

The callback function (lines 15-19) was created to handle the event, and in line 18,
there is a nested call to the “sendToServer” event. This call represents the execution

91

of a chunk of code to perform an I/O operation that will be done asynchronously. In
other words, we want to run the function, but we do not know when it will occur. Thus,
this instruction represents the intention to act, which becomes a promise. The event
loop manages and executes the promise on the call stack, thereby preventing program
blocking.

In line 6, we created a promise to perform a request to the cloud server. This task
can be triggered manually and invoked several times. In addition, the method “addTask”
returns an object of the type Promise. Hence, it will only be processed if there is a
handler for success (resolve) and optionally for error (reject). This method also allows
task customization to perform repetitions and delays between executions. Listing 5.3
presents a simple example of a polling operation developed using JSEVAsync.

1 import { JSEVAsync } from "jsevasync";
2 const app = new JSEVAsync ();
3

4 app.addTask("blink", (data) => {
5 data.value = !data.value;
6 Digital.write(2, data.value);
7 },
8 {
9 repeat: true ,

10 delay: 1000
11 }
12 });

Listing 5.3 – JavaScript blink example created using JSEVAsync.

Listing 5.3 illustrates an implementation example of a task that repeats indefinitely.
Specifically, this snippet represents an infinite LED blink; line 9 sets the loop mode,
and line 10 determines the delay (in milliseconds) between executions. This algorithm
is interesting because it demonstrates how to model a program using a polling strategy
with JSEvAsync (periodic event type). Behind the code, JavaScript can check whether
the event loop has anything to do, and if not, it can enter idle mode and consequently
reduce the frequency of operation, thereby saving energy.

5.2.1 Code Quality Analysis

Regarding the design-time metrics of the source code, using the JavaScript lan-
guage to code embedded software can increase the abstraction level and improve
readability, maintainability, and reusability of the source code. Figure 42 lists the code
quality metrics.

In an empirical analysis comparing algorithms, a programmer can classify them as
equivalent in terms of complexity. However, this perception is based on the number

92

0

10

20

30

40

50

NLoc Token Funct. count

C JS

0,0

0,5

1,0

1,5

2,0

2,5

CNN

C JS

Figure 42 – Alarm System: cyclomatic complexity analysis.

of code lines, which may not be an adequate metric, especially when comparing dis-
tinct languages. Thus, the use of tools to measure the complexity level of programs
is essential. Moreover, the use of cyclomatic complexity as a design and develop-
ment guideline can lead to more efficient and reliable software for embedded systems
(EBERT et al., 2016). Table 11 shows the Halstead metrics extracted from the Alarm
System algorithms.

Table 11 – Alarm System: Halstead metrics.

Metric C JavaScript

Program length 382 270
Program vocabulary 66 51
Estimated length 340.52 250.93
Purity ratio 0.89 0.93
Volume 2308.96 1531.55
Difficulty 56.52 26.12
Program effort 130,506.35 40,011.87
Time to program (h) 2.10 1.01

The Halstead metrics achieve similar results to previous analysis. JavaScript, in
terms of code quality, performed better than C code. Thus, this reinforces the notion
that interpreted languages can have a simpler syntax that favors activities related to
post-development.

5.2.2 Resource Consumption Analysis

To measure resource consumption, we emulated violations to force data transfer to
the server. These violations were established to occur every 20 seconds, resulting in a
total of 25 transfers during the experiment.

Energy consumption represents all the energy expended by the microcontroller
since its initialization, connection to the Wi-Fi network, and data transfer. Table 12

93

provides a detailed comparison between the algorithms.

Table 12 – Alarm System: Energy consumption by language.

Language Avg. Curr. (mA) Max Curr. (mA) Energy (mJ)

C 90.77 550 12.61
JS 69.21 580 9.68

% -31.15 3.85 -30.18

Table 12 presents the comparison between the algorithms. JavaScript is considered
better than C when the percentage value is negative (i.e., it reduces energy consump-
tion), and vice versa when it is positive. The JS algorithm could save 30.18% of the
energy required for this experiment, which required constant monitoring of the environ-
ment.

To understand the gain, we need to reflect on the Time-triggered architecture. From
Listing 5.1, the loop method promotes intense CPU usage. In particular, the code
performs reading and writing to a digital port to check for changes. In contrast, the
JavaScript strategy uses the ET approach. The event is triggered based on built-in
hardware that detects the change and generates an interrupt.

Naturally, a hardware interrupt would be more efficient than a polling strategy (soft-
ware). However, if this feature is native to the microcontroller, could it be implemented
in the C algorithm? The answer is yes. However, implementing a listener in a non-
event-driven language is complex and requires a high level of domain knowledge.
Moreover, it increases the code volume, negatively impacts maintenance, makes reuse
difficult, and increases the overall footprint. Nevertheless, in order to compare the de-
velopment styles, we proceeded with changes to the C algorithm to use interrupts
instead of polling. Listing 5.4 show part of the algorithm implementation and Table 13
presents the results.

1 int sensorPin = 5;
2 // ...
3 void setup() {
4 ...
5 attachInterrupt(digitalPinToInterrupt(sensorPin),

checkSensorData , CHANGE);
6 }
7

8 void checkSensorData (){
9 if (WiFi.status () == WL_CONNECTED) {

10 int val = digitalRead(sensorPin);
11 digitalWrite(sirenPin , val);
12 if (val == HIGH) {

94

13 sendDataToServer(val);
14 }
15 }
16 }
17

18 int sendDataToServer(float status) {
19 HTTPClient http;
20 String url = "thingspeak.com/<HIDE >& field1=" + String(status);
21 http.begin(url.c_str());
22 return http.GET();
23 }
24

25 void loop() {}

Listing 5.4 – Alarm System implementation using C language and interrupt approach.

The algorithm using interrupts may give the impression of simplicity; however, this
perception arises because there are no actions running in the loop method. If other
routines were present, the interrupt would require additional controls to manage the
flow of execution between the interrupt and the loop. Thus, this can make the mainte-
nance and evolution of applications more challenging.

Table 13 – Alarm System: Energy consumption by language using hardware interrupt.

Language Avg. Current (mA) Max Current (mA) Energy (mJ)

C 71.44 540 10.02
JS 69.21 580 9.68

% -3.12 -3.39

JavaScript still saves energy, but the difference is minimal. The interrupt implemen-
tation in the C language was based on the native method called “attachInterrupt,” using
variables to control events and triggers. Overall, the interrupt strategy in both scenarios
can save energy compared to the polling strategy. However, the analysis demonstrated
that the Monitor class from Moddable can be an even more efficient solution.

To verify whether excessive consumption by the C algorithm is determined by the
number of readings and writings, we introduced a delay function (specifically on line 19
of Listing 5.1). We then repeated the tests, and the results are listed in Table 14. In
adition, Figure 43 show the results comparing all the implementations.

As shown in Table 14, JavaScript remained the most energy efficient. It is impor-
tant to note that the delay was inserted only in Algorithm C. The delay function helps
reduce the energy consumption. Therefore, can we conclude that this function saves
energy? No, introducing the delay instruction minimizes the number of sensor read-
ings and writings, and this action effectively reduces consumption. However, when the

95

Table 14 – Alarm System: Energy consumption by language with delay.

Language Avg. Current (mA) Max Current (mA) Energy (mJ)

C 72.03 540 10.07
JS 69.21 580 9.68

% -4.07 -4.02

algorithm is in a delayed state, the code still runs to check the remaining delay time,
and therefore, still consumes energy.

E
ne

rg
y

(m
J)

0

5

10

15

C Algorithm C Algorithm (delay) C Algorithm
(interrupt)

JavaScript
(JSEVAsync)

Figure 43 – Alarm System: Energy consumption by implementation.

Regarding memory consumption, the ESP32 has 520 kB of RAM, with 200 kB
reserved for instructions and 320 kB available for application use. Table 15 displays
the amount of memory used by each language.

Table 15 – Alarm System: Memory consumption (kB).

Language Memory used Free memory Available memory Footprint

C 61.90 258.84 320.75 834.93
JS 65.12 100.76 165.87 919.46

% 4.93 9.19

Memory consumption was balanced, with a difference of only 4.95% in favor of
the C language. This measurement evaluates the consumption of the entire device,
including the overhead of the JavaScript virtual machine. In addition, the total amount
of memory differs between languages, with the C language utilizing all available space,
whereas JavaScript maps a smaller amount of memory. Mapping less memory allows
for smaller indices in the indexing tables that map data from ROM to RAM, which is
XS’s strategy for saving RAM. However, the specific consumption of the algorithm was
minimal. By default, XS sets a limit of 32 kB for application use, and in this example,
the algorithm consumed only 812 bytes from this limit.

96

Given the nature of this algorithm, which reacts based on the value read from a
sensor, we also assessed the time taken to perform the effective reading of the sensor
and send data over the network. However, this measure is not precise because the
overhead of the Internet can influence the results. Nonetheless, it provided interesting
insights. The average time for Algorithm C was 1430 ms, while JavaScript took 282
ms. These numbers highlight a significant difference, which occurs because JavaScript
does not wait until the networking operation finishes; thus, the time basically represents
the sensor reading. However, it is possible to wait for the end of the data transfer, in
which case the average time for JavaScript was 2320 ms.

Finally, the results reaffirm that the event-driven approach is energy-efficient. How-
ever, the execution time and memory consumption are still not as good as those of
compiled languages. Nevertheless, they are close, and considering the advantages of
working with an interpreted language, this difference may not be significant. Of course,
it depends on the characteristics of the application, such as response time, reliabil-
ity, size, cost and hardware. Therefore, JavaScript can be a viable alternative for IoT
applications.

5.3 Related work

Developing an embedded system is not a trivial task. Therefore, we have selected
works that focus on Event-triggered (ET) and Time-triggered (TT) approaches related
to the Internet of Things (IoT) or provide comparisons between them.

Ayestaran et al. (2014) present a platform-specific time-triggered model (PS-TTM),
which is a systems-based modeling approach founded on time-triggered architecture.
This approach facilitates the modeling of Time-Triggered Architecture for embedded
systems. The authors validate their framework through a case study that involves
modeling, simulation, and validation of a simplified railway onboard signaling system.

In a comparative study between Event-triggered and Time-triggered architectures,
Thaker; Babu (2017) explore the main features of each approach, implement a safety-
critical real-time prototype, and propose a TT design pattern using a Real-Time Oper-
ating System (RTOS).

In their research, Wang et al. (2017) explore asynchronous events for establish-
ing communication between virtual machines in the context of embedded systems.
They introduce a model for asynchronous communication using OKL4 technology. The
proposed mechanism allows concurrent communication by adopting event channels,
making their experiment feasible and effective.

Addressing the event triggering approach for IoT applications, Kolios et al. (2016)
characterize the Event-triggered (ET) architecture in the IoT domain, considering be-
havior modeling, event detection, and event handling. As a result, the authors propose

97

a data-driven technique and compare it with existing periodic methods.
Given the context, it is worth noting that researchers have been investigating the use

of both TT and ET architectures in embedded systems. Thus, this study distinguishes
itself by providing an approach that combines ET and TT architecture styles, leveraging
the features of the JavaScript language, with a specific focus on energy efficiency.

5.4 Summary

This chapter introduces JSEVAsync, a framework that helps developers build em-
bedded software from an event-driven perspective using the JavaScript language. The
framework combines the time-triggered and event-triggered architectures to optimize
energy consumption in IoT applications.

Furthermore, JSEVAsync uses JavaScript’s non-blocking concept and asyn-
chronous event handling. The framework conduct the developers to model software
inspired by the JavaScript runtime execution model. Moreover, the text also presents
a validation of JSEVAsync by comparing it with a C language implementation in an IoT
alarm system application. The JavaScript implementation using JSEVAsync is more
compact and provides asynchronous execution, improving energy efficiency.

6 DISCUSSIONS

This chapter is dedicated to discussions and reflections about the research results,
serving as a critical component of the thesis. In addition, we thoroughly examine and
provide a comprehensive analysis and interpretation of the research findings. Finally,
we explore the implications and significance of the results of the research objectives
and questions.

Developing applications for heterogeneous contexts like IoT, while challenging,
requires a simple programming model to be feasible (KRISHNAMURTHY; MAH-
ESWARAN, 2016). Also, the advancements in virtual machines such as Espruino and
XS make JS a viable option for programming constrained devices.

We started our experiments using the Espruino engine because it was the first
engine found in the literature review that met our expectations of running JavaScript on
resource-constrained devices. However, during the literature review update, we came
across a paper by Grunert (2020) that presented the XS engine. Henceforward, we
started to use the XS engine as our official virtual machine to validate JavaScript in the
IoT context.

Our experiments have demonstrated the practical superiority of the XS engine. It
excels by consuming fewer resources, resulting in lower overhead. Moreover, XS dis-
tinguishes itself by providing extensive coverage of the latest JavaScript API, making
it a comprehensive and feature-rich development environment. It offers a robust set of
tools, libraries, and APIs that enable developers to build sophisticated applications with
ease.

One of the most valuable advantages of using JavaScript to code embedded soft-
ware is the possibility of abstracting architectures and providing generic access to dif-
ferent technologies. For example, when we use the C language to obtain technical
performance data, such as the amount of available memory, we must use the API pro-
vided by the microcontroller manufacturer. In the case of ESP8266 and ESP32, this is
the ESP-IDF API. However, JavaScript can abstract this control and make it transparent
to developers; therefore, they only need to know the performance API.

The quality of the software is crucial for embedded systems, especially when ap-

99

plied to an interpreted language, as it can be decisive for its adoption. Furthermore,
considering that there is a direct relationship between the quality of the code, resource
consumption, and performance, it is essential to build software with consideration for
the best resource consumption (OLIVEIRA et al., 2008a; PAPADOPOULOS et al.,
2018). Thus, the guidelines produced can be useful in this regard.

In this context, code smells can be used as indicators of source code quality, mean-
ing that low-quality codes can directly affect maintenance efforts (YAMASHITA, 2013;
BOGNER; MERKEL, 2022). At the same time, detecting and removing code smells can
prevent errors (EMDEN; MOONEN, 2012). Therefore, we can affirm that the results of
code smell analyzes can be used to suggest a guide for best practices to improve
code quality in an embedded software context. Furthermore, its adoption can have an
impact on resource consumption and mainly contribute for the design-time metrics.

Nonetheless, it should be noted that our approach to detecting code smells consid-
ers only static code analysis and therefore corresponds to only a part of the develop-
ment process or application execution cycle. Indeed, the behavior of the code should
also be evaluated through dynamic analysis. However, considering our study scenario,
which involves an embedded context, such analysis becomes more complex because
algorithms may interact with sensors, actuators, networks, and other elements that are
not available at the time of design. Thus, evaluating the code from this perspective
remains a challenge in the context of embedded systems and may represent possible
future work efforts.

Another potential improvement that we envision for JSGuide is the inclusion of es-
timated values regarding the cost of adopting specific techniques/recommendation. In
addition to providing a description of the reported “problem” or situation, the tool could
estimate the impact in terms of memory consumption, energy usage, or execution time.
Providing concrete figures, such as stating that a certain piece of code can increase
memory consumption by X%, would be more impactful than simply mentioning that it
may consume more memory. This enhancement would provide developers with more
valuable insights into the potential consequences of adopting certain coding practices.

After conducting studies and investigations, a question that may still be unclear is:
How can JavaScript save more energy than C, considering that JS is an interpreted
language? To answer this question, we need to understand the JavaScript execution
model proposed by Moddable.

Considering that constrained devices typically have less RAM than ROM, with
some devices having only a few kilobytes of RAM while ROM can be in the order
of megabytes, Moddable adopts a strategy that prioritizes executing ECMAScript code
from ROM rather than RAM. Moreover, the XS engine implements various techniques
for reducing the required ROM footprint. As a result, when the application starts, the
embedded device boots instantaneously as everything is already prepared. Further-

100

more, since nothing is copied from ROM to RAM, the application runs efficiently in just
a few kilobytes of memory.

Some studies, such as Wolf; Kandemir (2003); Verma; Marwedel (2007); Oliveira;
Mattos; Brisolara (2013); Hennessy; Patterson (2017), have suggested that excessive
power consumption may be attributed to memory usage. Therefore, reducing the mem-
ory usage can contribute to energy savings. In addition, the XS engine minimizes the
amount of RAM required, which can result in lower power consumption.

Furthermore, JavaScript improves the design-time aspects of algorithms, such as
readability, code reuse, and maintainability. Hence, JS can increase developer produc-
tivity due to its platform-independent syntax and higher level of abstraction.

Life is not a bed of roses, and JavaScript is no exception. JavaScript has its draw-
backs, commonly associated with the concept known as “JavaScript hell.” This term
refers to the challenges and complexities that developers may encounter when working
with JavaScript, especially in large and complex codebases (TAIVALSAARI; MIKKO-
NEN, 2017).

One aspect of JavaScript hell is its loosely typed nature, which can lead to unex-
pected behavior and bugs. Without the strict type checking found in other languages,
it becomes easier to introduce errors during development and more difficult to identify
them. This can result in time-consuming debugging and troubleshooting processes. To
mitigate the negative impact of JavaScript hell and improve the development experi-
ence, developers can use tools and frameworks to assist themselves. In this regard,
JSEVAsync can be a useful tool to enhance the development experience.

JSEVAsync provides a powerful framework that addresses some of the challenges
associated with JavaScript’s asynchronous nature, particularly in handling callbacks
and managing asynchronous operations. This framework introduces a more stream-
lined and structured approach for managing asynchronous tasks.

One of the key features of JSEVAsync is its utilization of promises. Promises
provide a way to handle asynchronous operations and simplify the flow of code.
JSEVAsync leverages promises to manage callbacks and handle asynchronous tasks
in a more organized and readable manner. By leveraging the JavaScript runtime model,
developers can chain asynchronous operations together and handle errors more effec-
tively, resulting in cleaner and more maintainable code.

In our case study, we used an alarm system as the basis for comparison, where we
implemented the business rules using a polling algorithm in C. While this may not be
the most appropriate comparison, polling is commonly used as a reference for docu-
mentation on interactions between components that communicate through digital ports.
For example, in Arduino’s reference base, polling is presented as the default approach.

However, when we applied interrupts in the C algorithm, we reduced the differ-
ence in power consumption. However, additional variable declarations were necessary

101

to control the application state and ensure the correct functioning of the algorithm.
Therefore, we reiterate that JavaScript provides a standardized development approach
without the need to create additional structures to implement business rules.

However, it is important to highlight that we have currently mapped four types of
events for JSEVAsync, which align well with our experiment. However, for other real-
world applications, new event types may need to be created. Therefore, the framework
still requires further development to cover a broader range of scenarios, including dif-
ferent sensors and actuators, while respecting their specificities and requirements.

In previous work (OLIVEIRA; PARIZI; MATTOS, 2022), we discovered a scenario
in which JavaScript did not perform well, although it proved to be efficient in executing
algorithms. In a scenario with limited battery power, strategies are adopted to reduce
energy consumption, with deep sleep being particularly notable. However, we identified
that JavaScript consumes much more time and energy to initialize and reconnect to the
Wi-Fi network when the device returns from deep sleep mode. Therefore, the language
may not be the most suitable choice for this specific scenario. However, it is worth
noting that it is possible to utilize native functions for specific situations. Thus, it is
possible to devise a mechanism to minimize the adverse effects of this problem and
maintain JavaScript as a viable alternative.

Finally, one of the key benefits of using JavaScript on resource-constrained devices
is its ease of use and familiar syntax for developers who are already familiar with Web
development. This allows for the faster development and prototyping of applications
for IoT devices. However, some libraries used by developers may not be compatible
with embedded devices, either because they require a lot of resources or because they
were built based on components that are not available on the devices. For instance,
components that use scheduling resources native to the Node.js platform are unavail-
able for embedded development.

7 CONCLUSIONS AND FUTURE WORK

This study analyzed the use of an interpreted language as an alternative to the
C language for coding embedded software for IoT devices, particularly on resource-
constrained devices. We proposed improvements to reduce the performance gap be-
tween compiled and interpreted languages, and developed a framework to help em-
bedded programmers model software through asynchronous units.

We initiated the discussion assuming that interpreted languages could bring any
benefits to embedded software development. After conducting research and exper-
imentation, we were able to measure the potential of the JavaScript language from
both design-time and runtime perspectives.

Therefore, answering the research question: Can an interpreted language be used

to develop high-quality embedded software for devices with limited resources? - Yes, it
is feasible. However, there are some reservations about this topic.

First, IoT solutions are not as simple as we initially proposed. Nevertheless, the
examples provided represents common scenarios for IoT applications. Furthermore,
due to the hardware restrictions of many IoT devices, the majority of applications are
not critical and usually involve simple activities such as sensing.

For those applications that are critical, JS is still an alternative. To address
performance-critical code, the JavaScript, through the XS engine, allows for native
code invocation. Therefore, working with JS does not necessarily imply compromis-
ing – native code is always an option. The compromise is choosing to work only in a
compiled language like C, where the benefits of JavaScript cannot be available.

our experiment demonstrated that JavaScript could enhance code reuse and enable
the building of standard components. For instance, in automation systems that need
to consider various hardware sensors and actuators, JavaScript provides the basic
infrastructure necessary to create solutions, frameworks, and libraries to integrate all
of them, thereby improving the developer experience.

Second, we can conclude that performance is strongly related to code quality and
the virtual machine. While the algorithm itself has a significant contribution to how the
application performs, it is the VM that translates it to machine language. Therefore, the

103

application’s performance depends on how optimized the engines are. Thus, program-
ming for IoT devices is not a trivial task, and we need to find a balance between the
development, execution, and resource consumption.

In this study, we used two virtual machines: Espruino and Moddable XS. Moddable
XS is the preferred option due to its superior performance and coverage of ECMA
specifications. While Espruino is a useful option for embedded development, it can add
a significant overhead, and its ECMA conformance may limit algorithmic capabilities.

Interpreted languages like JavaScript can be used to develop embedded software,
as long as they are supported by appropriate tools that assist in development and guide
programmers in creating solutions suitable for the specific context in which they will be
applied. This thesis contributes two tools: JSGuide and JSEVAsync.

Although JSGuide is a helpful tool for developers to evaluate code quality and im-
prove their coding skills, it is up to the developer to decide whether to adopt the sugges-
tions offered by JSGuide and refactor their code. Moreover, the knowledge provided
by JSGuide can help reduce technical gaps caused by a lack of experience and aid in
the decision-making process to improve the algorithm’s efficiency.

Regarding energy consumption, the event-driven approach proves to be suitable
for saving energy. The JSEVAsync framework proposes a mechanism that combines
the usual time-triggered style adopted in real-time systems with the event-triggered
approach. As a result, algorithms can be written to be more energy-efficient. Moreover,
code readability is improved by adopting JSON notation to describe the event, and the
object-oriented paradigm enhances the algorithm, making it more intuitive and clear.

Introducing interpreted languages to the IoT context represents the unification of the
programming language, enabling the use of the same programming language across
the web, server, mobile, and IoT. It simplifies and standardizes the development of
applications, positively implying a more favorable environment for interoperability and
becoming the basis of the cross-platform development environment.

Finally, for all that, enabling high-level language to code IoT devices can con-
tribute to programmable capabilities, increase abstraction level, and code reuse. Con-
sequently, it can be helpful to attend to the software requirements. Therefore, the
JavaScript language can be suggest as good alternative to code resource-contrained
devices.

104

7.1 Future Work

The interpreted languages have been used in several domains. However, most of
them were not designed for embedded contexts. Therefore, their structures, API, and
underlying tools may not be optimized for use in limited environments. Accordingly,
there are many open questions regarding the use of interpreted languages in the IoT
domain, especially for resource-constrained devices. Thus, we propose the following
directions for future investigation:

• Exploring new use cases: As JavaScript has proven to be feasible on con-
strained devices, we could suggest, as future work, exploring new use cases
and developing new applications that leverage the unique features of constrained
devices and the diversity of embedded software requirements.

• Security and privacy: Security and privacy are always important considerations
when developing software, but they become even more critical when working with
embedded systems that may have to cope with personal data. Thus, we could
suggest developing/studying techniques to guarantee the security and integrity of
users’ data that should be transferred between application layers.

• Dynamic code analysis: Exploring the use of dynamic code analysis tech-
niques, such as runtime profiling and tracing, to capture execution information
such as method invocations, parameter values, and data flow. This information
can be used to identify patterns or anomalies that may indicate the presence of
code smells.

• Refactoring: Based on JSGuide results, which provide valuable suggestions for
code improvements, we could suggest the development of a tool that can an-
alyze the source code and apply appropriate refactoring techniques based on
detected code smells. This tool would assist developers in automatically refac-
toring their code, simplifying the process and ensuring consistent and effective
improvements.

105

7.2 Publications

Throughout the research development, we have been concerned about publishing
the partial work’s results so that other researchers could evaluate and contribute to our
research. Thus, the following papers were published during the doctoral program:

• State-of-the-Art Javascript Language for Internet of Things. In IX Brazilian Sym-
posium on Computing Systems Engineering (SBESC) (OLIVEIRA; MATTOS,
2019)

• Webassembly: Uma Estratégia Para Melhorar O Desempenho Da Aplicação
JavaScript Em Ambientes IoT. In Anais 6 Semana Integrada UFPel (SIIEPE) /
Encontro de Pós-Graduação (XXII ENPOS) (OLIVEIRA; MATTOS, 2020b)

• Analysis of WebAssembly as a Strategy to Improve JavaScript Performance on
IoT Environments. In X Brazilian Symposium on Computing Systems Engineer-
ing (SBESC) (OLIVEIRA; MATTOS, 2020c)

• Improving Developer Productivity on Internet of Things using JavaScript. In Pro-
ceedings of the 7th International Conference on Internet of Things, Big Data and
Security (IoTBDS) (OLIVEIRA; PARIZI; MATTOS, 2022)

• Towards Event-driven Context: JavaScript an Energy-efficient Language for the
Internet of Things. P.h.D Forum of Embedded System Week 2022 (ESWEEK,
2022)

• JSGuide: A Tool to Improve JavaScript Algorithms Focusing on IoT Devices. In
Symposium on Internet of Things (SIoT) (OLIVEIRA; MATTOS, 2022a)

• JSEVAsync: An Asynchronous Event-based Framework to Energy Saving on
IoT Devices. In XII Brazilian Symposium on Computing Systems Engineering
(SBESC) (OLIVEIRA; MATTOS, 2022b)

• A Hybrid Approach to Design Embedded Software Using JavaScript’s Non-
blocking Principle. In Student Research Abstract of 38th Symposium on Applied
Computing - (OLIVEIRA, 2023)

This work was awarded as one of the three best works in the Physical Sciences
and Mathematics category at the Integrated Week of Innovation, Education, Research,
and Extension (SIIEPE) 2020, promoted by the Federal University of Pelotas in Brazil.
Furthermore, it was also considered as one of the four best works in the student ab-
stract category at The 38th ACM/SIGAPP Symposium on Applied Computing, held in
Tallinn, Estonia in 2023.

REFERENCES

The Computer Language Benchmarks Game . The Computer Language Bench-
marks Game. Accressed: Mar. 2023, https://benchmarksgame-team.pages.debian.
net/benchmarksgame/index.html.

ABDULSATTAR, K.; AL-OMARY, A. Pervasive Computing Paradigm: A Survey. In: IN-
TERNATIONAL CONFERENCE ON DATA ANALYTICS FOR BUSINESS AND INDUS-
TRY: WAY TOWARDS A SUSTAINABLE ECONOMY (ICDABI), 2020., 2020. Anais. . .
[S.l.: s.n.], 2020. p.1–5.

AL-FUQAHA, A. et al. Internet of Things: A Survey on Enabling Technologies, Pro-
tocols, and Applications. IEEE Communications Surveys Tutorials, [S.l.], v.17, n.4,
p.2347–2376, 2015.

ALOSEEL, A.; HE, H.; SHAW, C.; KHAN, M. A. Analytical Review of Cybersecurity for
Embedded Systems. IEEE Access, [S.l.], v.9, p.961–982, 2021.

ANDREASEN, E. et al. A Survey of Dynamic Analysis and Test Generation for
JavaScript. ACM Comput. Surv., New York, NY, USA, v.50, n.5, sep 2017.

Apple JavaScriptCore. JavaScriptCore: Apple Developer Documentation. Accessed:
Mar. 2023, https://developer.apple.com/documentation/javascriptcore.

ASHTON, K. et al. That ‘internet of things’ thing. RFID journal, [S.l.], v.22, n.7, p.97–
114, 2009.

ÅSRUD, M. A Programming Language for the Internet of Things. 2017. Dissertação
(Mestrado em Ciência da Computação) — University of Oslo, Institutt for informatikk.

ATZORI, L.; IERA, A.; MORABITO, G. The internet of things: A survey. Computer
networks, [S.l.], v.54, n.15, p.2787–2805, 2010.

AYESTARAN, I. et al. A novel modeling framework for time-triggered safety-critical
embedded systems. In: FORUM ON SPECIFICATION AND DESIGN LANGUAGES
(FDL), 2014., 2014. Proceedings. . . [S.l.: s.n.], 2014. v.978-2-9530504-9-3, p.1–8.

https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://developer.apple.com/documentation/javascriptcore

107

AZIZ, M. W.; ULLAH, N.; RASHID, M. A Process Model for Service-Oriented Devel-
opment of Embedded Software Systems. IT Professional, [S.l.], v.23, n.5, p.44–49,
2021.

BABA-CHEIKH, Z. et al. A Preliminary Study of Open-Source IoT Development Frame-
works. In: IEEE/ACM 42ND INTERNATIONAL CONFERENCE ON SOFTWARE EN-
GINEERING WORKSHOPS, 2020, New York, NY, USA. Proceedings. . . Association
for Computing Machinery, 2020. p.679–686. (ICSEW’20).

BACCELLI, E. et al. Reprogramming Low-end IoT Devices from the Cloud. In: CLOUD-
IFICATION OF THE INTERNET OF THINGS (CIOT), 2018., 2018. Anais. . . [S.l.: s.n.],
2018. p.1–6.

BAHETI, R.; GILL, H. Cyber-physical systems. The impact of control technology,
[S.l.], v.12, n.1, p.161–166, 2011.

BAK, N.; CHANG, B.-M.; CHOI, K. Smart Block: A Visual Programming Environment
for SmartThings. In: IEEE 42ND ANNUAL COMPUTER SOFTWARE AND APPLI-
CATIONS CONFERENCE (COMPSAC), 2018., 2018. Anais. . . [S.l.: s.n.], 2018. v.2,
p.32–37.

BARKALOV, A.; TITARENKO, L.; MAZURKIEWICZ, M. Foundations of embedded
systems. [S.l.]: Springer, 2019.

BHATTACHARYA, P.; NEAMTIU, I. Assessing programming language impact on de-
velopment and maintenance: A study on C and C++. In: INTERNATIONAL CON-
FERENCE ON SOFTWARE ENGINEERING (ICSE), 2011., 2011. Anais. . . [S.l.: s.n.],
2011. p.171–180.

BOGNER, J.; MERKEL, M. To Type or Not to Type? A Systematic Comparison of the
Software Quality of JavaScript and TypeScript Applications on GitHub. In: IEEE/ACM
19TH INTERNATIONAL CONFERENCE ON MINING SOFTWARE REPOSITORIES
(MSR), 2022., 2022. Anais. . . [S.l.: s.n.], 2022. p.658–669.

BRISOLARA, L.; MATTOS, J. Desafios no Projeto de Sistemas Embarcados.
[S.l.: s.n.], 2009. p.153–175.

BYMA, S.; LARUS, J. R. Detailed heap profiling. In: ACM SIGPLAN INTERNATIONAL
SYMPOSIUM ON MEMORY MANAGEMENT, 2018., 2018. Proceedings. . . [S.l.: s.n.],
2018. p.1–13.

CACCIAGRANO, D.; CULMONE, R. IRON: Reliable domain specific language for pro-
gramming IoT devices. Internet of Things, [S.l.], v.9, p.100020, 2020.

108

CHO, S. Y.; DELGADO, R.; CHOI, B. W. Feasibility Study for a Python-Based Embed-
ded Real-Time Control System. Electronics, [S.l.], v.12, n.6, p.1426, Mar. 2023.

CLAUSEN, L. R.; SCHULTZ, U. P.; CONSEL, C.; MULLER, G. Java Bytecode Com-
pression for Low-End Embedded Systems. ACM Trans. Program. Lang. Syst., New
York, NY, USA, v.22, n.3, p.471–489, may 2000.

Components Info. FS1000A 433MHZ RF transmitter. Ac-
cessed: Mar. 2023, https://www.componentsinfo.com/
fs1000a-433mhz-rf-transmitter-xy-mk-5v-receiver-module-explanation-pinout/.

Components Info. HC-SR 501 sensor. Accessed: Mar. 2023, https://www.
componentsinfo.com/hc-sr501-module-pinout-datasheet.

CROCKFORD, D. JavaScript: The Good Parts: The Good Parts. [S.l.]: " O’Reilly
Media, Inc.", 2008.

Duktape. Duktape JavaScript Engine. Accessed: Mar. 2023, https://duktape.org.

EBERT, C.; JONES, C. Embedded software: Facts, figures, and future. Computer,
[S.l.], v.42, n.4, p.42–52, 2009.

EBERT, C. et al. Cyclomatic Complexity. IEEE Software, [S.l.], v.33, n.6, p.27–29,
2016.

Eclipse Foundation. IoT Developer Survey 2020. Accessed: May 2021, https://
outreach.eclipse.foundation/eclipse-iot-developer-survey-2020.

Ecma International. Standard definition of the ECMAScript 2021. Accessed:
Mar. 2023, https://www.ecma-international.org/publications-and-standards/
standards/ecma-262.

ECMA International: Technical Committee 53 . ECMA-419: ECMAScript for Embedded
Systems API specification. Accessed: Mar. 2023, https://419.ecma-international.
org/.

EMDEN, E. van; MOONEN, L. Assuring software quality by code smell detection.
In: WORKING CONFERENCE ON REVERSE ENGINEERING, 2012., 2012. Anais. . .
[S.l.: s.n.], 2012. p.xix–xix.

ESP8266 NoDEMCU-12E. Espressif Official Documentation. Accessed: Mar. 2023,
https://www.espressif.com/en/support/documents/technical-documents.

Espressif Systems. ESP32 Series Datasheet. Accessed: Mar. 2023, https://www.
espressif.com/.

%20https://www.componentsinfo.com/fs1000a-433mhz-rf-transmitter-xy-mk-5v-receiver-module-explanation-pinout/%20
%20https://www.componentsinfo.com/fs1000a-433mhz-rf-transmitter-xy-mk-5v-receiver-module-explanation-pinout/%20
https://www.componentsinfo.com/hc-sr501-module-pinout-datasheet
https://www.componentsinfo.com/hc-sr501-module-pinout-datasheet
https://duktape.org
https://outreach.eclipse.foundation/eclipse-iot-developer-survey-2020
https://outreach.eclipse.foundation/eclipse-iot-developer-survey-2020
https://www.ecma-international.org/publications-and-standards/standards/ecma-262
https://www.ecma-international.org/publications-and-standards/standards/ecma-262
https://419.ecma-international.org/
https://419.ecma-international.org/
https://www.espressif.com/en/support/documents/technical-documents
https://www.espressif.com/
https://www.espressif.com/

109

Espruino. JavaScript Interpreter for Microcontrollers. Accessed: Mar. 2023, https:
//www.espruino.com.

ETEROVIC, T. et al. An Internet of Things visual domain specific modeling language
based on UML. In: XXV INTERNATIONAL CONFERENCE ON INFORMATION, COM-
MUNICATION AND AUTOMATION TECHNOLOGIES (ICAT), 2015., 2015. Anais. . .
[S.l.: s.n.], 2015. p.1–5.

FABIAN, B.; MAURICE, A.; CHRISTIAN, B. A Mapping Language for IoT Device De-
scriptions. In: IEEE 43RD ANNUAL COMPUTER SOFTWARE AND APPLICATIONS
CONFERENCE (COMPSAC), 2019., 2019. Anais. . . [S.l.: s.n.], 2019. v.2, p.115–120.

Fabrice Bellard. QuickJS Javascript Engine. Accessed: Mar. 2023, https://
bellard.org/quickjs.

FARD, A. M.; MESBAH, A. JSNOSE: Detecting JavaScript Code Smells. In: IEEE
13TH INTERNATIONAL WORKING CONFERENCE ON SOURCE CODE ANALYSIS
AND MANIPULATION (SCAM), 2013., 2013. Anais. . . [S.l.: s.n.], 2013. p.116–125.

FARD, A. M.; MESBAH, A. JavaScript: The (un) covered parts. In: IEEE INTERNA-
TIONAL CONFERENCE ON SOFTWARE TESTING, VERIFICATION AND VALIDA-
TION (ICST), 2017., 2017. Anais. . . [S.l.: s.n.], 2017. p.230–240.

FARHAN, L. et al. A survey on the challenges and opportunities of the Internet of
Things (IoT). In: ELEVENTH INTERNATIONAL CONFERENCE ON SENSING TECH-
NOLOGY (ICST), 2017., 2017. Anais. . . [S.l.: s.n.], 2017. p.1–5.

FARSHIDI, S.; JANSEN, S.; DELDAR, M. A decision model for programming language
ecosystem selection: Seven industry case studies. Information and Software Tech-
nology, [S.l.], v.139, p.106640, 2021.

FLANAGAN, D. JavaScript - The Definitive Guide. 7.ed. Sebastopol, CA: O’Reilly
Media, 2020.

FLANAGAN, D. JavaScript: the definitive guide. Seventh Edition.ed. [S.l.]: " O’Reilly
Media, Inc.", 2020.

GASCON-SAMSON, J.; JUNG, K.; PATTABIRAMAN, K. Poster: Towards a Distributed
and Self-Adaptable Cloud-Edge Middleware. In: IEEE/ACM SYMPOSIUM ON EDGE
COMPUTING (SEC), 2018., 2018. Anais. . . [S.l.: s.n.], 2018. p.338–340.

GASCON-SAMSON, J. et al. Thingsmigrate: Platform-independent migration of
stateful javascript iot applications. In: EUROPEAN CONFERENCE ON OBJECT-
ORIENTED PROGRAMMING (ECOOP 2018), 32., 2018. Anais. . . [S.l.: s.n.], 2018.

https://www.espruino.com
https://www.espruino.com
https://bellard.org/quickjs
https://bellard.org/quickjs

110

GASCON-SAMSON, J.; RAFIUZZAMAN, M.; PATTABIRAMAN, K. Thingsjs: Towards
a flexible and self-adaptable middleware for dynamic and heterogeneous iot environ-
ments. In: WORKSHOP ON MIDDLEWARE AND APPLICATIONS FOR THE INTER-
NET OF THINGS, 4., 2017. Proceedings. . . [S.l.: s.n.], 2017. p.11–16.

GASCON-SAMSON, J.; RAFIUZZAMAN, M.; PATTABIRAMAN, K. SmartJS: dynamic
and self-adaptable runtime middleware for next-generation IoT systems. In: COMPAN-
ION OF THE 2017 ACM SIGPLAN INTERNATIONAL CONFERENCE ON SYSTEMS,
PROGRAMMING, LANGUAGES, AND APPLICATIONS: SOFTWARE FOR HUMAN-
ITY, 2017. Proceedings. . . [S.l.: s.n.], 2017. p.51–52.

GAVRIN, E.; LEE, S.-J.; AYRAPETYAN, R.; SHITOV, A. Ultra lightweight JavaScript
engine for internet of things. In: COMPANION PROCEEDINGS OF THE 2015
ACM SIGPLAN INTERNATIONAL CONFERENCE ON SYSTEMS, PROGRAMMING,
LANGUAGES AND APPLICATIONS: SOFTWARE FOR HUMANITY, 2015. Anais. . .
[S.l.: s.n.], 2015. p.19–20.

GERHORST, L.; REIF, S.; HERZOG, B.; HöNIG, T. EnergyBudgets: Integrating Phys-
ical Energy Measurement Devices into Systems Software. In: X BRAZILIAN SYMPO-
SIUM ON COMPUTING SYSTEMS ENGINEERING (SBESC), 2020., 2020. Anais. . .
[S.l.: s.n.], 2020. p.1–8.

GHOSH, D.; JIN, F.; MAHESWARAN, M. JADE: A unified programming framework for
things, web, and cloud. In: INTERNATIONAL CONFERENCE ON THE INTERNET OF
THINGS (IOT), 2014., 2014. Anais. . . [S.l.: s.n.], 2014. p.73–78.

GONZÁLEZ GARCÍA, C.; MEANA LLORIÁN, D.; PELAYO GARCÍA-BUSTELO, B. C.;
CUEVA LOVELLE, J. M. A review about smart objects, sensors, and actuators. Inter-
national Journal of Interactive Multimedia and Artificial Intelligence, [S.l.], 2017.

GONZáLEZ GARCíA, C.; ZHAO, L.; GARCíA-DíAZ, V. A User-Oriented Language for
Specifying Interconnections Between Heterogeneous Objects in the Internet of Things.
IEEE Internet of Things Journal, [S.l.], v.6, n.2, p.3806–3819, 2019.

Google. V8 JavaScript engine. Accessed: Mar. 2023, https://v8.dev/.

Google Actions. Google Smart Home Platform. Accessed: Mar. 2023, https://
developers.google.com/assistant/smarthome.

GOSLING, J.; JOY, B.; STEELE, G.; BRACHA, G. The Java language specification.
[S.l.]: Addison-Wesley Professional, 2000.

https://v8.dev/
https://developers.google.com/assistant/smarthome
https://developers.google.com/assistant/smarthome

111

GRESSL, L.; STEGER, C.; NEFFE, U. Security Driven Design Space Exploration for
Embedded Systems. In: FORUM FOR SPECIFICATION AND DESIGN LANGUAGES
(FDL), 2019., 2019. Anais. . . [S.l.: s.n.], 2019. p.1–8.

GRUNERT, K. Overview of JavaScript Engines for Resource-Constrained Micro-
controllers. In: INTERNATIONAL CONFERENCE ON SMART AND SUSTAINABLE
TECHNOLOGIES (SPLITECH), 2020., 2020. Anais. . . [S.l.: s.n.], 2020. p.1–7.

GUBBI, J.; BUYYA, R.; MARUSIC, S.; PALANISWAMI, M. Internet of Things (IoT):
A vision, architectural elements, and future directions. Future generation computer
systems, [S.l.], v.29, n.7, p.1645–1660, 2013.

GUINARD, D.; TRIFA, V.; WILDE, E. et al. A resource oriented architecture for the Web
of Things. In: IOT, 2010. Anais. . . [S.l.: s.n.], 2010. p.1–8.

HALSTEAD, M. H. Elements of Software Science (Operating and Programming
Systems Series). USA: Elsevier Science Inc., 1977.

HAN, Z.; DEVARAJEGOWDA, K.; WERNER, M.; ECKER, W. Towards a Python-
Based One Language Ecosystem for Embedded Systems Automation. In: IEEE
NORDIC CIRCUITS AND SYSTEMS CONFERENCE (NORCAS): NORCHIP AND IN-
TERNATIONAL SYMPOSIUM OF SYSTEM-ON-CHIP (SOC), 2019., 2019. Anais. . .
[S.l.: s.n.], 2019. p.1–7.

HEATH, S. Embedded systems design. [S.l.]: Elsevier, 2002.

HENNESSY, J. L.; PATTERSON, D. A. Computer Architecture, Sixth Edition: A
Quantitative Approach. 6th.ed. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2017.

HEO, Y. J.; OH, S. M.; CHIN, W. S.; JANG, J. W. A lightweight platform implementation
for Internet of Things. In: INTERNATIONAL CONFERENCE ON FUTURE INTERNET
OF THINGS AND CLOUD, 2015., 2015. Anais. . . [S.l.: s.n.], 2015. p.526–531.

HIRASAWA, Y.; IWASAKI, H.; UGAWA, T.; ONOZAWA, H. Generating Virtual Machine
Code of JavaScript Engine for Embedded Systems. Journal of Information Process-
ing, [S.l.], v.30, n.0, p.679–693, 2022.

HODDIE, P.; PRADER, L. IoT Development for ESP32 and ESP8266 with
JavaScript: A Practical Guide to XS and the Moddable SDK. [S.l.: s.n.], 2020.

HONG, G.; SHIN, D. Segment-Based Multiple-Base Compressed Addressing for Flex-
ible JavaScript Heap Allocation. IEEE Access, [S.l.], v.8, p.185405–185415, 2020.

112

IoT Analytics. Global IoT market size to grow 19% in 2023—IoT shows resilience
despite economic downturn. Accessed: Mar. 2023, https://iot-analytics.com/
iot-market-size.

IWATA, K.; NAKASHIMA, T.; ANAN, Y.; ISHII, N. Applying Machine Learning Classifica-
tion to Determining Outliers in Effort for Embedded Software Development Projects. In:
INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE/INTELLIGENCE
AND APPLIED INFORMATICS (CSII), 2019., 2019. Anais. . . [S.l.: s.n.], 2019. p.78–
83.

JAIMINI, U.; DHANIWALA, M. JavaScript empowered Internet of things. In: INTERNA-
TIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOP-
MENT (INDIACOM), 2016., 2016. Anais. . . [S.l.: s.n.], 2016. p.2373–2377.

JerryScript. JavaScript Engine for Internet of Things. Accessed: Mar. 2023, https:
//jerryscript.net.

JOSHI, P. V.; GURUMURTHY, K. Analysing and improving the performance of software
code for Real Time Embedded systems. In: INTERNATIONAL CONFERENCE ON DE-
VICES, CIRCUITS AND SYSTEMS (ICDCS), 2014., 2014. Anais. . . [S.l.: s.n.], 2014.
p.1–5.

JUNG, K. et al. ThingsMigrate: Platform-independent migration of stateful JavaScript
Internet of Things applications. Software: Practice and Experience, [S.l.], v.51, n.1,
p.117–155, 2021.

Khan, Faiz and Foley-Bourgon, Vincent and Kathrotia, Sujay and Lavoie, Erick. Ostrich
Benchmark Suite. Disponível em: <https://github.com/Sable/Ostrich>.

KIENLE, H. M.; KRAFT, J.; NOLTE, T. System-specific static code analyses: a case
study in the complex embedded systems domain. Software quality journal, [S.l.],
v.20, n.2, p.337–367, 2012.

KIM, M.; JEONG, H.-J.; MOON, S.-M. Small Footprint JavaScript Engine. [S.l.: s.n.],
2017. p.103–116.

KIRCHHOF, J. C.; RUMPE, B.; SCHMALZING, D.; WORTMANN, A. MontiThings:
Model-Driven Development and Deployment of Reliable IoT Applications. Journal of
Systems and Software, [S.l.], v.183, p.111087, 2022.

KITCHENHAM, B. et al. Systematic literature reviews in software engineering–a ter-
tiary study. Information and software technology, [S.l.], v.52, n.8, p.792–805, 2010.

KNAPPMEYER, M. et al. Survey of context provisioning middleware. IEEE Communi-
cations Surveys & Tutorials, [S.l.], v.15, n.3, p.1492–1519, 2013.

https://iot-analytics.com/iot-market-size
https://iot-analytics.com/iot-market-size
https://jerryscript.net
https://jerryscript.net

113

KOLIOS, P.; PANAYIOTOU, C.; ELLINAS, G.; POLYCARPOU, M. Data-Driven Event
Triggering for IoT Applications. IEEE Internet of Things Journal, [S.l.], v.3, n.6,
p.1146–1158, 2016.

KOOPMAN, P.; LUBBERS, M.; PLASMEIJER, R. A Task-Based DSL for Microcomput-
ers. In: REAL WORLD DOMAIN SPECIFIC LANGUAGES WORKSHOP 2018, 2018,
New York, NY, USA. Proceedings. . . Association for Computing Machinery, 2018.
(RWDSL2018).

KRAELING, M. Embedded software programming and implementation guidelines. In:
Software Engineering for Embedded Systems. [S.l.]: Elsevier, 2013. p.183–204.

KRISHNAMURTHY, J.; MAHESWARAN, M. Chapter 5 - Programming frameworks for
Internet of Things. In: BUYYA, R.; Vahid Dastjerdi, A. (Ed.). Internet of Things. [S.l.]:
Morgan Kaufmann, 2016. p.79–102.

KWON, J.-w.; MOON, S.-M. Work-in-progress: JSDelta: serializing modified javascript
states for state sharing. In: INTERNATIONAL CONFERENCE ON EMBEDDED SOFT-
WARE (EMSOFT), 2017., 2017. Anais. . . [S.l.: s.n.], 2017. p.1–2.

L, B.; JULIAN, A. Design and implementation of Automated Blood Bank using em-
bedded systems. In: INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFOR-
MATION, EMBEDDED AND COMMUNICATION SYSTEMS (ICIIECS), 2015., 2015.
Anais. . . [S.l.: s.n.], 2015. p.1–6.

LACERDA, G.; PETRILLO, F.; PIMENTA, M.; GUéHéNEUC, Y. G. Code smells and
refactoring: A tertiary systematic review of challenges and observations. Journal of
Systems and Software, [S.l.], v.167, p.110610, 2020.

LEE, E. A.; SESHIA, S. A. Introduction to embedded systems: A cyber-physical
systems approach. [S.l.]: Mit Press, 2017.

LEE, H. et al. Open software platform for companion IoT devices. In: IEEE INTER-
NATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2017., 2017.
Anais. . . [S.l.: s.n.], 2017. p.394–395.

LI, D.; HUANG, B.; CUI, L.; XU, Z. WebletScript: A Lightweight Distributed JavaScript
Engine for Internet of Things. In: IEEE GLOBAL COMMUNICATIONS CONFERENCE
(GLOBECOM), 2018., 2018. Anais. . . [S.l.: s.n.], 2018. p.1–6.

LIU, Y. JSOptimizer: An Extensible Framework for JavaScript Program Optimization.
In: IEEE/ACM 41ST INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEER-
ING: COMPANION PROCEEDINGS (ICSE-COMPANION), 2019., 2019. Anais. . .
[S.l.: s.n.], 2019. p.168–170.

114

LUBBERS, M.; KOOPMAN, P.; PLASMEIJER, R. Writing Internet of Things Ap-
plicatations with Task-Oriented Programming. [S.l.]: arXiv, 2022. Disponível em:
<https://arxiv.org/abs/2212.04193>.

LóKI., G.; GáL., P. JavaScript Guidelines for JavaScript Programmers - A Com-
prehensive Guide for Performance Critical JS Programs. [S.l.]: SciTePress, 2018.
397-404p.

MARWEDEL, P. Embedded system design: embedded systems foundations of
cyber-physical systems, and the internet of things. [S.l.]: Springer Nature, 2021.

MCCABE, T. A Complexity Measure. IEEE Transactions on Software Engineering,
[S.l.], v.SE-2, n.4, p.308–320, 1976.

MIORANDI, D.; SICARI, S.; DE PELLEGRINI, F.; CHLAMTAC, I. Internet of things: Vi-
sion, applications and research challenges. Ad hoc networks, [S.l.], v.10, n.7, p.1497–
1516, 2012.

MIRAZ, M. H.; ALI, M.; EXCELL, P. S.; PICKING, R. A review on Internet of Things
(IoT), Internet of everything (IoE) and Internet of nano things (IoNT). In: INTERNET
TECHNOLOGIES AND APPLICATIONS (ITA), 2015., 2015. Anais. . . [S.l.: s.n.], 2015.
p.219–224.

Moddable Github. Moddable-OpenSource. Accessed: Mar. 2023, https://github.
com/Moddable-OpenSource/moddable.

Moddable Tech. Moddable Tech: Modern software development for microcontrollers.
Accessed: Mar. 2023, https://www.moddable.com/.

Mongoose OS. mJS: Restricted JavaScript Engine. Accessed: Mar. 2023, https://
github.com/cesanta/mjs.

MORALES, R.; SABORIDO, R.; GUÉHÉNEUC, Y.-G. Momit: Porting a javascript inter-
preter on a quarter coin. IEEE Transactions on Software Engineering, [S.l.], 2020.

MORALES, R.; SABORIDO, R.; GUéHéNEUC, Y.-G. MoMIT: Porting a JavaScript In-
terpreter on a Quarter Coin. IEEE Transactions on Software Engineering, [S.l.], v.47,
n.12, p.2771–2785, 2021.

Mozilla Developer Network. Documenting web technologies: JavaScript. Accessed:
Mar. 2023, https://developer.mozilla.org/en-US/docs/Web/JavaScript.

Mozilla Foundation. Rhino an Implementation of JavaScript in Java. Accessed: Mar.
2023, https://github.com/mozilla/rhino.

https://github.com/Moddable-OpenSource/moddable
https://github.com/Moddable-OpenSource/moddable
https://www.moddable.com/
https://github.com/cesanta/mjs
https://github.com/cesanta/mjs
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://github.com/mozilla/rhino

115

Mozilla Foundation. SpiderMonkey: JavaScript and WebAssembly Engine. Accessed:
Mar. 2023, https://developer.apple.com/documentation/javascriptcore.

MUDALIAR, M. D.; SIVAKUMAR, N. IoT based real time energy monitoring system
using Raspberry Pi. Internet of Things, [S.l.], v.12, p.100292, 2020.

NAHAS, M.; NAHHAS, A. M. Ways for Implementing Highly-Predictable Embed-
ded Systems Using Time-Triggered Co-Operative (TTC) Architectures. In: TANAKA,
K. (Ed.). Embedded Systems. Rijeka: IntechOpen, 2012.

NAKAGAWA, H. et al. Embedded System Evolution in IoT System Development Based
on MAPE-K Loop Mechanism. arXiv preprint arXiv:2205.13375, [S.l.], 2022.

NAMIOT, D.; SNEPS-SNEPPE, M. On iot programming. International Journal of
Open Information Technologies, [S.l.], v.2, n.10, p.25–28, 2014.

NASCIMENTO, R.; BRITO, A.; HORA, A.; FIGUEIREDO, E. JavaScript API Depreca-
tion in the Wild: A First Assessment. In: IEEE 27TH INTERNATIONAL CONFERENCE
ON SOFTWARE ANALYSIS, EVOLUTION AND REENGINEERING (SANER), 2020.,
2020. Anais. . . [S.l.: s.n.], 2020. p.567–571.

Node.js. An Asynchronous Event-driven JavaScript Runtime. Accessed: Mar.
2023, https://nodejs.org/en/docs.

Nordic Semiconductor. Power Profiler Kit II - Documentation. Accessed: Mar. 2023,
https://infocenter.nordicsemi.com.

OBERMAISSER, R. Event-Triggered and Time-Triggered Control Paradigms. [S.l.]:
Springer US, 2005.

OLIPHANT, T. E. Python for Scientific Computing. Computing in Science Engineer-
ing, [S.l.], v.9, n.3, p.10–20, 2007.

OLIVEIRA, F. Student Research Abstract: A Hybrid Approach to Design Embedded
Software Using JavaScript’s Non-Blocking Principle. In: ACM/SIGAPP SYMPOSIUM
ON APPLIED COMPUTING, 38., 2023, New York, NY, USA. Proceedings. . . Associ-
ation for Computing Machinery, 2023. p.732–735. (SAC ’23).

OLIVEIRA, F. L.; MATTOS, J. C. B. JSGuide: A Tool to Improve JavaScript Algorithms
Focusing on IoT Devices. In: SYMPOSIUM ON INTERNET OF THINGS (SIOT), 2022.,
2022. Anais. . . [S.l.: s.n.], 2022. p.1–4.

OLIVEIRA, F. L.; MATTOS, J. C. B. JSEVAsync: An Asynchronous Event-based Frame-
work to Energy Saving on IoT Devices. In: XII BRAZILIAN SYMPOSIUM ON COM-
PUTING SYSTEMS ENGINEERING (SBESC), 2022., 2022. Anais. . . [S.l.: s.n.], 2022.
p.1–7.

https://developer.apple.com/documentation/javascriptcore
https://nodejs.org/en/docs
https://infocenter.nordicsemi.com

116

OLIVEIRA, F. L.; PARIZI, R. R.; MATTOS, J. C. B. de. Improving Developer Productivity
on Internet of Things using JavaScript. In: INTERNATIONAL CONFERENCE ON IN-
TERNET OF THINGS, BIG DATA AND SECURITY, IOTBDS 2022, ONLINE STREAM-
ING, APRIL 22-24, 2022, 7., 2022. Proceedings. . . SCITEPRESS, 2022. p.223–230.

OLIVEIRA, F.; MATTOS, J. State-of-the-Art Javascript Language for Internet of Things.
In: ESTENDIDOS DO IX SIMPóSIO BRASILEIRO DE ENGENHARIA DE SISTEMAS
COMPUTACIONAIS, 2019, Porto Alegre, RS, Brasil. Anais. . . SBC, 2019. p.149–154.

OLIVEIRA, F.; MATTOS, J. Analysis of WebAssembly as a Strategy to Improve
JavaScript Performance on IoT Environments. In: ESTENDIDOS DO X SIMPÓSIO
BRASILEIRO DE ENGENHARIA DE SISTEMAS COMPUTACIONAIS, 2020. Anais. . .
[S.l.: s.n.], 2020. p.133–138.

OLIVEIRA, F.; MATTOS, J. Webassemby: Uma Estratégia Para Melhorar O Desem-
penho Da Aplicação JavaScript Em Ambientes IoT. In: IN ANAIS 6 SIIEPE – SEM-
ANA INTEGRADA UFPEL / XXII ENPOS – ENCONTRO DE PóS-GRADUAçãO., 2020,
Pelotas, RS, Brasil. Anais. . . SBC, 2020.

OLIVEIRA, F.; MATTOS, J. Analysis of WebAssembly as a Strategy to Improve
JavaScript Performance on IoT Environments. In: ESTENDIDOS DO X SIMPóSIO
BRASILEIRO DE ENGENHARIA DE SISTEMAS COMPUTACIONAIS, 2020, Porto
Alegre, RS, Brasil. Anais. . . SBC, 2020. p.133–138.

OLIVEIRA, L.; MATTOS, J. C. B.; BRISOLARA, L. Survey of Memory Optimization
Techniques for Embedded Systems. In: III BRAZILIAN SYMPOSIUM ON COMPUT-
ING SYSTEMS ENGINEERING, 2013., 2013. Anais. . . [S.l.: s.n.], 2013. p.65–70.

OLIVEIRA, M. F. et al. Software quality metrics and their impact on embedded software.
In: TH INTERNATIONAL WORKSHOP ON MODEL-BASED METHODOLOGIES FOR
PERVASIVE AND EMBEDDED SOFTWARE, 2008., 2008. Anais. . . [S.l.: s.n.], 2008.
p.68–77.

OLIVEIRA, M. F. et al. Software quality metrics and their impact on embedded software.
In: TH INTERNATIONAL WORKSHOP ON MODEL-BASED METHODOLOGIES FOR
PERVASIVE AND EMBEDDED SOFTWARE, 2008., 2008. Anais. . . [S.l.: s.n.], 2008.
p.68–77.

PAPADOPOULOS, L. et al. Interrelations between software quality metrics, perfor-
mance and energy consumption in embedded applications. In: INTERNATIONAL
WORKSHOP ON SOFTWARE AND COMPILERS FOR EMBEDDED SYSTEMS, 21.,
2018. Proceedings. . . [S.l.: s.n.], 2018. p.62–65.

117

PARK, H.; JUNG, W.; MOON, S.-M. JavaScript ahead-of-time compilation for embed-
ded web platform. In: IEEE SYMPOSIUM ON EMBEDDED SYSTEMS FOR REAL-
TIME MULTIMEDIA (ESTIMEDIA), 2015., 2015. Anais. . . [S.l.: s.n.], 2015. p.1–9.

PATTANAYAK, B. K.; PATRA, S. K.; PUTHAL, B. Optimizing AST Node for Java Script
Compiler A lightweight Interpreter for Embedded Device. Journal of Computers, [S.l.],
v.8, n.2, Feb. 2013.

PETERSEN, K.; FELDT, R.; MUJTABA, S.; MATTSSON, M. Systematic mapping stud-
ies in software engineering. In: EASE, 2008. Anais. . . [S.l.: s.n.], 2008. v.8, p.68–77.

PETERSON, B.; VOGEL, B. Prototyping the Internet of Things with Web Technolo-
gies: Is It Easy? In: IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COM-
PUTING AND COMMUNICATIONS WORKSHOPS (PERCOM WORKSHOPS), 2018.,
2018. Anais. . . [S.l.: s.n.], 2018. p.518–522.

PINHO, A.; COUTO, L.; OLIVEIRA, J. Towards Rust for Critical Systems. In: IEEE IN-
TERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING WORK-
SHOPS (ISSREW), 2019., 2019. Anais. . . [S.l.: s.n.], 2019. p.19–24.

PRABHU, S. S.; KAPIL, H.; LAKSHMAIAH, S. H. Safety Critical Embedded Software:
Significance and Approach to Reliability. In: INTERNATIONAL CONFERENCE ON
ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI),
2018., 2018. Anais. . . [S.l.: s.n.], 2018. p.449–455.

PULIAFITO, C. et al. Fog computing for the internet of things: A Survey. ACM Trans-
actions on Internet Technology (TOIT), [S.l.], v.19, n.2, p.18, 2019.

RAHMAN, L. F.; OZCELEBI, T.; LUKKIEN, J. Understanding IoT Systems: A Life Cy-
cle Approach. Procedia Computer Science, [S.l.], v.130, p.1057–1062, 2018. The
9th International Conference on Ambient Systems, Networks and Technologies (ANT
2018) / The 8th International Conference on Sustainable Energy Information Technol-
ogy (SEIT-2018) / Affiliated Workshops.

Raspberry Pi computers and microcontrollers. Raspberry Pi Documentation. Ac-
cessed: Mar. 2023, https://www.raspberrypi.com/documentation.

RC-switch library. RC-switch. Accessed: Mar. 2023, https://github.com/sui77/
rc-switch.

RFC 7228: Terminology for constrained-node network. Internet Engineering Task
Force (IETF). Accessed: Mar. 2023, https://tools.ietf.org/html/rfc7228.

https://www.raspberrypi.com/documentation
https://github.com/sui77/rc-switch
https://github.com/sui77/rc-switch
https://tools.ietf.org/html/rfc7228

118

RILISKIS, L.; HONG, J.; LEVIS, P. Ravel: Programming iot applications as distributed
models, views, and controllers. In: INTERNATIONAL WORKSHOP ON INTERNET OF
THINGS TOWARDS APPLICATIONS, 2015., 2015. Proceedings. . . [S.l.: s.n.], 2015.
p.1–6.

SABOURY, A.; MUSAVI, P.; KHOMH, F.; ANTONIOL, G. An empirical study of
code smells in JavaScript projects. In: IEEE 24TH INTERNATIONAL CONFERENCE
ON SOFTWARE ANALYSIS, EVOLUTION AND REENGINEERING (SANER), 2017.,
2017. Anais. . . [S.l.: s.n.], 2017. p.294–305.

SAHOO, S. S. et al. Emergent Design Challenges for Embedded Systems and Paths
Forward: Mixed-Criticality, Energy, Reliability and Security Perspectives. In: INTERNA-
TIONAL CONFERENCE ON HARDWARE/SOFTWARE CODESIGN AND SYSTEM
SYNTHESIS, 2021., 2021, New York, NY, USA. Proceedings. . . Association for Com-
puting Machinery, 2021. p.1–10. (CODES/ISSS ’21).

SAHU, A.; SINGH, A. Securing IoT devices using JavaScript based sandbox. In: IEEE
INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, IN-
FORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2016., 2016. Anais. . .
[S.l.: s.n.], 2016. p.1476–1482.

SALIHBEGOVIC, A.; ETEROVIC, T.; KALJIC, E.; RIBIC, S. Design of a domain specific
language and IDE for Internet of things applications. In: INTERNATIONAL CONVEN-
TION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS
AND MICROELECTRONICS (MIPRO), 2015., 2015. Anais. . . [S.l.: s.n.], 2015. p.996–
1001.

SALMAN, A. J.; AL-JAWAD, M.; TAMEEMI, W. A. Domain-Specific Languages for IoT:
Challenges and Opportunities. IOP Conference Series: Materials Science and En-
gineering, [S.l.], v.1067, n.1, p.012133, feb 2021.

SANGIOVANNI-VINCENTELLI, A.; MARTIN, G. Platform-based design and software
design methodology for embedded systems. IEEE Design & Test of Computers, [S.l.],
v.18, n.6, p.23–33, 2001.

SCHELER, F.; SCHROEDER-PREIKSCHAT, W. Time-Triggered vs. Event-Triggered:
A matter of configuration? In: ITG FA 6.2 WORKSHOP ON MODEL-BASED TEST-
ING, GI/ITG WORKSHOP ON NON-FUNCTIONAL PROPERTIES OF EMBEDDED
SYSTEMS, 13TH GI/ITG CONFERENCE MEASURING, MODELLING, AND EVALU-
ATION OF COMPUTER AND COMMUNICATIONS, 2006. Anais. . . [S.l.: s.n.], 2006.
p.1–6.

SCHILDT, H. C completo e total. [S.l.]: Makron, 1997.

119

SCOTT, M. L. Programming language pragmatics. [S.l.]: Morgan Kaufmann, 2000.

SELAKOVIC, M.; PRADEL, M. Performance Issues and Optimizations in JavaScript:
An Empirical Study. In: INTERNATIONAL CONFERENCE ON SOFTWARE ENGI-
NEERING, 38., 2016, New York, NY, USA. Proceedings. . . Association for Computing
Machinery, 2016. p.61–72. (ICSE ’16).

Severin, T.; Culic, I.; Radovici, A. Enabling High-Level Programming Languages on
IoT Devices. In: ROEDUNET CONFERENCE: NETWORKING IN EDUCATION AND
RESEARCH (ROEDUNET), 2020., 2020. Anais. . . [S.l.: s.n.], 2020. p.1–6.

SHULL, T.; CHOI, J.; GARZARAN, M. J.; TORRELLAS, J. NoMap: Speeding-Up
JavaScript Using Hardware Transactional Memory. In: IEEE INTERNATIONAL SYM-
POSIUM ON HIGH PERFORMANCE COMPUTER ARCHITECTURE (HPCA), 2019.,
2019. Anais. . . [S.l.: s.n.], 2019. p.412–425.

Software Engineering Research Group at Politecnico di Torino. Halstead
Metrics Tool. Accessed: Mar. 2023, https://github.com/SoftengPoliTo/
Halstead-Metrics-Tool.

Stack Overflow. Stack Overflow Annual Developer Survey 2022. Accessed: Mar.
2023, https://survey.stackoverflow.co/2022.

STEBBINS, R. A. Exploratory research in the social sciences. [S.l.]: Sage, 2001.
v.48.

TAIVALSAARI, A.; MIKKONEN, T. A roadmap to the programmable world: software
challenges in the IoT era. IEEE Software, [S.l.], v.34, n.1, p.72–80, 2017.

Taivalsaari, A.; Mikkonen, T. A Taxonomy of IoT Client Architectures. IEEE Software,
[S.l.], v.35, n.3, p.83–88, May 2018.

Terry Yin. Lizard Cyclomatic Complexity Analyzer. Accessed: Mar. 2023, https:
//github.com/terryyin/lizard.

THAKER, N.; BABU, S. S. K. Analysis of event-triggered and time-triggered archi-
tecture for a reliable embedded system. In: INTERNATIONAL CONFERENCE ON
COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT),
2017., 2017. Anais. . . [S.l.: s.n.], 2017. p.1–5.

THOLE, S. P.; RAMU, P. Design space exploration and optimization using self-
organizing maps. Structural and Multidisciplinary Optimization, [S.l.], v.62, n.3,
p.1071–1088, 2020.

https://github.com/SoftengPoliTo/Halstead-Metrics-Tool
https://github.com/SoftengPoliTo/Halstead-Metrics-Tool
https://survey.stackoverflow.co/2022
https://github.com/terryyin/lizard
https://github.com/terryyin/lizard

120

TORRES, D.; DIAS, J. P.; RESTIVO, A.; FERREIRA, H. S. Real-time Feedback in
Node-RED for IoT Development: An Empirical Study. In: IEEE/ACM 24TH INTERNA-
TIONAL SYMPOSIUM ON DISTRIBUTED SIMULATION AND REAL TIME APPLICA-
TIONS (DS-RT), 2020., 2020. Anais. . . [S.l.: s.n.], 2020. p.1–8.

Transforma Insights Institute. The internet of things (IoT) market 2019-
2030. Accessed: Mar. 2023, https://transformainsights.com/news/
iot-market-24-billion-usd15-trillion-revenue-2030.

UGAWA, T.; IWASAKI, H.; KATAOKA, T. eJSTK: Building JavaScript virtual machines
with customized datatypes for embedded systems. Journal of Computer Languages,
[S.l.], v.51, p.261–279, 2019.

UGAWA, T.; MARR, S.; JONES, R. Profile Guided Offline Optimization of Hidden Class
Graphs for JavaScript VMs in Embedded Systems. In: ACM SIGPLAN INTERNA-
TIONAL WORKSHOP ON VIRTUAL MACHINES AND INTERMEDIATE LANGUAGES,
14., 2022, New York, NY, USA. Proceedings. . . Association for Computing Machinery,
2022. p.25–35. (VMIL 2022).

VALSAMAKIS, Y.; SAVIDIS, A. Personal applications in the internet of things through
visual end-user programming. Digital Marketplaces Unleashed, [S.l.], p.809–821,
2018.

VANOMMESLAEGHE, Y.; DENIL, J.; VAN ACKER, B.; DE MEULENAERE, P. Au-
tomatic Generation of Workflows for Efficient Design Space Exploration for Cyber-
Physical Systems. In: IEEE INTERNATIONAL CONFERENCES ON INTERNET OF
THINGS (ITHINGS) AND IEEE GREEN COMPUTING COMMUNICATIONS (GREEN-
COM) AND IEEE CYBER, PHYSICAL SOCIAL COMPUTING (CPSCOM) AND IEEE
SMART DATA (SMARTDATA) AND IEEE CONGRESS ON CYBERMATICS (CYBER-
MATICS), 2021., 2021. Anais. . . [S.l.: s.n.], 2021. p.346–351.

VERMA, M.; MARWEDEL, P. Advanced Memory Optimization Techniques for Low-
Power Embedded Processors. [S.l.]: Springer Netherlands, 2007.

WANG, B.-Y.; YEN, Y.-C.; CHENG, Y. C. Specifying Internet of Things Behaviors in
Behavior-Driven Development: Concurrency Enhancement and Tool Support. Applied
Sciences, [S.l.], v.13, n.2, 2023.

WANG, M. B.; MANESH, D.; HU, R.; LEE, S. W. iThem: Programming Internet of
Things Beyond Trigger-Action Pattern. In: THE ADJUNCT PUBLICATION OF THE
35TH ANNUAL ACM SYMPOSIUM ON USER INTERFACE SOFTWARE AND TECH-
NOLOGY, 2022. Anais. . . ACM, 2022.

https://transformainsights.com/news/iot-market-24-billion-usd15-trillion-revenue-2030
https://transformainsights.com/news/iot-market-24-billion-usd15-trillion-revenue-2030

121

WANG, R. et al. Efficient Asynchronous Communication between Virtual Machines
in Embedded Systems. In: IEEE 19TH INTERNATIONAL CONFERENCE ON HIGH
PERFORMANCE COMPUTING AND COMMUNICATIONS; IEEE 15TH INTERNA-
TIONAL CONFERENCE ON SMART CITY; IEEE 3RD INTERNATIONAL CONFER-
ENCE ON DATA SCIENCE AND SYSTEMS (HPCC/SMARTCITY/DSS), 2017., 2017.
Anais. . . [S.l.: s.n.], 2017. p.603–604.

WOLF, M. Chapter 1 - Embedded Computing. In: WOLF, M. (Ed.). Computers as
Components (Fourth Edition). Fourth Edition.ed. [S.l.]: Morgan Kaufmann, 2017.
p.1–54. (The Morgan Kaufmann Series in Computer Architecture and Desi).

WOLF, M. Computing in the real world is the grandest of challenges. Computer, [S.l.],
v.51, n.5, p.90–91, 2018.

WOLF, W.; KANDEMIR, M. Memory system optimization of embedded software. Pro-
ceedings of the IEEE, [S.l.], v.91, n.1, p.165–182, 2003.

World Wide Web Consortium. JavaScript Web APIs. Accessed: Mar. 2023, https:
//www.w3.org/standards/webdesign/script.

YAMASHITA, A. How Good Are Code Smells for Evaluating Software Maintainability?
Results from a Comparative Case Study. In: IEEE INTERNATIONAL CONFERENCE
ON SOFTWARE MAINTENANCE, 2013., 2013. Anais. . . [S.l.: s.n.], 2013. p.566–571.

https://www.w3.org/standards/webdesign/script
https://www.w3.org/standards/webdesign/script

122

APPENDIX A: MICROBENCHMARKS

1 export class Rest {
2 static standard () {
3 const numbers = [142, 12, 56, 34, -123];
4 const v1 = numbers [0];
5 const v2 = numbers [1];
6 const rest = numbers.slice (2);
7 return rest;
8 }
9

10 static modified () {
11 const numbers = [142, 12, 56, 34, -123];
12 const { v1, v2, ... rest } = numbers;
13 return rest;
14 }
15 }

Listing 7.1 – Rest benchmark

1 export class Spread {
2 static standard () {
3 const document = {
4 id: 1,
5 title: "The document title",
6 };
7 const newDocument = Object.assign(document , { attached: "

file.pdf" });
8 return newDocument;
9 }

10

11 static modified () {
12 const document = {
13 id: 1,
14 title: "The document title",
15 };
16 const newDocument = {
17 ... document ,
18 attached: "file.pdf",
19 };
20 return newDocument;
21 }

123

22 }

Listing 7.2 – Spread benchmark

1 export class FromEntries {
2 static standard () {
3 const data = [
4 ["age", 18],
5 ["name", "Philip"],
6];
7 const person = {};
8 person[data [0][0]] = data [0][1];
9 person[data [1][0]] = data [1][1];

10 return person;
11 }
12

13 static modified () {
14 const data = [
15 ["age", 18],
16 ["name", "Philip"],
17];
18 return Object.fromEntries(data);
19 }
20 }

Listing 7.3 – FromEntries benchmark

1 export class Flat {
2 static standard () {
3 const arr = [1, 22, 13, ["abc", () => {}], [-12, 2.3, true

]];
4 return arr.reduce ((acc , val) => acc.concat(val), []);
5 }
6

7 static modified () {
8 const arr = [1, 22, 13, ["abc", () => {}], [-12, 2.3, true

]];
9 return arr.flat (1);

10 }
11 }

Listing 7.4 – Flat benchmark

1 export class StringTrim {
2 static standard () {

124

3 let aux = " hello world";
4 return aux.replace (/^\s+/g, "");
5 }
6

7 static modified () {
8 let aux = " hello world";
9 return aux.trimStart ();

10 }
11 }

Listing 7.5 – TrimStart / trimEnd benchmark

1 export class MatchAll {
2 static standard () {
3 const msg = "Split the sentence by white space.";
4 const regexp = new RegExp (/[^\s]+/g);
5 let value;
6 while ((value = regexp.exec(msg)) !== null) {
7 console.log(value [0]);
8 }
9 return null;

10 }
11

12 static modified () {
13 const msg = "Split the sentence by white space.";
14 for (const value of msg.matchAll (/[^\s]+/g)) {
15 console.log(value [0]);
16 }
17 return null;
18 }
19 }

Listing 7.6 – MatchAll benchmark

1 export class Nullish {
2 static standard () {
3 const points = 0;
4 // needs to return zero
5 return points ? points : -1;
6 }
7

8 static modified () {
9 const points = 0;

10 // needs to return zero

125

11 return points ?? -1;
12 }
13 }

Listing 7.7 – Nullish coalescing benchmark

1 export class OptionalChaining {
2 static standard () {
3 const entity = {
4 person: {
5 name: "Philip",
6 address: {
7 street: "5th Avenue",
8 },
9 },

10 };
11 if (entity.person && entity.person.address) {
12 console.log(entity.person.address.street);
13 }
14 return null;
15 }
16

17 static modified () {
18 const entity = {
19 person: {
20 name: "Philip",
21 address: {
22 street: "5th Avenue",
23 },
24 },
25 };
26 console.log(entity.person ?. address ?. street);
27 return null;
28 }
29 }

Listing 7.8 – Optional chaining benchmark

1 export class ReplaceAll {
2 static standard () {
3 const aux = "This is the JS language. Run JS anywhere.";
4 let replaced = aux.replace (/JS/g, "JavaScript");
5 return replaced;
6 }

126

7

8 static modified () {
9 const aux = "This is the JS language. Run JS anywhere.";

10 let replaced = aux.replaceAll("JS", "JavaScript");
11 return replaced;
12 }
13 }

Listing 7.9 – ReplaceAll benchmark

1 export class LogicalAssignment {
2 static standard () {
3 let value = 10;
4 if (value) {
5 value = 20;
6 }
7 return value;
8 }
9

10 static modified () {
11 let value = 10;
12 value &&= 20;
13 return value;
14 }
15 }

Listing 7.10 – Logical assignment benchmark

1 export class ArrowFunction {
2 static standard () {
3 const numbers = [65, 44, 12, 4];
4 const newArr = numbers.map(function (num) {
5 return num * 10;
6 });
7 return newArr;
8 }
9

10 static modified () {
11 const numbers = [65, 44, 12, 4];
12 const newArr = numbers.map((num) => num * 10);
13 return newArr;
14 }
15 }

Listing 7.11 – Arrow function smell

127

1 export class BinaryLiterals {
2 static standard () {
3 const binaryValue = parseInt("1111000101", 2);
4 return binaryValue == 965;
5 }
6

7 static modified () {
8 const binaryValue = 0b1111000101;
9 return binaryValue == 965;

10 }
11 }

Listing 7.12 – Binary literals smell

1 export class InlineFunction {
2 static standard () {
3 const sqrt = function (value) {
4 return value * value;
5 };
6 return sqrt;
7 }
8

9 static modified () {
10 return (value) => value * value;
11 }
12 }

Listing 7.13 – Inline function smell

1 export class Iterator {
2 static standard () {
3 const arr = [1, 22, 13, 1, -2, 3, 6, 0.78];
4 let sum = 0;
5 for (var i = 0; i < arr.length; i++) {
6 sum += arr[i];
7 }
8 return sum;
9 }

10

11 static modified () {
12 const arr = [1, 22, 13, 1, -2, 3, 6, 0.78];
13 let sum = 0;
14 for (let value of arr) {
15 sum += value;

128

16 }
17 return sum;
18 }
19 }

Listing 7.14 – Iterator smell

1 export class LongParameter {
2 static standard () {
3 return (x1, y1, x2, y2) => {
4 return Math.sqrt(Math.pow(x1 - x2, 2) + Math.pow(y1 - y2,

2));
5 };
6 }
7

8 static modified () {
9 return (p1, p2) => {

10 return Math.sqrt(Math.pow(p1.x - p2.x, 2) + Math.pow(p1.y
- p2.y, 2));

11 };
12 }
13 }

Listing 7.15 – Long parameter smell

1 export class Looping {
2 static standard () {
3 var d = 35;
4 var math_sind = Math.sin(d) * 10;
5 var y = 0;
6 for (var i = 0; i < 10; i++) {
7 y += math_sind;
8 }
9 return y;

10 }
11

12 static modified () {
13 const d = 35;
14 const math_sind = Math.sin(d) * 10;
15 let y = 0;
16 let i = 0;
17 do {
18 y += math_sind;
19 i++;

129

20 } while (i < 10);
21 return y;
22 }
23 }

Listing 7.16 – Loop unrolling smell

1 export class MapTest {
2 static standard () {
3 const map = [];
4 map["a"] = 10;
5 map["b"] = "works";
6 map["c"] = 0.47;
7 return "a" in map;
8 }
9

10 static modified () {
11 const map = new Map();
12 map.set("a", 10);
13 map.set("b", "works");
14 map.set("c", 0.47);
15 return map.has("a");
16 }
17 }

Listing 7.17 – Map smell

1 export class TemplateString {
2 static standard () {
3 const name = "Philip";
4 const job = "professor";
5 const age = 32;
6 let sentence = name + " is a " + job + "She is " + age + "

years old.";
7

8 return sentence;
9 }

10

11 static modified () {
12 const name = "Philip";
13 const job = "professor";
14 const age = 32;
15 let sentence = ‘ {name} is a {job}. He is {age} years old.‘;
16 return sentence;

130

17 }
18 }

Listing 7.18 – Template string smell

131

APPENDIX B: SOURCE CODE ANALYZES OSTRICH BENCHMARK

Nqueens

Metric C JS

Program length 2157 1640
Program vocabulary 149 127
Estimated length 963,83 761,25
Purity ratio 0,45 0,46
Volume 15571,75 11461,44
Difficulty 181,88 245,45
Program effort (10^5) 28,32 28,13
Time to program (h) 43,71 43,41
Cyclomatic complexity 31,5 32,8

Nw

Metric C JS

Program length 4331 3286
Program vocabulary 211 163
Estimated length 1492,38 1038,08
Purity ratio 0,34 0,32
Volume 33440,08 24147,92
Difficulty 279,6 407,28
Program effort (10^5) 93,50 98,35
Time to program (h) 144,29 151,78
Cyclomatic complexity 28,5 11

Page-rank

Metric C JS

Program length 11224 10863
Program vocabulary 1601 1574
Estimated length 16788,39 16362,62
Purity ratio 1,5 1,51
Volume 119476,76 115367,45
Difficulty 126,9 99,82
Program effort (10^5) 1516,12 115,15
Time to program (h) 233,97 177,71
Cyclomatic complexity 21,8 10,4

Fft

Metric C JS

Program length 1395 1102
Program vocabulary 106 109
Estimated length 633,17 632,91
Purity ratio 0,45 0,57
Volume 9385,45 7458,54
Difficulty 117,49 118,16
Program effort (10^5) 11,03 8,81
Time to program (h) 17,02 13,6
Cyclomatic complexity 14 10,2

Crc

C JavaScript

761 4721
132 2148

821,22 23433,2
1,08 4,96

5360,78 52255,7
85,69 26,92
4,59 14,07
7,09 21,71
32,7 12

Bfs

C JavaScript

1350 983
118 121

707,44 717,19
0,52 0,73

9291,57 6801,24
163,54 131,37
15,20 8,94
23,45 13,79
39,5 33,5

Lavand

C JavaScript

2197 1715
175 145

1192,96 909,31
0,54 0,53

16370,31 12313,54
128,38 158,27
21,02 19,49
32,43 30,07
73,3 9,3

Srad

C JavaScript

1507 1101
127 121

798,75 722,76
0,53 0,66

10531,95 7617,67
105,9 115,71
11,15 8,81
17,21 13,6
143 11

Lud

C JavaScript

1538 2398
409 407

3386,52 3280,16
2,2 1,37

13343,62 20787,99
50,04 79,51
6,68 16,53
7,09 25,51
49,5 14,7

Hmm

C JavaScript

4865 3560
225 180

1615,38 1195,1
0,33 0,34

38014,05 26671
279,81 256,54
106, 68,42

164,15 105,59
17,4 11

Spmv

C JavaScript

545 1820
117 196

707,74 1322,01
1,3 0,73

3744,35 13858,77
60,69 138,81
2,27 19,24
3,51 3,51
28 10,5

Back-propagation

C JavaScript

1970 1333
145 152

942,69 967,24
0,48 0,73

14144,42 9661,49
138,3 108,06
19,56 10,44
30,19 16,11
15,1 9,5

	Introduction
	Motivation
	Hypotheses and Research Questions
	Contributions

	Thesis Organization
	Research Structure
	Organization
	Disclaimer / Scope Delimitation

	Background and Literature Review
	Embedded Systems
	Embedded Systems Characteristics
	Embedded Software
	Software Quality Metrics
	Compiled and Interpreted Languages

	Internet of Things (IoT)
	JavaScript
	JavaScript For Embedded Systems
	Moddable XS JavaScript engine

	Systematic Mapping Review: JavaScript Applied to IoT
	Summary

	Analyzing JavaScript Codes
	Hardware and Software Setup
	Overview of the Experimentation Flow

	Case Study Description
	Results of JavaScript and C programs
	Code Quality Analysis
	Resource Consumption Analysis
	Related Work

	Summary

	JSGuide: Guidelines to Improve Embedded Software For IoT
	Guidelines
	Selection of code smells
	Guidelines Results

	JSGuide: A tool to detect code smells
	JSGuide Results

	Related work
	Summary

	JSEVAsync: A Framework to develop Embedded Software Using Asynchronous Units
	JSEVAsync Proposal
	JSEVAsync Validation
	Code Quality Analysis
	Resource Consumption Analysis

	Related work
	Summary

	Discussions
	Conclusions and Future work
	Future Work
	Publications

	References

