
UNIVERSIDADE FEDERAL DE PELOTAS
Centro de Desenvolvimento Tecnológico

Programa de Pós-Graduação em Computação

Tese

UM FLUXO DE PODA PARA REDES NEURAIS DEDICADAS A ATAQUES A
CANAIS LATERAIS BASEADOS EM APRENDIZADO PROFUNDO

Rodrigo Nuevo Lellis

Pelotas, 2023



Rodrigo Nuevo Lellis

UM FLUXO DE PODA PARA REDES NEURAIS DEDICADAS A ATAQUES A
CANAIS LATERAIS BASEADOS EM APRENDIZADO PROFUNDO

Tese apresentada ao Programa de Pós-Gradua-
ção em Computação do Centro de Desenvolvi-
mento Tecnológico da Universidade Federal de
Pelotas, como requisito parcial à obtenção do tí-
tulo de Doutor em Ciência da Computação.

Orientador: Prof. Dr. Rafael Iankowski Soares
Coorientador: Prof. Dr. Guilherme Perin

Pelotas, 2023



Universidade Federal de Pelotas / Sistema de Bibliotecas
Catalogação na Publicação

L542f Lellis, Rodrigo Nuevo
LelUm fluxo de poda para redes neurais dedicadas a
ataques a canais laterais baseados em aprendizado
profundo / Rodrigo Nuevo Lellis ; Rafael Iankowski Soares,
orientador ; Guilherme Perin, coorientador. — Pelotas, 2023.
Lel153 f.

LelTese (Doutorado) — Programa de Pós-Graduação em
Computação, Centro de Desenvolvimento Tecnológico,
Universidade Federal de Pelotas, 2023.

Lel1. Ataques a canais laterais. 2. Aprendizado de Máquina.
3. Aprendizado profundo. 4. Poda. I. Soares, Rafael
Iankowski, orient. II. Perin, Guilherme, coorient. III. Título.

CDD : 005

Elaborada por Simone Godinho Maisonave CRB: 10/1733



RESUMO

LELLIS, Rodrigo Nuevo. UM FLUXO DE PODA PARA REDES NEURAIS DEDI-
CADAS A ATAQUES A CANAIS LATERAIS BASEADOS EM APRENDIZADO
PROFUNDO. Orientador: Rafael Iankowski Soares. Coorientador: Guilherme Perin.
2023. 153 f. Tese (Doutorado em Ciência da Computação) - Programa de Pós-
Graduação em Computação, Centro de Desenvolvimento Tecnológico, Universidade
Federal de Pelotas, Pelotas, 2023.

Devido ao crescente número de serviços disponíveis por meio da Internet nas
últimas décadas, é cada vez mais importante oferecer segurança às informações de
usuário que trafegam por diferentes meios de comunicação. Para isso, sistemas com-
putacionais se apoiam no uso de criptografia como modo de proteger as informações
dos usuários. Atualmente, o uso de algoritmos de criptografia encontra-se embarcado
em muitos dispositivos e aplicações, o que potencializa a ameaça de ataques que
exploram características físicas do hardware que executa tais algoritmos. Esta classe
de ataques é chamada de Ataques de Canal Lateral (do inglês Side Channel Attacks
ou SCAs). Muitas proteções contra SCAs, chamadas contramedidas, são encontradas
na literatura. Entretanto, são encontradas vulnerabilidades nessas contramedidas.
Neste contexto, técnicas de Aprendizado profundo (do inglês Deep Learning ou DL)
têm atraído interesse crescente por constituírem-se como recursos eficientes e em
constante evolução. No entanto, o custo computacional de aplicar DL no cenário
de SCA é alto. Estudos relatam experimentos com duração de semanas de uso de
infraestrutura computacional. Este trabalho propõe reduzir o esforço computacional
de SCAs baseados no uso de redes neurais pela redução do tamanho destas via
técnicas de poda. Além disso, otimiza-se aqui o esforço computacional do processo
de redução de redes. Resultados experimentais demonstram reduções entre 40 a
50% na quantidade de parâmetros de redes, bem como reduções de até 57.17% no
tempo de treinamento. Redes reduzidas conseguem realizar ataques utilizando me-
nos traços que as respectivas redes originais, em todos os casos. Adicionalmente, as
redes reduzidas são treináveis por menos épocas que as respectivas redes originais.
Com isto reduz-se ainda mais o tempo para realizar ataques. Esta Tese demonstra o
potencial de aumento do nível de ameaça representado por SCAs baseados em DL.

Palavras-chave: Ataques a Canais Laterais. Aprendizado de Máquina. Aprendizado
Profundo. Poda.



ABSTRACT

LELLIS, Rodrigo Nuevo. A PRUNING FLOW FOR NEURAL NETWORKS DEDI-
CATED TO SIDE-CHANNELS ATTACKS BASED ON DEEP LEARNING. Advisor:
Rafael Iankowski Soares. Coadvisor: Guilherme Perin. 2023. 153 f. Thesis (Doc-
torate in Computer Science) - Technology Development Center, Federal University of
Pelotas, Federal University of Pelotas, Pelotas, 2023.

Due to the increasing number of services available over the Internet in recent
decades, it is becoming increasingly important to provide security for user information
transmitted through various communication channels. To achieve this, computational
systems rely on the use of encryption as a means to protect user information. Cur-
rently, encryption algorithms are embedded in many devices and applications, which
enhances the threat of attacks that exploit the physical characteristics of the hardware
executing these algorithms. This class of attack is called Side Channel Attacks (SCAs).
Many protections against SCAs, referred to as countermeasures, are found in the lit-
erature. However, vulnerabilities are discovered in these countermeasures. In this
context, Deep Learning (DL) techniques have attracted increasing interest as they are
efficient and continuously evolving resources. Nevertheless, the computational cost of
applying DL in the SCA scenario is high. Studies report experiments lasting weeks
using computational infrastructure. This work aims to reduce the computational effort
of SCA based on neural networks by reducing their size through pruning techniques.
Additionally, the computational effort of the network reduction process is optimized.
Experimental results demonstrate reductions of 40 to 50% in the number of network
parameters, as well as reductions of up to 57.17% in training time. Reduced networks
can perform attacks using fewer traces than their respective original networks in all
cases. Furthermore, reduced networks require fewer training epochs than their origi-
nal networks, reducing the time needed to carry out attacks. This thesis demonstrates
the potential for an increased threat level posed by DL-based SCAs.

Keywords: Side Channel Attacks. Machine Leaning. Deep Learning. Pruning.
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1 INTRODUÇÃO

Desde as últimas décadas tem-se intensificado o uso de sistemas computacionais
interconectados pela rede mundial de comunicação, a Internet, onde cresce também
o número de usuários mal-intencionados dedicados a espionagem eletrônica, frau-
des e diversas outras práticas para obter vantagens ou acesso a serviços e dados
sigilosos, de modo que a segurança se torna imprescindível (FRIEDEL; HOLZER;
SARKANI, 2020). Como exemplos de sistemas computacionais do nosso cotidiano é
possível destacar o e-commerce, serviços bancários, reservas de passagens e mais
recentemente, com a possibilidade de objetos trocarem informações entre si com o
surgimento da Internet das Coisas, novos serviços tem surgido como casas, edifícios
e até mesmo cidades inteligentes (KIRIMTAT et al., 2020), de modo que a informação
deve ser protegida por meio de protocolos especiais e, sem dúvida, o uso obrigatório
da criptografia para ocultar as informações. Os algoritmos criptográficos se apoiam
em recursos matemáticos e lógicos para alterar uma mensagem a ser transmitida,
também conhecida como texto claro, que se transforma em uma mensagem cifrada
ou texto cifrado após computada pelo algoritmo criptográfico. Esta computação fica
condicionada ao uso de uma chave criptográfica de modo que somente possa ser
interpretada pelo transmissor e receptor que tiverem conhecimento da chave cripto-
gráfica (QADIR; VAROL, 2019).

Os avanços da microeletrônica permitiram implementações em hardware dos al-
goritmos criptográficos (CHOI et al., 2020). Por outro lado, Kocher (1996) mostra ser
possível relacionar dados computados em sistemas computacionais mesmo fazendo
uso de criptografia com propriedades físicas tais como por exemplo, o tempo de execu-
ção (KOCHER, 1996), consumo de energia (KOCHER; JAFFE; JUN, 1999), emissão
eletromagnética (AGRAWAL et al., 2002), entre outros (GENKIN; SHAMIR; TROMER,
2017). Os ataques desse tipo são chamados de ataques a canais laterais ou ocultos
(do inglês, Side Channel Attacks - SCAs). Neste contexto, existem na literatura dife-
rentes tipos de ataques: ataques de indução de falhas (FUHR et al., 2013), Ataques
Simples (do inglês, Simple Power Analysis – SPA) e Diferencial por Análise do Con-
sumo (do inglês, Differential Power Analysis – DPA) (KOCHER; JAFFE; JUN, 1999)
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e Análise da radiação Eletromagnética (em inglês Simple ElectroMagnetic Analysis –
SEMA ou Differential Electromagnetic Analysis - DEMA) (AGRAWAL et al., 2002).

DPA/DEMA são bastante populares por serem não-invasivos, não deixando vestí-
gios e eliminando a possibilidade de comprometimento do funcionamento do sistema
criptográfico após a realização do ataque. Além disso, o setup para realização dos
ataques possui um custo relativamente baixo, e o atacante não precisa ter um conheci-
mento detalhado sobre o algoritmo criptográfico, tampouco sobre sua implementação
(MANGARD; OSWALD; POPP, 2007). Entretanto, esses ataques exigem uma grande
quantidade de informação, na forma de traços, para que seja possível decifrar a chave
criptográfica. Mais ainda, os traços devem estar alinhados no domínio do tempo para
obter sucesso. Essa fragilidade temporal, tornou possível a criação de proteções,
chamadas contramedidas que podem atuar de diversas formas, como por exemplo,
introduzindo ruído nas medições do consumo como em (BOEY et al., 2010), (CHOU;
LU, 2019), (DAS et al., 2020), (KIZHVATOV, 2009), (LIU; CHANG; LEE, 2010) e (LIU;
CHANG; LEE, 2012), impedindo análises de correlação mascarando os dados proces-
sados (TRICHINA; DE SETA; GERMANI, 2003), (GOLIC, 2007) e (CORON; GOUBIN,
2000), ou então buscando obter um consumo uniforme para qualquer sequência de
dados de entrada (LIM et al., 2017). Também foram propostas combinações de con-
tramedidas, como em (WANG et al., 2016) e (SOARES, 2010). Entretanto, etapas
de pré-processamento podem ser incorporadas ao fluxo de ataques com o intuito de
neutralizar tais contramedidas realinhando os traços, como pode ser observado em
(LELLIS; SOARES, 2017), (LODER, 2014), (LE et al., 2007) e (NAGASHIMA et al.,
2007).

Os ataques DPA/DEMA são realizados a partir de um modelo de consumo, geral-
mente baseado na Distância Hamming (Hamming Distance – HD) ou no Peso Ham-
ming (Hamming Weight – HW), com o qual as amostras dos traços do consumo são
analisadas estatisticamente. Esta análise ocorre por meio da diferença das médias.
De maneira análoga, o ataque conhecido como Correlation Power Analysis – CPA
(BRIER; CLAVIER; OLIVIER, 2004), do mesmo modo pode usar ambas as métricas
matemáticas HD e HW para definir modelos hipotéticos de consumo e calcular a corre-
lação existente com os traços de consumo medidos usando a Correlação de Pearson.
Já os chamados Template Attacks - TA propostos por (CHARI; RAO; ROHATGI, 2002),
utilizam um modelo Gaussiano de ruído para definir e registrar os modelos de traços
DPAs relativos a um conjunto pré-definido de operações. Assim, esse tipo de ataque
compara os traços de consumo medidos ao modelo através de parâmetros como a
média e covariância.

Em função da evolução da área de inteligência artificial, técnicas de Aprendizado
de Máquina (do inglês, Machine Learning – ML) e de Aprendizagem Profunda (do in-
glês, Deep Learning – DL) foram recentemente empregadas para criar modelos a partir
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de um dispositivo criptográfico específico, para que este possa ser utilizado em dis-
positivos com características semelhantes (Profiling Attacks), abordados em diversos
trabalhos encontrados na literatura (HETTWER; GEHRER; GÜNEYSU, 2020), (YANG
et al., 2012) e (LERMAN et al., 2013). Entretanto, estes trabalhos têm como estudo
de caso dispositivos desprotegidos. Contudo, atualmente existem várias propostas de
contramedidas disponíveis na literatura, das quais muitas estão baseadas no desali-
nhamento temporal dos traços do consumo (HETTWER et al., 2020), (SINGH et al.,
2020) e (CHONG et al., 2021). É, portanto, interessante verificar o desempenho de
tais técnicas aplicadas a dispositivos protegidos, com o intuito de avaliar vulnerabilida-
des dos mesmos.

Neste contexto, são encontrados na literatura trabalhos que realizam ataques SCA
baseados em ML e DL em dispositivos dotados de desalinhamento temporal como
contramedidas (LERMAN; MARTINASEK; MARKOWITCH, 2017), (?) e (PROUFF
et al., 2018). Além disso, ataques Non-Profiled baseados em técnicas de ML/DL foram
apresentados em Timon (2018) e Timon (2019). Entretanto, os métodos apresentados
exigem um grande esforço computacional, o que dificulta bastante o ataque na maio-
ria dos casos. Como exemplo, Zhou; Standaert (2020) reportaram um tempo de uma
semana para revelar um único byte da chave criptográfica.

Métodos para reduzir o tamanho de redes neurais, reduzindo assim o esforço
computacional exigido, são encontrados na literatura dentro das mais diversas áreas.
Knight; Lee (2021), Guan; Zhang (2020), Gkalelis; Mezaris (2020), Kim; Kim (2020),
Ghosh et al. (2019) e Li; Zhu; Sun (2019) usam a técnica de poda como uma forma
de reduzir o tamanho de redes neurais. Nestes trabalhos, os autores apresentam
significativas reduções na complexidade de suas redes, geralmente com o propósito
de aplicá-las em sistemas embarcados (que como se sabe, estas possuem restri-
ções de memória e processamento). Apesar do treinamento de redes neurais não ser
realizado em sistemas embarcados na área de SCA, os modelos necessários para
essa finalidade podem ser constituídos de até centenas de milhões de parâmetros
(para modelos avançados, utilizados para ataques em dispositivos protegidos) (VAN
DER VALK et al., 2020), elevando exponencialmente o tempo total do ataque. Outro
exemplo interessante é o trabalho proposto por Timon (2018), onde a mesma rede
neural precisa ser retreinada 256 vezes para atacar um byte de chave do AES em um
cenário de aprendizado profundo sem perfil.

As técnicas de poda podem ser aplicadas em diferentes granularidades: pesos,
canais (neurônios) ou camadas. Han et al. (2015) e Guo; Yao; Chen (2016) propõem
métodos que removem iterativamente os pesos (conexões entre os neurônios) consi-
derados não-importantes. Embora resulte em uma redução na quantidade de parâme-
tros das redes neurais, e consequentemente no tempo de treinamento das mesmas,
essa abordagem é bastante custosa computacionalmente, pois, trata-se de métodos
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iterativos, necessitando de muitos treinamentos da rede (um a cada iteração) para ve-
rificação da acurácia da rede após cada remoção. Além disso, a poda de pesos é a
opção menos eficiente dentre as diferentes granularidades de poda, pois visa a remo-
ção de pesos individuais, ao passo que conjuntos de pesos (neurônios ou camadas)
poderiam ser considerados no processo. A remoção de canais, também referida como
cirurgia ou processo de ablação por Hu et al. (2016), fornece um modelo reduzido que
é mais rápido de treinar, levando em conta um método mais eficiente. Em particular,
Hu et al. (2016). apresentaram uma técnica que remove neurônios de acordo com sua
taxa de ativação. Em Chen et al. (2021) e Fan; Tang; Ma (2022), os autores propuse-
ram métodos para remover canais (filtros ou mesmo a camada inteira) de camadas de
convolução em uma rede neural convolucional (CNN). Entretanto, é mais interessante
obter métodos para remoção de canais mais abrangentes que possam ser aplicados à
filtros e a neurônios de camadas densas (aplicável a CNNs e MultiLayer-Perceptrons
- MLPs). Ainda, poda considerando camadas são viáveis somente em redes maiores
do que as encontradas na literatura para aplicações em casos de SCA (com muito
mais camadas), pois caso contrário a degradação causada pelo método tende a afe-
tar seu funcionamento. A cirurgia ou ablação já foi considerada no contexto de criação
de perfil SCA em (WU et al., 2021) como um método para explicar a neutralização
de contramedidas ocultas. Aqui, adotamos cirurgia para reduzir o tempo total de trei-
namento e o número de parâmetros treináveis de redes neurais profundas, o que é
altamente atraente em avaliações de segurança. Encontrando uma rede neural menor
e mais rápida para treinar, com o intuito de revelar um único byte de chave criptográ-
fica (comumente feito na literatura), o mesmo modelo reduzido pode revelar os bytes
restantes da chave, uma vez que atacar outros bytes de chave requer retreinamento
da rede.

Diante do exposto, é notória a necessidade de métodos de treinamento mais rápi-
dos. Embora apresente benefícios em relação à eficiência dos ataques, a aplicação
desta técnica a SCAs foi muito pouco explorada por pesquisadores. Perin; Wu; Pi-
cek (2021) mencionam que existem muitas possibilidades de implementar a técnica
de poda em redes neurais aplicadas à SCA, reduzindo sua limitação em termos de
complexidade, o que motiva o problema de pesquisa considerado nesta Tese.

1.1 Problema de Pesquisa

Considerando o objetivo de contribuir na área de SCA através do uso de algoritmos
de inteligência artificial, o problema central desta Tese consiste em soluções para o
seguinte questionamento:

É possível desenvolver um fluxo de ataque para SCA, baseado em métodos
de aprendizado profundo que seja eficiente contra dispositivos dotados de



18

contramedidas temporais, com esforço computacional menor do que os
trabalhos propostos na literatura até o presente momento?

Este problema se desdobra nos seguintes aspectos:

• Quais algoritmos de aprendizado profundo se adaptam melhor ao problema de
SCA?

• Quais etapas devem compor o fluxo de ataques capaz de neutralizar contrame-
didas temporais?

• Existem métodos para reduzir o tamanho (quantidade de parâmetros) da rede
neural, a fim de mitigar o excesso de esforço computacional empregado para
realizar o ataque, mantendo a eficiência necessária?

Os desafios relacionados acima, constituíram a origem dos objetivos perseguidos
nesta Tese.

1.2 Objetivos

O objetivo principal desta Tese, considerando o problema de pesquisa apresen-
tado, é desenvolver um fluxo para ataques a canais laterais baseado em técnicas de
aprendizado profundo que apresente um esforço computacional reduzido comparado
à literatura.

Esta Tese considera o uso de redes neurais, além de técnicas que possibilitem a
redução destas redes, mantendo a sua eficiência no ataque.

A fim de alcançar esse objetivo principal, são destacados a seguir, os objetivos
específicos que foram contemplados:

• Buscar na literatura, trabalhos que aplicam algoritmos de aprendizado profundo
no contexto de SCA sob diferentes cenários e contramedidas, assim como estu-
dos que comparam algoritmos de aprendizado profundo no contexto de SCA;

• Analisar os trabalhos que empregam inteligência artificial em SCAs sob diferen-
tes métricas;

• Explorar métodos para reduzir as redes empregadas, a fim de mitigar o excesso
de esforço computacional empregado para realizar o ataque, mantendo a efici-
ência necessária;

• Contribuir para a área de SCAs, propondo um fluxo de ataques a canais laterais
baseado em DL, com esforço computacional e eficiência aceitáveis;

• Avaliar o fluxo de ataque desenvolvido, através de métricas de eficiência do ata-
que e esforço computacional adequadas;
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1.3 Contribuições da Tese

Uma vez alcançados os objetivos descritos na Seção 1.2, o trabalho desenvolvido
nesta Tese traz as seguintes contribuições no campo dos SCAs:

1. Verificação da viabilidade de aplicação de técnicas de redução, através de poda,
de redes neurais no contexto de SCA. Com isto, mostrou-se que é possível re-
alizar esse tipo de ataques com redes de tamanhos reduzidos em relação às
encontradas na literatura;

2. Obtenção de redes neurais mais eficientes do que as encontradas na literatura.
As redes reduzidas através do método proposto necessitam de menos traços do
consumo para realizar ataques bem sucedidos. Além disso, por se tratarem de
redes menores, o tempo de treinamento também é menor em relação às redes
apresentadas na literatura, tornando assim, os ataques mais rápidos e com a
necessidade de menos recursos computacionais;

3. Processo de redução de redes neurais One-Shot, evitando custosos ciclos de
remoção e treinamento comuns na maioria das técnicas de poda encontradas
na literatura;

Através das contribuições citadas acima, pudemos apontar o potencial aumento da
ameaça causada por essa classe de ataques, uma vez que atacantes são capazes de
realizar ataques mais rápido e com menos recursos computacionais.

1.4 Estrutura da Tese

Esta Tese está organizada em sete Capítulos, descritos a seguir. No Capítulo 2 é
apresentada uma revisão sobre o algoritmo alvo dos SCAs considerados nesta Tese e
os principais Ataques Non-Profiled encontrados na literatura. Este Capítulo traz uma
revisão sobre os principais conceitos e o cenário do problema aqui abordado. Ainda
com o objetivo de fornecer embasamento ao leitor, são apresentados no Capítulo 3
conceitos sobre DL, assim como seus principais algoritmos. No Capítulo 4 são dis-
cutidos trabalhos que empregam algoritmos de aprendizado de DL no contexto de
ataques por canais laterais, sendo apresentada uma comparação entre eles. O Capí-
tulo 6 o método proposto nesta Tese, assim como os experimentos realizados neste
trabalho. Finalmente, o Capítulo 7 traz as considerações finais desta Tese, bem como
propostas para trabalhos futuros.



2 ALGORITMO AES, ATAQUES POR CANAIS LATERAIS E
CONJUNTOS DE DADOS EXPERIMENTAIS

Este Capítulo inicia com uma descrição do algoritmo criptográfico Advanced En-
cryption Standard – AES, o qual é atualmente o objeto de estudo da maioria dos
trabalhos encontrados na literatura. Seguindo esta abordagem, esta Tese apenas
considera o algoritmo AES como objeto de estudo. Aborda as principais categorias de
ataques por canais laterais: ataques non-profiled e profiled. Também, descreve-se os
conjuntos de dados abertos utilizados nos experimentos.

2.1 Algoritmo Criptográfico AES

O algoritmo de criptografia simétrico AES surgiu a partir da necessidade de subs-
tituir seu antecessor, o Data encryption Standard – DES (DES, 1977), principalmente
devido ao tamanho de chave de 56 bits. Portanto, em 1997 o NIST (do inglês, Na-
tional Institute of Standards and Technology) lançou um concurso para a criação de
um novo algoritmo simétrico. No ano 2000, após análises de especialistas, Rijndael
foi dado como o vencedor do concurso. Assim, o algoritmo proposto por Vicent Rij-
men e Joan Daemen (DAEMEN; RIJMEN, 1999) cumpriu todos os requisitos com bom
desempenho de hardware e software.

2.1.1 Estrutura

A estrutura do AES suporta chaves e blocos de dados de entradas de 128, 192 e
256 bits. O número de etapas do algoritmo, chamadas de rodadas, varia de acordo
com o tamanho da chave. Assim, podemos ter 10, 12 ou 14 rodadas no algoritmo para
respectivas chaves de 128, 192 e 256 bits. Para manter a abordagem simplificada,
este Capítulo irá considerar apenas a versão AES128.

No processo de cifração, o AES executa as seguintes operações em cada rodada:
AddRoundKey, SubBytes, ShiftRows e MixColumns. O processo de descifra-
ção executa em cada rodada a operação AddRoundKey e a operações inversas
InvSubBytes, InvShiftRows e InvMixColumns. Em ambos os processos, uma
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operação inicial de AddRoundKey ocorre antes da primeira rodada (e também na
última rodada, como vemos na Figura 1). Na última rodada a operação MixColumns

(respectivamente InvMixColumns) é suprimida (para a decifração, esta operação é
suprimida na primeira rodada). Os diagramas em blocos das operações de cifração e
decifração do AES são representados na Figura 1.

Figura 1 – Diagrama em blocos dos processos de cifração e decifração do AES128.

Entre cada uma das operações do algoritmo AES, há um estado (gerado como
saída das operações) formado por 16 bytes, organizados em formato matricial, com
4 linhas e 4 colunas. A chave de cifração ou decifração é expandida em N + 1

(onde N refere-se ao número de rodadas) chaves de rodadas em uma operação de
KeySchedule. A seguir, descreve-se em detalhes cada umas das etapas do AES.

2.1.1.1 AddRoundKey

Na etapa de AddRoundKey é realizada uma operação XOR entre o estado e a
chave da rodada. Sendo assim, essa transformação opera cada byte individualmente
do estado e da chave correspondente. Dessa forma, a operação executada é: bi,j =

ai,j ⊕ ki,j. Onde, bi,j representam os bits do estado gerado, ai,j são os bits do estado
de entrada e ki,j são os bits da chave. A Figura 2 ilustra a operação AddRoundKey

no AES128.
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Figura 2 – Operação AddRoundKey.

2.1.1.2 SubBytes

A camada seguinte consiste na parte não-linear do algoritmo, a operação
SubBytes. Nesta camada, cada byte da matriz de estado é substituído por outro
em uma caixa de substituição chamada SBOX (do inglês, Substitution Box). Todos os
valores da SBOX estão em hexadecimal. A substituição é realizada da seguinte forma:
os quatro primeiros e os quatro últimos bits do byte representam em hexadecimal, res-
pectivamente, a linha e a coluna em que se encontra o novo nibble.

Tabela 1 – Tabela de Substituição para operação SubBytes. Fonte: (HERON, 2009)

Com base na Tabela 1, podemos perceber que, se por exemplo, temos o byte c2
a ser substituído, isso significa que devemos buscar o novo byte na linha c, coluna 2.
Olhando na Tabela, podemos identificar o byte 25.
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2.1.1.3 ShiftRows

Na operação de ShiftRows, as linhas do Estado são rotacionadas ciclicamente,
conforme ilustrado na Figura 3. A operação inversa, InvShiftRows, realiza os deslo-
camentos na direção oposta. Esta fase do algoritmo AES garante com que as colunas
da matriz de estado interajam entre si durante as rodadas da cifração ou decifração.

Figura 3 – Operação de ShiftRows.

2.1.1.4 MixColumns

A operação de MixColumns garante que as linhas da matriz de estado do algo-
ritmo AES interajam entre si durante as rodadas de cifração e decifração. Combinada
com a operação de ShiftRows, a operação MixColumns garante que cada byte da
saída da matriz de estado dependa de cada byte da matriz de estado de entrada.
Considerando-se cada coluna da matriz de estado [a0, a1, a2, a3], constrói-se com os
elementos desta coluna um polinômio de grau menor que 3 com coeficiente em GF (28)

(isto é, Campo de Galois). Uma nova coluna é produzida utilizando-se o polinômio 1:

a(X) = a0 + a1.X + a2.X
2 + a3.X

3 (1)

e multiplicando-se pelo polinômio:

c(X) = 0x02+ 0x01.X + 0x01.X2 + 0x03.X3 (2)

e com o resultado da multiplicação modulo M(X) = X4 + 1. Esta operação é repre-
sentada pela seguinte operação matricial em GF (28):

b0

b1

b2

b3

 =


0x02 0x03 0x01 0x01

0x01 0x02 0x03 0x01

0x01 0x01 0x02 0x03

0x03 0x01 0x01 0x02

 .


a0

a1

a2

a3

 (3)

Pelo fato da operação matricial da Equação (3) ser executada em GF (28), ela se
torna invertível. Portanto, a inversa da operação de MixColumns, InvMixColumns,
pode ser implementada com a mesma operação matricial da Equação (3).
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Os algoritmos de cifração e decifração para o AES128 são descritos nos Algoritmos
das Figuras 4 e 5, respectivamente.

Figura 4 – Algoritmo AES128 - Cifração.

Figura 5 – Algoritmo AES128 - Decifração.

2.1.1.5 KeySchedule

Conforme pode ser observado nos Algoritmos mostrados nas Figuras 4 e 5,
chaves de rodada Ki, para i = 0 . . . 10, são empregadas em cada operação de
AddRoundKey. A obtenção dessas chaves de rodada resulta da operação de
KeySchedule. Cada uma das 11 chaves de rodada para o algoritmo AES128 con-
siste de 4 palavras de 32 bits, sendo que cada uma dessas palavras corresponde a
uma coluna da matriz de estado. A operação KeySchedule faz uso de uma constante
de rodada (RCi) que pode ser descrita como:

RCi ←− xi (mod x8 + x4 + x3 + x+ 1) (4)

Assim, as chaves de rodada são rotuladas como (W4i, W4i+1, W4i+2, W4i+3) onde i

indica a rodada. A primeira chave (chave de cifração) é dividida em quatro palavras de
32 bits, (k0, k1, k2, k3). As chaves de rodada são então calculadas através do Algoritmo
mostrado na Figura 6, onde a operação RotBytes é a função que rotaciona uma
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palavra em um byte para a esquerda e SubBytes é a mesma operação de substituição
utilizada na cifração e aplicada em cada byte da palavra.

Figura 6 – Operação KeySchedule para AES128.

O algoritmo AES possui diferentes modos de aplicação. O mais simples de todos
é o modo ECB (Eletronic Code Book ) e será considerado durante todo este projeto de
pesquisa.

2.2 Principais Ataques por Canais Laterais

Esta Seção revisa o fundamento dos principais ataques por canais laterais. Ata-
ques por canais laterais utilizam diferentes vazamentos de informação não intencio-
nais a partir de um dispositivo eletrônico. O consumo, inicialmente referenciado por
ataque por análise de potência (em inglês, Power Analysis Attack ), é apenas uma de-
las. Outros exemplos são emissão eletromagnética, tempo de execução, temperatura
ou canais acústicos. No entanto, o termo potência é utilizado na nomenclatura dos
ataques sem necessariamente indicar que os sinais coletados representem medições
de potência.

Uma forma comum de dividir ataques por canais laterais é com relação ao modelo
de ameaça. Dessa forma, a divisão de mais alto nível é entre ataques non-profiled e
profiled, conforme descrito a seguir.

2.2.1 Ataques Non-Profiled

Esta Seção apresenta os ataques non-profiled que usam modelos de consumo de
energia genéricos para circuitos CMOS, tais como os baseados em Peso Hamming
e Distância Hamming, e através de análises estatísticas ou modelos de correlação
realizam a comparação entre o consumo hipotético modelado e o consumo medido.

2.2.1.1 Ataques DPA e DEMA

Os ataques DPA apresentados por Kocher; Jaffe; Jun (1999), exploram a relação
de dependência entre o consumo de um dado circuito digital dedicado à execução
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de um algoritmo criptográfico com os dados processados pelo mesmo. Para realizar
o ataque, não é necessário que o atacante tenha um conhecimento detalhado do
algoritmo criptográfico nem de sua implementação. Porém, DPA exige uma grande
quantidade de traços para a análise estatística. Outra característica interessante de
ataques DPA é que mesmo diante de perturbações elétricas durante o monitoramento
e aquisição dos traços, é possível realizar ataques bem-sucedidos. Seu custo de
execução é relativamente baixo, e por tratar-se de um ataque não-invasivo, não deixa
vestígios no dispositivo atacado. Ainda, este tipo de ataque possui um bom índice de
sucesso. Essas características tornaram os ataques DPA, os mais populares dentro
da área de criptoanálise.

O ataque DPA é composto de 5 etapas: (i) escolher um resultado intermediário
alvo, (ii) medir e coletar traços, (iii) calcular valores intermediários hipotéticos, (iv) apli-
car um modelo de consumo ao dispositivo atacado e (v) avaliar hipóteses de subcha-
ves.

A primeira etapa do ataque consiste em escolher um resultado intermediário do
algoritmo criptográfico alvo. Esse resultado precisa ser uma função f(d, k), onde k é
uma porção da chave secreta e d é parte da mensagem de entrada ou saída conhe-
cida. Se o atacante obtiver uma função que satisfaça essa condição, esta pode ser
utilizada como alvo do ataque para encontrar k. A mensagem conhecida d pode ser
tanto uma mensagem de entrada ou um criptograma de saída, ou até mesmo outro
dado intermediário que seja conhecido.

Na segunda etapa do ataque, a potência dissipada é medida enquanto várias en-
criptações ou decriptações são executadas sobre um conjunto de D dados distintos,
usando a mesma chave criptográfica. Assim, D é um conjunto contendo diferentes
dados aleatórios di, D = {d1, d2, . . . , dD}.

Para cada encriptação ou decriptação é armazenado um traço ti de potência cor-
respondente, formando um conjunto T de traços. Como temos um traço a cada encrip-
tação ou decriptação de um dado, D e T possuem o mesmo tamanho. São armazena-
das J amostras de potência em cada traço. Portanto, cada traço ti pode ser descrito
como ti,j = {t0,j, . . . , t0,J}. Finalmente, esses traços são armazenados em uma matriz
MT de tamanho D×J (ou T×J), conforme Equação (5).

MT =


t0,0 t0,1 t0,2 . . . t0,J

t1,0 t1,1 t1,2 . . . t1,J
...

...
... . . . ...

tD,0 vD,1 tD,2 . . . tD,J

 (5)

Nesta etapa, pode-se perceber que os traços de potência devem estar bem alinha-
dos para que o ataque DPA obtenha sucesso, pois cada coluna tj da matriz MT deve
corresponder às mesmas operações durante a encriptação ou decriptação para que
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possam ser comparadas e analisadas. Assim, para que o ataque tenha eficiência, os
traços de potência analisados, devem estar alinhados no domínio do tempo.

A terceira etapa consiste no cálculo de valores hipotéticos intermediários para to-
das as possibilidades de valores de k, relembrando que k são hipóteses da chave
secreta. Portanto, faz-se o cálculo de valores hipotéticos intermediários, de acordo
com f(d, k), para todos os valores possíveis de chave.

As hipóteses de chave são denotadas por um conjunto Hk = {hk0, hk1, . . . , hkK},
onde K é o número total de possibilidades de chave k. Assim, através do conjunto de
dados D e do conjunto de chaves hipotéticas Hk, o atacante pode calcular todos os
valores intermediários hipotéticos possíveis para f(d, k).

vi,j = f(di, kj) i = 1, . . . , D e j = 1, . . . , K (6)

Esses valores formam uma matriz denominada MV , que como visto na Equação
(6), tem tamanho D × K. A matriz MV é mostrada na Equação (7).

MV =


v0,0 v0,1 v0,2 . . . v0,K

v1,0 v1,1 v1,2 . . . v1,K
...

...
... . . . ...

vD,0 vD,1 vD,2 . . . vD,K

 (7)

Podemos observar, através da Equação (7), que cada coluna j da matriz MV con-
tém os resultados calculados para a hipótese de chave hkj, através de f(di, kj). Obvia-
mente que, se MV possui os resultados intermediários para todas as possibilidades de
chave k, então uma de suas colunas possui os valores intermediários reais calculados
pelo sistema criptográfico durante a encriptação ou decriptação dos dados, realizados
na segunda etapa.

Também é óbvio que a chave secreta é um dos elementos do vetor Hk descrito
anteriormente. Esse elemento é denominado de hkck. Assim, o ataque DPA procura
descobrir, em qual coluna da matriz MV encontram-se os mesmos valores produzidos
por f(d, k) durante a encriptação ou decriptação do vetor D.

A quarta etapa do ataque DPA, é a etapa em que o modelo de consumo é aplicado
ao dispositivo que está sendo atacado. São relacionados os traços de potência com
os Pesos Hamming (quantidade de bits diferentes de zero) dos resultados interme-
diários vi,j anteriormente calculados, pois o Peso Hamming de um circuito CMOS é
proporcional à potência do mesmo. Uma alternativa a este modelo é o uso da Distân-
cia Hamming para modelar a potência. Esta alternativa aproxima-se mais do consumo
real de um circuito digital e, portanto, é mais usado na prática. A Distância Hamming
entre dados com representação binária é igual a diferença de seus Pesos Hamming, o
que pode ser obtido logicamente pela execução de uma operação XOR. Nos ataques
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DPA a Distância Hamming é aplicada sobre os valores intermediários calculados pela
função escolhida na primeira etapa, tal como mostrado na Equação (8).

HD = r0 ⊕ r1 (8)

onde r0 e r1 são pesos Hamming e HD é a distância Hamming.
Com isso, (KOCHER; JAFFE; JUN, 1999) associaram a cada valor intermediário

hipotético calculado vi,j um único valor binário hi,j relacionado ao consumo deste valor
intermediário da seguinte forma: se o consumo relacionado à este valor for alto, ou
seja, vi,j = 1, então hi,j = 1 , caso contrário, hi,j = 0 . Estes valores hi,j formam uma
matriz chamada de MH .

Finalmente, a última e quinta etapa do ataque DPA, tem como objetivo avaliar as
hipóteses de subchaves, atividade realizada a partir das matrizes MT dos traços de
potência e MH a matriz dos valores de consumo hipotéticos calculados a partir do
modelo de potência utilizado.

Cada coluna hj da matriz MH é comparada com a coluna correspondente tj da
matriz MT , ou seja, nesta etapa o atacante compara os valores de consumo hipoté-
ticos de cada hipótese de chave com os traços de potência coletados do dispositivo
atacado. Os resultados são armazenados em uma matriz MR de tamanho D x K. Cada
elemento dessa matriz, denominado de ri,j é a comparação com base no método da
diferença das médias, entre as colunas hj e tj, proposto por Kocher et al. em 1999.

Pode-se concluir do exposto até agora que temos os traços de potência ti,j do
sistema criptográfico ao executar encriptação ou decriptação para diferentes dados de
entrada e os resultados intermediários vi,k calculados com base nos dados de entrada,
dentre os quais está o resultado obtido com a chave secreta do sistema de criptografia
vck, pois todas as possibilidades de chave são utilizadas nos resultados intermediários.
Assim, pode-se notar que em algum momento, ou instante de tempo denominado ct,
os traços de potência estão relacionados ao resultado intermediário vck executado
sobre a chave secreta verdadeira do circuito criptográfico atacado.

Como os valores hipotéticos de potência hi,j são calculados sobre os resultados
intermediários vi,j, podemos perceber que hck, que é a potência hipotética calculada
com o resultado intermediário da chave secreta verdadeira vck, está fortemente rela-
cionado à tct, que é o traço de potência medido, no instante que está executando a
encriptação ou decriptação do resultado intermediário para a chave secreta verdadeira
vck.

Devido a esta forte relação entre hck e tct, o atacante pode descobrir o índice ck da
chave secreta, e por sua vez a própria chave hkck, através da observação dos valores
da matriz MR.

Como mencionado anteriormente, Kocher et al. apresentaram como método para
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avaliar as chaves hipotéticas hki, o método da diferença das médias, que no caso dos
ataques DPA é utilizado para relacionar as matrizes MH e MT . Esse método dá-se
da seguinte forma: primeiramente o atacante divide a matriz dos traços de potência
medidos MT em duas outras matrizesMT0 e MT1, sendo MT0 composta pelas linhas
da matriz MT cujos coeficientes hi,j da matriz MH são iguais a zero. E a matriz MT1,
é montada com as linhas restantes da matriz MT . Depois disso, a média das linhas
de cada uma das matrizes MT0 e MT1 é calculada, sendo avg0 o vetor que contém a
média das linhas da matriz MT0 e avg1 o vetor que contém a média das linhas da ma-
triz MT1. A hipótese de chave ki está correta se a diferença absoluta entre os vetores
avg0 e avg1 for maior do que para as outras hipóteses de chave. Cabe aqui destacar
que existem outras formas de relacionar as matrizes MH e MT , dependendo do ata-
que realizado. Como exemplo, podemos citar o coeficiente de correlação utilizado no
ataque CPA descrito na Seção 2.2.1.2. A Figura 7 mostra um fluxo de execução do
ataque DPA descrito acima.

Figura 7 – Fluxo de execução do ataque DPA. Fonte: (SOARES, 2010).

Da mesma forma que o ataque DPA, o ataque DEMA (AGRAWAL et al., 2002)
avalia e monitora a emissão de ondas eletromagnéticas do dispositivo atacado. Os
ataques DEMA capturam os traços gerados pelos campos eletromagnéticos emitidos
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pelos circuitos durante a execução de encriptação ou decriptação, através de sondas
especiais utilizadas em conjunto com estágios amplificadores devido à baixa intensi-
dade do sinal produzido. Para esse tipo de ataque, o atacante deve levar em conta os
problemas causados por ruídos e interferências eletromagnéticas do ambiente onde é
realizado o ataque, ocasionando erros nas leituras dos traços.

2.2.1.2 Ataques CPA

Os ataques por Análise de Correlação de Potência (em inglês, Correlation Power
Analysis) operam basicamente do mesmo modo que os ataques DPA/DEMA descri-
tos na Seção 2.2.1.1. Na verdade, CPA é uma especialização de DPA proposta por
(BRIER; CLAVIER; OLIVIER, 2004). Este tipo de ataque foi proposto com a finalidade
de reduzir o problema de picos fantasmas que eventualmente ocorrem nos ataques
DPA/DEMA.

Neste ataque, o coeficiente de correlação é usado para avaliar a relação entre
cada coluna hi da matriz MH com cada coluna tj da matriz MT . Isto resulta em uma
comparação entre os valores de consumo hipotético e os traços adquiridos em cada
posição de tempo. O resultado é armazenado em uma matriz MR, onde cada elemento
representa o coeficiente de correlação estimado. Assim, pode-se descrever cada valor
ri,j pela Equação (9), onde hi e tj representam os valores médios das colunas hi e tj:

ri,j =

∑D
d=0(hd,i − h̄i) · (td,j − t̄j)√∑D

d=0 (hd,i − h̄i)
2 ·
∑D

d=0 (td,j − t̄j)
2

(9)

Segundo (BRIER; CLAVIER; OLIVIER, 2004) estes coeficientes, ou fatores de cor-
relação, são capazes de rejeitar falsas hipóteses de chave aceitas pela aplicação dos
métodos DPA/DEMA.

2.2.2 Ataques Profiled

Os ataques profiled são aqueles que constroem um modelo estatístico a partir
de medições obtidas de um dispositivo alvo. O atacante tem o controle total sobre
o circuito atacado e pode usar o conjunto de dados a sua escolha para construir o
modelo de consumo para o circuito alvo. A partir de então, por meio de análises
estatísticas pode comparar os traços de consumo medidos com o modelo construído
para inferir hipóteses sobre os dados usados na computação.

2.2.2.1 Ataques por Templates (Template Attacks, TA)

Em TAs, o adversário usa um dispositivo experimental, idêntico ao dispositivo em
teste, para identificar uma pequena seção da amostra S, ou seja, apenas alguns bits
da chave desconhecidos. Empiricamente, ele constrói modelos correspondentes a
cada valor possível dos bits de chave desconhecidos. O modelo consiste nas distri-
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buições de probabilidade média de sinal e ruído. Ele então usa esses modelos para
classificar aquela porção de S e limitar as escolhas para os bits-chave a um pequeno
conjunto. Isso é então repetido com um prefixo mais longo de S envolvendo mais bits
da chave. Assim, os ataques TA usam essencialmente uma estratégia de estender e
remover dirigida pela amostra única S a ser atacada: são usados prefixos cada vez
mais longos de S e os modelos correspondentes para diminuir o espaço de possíveis
prefixos de chave. O sucesso depende criticamente de quão eficazmente a estratégia
de remoção reduz a explosão combinatória no processo de extensão.

Em Chari; Rao; Rohatgi (2002) os autores destacam que os ataques DPA/DEMA
assumem o ruído como um obstáculo que precisa ser reduzido ou eliminado. Neste
sentido, a abordagem proposta concentra-se na modelagem precisa do ruído, a fim
de extrair as informações presentes em um único traço. Portanto, é possível obter-
se sucesso em TA, com apenas um, ou um número limitado de traços. Por outro
lado, em um ataque DPA/DEMA muitos traços são necessários para que o ruído seja
eliminado pela média. Diante disso, a proposta dos autores potencializa ataques a
canais laterais quando o atacante tem acesso a um ou poucos traços de consumo
disponíveis. Entretanto, os autores destacam que é fundamental para o TA que o
adversário tenha um dispositivo experimental idêntico que pode ser programado, o
que claramente se traduz em uma desvantagem do método.

É destacado que os experimentos mostram que uma implementação de um algo-
ritmo criptográfico chamado RC4 (do inglês, Rivest Cipher 4), não passível de técnicas
como SPA e DPA, pode ser facilmente quebrada usando TA com um único traço.

É explicado que o conceito de TA é baseado na Teoria de Detecção e Estimação
de Sinais e, em particular, no uso de técnicas de Teoria da Informação, como ra-
zões de probabilidade para testes de hipóteses. E que embora outras técnicas, como
DPA, também possam ser vistas como aproximações grosseiras de razões de proba-
bilidade, o uso de modelos de mistura Gaussiana é a chave para extrair o máximo
de informações de uma única amostra (traço). Empiricamente, observa-se que em vá-
rias situações as estatísticas univariáveis não são suficientes e apresentam resultados
ruins.

Chari; Rao; Rohatgi (2002) colocam que se tivermos um dispositivo executando
uma das possíveis K sequências de operações {O1, . . . , OK}, um adversário pode
amostrar o consumo durante a operação que deseja identificar ou reduzir significativa-
mente o conjunto de hipóteses possíveis. Isto é uma prática comumente empregada
em processamento de sinais, onde modela-se o sinal, referenciado aqui como um
traço, observado como uma combinação de um sinal intrínseco gerado pela operação
e ruído que é gerado pelo ambiente. Portanto, enquanto o componente do sinal que
representa a operação é o mesmo para diferentes invocações da mesma, o ruído é
melhor modelado como uma amostra aleatória retirada de uma distribuição de proba-
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bilidade de ruído que depende da operação e outras do ambiente de medição. Assim,
a abordagem ótima para o adversário que está tentando encontrar a hipótese certa
dada uma única amostra S é usar a abordagem de máxima probabilidade: a melhor
suposição é escolher a operação de modo que a probabilidade do ruído observado
em S é maximizada. O cálculo dessa probabilidade exige que o adversário modele
com precisão o sinal intrínseco e a distribuição de probabilidade de ruído para cada
operação.

Pode-se perceber, que para o sucesso dos ataques TA, é estritamente necessário
que o atacante consiga obter caracterizações extremamente boas e precisas do ruído.
Contudo, muito embora o adversário se considere altamente competente com tais
caracterizações, na prática aproximações como um modelo Gaussiano multivariável
para as distribuições de ruído produzem resultados satisfatórios.

O trabalho apresentado por Chari; Rao; Rohatgi (2002) enumera quatro passos
para a elaboração de um modelo Gaussiano:

i. Coletar um grande número (L) de amostras (tipicamente mil) no dispositivo expe-
rimental para cada uma das K operações, O1, . . . , OK .

ii. Calcular o sinal médio para cada uma das operações M1, . . . ,MK .
iii. Calcular a diferença entre os pares de sinais médios M1, . . . ,MK para identifi-

car e selecionar somente os pontos P1, . . . , PN em que grandes diferenças aparecem.
O modelo Gaussiano se aplica a esses N pontos. Esta etapa opcional reduz signi-
ficativamente a sobrecarga de processamento com apenas uma pequena perda de
precisão.

iv. Para cada operação Oi, o vetor de ruído N-dimensional para a amostra T é
Ni(T ) = (T [P1] −Mi[P1], . . . , T [PN ] −Mi[PN ]). Calcular a matriz de covariância entre
todos os pares de componentes dos vetores de ruído para a operação Oi usando os
vetores de ruído Ni s para todas as L amostras. As entradas da matriz de covariância∑

Ni são definidas como:

∑
Ni[u, v] = cov(Ni(Pu), Ni(Pv)) (10)

Usando a Equação (10), calcula-se os modelos (Mi,
∑

Ni) para cada uma das K
operações. O sinal para a operação Oi é Mi e a distribuição da probabilidade de ruído
é dada pela distribuição Gaussiana multivariável pNi(.) onde a probabilidade de um
vetor de ruído n é:

pNi(n) =
1√

2πN |
∑

Ni|
exp

(
−1
2
nT

−1∑
Ni

n

)
, n ∈ RN (11)

Onde |
∑

Ni| representa o determinante de
∑

Ni e
−1∑
Ni

é o seu inverso.

Os autores observam que neste modelo, a técnica ideal para classificar uma amos-
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tra S é a seguinte: para cada operação hipotética Oi, calcule a probabilidade de S ter
de fato se originado de Oi. Esta probabilidade é dada calculando primeiro o ruído n
em S usando o sinal médio Mi no modelo e depois calculando a probabilidade de n
usando a expressão para a distribuição de probabilidade de ruído e o

∑
Ni calculado

do modelo. Se o ruído for realmente Gaussiano, então a abordagem de selecionar
o Oi com a maior probabilidade é ótima. A probabilidade de cometer erros em tal
classificação também é computável. Portanto, se o uso dessa abordagem para distin-
guir duas operações O1 e O2 com a mesma caracterização de ruído

∑
Ni , o erro de

probabilidade é dado por:

Pϵ =
1

2
erfc

(
∆

2
√
2

)
(12)

Onde ∆2 = (M1 −M2)
T

−1∑
N

(M1 −M2) e erfc = 1− erf(x).

A seguir, os autores destacam que é necessário que o processo de remoção re-
duza o conjunto de possíveis hipóteses de operações para um número muito pequeno,
garantindo com alta probabilidade que a hipótese correta não seja descartada.

De acordo com Chari; Rao; Rohatgi (2002), uma abordagem que funciona bem
é dimensionar as probabilidades de modo que as probabilidades de ruído em todas
as hipóteses somem. Em seguida, descarta-se as hipóteses com as probabilidades
escalonadas mais baixas até que a probabilidade cumulativa de erro devido às hi-
póteses descartadas alcance o limite de erro desejado. Ao longo do texto, os autores
apresentam outras abordagens para a etapa de remoção das hipóteses de operações.

2.3 Considerações sobre o Capítulo

Este Capítulo apresentou a revisão do algoritmo criptográfico AES utilizado como
estudo de caso para os experimentos aqui propostos. Além disso, foi realizada uma
revisão das principais categorias de ataques por canais laterais, entre eles, ataques
non-profiled e ataques profiled, que são o foco deste trabalho.

O Capítulo busca revisar os modelos de consumo empregados em ataques clássi-
cos, como os apresentados na Seção 2.2. Estes modelos são baseados em análises
estatísticas do comportamento do consumo em circuitos implementados com a tec-
nologia CMOS e, além de serem estáticos, muitas vezes não se adaptam da melhor
forma ao real comportamento dos traços. Desta forma, percebe-se ser interessante o
uso de algoritmos de aprendizado profundo capazes de produzir modelos mais ajus-
tados aos SCA, estratégia usada nos ataques profiled.



3 APRENDIZADO PROFUNDO

Este Capítulo revisa conceitos de Aprendizagem Profunda (do inglês, Deep Lear-
ning – DL). Com isso pretende-se fornecer um background para embasar o entendi-
mento do objeto de estudo desta Tese: redes neurais que são capazes de realizar
ataques por canais laterais. Embora possam existir outros tipos de redes neurais que
realizem essa tarefa, aqui nos deteremos nas duas arquiteturas mais recorrentes na
literatura para este fim e que são usadas no estudo de caso deste trabalho: redes Per-
ceptron de Múltiplas Camadas (do inglês, Multi-Layer Perceptron - MLP) e as Redes
Neurais Convolucionais (do inglês, Convolutional Neural Network - CNN).

3.1 Redes Neurais

A criação e o desenvolvimento de redes neurais artificiais teve como motivação o
reconhecimento de que o cérebro humano processa informações de uma forma to-
talmente diferente do computador digital convencional. O cérebro é uma espécie de
computador altamente complexo, não-linear e paralelo. Ele tem capacidade de orga-
nizar suas células (neurônios) de forma a realizar processamentos (reconhecimento
de padrões, percepção e controle motor, por exemplo) muito mais rápido que os com-
putadores digitais convencionais (HAYKIN, 2001).

Desde o nascimento, um cérebro humano tem uma grande estrutura formada por
diversas áreas, que por sua vez são formadas por neurônios e habilidade de desen-
volver suas próprias regras através do que chamamos de "experiência", que vai sendo
acumulada com o tempo.

De uma forma mais geral, pode-se ver o sistema nervoso humano como um sis-
tema de três estágios. Os receptores convertem estímulos do corpo humano ou do
ambiente externo em impulsos elétricos que transmitem informação para a rede neural
(cérebro). E os atuadores convertem impulsos elétricos gerados pela rede neural em
respostas adequadas para cada saída do sistema (Figura 8).

As conexões entre as células da rede neural humana (o cérebro) são chamadas
de sinapses. As sinapses responsáveis pelas zonas receptivas são os dendritos, en-
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Figura 8 – Representação em diagrama de blocos do sistema nervoso. Fonte: (HAYKIN,
2001)

quanto as sinapses transmissoras denominam-se axônios.
Um neurônio pode receber 10.000 ou mais conjuntos sinápticos e pode se projetar

sobre milhares de células alvo. Através das sinapses, as informações são transmitidas
de um neurônio a outro através de pulsos breves de tensão (ou impulsos - spikes).

A forma como aprendemos a realizar tarefas, e a estrutura organizacional do cére-
bro, com neurônios conectados entre si, inspiraram o desenvolvimento de equivalentes
eletrônicos ou computacionais do cérebro humano (mesmo que ainda de uma forma
primitiva).

3.1.1 Modelo de um Neurônio Artificial

No que concerne as redes neurais artificiais, um neurônio consiste na sua unidade
fundamental de operação, fazendo uma analogia com os neurônios do cérebro hu-
mano. Neuronios, no campo das redes neurais artificiais, são também denominados
perceptrons. Usaremos os termos perceptron e neurônio nesta Tese.

Figura 9 – Simbologia de um Perceptron. Fonte: (HAYKIN, 2001)

A Figura 9 ilustra o modelo de um perceptron. Aqui, pode-se identificar três ele-
mentos básicos deste modelo:

1. Um conjunto de sinapses ou elos de conexão caracterizados por um peso. Como
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podemos na Figura 9, um sinal de entrada xj da conexão (sinapse) j conectada
ao neurônio k é multiplicado pelo seu peso sináptico correspondente wkj. Ao
contrário da sinapse do cérebro, o peso sináptico de um neurônio artificial pode
estar em um intervalo que inclui valores negativos bem como positivos;

2. Um somador que realiza uma soma ponderada dos sinais de entrada. Assim,
são somados todos os valores resultantes da multiplicação de xj por wkj. Essas
operações constituem um combinador linear ;

3. Uma função de ativação para restringir a saída do neurônio. Geralmente o inter-
valo normalizado da amplitude da saída de um neurônio é dado por um intervalo
unitário fechado [0,1], ou ainda [-1,1];

Portanto, para um conjunto de valores de entrada x = (x1, . . . , xm) (comumente
referidos como features na literatura), o perceptron efetua um somatório da combina-
ção linear com pesos wk1, . . . , wkm (ou conexões) relacionados a cada elemento de

entrada xj, isto é,
m∑
j=1

wkjxj. O resultado do somatório é adicionado a um valor de viés

(ou bias), bk.

O resultado da Equação do perceptron, bk +
m∑
j=1

wkjxj, passa por uma função de

ativação ϕ, normalmente não linear. Exemplos de funções de ativação muito utilizadas
na literatura (e como veremos adiante, em ataques por canais laterais) são as funções
tangente hiperbólica, sigmóide, unidade linear retificada, etc. Dessa forma, o valor de
saída yk de um perceptron é apresentado pela Equação abaixo:

yk = ϕ(bk +
m∑
j=1

wkjxj) (13)

3.1.1.1 Tipos de Funções de Ativação

A forma mais básica de definir o estado de um neurônio é aplicando à saída de

(bk +
m∑
j=1

wkjxj) uma Função de Limiar ou como comumente chamada nas áreas de

engenharia, Função Degrau Unitário. Para simplificar as notações subsequentes, va-
mos considerar:

v = bk +
m∑
j=1

wkjxj (14)

A partir disso, podemos definir matematicamente a Função de Limiar, através da
Equação 15:

ϕ(v) =

1 se v ≥ 0

0 se v < 0
(15)
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Neste ponto, é interessante ressalta-se que a Função de Limiar não é diferenciá-
vel, pois esta função apresenta uma descontinuidade na origem. Isso resulta em um
problema para o algoritmo de retropropagação, como veremos mais adiante.

Uma função de ativação que resolve o problema da diferenciabilidade é a função
chamada de Rectified Linear Unit (ReLU). A Função ReLU comporta-se melhor do
que outras funções diferenciáveis, como a tanh por exemplo, pois a derivada desta
função diminui para valores maiores de v. Isso faz com que o gradiente seja próximo
de zero nesses casos, tornando o treinamento da rede bastante lento. Por outro lado,
a derivada da ReLU com relação a sua entrada é sempre 1 para valores positivos.
A função de Ativação ReLU é bastante utilizada em redes neurais (como as MLPs e
CNNs, os estudos de caso presentes nesta Tese).

A Equação 16 descreve o comportamento da Função de Ativação ReLU:

ϕ(v) =

v se v ≥ 0

0 se v < 0
(16)

As camadas de saída das redes neurais utilizadas como estudo de caso neste
trabalho, aplicam a Função de Ativação Softmax. Ela fornece a probabilidade de cada
classe (ou saída) da rede neural. Isso permite que obtenham probabilidades úteis
para problemas multiclasses (como os SCAs).

Em Softmax, a probabilidade de uma amostra particular com a entrada da rede v

pertencendo à i− sima classe pode ser calculada com um termo de normalização no
denominador, ou seja, a soma de todas as M (número de classes) funções lineares:

p(y = i|v) = f(v) =
evi

M∑
j=1

evj
(17)

3.1.2 Perceptrons de Múltiplas Camadas

Nesta Seção, falaremos sobre redes neurais de múltiplas camadas alimentadas
adiante (do inglês, feedforward neural networks). Neste tipo de redes, o sinal de en-
trada se propaga para a frente através da rede, camada por camada. Assim, essas
redes são comumente chamadas de perceptrons de múltiplas camadas (do inglês,
Multi Layer Perceptron -MLP).

As MLPs têm sido aplicadas com sucesso para resolver muitos problemas comple-
xos, através de seu treinamento de forma supervisionada com um algoritmo conhe-
cido como algoritmo de retropropagação de erro (do inglês, error back-propagation
algorithm) (HAYKIN, 2001). Como podemos perceber, esse algoritmo baseia-se na
regra de aprendizagem por correção de erro (revisada na Seção 3.2.2).

A aprendizagem por retropropagação de erro consiste em dois passos através das
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camadas da rede: um passo para frente (propagação), e um passo para trás (retropro-
pagação). No passo para a frente, os dados de entrada são aplicados às camadas de
entrada da rede, e então propagados camada a camada até produzirem uma saída da
rede. Durante a propagação, os pesos da rede são fixos. No passo para trás, os pe-
sos são todos ajustados de acordo com uma regra de correção de erro. Neste caso, a
resposta da rede obtida durante o passo de propagação é subtraída de uma resposta
desejada (alvo) para produzir um sinal de erro. Este sinal de erro é então propagado
para trás através da rede, contra a direção dos pesos (daí o nome de retropropagação
de erro - back-propagation error. Os pesos são então ajustados para que a resposta
da rede se aproxime da resposta desejada. O algoritmo de retropropagação de erro
é também chamado na literatura simplesmente de algoritmo de retropropagação (do
inglês, back-propagation). E o processo de aprendizagem realizado com o algoritmo,
por sua vez, é chamado de aprendizagem por retropropagação.

MLPs, consistem na associação em camadas de diversos percepetrons (Figura 9).
A Figura 10 ilustra uma estrutura de rede neural com três camadas:

• Camada de entrada: esta primeira camada da rede neural é definida com o
número de neurônios equivalente aos dados de entrada (dados de treinamento).

• Camada oculta: esta camada localiza-se entre as camadas de entrada e saída e
pode possuir qualquer número de neurônios.

• Camada de Saída: esta última camada possui o número de neurônios corres-
pondente à tarefa definida para rede neural. Para problemas de classificação, o
número de neurônios na camada de saída é equivalente ao número de possíveis
classes associadas aos dados de treinamento. Para problemas de regressão
linear, o número de neurônios da camada de saída é normalmente equivalente
ao número de neurônios na camada de entrada. Em problemas de classificação,
cada neurônio da camada de saída indica a probabilidade na qual um dado de
entrada processado pertence a uma determinada classe.

Como mostra a Figura 10, todos os neurônios da camada de entrada são total-
mente conectados a cada neurônio da camada seguinte, que no caso é a camada
oculta (do inglês, hidden layer). Da mesma forma, a camada oculta é totalmente co-
nectada aos neurônios da camada de saída. Como consequência, é comum encontrar
na literatura a denominação de camadas em redes neurais como camadas totalmente
conectadas (do inglês, fully-connected layers).

Quando define-se uma rede neural com apenas uma camada oculta, esta rede
neural é considerada uma rede neural rasa (ou do inglês, shallow neural networks).
Este tipo de modelo atende ao Teorema de Aproximação Universal o qual define que
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Figura 10 – MLP com três camadas. Fonte: (HETTWER; GEHRER; GÜNEYSU, 2020)

“uma rede neural com apenas uma camada oculta é capaz de aproximar qualquer fun-
ção contínua” (HORNIK; STINCHCOMBE; WHITE, 1989). Como exemplo, podemos
afirmar que redes neurais rasas são capazes de implementar funções Booleanas, o
que é referido como Aproximação Booleana.

Nos últimas anos, passou-se a utilizar largamente redes neurais com múltiplas ca-
madas ocultas. Estes modelos mais complexos apresentaram resultados superioroes
aos que vinham sendo reportados com redes neurais rasas ou mesmo outros algo-
ritmos de aprendizado supervisionado. Para estes novos e mais complexos modelos
associou-se o termo aprendizado profundo ou, deep learning, DL. DL é um tipo parti-
cular de técnicas de ML bastante poderosas, que são capazes de representar a tarefa
de aprendizado como uma hierarquia aninhada de conceitos, onde representações
mais abstratas de conceitos são construídas a partir das mais simples. Recente-
mente, técnicas de DL têm ganho crescente interesse, motivado pelo fato de terem
sucesso em resolver problemas centrais de inteligência artificial tais como reconheci-
mento de fala e classificação de imagens. Como se pode intuir, essas tarefas lidam
com dados de alta dimensionalidade o que torna exponencialmente mais difícil fazer
um classificador aprender a generalizar bem exemplos não vistos. Isto é um desafio
conhecido como maldição da dimensionalidade (do inglês, Curse of Dimensionality)
(GOODFELLOW; BENGIO; COURVILLE, 2016).
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3.2 Aprendizado de uma Rede Neural

Esta Seção aborda alguns detalhes sobre a forma como as redes neurais apren-
dem a realizar uma determinada tarefa. Nos nossos estudos de caso, as redes são
utilizadas para encontrar as relações entre os traços do consumo medidos e os dados
processados, assim como as operações realizadas por um determinado dispositivo
criptográfico, ou seja, a realização de um ataque por canais laterais.

3.2.1 Aprendizado Supervisionado

Os algoritmos de inteligência artificial podem realizar o aprendizado de uma tarefa
sob dois paradigmas: o aprendizado não supervisionado, onde o algoritmo aprende
somente a partir dos dados fornecidos, e o aprendizado supervisionado. No caso
das redes neurais mais específicamente, o aprendizado é realizado de forma super-
visionada (aprendizado supervisionado). Nesta categoria de Aprendizado Profundo
o seu processamento é dividido em duas etapas. Em uma etapa inicial é realizado
um treinamento do sistema, onde são fornecidos ao algoritmo um conjunto de dados
com entradas do problema propriamente ditas e suas respectivas saídas esperadas.
A partir destes dados, a rede neural ao computá-los busca aprender uma relação, ou
função, existente entre entradas e saídas. Após isto, na segunda etapa, o objetivo é
que para novas entradas, a rede neural seja capaz de predizer as saídas com base
em seu aprendizado.

Algoritmos com estas características são chamados de supervisionados, pois seu
processo de aprendizagem se assemelha a de um instrutor, ou supervisor, fornecendo
as respostas corretas para as entradas dadas. Para a avaliação destes algoritmos, di-
versas métricas e técnicas são utilizadas. Como exemplo, podemos citar a validação
cruzada em que medidas apropriadas são calculadas para os conjuntos de treina-
mento e teste dos dados e, posteriormente, comparadas e analisadas.

Uma tarefa na qual esses algoritmos são bastante requisitados, inclusive no con-
texto de SCAs é a classificação. Até mesmo problemas que podem parecer se en-
quadrar em problemas com solução por predição podem na verdade, ser problemas
de classificação. Na classificação, os dados são divididos em determinadas (através
de rótulos) classes e o algoritmo deve gerar um modelo que vincula novas entradas a
uma dessas classes.

Geralmente no campo de SCAs, um exemplo de entrada de treino são vetores de
números (xj) que representam os valores de medições de uma característica física
do dispositivo criptográfico durante uma operação de encriptação ou decriptação, ou
seja, os traços do consumo ou radiação eletromagnética. Em um processo usual de
ML, como mostrado na Figura 11, esses traços são preprocessados em uma etapa
inicial.
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Figura 11 – Processo padrão de DL. Fonte: (HETTWER; GEHRER; GÜNEYSU, 2020)

Dessa forma, muitos algoritmos de DL exigem que os dados de entrada sejam nor-
malizados (ou seja, reescalado para valores entre 0 e 1) ou padronizados (tendo média
zero e variância unitária). Então, pontos de dados com maior conteúdo de informação
são extraídos ou construídos, combinando ou criando dados adicionais. Depois, um
algoritmo precisa ser selecionado para um dado problema de ML e seus hiperparâ-
metros têm que ser adaptados. Os hiperparâmetros controlam o comportamento do
algoritmo e são previamente definidos. A partir disto, a performance do modelo otimi-
zado é verificada com dados que não foram utilizados na etapa de treino. O utilizador
do algoritmo divide o conjunto de dados definidos entre dados para treino e para teste.
Geralmente, é adotada uma divisão de 60% dos dados para treino e 20% para teste.
Sendo os 20% de dados restantes utilizados para otimização dos hiperparâmetros.
Obviamente, essa divisão pode ser diferente da apresentada, e diferentes configura-
ções podem ser testadas e experimentos realizados. Contudo, deve-se ter o cuidado
de não ter um conjunto de teste pequeno demais, pois isso acarretaria em incerteza
estatística em torno do erro médio de teste e pode dificultar a comparabilidade entre di-
ferentes algoritmos de ML. Portanto, pode ser empregado um procedimento chamado
k-fold cross-validation. Este procedimento consiste em dividir o conjunto de dados in-
teiro randomicamente em k folds (subconjuntos disjuntos), e usar iterativamente um
deles como conjunto de teste, enquanto o resto dos dados são usados como conjunto
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de treinamento. O erro médio em todas as trilhas é o erro de generalização esti-
mado (ou seja, o erro de teste esperado ao aplicar novos dados ao modelo treinado).
A validação cruzada também é frequentemente usada para estimar hiperparâmetros
adequados. Sob esse paradigma, dois termos relativos à performance dos algoritmos
de DL são underfitting e overfitting.

Quando o modelo não é capaz de obter um erro suficientemente baixo nos conjun-
tos de treino e teste dizemos que ocorreu underfitting. Entretanto, se o modelo teve
uma boa performance sobre o conjunto de dados de treino, mas não no conjunto de
teste, verifica-se uma situação de overfitting. Nos casos de overfitting é como se o
algoritmo de DL ficasse “viciado” nos dados de treino, não “aprendendo” a regra que
gera as saídas, mas sim “memorizando” os resultados para dadas entradas (GOOD-
FELLOW; BENGIO; COURVILLE, 2016). Uma maneira de controlar o underfitting e o
overfitting de um dado modelo, é alterando sua capacidade (isto é, a habilidade de se
adequar a uma ampla gama de funções) incrementando ou decrementando o número
de parâmetros. A seguir, veremos uma revisão de alguns dos principais algoritmos
supervisionados e não-supervisionados aplicados a SCAs.

3.2.2 Aprendizagem por Correção de Erro

A principal propriedade de uma rede neural é sua capacidade de aprender a partir
de seu ambiente e de melhorar seu desempenho através da aprendizagem. Uma rede
neural aprende acerca de seu ambiente através de um processo iterativo de ajustes
aplicados a seus pesos (HAYKIN, 2001).

Dessa forma, Haykin (2001) define o processo de aprendizagem de uma rede neu-
ral através da seguinte sequência de eventos:

1. A rede neural é estimulada pelo ambiente;

2. A rede neural sofre modificações nos seus pesos como resultado dessa estimu-
lação;

3. A rede responde de uma maneira nova ao ambiente, devido às modificações
ocorridas na sua estrutura interna.

Existem diferentes algoritmos de aprendizagem, que determinam as regras para a
solução de um problema de aprendizagem. Nesta Tese, aborda-se apenas a Aprendi-
zagem por Correção de Erro, pois este é o algoritmo utilizado nas redes neurais que
compõem os estudos de caso desta Tese.

Por simplicidade, consideremos uma rede neural com uma camada de saída cons-
tituída de um único neurônio k. Suponhamos, que o neurônio k receba um sinal x(n)
advindo das camadas ocultas anteriores a esta camada de saída. O sinal de saída do
neurônio k é representado por yk(n). Este sinal de saída é então comparado com a
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saída desejada (ou saída-alvo) dk(n). Por consequência, isso gerará um sinal de erro
ek(n). Esta situação hipotética é representada na Figura 12.

Figura 12 – Diagrama de blocos de uma rede neural, ressaltando o único neurônio da camada
de saída. Fonte: (HAYKIN, 2001)

Disso, temos que o erro ek(n) é dado pela Equação 18:

ek(n) = dk(n)− yk(n) (18)

Nesta abordagem de aprendizagem, o erro ek(n) é utilizado como um mecanismo
de controle, que aplica uma sequência de ajustes corretivos nos pesos do neurônio
k, aproximando passo a passo, o sinal de saída yk(n) da saída desejada dk(n). Esse
objetivo é alcançado minimizando-se a função de custo E(n), calculada através da
Equação 19:

E(n) =
1

2
e2k(n) (19)

Como podemos ver pela Equação 19, E(n) é o valor instantâneo da energia do erro
ek(n). Os ajustes passo a passo dos pesos, mencionados anteriormente, continuam
até o sistema alcançar um estado em que os pesos estejam estabilizados.

Agora, supondo-se que wkj(n) seja o valor do peso do neurônio k excitado por um
elemento de entrada xj(n), no tempo n. Sob este cenário, o ajuste ∆wkj(n) aplicado
ao peso wkj é calculado através da Equação 20:

∆wkj(n) = ηek(n)xj(n) (20)

Onde η é uma constante positiva que determina a Taxa de Aprendizado quando
avança-se no processo de aprendizagem. A Taxa de Aprendizagem (η) é um dos
parâmetros configuráveis no âmbito de redes neurais.

Por fim, o valor atualizado do peso wkj(n + 1) pode ser computado através da
Equação 21:

wkj(n+ 1) = wkj(n) + ∆wkj(n) (21)
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Aqui, vale ressaltar que, conforme se vê na Figura 12, a Aprendizagem por Cor-
reção de Erro consiste de um sistema realimentado em malha fechada. E, como se
sabe da teoria de controle, a estabilidade do sistema depende dos parâmetros que
compõem o laço de realimentação. E como se pode ver, o único parâmetro que temos
no único laço desta configuração é o que representa a Taxa de Aprendizagem (η).
Assim, reforçamos que este parâmetro deve ser cuidadosamente escolhido, pois além
de implicar diretamente na estabilidade da rede neural, ele dita a velocidade de apren-
dizado da rede. Se escolhermos valores muito baixos para η, a rede apresentará um
custo muito alto para realizar o treinamento, em termos de tempo e esforço computa-
cional. Entretanto, se escolhermos valores muito grandes para o referido parâmetro,
podemos não alcançar o mínimo global da função de custo E(n).

3.2.3 Equacionamento do Algoritmo de Retropropagação

Aqui, iremos avançar na descrição matemática das expressões que envolvem o
algoritmo de retropropagação, com o intuito de entender alguns pontos importantes
sobre esse algoritmo de correção de erro.

Primeiramente, é preciso saber que o algoritmo de retropropagação é um algo-
ritmo que se baseia na aprendizagem por correção de erro (revisada na Seção 3.2.2).
Portanto, o algoritmo de retropropagação aplica um ajuste ou correção ∆wkj(n) a um
peso genérico wkj de um neurônio k. Esse ajuste é proporcional à derivada parcial
∂E(n)/∂wkj (gradiente). Esse gradiente pode ser representado, através da regra da
cadeia, pela Equação 22:

∂E(n)

∂wkj(n)
=

∂E(n)

∂ek(n)

∂ek(n)

∂yk(n)

∂yk(n)

∂vk(n)

∂vk(n)

∂wki(n)
(22)

Retomando-se a expressão que calcula a energia instantânea do erro para um
neurônio k (1

2
e2k(n)), apresentada na Equação 19 desenvolvida na Seção 3.2.2, pode-

se calcular a primeira derivada parcial da Equação 22, como se segue na Equação
23:

∂E(n)

∂ek(n)
=

1

2

∂

∂ek(n)
[e2k(n)] =

2

2
ek(n) = ek(n) (23)

Como vimos, através da Equação 18, o erro ek(n) é dado pela diferença entre a
saída desejada, e a saída real da rede dk(n) − yk(n). Isto nos dá informações sufici-
entes para calcular a segunda derivada parcial encontrada na Equação 22. Isto é feito
de acordo com a Equação 24;

∂ek(n)

∂yk(n)
=

∂

∂yk(n)
[dk(n)− yk(n)] = −1 (24)

Recorrendo à Equação 13, temos que a saída real da rede é dada por yk = ϕ(bk +
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m∑
j=1

wkj(n)xj(n)). E ainda, a Equação 14 diz que v = bk+
m∑
j=1

wkj(n)xj(n). Dessa forma,

a terceira derivada parcial da Equação 22 é resolvida, ou deixada de forma implícita,
na forma apresentada pela Equação 25:

∂yk(n)

∂vk(n)
=

∂

∂vk(n)
[ϕ(vk(n))] = ϕ′

k(vk(n)) (25)

O apóstrofe em ϕ′ indica diferenciação em relação ao argumento. Finalmente, a
quarta e última derivada parcial da Equação 22 é dada através da Equação 26:

∂vk(n)

∂wkj(n)
=

∂

∂wkj(n)
[bk +

m∑
j=1

wkj(n)xj(n)] = xk(n) (26)

Portanto, o gradiente da Equação 22 é dado pela Equação 27:

∂E(n)

∂wkj(n)
= −ek(n)ϕ′(vk(n))xk(n) (27)

Assim, chegamos em uma expressão que calcula o valor da atualização dos pesos
(∆wkj(n)) descrita pela Equação 28:

∆wkj(n) = −ηek(n)ϕ′(vk(n))xk(n) (28)

Onde η é a Taxa de Aprendizagem, vista anteriormente.
A Equação 28 nos mostra que, dentre outros fatores, a quantidade pela qual os

pesos wkj são atualizados (∆wkj(n)) depende da derivada parcial da Função de Ati-
vação (ϕ). É imprescindível para o funcionamento do algoritmo de retropropagação
que a função de ativação dos neurônios constituintes da rede neural seja derivável.
Isso fez com que o treinamento das redes fosse muito mais eficiente, ao passo que
funções de ativação como a função degrau unitário fossem substituídas por funções
como a ReLU, por exemplo.

3.2.4 Treinamento de uma Rede Neural

Revisados alguns detalhes sobre a forma de aprendizado das redes neurais, aqui
busca-se apresentar de uma forma resumida, o processo de teinamento de uma rede
neural. Assim, tem-se que o processo de aprendizado supervisionado implementa (ou
treina) uma função de aproximação a partir de um conjunto de dados de entrada (ou
dados de treinamento). Para cada elemento dentro do conjunto de dados de treina-
mento é associado um rótulo que define a classe a qual pertence este dado. Dessa
forma, a rede neural processa diversas vezes os dados de entrada até satisfatoria-
mente classificar eles acordo com os rótulos esperados. Como esta Tese trata apenas
de problemas de classificação, o processo de treinamento envolve as seguintes fases:
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1. Todos os pesos da rede neural, wi
kj, assim como os valores de viés, bk, são inici-

alizados aleatoriamente de acordo com uma distribuição estatística pre-definida
(por exemplo, distribuição normal ou uniforme), sendo k e j, a conexão entre o
k-ésimo nó da camada i e o j-ésimo nó da camada i+ 1.

2. Os dados de treinamento são previstos pela rede neural, resultando em rótulos
ŷ para cada elemento do conjunto de treinamento.

3. Tendo os rótulos verdadeiros, y, implementa-se uma função de erro (do inglês,
loss function), que estabelece um valor para o erro do treinamento. Funções de
erro comumente utilizadas em problemas de classificação são entropia cruzada
categórica (do inglês, Categorical Cross Entropy - CCE) e erro quadrático médio
(do inglês, Mean Square Error - MSE). Aqui, a função de erro é definida como
E(y, ŷ).

4. A partir da função de erro, os pesos da rede neural são atualizados a partir do
cálculo do gradiente da função de erro em relação à cada um dos pesos da
rede. O mesmo é aplicado para os valores de viés. A atualização de cada peso
considera uma taxa de aprendizado (do inglês, learning rate) que é empregada
numa equação juntamente ao valor do gradiente de cada peso. Existem diversos
algoritmos para atualização de pesos que leva em conta o valor do peso atual,
wkj, o gradiente da função de erro em relação a wkj e a taxa de aprendizado
η. O mais básico dentre estes algoritmos é o chamado Gradiente Descendente
Estocástico (do inglês, Stochastic Gradient Descent ou SGD):

wkj = wkj − η
∂E(y, ŷ)

∂wkj

(29)

Portanto, o tempo de treinamento, assim como memória necessária pelo sistema
será proporcional ao tamanho da rede neural e à complexidade das funções de
erro e atualização. Esta útlima é também referida como função otimizadora. É
importante ressaltar que esse processo de atualização é comumente referido
como retropropagação (do inglês, backpropagation).

Após a atualização de todos os pesos da rede neural e uma passada completa
dos dados de treinamento, retoma-se a etapa 2. Essa passada completa do conjunto
de dados é chamada de época (do inglês, epoch). Aqui é importante ressaltar que
o SGD opera através de pequenos lotes, o que torna o aprendizado mais eficiente e
evita problemas de overfitting.

Além de redes neurais de múltiplas camadas, esta Tese também considera redes
neurais por convolução, descritas a seguir.
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3.2.5 Redes Neurais Convolucionais

Redes Neurais Convolucionais (do inglês, Convolutional Neural Networks –
CNNs) (LECUN et al., 1999) constituem um modelo de aprendizado capaz de im-
plementar extração de detalhes dos dados de entrada através de filtros em camadas
de convolução.

Figura 13 – Estrutura básica de uma rede neural convolucional. Fonte: (DEOTTE, 2018).

3.2.5.1 Estrutura

A Figura 13 apresenta a estrutura básica de CNN aplicada à classificação de ima-
gens ou dados bidimensionais. Para ser uma CNN, a rede neural deve possuir ao
menos as seguintes camadas:

• Camada convolucional (e camada de entrada): esta camada constitui um con-
junto de filtros com dimensão equivalente ao dado de entrada (por exemplo, uni-
dimensional, bidimensional ou tridimensional). A camada executa uma operação
de convolução entre os filtros e os dados fornecidos à camada. Uma CNN pode
possuir diversas camadas por convolução sequenciais. Os dados de entrada
são, obviamente, conectados à primeira camada. A saída de cada camada por
convolução é um mapa de detalhes (do inglês, feature map que representa de-
talhes extraídos dos dados de entrada a partir dos filtros de convolução. As
operações de convolução caracterizam-se por um núcleo (ou kernel, que nada
mais é que o tamanho do filtro) e passos (stride).

• Camadas densas: da mesma forma que redes neurais MLP, CNNs apresentam
camadas densas que nada mais são que camadas ocultas totalmente conecta-
das. O objetivo destas camadas densas é efetuar a classificação a partir dos
mapas de detalhes extraídos pelas camadas de convolução.

• Camada de saída: esta camada possui a mesma estrutura e atribuições da ca-
mada de saída de uma rede MLP.
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Alternativamente, embora altamente recomendado, a saída de uma camada de
convolução (ou seja, o mapa de detalhes) é conectada a camadas de agrupamento
(ou pooling) que efetuam a redução do tamanho do mapa de detalhes. Camadas de
agrupamento executam uma operação de downsampling nas suas entradas, a fim de
reduzir o número de parâmetros e a complexidade computacional da rede. Esse pro-
cesso é feito similarmente ao processo de convolução. Nesse caso, ao agrupamento
são atribuídos um tamanho de núcleo e um passo, que passam por todo o dado de
entrada da camada. Na maioria das vezes considerando o valor máximo (operação
chamada de max-pooling). Similarmente, o agrupamento também pode considerar a
média (avegare-pooling). A Figura 14 ilustra um exemplo de processo de convolução
seguido por uma operação de agrupamento. Conforme ilustrado na Figura, os filtros
de convolução, assim como o núcleo do processo de agrupamento deslizam sobre
o dado de entrada. Aqui é também importante ressaltar que, caso as dimensões do
núcleo não se ajustem perfeitamente às dimensões do dado de entrada, um processo
de padding é automaticamente efetuado, normalmente inserindo-se zeros aos valores
faltantes.

Figura 14 – Convolução e agrupamento em CNNs. Fonte: (CAGLI; DUMAS; PROUFF, 2017)

3.2.5.2 Treinamento

O processo de treinamento de uma CNN segue as mesmas etapas e princípios
observados para redes neurais MLPs. O ponto a ressaltar aqui é que cada elemento
dentro de um filtro por convolução é considerado como sendo um neurônio da rede
neural e portanto atualizado pelo algoritmo de otimização durante o processo de re-
tropropagação.

Uma caracteística das CNNs bastante interessante para SCAs é que esse tipo de
rede neural é capaz de extrair as características dos dados independentemente da
posição destas características nas amostras do conjunto de dados.
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3.3 Considerações sobre o Capítulo

Neste Capítulo, foram apresentadas definições sobre aprendizado profundo. Nesta
revisão, foram abordadas as principais características das redes neurais artificiais apli-
cadas a SCAs. A revisão sobre tais assuntos partiu do elemento básico (o neurônio
artificial) até a formação das arquiteturas MLPs e CNNs. Neste contexto, foram abor-
dados tópicos de modo a fornecer um embasamento ao leitor sobre os algoritmos de
DL utilizados como estudo de caso nesta Tese.

Após revisados estes conceitos é possível ter um conhecimento básico para melhor
compreensão da utilização de redes neurais aplicadas a SCAs em diferentes cenários
e ainda em arquiteturas com contramedidas. A seguir, o Capítulo 4 apresenta a revisão
de trabalhos relacionados ao tema que motiva o desenvolvimento desta Tese.



4 TRABALHOS RELACIONADOS

Este Capítulo apresenta uma revisão da literatura sobre trabalhos que unem a apli-
cação de técnicas de DL para realizar ataques a canais laterais. Para isto, foi realizada
uma Revisão Sistemática da Literatura (RSL), detalhada na Seção 4.1. A partir dessa
RSL são encontrados diversos trabalhos que relacionam o uso de inteligência artificial
com SCA sob diferentes paradigmas.

Na literatura é possível encontrar trabalhos com diferentes propósitos, como por
exemplo, Wang et al. (2020), que busca meios de realizar ataques SCA em tempo
real em dispositivos criptográficos usando a metodologia SCARF (do inglês, Detecting
Side Channel Attacks at Real-Time using Low-level Hardware Features). Além disso,
existe uma abordagem baseada em aprendizagem supervisionada para inferir aplica-
tivos em execução na plataforma Android com base nas características extraídas de
traços de radiação eletromagnética (do inglês, Electromagnetic - EM) e de estados de
escalonamento de frequência e de tensão dinâmica (do inglês, Dynamic Voltage Fre-
quency Scaling States – DVFS) de Chawla et al. (2019). Ainda, o trabalho de Cristiani;
Lecomte; Maurine (2020) visa avaliar a quantidade de vazamento de informações em
um dispositivo criptográfico através de algoritmos de aprendizado profundo e de um
estimador conhecido como MI (do inglês, Mutual Information).

Como vemos nas Seções seguintes, pesquisadores aplicam os algoritmos de
Aprendizado Profundo em diferentes cenários de ataques SCA. Estes cenários po-
dem representar casos desde uma situação ideal de ataque com um algoritmo sem
contramedidas até representar situações reais como ataques a diferentes algoritmos
criptográficos, dispositivos diferentes, ambientes com ruído elétrico e dispositivos equi-
pados com contramedidas como Inserção de Atrasos Aleatórios (do inglês, Random
Delay Insertion - RDI) (YAO; ZHANG, 2012) e Sinal de Relógio Aleatório (do inglês,
Random Clock - RC) (BOEY et al., 2010), entre outras.

Também foram resgatados da literatura, trabalhos que buscam realizar uma com-
paração de desempenho entre algoritmos de ML/DL e suas variações. Tais compa-
rações são importantes, pois ressaltam características desses algoritmos, apontando
cenários e aplicações mais adequadas para cada algoritmo ou grupos de algoritmos.
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Entretando, a pesquisa aqui desenvolvida concentra maior esforço em trabalhos
encontrados na RSL que procuram melhorar a eficiência de tais algoritmos quando
aplicados ao contexto de SCAs. Por este motivo, tais estudos terão um nível de deta-
lhamento maior dentro da revisão.

4.1 Revisão Sistemática da Literatura

Esta Seção apresenta uma Revisão Sistemática da Literatura (RSL), que explora o
estado da arte sobre o tema da pesquisa, a fim de identificar, avaliar e interpretar os
resultados de estudos relevantes disponíveis na literatura.

Os estudos individuais encontrados através RSL são chamados de estudos pri-
mários, enquanto a revisão em si dos trabalhos retornados na busca é chamada de
estudo secundário.

Para a condução da seleção e análise dos estudos primários, foi utilizada a metodo-
logia proposta por Kitchenham; Charters (2007). Essa metodologia divide o processo
de revisão em três partes principais: Planejamento, Realização (também chamada de
execução ou condução da revisão) e Documentação da Revisão.

Hoje em dia, temos algumas ferramentas que auxiliam no desenvolvimento de
RSLs. Dentre elas, este trabalho utilizou o Parsif.al (PARSIFAL, 2018). Esta ferra-
menta foi escolhida, por estar disponível on-line, mantendo o progresso da pesquisa
armazenado na nuvem. Outra característica interessante é a possibilidade de com-
partilhar revisões com outros autores, como por exemplo, o orientador do trabalho. O
Parsif.al está baseado nos passos descritos em (KITCHENHAM; CHARTERS, 2007).

Antes de começar a revisão sistemática da literatura, foram buscados alguns ar-
tigos através do Google Scholar (SCHOLAR, 2021) dentre outros motores de busca,
utilizando-se palavras-chave no contexto da pesquisa. Esses artigos, são chamados
de artigos de controle e servem para guiar alguns dos parâmetros iniciais do plane-
jamento da revisão, como por exemplo, as bases onde são realizadas as buscas de
trabalhos. A partir dos artigos de controle, deu-se inicio a RSL com auxílio da ferra-
menta Parsif.al.

Uma dentre muitas informações estatísticas interessantes levantadas a partir da
RSL são os algoritmos de Aprendizado Profundo utilizados nos trabalhos encontra-
dos durante a RSL. Nota-se através da Tabela 2 que os algoritmos de Aprendizado
Profundo mais utilizados pelos estudos selecionados são CNNs, que aparecem em
38,46% dos trabalhos, seguido de MLPs com 35,90% de aparições durante as pes-
quisas.

Também é importante saber quais foram as ferramentas ou frameworks de de-
senvolvimento mais utilizados. Pode-se ver através da Tabela 3, que os frameworks
mais utilizados nesse escopo são a biblioteca Keras (CHOLLET, 2015) baseada na
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Tabela 2 – Algoritmos de Aprendizado Profundo mais utilizados.
Algoritmo %
CNN 38,46
MLP 35,90
LSTM 5,13
AutoEnconder 2,56
RNN 2,56
ResNet 2,56

Tabela 3 – Ferramentas mais utilizadas.
Framework %
Keras 33,33
Matlab 16,67
Sci-Kit Learn 13,89
Weka 13,89
Python 11,11
C 2,78
kit SVM, LIBSVM 2,78
Scipy 2,78
TensorFlow 2,78

linguagem de programação Python com 33,33% do total de ferramentas informadas e
o Matlab (MATLAB, 2010) com 16,67%.

Sabendo-se que existem Datasets públicos disponíveis na internet para uso de ex-
perimentos em SCAs, buscou-se identificar quais Datasets são mais utilizados dentre
os trabalhos selecionados. Com isto, pudemos perceber, olhando para a Tabela 4,
que 39,9% dos trabalhos encontrados utilizam traços próprios para seus experimen-
tos. Também, os Datasets públicos DPA Contest v.4 (UNIVERSITY, 2015) e ASCAD
(PROUFF et al., 2018) também são bastante utilizados com 19,70 e 15,15% respecti-
vamente.

Tabela 4 – Datasets mais utilizados.
Dataset %
Traços Próprios 39,39
DPA Contest v.4 19,70
ASCAD 15,15
DPA Contest v.2 9,09
AES_RD 7,58
AES_HD 4,55
TeSCASE 3,03
Grizzly 1,52
Jit 1,52
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É sabido que implementações em hardware dos algoritmos criptográficos são mais
difíceis de atacar, visto que as operações realizadas acontecem paralelamente devido
à natureza desse tipo de implementação. Talvez por isso, 41 dos trabalhos que men-
cionam o tipo de implementação atacada são baseadas em software, enquanto que
apenas 28 são realizadas em hardware.

Quanto às métricas de avaliação dos experimentos, a mais encontrada é Guessing
Entropy (GE), que aparece em 24 trabalhos. A acurácia é a segunda métrica que
mais aparece como métrica de avaliação dos experimentos dentre os trabalhos sele-
cionados, com 9 ocorrências. Isso é surpreendente, pois acurácia não é uma métrica
adequada ao contexto dos Side Channel Attacks (PU et al., 2023). Em seguida, como
outra métrica das mais encontradas nos trabalhos revisados, temos a Success Rate
(SR) que aparece em 6 trabalhos.

Com base nessas informações, foi possível traçar uma tendência comum entre
os trabalhos que aplicam técnicas de Aprendizado Profundo a Side Channel Attacks.
Abaixo, segue um resumo que mostra tal tendência entre os estudos encontrados:

• Algoritmos de Aprendizado Profundo mais utilizados: CNN e MLP;

• Frameworks mais utilizados: Keras e Matlab;

• Datasets mais utilizados: Próprio, DPA Contest v.4 e ASCAD;

• A maioria dos trabalhos atacam implementações em software do algoritmo crip-
tográfico;

• As métricas de avaliação mais utilizadas são: Guessing Entropy (GE), acurácia
e Success Rate (SR).

4.2 Artigos de Controle

Nesta Seção, são apresentados trabalhos buscados numa fase inicial pré-RSL.
Mesmo se tratando de artigos base, estes artigos trazem estudos importantes sobre
o tema de pesquisa aqui abordado. Portanto, serão analisados a seguir.

Inicialmente, tem-se o trabalho apresentado por Ramezanpour; Ampadu; Diehl
(2020), no qual os autores mesclam o uso de algoritmos de DL com algoritmos de
ML. Neste trabalho é utilizado Long Short- Term Memory (LSTM) auto-enconder para
extrair características dos traços do consumo. Essas características são utilizadas
para identificar o modelo de consumo, através de MLPs. A partir disso, as caracterís-
ticas encontradas são clusterizadas e é utilizada uma abordagem não supervisionada
para encontrar a chave correta. Com isso, os autores dizem melhorar a eficiência dos
ataques em 10x.
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Muitos dos trabalhos encontrados na literatura baseiam-se em criar modelos de
consumo utilizando técnicas de ML/DL para aplicação em SCA. Os primeiros a fazer
isto foram Yang et al. (2012), motivados pelo fato de que Redes Neurais (do inglês,
Neural Networks – NNs) são capazes de capturar características não-lineares dos tra-
ços do consumo sem restrições específicas. A eficácia dos ataques foi relatada com
uma série de experimentos, incluindo diferentes níveis de ruído e diferentes métri-
cas de avaliação. Portanto, percebe-se que redes neurais são capazes de realizar
ataques a canais laterais sem a necessidade de etapas de pré-processamento dos
traços. Dessa forma, essa etapa pode ser suprimida do fluxo de ataques sem maiores
problemas.

Em Martinasek; Malina; Trasy (2015) os autores sugerem utilizar Momentum ou
Conjugate Gradient Backpropagation para evitar problemas com o algoritmo de back-
propagation nas redes MLP. Os resultados obtidos confirmaram que o MLP é muito
mais eficaz na criação de profiling de ataques de consumo de energia em termos de
pequeno número de traços de energia e pontos interessantes.

No trabalho de Carlet et al. (2016), os autores se propõem a dar continuidade à li-
nha de pesquisa baseada na aplicação do aprendizado de máquina ao SCA, aplicando
técnicas de profiling mais sofisticadas com base no aprendizado profundo. Seus re-
sultados experimentais confirmam as vantagens esmagadoras dos novos ataques re-
sultantes quando têm como alvo implementações criptográficas desprotegidas e pro-
tegidas.

Maghrebi; Portigliatti; Prouff (2016) utilizaram Redes Neurais Convolucionais
(CNNs) aplicadas à área de SCAs. Além disso, os autores investigaram o uso de
auto-encoders empilhados, bem como Long and Short Term Memory (LSTM). O uso
de técnicas de DL foi motivado pelo fato destas incorporarem intrinsecamente me-
canismos de extração de características. Desse modo, ao contrário da maioria dos
classificadores ML padrão, NNs profundas podem aprender com o conjunto de entra-
das brutas, pois são capazes de identificar os pontos de maior vazamento de infor-
mação. Como estudo de caso, os autores realizaram uma série de experimentos com
técnicas de DL, classificadores ML clássicos (SVM, Random Forest - RF, Multi-Layer
Perceptions - MLP) e TA em implementações em hardware e software do algoritmo
AES protegido e desprotegido. Resumindo os resultados, pode-se dizer que os méto-
dos de DL na maioria das vezes superam outras técnicas de ataque. Interessante o
fato de que a combinação de uma etapa de pré-processamento com Análise de Com-
ponente Principal (do inglês, Principal Component Analysis - PCA) para redução da
dimensionalidade dos dados de entrada, com MLP não melhorou a performance do
ataque. Este trabalho apresenta uma boa gama de experimentos em diferentes ce-
nários, mostrando que DL se sai melhor do que outras técnicas. Aqui, mais uma vez
notamos que etapas de pré-processamento dos traços são desnecessárias quando
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aplicamos redes neurais no contexto de SCAs.
Lerman et al. (2018) faz um estudo comparativo entre TA e ataques baseados em

ML. Os autores concluem que quando a etapa de profiling se aproxima da perfeição,
TA é melhor em relação a ML, porém em casos reais, onde erros estão presentes no
profiling e em casos onde eventualmente poucos traços são disponíveis, ML se sai
melhor. Foi observado que RF se sai melhor quando é aumentada a quantidade de
informação inútil nos traços, pois o método eventualmente detecta pontos de interesse
dos traços.

Prouff et al. (2018) fazem um comparativo entre técnicas de Aprendizado Profundo
(NN, CNN) com TAs. Neste trabalho os autores dizem mostrar a hiper-parametrização
das redes, diferentemente de outros trabalhos. Para reduzir a dimensionalidade, os
autores utilizaram PCA. Para os experimentos, foram utilizados traços do banco de
dados ASCAD.

Em Timon (2018), é proposto o uso de poderosas técnicas de Aprendizado Pro-
fundo e Aprendizado de Máquina para ataques non-profiled. No artigo, é mostrado que
é possível explorar a propriedade de translation-invariance das CNNs contra traços
desalinhados e usar técnicas de Data Augmentation também durante os non-profiled
SCAs. Foi comprovado através de experimentos que Data Augmentation melhora os
resultados obtidos para ataques de potência baseados em CNN (do inglês, CNN-
based Deep Learning Power Análysis - CNN-DLPA) e ataques de potência baseados
em MLP (do inglês, MLP-based Deep Learning Power Analysis - MLP-DLPA). Expe-
rimentos com traços desalinhados mostram que CPA e MLP-DLPA sem DA falharam.
Enquanto MLP-DLPA com DA e CNN-DLPA com e sem DA obtiveram sucesso. Por-
tanto, através dos resultados os autores mostram que em alguns casos, o método
porposto supera alguns Non-Profiled Attacks clássicos como CPA. Também estuda-
ram a eficiência deste ataque contra implementações com contramedidas de alta or-
dem e mostram que este método é capaz de quebrar implementações com proteções
de primeira-ordem com um número razoável de traços sem pré-processamento. En-
tretanto, lacunas quanto a outras métricas, tais como Guessing Entropy, ficam abertas
para próximos estudos. O próprio autore explora outra métrica chamada de Análise
de Sensibilidade (do inglês, Sensitivity Analysis - SA) em (TIMON, 2019). Apesar de
ser uma abordagem muito intrigante, seu custo computacional seria elevadíssimo, o
que não é discutido no trabalho apresentado.

4.3 Análise dos Trabalhos Relacionados

Nas Seções seguintes, são descritos os trabalhos encontrados na literatura através
da RSL realizada nesta tese (e descrita na Seção 4.1). Estes trabalhos abrangem
a aplicação de diferentes métodos baseados em aprendizado profundo, no contexto
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dos SCAs. Os trabalhos apresentados, foram divididos em três grupos: Avaliação do
ataque baseado em Inteligência Artificial sob diferentes cenários, comparação entre
métodos de ataque, e melhoria da eficiência do ataque.

4.3.1 Avaliação do Ataque baseado em Inteligência Artificial sob diferentes ce-
nários

É sabido que SCAs podem ser implementados sob condições adversas, como por
exemplo, diferentes níveis de ruído ambiente, implementação em software ou em hard-
ware do algoritmo criptográfico, diferentes tipos de dispositivos atacados, entre outras
variações. Dessa forma, atacantes se deparam com diferentes cenários, os quais
também são explorados na literatura.

Ataques realizados em laboratórios de pesquisa geralmente são realizados sob
condições controladas, como por exemplo, a forma como são capturadas as informa-
ções vazadas do dispositivo criptográfico sob ataque. Entretanto, situações ou con-
figurações diferentes podem ocorrer em ataques reais. Por isso, é importante testar
diferentes possibilidades como foi feito em (WANG; WANG; DUBROVA, 2020) onde os
autores realizam ataques com EM de campo distante, capturados de cinco dispositivos
Bluetooh diferentes em cinco distâncias diferentes, utilizando aprendizado profundo.
Com isto, os autores afirmam que é possível recuperar a chave com menos de 10000
traços capturados em um ambiente de escritório a 15m de distância do alvo mesmo
se a medida para cada encriptação é tomada somente uma vez. É mencionado que
TAs anteriores precisavam de múltiplas repetições para a mesma encriptação.

Ainda considerando-se a variedade de cenários que podem estar presentes frente
aos SCAs, Weissbart; Picek; Batina (2019) abordaram várias técnicas de aprendizado
de máquina a fim de montar um ataque de análise de potência em um algoritmo cha-
mado EdDSA (do inglês, Edwards-curve Digital Signature Algorithm) usando a curva
25519. Para os experimentos, os autores testaram os algoritmos de RF, SVM e CNN.
Para questões de comparação, foi também executado um experimento com TA clás-
sico e covariância combinada. Os resultados mostram que todas as técnicas conside-
radas são opções viáveis e poderosas. Dentre elas, as redes neurais convolucionais
(CNNs) são especialmente eficazes, pois foi possível quebrar a implementação com
apenas uma única medição na fase de ataque, e requer menos de 500 traços na
fase de treinamento. É interessante observar, que a aplicação de PCA piorou os re-
sultados de um modo geral. Pode-se observar que ao aplicar-se PCA para obter 10
POIs, os resultados são mais estáveis. Porém piores do que não aplicar a redução
de dimensionalidade. Isto nos faz perceber que nem sempre técnicas de redução de
dimensionalidade ou pré-processamento se traduzem em resultados melhores.

Heuser et al., trazem uma questão interessante quanto a robustez de algoritmos
de cifras leves em (HEUSER et al., 2017). Esse estudo busca descobrir se algoritmos
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de cifras leves são mais vulneráveis a ataques de canais laterais. Para tanto, foram
consideradas várias métricas de avaliação no contexto dos SCAs. Os algoritmos tes-
tados nesse trabalho são o KLEIN, PRESENT, PRIDE, RECTANGLE, Mysterion, AES,
Zorro e Robin, implementados em software. Sendo esses algoritmos testados com
ataques profiled e non-profiled baseados em Naive Bayes, C4.5 (um algoritmo da fa-
mília DT) e MLP. Os resultados mostram que a diferença entre AES e cifras leves é
menor do que o esperado. Curiosamente, para ataques non-profiled, as SBOXs de
8 bits de AES, Zorro e Robin têm um desempenho semelhante, enquanto que para
as SBOXs de 4 bits tem-se uma classificação clara, com a SBOX do Mysterion sendo
a mais fraca para atacar, e a SBOX do KLEIN, a mais difícil. Para ataques profiled,
foram analisadas várias técnicas de aprendizado de máquina para PRESENT e AES.
Neste cenário, os resultados são aplicáveis a todas as SBOXs de 4 e 8 bits. Os resul-
tados mostram que atacar PRESENT é um pouco mais fácil do que atacar AES. Ainda
assim, essa diferença não é tão aparente quanto se poderia imaginar.

Sob esse paradigma, Zhang et al. (2020) propõem um novo mecanismo chamado
de Análise de Potência baseada em Frequência e Aprendizado (do inglês, Frequency
and Learning based Power Analysis (FL-PA)) , que é capaz de enfrentar desafios cau-
sados por variações de dispositivos (desde dispositivos homogêneos a heterogêneos).
De acordo com os autores, pela primeira vez os traços de energia coletados de seus
próprios dispositivos PIC podem ser utilizados para atacar com sucesso o conjunto
de dados público DPA Contest v4, que é baseado em um microcontrolador AVR to-
talmente diferente. A ideia básica de Zhang et al. (2020) é combinar aprendizado
profundo com análise no domínio da frequência. Os resultados mostram que tanto
o TA quanto o DL-PA encontram uma grande dificuldade ao atacar dispositivos hete-
rogêneos. Segundo os autores, a falha dos TA em dispositivos homo/heterogêneos
é atribuído à região de seleção dos POIs e ciclos de instrução. Ambas diretamente
relacionadas com o relógio no domínio do tempo. Já, aprendizado de máquina tem
uma maior capacidade de generalização do que essas análises estatísticas. Portanto,
para melhorar DL-PA e mitigar essas questões do domínio do tempo, a transformada
de Fourier (FFT) é aplicada a todos os traços desses crossed devices.

Também com o intuito de buscar uma generalização para ataques sobre dispositi-
vos diferentes, Das et al. (2019) aplicam aprendizado profundo em SCA sobre cross
devices, e dizem chegar a uma acurácia maior do que 99,9% mesmo na presença de
variações inter-device significativamente altas. Os autores mencionam que o ataque
X-DeepSCA quebram a criptografia de diferentes dispositivos alvo em segundos, em
comparação com alguns minutos para um ataque de análise de energia correlacional
(CPA). Aumentando assim, a ameaça para dispositivos embarcados. De acordo com
os autores, mesmo para cenários de SNR baixo, o ataque X-DeepSCA necessita de
aproximadamente 10 vezes menos traços em comparação com um CPA tradicional
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para realizar o ataque.
Em Xu et al. (2019), os autores demonstram um ataque prático contra um módulo

de comunicação LoRa WAN. Este ataque usa SCA baseado em aprendizado pro-
fundo para recuperar a chave usada na encriptação dos dados do payload. Segundo
os experimentos, com menos de 100 traços, a CNN treinada é capaz de recuperar a
chave completa de um AES. Sendo que a maioria dos bytes da chave pode ser re-
cuperada com menos de 20 traços. Através dos experimentos, foi observado que no
melhor caso, apenas 1 traço é necessário para identificar a estimativa correta como
a classificação mais alta, ou seja, a classe que contém a maior probabilidade, e con-
sequentemente o maior ranking da subchave; enquanto no pior caso, 73 traços são
necessários para reconhecer de forma estável a suposição correta como classificação
0 do ranking. Com 20 traços, 14 de todos os 16 bytes alcançam a classificação 0
(byte 3 classificações 6 e byte 7 classificações 2). Para questões de comparação, foi
implementado o ataque proposto usando TA. O TA convencional é otimizado com PCA
e LDA para extrair-se os POIs. Foi descoberto que o melhor ranking é alcançado com
40 POIs para PCA e 8 POIs para LDA. Os resultados do ataque são avaliados calcu-
lando a classificação média alcançada ao atacar todos os 16 bytes da chave usando
um número diferente de traços de alvo.

No estudo apresentado por Brisfors; Forsmark; Dubrova (2021), os autores de-
monstram um ataque aos USIMs (do inglês, Universal Subscriber Identity Module)
com base no aprendizado profundo. É mostrado que uma CNN treinada em um USIM
pode recuperar a chave de outro USIM usando no máximo 20 traços (quatro traços em
média). Ataques CPA, anteriormente aplicados em cartões USIM, exigiam osciloscó-
pios de alta qualidade para aquisição dos traços de consumo, uma quantidade muito
maior de traços do cartão da vítima e habilidades de nível de especialista do invasor.
Segundo os autores, agora o ataque pode ser montado com um orçamento de $ 1000
e habilidades básicas em análise de canal lateral.

Até mesmo dispositivos que intuitivamente supõe-se serem mais robustos como
as GPUs (do inglês, Graphic Processing Units) também podem ser vulneráveis a ata-
ques de canais laterais como mostrado em (MUKHERJEE, 2020). Nesta pesquisa, os
autores apresentam o chamado GIPSim, que é uma estrutura que permite aos pes-
quisadores de segurança analisar o vazamento de canal lateral presente no contexto
de um simulador orientado para a execução de GPU. Os autores mostram como os
pesquisadores podem capturar estimativas de energia detalhadas ao executar pro-
gramas CUDA em uma GPU da família Kepler e usar as informações para ofuscar
o consumo de energia, ocultando a dependência do vazamento de energia com os
dados processados. É mostrado como as técnicas tradicionais de ocultação e masca-
ramento podem ser aplicadas no contexto de uma GPU. Estas, por sua vez, reduzem
a vulnerabilidade presente neste contexto. Também são apresentadas formas de po-
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tencializar as técnicas de aprendizado de máquina usando redes neurais de memória
de longo prazo para melhorar ainda mais a ofuscação. O objetivo deste trabalho, é
projetar um sistema que possa impedir ataques de canal lateral baseados em energia.
Assim, os autores dizem mostrar que é possível modelar a dissipação de energia de-
pendente de dados, capturando a distância de hamming dos valores de dados usados
durante a execução da criptografia AES. Sendo essa, uma abordagem já usada em
ataques de canal lateral baseados em energia. GIPSim é um dos primeiros ambientes
de simulação que pode ser usado para avaliar a resiliência do canal lateral de energia
e ajudar a construir um acelerador mais seguro.

Uma observação feita por Kubota et al. (2019) é que a maioria das implementa-
ções de algoritmos criptográficos atacadas através de DL-SCA é realizada em nível
de software. Esse estudo destaca que implementações em hardware são mais difí-
ceis de atacar devido à característica de execução paralela desse tipo de construção.
Portanto, é proposta uma investigação do uso de DL-SCA contra implementações em
hardware do AES, mostrando que é possível revelar a chave secreta aplicando uma
nova técnica chamada mixed model dataset based on round-round XORed value. Tam-
bém foram comparadas a performance e as características de DL-SCA com métodos
de análise convencionais tais como CPA e TAs convencionais. Antes de realizar a com-
paração, os autores lembram que para TA clássico é necessário pré-processamento
dos traços, como por exemplo, realinhamento. O que demanda tempo e ajustes manu-
ais por conta do atacante, ao passo que em DL-SCA esse passo pode ser pulado. Os
resultados mostram que os valores reais da função alvo sendo utilizadas para gerar
o modelo superam a utilização do modelo HD utilizando DL-SCA. Outro experimento
consistiu em atacar um AES com a contramedida RSM (do inglês, Rotate Shift Mas-
king). Para o dispositivo utilizado, o DL-SCA não conseguiu revelar os bytes 6 e 10 da
chave. E também, os bytes 5, 12 e 14 foram ranqueados dentro do quinto lugar como
os principais candidatos corretos. HD-CPA, HW-CPA e TAs não revelaram nenhum
byte da chave e nenhuma chave foi classificada em quinto lugar.

Um dos trabalhos revisados através da RSL aqui realizada, busca avaliar a eficiên-
cia de SCA baseado em aprendizado profundo sobre dispositivos dotados de contra-
medidas que não são encontradas na literatura (MAGHREBI, 2019). Primeiramente, é
testado o esquema de masking SSS (do inglês, Shamir Secret Sharing). Após, foi con-
duzida uma avaliação da segurança de duas contramedidas de side channel attacks:
embaralhamento (do inglês, shuffling) e 1-entre-N (do inglês, 1-amongst-N) contra DL-
SCA. Experimentos simulados e práticos provam que, como esperado, estas contra-
medidas são também vulneráveis a estes profiling attacks. Os resultados demonstram
que DL-SCA são muito eficientes para quebrar a implementação de SSS. Mais inte-
ressante, a arquitetura LSTM supera a CNN e a MLP. Esta observação destaca que
a LSTM é uma rede neural interessante a ser considerada em uma avaliação de ca-
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nal lateral, especialmente quando o vazamento de dados sensíveis é a combinação
de vários compartilhamentos que vazam em diferentes amostras de tempo dos traços
(como é o caso típico de SSS). Como esperado, os resultados obtidos para DL-SCA
com os traços reais são próximos aos obtidos através de simulação. Além disso, o DL-
SCA supera o TA de ordem superior - HOTA (do inglês, High Order Template Attack).
Os resultados demonstraram por meio de diversas simulações e experimentos práti-
cos com HOTA, que a escolha dos pontos públicos no esquema SSS tem impacto na
força da contramedida. Considerando esta propriedade, o LSTM é o melhor modelo
seguido pela MLP e pela CNN_2_LAYERS. Do ponto de vista do adversário, a arqui-
tetura LSTM em particular (e as redes neurais de dependência de tempo em geral)
é muito adequada para quebrar uma implementação de SSS. O DL-SCA (indepen-
dentemente da arquitetura DL usada) neutraliza a contramedida de embaralhamento.
Sendo, a eficiência dos modelos DL usados bastante semelhante. No entanto, através
dos resultados práticos (implementação da Chipwhisperer) pode-se ver que é mais in-
teressante considerar as redes CNN quando o embaralhamento está envolvido como
proteção.

Também relacionado ao ataque baseado em aprendizado profundo em dispositivos
protegidos com contramedidas, os autores em (ALIPOUR et al., 2020) visam aplicar
non-profiled DL-SCA contra o AES dotado da contramedida baseada em ocultação (do
inglês, hiding), na qual é utilizada geração de ruído correlacionado. É apontado pe-
los resultados que contramedidas como mascaramento oferecem alta proteção contra
CPA, entretanto DDLA (do inglês, Differential Attack Deep Learning Analysis) conse-
gue quebrar essa contramedida. Os experimentos mostram que uma contramedida
baseada em ocultação pode fornecer maior proteção contra ataques de canal late-
ral de aprendizado profundo non-profiled. Portanto, para implementar contramedidas
que sejam resilientes contra ataques DDLA modernos sem criação de perfil, pode ser
necessário usar metodologias que atrapalhem o procedimento de treinamento. Uma
perspectiva é investigar mais a fundo se existem perturbações que podem perturbar
ainda mais o procedimento de treinamento de ataques DDLA. Além disso, os autores
planejam investigar contramedidas que podem proteger igualmente contra ataques
DDLA e CPA.

O estudo de ? aplica Aprendizado de Máquina para SCA em traços desalinhados.
Esse trabalho combina CNNs com Data Augmentation, que trata-se de uma técnica
para gerar novos exemplares de dados de treinamento a fim de aumentar a genera-
lidade do modelo, simulando tanto o efeito de clock jitter (chamadas de add-remove
deformations) quanto inserção de atrasos aleatórios (chamadas de shifting feforma-
tions). Nesse artigo os autores utilizam uma técnica chamada Data Augmentation,
que consiste em aumentar o dataset inserindo amostras artificialmente modificadas,
como por exemplo utilizando amostras distorcidas, deslocadas, etc., para evitar o pro-
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blema de Overfitting. As contramedidas aplicadas nos exemplos foram RDI em um
microprocessador ATMega328P. Em outro experimento os autores utilizam traços re-
sultantes de operações sendo realizadas repetidas vezes. Com os resultados con-
cluem que mesmo que a CNN transforme informações espaciais (ou temporais) em
características discriminativas abstratas, ela ainda mantém uma noção de ordenação.
Num terceiro experimento os autores simulam clock jitters. Com esses experimentos,
concluem que CNN é robusta com respeito ao efeito de jitter. A seleção de POI e
o realinhamento na fase de treino são efetivos. Por último, os autores executam um
experimento com um smart card (implementado numa tecnologia de 90nm). Nesse
hardware existe uma contramedida que emprega um forte clock jitter. Através dos
resultados, os autores verificaram que CNNs são eficazes mesmo em casos onde re-
alinhamento não se aplicaria. Assim, se o realinhamento falhar, os TA se sairão mal,
enquanto os CNNs saem bem. Portanto, os autores concluem que CNNs com DA
(para evitar o problema de overfitting) mostraram-se eficientes aplicados a traços com
diferentes tipos de desalinhamentos.

4.3.2 Comparação entre Métodos de Ataque

A literatura contém também trabalhos que aplicam algoritmos de aprendizado pro-
fundo em SCAs. Muitos desses trabalhos buscam realizar uma comparação de de-
sempenho entre tais algoritmos e suas variações. Tais comparações são importantes,
pois ressaltam características desses algoritmos, apontando cenários e aplicações
mais adequadas para cada algoritmo ou grupos de algoritmos.

Lerman; Martinasek; Markowitch (2017) fazem uma comparação entre diferentes
algoritmos de aprendizado de máquina e aprendizado profundo, com o intuito de veri-
ficar quais algoritmos são mais robustos em ambientes ruidosos. Isto é uma caracte-
rística bem comum em diferentes cenários de ataque quando da aquisição dos traços,
sejam eles de radiação eletromagnética ou do consumo. Os resultados destacam que
TA representa os melhores modelos quando: (i) não há (ou há baixa) variabilidade no
conjunto de perfil e no conjunto de ataque, e (ii) o nível de ruído varia entre os vaza-
mentos. Os autores observam que no geral, o TA clássico oferece o menor sucesso
nos ataques. No entanto, o grande destaque em ataques baseados em aprendizado
de máquina encontra-se: (i) quando o número de erros (ou seja, o número de vaza-
mentos incorretamente associados a um valor alvo) no conjunto de perfil aumenta,
(ii) quando os vazamentos estão desalinhados nos conjuntos de perfil e/ou ataque, e
(iii) quando os vazamentos do conjunto de perfil e do conjunto de ataque diferem de
um offset DC alto. O estudo apresentado traz comparações bastante interessantes,
contudo como os autores mencionaram, experimentos de algoritmos de aprendizado
profundo ficaram para trabalhos futuros. Seria interessante ver como esses algorit-
mos reagiriam frente a traços desalinhados. Além disso, a quantidade de amostras
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deslocadas nos desalinhamentos dos traços utilizados nos experimentos não ficaram
claros.

Sabe-se que técnicas de aprendizado profundo são ferramentas muito poderosas
para resolver inúmeros problemas, dentre os quais estão os SCAs. Contudo, muitos
parâmetros precisam ser configurados. Isto se traduz em uma tarefa difícil, além de
gerar inúmeras possibilidades para serem testadas. Sob esse aspecto, Carlet et al.
(2016) são os primeiros a aplicar diferentes algoritmos de aprendizado profundo ao
contexto de SCA, destacando a capacidade de aprendizado profundo de construir um
perfil preciso levando a um ataque de recuperação de chave de canal lateral eficiente
e bem-sucedido. Os experimentos mostram que os ataques baseados em aprendi-
zado profundo são mais eficientes do que os ataques baseados em aprendizado de
máquina e TA quando direcionados a implementações criptográficas desprotegidas ou
mascaradas.

Em (ROBISSOUT et al., 2021) os autores propõem uma métrica de avaliação on-
line dedicada ao contexto da análise de canal lateral. Esta métrica pode ser usada
para realizar a parada precoce em redes neurais convolucionais existentes encontra-
das na literatura. Segundo os autores, esta métrica compara o desempenho de uma
rede no conjunto de treinamento e no conjunto de validação para detectar underfit-
ting e overfitting. Consequentemente, pode-se melhorar o desempenho das redes ao
encontrar sua melhor época de treinamento e, assim, reduzir o número de traços usa-
dos em 30%. O tempo de treinamento também é reduzido para a maioria das redes
consideradas. Os experimentos mostram que a parada precoce do treinamento per-
mitiu uma redução de 31% do número de traços necessários para atingir uma taxa de
sucesso de 90% e reduziu o tempo de treinamento em 30%.

4.3.3 Melhoria da Eficiência do Ataque

Nesta Seção, são apresentados trabalhos que tem como objetivo melhorar a efici-
ência de SCA baseado em inteligência artificial, seja através de ajuste de hiperparâ-
metros, da combinação de informações de entrada para os algoritmos ou até mesmo
propondo novas abordagens de ataque mais eficientes.

Neste sentido Mukhtar; Kong (2019) busca um melhor ajuste dos hiperparâmetros
de algoritmos de aprendizado de máquina, através da análise de características tem-
porais e do domínio da frequência dos traços de EM. Os resultados fornecem a análise
comparativa das melhores escolhas e conduz à seleção dos parâmetros. Este traba-
lho não aplica técnicas de pré-processamento nos traços e o ataque é realizado bit a
bit da chave secreta. Foi observado que o pré-processamento do PCA funcionou ape-
nas na classificação de SVM, levando ao fato de que modelos como RF e MLP lidam
bem com os dados de alta dimensão. A MLP mostrou uma precisão de classificação
de mais de 90%, levando à constatação de que o uso de algoritmos de aprendizado
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profundo mais complexos pode melhorar a precisão da classificação. Também foi
concluído que vários parâmetros podem ser alterados para melhorar a acurácia. A
discussão trazida pelos autores é bastante interessante, pois independentemente do
tipo de algoritmo de inteligência artificial utilizado, o ajuste de parâmetros é uma das
etapas mais complexas e importantes do processo do ataque. No entanto, muitos ou-
tros parâmetros existem nos algoritmos testados e não foram mencionados. A métrica
utilizada é a acurácia, uma métrica que não é adequada para avaliar SCAs em ata-
ques contra dispositivos protegidos ou com elevados níveis de ruídos. Os resultados
parecem servir apenas para o estudo de caso em questão. Em outras situações, os
parâmetros determinados não se encaixam.

Weissbart (2020) também buscam a melhoria de SCA através da sintonia eficiente
de hiperparâmetros. Neste artigo, os autores concentram seus esforços em melho-
rar MLP, justificando que este tipo de rede neural é menos presente nas pesquisas
do que CNN. Também, MLPs são redes mais simples, permitindo o ajuste mais fácil
de seus hiperparâmetros, além de serem menos custosas computacionalmente. Foi
investigado o comportamento de uma rede MLP no contexto de SCA sobre o AES.
Explorando a sensibilidade dos hiperparâmetros da rede MLP sobre o desempenho
do ataque, os autores visam fornecer uma melhor compreensão do ajuste de hiper-
parâmetros bem-sucedido e, em última análise, o desempenho deste algoritmo. Os
resultados mostram que a MLP (com um ajuste de hiperparâmetro adequado) pode
facilmente quebrar as implementações com contramedidas de atraso aleatório ou mas-
caramento. O estudo de Weissbart (2020) é bastante relevante, pois como comentado
pelos autores MLPs são mais simples que CNNs. Assim, com o ajuste adequado,
essas redes aplicadas aos SCAs podem se tornar uma ameaça real aos dispositivos
criptográficos. Conforme visto neste trabalho, alguns parâmetros não foram testa-
dos nos experimentos, como por exemplo, outras funções de ativação. MLPs mais
heterogêneas poderiam ser testadas. Também, direrentes números de perceptrons
nas camadas, etc. Ainda, outras técnicas de redução de dimensionalidade ou pré-
processamento diferentes do DoM poderiam ser testadas para melhorar o desempe-
nho da MLP. Desse modo, muitos testes ainda podem ser realizados para verificar e
melhorar a eficiência das MLPs no contexto de SCA. Em um caminho inverso, e este
é o caminho adotado por esta proposta, podem-se aplicar técnicas às redes CNN com
o intuito de reduzi-las, mantendo sua eficiência superior com menos esforço computa-
cional.

É sabido que os pesos de uma rede neural precisam ser inicializados, geralmente
com valores baixos e aleatórios. Entretanto, Li; Krček; Perin (2020) investigaram como
a escolha dos inicializadores de peso influencia o desempenho das redes neurais pro-
fundas, mais especificamente CNNs, na análise de canal lateral. Notavelmente, os
autores observaram que o grid search pula muitos valores possíveis, limitando a confi-
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guração a apenas certos hiperparâmetros, desconsiderando completamente a influên-
cia de outros. Os autores utilizaram duas arquiteturas CNN encontradas na literatura
para realizar seus experimentos. Os resultados mostram que inicializadores de peso
diferentes fornecem comportamento radicalmente diferentes em termos de guessing
entropy quando os conjuntos de dados são mais difíceis de atacar. Foi observado que
mesmo os inicializadores de alto desempenho podem atingir um desempenho signi-
ficativamente diferente ao realizar várias fases de treinamento. Também, os autores
descobriram que esse hiperparâmetro depende mais da escolha do conjunto de dados
do que outros hiperparâmetros comumente examinados. Ao avaliar as conexões com
outros hiperparâmetros, a maior conexão é observada com as funções de ativação. Os
resultados mostram que inicializadores de peso diferentes fornecem comportamento
radicalmente diferentes em termos de guessing entropy quando os conjuntos de da-
dos são mais difíceis de atacar. Foi observado que mesmo os inicializadores de alto
desempenho podem atingir um desempenho significativamente diferente ao realizar
várias fases de treinamento. Por fim, os autores descobriram que esse hiperparâ-
metro depende mais da escolha do conjunto de dados do que outros hiperparâmetros
comumente examinados. Ao avaliar as conexões com outros hiperparâmetros, a maior
conexão é observada com as funções de ativação.

Pessl; Mangard (2016) mostram que usando TA e a estrutura algébrica simples de
multiplicação, o problema de recuperação de chave pode ser convertido para o conhe-
cido problema de Paridade de Aprendizagem com Ruído (do inglês, Learning Parity
with Noise - LPN). No entanto, em vez de usar algoritmos de solução LPN padrão, é
apresentado um método que faz uso extensivo de confiabilidade de bits derivada de
informações de canal lateral. Isso permite diminuir o tempo de execução do ataque
em casos com probabilidades de erro de baixa a média. Em um experimento prá-
tico, foi atacada com sucesso uma implementação de Fresh Re-Keying protegida de
8 bits usando apenas 512 traços, destacando os autores que seu ataque também se
aplica a outros cenários que usam a multiplicação de campo binário, como AES-GCM
(Galois Counter Mode). Os resultados mostram que a estrutura simples da função de
Re-Keying torna os ataques algébricos de canal lateral uma ameaça real. Além disso,
mudar a tarefa de segurança do DPA para uma função de Re-Keying dedicada não é
trivial. O vazamento de sua saída deve ser considerado em todas as operações subse-
quentes e mecanismos de proteção simples, como embaralhamento, podem não ser
suficientes para proteção. Existem várias maneiras imagináveis de proteger o Fresh
Re-Keying contra os ataques apresentados. Uma óbvia é adicionar outras contrame-
didas ao AES, o que, entretanto, aumenta o overhead de proteção. Alternativamente,
pode-se alterar a função de Re-Keying, por exemplo, para multiplicação polinomial
sobre um campo primo em vez de GF (28). Embora apresente uma nova forma de
SCA, esse trabalho é tangente à pesquisa realizada nessa tese. Ainda, como os pró-
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prios autores afirmam, não são apresentados dados sobre o tempo de execução dos
algoritmos.

O trabalho apresentado por Ozgen; Papachristodoulou; Batina (2016) combina téc-
nicas de aprendizado de máquina com TA, com o intuito de melhorar a eficiência do
segundo, focando na fase de correspondência de modelos (matching). São compara-
dos três algoritmos de classificação em um conjunto de dados de template construído
durante a execução de um algoritmo de multiplicação escalar regular. Assim, o ata-
que proposto usa algoritmos de classificação como um distinguisher alternativo para
a fase de matching de templates do TA, a fim de fornecer templates precisos para
distinguir entre traços de template e, eventualmente, recuperar a chave. Os autores
mencionam que seu modelo de ataque é bastante genérico e pode funcionar com al-
goritmos simétricos e assimétricos e para vazamentos HW ou HD. O ataque em um
cenário OTA (do inglês, Online Template Attacks), mostrou ser possível recuperar com
sucesso bits do algoritmo de multiplicação escalar. Os métodos de classificação Naive
Bayes, kNN e SVM podem dar 100% de sucesso na classificação correta dos traços
de template, quando os templates são escolhidos e construídos corretamente. O fato
do cenário de ataque utilizado assumir uma classificação binária torna os resultados
realmente precisos e pode explicar a taxa de sucesso absoluta. Embora os autores
tenham mencionado que seu método é genérico, o trabalho apresentado não ataca o
AES, o que pode ser realizado em experimentos de trabalhos futuros. Além disso, não
são testados dispositivos com contramedidas, ainda que os autores acreditem que o
método obteria sucesso em tais dispositivos.

Gao, Si et al., em (GAO et al., 2017) questionam se é possível desenvolver um
método baseado em inteligência artificial que aprenda os estados intermediários do
algoritmo criptográfico atacado, a partir dos vazamentos de canal lateral. Sob cer-
tas circunstâncias, os autores descobrem que os estados intermediários podem ser
recuperados de forma eficiente com a conhecida técnica chamada Análise de Com-
ponentes Independentes (do inglês, Independent Component Analysis - ICA). Espe-
cificamente, foram propostos vários métodos para converter os vazamentos do canal
lateral em observações ICA eficazes. Para uma recuperação mais robusta, também
foi apresentado um algoritmo ICA especializado que explora as características espe-
cíficas dos sinais de circuito. Experimentos mostraram que a análise funciona bem
em certos modelos ICA, recuperando corretamente mais de 80% dos estados inter-
mediários, com apenas algumas centenas de traços. Além disso, o SCA baseado
em ICA traz novas possibilidades para o atual estudo de SCA non-profiled, incluindo
o ataque à criptografia intermediária e à engenharia reversa com menos restrições.
Considerando que a ICA é uma ferramenta mais agressiva do que a maioria das téc-
nicas anteriores de SCA, os autores acreditam que a SCA baseada em ICA é uma
ferramenta promissora para o futuro estudo de SCA.
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Uma abordagem intermediária entre aprendizado supervisionado e não-
supervisionado é empregada em SCA por Picek; Heuser; Jovic (2018). A chamada
abordagem semi-supervisionada, consiste em usar um pequeno número de medições
rotuladas da fase de perfil, bem como as medições não rotuladas da fase de ataque
para construir um modelo mais confiável. Na aprendizagem supervisionada, foram uti-
lizados os algoritmos TA e sua versão agrupada pooled TAp, RF, MLP e Naive Bayes.
Na aprendizagem semi-supervisionada (do inglês, Semi-Supervised Learning – SSL)
baseada em gráfico, foi usado o algoritmo kNN (ou seja, o método para atribuir rótu-
los), uma vez que produz uma matriz esparsa que pode ser calculada muito rapida-
mente. Os resultados obtidos mostram que a SSL pode ajudar em muitos cenários.
Melhorias significativas são obtidas para quase todos os classificadores, incluindo TA
no cenário de baixo ruído para o pequeno número de traços no conjunto de dados
de aprendizagem. Além disso, o TA foi aprimorado para a maioria dos tamanhos de
conjunto de dados usando métodos SSL. Em geral, quando medido sobre todos os
cenários considerados, o classificador MLP demonstra os melhores resultados, se-
guido por TAp e NB. A abordagem apresentada em (PICEK; HEUSER; JOVIC, 2018)
é uma saída interessante quando o atacante se depara com cenários em que o ta-
manho do conjunto de dados de treinamento é restrito. Entretanto, como os próprios
autores mencionam, poderiam ser exploradas mais contramedidas, já que esse é um
problema preocupante nos SCAs (o ataque em dispositivos protegidos).

Uma forma diferente de buscar uma melhoria nos ataques baseados em aprendi-
zado de máquina e aprendizado profundo é apresentada por Van der valk et al. (2020).
A ideia é explorar a imitação para comparar modelos aprendidos por uma rede neural.
Os autores exploram uma solução alternativa para alcançar compressão do modelo
enquanto limita a perda de precisão. A solução proposta é baseada no conceito de
mímica. Portanto, em vez de treinar uma pequena rede (de alunos) com base no
conjunto de dados original, a simulação visa treinar a rede de alunos com a saída
de uma grande rede (de professores). Ao treinar nos resultados da rede do profes-
sor, a rede do aluno pode alcançar uma precisão muito melhor em comparação com
o treinamento nos rótulos originais. O ataque tem como alvo o valor intermediário
dependente da chave de um byte do algoritmo cuja atividade de canal lateral é obser-
vada. Nos experimentos, foi utilizado o valor intermediário como rótulo (256 classes)
ou o peso de Hamming (HW) do byte (9 classes). Os experimentos mostraram que é
mais fácil imitar com MLP do que com CNN, mas ambas as configurações podem dar
bons resultados. Melhor desempenho com redes rasas é possível quando arquiteturas
profundas se ajustam com overfitting.

Diferente dos trabalhos apresentados até aqui, uma linha de pesquisa adotada
por alguns autores refere-se à combinar mais de um tipo de informações de entrada
para o algoritmo de inteligência artificial que realizará o ataque de canal lateral. Essa
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abordagem, busca melhorar a eficiência dos SCA, através do aumento de informação
útil entregue para os algoritmos de aprendizado de máquina ou aprendizado profundo.

O primeiro estudo sob esse paradigma, encontrado através da RSL aqui realizada
foi (YU; CHEN, 2018). Neste trabalho, os traços de potência dissipada e de emissão
eletromagnética são capturados juntos. Então, uma rede neural profunda (do inglês,
Deep Neural Network – DNN) é usada para modelar a relação entre o ruído dos tra-
ços de potência e o ruído dos traços de EM, analisando os perfis de consumo e EM
capturados. A partir disso, um ataque é realizado utilizando o ruído da EM para fil-
trar o ruído da potência. O dispositivo alvo dos ataques é dotado de contramedida
de DVS (Dynamic Voltage Scaling). Segundo os autores, os resultados mostram que
para SCAs convencionais, mesmo se 1 milhão de textos claros forem utilizados não
é possível atacar um AES protegido. Ao passo que analisando somente 32500 de
textos claros, através do método proposto, a chave criptográfica é revelada. Embora
os resultados tenham se mostrado muito superiores as outras técnicas apresentadas,
uma quantidade muito grande de traços ainda é necessária para obter sucesso no
ataque. Assim, a proposta é interessante, entretanto são necessários estudos futuros
para desenvolver melhor o método.

Em (HETTWER; GEHRER; GÜNEYSU, 2019), os autores apresentam uma nova
arquitetura CNN para SCAs com perfil que permite codificar informações específicas
de domínio (do inglês, Domain Knowledge – DK). Ao fazer isso, é possível alimentar
o texto claro ou texto cifrado como uma fonte adicional de informações na rede (além
das medidas de potência). O CNN com DK é dedicado a aprender de forma autônoma
o vazamento do dispositivo em relação à chave secreta. Para inserir informações de
conhecimento de domínio ao ataque, são introduzidos neurônios DK em uma rede
CNN projetada para SCA. Assim, são unidas informações de características extraídas
dos traços através das camadas convolucionais da CNN com informações de domínio
específicas (DK). Melhorando assim, a eficiência dos ataques. Os autores demons-
traram por meio de experimentos com dois conjuntos de dados diferentes que o CNN
proposto com DK efetivamente consegue capturar de forma autônoma a função com o
maior vazamento para quebrar a chave secreta diretamente. A ideia de Hettwer; Geh-
rer; Güneysu (2019) é bastante importante para a área de SCA. Entretanto, como os
autores mencionam, outros testes devem ser feitos para consolidar a técnica apresen-
tada. É interessante levar em conta também o tempo de processamento da rede final,
o que não foi explorado no trabalho. Sabe-se que CNNs são redes neurais bastante
poderosas, contudo seu poder computacional está atrelado a um custo relativamente
alto de tempo e recursos.

O trabalho de Hettwer et al. (2020) combina o vazamento dependente da loca-
lização, de vários capacitores de desacoplamento em um SoC (System on Chip).
São combinadas informações (vazamento) de diversas fontes usando a abordagem
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de deep learning information fusion. Assim, os autores propõem um método de ata-
que baseado em aprendizado profundo e medições de EM multi-canal. Essa é uma
nova estratégia de ataque que extrai o vazamento de informações dependente da lo-
calização que captura a atividade de partes específicas do hardware projetado usando
diferentes capacitores de desacoplamento da fonte de alimentação. As medições ob-
tidas são processadas por uma DNN de multiplas entradas. A DNN é treinada para
combinar informações relacionadas ao compartilhamento para fazer previsões sobre
os dados mascarados que estão sendo processados. Foram avaliadas muitas aborda-
gens de fusão de dados para fornecer um guia de como a informação extraída pode ser
combinada de uma maneira ótima. Para testar a efetividade da proposta, os autores
compararam o método proposto com medidas de EM multi-canal obtidas diretamente
da superfície de um die e do estado da arte de TAs. No total, o método proposto ne-
cessitou de 2750 traços para alcançar sucesso em um ataque de primeira ordem em
uma implementação segura do AES. Portanto, os resultados mostram uma vantagem
em relação ao número de traços necessários para sucesso na recuperação da chave
comparado aos profiled attacks do estado da arte. É destacado que foram obtidos
melhores resultados com MLP do que com CNN. Apesar de apresentar uma proposta
interessante, salienta-se que o método proposto não superou TA quando se trata de
utilizar EM do die como vazamento. Também, os resultados mostram a quantidade de
traços para um ranking<10 e ranking<2. Não mostra quantos traços foram necessários
para ranking 0. A abordagem da referência (SPECHT et al., 2018) necessitou menos
traços para chegar ao ranking<2 do que o proposto no artigo.

Zhang et al. (2020) apresentam um método SCA com aprendizado profundo multi-
label. O método baseia-se em uma modificação da camada de saída de uma rede
neural. Na classificação multi-label, cada traço do consumo no dataset de treino é
marcado com um conjunto de labels de bits, assim um grupo de probabilidades de
labels é predito para um traço de ataque. Os experimentos com a classificação multi-
label são realizados com o dataset de benchmark ASCAD. Para uma comparação justa
com os resultados do artigo original do (PROUFF et al., 2018) ASCAD, somente a ca-
mada de saída é alterada para poder ser ajustada a um modelo multi-label. Modelos
monobit também são testados. Os resultados mostram que MLPmonobit consegue que-
brar todos os bits, exceto o bit1 quando os traços estão alinhados. Quando os traços
estão desalinhados de 50 amostras só o bit7 foi quebrado e quando os traços estão
desalinhados de 100 amostras nenhum bit foi quebrado. Já CNNmonobit consegue que-
brar todos os bits quando os traços estão alinhados, mas nem todos quando os traços
estão desalinhados. Entretanto, como mencionado no artigo, multi-label pode ser con-
siderado como um ensemble de vários monobits. Assim, o ensemble de MLP monobit
obtém melhores resultados que MLPbest. O ensemble do CNNmonobit executa muito
melhor que o ensemble MLPmonobit e CNNbest, e aproximadamente 150, 300, 500 tra-
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ços são necessários respectivamente para quebrar o dataset ASCAD. MLPmulti−label

tem melhores resultados que MLPbest. CNNmulti−label obtém o melhor resultado e
somente 150, 250 e 350 traços são necessários para quebrar o ASCAD. O modelo
multi-label obtém desempenho semelhante ao conjunto ingênuo de modelos monobit
com apenas um modelo treinado. MLPmulti−label tem um certo grau de degradação
de desempenho quando os traços são dessincronizados, enquanto CNNmulti−label tem
um desempenho um pouco melhor. E é intrigante que MLPmulti−label e CNNmulti−label

obtenham o mesmo desempenho de ataque quando os traços estão alinhados. A
modificação da camada de saída das redes neurais para melhoria da eficiência do
SCA mostrou-se eficaz. Contudo, como mencionado pelos autores, o método apre-
sentado necessita ainda de otimizações, como por exemplo, a inclusão de uma etapa
de pré-processamento.

Uma estratégia interessante, e até onde se sabe, abordada pela primeira vez em
Perin; Wu; Picek (2021) no contexto de SCA, consiste em aplicar uma técnica de poda
(do inglês, pruning) para melhorar o desempenho de redes neurais no ataque. A ideia
central desta técnica é realizar um treinamento em uma rede neural relativamente
grande, com a qual obtém-se sucesso nos ataques a canais laterais. Em seguida,
aplica-se o processo de poda removendo a atividade de alguns pesos da rede. Neste
trabalho, os autores removem os pesos de menor valor, embora existam outras técni-
cas de poda que podem ser aplicadas em trabalhos futuros. Depois disso, a rede é
reinicializada com os mesmos pesos originais. Com este processo, os autores dizem
que a rede reinicializada mostra desempenho igual ou, na maioria das vezes, superior
em comparação com a grande rede treinada. Como visto em (PERIN; WU; PICEK,
2021), outra opção de inicialização da rede podada pode ser através da escolha alea-
tória de valores, como visto na Figura 15.

O trabalho de Perin; Wu; Picek (2021) baseia-se na hipótese do bilhete de loteria
(do inglês, Lotery Ticket Hypothesis), o qual assume que redes neurais profundas inici-
alizadas aleatoriamente contêm sub-redes que, quando treinadas isoladamente (sem
considerar outras partes da rede), alcançam precisão de teste comparável à rede ori-
ginal em um número semelhante de iterações. As sub-redes são obtidas por poda
da rede original. Os autores de Frankle; Carbin (2018) observaram que a sub-rede
obtida após a poda (com um nível de esparsidade de P%) fornece desempenho su-
perior quando reinicializada com os pesos usados para inicializar os pesos originais.
Essas sub-redes de melhor desempenho são então chamadas de tickets vencedores.
A esparsidade denota a porcentagem da rede removida (por exemplo, 90% de espar-
sidade em um MLP consistindo em uma camada oculta com 100 neurônios removeria
90 neurônios).

Sabe-se que o SCA baseado em aprendizado profundo requer, idealmente, a sele-
ção da menor arquitetura de rede neural possível que forneça boa generalização. Mo-
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Figura 15 – Procedimento de Poda para LTH. Fonte: (PERIN; WU; PICEK, 2021)

delos pequenos são mais rápidos de treinar e mais fáceis de interpretar. O desafio de
encontrar uma arquitetura pequena com bom desempenho pode crescer proporcional-
mente à dificuldade do conjunto de dados do canal lateral avaliado (desalinhamento,
ruído, contramedidas). No entanto, os traços de canal lateral geralmente fornecem
uma relação sinal-ruído baixa e as técnicas de regularização desempenham um papel
importante na capacidade de aprendizagem de vazamento. Os modelos pequenos
são autorregularizados, principalmente por oferecerem menos capacidade de overfit
ao conjunto de treinamento. De acordo com os autores, isso justifica a importância
de encontrar bilhetes vencedores no SCA. Independentemente do conjunto de dados
avaliado, começar a partir de um grande modelo de linha de base e aplicar a hipótese
do bilhete de loteria aumenta as chances de criar um modelo de rede neural pequeno
e eficiente.

Os autores enfatizam que a poda é conveniente para grandes redes neurais. En-
contrar redes eficientes e pequenas é mais difícil do que começar com um modelo
grande e depois reduzi-lo. Neste artigo, foram consideradas arquiteturas de rede neu-
ral com até 1 milhão de parâmetros treináveis. Segundo os autores, a poda tem duas
vantagens principais para SCA:

i) Se for encontrado um modelo grande que generaliza bem, a poda favorece a
explicabilidade e a interpretabilidade.

ii) A poda atua como um regularizador forte, o que é importante para conjuntos de
dados SCA pequenos e com ruído.
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São também discutidos resumidamente os limites que a poda e a hipótese do bi-
lhete de loteria oferecem em relação aos resultados e sua explicabilidade:

i) A poda permite fazer redes neurais menores com desempenho no nível ou até
melhor do que redes neurais maiores.

ii) A hipótese do bilhete de loteria pressupõe que haverá sub-redes menores e de
bom desempenho, os chamados bilhetes premiados

iii) No contexto de SCA, os tickets vencedores são pequenas sub-redes com bom
desempenho de ataque, medido com GE e SR.

iv) A poda e o LTH não são métodos para fornecer explicabilidade. No entanto, um
modelo podado representa um pequeno modelo que favorece a explicabilidade (por
exemplo, técnicas de visualização) e interpretabilidade (por exemplo, quais classes
são melhor classificadas pelo modelo podado).

Neste estudo, foi investigado como a poda pode ser uma estratégia útil ao usar
uma única rede neural para atacar a chave inteira (e não apenas um único byte de
chave como comumente relatado na literatura). Na verdade, os autores observaram
que a remoção e a reinicialização provaram ser opções muito poderosas para ajustar a
rede neural a diferentes configurações. Sua investigação experimental permite podar
até 90% dos pesos e ainda alcançar um bom desempenho de ataque. Assim, eles
conseguem atingir o mesmo desempenho de ataque para redes significativamente
menores (mais fáceis de ajustar e mais rápidas de treinar). Para os experimentos os
autores consideraram o modelo de vazamento baseado no peso Hamming devido aos
datasets escolhidos (ASCAD; e CHES CTF 2018).

Com base nos experimentos realizados, os autores fornecem várias observações
gerais:

• Se o modelo de linha de base funcionar mal para um conjunto limitado de traços
de ataque, a remoção ainda pode melhorar o desempenho;

• Se a linha de base funciona bem e não acontece overfit, a poda mantém o de-
sempenho, mas produz redes menores;

• Se não houver traços de perfil suficientes para a capacidade do modelo, acon-
tece overfit e a poda pode ajudar a evitar isso;

• Mais traços de criação de perfil melhora os resultados de poda, mas também
reduz as diferenças entre as técnicas de inicialização de peso;

• O procedimento de poda e reinicialização de peso funciona melhor, desde que
as arquiteturas de rede neural sejam grandes o suficiente para utilizar os tickets
vencedores;
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• A poda pode melhorar os resultados do ataque, conforme indicado por várias
métricas de desempenho de SCA;

• A poda representa uma opção forte ao considerar um modelo de rede neural
treinado para um byte de chave a ser aplicado a outros bytes de chave.

Como trabalho futuro, os autores planejam considerar técnicas de poda mais so-
fisticadas. Finalmente, como discutido, a poda permite redes neurais menores e com
bom desempenho, mas não fornece insights sobre a explicabilidade das redes neurais.
Pode ser interessante considerar várias técnicas de visualização de características
para avaliar as características importantes antes e depois da poda.

A técnica apresentada por Perin; Wu; Picek (2021) é bastante popular na área
de inteligência artificial e traz muitos benefícios, como revisado acima. Portanto, sua
aplicação aos side channel attacks pode culminar em redes neurais pequenas e efici-
entes, apontando uma ameaça aos dispositivos criptográficos. Aqui nesta Tese, foram
investigadas formas de realizar a poda, diferentes da aqui apresentada, como será
visto em seções sobsequentes. Pois percebeu-se aqui um caminho promissor a ser
trilhado com base nesse método.

4.4 Comparação dos Trabalhos Relacionados

A Tabela 5 apresenta uma comparação dos trabalhos relacionados que utilizam
técnicas de aprendizado de máquina e aprendizado profundo no contexto de SCAs.
Para cada um dos trabalhos foram elencadas: (i) as ferramentas utilizadas, (ii) quais
algoritmos de inteligência artificial foram aplicados, (iii) que conjuntos de dados fo-
ram usados, (iv) se o dispositivo atacado é dotado de contramedidas, (v) as etapas
de pré-processamento empregadas e (vi) que métricas de avaliação foram aplicadas,
parâmetros estes que ajudaram na tomada de decisão e o respectivo método a ser
aplicado.
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Tabela 5 – Comparação entre os trabalhos relacionados.

Avaliação do Ataque baseado em Aprendizado Profundo sob diferentes cenários
Estudo Ferramenta(s) Algoritmo(s) ML/DL Dataset(s) Contramedida(s) Pré-

Processamento
Métrica(s)

(WANG et al., 2020) Não informado MLP e CNN Próprio Não max_min scaling

[0,1]

Rank, GE e PGE

(WEISSBART; PICEK;

BATINA, 2019)

Keras CNN Próprio Não PCA SR e acurácia

(HEUSER et al., 2017) Não informado NB, C4.5 e MLP Próprio Não Não Confusion Coefi-

cient e SR

(ZHANG et al., 2020) Não informado DNN Próprio e DPA

Contest v.4

RSM FFT Loss e GE

(DAS et al., 2019) Keras com Ten-

sorFlow como

backend

DNN Próprio Não Não acurácia

(XU et al., 2019) Não informado CNN Próprio Não PCA, LDA Rank

(BRISFORS; FORS-

MARK; DUBROVA,

2021)

Não informado CNN Próprio Não Não Rank e GE

(MUKHERJEE, 2020) Não informado LSTM Próprio Ocultação e Mascara-

mento

Não SR

(KUBOTA et al., 2019) Não informado CNN Próprio RSM Extração de POIs

(não explica)

Rank

(MAGHREBI, 2019) Não informado CNN, MLP e LSTM Próprio shuffling e 1-amongst-

N

Não Rank
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(ALIPOUR et al., 2020) Keras MLP ASCAD e Próprio Correlated Noise Ge-

neration para hiding

Não acurácia

(?) Keras CNN Próprio jitter (RDI) Não acurácia e GE

Comparação entre Métodos de Ataque
(LERMAN; MARTINA-

SEK; MARKOWITCH,

2017)

Não informado SVM, RF e MLP DPA Contest v.2

e DPA Contest

v.4

Desalinhamento nos

traços e RSM

Não SR

(CARLET et al., 2016) Keras e Sci-Kit

Learn

RF, Autoencoder, CNN,

MLP e LSTM

DPA Contest v.2 mascaramento e hiding PCA GE

(ROBISSOUT et al.,

2021)

Não informado CNNbest ASCAD mascaramento Não O artigo baseia-

se em criar

uma métrica

adequada aos

SCA.

Melhoria da Eficiência do Ataque
(MUKHTAR; KONG,

2019)

Weka RF, BN, SVM e MLP Próprio Não PCA e extração

de características

no domínio da

frequencia

acurácia

(WEISSBART, 2020) Keras MLP ASCAD e

AESRD

Random Delay e mas-

caramento

DoM GE e acurácia

(LI; KRČEK; PERIN,

2020)

Keras com Ten-

sorFlow como

backend

CNN DPA Contest

v.4, ASCAD e

AESRD

Random Delay e mas-

caramento

Não GE
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(PESSL; MANGARD,

2016)

Não informado Um novo algoritmo ba-

seado em LPN

Próprio shuffling Não Complexidade

do ataque, Meta-

probabilidade e

Taxa de ocorrên-

cia

(OZGEN; PAPACHRIS-

TODOULOU; BATINA,

2016)

Matlab NB, kNN e SVM Próprio Não Não SR

(PICEK; HEUSER; JO-

VIC, 2018)

Python RF, NB, kNN e MLP DPA Contest

v.4, AES_HD,

AES_RD e

Random Delay

Dataset

Random Delay Não GE

(VAN DER VALK et al.,

2020)

Não informado MLP e CNN DPA Contest

v.4, AES_HD,

AES_RD e

ASCAD

Random Delay e mas-

caramento

Não GE

(YU; CHEN, 2018) Não informado DNN Próprio DVS Utilizar o ruído

de EM para filtrar

os traços de con-

sumo

Coeficiente de

Correlação

(HETTWER; GEHRER;

GÜNEYSU, 2019)

Keras e Sci-Kit

Learn

CNN DPA Contest v.2

e DPA Contest

v.4

RSM e shuffling PCA para atacar

TA

KGE
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(HETTWER; GEHRER;

GÜNEYSU, 2020)

Não informado MLP e DNN Próprio mascaramento média com um fa-

tor de 250 e PCA

no TA

GE

(ZHANG et al., 2020) Keras com Ten-

sorFlow como

backend

MLP e CNN ASCAD mascaramento e desa-

linhamento

Não GE

(PERIN; WU; PICEK,

2021)

Não informado MLP e CNN ASCAD e

CHESS CTF

2018

mascaramento Não GE
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4.5 Considerações sobre o Capítulo

Este Capítulo apresentou o processo de Revisão Sistemática da Literatura reali-
zada para esta Tese, com o intuito de investigar o estado da arte de trabalhos que
empregam Aprendizado Profundo em SCAs. Depois disso, foi feita uma extensa re-
visão de trabalhos divididos em categorias tais como aplicação de DL em SCA sob
diferentes cenários, comparação entre métodos de ataque baseados em DL e me-
lhorias na eficiência do ataque proposto. Destas, a última categoria recebe especial
destaque por estarem relacionados com o escopo desta proposta.

Através deste Capítulo, foi possível confirmar a eficiência das redes neurais quando
aplicadas em SCAs para atacar dispositivos dotados de contramedidas. Descobriu-se
uma maior dificuldade na realização de ataques em dispositivos dotados de contrame-
didas temporais, como por exemplo a inserção de atrasos aleatórios. Contudo, um tipo
específico de rede neural, a CNN mostrou-se eficiente ao atacar até mesmo tais dis-
positivos. Porém, o sucesso das CNNs se dá às custas de um esforço computacional
excessivo. Por isso, esta Tese propõe o uso de métodos de redução do tamanho das
redes neurais, mais especificamente as técnicas de poda (em inglês pruning), para
que se obtenha sucesso aos ataques por canais laterais baseados em redes neurais,
sem a necessidade de um esforço computacional excessivo.



5 TÉCNICAS DE PODA

No Capítulo 4 foram resgatados da literatura diversos trabalhos que mostram a
larga aplicação de algoritmos de aprendizado profundo aplicados a SCAs. Isto evi-
dencia ainda mais o fato de ser interessante apontar métodos para a redução de tais
redes. Portanto, neste Capítulo será apresentado um apanhado sobre os principais
métodos de poda encontrados na literatura até a data de escrita desta Tese. Tais tra-
balhos, serviram como base para o desenvolvimento do trabalho aqui proposto. Para
a busca dos trabalhos relacionados a este assunto, foi seguida a mesma metodologia
de RSL descrita na Seção 4.1.

Nesta etapa foram analisados desde trabalhos que realizam a poda de pesos (HAN
et al., 2015) e (GUO; YAO; CHEN, 2016), e também trabalhos propostos específi-
camente para a remoção de filtros de camadas convolucionais de CNNs como em
(POLYAK; WOLF, 2015), (HE; ZHANG; SUN, 2017) e (YAN et al., 2021). Além disso,
buscou-se trabalhos que utilizassem uma abordagem mais geral, ou seja, estratégias
que fazem a poda em neurônios (sejam filtros de camadas convolucionais (CNNs),
ou até mesmo neurônios de camadas densas encontradas tanto em CNNs como em
redes MLP).

Neste contexto temos o trabalho de Kim; Kwok (2019) que apresenta um método
destinado à poda de filtros, mas que pode ser adaptado para neurônios de camadas
densas. O inconveniente é que além de apresentar um método iterativo, Kim et al.,
realizam a poda de forma suave, em que os neurônios podem até mesmo ser reesta-
belecidos. Isso torna o método bastante custoso.

Outro trabalho encontrado na literatura, que apresenta a poda de neurônios é o
apresentado por Fan; Tang; Ma (2022). Neste trabalho, os autores utilizam a Norma
L1, que se baseia na soma do valor absoluto dos pesos do neurônio, como métrica
para selecionar os neurônios a serem removidos. Como mostraremos em nossos
experimentos, essa métrica pode não ser interessante em alguns casos. Além disso,
o método empregado é iterativo, necessitando de muitos treinamentos da rede para
atingir o objetivo.

Outros exemplos de trabalhos que empregam a poda sobre neurônios foram encon-
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trados: (LAURET; FOCK; MARA, 2006), (BABAEIZADEH; SMARAGDIS; CAMPBELL,
2016), (TAKEDA; NAKADAI; KOMATANI, 2017) e (EVANS, 2018). Dentre os trabalhos
aqui revisados, o trabalho apresentado por (HU et al., 2016) mostrou-se bastante inte-
ressante, apesar de tratar-se de um método iterativo, como outros encontrados nesta
RSL. O método proposto neste trabalho, consiste na realização da poda de neurô-
nios baseado na sua taxa de ativação, descrita através da Equação 30. Esta métrica
pareceu-nos bastante adequada para representar a importância dos neurônios dentro
da rede. Por esta razão, o trabalho de Hu et al. (2016) foi utilizado como referência
para o desenvolvimento da presente Tese, como veremos em seções subsequentes.

5.1 Técnicas de Redução de Redes Neurais através de Poda

Nesta Seção são apresentados trabalhos relacionados a técnicas de poda (do in-
glês, pruning). Entretanto, antes de iniciar a apresentação desses trabalhos, seria
interessante estabelecer alguns conceitos relativos à poda em redes neurais artifici-
ais. Inicialmente, é interessante saber que a poda pode ser realizada com base em
diferentes elementos dentro das redes neurais. O termo utilizado para definir quais
elementos da rede neural serão o foco da poda, chama-se granularidade (KOLLEK
et al., 2021). Assim, o alvo da poda podem ser os pesos da rede (conexões entre os
neurônios), os canais (neurônios de camadas densas, ou filtros das camadas convo-
lucionais), ou até mesmo camadas inteiras. Outro aspecto importante a considerar
quando estamos nos referindo a técnicas de poda é se iremos proceder com uma
poda estruturada, ou não-estruturada. Kollek et al. (2021) além de outros trabalhos
encontrados na literatura nos traz esses conceitos:

• A poda não-estruturada remove os pesos individuais, baseada em determinados
critérios. Existem inúmeros critérios encontrados na literatura;

• A poda estruturada, conta com a remoção de conjuntos de pesos, como por
exemplo, a remoção de neurônios. Quando removemos um neurônio da rede
neural, estamos removendo muitos pesos de uma só vez, pois este neurônio pos-
suía interconexões com neurônios de suas camadas adjacentes. Mais neurônios
são removidos, quando abordamos a poda estruturada com foco nas camadas
da rede.

Outra característica que deve-se observar quanto ao processo de poda, diz res-
peito ao processo em si. Portanto, se a poda é realizada através de um procedimento
iterativo no qual uma determinada quantidade de neurônios é removida a cada itera-
ção, ou se todos os neurônios são removidos de uma única vez (essa remoção em
uma única etapa é também chamada de abordagem One-Shot). Como pode-se per-
ceber, o processo iterativo necessita de sucessivos retreinamentos da rede. Assim,
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neurônios são removidos em um passo, e no passo seguinte a rede é treinada. Em
seguida uma nova remoção é realizada e a rede é novamente treinada, e assim suces-
sivamente. É possível notar que o processo iterativo é muito mais custoso em termos
de tempo de processamento, sendo portanto, recomendável evitá-lo. A partir desses
conceitos, pode-se apresentar os trabalhos encontrados na literatura relacionados a
técnicas de poda.

Han et al. (2015) apresentam um método que reduz tanto o armazenamento de
memória (que figura um dos gargalos do uso de redes neurais), quanto o esforço
computacional requeridos por uma rede neural em ordem de magnitude sem afetar
sua acurácia por aprender somente as conexões importantes. Conforme destacam os
autores, as redes neurais geralmente são super-parametrizadas e existe uma redun-
dância significativa dentro dos seus modelos. O método proposto realiza a poda de
conexões redundantes usando um método de três passos. Primeiro, a rede é treinada
para aprender quais conexões são importantes. Depois, as conexões não-importantes
são podadas. A poda dos pesos se dá através de limiar. Dessa forma, pesos com valor
menor do que o limiar, são removidos. Finalmente, a rede resultante é retreinada para
um ajuste-fino dos pesos das conexões restantes. Através desse processo, que pode
ser repetido, os pesos menos importantes são podados, transformando uma camada
totalmente conectada em uma camada esparsa. Este trabalho trata apenas a poda
de pesos (conexões) da rede. Isso pode tornar o processo menos eficiente frente a
outras técnicas que utilizam uma granularidade maior, como por exemplo neurônios
ou até mesmo camadas inteiras. Também por se tratar de um método iterativo, pode
se tornar altamente custoso, visto que conexões (pesos) individuais são removidos a
cada iteração.

Guo; Yao; Chen (2016) propõem um método que realiza poda de conexões jun-
tamente com emendas de conexões (restauração de conexões) para evitar a poda
de conexões erradas (que diminuem a acurácia da rede). Os processos de poda e
emenda acontecem de uma forma cíclica, ou seja, acontecem constantemente den-
tro do processo inteiro. Os resultados mostram que sem qualquer perda de precisão,
o método apresentado pode comprimir eficientemente o número de parâmetros em
LeNet-5 e AlexNet por um fator de 108× e 17,7× respectivamente. Isso, segundo
os autores, supera o método de poda do estado da arte com margem considerável.
Apesar de aparentemente atraente, o método aqui apresentado pode ser superado
quando aplicamos a poda em granularidades maiores, como por exemplo a canais
(neurônios), uma vez que muitas conexões (pesos) são eliminadas de uma única vez.
Além disso, por realizar remoções de pesos individuais a cada iteração, esse método
torna-se excessivamente custoso comparado a outras técnicas que aplicam maior gra-
nularidade nas remoções.

O artigo apresentado por Polyak; Wolf (2015) traz como estudo de caso o pro-
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blema encontrado para realizar a biometria, com hardware limitado. São propostos
dois novos métodos de compressão: um baseado em eliminar canais menos ativos
e outro em acoplar poda com uso repetido de elementos já computados. Os autores
destacam que a poda de um canal inteiro é uma ideia atraente, uma vez que isso leva
diretamente a economia de tempo de execução em quase todas as arquiteturas razoá-
veis. A escolha do neurônio a ser removido é feita através da medição da variância da
ativação da saída do neurônio em questão. Através do método proposto, os autores
destacam que foi alcançada uma redução de 2.65 vezes no tempo de execução com
uma perda de acurácia muito moderada. É mencionado que o método proposto não
altera a arquitetura da rede original. O método aqui apresentado é bastante interes-
sante, pois visa a remoção de neurônios, o que é mais eficiente do que remover pesos
individualmente. A métrica de escolha do neurônio a ser removido também é muito
pertinente, uma vez que deriva da ativação dos neurônios. Contudo, esse trabalho
visa a remoção de filtros ou camadas de filtro inteiras. Como o método baseia-se na
informação da saída dos filtros, ou mapas de características, seria difícil a conversão
desta técnica para torná-la mais abrangente, como por exemplo, lidar com a remoção
de neurônios de camadas densas.

Um novo método de poda de neurônios para aceleração de CNNs é apresentado
por He; Zhang; Sun (2017). É proposto um algoritmo iterativo de dois passos para o
treinamento de uma CNN. Esse algoritmo efetivamente poda cada camada com uma
seleção de neurônios baseada em regressão LASSO (TIBSHIRANI, 1996) e em least
square reconstruction. Esse algoritmo é generalizado para casos multicamadas e mul-
tiramos. Os autores mencionam que esse método reduz o erro acumulado e melhora
a compatibilidade com várias arquiteturas. A rede VGG-16 foi utilizada como estudo
de caso, e os resultados mostram um aumento na velocidade da rede de até 5x com
apenas 0.3% de aumento nos erros. Os autores destacam ainda que, o método por
eles proposto é capaz de acelerar redes modernas como ResNet, Xception e sofrer
somente 1.4%, 1.0% de perda de acurácia respectivamente, com um aumento de 2x
na velocidade das redes. Em He; Zhang; Sun (2017) os autores utilizam uma aborda-
gem que explora redundância dentro do mapa de características gerado pelos filtros
da rede. Entretanto, apesar de ser um método interessante, está voltado exclusiva-
mente à remoção de filtros das camadas convolucionais das CNNs. Isso restringe o
trabalho a aplicações mais gerais, como redução de MLPs, por exemplo.

No trabalho apresentado em (KIM; KWOK, 2019) os autores propõem uma abor-
dagem que realiza a poda de uma maneira suave. Esse método, diferente de outros
encontrados na literatura, permite recuperar componentes anteriormente podados. A
proposta consiste em uma nova técnica para a poda de filtros chamada Dynamic Unit
Surgery - DUS. Com esse método os autores dizem reduzir a degradação e o tempo
de poda/ajuste fino através de dois mecanismos: (1) permitir que os componentes
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podados se recuperem durante o ajuste fino e (2) podar cada componente de forma
continuamente descendente, em vez de eliminar abruptamente o componente. Os re-
sultados apontam que o método foi aplicado à rede VGG-16 (com o dataset CIFAR10),
e a rede resultante ficou com apenas 5% dos elementos da rede original e 23% dos
seus FLOPs (Float Points Operations), enquanto a taxa de erro alcançou 6.65% sem
degradação da rede original. Embora o método apresentado seja aplicado unicamente
à filtros das camadas convolucionais das CNNs, este poderia ser aplicado a neurônios
de camadas densas, aumentando sua abrangência. Entretanto, o método é iterativo,
e ainda mais, realiza a poda dos filtros de forma suave, podendo os mesmos serem
recuperados, o que torna o método mais custoso em termos de tempo de processa-
mento.

Chen et al. (2021) propõem um método dinâmico de poda, o qual poda canais
não-importantes na fase inicial do treinamento. Contudo, ao invés de utilizar critérios
indiretos como peso normalizado, soma absoluta dos pesos e erro de reconstrução
para guiar a poda, os autores criaram um critério diretamente relacionado com a acu-
rácia final de uma rede para avaliar a importância de cada canal. Assim, uma estrutura
foi projetada para ativar ou desativar aleatoriamente cada canal para que as alterações
de precisão condicional (do inglês, Conditional Accuracy Changes - CACs) pudessem
ser estimadas sob a condição de cada canal desativado. Em cada iteração do mé-
todo 5% dos canais foi desabilitado por vez. Os resultados em vários conjuntos de
dados (CIFAR, ImageNet e MNIST) para redes com vários tipos de arquitetura (ou
seja, ResNet, VGGNet e MLP) demonstram a eficácia do método de poda de canais.
Sem perda de precisão em comparação com a rede de base, mais de 30% e 40% de
FLOPs para múltiplos ResNet e VGGNet no CIFAR, respectivamente, mais de 10% de
FLOPs para ResNet-18 no ImageNet, e 80% de FLOPs para MLP no MNIST podem
ser podados pelo método de poda de canal proposto. Como a acurácia da rede deve
ser aferida a cada iteração, a rede deve ser treinada pelo menos vinte vezes para que
se saiba quais neurônios devem ser podados. Isso tende a tornar o processo muito
custos. Além do mais, no contexto de SCA a acurácia não é a métrica mais adequada
para definir o bom funcionamento de uma rede neural.

Fan; Tang; Ma (2022) adaptam o método de channel pruning às características da
unidade de convolução separável em profundidade e suas variantes. Segundo os au-
tores, usando a configuração de taxa de poda unida, a esparsidade adicional contida,
e certo pré-processamento no dataset, os experimentos mostram uma acurácia mais
alta no dataset CIFAR-10 em alguns casos. Inicialmente, o modelo é pré-treinado. Em
seguida, o processo de seleção dos neurônios não importantes, através da norma L1,
e sua remoção é realizada L vezes. Por fim um ajuste fino é realizado para recuperar
a acurácia e o modelo podado está disponível. Este método consiste em método itera-
tivo, o que por si só é mais custoso, devido aos sucessivos treinamentos necessários
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para colocar o processo em funcionamento. Além disso, a métrica escolhida para se-
leção dos neurônios a serem removidos poderia ser substituída por uma métrica que
refletisse mais a importância de cada neurônio, como por exemplo, sua ativação.

O trabalho apresentado por Yan et al. (2021) realiza a poda dos filtros das cama-
das convolucionais das CNNs. Os autores propõem um algoritmo de poda de canal
através de vários critérios baseado na dependência de peso, Channel Pruning Method
via Multi-Criteria - CPMC, que pode comprimir um modelo pré-treinado diretamente. O
CPMC define a importância do canal em três aspectos, incluindo seu valor de peso as-
sociado, custo computacional e quantidade de parâmetros. De acordo com os autores,
(YAN et al., 2021) utiliza como critérios para formar o multi-criteria tanto as entradas
como as saídas dos filtros a serem removidos, o que restringe o uso desse método
exclusivamente a filtros das camadas convolucionais das CNNs. Além do mais, para
que possamos obter melhores resultados, existe a possibilidade de tornarmos o mé-
todo iterativo com etapas de poda e treino, o que torna o método bastante custoso
computacionalmente.

Lauret; Fock; Mara (2006), propõe um novo algoritmo de poda para obter o número
ideal de unidades ocultas de uma única camada de uma rede neural totalmente co-
nectada (NN). A técnica conta com uma análise global de sensibilidade da produção
do modelo. A relevância dos nós ocultos é determinada pela análise da decomposição
de Fourier da variância da saída do modelo. Cada unidade oculta recebe uma razão
(a fração de variância que a unidade responde) que dá sua classificação. Essa infor-
mação quantitativa, portanto, leva a uma sugestão das unidades mais favoráveis para
eliminar. Resultados experimentais sugerem que o método pode ser visto como uma
ferramenta eficaz, capaz de controlar a complexidade em NNs. O método apresen-
tado neste trabalho é iterativo. Assim, além de muitos retreinamentos, é necessário
calcular a Transformada de Fourier para cada nó da rede, o que é custoso computa-
cionalmente, inviabilizando o uso deste método em muitos casos. Com este método
nos experimentos, são podados mais de 85% dos parâmetros mantendo-se a acu-
rácia. (LAURET; FOCK; MARA, 2006) traz ideias interessantes sobre como realizar
a poda de neurônios de camadas totalmente conectadas, baseado na sua atividade.
Entretanto, nesta abordagem o processo de poda e retreinamento da rede é repetido
até que a acurácia da rede caia abaixo de um determinado limiar, fazendo com que o
método se torne custoso para alcançar a rede podada.

Babaeizadeh; Smaragdis; Campbell (2016) propõem o NoiseOut, um algoritmo de
poda totalmente automatizado baseado na correlação entre ativações de neurônios
nas camadas ocultas. É mostrado que adicionar neurônios de saída adicionais com
alvos totalmente aleatórios resulta em maior correlação entre neurônios, o que torna
a poda por NoiseOut ainda mais eficaz. O método foi testado em várias redes e
conjuntos de dados. Os experimentos apresentam altas taxas de poda, mantendo a
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acurácia da rede original.
Hu et al. (2016) mostram que, observando uma NN, é possível perceber que uma

parcela significativa de seus neurônios tem sua saída, na maioria das vezes, igual a
zero, independentemente dos valores de entrada. Esses neurônios são redundantes e
podem ser removidos sem afetar diretamente a eficiência da rede, conforme descrito
na Fig. 16, onde podemos ver que a remoção do neurônio selecionado se traduz no
corte de vários pesos simultaneamente.

Figura 16 – Rede Neural antes da poda (esquerda) e depois da poda (direita). Fonte: (HU
et al., 2016)

Para determinar a taxa de ativação zero, os autores definiram uma métrica cha-
mada Porcentagem Média de Zeros (do inglês, Average Percentage of Zero - APoZ).
Esta métrica é calculada de acordo com a Equação 30.

APoZ(i)
c = APoZ(O(i)

c ) =
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Onde O
(i)
c denota a saída do c-ésimo canal na i-ésima camada, f(.) será ’1’ se o

neurônio foi ativado e ’0’ para o contrário, M denota a dimensão do mapa de caracte-
rísticas de saída de O

(i)
c e N denota o número total de exemplos de validação. Depois

de identificar neurônios com APoZ mais alto, estes são removidos.
O método proposto por Hu et al. (2016) é composto por três etapas, conforme ve-

mos na Figura 16. Assim, primeiro a rede é treinada sob o processo convencional e o
número de neurônios em cada camada é configurado empiricamente. Em seguida, a
rede é treinada em um grande conjunto de dados de validação para obter o APoZ de
cada neurônio. Neurônios com APoZ alto são podados de acordo com certos critérios.
As conexões de e para o neurônio são removidas quando um neurônio é podado (ver
Figura 16). Após a poda do neurônio, a rede podada é inicializada usando os pesos
antes da poda. A rede podada exibe algum nível de queda de desempenho. Assim,
na etapa final, ela é treinada novamente para fortalecer os neurônios restantes, a fim
de melhorar o desempenho da rede podada. Os autores mencionam ainda que a inici-
alização dos pesos é necessária para que a rede obtenha o mesmo desempenho que
tinha antes da poda. Se uma rede podada é treinada a partir do zero, percebe-se que
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ela contém maior porcentagem de neurônios de ativação zero do que a contraparte
com inicialização de peso. Isso significa que uma rede treinada novamente sem inicia-
lização de peso é muito menos eficiente. Como resultados, os autores destacam que
seu método reduz a quantidade de parâmetros das redes neurais entre 2 e 3 vezes.

Embora os resultados, tanto com relação a acurácia quanto redução da quantidade
de parâmetros da rede, sejam bastante satisfatórios, trata-se de um método iterativo e,
portanto, custoso em termos de tempo e esforço computacional. Assim, seria interes-
sante testar uma versão One-Shot desse método, evitando múltiplos retreinamentos.

Takeda; Nakadai; Komatani (2017) apresenta uma poda de nós para um modelo
acústico baseado em redes neurais. Uma função é definida para medir a importância
de cada nó da rede, sendo os nós menos importantes removidos. A função calcula
a entropia de atividade de cada nó para descobrir os nós cuja saída não muda. Os
autores introduzem a entropia de pesos de cada nó para considerar o número de
pesos e seus padrões em cada nó. Como o número de pesos e os padrões diferem
em cada camada, a importância do nó também deve ser medida usando os pesos
relacionados ao nó alvo. Os autores relatam os resultados experimentais mostrando
que o método de poda proposto reduziu com sucesso o número de parâmetros em
cerca de 6% sem qualquer perda de precisão em comparação com uma função score
baseada apenas na entropia da atividade do nó. A ativação dos neurônios é uma
métrica bastante eficaz para a definição de sua importância. Entretanto, este trabalho
apresenta baixa redução da quantidade de parâmetros em relação à linha de base.
Parece ser mais interessante utilizar uma métrica que represente mais diretamente a
ativação dos neurônios para realizar a seleção de quais devem ser removidos.

Evans (2018) realiza uma poda de nós nas camadas totalmente conectadas (batch
normalization) de uma CNN. Isso é feito através de um método chamado pruning by
distinctiveness. Esta técnica calcula o ângulo entre os vetores de ativação de pares
de unidades e combina unidades que são consideradas não distintas ou exclui unida-
des que são consideradas opostas ou complementares. Como resultado, os autores
dizem ter conseguido 94.52% (contra os 94.25% da linha de base) de acurácia na
classificação utilizando o dataset EMNIST com uma redução de 12% no tamanho das
camadas totalmente conectadas da rede. Aqui também é apresentada baixa redução
da rede neural com relação à linha de base. Além disso, conforme relatam os autores,
o passo de poda leva muito tempo para ser executado, devido ao cálculo dos ângulos
vetoriais para cada par possível de unidades. À medida que o número de neurônios
ocultos cresce, o tempo necessário para calcular os ângulos cresce (na melhor das
hipóteses) exponencialmente, o que torna essa técnica bastante lenta para um grande
número de neurônios ocultos. Também, os ângulos calculados são sensíveis ao ponto
em que se escolhe medir. Embora seja despendido esforço para escolher um ponto
intermediário válido, é difícil comparar os resultados alcançados nesses limiares com
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outros estudos, a menos que o ângulo seja medido a partir da média das ativações.
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Tabela 6 – Comparativo entre estudos sobre redução de redes neurais.

Trabalho Granularidade Métrica de seleção
dos neurônios a re-
mover

Método iterativo –
Necessita retreina-
mentos

Desvantagens

(HU et al., 2016) Pesos Limiar Sim Método iterativo baseado na remoção de Pe-

sos. É difícil determinar o valor correto para o

Limiar utilizado como parâmetro para remoção

dos Pesos.

(GUO; YAO; CHEN,

2016)

Pesos Limiar Sim Método iterativo baseado na remoção de Pe-

sos. É difícil determinar o valor correto para o

Limiar utilizado como parâmetro para remoção

dos Pesos.

(POLYAK; WOLF,

2015)

Filtros (neurônios

de camadas con-

volucionais)

Variância de Ativação

da Saída (filtro) e Va-

riância da Saída (ca-

mada)

Sim O método baseia-se na informação da saída

dos filtros (mapas de características). As-

sim, esse método é limitado, pois não remove

neurônios de camadas densas, fazendo com

que a redução não seja máxima.

(HE; ZHANG; SUN,

2017)

Filtros Análise dos mapas de

características gerados

pelos filtros

Sim Esse trabalho utiliza a redundância dentro do

mapa de características gerado pelos filtros da

rede como parâmetro de seleção dos filtros a

serem removidos. Ou seja, está voltado exclu-

sivamente à remoção de filtros das camadas

convolucionais das CNNs. Isso restringe o tra-

balho a aplicações mais gerais, como redução

de MLPs por exemplo.
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(KIM; KWOK, 2019) Filtros Fator de Escala de Nor-

malização em Lote

Sim O método foi aplicado à filtros, mas poderia ser

aplicado também à neurônios de Camadas To-

talmente Conectadas. Contudo, o método é ite-

rativo. E ainda mais, realiza a poda dos filtros

de forma suave, podendo os mesmos serem re-

cuperados, o que torna o método mais custoso

em termos de tempo de processamento.

(CHEN et al., 2021) Neurônios Alterações de precisão

condicionais

Sim A acurácia da rede é aferida a cada iteração.

Assim, a rede deve ser treinada muitas vezes

para que se descubra quais neurônios devem

ser podados. Isso tende a tornar o processo

muito custos. Além do mais, no contexto de

SCA a acurácia não é a métrica mais adequada

para definir o bom funcionamento de uma rede

neural.

(FAN; TANG; MA,

2022)

Neurônios Norma L1 Sim O método é iterativo, necessitando de muitos

retreinamentos da rede. Além disso, o método

utilizado para seleção dos neurônios poderia

ser mais próximo a sua utilidade na rede, como

por exemplo, sua ativação.
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(YAN et al., 2021) Filtros Multi-critérios Sim O método utiliza como critérios para formar o

multi-criteria, tanto as entradas como as saídas

dos filtros a serem removidos, o que restringe o

uso desse método exclusivamente a filtros das

camadas convolucionais das CNNs. Além do

mais, para que possamos obter melhores re-

sultados, existe a possibilidade de tornarmos o

método iterativo com etapas de poda e treino.

O que torna o método bastante custoso com-

putacionalmente.

(LAURET; FOCK;

MARA, 2006)

Neurônios Análise da decomposi-

ção de Fourier da vari-

ância da saída do mo-

delo.

Sim O método apresentado neste trabalho é itera-

tivo. Assim, além de muitos retreinamentos, é

necessário calcular a Transformada de Fourier

para cada nó da rede, o que é custoso compu-

tacionalmente, inviabilizando o uso deste mé-

todo em muitos casos.

(BABAEIZADEH; SMA-

RAGDIS; CAMPBELL,

2016)

Neurônios Correlação entre ativa-

ções de neurônios nas

camadas ocultas

Sim O processo de poda e retreinamento da rede é

repetido até que a acurácia da rede caia abaixo

de um determinado limiar. Fazendo com que o

método se torne custoso para alcançar a rede

podada. Além disso, monitorar a acurácia pode

não ser a melhor forma de avaliar uma rede no

contexto de SCA.
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(HU et al., 2016) Neurônios Ativação Sim Trata-se de um método iterativo e, portanto,

custoso em termos de tempo e esforço compu-

tacional. Assim, seria interessante testar uma

versão One-Shot desse método, evitando múl-

tiplos retreinamentos.

(TAKEDA; NAKADAI;

KOMATANI, 2017)

Neurônios Entropia de Atividade Sim/Não Este trabalho apresenta baixa redução (ape-

nas 6%) em relação à linha de base. Parece

ser mais interessante utilizar uma métrica que

represente mais diretamente a ativação dos

neurônios para realizar a seleção de quais de-

vem ser removidos.
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(EVANS, 2018) Neurônios Ângulo entre os vetores

de ativação de pares de

neurônios

Sim Baixa redução da rede neural com relação à

linha de base. À medida que o número de

neurônios ocultos cresce, o tempo necessário

para calcular os ângulos cresce (na melhor das

hipóteses) exponencialmente, o que torna essa

técnica bastante lenta para um grande número

de neurônios ocultos. Os ângulos calculados

são sensíveis ao ponto em que se escolhe me-

dir. Embora seja despendido um esforço para

escolher um ponto intermediário válido, é difí-

cil comparar os resultados alcançados nesses

limiares com outros estudos, a menos que o

ângulo seja medido a partir da média das ati-

vações.
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5.2 Considerações sobre o Capítulo

Neste Capítulo de revisão da literatura, foram exploradas diversas técnicas de poda
aplicadas em redes neurais, com um foco particular na análise comparativa entre os
estudos identificados. Esta análise comparativa foi essencial para identificar padrões,
assim como lacunas nos trabalhos do estado da arte, fornecendo uma base para a
pesquisa aqui desenvolvida.

Na Tabela 6, apresentamos um resumo dos principais estudos selecionados, des-
tacando suas abordagens em relação à granularidade da poda, métrica de seleção
de neurônios e natureza iterativa do método de poda. Esta Tabela oferece uma visão
panorâmica das variações nas abordagens adotadas pelos estudos revisados. Nota-
se que a granularidade da poda varia entre neurônios, pesos e camadas, refletindo
diferentes níveis de eficiência entre as técnicas abordadas. A métrica de seleção de
neurônios a serem podados varia desde critérios baseados em magnitude até méto-
dos mais sofisticados, como a taxa de ativação.

Nesta Tese, buscamos encontrar um método eficiente tanto na redução da rede
neural ao qual é aplicado, como também quanto ao esforço computacional para re-
alizar a tarefa de redução das redes. Assim, trabalhos que aplicam a poda sobre os
pesos da rede podem não ser tão eficientes, pois mesmo pesos com alto valor de mag-
nitude a princípio poderiam ser removidos se forem constituintes de neurônios menos
ativos dentro da rede. Da mesma forma, procuramos apresentar uma abordagem
mais abrangente. Portanto, trabalhos que apresentam técnicas aplicáveis a somente
um tipo de nó da rede, como filtros por exemplo, não se enquadram adequadamente
ao que buscamos. Como buscamos também a eficiência do processo de redução das
redes, métodos iterativos, se possível, são evitados, por serem menos eficientes, de-
vido aos muitos retreinamentos para termos a rede final reduzida. Dentre os estudos
revisados, destacamos o trabalho apresentado por Hu et al. (2016), que apesar de se
tratar de um método iterativo, apresenta características buscadas. Assim, considera-
mos uma opção interessante, a busca por um método baseado no trabalho de Hu et
al. com uma abordagem One-Shot, evitando assim, os múltiplos ciclos de treinamento
e remoção inerentes ao processo iterativo.



6 MÉTODO PROPOSTO E EXPERIMENTOS REALIZADOS

Este Capítulo apresenta a estratégia de redução de redes neurais aplicadas no
âmbito dos SCAs, proposta nesta Tese. Também são apresentados os experimen-
tos realizados com o intuito de comprovar o funcionamento e eficiência do método
proposto, bem como os setups utilizados para implementação destes experimentos.
Como veremos, foram realizados experimentos com as principais redes neurais apli-
cadas à SCA encontradas na literatura. Além disso, é apresentado o dataset utilizado
como entrada para as redes neurais testadas aqui. Trata-se de um dataset largamente
utilizado nos trabalhos relacionados a estudos envolvendo aprendizado profundo apli-
cado à SCA.

6.1 Método Proposto

Com base na RSL apresentada na Seção 5.1 foi possível elaborar uma estratégia
baseada em técnicas de poda que se adequasse a SCAs. Assim, o objetivo desta
Tese consiste em demonstrar que as redes neurais empregadas no âmbito dos ata-
ques a canais laterais podem ter seu tamanho reduzido, e por consequência, ter me-
nor consumo de recursos como uso de memória e tempo de treinamento. Com isso,
pretende-se mostrar uma potencial ampliação da ameaça representada pelos ataques
conhecidos como DL-SCAs. A possibilidade de realizar ataques com menor custo
computacional, ou seja, com menor exigência de memória e tempo de treinamento,
pode contribuir para a ampla disseminação desses tipos de ataques, acessíveis tam-
bém a agressores com recursos computacionais limitados.

Na presente Tese, propõe-se um framework, fundamentado no trabalho de Hu et al.
(2016), para abordar essa problemática.

Como vimos na Seção 5.1, a abordagem original de Hu et al. (2016) implementa
uma técnica de poda, chamada pelos autores de cirurgia, baseada na Porcentagem
Média de Zeros (APoZ) calculada através da Equação 30. Esta função mede a por-
centagem em que um neurônio fornece uma saída igual a zero durante a etapa de pre-
dição, ou seja, as vezes em que o neurônio em questão não é ativado. Sob essa estra-
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tégia, a remoção dos neurônios ocorre somente ao final do processo de treinamento.
Depois disso, os pesos são atualizados com seus pesos iniciais θ0 Frankle; Carbin
(2018), e o processo se repete. Dessa forma, o processo de poda apresentado por
Hu et al. (2016) gera redes neurais menores a cada iteração de poda-treinamento, aju-
dando a mitigar o overfitting. Contudo, o processo em si, acarreta um grande overhead
devido às ações de treinamento e poda sucessivos.

A partir do exposto, surgem duas questões:

1. É possível obter informações suficientes acerca da identificação dos neurônios
a remover (valores aceitáveis de APoZ), treinando-se a rede original por uma
quantidade de épocas inferior ao estabelecido para realizar a tarefa para qual
ela foi projetada (ou seja, o processo de treinamento da rede neural no contexto
de ataques por canais laterais)?

2. É possível realizar a remoção (poda) de todos os neurônios identificados como
menos importantes (maior APoZ) de uma única vez (One-Shot), eliminando-se
os múltiplos treinamentos inerentes ao processo?

6.1.1 Análise e identificação dos Neurônios a Remover

O cálculo de APoZ de acordo com o trabalho de Hu et al. (2016), é realizado a
partir da predição da rede neural analisada. Pensando nisso, criamos uma função de
callback para calcular APoZ no final de cada época. Sendo assim, é possível monitorar
quais neurônios seriam apontados para remoção a cada época computada. Com isto,
propõe-se uma estratégia para buscar responder à primeira questão apresentada na
Seção 6.1. Foi desenvolvido um algoritmo que executa as etapas seguintes:

1. Conta-se o número de vezes que cada neurônio foi selecionado para remoção
durante as épocas de treinamento.

2. Busca-se os neurônios que apareceram mais vezes durante as épocas de trei-
namento. Adota-se uma taxa de 75% do número total de épocas de treinamento.

3. Identifica-se em quais épocas os neurônios do passo (2) aparecem.

4. Com base no passo (3) pode-se afirmar que, se temos os mesmos neurônios
identificados para remoção por um número específico de épocas (5, por exem-
plo), então obtivemos os neurônios a serem removidos.
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Figura 17 – Fluxo para determinar do número de épocas de treinamento necessários para
identificar os neurônios a remover.

Este estudo foi aplicado a diferentes redes, conforme a Seção 6.3. Assim, é pos-
sível concluir que a partir de certo momento, os mesmos neurônios são indicados
para remoção em épocas consecutivas. Com isso, observa-se que é possível parar
o treinamento antes de executar o número de épocas pré-estabelecido para a rede
neural, ou ainda, estabelecer uma nova quantidade de épocas para o treinamento da
rede (menor que a originalmente recomendada para a execução dos ataques) para
obtermos os neurônios a serem removidos através da poda.

6.1.2 Procedimento de Remoção dos Neurônios

Conforme discutido na Seção 5.1, embora o método apresentado por Hu et al.
(2016) alcance excelentes resultados quanto à redução do tamanho de redes neurais,
o processo possui um custo computacional muito elevado. Isso se deve ao fato deste
método ser um processo iterativo, em que são realizadas extrações dos neurônios
seguidas de treinamentos da rede submetida ao método, repetidas vezes.

Dessa forma, neste ponto do trabalho buscou-se responder à segunda questão
da Seção 6.1. Assim, procurou-se aqui desenvolver um método para remover neurô-
nios de redes neurais aplicadas em SCA, reduzindo seu tamanho, com menor esforço
computacional em relação ao apresentado na literatura. Para isto, optou-se por uma
abordagem One-Shot, em que a remoção de todos os neurônios com menor atividade
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é realizada de uma vez, evitando-se loops de treinamento e remoção, reduzindo-se
com isto, o esforço computacional atribuído ao processo de poda.

O método de poda aplicado a redes neurais dedicadas a SCA desenvolvido nesta
Tese é apresentado em Lellis; Soares; Perin (2022), e pode ser dividido nas seguintes
etapas:

1. Primeiramente, busca-se na literatura uma rede neural consolidada, capaz de
realizar SCAs bem sucedidos.

2. Uma vez determinada a rede que será submetida ao processo de poda, define-
se um limiar de APoZ que servirá como métrica para decisão de remoção ou
não dos neurônios. Através de estudos preliminares vimos que valores acima de
0.6 indicam inatividade, ou seja, neurônios com ativação zero acima de 60% tem
uma contribuição insignificante na fase de predição.

3. Em seguida, os pesos iniciais θ0 da rede neural escolhida são armazenados,
e a rede é então treinada. Após o treinamento, o APoZ de cada neurônio é
calculado. Lembramos que, conforme vimos na Seção 6.1.1, não é necessário
treinar a rede a quantidade total de épocas estabelecida para a realização do
ataque.

4. Com base no limiar estabelecido na etapa (2) e no valor de APoZ (calculado na
etapa (3)), determina-se quais neurônios devem ser removidos.

5. Realizada-se a remoção dos neurônios selecionados.

6. Para concluir o processo de poda, os pesos iniciais θ0 armazenados na etapa (2)
são atribuídos às conexões resultantes após o processo de poda.

O método proposto, descrito acima, é resumido pelo Algoritmo mostrado na Figura
18:

6.2 Base de dados ANSSI - ASCAD

ASCAD (ANSSI SCA Database) 1 é uma base de dados criada para pesquisa em
ataques por canais laterais baseados em aprendizado profundo. ASCAD contém da-
dos de treinamento e dados de validação ou teste. Três conjuntos de dados (ou traços)
estão disponíveis nestas bases de dados, todos coletados a partir de implementações
em software:

1. ASCADv1 com chave fixa: ao todo, são 60.000 traços coletados, que represen-
tam o consumo de energia de operações de cifração AES executando em um

1https://github.com/ANSSI-FR/ASCAD
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Figura 18 – Algoritmo proposto.

microcontrolador da família ATmega. Cada traço possui 100.000 amostras, com
texto claro aleatório. O algoritmo AES implementado para este conjunto de da-
dos é protegido contra ataques de primeira ordem através de contramedida por
mascaramento (do inglês masking).

2. ASCADv1 com chave aleatória: este segundo conjunto de dados consiste de
300.000 traços coletados de uma implementação idêntica à anterior (algoritmo
AES protegido contra ataques de primeira ordem). Dentro desse conjunto,
200.000 traços possuem chave de cifração aleatória e os restantes 100.000 tra-
ços foram coletados com chave fixa. Assim, o primeiro conjunto é utilizado na
fase de treinamento e o segundo conjunto, com chave fixa, é adequada para
fases de validação e teste.

3. ASCADv2: esta é uma base de dados maior, consisitindo de 800000 traços
coletados pela monitoração do consumo de potência de um microntrolador
STM32F303RCT7 executando o algoritmo AES. Nesse caso, a implementação
AES é protegida contra ataques de segunda ordem através de contramedidas de
mascaremnto e embaralhamento (comumente referenciados pela literatura em
língua inglesa como affine masking e shuffling). Cada traço contem 100.0000
de amostras. Dentre os 800.000 traços coletados, 700.000 foram obtidos com
chaves de cifração aleatória e os restantes 100000 traços com uma chave fixa.

Para os três conjuntos de dados ASCAD, o intervalo mensurado de consumo de
energia representa as operações referentes à primeira rodada da cifração do AES128.
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Para os experimentos realizados nesta Tese, são utilizados os traços disponibili-
zados pela base de dados do ANSSI, ASCADv1 com chave fixa Prouff et al. (2018).
Este conjunto de dados é dividido em subconjuntos de 60.000 traços, conforme des-
crito abaixo:

• Traços originais, isto é, traços adquiridos e sem aplicação de pré-processamento;

• Extração de 700 POIs dos traços originais com contramedida de mascaramento;

• Extração de 700 POIs dos traços originais com mascaramento e deslocamento
aleatório (jitter) de até 50 amostras;

• Extração de 700 POIs dos traços originais com mascaramento e deslocamento
aleatório (jitter) de até 100 amostras;

Os traços do ASCADv1 são rotulados com o terceiro byte da chave criptográfica
durante a primeira rodada de encriptação, e previamente divididos em 50.000 traços
para treino e 10.000 traços para o teste da rede empregada no ataque.

6.3 Experimentos Realizados

Esta seção tem como objetivo apresentar todos os experimentos realizados nesta
Tese, validando desta forma, o fucionamento e eficiência da metodologia apresentada
na Seção 6.1. Através dos resultados obtidos a partir desses experimentos, veremos
que é possível reduzir-se o tamanho das redes neurais que realizam SCA, através
de um processo menos custoso do que os, até então, apresentados na literatura.
Isto nos mostra a possibilidade de expansão dessa classe de ataques, uma vez que
para efetuar tais ataques, um usuário mal intencionado necessita de menos recursos
computacionais.

6.3.1 Aplicação da técnica de Cirurgia em DL-SCA

Como vimos também através da Seção 6.1, o trabalho aqui proposto consiste em
uma forma de realização de poda a fim de reduzir o tamanho das redes neural empre-
gadas em DL-SCA. Dentre os trabalhos revisados, nos baseamos no estudo apresen-
tado por Hu et al. (2016). A partir disso, os primeiros experimentos visam adaptar o
método empregado por Hu et al., ao contexto de SCA, verificando em primeira instân-
cia, se é possível aplicar tais técnicas neste contexto.

Antes de apresentarmos esse conjunto de experimentos, é importante destacar-
mos que estes foram realizados em um computador Dell Vostro 3681 – M20M 10ª
Geração Intel Core i5 8GB 1TB. Tendo como ambiente de desenvolvimento o Jupy-
ter Notebook 6.2.0 Kluyver et al. (2016). A linguagem de programação utilizada foi o
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Python 3.8.5 Van rossum; Drake jr (1995), apoiada pelas bibliotecas mais usuais dis-
poníveis para essa linguagem, além do Keras 2.4.3 Chollet (2015) e TensorFlow 2.3.0
Abadi et al. (2015).

Assim, inicialmente foram realizados testes a partir de um framework para realiza-
ção de poda bastante similar ao apresentado em Hu et al. (2016). O intuito desses
experimentos foi verificar a aplicabilidade da técnica apresentada por Hu et al. em
redes projetadas para realizar SCA. O framework proposto e baseado em Hu et al.
(2016) utilizado em nossos experimentos é mostrado na Figura 19:

Figura 19 – Framework adaptado de Hu et al. (2016) Fonte: Própria

Este framework é aplicado as redes MLPs e CNNs como prova de conceito a fim
de obter-se redes que possuem fases de treinamento e ataque com esforço compu-
tacional reduzido. Como mostrado na Figura 19, o framework apresentado é formado
pelas seguintes etapas:

1. O primeiro passo é buscar uma rede neural já consolidada e capaz de realizar
com sucesso ataques a um conjunto de dados conhecido. Os procedimentos
realizados nas etapas seguintes são executados na rede escolhida;
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2. A rede neural é treinada pela primeira vez. Nesta etapa, os pesos iniciais são
armazenados. Em seguida, um ataque é realizado para validar o treinamento
obtido;

3. A partir daí, o procedimento cirúrgico é realizado, removendo os neurônios da
rede de acordo com suas taxas de ativação (APoZ) de acordo com a Equação
30 Hu et al. (2016);

4. A rede resultante é reinicializada com os pesos iniciais (θ0), retreinada, e reali-
zado um ataque usando essa rede resultante;

5. Se o ataque da etapa (4) for bem-sucedido, as etapas (3) e (4) serão executadas
novamente. Esse loop é repetido n vezes até que o ataque na etapa (4) não seja
mais bem-sucedido;

6. Finalmente, os pesos restantes na rodada n−1 do loop descrito, são restaurados
com os pesos iniciais θ0. Obtendo-se assim, a menor rede capaz de executar um
SCA sobre o conjunto de dados apresentado.

Os experimentos realizados nesta etapa utilizaram redes neurais apresentadas em
dois estudos recentes encontrados na literatura Zaid et al. (2020)Prouff et al. (2018).
Como entrada, o conjunto de dados ASCADv1 Prouff et al. (2018) apresentado na
Seção 6.2 foi utilizado.

Abaixo, temos uma descrição das redes neurais utilizadas nestes primeiros expe-
rimentos. Lembrando que maiores detalhes sobre tais redes podem ser encontrados
em Prouff et al. (2018) e Zaid et al. (2020).

A MLP apresentada por Prouff et al. Prouff et al. (2018) é utilizada nos primeiros
experimentos. Esta NN tem uma estrutura relativamente pequena em comparação
com outras redes utilizadas em SCA. O tamanho dessa rede depende dos dados de
entrada. Prouff et al. (2018) utiliza o dataset ASCADv1, onde os traços são obtidos
de uma implementação em software do algoritmo criptográfico AES que conta apenas
com uma contramedida de mascaramento (contramedida de primeira ordem). A tarefa
executada pela rede é menos complexa do que atacar dispositivos protegidos com
uma contramedida temporal, fato que permite uma rede menor para executar o ataque.
A rede de Prouff et al. Prouff et al. (2018) é composta pelas seguintes camadas:

• Uma camada de entrada densa contém 700 entradas de acordo com as amos-
tras dos traços de destino disponíveis no conjunto de dados. Esta camada é
adaptada a 100 neurônios, como será discutido mais adiante (200 na rede origi-
nal). A função de ativação nesta camada é a ReLU;
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• Quatro camadas ocultas densas com 100 neurônios. Aqui também foi feita uma
adaptação como será explicado a seguir. Para essas camadas, a função de
ativação usada também é a ReLU;

• Finalmente, uma camada de saída com 256 neurônios em relação às 256 pos-
sibilidades de classificação para o byte da chave secreta. Para esta camada, a
função de ativação empregada é Softmax ;

A taxa de aprendizado é 0,00001 com o otimizador RMSprop. A descrição dos
hiperparâmetros desta rede também pode ser encontrada em Prouff et al. (2018).
Embora essa rede seja pequena, ela ainda é superdimensionada para a tarefa a ser
executada. Isso será demonstrado com os resultados obtidos a partir do processo ci-
rúrgico descrito acima. No entanto, vale ressaltar que antes de realizar esse processo,
o número de neurônios das camadas ocultas foi reduzido de 200 (da rede original) para
100, pois, de antemão, notamos um superdimensionamento da rede apresentado por
Prouff et al. Prouff et al. (2018).

Como mencionado anteriormente, os experimentos iniciais também foram aplica-
dos a uma CNN proposta por Zaid et al. (2020). Neste caso, temos uma rede mais
complexa capaz de realizar um ataque a dispositivos equipados com contramedidas
de tempo. Esta rede é basicamente formada pelas seguintes camadas:

• Uma camada de entrada densa contendo as 700 entradas e a função de ativação
SeLU;

• Três blocos contendo uma camada Convolucional 1D, uma camada de Batch
Normalization e uma camada de Average Pooling. Essas camadas têm respec-
tivamente 32, 64 e 128 neurônios e sua função de ativação é SeLU;

• Em seguida, há uma camada de achatamento (Flatten) e três camadas densas
compostas por 20 neurônios com função de ativação SeLU cada uma;

• Para a camada de saída temos uma camada com 256 neurônios para as 256
possibilidades de valores que um byte da chave criptográfica pode assumir. Para
esta camada, a função de ativação empregada também é Softmax ;

Como na MLP de Prouff et al., a taxa de aprendizagem é 0,00001. No entanto, o
otimizador usado aqui é Adam. Mais informações sobre esta rede podem ser encon-
tradas em Zaid et al. (2020).

Para a CNN de Zaid et al. (2020), também é utilizado o conjunto de dados AS-
CADv1 Prouff et al. (2018). Dentro deste dataset, para esta rede é utilizado um sub-
conjunto de traços oriundos de um dispositivo protegido por uma contramedida de
deslocamento de tempo aleatório de até 100 amostras.
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A partir do exposto, inicialmente foram realizados experimentos aplicando-se o fra-
mework proposto às redes neurais MLP e CNN já caracterizadas. Os resultados ob-
tidos são mostrados na Figura 20. A métrica usada para avaliação da eficiência da
rede neural é a classificação média da chave ou a entropia de adivinhação Standaert;
Malkin; Yung (2006) (do inglês, guessing entropy ). A classificação média mede os
traços necessários para um ataque bem-sucedido. Uma classificação média igual a
zero garante que a chave correta seja recuperada com êxito.

A Figura 20 (a) apresenta os valores médios de classificação obtidos a partir da
MLP original, nossa linha de base, representada em azul. Os valores médios de clas-
sificação para a rede reduzida, após a aplicação do Algoritmo ?? aparecem em la-
ranja. Os pontos identificam quando a classificação média chega a zero. Embora o
desempenho do ataque seja bastante semelhante, a rede reduzida apresenta uma li-
geira melhoria, atingindo o rank médio 0 com aproximadamente 700 traços de ataque,
enquanto a linha de base atinge essa marca com mais traços de ataque. A Figura 20
(a) também mostra a classificação tanto para a CNN original quanto para a rede redu-
zida. Aqui há uma pequena diferença no número de traços para atingir a classificação
média 0: 325 traços para a CNN original e 250 com a rede reduzida. Isso sugere que
as redes reduzidas podem realizar ataques bem-sucedidos mesmo depois de serem
reduzidas. Também em termos de parâmetros treináveis, a MLP começa com 352456
e termina com 234376, representando uma redução de 33,5%. Na CNN, a redução
dos parâmetros treináveis passa de 142044 para 59126, o que representa uma redu-
ção de 58,37%. Os tempos de treinamento medidos para as redes originais e as redes
reduzidas, excluindo o tempo de execução do método cirúrgico, revelam uma redução
de 23,4 e 36,33% no tempo de treinamento, respectivamente, para os casos de MLP
e CNN.
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Figura 20 – Rank médio vs. Traços do consumo – MLP de Prouff Prouff et al. (2018) e CNN
de Zaid Zaid et al. (2020) (a) e Tempos de treinamento das redes – MLP (b) e CNN (c) –

Método original de cirurgia Hu et al. (2016) Fonte: Própria

Tais resultados são relevantes para o SCA principalmente porque os ataques po-
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dem ser executados mais rapidamente, exigindo menos recursos computacionais e
tornando-se mais ameaçadores. No entanto, o processo cirúrgico é bastante longo
devido ao treinamento iterativo. A Figura 20 (c) mostra o tempo para 5 treinamentos:
(i) em vermelho, para CNN original; (ii) em azul, para a CNN reduzida iterativa. Em
SCA, esse tempo é justificável, uma vez que o ataque revela apenas um byte, e é
muito provável que a mesma rede seja capaz de revelar outros bytes da chave.

6.3.2 Método de Cirurgia de Extração Única

Embora a técnica de cirurgia tenha alcançado resultados significativos, sentimos a
necessidade de aprimorar o processo como um todo. Conforme acabamos de revisar,
são necessários muitos ciclos de treinamento e poda para atingirmos a rede ideal,
5 para a MLP e 4 para a CNN, sendo que o treinamento das CNNs é mais custoso
geralmente. Dessa forma, buscamos um método para realizar a poda das redes de
uma única vez (One-Shot), sem a necessidade de ciclos de treinamento e poda.

Portanto, como apresentado em Lellis; Soares; Perin (2022) e descrito na Seção
6.1, aqui abordamos um método de poda através da técnica de cirurgia baseado em
Hu et al. (2016), que não necessita de múltiplos treinamentos.

Para estes experimentos, as redes utilizadas como referência são a MLP Prouff
et al. (2018) e a CNN Zaid et al. (2020), cujas características foram apresentadas
anteriormente. Destas, seis redes foram criadas, sendo 3 MLPs: (i) MLP de Prouff
et al. (2018), (ii) MLP v2 - baseado em (i), mas com 300 neurônios nas camadas
densas ao invés de 200, e (iii) MLP v3 - também baseado em (i), mas com uma
camada densa extra. Além dessas, foram utilizadas 3 CNNs: (i) CNN de Zaid et al.
(2020), (ii) CNN v2 - com base em (i), mas com o dobro de neurônios nas camadas
totalmente conectadas em comparação com (i); e (iii) CNN v3 - também com base em
(i), mas com uma camada extra totalmente conectada.

O método proposto é avaliado em um segundo estudo de caso, onde apenas uma
operação cirúrgica é realizada, ao invés de remoções iterativas de neurônios, como
sugerido em 16. Para validar o método, as três versões de MLPs descritas anterior-
mente foram usadas. Primeiro, verificamos se as NNs continuaram a realizar ataques
bem-sucedidos após a remoção dos neurônios.
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Figura 21 – Rank médio vs. Traços do consumo – Método proposto. Fonte: Própria

A Figura 21 mostra o desempenho do ataque medido com a classificação média
para as três MLPs, onde observamos que a eficiência dos ataques é muito próxima dos
modelos originais de linha de base. Todas as redes reduzidas atingem a classificação
média igual a 0 mais cedo do que suas respectivas linhas de base. Na Figura 21, a
MLP de linha de base não atinge a classificação média 0 com pelo menos 1400 traços.
Enquanto isso, as redes reduzidas são capazes de recuperar a chave correta com o
uso de 500 traços. Portanto, as melhorias são verificadas para as redes reduzidas
MLP, MLP v2 e MLP v3.

Em seguida, o método proposto também é aplicado às três CNNs descritas ante-
riormente. As classificações médias obtidas para as redes CNN, CNN v2, CNN v3
reduzidas correspondentes são semelhantes, com pequenas melhorias nas redes re-
duzidas em comparação com suas CNNs originais, pois as redes reduzidas atingem a
classificação média 0 antes das redes originais, como podemos ver através da Figura
21.

A Tabela 7 resume a comparação entre o método cirúrgico original e o método
proposto, quando consideradas as redes MLP de Prouff Prouff et al. (2018) e CNN de
Zaid Zaid et al. (2020). Destaca a redução do tempo de treinamento e do número de
parâmetros treináveis obtidos em termos percentuais. Além disso, apresenta o tempo
de processamento para a execução completa de cada método. Obtivemos melhorias
significativas em todos os casos. O método cirúrgico melhorado é 9 vezes mais rápido
do que o método original para MLP e 6,38 vezes mais rápido para o caso da CNN.

A Tabela 8 apresenta os resultados obtidos com o método proposto nas seis NNs
previamente definidas. Destaca, em termos percentuais, as reduções obtidas no
tempo de treinamento e no número de parâmetros treináveis. Observa-se que os per-
centuais de redução tanto para MLPs quanto para CNNs são próximos. Olhando para
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Tabela 7 – Comparação entre os métodos de cirurgia original e o proposto (nosso).

MLP Prouff et al. (2018) CNN Zaid et al. (2020)
Reduções Hu et al. (2016) Nosso Hu et al. (2016) Nosso
Tempo (%) 23.4 28.52 36.33 48.33

Param. 33.5 41.29 58.37 70.6
Tempo Proc. (s) 1522.22 169.05 20010.98 3135.38

os resultados obtidos para as redes MLP, a melhor redução do tempo de treinamento,
28,52%, é alcançada para o MLP proposto por Prouff et al. (2018). Em comparação,
a redução mais significativa no número de parâmetros treináveis, 44,7%, ocorreu na
MLP v2. Enquanto isso, nas redes CNN, temos uma redução mais significativa no
tempo de treinamento, 51,57% para CNN v2, e uma redução maior no número de
parâmetros, 76,36%, é observada na CNN v3.

Tabela 8 – Reduções nas Redes Neurais - Método Proposto.

Rede Redu. de Tempo (%) Redu. em Param. (%)
MLP Prouff et al. (2018) 28.52 41.29

MLP V2 28.15 44.7
MLP V3 20.08 41.1

CNN Zaid et al. (2020) 48.33 70.6
CNN V2 51.57 70.28
CNN V3 46.41 76.36

Assim, podemos concluir que o método cirúrgico, especialmente sua versão One-
Shot, é bastante efetivo para reduzir o tamanho da rede neural, levando a tempos de
treinamento mais curtos e tornando as redes neurais mais eficientes contra ataques
de perfil. O método proposto mostrou-se bem-sucedido de modo que o tempo gasto
no processo cirúrgico foi reduzido 9 vezes para a rede MLP e 6,38 vezes para a rede
CNN em comparação com a aplicação direta do processo cirúrgico, conforme proposto
na literatura de aprendizagem profunda Hu et al. (2016).

6.3.3 Aceleração das CNNs Reduzidas por Esparsidade

Apesar de alcançarmos bons resultados em termos de redução das redes neurais
aplicadas à SCA em Lellis; Soares; Perin (2022), o método utilizado não é aplicável às
camadas Batch Normalization presentes na CNN proposta por Zaid et al. Zaid et al.
(2020), e utilizada como estudo de caso nestes experimentos. Portanto, com o intuito
de encontrarmos a CNN mais rápida, em termos de tempo de treinamento, possível a
partir de Zaid et al. (2020), buscamos uma técnica que de alguma forma acelerasse o
processamento realizado por esse tipo de camadas.
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A partir de buscas na literatura, verificamos que no trabalho apresentado por Yu
et al. (2021) os autores propõem uma abordagem de poda global One-Shot chamada
Gate Trimming (GT) que estima globalmente o efeito dos canais das camadas de
Batch Normalization (BN) através de uma métrica denominada Informação de Ganho
(Information Gain - IG). Assim, se um canal de uma camada BN possui IG alto, ele tem
uma maior contribuição para a saída da rede, e sua exclusão causará grandes danos
no desempenho. Em contraste, podar um canal de uma camada BN com o menor IG
causará pouco efeito na rede. A poda dos canais BN é feita zerando-se seus fatores
de escala e fatores de deslocamento.

Com base no estudo de Yu et al. (2021), foram realizados experimentos a fim de
incorporar uma etapa adicional ao nosso fluxo de redução de CNNs aplicadas a SCA.
Ou seja, após aplicarmos o método apresentado em Lellis; Soares; Perin (2022), foi
aplicado o método de Yu et al. (2021) para alcançar uma maior aceleração da CNN de
Zaid et al. (2020).

Como resultado, observamos uma redução adicional de 5,84% no tempo de treina-
mento da rede reduzida anteriormente através de Lellis; Soares; Perin (2022). Assim,
incorporando esta etapa, alcançamos uma redução total de 51,35% no tempo de exe-
cução do ataque em relação à rede original proposta por Zaid et al. (2020). Ainda,
uma melhora na performance do ataque foi observada, uma vez que a quantidade de
traços necessários para revelar a chave criptográfica com a CNN reduzida por Lel-
lis; Soares; Perin (2022) que era de 400 passou para 292, conforme podemos ver na
Figura 22.

Figura 22 – Rank médio vs. Traços do consumo para CNN – Método de Lellis; Soares; Perin
(2022) (azul) Método proposto com etapa adicional de aceleração (laranja). Fonte: Própria

Cabe ressaltar que o tempo gasto no processo de cirurgia teve um aumento de ape-
nas 0,0018%, ou seja, a etapa incorporada ao fluxo de redução introduz um overhead
desprezível ao processo como um todo. Com isto, concluímos que é bastante inte-
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ressante incorporar a aceleração proposta por Yu et al. (2021) ao método de redução
de redes neurais apresentado em Lellis; Soares; Perin (2022) para CNNs aplicadas à
SCA.

6.4 Análise Detalhada do Método Proposto

Até aqui, foram realizados testes que mostraram ser possível a adaptação da pro-
posta de Hu et al. (2016) ao contexto de SCAs. Como vimos na Seção 6.3.2, é possível
aplicar uma abordagem One-Shot baseada em Hu et al. (2016) sobre redes neurais
utilizadas para realizar esses tipos de ataques. Com isso, é possível obter resulta-
dos que mostram reduções em termos de tamanho das redes, ou seja, uma menor
quantidade de parâmetros treináveis e menor tempo de treinamento necessários para
realizar um ataque bem sucedido. Nesta Seção, além destas análises iniciais, procu-
ramos estabelecer uma relação quanto à quantidade de traços utilizados no ataque
entre as redes originalmente propostas e suas respectivas redes reduzidas. Ainda, re-
alizamos um estudo com relação à quantidade de épocas de treinamento necessárias
para realizar-se os ataques, para as redes encontradas na literatura, antes e depois
do processo de cirurgia.

Partindo destas constatações, buscou-se extender os experimentos aplicando-se
a abordagem aqui proposta a quatro redes neurais encontradas na literatura e conso-
lidadas na comunidade de SCA. Assim, para esta rodada de experimentos, testamos
nosso método em duas redes MLP: Uma rede MLP apresentada em Perin; Picek
(2020) com 9.966.256 parâmetros, e também uma MLP com tamanho menor MLPbest

revisada nos experimentos anteriores, proposta por Prouff et al. (2018), composta por
352.456 parâmetros. Também foram realizados testes com duas redes neurais convo-
lucionais (CNNs): A rede chamada CNNbest também proposta por Prouff et al. (2018),
contendo 66.652.544 parâmetros, assim como uma CNN menor encontrada em Perin;
Picek (2020). Esta CNN contém 6.797.246 parâmetros. Ou seja, nesta Seção foram
realizados experimentos que aplicam o método de cirurgia One-Shot nos dois tipos de
redes neurais mais recorrentes na área de SCA (MLPs e CNNs), conforme constata-
dos através da RSL apresentada no Capítulo 4, testando MLPs e CNNs de diferentes
tamanhos (uma rede maior e uma rede menor de cada tipo).

Como a rede MLPbest de Prouff et al. (2018) já foi apresentada na Seção 6.3, nesta
Seção são apresentadas apenas as configurações das outras redes usadas por Perin;
Picek (2020) e Prouff et al. (2018). Inicialmente é apresentanda a arquitetura da rede
MLP usadas por Perin; Picek (2020):

• Uma camada de entrada densa contendo as 700 entradas e a função de ativação
ReLU;
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• Dez camadas ocultas densas com 1000 neurônios cada. Para essas camadas,
a função de ativação utilizada também é a ReLU;

• Por último, uma camada de saída com 256 neurônios, correspontentes às 256
classes possíveis, conforme descrito na Seção 6.3. Esta camada possui a fun-
ção de ativação Softmax ;

Cabe aqui ressaltar que esta rede neural possui uma taxa de aprendizado de 0,001
com um batch size de 400. O trabalho apresentado em Perin; Picek (2020) realiza
um estudo relacionado à diferentes otimizadores. Para este trabalho, escolheu-se
trabalhar com RMSProp.

A seguir, apresentamos a arquitetura da CNN presente no trabalho de Perin; Picek
(2020):

• Uma camada de entrada densa contendo as 700 entradas e a função de ativa-
ção. ReLU;

• Quatro camadas convolucionais 1D com respectivamente 10, 20, 40 e 80 neurô-
nios. O kernel de cada uma dessas camadas é setado com tamamho 4, e sua
função de ativação é a ReLU;

• Depois, temos quatro camadas ocultas totalmente conectadas de 1000 neurô-
nios cada. Essas camadas também tem como função de ativação ReLU;

• A camada de saída é composta de 256 neurônios com função de ativação de
Softmax.

Esta rede tem como otimizador o RMSPop. A taxa de aprendizado é igual a 0,001
e o batch size é igual a 400.

Por fim, descrevemos as configurações da rede CNNbest de Prouff et al. (2018):

• Uma camada de entrada densa contendo as 700 entradas e a função de ativa-
ção. ReLU;

• Em seguida, são implementados cinco blocos com uma camada convolucional
1D com filtros de tamanhos: 64, 128, 256, 512 e 512. O tamanho para todos os
kernels dos filtros dessas camadas é 11. A função de ativação para estas cama-
das é a ReLU. Ainda, dentro de cada bloco existe uma camada de agrupamento
Average Pooling, com strides igual a dois;

• Depois dos blocos convolucionais, temos duas camadas densas contendo 4096
neurônios cada uma. Estas camadas também contam com a função de ativação
ReLU;
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• Por fim, assim como nas outras redes apresentadas, esta também conta com
uma camada de saída com 256 neurônios e função de ativação Softmax.

Para a rede acima descrita, a taxa de aprendizado é igual a 0,00001 e o otimizador
utilizado foi o RMSProp. O batch size definido por Prouff et al. (2018) é igual a 200.

Antes de apresentar os experimentos realizados nesta etapa do trabalho, gosta-
ríamos de mencionar que o setup utilizado é constituído de um PC equipado com
uma CPU contendo um processador Intel Core i7 - 12700K operando a uma frequên-
cia de relógio de 3.60 GHz, com 16GB de memória RAM. Este PC também possui
uma placa de processamento gráfico NVIDIA RTX 3070. Além disso, para as redes
descritas nessa Seção, a função de perdas definida foi a categorical_crossentropy.

6.4.1 Identificação dos Neurônios a Remover

A etapa inicial consiste em descobrir qual o número de épocas de treinamento é
necessário para cada uma das redes de modo a corretamente identificar os neurônios
a serem removidos. Através dessa etapa, é possível ver que não é necessário realizar
o treinamento completo das redes, isto é, um treinamento longo com o mesmo número
de épocas considerados nos artigos de referência para descobrirmos quais neurônios
são menos relevantes, e que portanto podem ser removidos. Assim, aplicamos o
estudo descrito na Seção 6.1.1 para cada uma das redes da Seção 6.4. A partir
desse processo, obtivemos como resultado as quantidades de épocas apresentadas
na Tabela 9.

Tabela 9 – Resultados do Estudo de Épocas para Selecionar os Neurônios a Remover.

Rede Épocas sugeridas Épocas estudo
CNN Prouff 130 128
CNN Perin 400 350
MLP Perin 200 149
MLP Prouff 200 113

Assim, nos experimentos a seguir, as redes neurais foram treinadas pelos respec-
tivos números de épocas apresentados na Tabela 9.

6.4.2 Análise de MLPs Aplicadas à SCA

Uma vez determinada as quantidades de épocas para treinar as redes neurais, a
etapa seguinte nesta Tese consistiu em aplicar o método de poda proposto à MLP de
Prouff et al. (2018). Portanto, foram realizados 10 experimentos utilizando-se como
entrada o dataset ASCADv1, composto por 50.000 traços de 700 amostras oriundos
de um dispositivo criptográfico dotado de contramedida de mascaramento aditivo de
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primeira ordem. Detalhes sobre esse conjunto de dados são apresentados na Seção
4.

Dessa forma, a Tabela 10 apresenta os valores de redução em termos de tempo
de treinamento, quantidade de parâmetros e também na quantidade de traços da MLP
original com relação à esta MLP reduzida para os dez experimentos realizados nesta
etapa. Além desses dados, a Tabela 10 traz o tempo de execução do processo de
redução da rede neural.

Os tempos de treinamento da rede neural reduzida atingem reduções de 8.45 até
30.26% em relação à original, ou seja, os dez experimentos realizados obtiveram re-
duções em termos de tempo de treinamento. Para alcançar essas reduções, os tem-
pos de processamento de redução dessa rede em particular estão entre 143.63s a
279.51s. Como explicado na Seção 6.1, a técnica utilizada para remoção dos neurô-
nios, e consequente redução da rede neural, é realizada de uma só vez (One-Shot),
o que justifica os baixos tempos obtidos no processo de redução. As reduções tem-
porais alcançadas neste experimento estão apoiadas pelas reduções na quantidade
de parâmetros da rede reduzida em relação à rede original. A Tabela 10 também
apresenta as reduções na quantidade de parâmetros para os dez experimentos, que
vão de 28.87 à 38.95%. Conforme vemos na Tabela 10, todos os experimentos aqui
realizados apresentam reduções significativas em termos de parâmetros aplicando-se
o método proposto.

As redes neurais reduzidas também apresentaram melhor desempenho quanto à
quantidade de traços necessários para obtenção de ataques por canais laterais bem
sucedidos. A última coluna da Tabela 10 mostra os valores de redução na quantidade
de traços. Sob esse paradigma, temos reduções que vão de 52.25 à 81.35%. Assim,
vemos que as redes neurais reduzidas necessitam de pelo menos 50% de traços a
menos para realizar os SCAs. Isso traduz-se em um modelo de ataque de perfil mais
potente, permitindo um atacante recuperar a chave com menos traços do dispositivo
alvo.
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Tabela 10 – Reduções na MLP de Prouff - Método Proposto.

Tempo (s) Parâmetros Traços
Proc. Orig. Nossa Redu. (%) Orig. Nossa Redu. (%) Orig. Nossa Redu. (%)

148.82 270.58 199.27 26.35 352,456 235,607 33.15 1999 848 57.58
143.63 260.00 216.75 16.64 352,456 221,520 37.15 1937 570 70.57
153.33 276.96 229.15 17.26 352,456 230,589 34.58 1781 683 61.65
158.59 282.88 258.99 8.45 352,456 224,161 36.4 1988 463 76.71
177.73 317.69 234.04 26.33 352,456 224,718 36.24 1999 508 74.79
189.76 337.74 251.75 25.46 352,456 233,495 33.75 1980 871 56.01
166.49 293.62 254.02 13.49 352,456 250,713 28.87 1995 372 81.35
179.21 324.02 268.64 17.09 352,456 236,238 32.97 1997 758 62.04
279.51 502.75 434.68 13.54 352,456 223,017 36.72 1354 582 57.02
174.89 314.34 219.22 30.26 352,456 215,175 38.95 1952 932 52.25
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Sob o ponto de vista de rank da chave criptográfica, pudemos perceber que as
redes neurais reduzidas neste experimento apresentam valores rank mínimo da chave
criptográfica menores ou iguais à rede original. Dessa forma, segundo esse quesito,
de um modo geral, as redes neurais reduzidas apresentam reduções com relação ao
rank mínimo da chave. Com isto, podemos concluir que a MLP, após passar pelo
processo de reudução, ou cirurgia, são ainda mais eficientes do que a MLP original.
Isso é mostrado na Tabela 11.

Tabela 11 – Ranks da MLP de Prouff - Método Proposto.

Rank Min. Original Rank Min. Reduzidas
0.075 0.0
0.005 0.0
0.015 0.0
1.03 0.0

0.205 0.0
0.125 0.0
0.125 0.0
0.055 0.0
0.0 0.0

0.015 0.0

A Tabela 11 confirma a afirmação de que as MLPs reduzidas tem uma eficiência
maior do que a MLP original. Nesta Tabela, podemos ver que em apenas um dos 10
experimentos executados sobre as MLPs de Prouff et al. (2018) a rede proposta pelos
autores consegue atingir rank zero da chave criptográfica, enquanto que para todos
os experimentos as redes reduzidas atingiram esse rank.

Essa maior eficiência das redes neurais reduzidas, MLPs nesse caso, pode ser
vista plotando-se os gráficos de rank da chave criptográfica das redes reduzidas com
a rede original para cada um dos dez experimentos executados nesta etapa. Podemos
ver isso através da Figura 23.

Na Figura 23, os gráficos dos ranks da MLP original para os dez experimentos rea-
lizados (baselines) estão representados na cor azul, enquanto os gráficos correspon-
dentes para as redes reduzidas encontram-se em vermelho. Observando-se a Figura
23 percebe-se que, de um modo geral, as curvas dos ranks x traços de consumo para
as MLPs reduzidas estão posicionadas mais abaixo do que suas respectivas curvas
da rede original, em relação ao eixo y, eixo representante dos ranks das chaves crip-
tográficas. Esta Figura ilustra os resultados de melhor eficiência das redes reduzidas
geradas com relação à MLP original.

Em resumo, com base nos experimentos, aplicando-se o método proposto nesta
Tese à MLP proposta por Prouff et al. (2018), podemos concluir que as redes reduzi-
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Figura 23 – Ranks MLP de Prouff - 10 execuções com a rede original (azul) e 10 execuções
com as redes reduzidas (vermelho).

das resultantes do processo proposto possuem menores tamanhos em relação à MLP
de Prouff et al. (2018) em termos de quantidade de parâmetros treináveis. Como con-
sequencia, o tempo de treinamento para essas redes na realização de SCAs também
são menores em relação à respectiva rede original. Com relação à quantidade de
traços necessários para ataques bem sucedidos, vemos que as MLPs reduzidas tem
melhores resultados do que a rede original. Isto deve-se, conforme vimos através da
Tabela 11 e do gráfico da Figura 23, ao menor rank da chave criptográfica obtido com
as redes reduzidas com relação à MLP original.

Através da revisão apresentada no Capítulo 5.1, foi possível perceber que alguns
trabalhos encontrados na literatura sobre métodos de poda utilizam métricas de sele-
ção dos neurônios a serem removidos diferentes de APoZ (utilizada nesta Tese). Den-
tre eles, o método mais recorrente utiliza a norma L1 para determinar a importância
dos neurônios Li et al. (2017). A norma L1, consiste em calcular a soma dos valores
absolutos dos pesos de cada neurônio. Esta métrica é correlacionada à ativação dos
neurônios, pois conforme revisamos no Capítulo 3.1 a ativação de um neurônio se dá
através da submissão do somatório dos seus pesos multiplicados por suas entradas à
uma função de ativação. Nesta Seção são apresentados experimentos aplicando-se
o método de poda proposto à MLP de Prouff et al. (2018), utilizando a métrica L1 para
seleção e remoção de neurônios. Os resultados são apresentados na Tabela 12.



115

Tabela 12 – Reduções na MLP de Prouff utilizando a norma L1 como métrica para seleção dos neurônios a remover - Método Proposto.

Tempo (s) Parâmetros Traços
Proc. Orig. Nossa Redu. (%) Orig. Nossa Redu. (%) Orig. Nossa Redu. (%)

185.97 309.15 251.01 18.80 352,456 226,326 35.79 1999 669 66.53
227.33 383.44 278.86 27.28 352,456 235,265 32.25 1994 454 77.23
175.61 287.74 246.48 14.34 352,456 270,733 23.19 1984 941 52.57
199.0 333.41 210.15 36.97 352,456 223,852 36.49 1419 538 62.09
156.82 252.64 202.79 19.73 352,456 232,139 34.14 1992 838 57.93
157.76 258.53 226.61 12.35 352,456 280,159 20.51 1980 870 56.06
153.17 247.7 228.79 7.63 352,456 282,311 19.9 1999 628 68.58
168.91 278.72 220.01 21.06 352,456 229,860 34.78 1975 918 53.52
211.39 349.38 282.5 19.14 352,456 235,163 33.28 1982 1187 40.11
172.67 281.59 209.81 25.49 352,456 220,898 37.33 1895 956 49.55
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Vemos na Tabela 12 que dentre os dez experimentos executados, temos reduções
de 7.63 a 36.97% quanto ao tempo de treinamento, de 19.9 a 37.33% em termos
de quantidade de parâmetros e, com relação à quantidade de traços são apresenta-
das reduções de 40.11 à 77.23%. Comparando-se os resultados aqui obtidos com
os apresentados na Tabela 10, vemos que os resultados de ambos os experimentos
(com APoZ e com L1) são bastante próximos, com resultados levemente superiores
utilizando-se APoZ como métrica de seleção.

Quanto ao rank mínimo da chave criptográfica, os resultados para estes experi-
mentos são mostrados na Tabela 13.

Tabela 13 – Ranks da MLP de Prouff utilizando a norma L1 como métrica de seleção dos
neurônios a remover - Método Proposto.

Min. Rank Baseline Min. Rank Reduced
0.535 0.0
0.98 0.0
0.125 0.0

0.0 0.0
0.205 0.0
0.02 0.0
0.25 0.0
0.05 0.0
0.385 0.055
0.015 0.0

Mais uma vez, vemos que os resultados mostrados na Tabela 13, ou seja, os resul-
tados para norma L1 são muito próximos aos obtidos com a métrica APoZ mostrados
na Tabela 11. Podemos ver que a rede original atinge rank zero em somente um dos
experimentos, enquanto as respectivas redes reduzidas atingem o rank zero em nove
dos dez experimentos realizados.

As curvas dos ranks da chave por números de traços para este experimento são
mostrados na Figura 24, onde é possível observar que as curvas das redes reduzi-
das (em vermelho) possuem rank médio inferior ao rank da rede original (azul). Isso
corrobora os resultados mostrados nas Tabelas 12 e 13.

Como vimos, os resultados utilizando a norma L1 como métrica de seleção e remo-
ção de neurônios são muito próximos aos resultados baseados com a métrica APoZ,
havendo uma leve perda de desempenho em relação a APoZ. Embora os resultados
alcançados sejam semelhantes, o custo computacional para realização do cálculo da
norma L1 para redes maiores torna-se muito significativo. Como o intuito desta Tese
baseia-se em propor um método para reduzir redes neurais com menor custo com-
putacional, seguimos realizando os próximos experimentos utilizando somente APoZ
como forma de selecionar os neurônios a remover.
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Figura 24 – Ranks MLP de Prouff (L1) - 10 execuções com a rede original (azul) e 10 execuções
com as redes reduzidas (vermelho).

Dentro das MLPs aplicadas à SCA, existem redes maiores do que a MLP de Prouff
et al. (2018). Como um exemplo, é possível citar a MLP de Perin; Picek (2020). Assim,
para os próximos experimentos, buscou-se testar o método proposto nesta MLP, a
fim de verificar seu funcionamento para uma rede neural com um número maior de
parâmetros.

Assim, para esta rede, foram também executados 10 experimentos com aplicação
do método de poda proposto à MLP de Perin; Picek (2020). Num primeiro momento,
foram registradas as reduções em termos de tempo de treinamento, quantidade de
parâmetros e quantidade de traços necessários para sucesso no ataque das redes
reduzidas em relação à MLP original de Perin; Picek (2020). Isto é mostrado na Tabela
14.
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Tabela 14 – Reduções na MLP de Perin - Método Proposto.

Tempo (s) Parâmetros Traços
Proc. Orig. Nossa Redu. (%) Orig. Nossa Redu. (%) Orig. Nossa Redu. (%)

920.09 869.79 382.12 56.07 9,966,256 5,678,616 43.02 3934 2711 31.09
733.99 851.94 366.59 56.97 9,966,256 5,546,573 44.35 3985 3359 15.71
741.1 843.71 362.78 57.0 9,966,256 5,460,232 45.21 3990 1218 69.47
650.5 840.27 359.87 57.17 9,966,256 5,385,677 45.96 3830 1231 67.86

767.81 844.09 369.75 56.2 9,966,256 5,543,789 44.37 3962 747 81.15
587.39 843.99 375.12 55.55 9,966,256 5,478,293 40.03 3985 3151 20.93
751.01 848.66 369.75 56.43 9,966,256 5,477,203 45.04 3960 1458 63.18
557.66 851.78 360.33 57.7 9,966,256 5,465,070 45.25 3772 2314 38.65
648.11 857.31 382.04 55.43 9,966,256 5,622,091 43.59 3948 1330 66.31
597.5 837.4 388.57 53.6 9,966,256 5,594,355 43.87 3953 998 74.53
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A Tabela 14 nos mostra que temos reduções desde 53.26 a 57.7% em termos
de tempo de treinamento das MLPs reduzidas em relação à MLP de Perin; Picek
(2020). Como mencionado anteriormente, essas reduções em tempos de treinamento,
se devem às reduções do tamanho das redes reduzidas em relação à rede original
de Perin; Picek (2020). Isso é mostrado na 8ª coluna da Tabela 14. Nesta coluna,
podemos ver que reduções na quantidade de parâmetros vão desde 40.03 à 45.96%
dentre os 10 experimentos realizados à partir dessa MLP. A última coluna da Tabela 14
mostra que em termos de traços necessários para ter-se sucesso no ataque também
obtivemos reduções em todos os experimentos realizados. Sobre esse ponto, temos
reduções de 15.71 à 81.15%.

Esses resultados mostram que para uma MLP do tamanho da rede encontrada em
Perin; Picek (2020), o método aqui proposto, apresenta reduções significativas. Vemos
também através da Tabela 14 que o processo de redução para esta MLP vão de 557.66
à 920.09s, que representam tempos relativamente baixos, devido à utilização de uma
abordagem One-Shot, como mencionado anteriormente.

Com relação ao rank mínimo da chave criptográfica das redes reduzidas,
aplicando-se o método aqui proposto à MLP de Perin; Picek (2020) obtivemos me-
lhores resultados em todos os 10 experimentos realizados. Isso pode ser visto na
Tabela 15.

Tabela 15 – Ranks da MLP de Perin - Método Proposto.

Rank Min. Original Rank Min. Reduzidas
0.035 0.0
0.045 0.015
0.72 0.005
0.08 0.0
0.51 0.0
0.62 0.395

0.255 0.0
0.065 0.005
0.105 0.0
0.21 0.0

Através da Tabela 15, vemos que, para todos os experimentos realizados com a
MLP de Perin; Picek (2020), o rank mínimo alcançado com as redes reduzidas é
menor do que para a MLP original. As redes reduzidas atingem rank zero em seis dos
dez experimentos realizados, enquanto a MLP de Perin; Picek (2020) não atinge esse
rank em nenhum dos experimentos realizados.

A Figura 25, mostra os gráficos de rank x número de traços necessários para
ataques bem sucedidos. Mais uma vez, vemos que as redes reduzidas (em vermelho)
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são mais eficientes para SCAs do que a rede proposta por Perin; Picek (2020).

Figura 25 – Ranks MLP de Perin - 10 execuções com a rede original (azul) e 10 execuções
com as redes reduzidas (vermelho).

Portanto, como vimos através dos experimentos anteriores, a abordagem aqui pro-
posta atinge resultados promissores quanto à redução de redes MLP aplicadas aos
SCAs. Seguimos os testes verificando o funcionamento do método proposto para
CNNs que realizam esse tipo de ataques. Com isto, pretende-se atestar o funci-
onamento satisfatório do método desenvolvido nesta Tese sobre as duas principais
arquiteturas de redes neurais aplicadas à SCA até o presente momento na literatura.

6.4.3 Análise de CNNs Aplicadas à SCA

Esta Seção apresenta o processo de cirurgia One-Shot aplicado à rede CNN de
Perin; Picek (2020) executando um ataque ao dataset ASCADv1, com contramedida
de mascaramento e contramedida temporal. Assim, para esta arquitetura de rede
foram obtidos os seguintes resultados de reduções apresentados na Tabela 16.
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Tabela 16 – Reduções na CNN de Perin - Método Proposto.

Tempo (s) Parâmetros Traços
Proc. Orig. Nossa Redu. (%) Orig. Nossa Redu. (%) Orig. Nossa Redu. (%)

475.45 558.93 509.33 8.87 6,797,246 4,120,056 39.39 2042 1902 20.82
499.53 553.28 487.21 11.94 6,797,246 3,599,353 47.05 2723 1533 43.7
520.48 563.59 503.56 10.65 6,797,246 4,089,818 39.83 2384 1731 27.39
505.63 559.65 492.16 12.06 6,797,246 3,495,454 39.83 1649 989 40.02
507.57 557.78 494.62 11.33 6,797,246 3,682,848 45.82 1458 1325 9.12
514.35 564.08 494.34 12.36 6,797,246 3,513,517 48.31 1973 1097 44.4
511.88 564.6 483.88 14.3 6,797,246 2,956,093 56.51 2319 1744 24.8
510.07 558.15 497.85 10.8 6,797,246 3,960,294 41.74 2359 1737 26.37
514.87 563.31 491.44 12.76 6,797,246 3,608,795 46.91 2006 1790 10.77
510.63 558.71 492.78 11.8 6,797,246 3,528,464 48.09 2704 1583 41.46
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A Tabela 16 mostra que para os dez experimentos executados sobre esta CNN,
temos reduções no tempo de treinamento desde 8.87 até 12.76%, reduções na quan-
tidade de parâmetros de 39.39 a 56.51% e, reduções na quantidade de traços para o
ataque de 9.12 até 44.4%. Mais uma vez, percebemos que o método aqui proposto
apresenta ótimos resultados de redução e eficiência das redes neurais aplicadas à
SCA. Outra observação que gostaríamos de fazer, diz respeito aos baixos valores de
tempo de execução do processo de redução desta CNN. Tempos estes que vão de
apenas 475.45 a 520.48s.

Da mesma forma que foi feito para os outros tipos de redes neurais, aqui vamos
visualizar os resultados obtidos através do procedimento de poda abordado nesta Tese
com relação ao rank da chave criptográfica para os dez experimentos executados
nesta etapa. Isto pode ser visto, através da Tabela 17.

Tabela 17 – Ranks da CNN de Perin - Método Proposto.

Rank Min. Original Rank Min. Reduzidas
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0

A partir da Tabela 17 vemos que tanto a CNN de Perin; Picek (2020), quanto as
redes reduzidas através do processo aqui proposto alcançam rank zero para todos
os dez experimentos aqui realizados, ou seja, o processo de redução da CNN em
questão não reduz a eficiência desta rede neural.

Apesar dos resultados apresentados no parágrafo anterior nos sugerirem uma
mesma eficiência em termos de rank da chave para a CNN vista em Perin; Picek
(2020) e para as redes neurais reduzidas a partir do processo aqui proposto, é possí-
vel verificar através da Figura 26 que as CNNs reduzidas apresentam melhor eficiência
do que a rede original encontrada em Perin; Picek (2020).

Aqui na Figura 26, mais uma vez, podemos ver que os gráficos dos ranks das
chaves criptográficas para a CNN de Perin; Picek (2020) (vistos em azul) mostram
uma menor eficiência em relação às redes reduzidas resultantes do processo de poda
proposto nesta Tese (curvas na cor vermelha). Através da Figura 26 vemos que as
redes reduzidas apresentam uma melhor eficiência em relação a CNN encontrada na
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Figura 26 – Ranks CNN de Perin - 10 execuções com a rede original (azul) e 10 execuções
com as redes reduzidas (vermelho).

literatura Perin; Picek (2020) quando se trata dos ranks da chave secreta.
Em última análise, buscamos testar nosso método aplicando-o a uma CNN apli-

cada à SCA que apresenta uma arquitetura com um tamanho maior à encontrada
em Perin; Picek (2020). Para isto, os mesmos testes empregados até então, foram
aplicados à CNN de Prouff et al. (2018).

Desse modo, assim como realizado para as outras redes neurais utilizadas como
estudo de caso, o método proposto nesta Tese foi aplicado à CNN de Prouff et al.
(2018). Para os experimentos realizados nesta etapa, considera-se a aplicação ao
dataset ASCADv1 com contramedida de mascaramento e contramedida temporal. A
partir disso, a Tabela 18 mostra as reduções obtidas através dos dez experimentos
realizados nesta parte desta Tese.
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Tabela 18 – Reduções na CNN de Prouff - Método Proposto.

Tempo (s) Parâmetros Traços
Proc. Orig. Nossa Redu. (%) Orig. Nossa Redu. (%) Orig. Nossa Redu. (%)

1341.36 2114.05 1539.97 27.16 66,652,544 36,042,227 45.93 14379 9344 35.02
1341.13 2117.59 1372.87 35.16 66,652,544 32,268,597 51.59 14933 9664 35.28
1371.13 2114.76 1525.53 27.86 66,652,544 33,334,302 49.99 14999 4367 70.88
1423.41 2116.8 1513.28 28.51 66,652,544 37,131,097 44.29 14987 4334 71.08
1333.58 2117.37 1569.61 25.87 66,652,544 36,476,651 45.27 14826 11411 23.03
1355.98 2119.81 1383.10 24.75 66,652,544 32,162,890 51.75 14927 9587 35.77
1380.17 2112.15 1445.20 31.58 66,652,544 34,568,700 48.14 14950 11302 24.4
1446.48 2119.18 1574.09 25.72 66,652,544 38,637,303 42.03 14880 6427 56.8
1469.88 2118.77 1580.38 25.41 66,652,544 40,447,633 39.32 14996 10826 27.8
1402.98 2116.93 1553.02 26.64 66,652,544 35,847,318 46.22 14635 7803 46.68
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A Tabela 18 indica reduções no tempo de treinamento de 24.75 até 35.16%, em
termos de quantidade de parâmetros (tamanho da rede neural) que vão desde 39.32
a 51.75%. Também vemos que houve redução com relação à quantidade de traços
necessários para o ataque de 23.03 até 71.08%. Assim, os resultados apresentados
na Tabela 18 confirmam que o método de redução das redes neurais proposto nesta
Tese apresenta resultados muito bons quando aplicado à CNN de Prouff et al. (2018).
Mais uma vez podemos perceber, através da primeira coluna da Tabela 18, que o pro-
cesso de redução da rede neural consome baixos valores de tempo, indo de 1333.58
à 1446.48s. Conforme mencionamos anteriormente, isto deve-se à abordagem One-
Shot para a remoção dos neurônios menos ativos de tais redes.

Do ponto de vista de rank da chave secreta, vemos através da Tabela 19, que
tanto a CNN de Prouff et al. (2018) quanto a CNN reduzida não alcançam rank zero
em nenhum dos experimentos realizados. Embora, para todos os dez experimentos
executados para esta rede, o rank mínimo da chave criptográfica é menor para as
redes reduzidas do que para a CNN original (Prouff et al. (2018)). Assim sendo, vemos
que o menor rank mínimo da chave é alcançado pela rede neural reduzida (0.02),
conforme destacado na cor amarela na Tabela 18.

Tabela 19 – Ranks da CNN de Prouff - Método Proposto.

Rank Min. Original Rank Min. Reduzidas
0.755 0.205
0.745 0.26
1.61 0.11
0.79 0.02

0.345 0.19
3.27 2.135
0.41 0.15
0.37 0.04

0.945 0.525
0.94 0.25

Como vimos, os dados da Tabela 19 mostram uma maior eficiência das redes neu-
rais reduzidas em relação à CNN de Prouff et al. (2018). Isto é confirmado através da
Figura 27, onde vemos que as curvas dos ranks da CNN de Prouff et al. (2018) (em
azul) apresentam, em geral, ranks menores do que suas respectivas redes neurais
reduzidas, para os dez experimentos aqui executados.

Com isto, podemos concluir a partir dos experimentos aqui realizados, que o mé-
todo proposto nesta Tese para redução de redes neurais alcança ótimos resultados
para as redes neurais mais utilizadas no âmbito de Side Channel Attacks. Técnicas
como a aqui apresentada podem tornar o risco desta classe de ataques muito maior,
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Figura 27 – Ranks CNN de Prouff - 10 execuções com a rede original (azul) e 10 execuções
com as redes reduzidas (vermelho).

pois conforme aqui apresentado, esse tipo de ataques pode ser realizado até mesmo
em dispositivos dotados de contramedidas através de redes neurais menores do que
as principais redes propostas na literatura. Assim, um atacante necessita de muito
menos recursos computacionais e tempo de ataque, e isto pode popularizar ainda
mais esse tipo de ataques.

6.5 Análise da Quantidade de Épocas de Treinamento para SCA

Nesta Seção, mais alguns experimentos foram realizados. Desta vez, testamos as
menores redes neurais (em termos de quantidade de parâmetros) alcançadas através
do processo de poda aqui proposto, para cada uma das redes consideradas nos expe-
rimentos anteriores. Portanto, utilizamos como estudo de caso a menor MLP atingida
a partir da MLP de Prouff et al. (2018), assim como a menor MLP alcançada a partir
de Perin; Picek (2020). Os testes descritos a seguir, também foram realizados para
as menores redes encontradas a partir da CNN de Perin; Picek (2020) e Prouff et al.
(2018). Os experimentos, cujos resultados são mostrados a seguir, consistem em ve-
rificar quantas épocas de treinamento são necessárias para que seja possível realizar
um ataque bem sucedido em uma etapa posterior do fluxo de ataques. Assim, realiza-
mos testes para verificar a quantidade de épocas para realizar os ataques das redes
originais em relação à suas respectivas redes reduzidas (menores redes alcançadas).
Como veremos a seguir, os resultados mostram que as redes neurais reduzidas ne-
cessitam de menos épocas de treinamento do que as redes originais para realizar-se
SCAs.
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6.5.1 Treinamento das MLPs Reduzidas

Os testes com relação à quantidade de épocas foram inicialmente realizadas com
a MLP de Prouff et al. (2018). Os experimentos aqui realizados foram balizados pelo
rank mínimo da chave criptográfica após a execução dos ataques. Para esta rede,
iniciamos ataques com 200 épocas (número de épocas recomendadas por Prouff et al.
(2018)) e fomos reduzindo esse número até que o rank mínimo da chave possuísse
um valor igual ou superior a 1. A Tabela 20, mostra os resultados para a MLP de Prouff
et al. (2018).

Tabela 20 – MLP de Prouff Original - Épocas para um ataque bem sucedido - Método Proposto.

Épocas Traços Rank
200 1952 0.015
180 1991 1.31
160 1998 0.915
150 1945 0.005
145 1620 0.0
140 1991 0.265
135 1990 2.59
130 1912 0.12
129 1997 0.77
128 1976 6.22
127 1998 13.69

Na Tabela 20 vemos que para 180, 135, 128 e 127 épocas o rank mínimo da chave
é maior do que 1. Através dos resultados mostrados na Tabela 20, podemos conside-
rar que precisamos de 129 (destacado em amarelo), das 200 épocas recomendadas,
para realizar SCA. Vemos que apenas para 145 épocas o rank zero é alcançado para
a quantidade de traços considerados, conforme destacado em verde.

Os gráficos correspondentes às curvas dos ranks x quantidade de traços par a
MLP de Prouff et al. (2018) são mostrados na Figura 28.

A Figura 28 nos mostra que para treinamentos desta MLP com menos de 129
épocas o rank da chave secreta não atinge valores considerados satisfatórios para um
ataque bem sucedido, dentro do número de traços considerado para este experimento.

Depois desse experimento, a partir do qual extraímos nossa baseline, realizamos
experimentos relacionados à quantidade de épocas necessárias para realização de
SCA para a menor MLP obtida através do processo de cirurgia aqui proposto, aplicado
à MLP de Prouff et al. (2018). Os resultados para este experimentos são vistos a partir
da Tabela 21.

Como podemos ver através da Tabela 21, necessitamos treinar a MLP em questão
por apenas 97 épocas para que o rank da chave criptográfica mantenha-se a um valor
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Figura 28 – Ranks por épocas - MLP de Prouff Original.

Tabela 21 – MLP de Prouff Reduzida - Épocas para um ataque bem sucedido - Método Pro-
posto.

Épocas Traços Rank
200 932 0.0
150 2285 0.0
140 1662 0.0
130 3506 0.0
120 1524 0.0
110 3894 0.005
105 1610 0.0
100 2521 0.0
97 3882 0.095
96 3990 3.605
95 3992 12.15
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abaixo de 1 (conforme definimos como um rank aceitável).Assim, considerando-se um
rank menor do que 1, essa rede pode realizar um ataque bem sucedido com menos
da metade de épocas sugeridas para a rede original.

A Figura 29, mostra as curvas de rank x número de traços para as quantidades de
épocas de treinamento consideradas na Tabela 21.

Figura 29 – Ranks por épocas - MLP de Prouff.

Vemos na Figura 23, que para ataques realizados a partir da MLP testada em que
a rede foi treinada com menos de 97 épocas, os resultados em termos de rank não
convergem para valores que caracterizam ataques bem sucedidos para a quantidade
de traços considerada.

Estes primeiros experimentos nos mostra que, uma vez que o atacante pondere
realizar o treinamento da MLP de Prouff et al. (2018) para realização de SCA, por uma
quantidade de épocas menor do que o sugerido pelos autores, com o intuito de reduzir
o tempo total dos ataques, a MLP reduzida pode ser treinada por uma quantidade de
épocas menor do que a MLP original.

A seguir, os mesmos experimentos foram executados, utilizando-se a MLP de Pe-
rin; Picek (2020) como referência. Assim, primeiramente foram realizados testes com
relação à quantidade mínima de épocas de treinamento para ataques bem sucedidos,
com relação à MLP de Perin; Picek (2020). Esses resultados são apresentados na
Tabela 22.

Conforme vemos na Tabela 22, são necessárias aproximadamente 80 épocas
(amarelo) para realizarmos um SCA bem sucedido. Aqui, afrouxando-se a métrica
anteriormente estabelecida, podemos considerar um ataque aceitável com 70 épocas
(verde) de treinamento da MLP. Vemos também na Tabela 22 que em nenhum dos ex-
perimentos realizados nesta etapa, o rank da chave mínimo alcançou o valor zero. Na
melhor das hipóteses, com 175 épocas (destacado em verde) treinando a rede neural
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Tabela 22 – MLP de Perin Original - Épocas para um ataque bem sucedido - Método Proposto.

Épocas Traços Rank
200 3830 0.08
175 3962 0.02
150 3966 0.085
125 3618 0.04
100 3988 0.66
90 3902 0.1
80 3997 0.56
70 3993 2.27
69 3998 5.32
68 3944 14.18

o rank mínimo da chave é de 0.02. Este foi o melhor resultado atingido pela MLP de
Perin; Picek (2020).

As curvas mostrando os ranks por número de traços são mostradas na Figura 30.

Figura 30 – Ranks por épocas - MLP de Perin Original.

Agora que temos os dados da baseline (MLP de Perin; Picek (2020)), partiremos
para a descoberta da quantidade de épocas que precisamos treinar a menor MLP
obtida através do método proposto sobre a MLP de Perin; Picek (2020), para que esta
realize um SCA bem sucedido. Esta rodada de experimentos tem seus resultados
mostrados na Tabela 23.

A Tabela 23 nos mostra que a rede neural reduzida, diferentemente da MLP de
Perin; Picek (2020), atinge o rank zero para a chave criptográfica quando treinamos a
MLP reduzida por mais de 30 épocas (em verde). E, considerando rank 1 um resultado
satisfatório para termos um ataque bem sucedido (conforme estabelecemos anterior-
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Tabela 23 – MLP de Perin Reduzida - Épocas para um ataque bem sucedido - Método Pro-
posto.

Épocas Traços Rank
200 1231 0.0
150 1790 0.0
100 1553 0.0
70 1289 0.0
50 2390 0.0
30 2270 0.0
20 3767 0.33
19 3968 0.86
18 3953 7.045
17 3980 16.3

mente), percebemos que se treinarmos essa rede reduzida por 19 épocas (destacado
em amarelo) ou mais, temos um SCA bem sucedido. Aqui, percebemos que mais uma
vez a MLP reduzida pode realizar um ataque bem sucedido, sendo treinada por uma
quantidade de épocas inferior à sua correspondente MLP original.

Vemos as curvas dos rank da chave para a MLP reduzida na Figura 31.

Figura 31 – Ranks por épocas - MLP de Perin.

É possível notar na Figura 31 que o rank médio das curvas vão aumentando con-
forme vamos reduzindo o número de épocas de treinamento, principalmente quando
realizamos o treinamento da rede neural com 20 épocas ou menos. Com trinta épocas
ou mais de treinamento, vemos que as curvas de rank são bastante próximas, e vão
se distanciando em função da redução de épocas, conforme esperávamos.
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6.5.2 Treinamento das CNNs Reduzidas

Como vimos, as MLPs reduzidas através do método aqui proposto podem ser trei-
nadas por uma quantidade de épocas inferior às suas respectivas MLPs originais. Nos
próximos passos, testamos as CNNs utilizadas como estudo de caso nos exemplos
anteriores. Primeiramente, foram realizados experimentos a partir da CNN encon-
trada em Perin; Picek (2020), descrita em parágrafos anteriores. Os resultados para
esta rede são mostrados na Tabela 24.

Tabela 24 – CNN de Perin Original- Épocas para um ataque bem sucedido - Método Proposto.

Épocas Traços Rank
400 2319 0.0
200 1752 0.0
160 2664 0.0
155 3105 0.0
154 3727 0.0
153 1379 0.0
152 3987 0.07
151 3997 0.27
150 3914 8.41
149 3993 23.03

Com base nos dados da Tabela 24 vemos que para a CNN de Perin; Picek (2020)
apresenta rank mínimo da chave criptográfica abaixo de 1 quando treinamos essa
rede neural com 151 épocas ou mais. Podemos ver também que o rank zero é atingido
quando a rede é treinada por pelo menos 153 épocas (destacado em verde). Assim,
notamos que com menos de 153 épocas de treinamento o rank da chave criptográfica
é maior do que zero, crescendo rapidamente quando reduzimos o número de épocas
abaixo de 151 épocas. Confirmando com isso, a necessidade de treinar-se a rede
com pelo menos 151 épocas para obtermos SCAs bem sucedidos.

As curvas do rank da chave para estes experimentos são mostradas na Figura 32.
Como mencionamos anteriormente, vemos através da Figura 32 que quando re-

duzimos o número de épocas de treinamento abaixo de 151 épocas, as curvas dos
ranks da chave secreta tem seus valores médios aumentados consideravelmente. Isto
corrobora a necessidade de treinamento de pelo menos 151 épocas para a realização
de ataques bem sucedidos.

Partindo dessa baseline, os mesmos experimentos em termos de número de épo-
cas foram realizados considerando a menor CNN obtida aplicando-se o método aqui
proposto à CNN de Perin; Picek (2020). Os resultados estão mostrados na Tabela 25.

Através da Tabela 25 vemos que apesar de o rank da chave criptográfica alcançar
valor igual a zero somente para o treinamento da rede reduzida por 400 épocas, o rank
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Figura 32 – Rank por épocas - CNN de Perin Orig.

Tabela 25 – CNN de Perin Reduzida - Épocas para um ataque bem sucedido - Método Pro-
posto.

Épocas Traços Rank
400 1744 0.0
300 3668 0.015
200 3983 0.05
150 3792 0.005
149 3900 0.12
148 3992 0.94
147 3993 2.23
146 3991 2.85
145 3977 9.67
144 3999 14.36
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abaixo de 1 é atingido quando treinamos essa rede por 148 épocas ou mais. Com um
número menor de épocas, verificamos que os valores de rank da chave criptográfica
aumentam substancialmente, colocando esse número de épocas como sendo o va-
lor mínimo de épocas de treinamento para realizar SCA. Percebemos, portanto, que
apesar de haver uma pequena diferença neste caso, a CNN reduzida necessita ser
treinada por uma quantidade de épocas menor do que a CNN original de Perin; Picek
(2020).

As curvas dos ranks da chave criptográfica para a CNN reduzida através do método
aqui proposto são mostradas na Figura 33.

Figura 33 – Rank por épocas - CNN de Perin.

Observando as curvas dos ranks apresentadas na Figura 33, podemos notar que
embora as curvas mostradas na Figura sejam bastante próximas neste experimento,
é possível perceber que para treinamentos com 148 épocas ou mais, o rank da chave
atinge valores muito próximos a zero (menores do que 1, conforme definimos).

Por último foram realizados testes com relação à quantidade de épocas necessá-
rias para um ataque bem sucedido a partir da CNN de Prouff et al. (2018). Seguindo-se
os mesmos procedimentos para os experimentos anteriores, começaremos mostrando
os resultados obtidos para esta rede neural, na Tabela 26.

Vemos através da Tabela 26, que para obtermos o rank mínimo da chave menor
do que 1, conforme definido para ter-se sucesso no ataque anteriormente, precisamos
treinar a rede neural por 55 épocas (em amarelo). Inclusive, para esse número de
épocas de treinamento o resultado do ataque (rank ) é melhor do que para as 130
épocas recomendada pelos autores. Se formos considerar o rank (3.27) obtido com
130 épocas de treinamento como referência, poderíamos considerar um ataque bem
sucedido treinando a rede com 52 épocas de treinamento, ou mais (destacado em
verde).
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Tabela 26 – CNN de Prouff - Épocas para um ataque bem sucedido - Método Proposto.

Épocas Traços Rank Min.
130 14927 3.27
100 14981 1.17
60 14983 2.295
55 14973 0.5
54 14594 1.88
53 14802 1.99
52 14997 1.355
51 13549 5.83
50 14991 6.61
49 14776 13.53

Como fizemos para as outras redes, aqui mostramos na Figura 34 as curvas dos
ranks para os experimentos realizados.

Figura 34 – Rank por épocas - CNN de Prouff Orig.

Através da Figura 34 percebemos visualmente através das curvas, que para casos
em que a rede foi treinada por menos de 52 épocas o rank mínimo da chave não
atinge os menores valores, confirmando os resultados da Tabela 26.

Agora, estes experimentos são realizados com a menor rede obtida a partir da
CNN de Prouff et al. (2018). A Tabela 27 mostra os resultados obtidos em termos de
rank mínimo da chave.

A Tabela 27 mostra que para obtermos rank menor do que 1, precisamos treinar a
rede neural por 40 épocas (em amarelo). No entanto, se considerarmos o rank obtido
com 130 épocas de treinamento (2.14) como referência, vemos que se treinarmos a
rede por 29 épocas (verde) ou mais pode-se considerar um ataque bem sucedido.
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Tabela 27 – CNN de Prouff Reduzida - Épocas para um ataque bem sucedido - Método Pro-
posto.

Épocas Traços Rank Min.
130 9587 2.14
100 14927 0.72
70 14995 1.51
50 13939 0.24
40 14974 0.32
30 14932 1.57
29 14799 1.29
28 14963 5.06
27 14936 7.35
26 14506 22.15

As curvas dos ranks para este experimento, podem ser vistas na Figura 35.

Figura 35 – Rank por épocas - CNN Prouff.

Como podemos ver através da Figura 35, as curvas são bastante próximas, atin-
gindo maiores valores de rank médio quando treinamos a rede neural por menos de
29 épocas.

Com base nos experimentos realizados, pudemos ver que para todas as redes
neurais aqui testadas, suas versões reduzidas, através do método aqui proposto, ne-
cessitam ser treinadas por uma quantidade menor de épocas do que suas respectivas
redes originais, para obtermos sucesso nos SCAs. A Tabela 28, traz um resumo dos
resultados obtidos de modo que possamos fazer uma comparação entre as redes.

Com base nestes experimentos, concluímos que é possível um atacante adotar a
estratégia de diminuir a quantidade de épocas de treinamento da rede para reduzir
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Tabela 28 – Comparação entre resultados de números de épocas.

Rede Épocas Orig. Épocas Red. Redução%
MLP Prouff 129 97 24.81
MLP Perin 80 19 76.25
CNN Perin 151 148 1.99
CNN Prouff 55 40 27.27

o tempo de execução do SCA, visto que as redes neurais reduzidas pelo método
proposto apresentam melhores desempenho.

6.6 Considerações sobre o Capítulo

Este Capítulo apresentou o método de poda proposto nesta Tese, o qual consiste
no desenvolvimento de um fluxo para redução de redes neurais capazes de realizar
ataques a canais laterais. Com isto, mostramos que os SCAs podem ser realizados
através de redes neurais com menor esforço computacional, e com menores tempos
de treinamento do que com as redes apresentadas na literatura, apontando um poten-
cial aumento no nível de ameaça dessa classe de ataques.

Como vimos, a abordagem aqui adotada baseou-se na técnica de cirurgia apresen-
tada por Hu et al. (2016). Assim, os primeiros experimentos consistiram em aplicar o
método de Hu et al. (2016) no contexto de SCA. A partir desses testes iniciais, foi pos-
sível constatar que tal método pode reduzir as redes disponíveis na literatura usadas
para esta finalidade.

Em um segundo momento, foram realizados um conjunto de experimentos
aplicando-se o método proposto, que teve como objetivo reduzir o esforço compu-
tacional e consequentemente o tempo despendido no processo de redução da rede
neural em si. Com base nesses experimentos, finalmente pudemos comprovar que
é possível obter-se redes neurais reduzidas para realização de SCA com um custo
computacional e temporal inferiores aos indicados na literatura.

Por fim, mostramos que as redes neurais reduzidas através do nosso método po-
dem ser treinadas por menos épocas do que as redes originais para realização dos
ataques. Assim, indicamos que caso o atacante utilize a redução do número de épo-
cas de treinamento para realizar ataques mais rápidos, as redes neurais reduzidas
apresentam melhor desempenho que as redes originais.



7 CONSIDERAÇÕES FINAIS

Este Capítulo visa destacar as principais conclusões decorrentes dos experimen-
tos realizados a partir do método de redução de redes neurais aplicadas à SCAs pro-
posto nesta Tese. Além disso, são caracterizadas alternativas para continuidade dos
trabalhos, tendo por base os estudos e pesquisa realizados.

7.1 Principais Conclusões

O expressivo aumento na quantidade de dispositivos que usam criptografia em-
barcada, trouxe consigo uma nova classe de ameaças que são os ataques a canais
laterais (KOCHER, 1996) e (KOCHER; JAFFE; JUN, 1999). Embora existam proteções
contra esse tipo de ataques, chamadas contramedidas (BOEY et al., 2010), (CHOU;
LU, 2019), (DAS et al., 2020), (LIU; CHANG; LEE, 2010) e (LIU; CHANG; LEE, 2012),
estudos mostraram que etapas de pré-processamento podem neutralizar tais contra-
medidas (LELLIS; SOARES, 2017), (LODER, 2014), (NAGASHIMA et al., 2007) e (LE
et al., 2007).

Além disso, devido à crescente evolução da área de inteligência artificial, algorit-
mos de aprendizado de máquina e aprendizado profundo foram também emprega-
dos no contexto dos SCAs (HETTWER; GEHRER; GÜNEYSU, 2020), (YANG et al.,
2012) e (LERMAN et al., 2013). Inicialmente, os trabalhos encontrados na literatura
realizavam ataques baseados em inteligência artificial sobre dispositivos desprotegi-
dos. Contudo, também são encontrados trabalhos que realizam ataques em dispositi-
vos dotados de contramedidas (LERMAN; MARTINASEK; MARKOWITCH, 2017), (?),
(PROUFF et al., 2018), (TIMON, 2018) e (TIMON, 2019).

Embora comprovado através dos estudos apresentados na literatura, que algorit-
mos de aprendizado profundo possam recuperar a chave criptográfica através de um
ataque a canal lateral, o custo computacional envolvido é bastante excessivo, pois a
rede neural utilizada para essa tarefa pode conter uma quantidade de parâmetros trei-
náveis da ordem de milhões. Alguns experimentos mencionam semanas de tempo de
execução dos seus algoritmos. Isto pode tornar o ataque inviável em muitos casos.
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Por outro lado, técnicas de redução de redes neurais são encontradas na literatura,
como por exemplo a poda, que busca eliminar elementos da rede (pesos, neurônios ou
camadas) baseando-se em algum critério de utilidade de tais elementos (GUO; YAO;
CHEN, 2016), (HE; ZHANG; SUN, 2017), (KIM; KWOK, 2019), (CHEN et al., 2021),
(FAN; TANG; MA, 2022) e (HU et al., 2016). Através dos experimentos aqui relatados,
pudemos comprovar que técnicas, como a apresentada por Hu et al. (2016) podem ser
empregadas no contexto de SCA com sucesso, encontrando-se redes muito menores,
e por tanto mais eficientes, capazes de realizar ataques bem sucedidos.

Contudo, muitos dos métodos encontrados da literatura, como por exemplo (HU
et al., 2016), são bastante custosos por tratarem-se de métodos iterativos contendo
repetidos ciclos de poda-treinamento. Assim, aqui propomos um método One-Shot
eliminando os diversos retreinamentos capaz de obter-se redes menores, além de
mais eficientes, do que as encontradas na literatura (LELLIS; SOARES; PERIN, 2022).

Experimentos foram realizados com diferentes configurações de redes neurais
mais recorrentes no campo de SCA (MLPs e CNNs), confirmando a eficiência do
método aqui proposto para reduzir redes neurais capazes de realizar ataques a ca-
nais laterais. Como vimos, as redes reduzidas através da abordagem desenvolvida
nesta Tese possuem uma quantidade menor de parâmetros treináveis e, consequen-
temente menores tempos de treinamento. Além disso, como pudemos ver através dos
resultados apresentados no Capítulo 6.3, as redes neurais reduzidas são capazes de
realizar SCAs necessitando para isso uma quantidade menor de traços do consumo,
métrica bastante coerente na área de Side Channel Attacks. Ainda, experimentos re-
alizados com relação à quantidade de épocas de treinamento das redes necessárias
para realizar-se ataques bem sucedidos. Nesses casos, as redes reduzidas também
se mostraram mais eficientes do que suas respectivas redes neurais.

Com base nos resultados alcançados no desenvolvimento desta Tese, podemos
apontar o crescente potencial desse tipo de ataques, uma vez que através de redes
neurais de tamanho reduzido um atacante é capaz de realizar ataques com menos re-
cursos computacionais e de tempo consumido, até mesmo em dispositivos dotados de
contramedidas. Assim, SCAs podem tornar-se mais ameaçadores, pois estes podem
tornar-se acessíveis a uma quantidade cada vez maior de usuários mal intencionados.

7.2 Trabalhos Futuros

Como concluímos, os ataques por canais laterais podem tornar-se mais ameaça-
dores se conseguirmos realizar tais ataques ao custo de cada vez menos recursos
computacionais. Aqui nesta Tese exploramos a redução de tais redes através de um
método de poda (pruning). Como vimos, os métodos de poda apresentam algumas
características que apresentam alguns aspectos que podem ser explorados, como fi-
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zemos por exemplo, variando-se a forma de selação dos neurônios (APoZ, L1, etc.). A
granularidade consiste em outra característica da poda que apresenta variações. Aqui,
entendemos que para as redes testadas a melhor granularidade consiste na poda de
neurônios. Porém, técnicas que mesclam podas em diferentes granularidades podem
ser testadas futuramente. Além disso, outras formas de redução de redes neurais
como a quantização também são possíveis. Assim, para passos futuros tais técnicas
podem ser exploradas e até mesmo integradas a fluxos juntamente com técnicas de
poda.

Ainda, as técnicas de redução encontradas na literatura têm a função de diminuir
o tamanho de redes neurais pré-existentes. Assim, é necessário que se tenha uma
rede prévia para realizar a sua redução. Sabe-se que o projeto de redes neurais
é uma tarefa extremamente complexa, e que exige profundo conhecimento de seus
projetistas, além de horas de treinamento para chegar-se ao resultado desejado. Para
mitigar esses problemas, técnicas automáticas de projeto de redes neurais, chamadas
de Neural Architecture Search – NAS são encontradas na literatura. Através de NAS
redes neurais são projetadas sem a necessidade de intervenção humana, chegando-
se a resultados superiores ao estado da arte até o presente momento. Tais técnicas
podem também ser aplicadas no contexto de SCA em momentos futuros.

Tais frentes de pesquisa elencadas configuram o panorama para o aprimoramento
e expansão do trabalho aqui realizado, ou seja, a busca por técnicas de realização de
ataques por canais laterais baseados em redes neurais com menor necessidade de
recursos computacionais e de tempo.
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