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RESUMO

LELLIS, Rodrigo Nuevo. UM FLUXO DE PODA PARA REDES NEURAIS DEDI-
CADAS A ATAQUES A CANAIS LATERAIS BASEADOS EM APRENDIZADO
PROFUNDO. Orientador: Rafael lankowski Soares. Coorientador: Guilherme Perin.
2023. 153 f. Tese (Doutorado em Ciéncia da Computacao) - Programa de Pés-
Graduagcdao em Computacao, Centro de Desenvolvimento Tecnolégico, Universidade
Federal de Pelotas, Pelotas, 2023.

Devido ao crescente numero de servigos disponiveis por meio da Internet nas
ultimas décadas, é cada vez mais importante oferecer segurancga as informacgdes de
usuario que trafegam por diferentes meios de comunicacao. Para isso, sistemas com-
putacionais se apoiam no uso de criptografia como modo de proteger as informacdes
dos usuarios. Atualmente, o uso de algoritmos de criptografia encontra-se embarcado
em muitos dispositivos e aplicagdes, 0 que potencializa a ameaga de ataques que
exploram caracteristicas fisicas do hardware que executa tais algoritmos. Esta classe
de ataques é chamada de Ataques de Canal Lateral (do inglés Side Channel Attacks
ou SCAs). Muitas prote¢oes contra SCAs, chamadas contramedidas, sdo encontradas
na literatura. Entretanto, sdo encontradas vulnerabilidades nessas contramedidas.
Neste contexto, técnicas de Aprendizado profundo (do inglés Deep Learning ou DL)
tém atraido interesse crescente por constituirem-se como recursos eficientes e em
constante evolucdo. No entanto, o custo computacional de aplicar DL no cenario
de SCA ¢é alto. Estudos relatam experimentos com duracdao de semanas de uso de
infraestrutura computacional. Este trabalho propde reduzir o esforco computacional
de SCAs baseados no uso de redes neurais pela redugcdo do tamanho destas via
técnicas de poda. Além disso, otimiza-se aqui o esforgco computacional do processo
de reducao de redes. Resultados experimentais demonstram redugdes entre 40 a
50% na quantidade de parametros de redes, bem como reducdes de até 57.17% no
tempo de treinamento. Redes reduzidas conseguem realizar ataques utilizando me-
nos tragos que as respectivas redes originais, em todos os casos. Adicionalmente, as
redes reduzidas séo treinaveis por menos épocas que as respectivas redes originais.
Com isto reduz-se ainda mais o tempo para realizar ataques. Esta Tese demonstra o
potencial de aumento do nivel de ameaca representado por SCAs baseados em DL.

Palavras-chave: Ataques a Canais Laterais. Aprendizado de Maquina. Aprendizado
Profundo. Poda.



ABSTRACT

LELLIS, Rodrigo Nuevo. A PRUNING FLOW FOR NEURAL NETWORKS DEDI-
CATED TO SIDE-CHANNELS ATTACKS BASED ON DEEP LEARNING. Advisor:
Rafael lankowski Soares. Coadvisor: Guilherme Perin. 2023. 153 f. Thesis (Doc-
torate in Computer Science) - Technology Development Center, Federal University of
Pelotas, Federal University of Pelotas, Pelotas, 2023.

Due to the increasing number of services available over the Internet in recent
decades, it is becoming increasingly important to provide security for user information
transmitted through various communication channels. To achieve this, computational
systems rely on the use of encryption as a means to protect user information. Cur-
rently, encryption algorithms are embedded in many devices and applications, which
enhances the threat of attacks that exploit the physical characteristics of the hardware
executing these algorithms. This class of attack is called Side Channel Attacks (SCAs).
Many protections against SCAs, referred to as countermeasures, are found in the lit-
erature. However, vulnerabilities are discovered in these countermeasures. In this
context, Deep Learning (DL) techniques have attracted increasing interest as they are
efficient and continuously evolving resources. Nevertheless, the computational cost of
applying DL in the SCA scenario is high. Studies report experiments lasting weeks
using computational infrastructure. This work aims to reduce the computational effort
of SCA based on neural networks by reducing their size through pruning techniques.
Additionally, the computational effort of the network reduction process is optimized.
Experimental results demonstrate reductions of 40 to 50% in the number of network
parameters, as well as reductions of up to 57.17% in training time. Reduced networks
can perform attacks using fewer traces than their respective original networks in all
cases. Furthermore, reduced networks require fewer training epochs than their origi-
nal networks, reducing the time needed to carry out attacks. This thesis demonstrates
the potential for an increased threat level posed by DL-based SCAs.

Keywords: Side Channel Attacks. Machine Leaning. Deep Learning. Pruning.
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1 INTRODUCAO

Desde as ultimas décadas tem-se intensificado o uso de sistemas computacionais
interconectados pela rede mundial de comunicagao, a Internet, onde cresce também
0 numero de usuarios mal-intencionados dedicados a espionagem eletronica, frau-
des e diversas outras praticas para obter vantagens ou acesso a servicos e dados
sigilosos, de modo que a seguranca se torna imprescindivel (FRIEDEL; HOLZER,;
SARKANI, 2020). Como exemplos de sistemas computacionais do nosso cotidiano é
possivel destacar o e-commerce, servigos bancarios, reservas de passagens e mais
recentemente, com a possibilidade de objetos trocarem informagdes entre si com o
surgimento da Internet das Coisas, novos servigos tem surgido como casas, edificios
e até mesmo cidades inteligentes (KIRIMTAT et al., 2020), de modo que a informacéao
deve ser protegida por meio de protocolos especiais e, sem duvida, o uso obrigatorio
da criptografia para ocultar as informacdes. Os algoritmos criptograficos se apoiam
em recursos matematicos e l6gicos para alterar uma mensagem a ser transmitida,
também conhecida como texto claro, que se transforma em uma mensagem cifrada
ou texto cifrado apds computada pelo algoritmo criptografico. Esta computacéo fica
condicionada ao uso de uma chave criptografica de modo que somente possa ser
interpretada pelo transmissor e receptor que tiverem conhecimento da chave cripto-
grafica (QADIR; VAROL, 2019).

Os avancgos da microeletrénica permitiram implementagées em hardware dos al-
goritmos criptograficos (CHOI et al., 2020). Por outro lado, Kocher (1996) mostra ser
possivel relacionar dados computados em sistemas computacionais mesmo fazendo
uso de criptografia com propriedades fisicas tais como por exemplo, o tempo de execu-
cao (KOCHER, 1996), consumo de energia (KOCHER; JAFFE; JUN, 1999), emissao
eletromagnética (AGRAWAL et al., 2002), entre outros (GENKIN; SHAMIR; TROMER,
2017). Os ataques desse tipo sdo chamados de ataques a canais laterais ou ocultos
(do inglés, Side Channel Attacks - SCAs). Neste contexto, existem na literatura dife-
rentes tipos de ataques: ataques de inducéao de falhas (FUHR et al., 2013), Ataques
Simples (do inglés, Simple Power Analysis — SPA) e Diferencial por Andlise do Con-
sumo (do inglés, Differential Power Analysis — DPA) (KOCHER; JAFFE; JUN, 1999)
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e Andlise da radiacao Eletromagnética (em inglés Simple ElectroMagnetic Analysis —
SEMA ou Differential Electromagnetic Analysis - DEMA) (AGRAWAL et al., 2002).

DPA/DEMA séao bastante populares por serem nao-invasivos, ndo deixando vesti-
gios e eliminando a possibilidade de comprometimento do funcionamento do sistema
criptogréafico ap6s a realizacao do ataque. Além disso, o setup para realizacao dos
ataques possui um custo relativamente baixo, e o atacante ndo precisa ter um conheci-
mento detalhado sobre o algoritmo criptografico, tampouco sobre sua implementacéao
(MANGARD; OSWALD; POPP, 2007). Entretanto, esses ataques exigem uma grande
quantidade de informacao, na forma de tracos, para que seja possivel decifrar a chave
criptografica. Mais ainda, os tragcos devem estar alinhados no dominio do tempo para
obter sucesso. Essa fragilidade temporal, tornou possivel a criacdo de protecdes,
chamadas contramedidas que podem atuar de diversas formas, como por exemplo,
introduzindo ruido nas medi¢cdes do consumo como em (BOEY et al., 2010), (CHOU,;
LU, 2019), (DAS et al., 2020), (KIZHVATOV, 2009), (LIU; CHANG; LEE, 2010) e (LIU;
CHANG; LEE, 2012), impedindo analises de correlacdo mascarando os dados proces-
sados (TRICHINA; DE SETA; GERMANI, 2003), (GOLIC, 2007) e (CORON; GOUBIN,
2000), ou entao buscando obter um consumo uniforme para qualquer sequéncia de
dados de entrada (LIM et al., 2017). Também foram propostas combinacdes de con-
tramedidas, como em (WANG et al., 2016) e (SOARES, 2010). Entretanto, etapas
de pré-processamento podem ser incorporadas ao fluxo de ataques com o intuito de
neutralizar tais contramedidas realinhando os tragos, como pode ser observado em
(LELLIS; SOARES, 2017), (LODER, 2014), (LE et al., 2007) e (NAGASHIMA et al.,
2007).

Os ataques DPA/DEMA séo realizados a partir de um modelo de consumo, geral-
mente baseado na Distancia Hamming (Hamming Distance — HD) ou no Peso Ham-
ming (Hamming Weight — HW), com o qual as amostras dos tragos do consumo séo
analisadas estatisticamente. Esta analise ocorre por meio da diferenca das médias.
De maneira andloga, o ataque conhecido como Correlation Power Analysis — CPA
(BRIER; CLAVIER; OLIVIER, 2004), do mesmo modo pode usar ambas as métricas
matematicas HD e HW para definir modelos hipotéticos de consumo e calcular a corre-
lacao existente com os tracos de consumo medidos usando a Correlacao de Pearson.
Ja os chamados Template Attacks - TA propostos por (CHARI; RAO; ROHATGI, 2002),
utilizam um modelo Gaussiano de ruido para definir e registrar os modelos de tracos
DPAs relativos a um conjunto pré-definido de operacdes. Assim, esse tipo de ataque
compara os tragos de consumo medidos ao modelo através de parametros como a
média e covariancia.

Em fungéo da evolucdo da area de inteligéncia artificial, técnicas de Aprendizado
de Maquina (do inglés, Machine Learning — ML) e de Aprendizagem Profunda (do in-
glés, Deep Learning— DL) foram recentemente empregadas para criar modelos a partir
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de um dispositivo criptografico especifico, para que este possa ser utilizado em dis-
positivos com caracteristicas semelhantes (Profiling Attacks), abordados em diversos
trabalhos encontrados na literatura (HETTWER; GEHRER; GUNEYSU, 2020), (YANG
et al., 2012) e (LERMAN et al., 2013). Entretanto, estes trabalhos tém como estudo
de caso dispositivos desprotegidos. Contudo, atualmente existem varias propostas de
contramedidas disponiveis na literatura, das quais muitas estdo baseadas no desali-
nhamento temporal dos tracos do consumo (HETTWER et al., 2020), (SINGH et al.,
2020) e (CHONG et al., 2021). E, portanto, interessante verificar o desempenho de
tais técnicas aplicadas a dispositivos protegidos, com o intuito de avaliar vulnerabilida-
des dos mesmos.

Neste contexto, sdo encontrados na literatura trabalhos que realizam ataques SCA
baseados em ML e DL em dispositivos dotados de desalinhamento temporal como
contramedidas (LERMAN; MARTINASEK; MARKOWITCH, 2017), (?) e (PROUFF
et al., 2018). Além disso, ataques Non-Profiled baseados em técnicas de ML/DL foram
apresentados em Timon (2018) e Timon (2019). Entretanto, os métodos apresentados
exigem um grande esforgco computacional, o que dificulta bastante o ataque na maio-
ria dos casos. Como exemplo, Zhou; Standaert (2020) reportaram um tempo de uma
semana para revelar um unico byte da chave criptografica.

Métodos para reduzir o tamanho de redes neurais, reduzindo assim o esforgco
computacional exigido, sdo encontrados na literatura dentro das mais diversas areas.
Knight; Lee (2021), Guan; Zhang (2020), Gkalelis; Mezaris (2020), Kim; Kim (2020),
Ghosh et al. (2019) e Li; Zhu; Sun (2019) usam a técnica de poda como uma forma
de reduzir o tamanho de redes neurais. Nestes trabalhos, os autores apresentam
significativas redugcdes na complexidade de suas redes, geralmente com o propésito
de aplica-las em sistemas embarcados (que como se sabe, estas possuem restri-
cdes de memoria e processamento). Apesar do treinamento de redes neurais néo ser
realizado em sistemas embarcados na area de SCA, os modelos necessarios para
essa finalidade podem ser constituidos de até centenas de milhées de parametros
(para modelos avancados, utilizados para ataques em dispositivos protegidos) (VAN
DER VALK et al., 2020), elevando exponencialmente o tempo total do ataque. Outro
exemplo interessante € o trabalho proposto por Timon (2018), onde a mesma rede
neural precisa ser retreinada 256 vezes para atacar um byte de chave do AES em um
cenario de aprendizado profundo sem perfil.

As técnicas de poda podem ser aplicadas em diferentes granularidades: pesos,
canais (neurdnios) ou camadas. Han et al. (2015) e Guo; Yao; Chen (2016) propéem
métodos que removem iterativamente os pesos (conexdes entre 0s neurdnios) consi-
derados nao-importantes. Embora resulte em uma reducao na quantidade de parame-
tros das redes neurais, e consequentemente no tempo de treinamento das mesmas,
essa abordagem é bastante custosa computacionalmente, pois, trata-se de métodos
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iterativos, necessitando de muitos treinamentos da rede (um a cada iteragao) para ve-
rificacdo da acuracia da rede apds cada remoc¢ao. Além disso, a poda de pesos € a
opcao menos eficiente dentre as diferentes granularidades de poda, pois visa a remo-
cao de pesos individuais, ao passo que conjuntos de pesos (neurbnios ou camadas)
poderiam ser considerados no processo. A remogao de canais, também referida como
cirurgia ou processo de ablagéo por Hu et al. (2016), fornece um modelo reduzido que
€ mais rapido de treinar, levando em conta um método mais eficiente. Em particular,
Hu et al. (2016). apresentaram uma técnica que remove neurbnios de acordo com sua
taxa de ativacdo. Em Chen et al. (2021) e Fan; Tang; Ma (2022), os autores propuse-
ram métodos para remover canais (filtros ou mesmo a camada inteira) de camadas de
convolugdo em uma rede neural convolucional (CNN). Entretanto, é mais interessante
obter métodos para remocgao de canais mais abrangentes que possam ser aplicados a
filtros e a neurbnios de camadas densas (aplicavel a CNNs e MultiLayer-Perceptrons
- MLPs). Ainda, poda considerando camadas séo vidveis somente em redes maiores
do que as encontradas na literatura para aplicagbes em casos de SCA (com muito
mais camadas), pois caso contrario a degradacao causada pelo método tende a afe-
tar seu funcionamento. A cirurgia ou ablacao ja foi considerada no contexto de criacao
de perfil SCA em (WU et al., 2021) como um método para explicar a neutralizacdo
de contramedidas ocultas. Aqui, adotamos cirurgia para reduzir o tempo total de trei-
namento e o numero de parametros treinaveis de redes neurais profundas, o que é
altamente atraente em avaliagcdes de segurancga. Encontrando uma rede neural menor
e mais rapida para treinar, com o intuito de revelar um unico byte de chave criptogra-
fica (comumente feito na literatura), 0 mesmo modelo reduzido pode revelar os bytes
restantes da chave, uma vez que atacar outros bytes de chave requer retreinamento
da rede.

Diante do exposto, é notoria a necessidade de métodos de treinamento mais rapi-
dos. Embora apresente beneficios em relagdo a eficiéncia dos ataques, a aplicacao
desta técnica a SCAs foi muito pouco explorada por pesquisadores. Perin; Wu; Pi-
cek (2021) mencionam que existem muitas possibilidades de implementar a técnica
de poda em redes neurais aplicadas a SCA, reduzindo sua limitacdo em termos de
complexidade, o que motiva o problema de pesquisa considerado nesta Tese.

1.1 Problema de Pesquisa

Considerando o objetivo de contribuir na area de SCA através do uso de algoritmos
de inteligéncia artificial, o problema central desta Tese consiste em solugdes para o
seguinte questionamento:

E possivel desenvolver um fluxo de ataque para SCA, baseado em métodos
de aprendizado profundo que seja eficiente contra dispositivos dotados de



18

contramedidas temporais, com esforco computacional menor do que os
trabalhos propostos na literatura até o presente momento?

Este problema se desdobra nos seguintes aspectos:

* Quais algoritmos de aprendizado profundo se adaptam melhor ao problema de
SCA?

* Quais etapas devem compor o fluxo de ataques capaz de neutralizar contrame-
didas temporais?

» Existem métodos para reduzir o tamanho (quantidade de parametros) da rede
neural, a fim de mitigar o excesso de esforco computacional empregado para
realizar o ataque, mantendo a eficiéncia necessaria?

Os desafios relacionados acima, constituiram a origem dos objetivos perseguidos
nesta Tese.

1.2 Objetivos

O objetivo principal desta Tese, considerando o problema de pesquisa apresen-
tado, € desenvolver um fluxo para ataques a canais laterais baseado em técnicas de
aprendizado profundo que apresente um esforgco computacional reduzido comparado
a literatura.

Esta Tese considera o uso de redes neurais, além de técnicas que possibilitem a
reducdo destas redes, mantendo a sua eficiéncia no ataque.

A fim de alcancgar esse objetivo principal, sdo destacados a seguir, 0os objetivos
especificos que foram contemplados:

» Buscar na literatura, trabalhos que aplicam algoritmos de aprendizado profundo
no contexto de SCA sob diferentes cenarios e contramedidas, assim como estu-
dos que comparam algoritmos de aprendizado profundo no contexto de SCA;

 Analisar os trabalhos que empregam inteligéncia artificial em SCAs sob diferen-
tes métricas;

» Explorar métodos para reduzir as redes empregadas, a fim de mitigar o excesso
de esforco computacional empregado para realizar o ataque, mantendo a efici-
éncia necessaria;

« Contribuir para a area de SCAs, propondo um fluxo de ataques a canais laterais
baseado em DL, com esforco computacional e eficiéncia aceitaveis;

« Avaliar o fluxo de ataque desenvolvido, através de métricas de eficiéncia do ata-
gue e esforgco computacional adequadas;
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1.3 Contribuicoes da Tese

Uma vez alcancados os objetivos descritos na Secéao 1.2, o trabalho desenvolvido
nesta Tese traz as seguintes contribuicées no campo dos SCAs:

1. Verificagdo da viabilidade de aplicacao de técnicas de reducao, através de poda,
de redes neurais no contexto de SCA. Com isto, mostrou-se que é possivel re-
alizar esse tipo de ataques com redes de tamanhos reduzidos em relacédo as
encontradas na literatura;

2. Obtencéao de redes neurais mais eficientes do que as encontradas na literatura.
As redes reduzidas através do método proposto necessitam de menos tragos do
consumo para realizar ataques bem sucedidos. Além disso, por se tratarem de
redes menores, o tempo de treinamento também é menor em relagédo as redes
apresentadas na literatura, tornando assim, os ataques mais rapidos e com a
necessidade de menos recursos computacionais;

3. Processo de reducéo de redes neurais One-Shot, evitando custosos ciclos de
remogao e treinamento comuns na maioria das técnicas de poda encontradas
na literatura;

Através das contribui¢des citadas acima, pudemos apontar o potencial aumento da
ameaca causada por essa classe de ataques, uma vez que atacantes sdo capazes de
realizar ataques mais rapido e com menos recursos computacionais.

1.4 Estrutura da Tese

Esta Tese esta organizada em sete Capitulos, descritos a seguir. No Capitulo 2 é
apresentada uma revisao sobre o algoritmo alvo dos SCAs considerados nesta Tese e
os principais Ataques Non-Profiled encontrados na literatura. Este Capitulo traz uma
revisdo sobre 0s principais conceitos e o cenario do problema aqui abordado. Ainda
com o objetivo de fornecer embasamento ao leitor, sdo apresentados no Capitulo 3
conceitos sobre DL, assim como seus principais algoritmos. No Capitulo 4 sao dis-
cutidos trabalhos que empregam algoritmos de aprendizado de DL no contexto de
ataques por canais laterais, sendo apresentada uma comparacao entre eles. O Capi-
tulo 6 0 método proposto nesta Tese, assim como 0s experimentos realizados neste
trabalho. Finalmente, o Capitulo 7 traz as consideracdes finais desta Tese, bem como
propostas para trabalhos futuros.



2 ALGORITMO AES, ATAQUES POR CANAIS LATERAIS E
CONJUNTOS DE DADOS EXPERIMENTAIS

Este Capitulo inicia com uma descricdo do algoritmo criptogréafico Advanced En-
cryption Standard — AES, o qual € atualmente o objeto de estudo da maioria dos
trabalhos encontrados na literatura. Seguindo esta abordagem, esta Tese apenas
considera o algoritmo AES como objeto de estudo. Aborda as principais categorias de
ataques por canais laterais: ataques non-profiled e profiled. Também, descreve-se 0s
conjuntos de dados abertos utilizados nos experimentos.

2.1 Algoritmo Criptografico AES

O algoritmo de criptografia simétrico AES surgiu a partir da necessidade de subs-
tituir seu antecessor, o Data encryption Standard — DES (DES, 1977), principalmente
devido ao tamanho de chave de 56 bits. Portanto, em 1997 o NIST (do inglés, Na-
tional Institute of Standards and Technology) langou um concurso para a criacao de
um novo algoritmo simétrico. No ano 2000, apds andlises de especialistas, Rijndael
foi dado como o vencedor do concurso. Assim, o algoritmo proposto por Vicent Rij-
men e Joan Daemen (DAEMEN; RIJMEN, 1999) cumpriu todos os requisitos com bom
desempenho de hardware e software.

2.1.1 Estrutura

A estrutura do AES suporta chaves e blocos de dados de entradas de 128, 192 e
256 bits. O numero de etapas do algoritmo, chamadas de rodadas, varia de acordo
com o tamanho da chave. Assim, podemos ter 10, 12 ou 14 rodadas no algoritmo para
respectivas chaves de 128, 192 e 256 bits. Para manter a abordagem simplificada,
este Capitulo ira considerar apenas a versdo AES128.

No processo de cifracdo, o0 AES executa as seguintes operagdes em cada rodada:
AddRoundKey, SubBytes, ShiftRows e MixColumns. O processo de descifra-
céo executa em cada rodada a operacdo AddRoundKey e a operagdes inversas
InvSubBytes, InvShiftRows e InvMixColumns. Em ambos 0s processos, uma
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operacao inicial de AddRoundKey ocorre antes da primeira rodada (e também na
ultima rodada, como vemos na Figura 1). Na ultima rodada a operagdo MixColumns
(respectivamente InvMixColumns) € suprimida (para a decifracao, esta operacéo é
suprimida na primeira rodada). Os diagramas em blocos das operacgdes de cifracao e
decifracdo do AES séao representados na Figura 1.

Decifragdo AES
Texto Cifrado (Ciphertext)

Cifracdo AES
Texto Claro (Plaintext)

AddRoundKey '§ AddRoundKey
‘ g . ,
( ) o InvShiftRows
SubBytes =\ |
o ' ) £ | InvSubBytes ]
E ShiftRows e )
T | )
(=] I
=" r -1 =
= MixColumns AddRoundKey
'3 l ) 7 I .
AddRoundKey = InvMixColumns
. % | A
[=] i h
o [ ) e InvShiftRows
= SubBytes @ : )
-r": h : ‘ InvSubB ]
[ . ] nvSsu es
“ ShiftRows W J
£ [ g R
= AddRoundKey AddRoundKey

Texto Cifrado (Ciphertext) Texto Claro (Plaintext)

Figura 1 — Diagrama em blocos dos processos de cifracao e decifracao do AES128.

Entre cada uma das operagdes do algoritmo AES, ha um estado (gerado como
saida das operacgdes) formado por 16 bytes, organizados em formato matricial, com
4 linhas e 4 colunas. A chave de cifracdo ou decifracdo € expandida em N + 1
(onde N refere-se ao numero de rodadas) chaves de rodadas em uma operacao de
KeySchedule. A seguir, descreve-se em detalhes cada umas das etapas do AES.

2.1.1.1 AddRoundKey

Na etapa de AddRoundKey € realizada uma operagcdo XOR entre o0 estado e a
chave da rodada. Sendo assim, essa transformacao opera cada byte individualmente
do estado e da chave correspondente. Dessa forma, a operagéo executada é: b, ; =
a;; ® k; j. Onde, b, ; representam os bits do estado gerado, a; ; sS40 0s bits do estado
de entrada e k; ; s&o os bits da chave. A Figura 2 ilustra a operagdo AddRoundKey
no AES128.
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A camada seguinte consiste na parte nao-linear do algoritmo, a operacao

SubBytes.

Nesta camada, cada byte da matriz de estado é substituido por outro

em uma caixa de substituicdo chamada SBOX (do inglés, Substitution Box). Todos os
valores da SBOX estdo em hexadecimal. A substituicéo é realizada da seguinte forma:
0Ss quatro primeiros e os quatro ultimos bits do byte representam em hexadecimal, res-
pectivamente, a linha e a coluna em que se encontra o novo nibble.

¥

0 1 2 3 4 5 6 7 8 9 A B C D E F

L] 63 | 7C | 77 | 7B | F2 | 6B | 6F | C5| 20 | 01 67 | 2B | FE| D7 | AB| 76
1 |[CA| B2 | CO|TD|FA| 59| 47| FO|AD| D4 | AZ| AF| 9C | A4 | 72 | CO
2 B7 |FD| 93| 26 | 36 | 3F | F71 | CC| M | AS| E5| F1 | 71 | D8 | 31 15
3 04 | C7T | 23 | C3| 18 | 96 | 05 | 9A | O7 12| 8 | EZ|EB| 27 | B2 | 75
4 09 3|2C| 1A | 1B | 6E | SA | A0 52 | 3B | D6 | B3| 29 | E3 | 2F | 84
5 53| D1 o0 |ED| 20 | FC| Bl | 5B | 6A | CB| BE| 39 | 4A | 4C | 58 | CF
6 DO|EF|AA| FB | 43 | 4D | 33 | 85 | 45 | F9 | 02 | 7F | 50 | 3C | 9F | A8
x 7 51 A3 | 40 | BF | 92 | 9D | 38 | FS | BC | Bo | DA | 21 10 | FF 3| D2
8 |CD|0OC| 13 | EC| 5F | 97 | 44 17| C4|A7T|7E|3D]| 64 | 5D | 19 | 73
9 60 | 81 | 4F [ DC| 22 | 2A | 90 | 88 | 46 | EE| B8 | 14 | DE| SE | 0B | DB
A |EO| 32 |3A | 0A ] 49 | 06 | 24 | 5C| C2 | D3I|AC]| 62 | N 95 | E4 | 79
B E7 | C8| 37 | 6D | 8D | D5 | 4E | A9 | 6C | 56 | F4 | EA| 65 | TA | AE | 08
C |BA| 7| 25 |2E|1C | A6 | B4 | Co| EB |DD| 74 IF | 4B | BD | 8B | BA
D | 70| 3E| B5| 66| 48 | 03 | Fo | OE | 6l 35| 57| B2| 8 | Cl | 1D | 9E
E El1 | F8 | 98 | 11 69 | D9 | BE| M | 9B | 1E | 87 | E9 | CE| 55 | 28 | DF
F | 8C| A1 | 8 |0D| BF | Eo | 42 | 68 | 4 99 | 2D | OF | B0 | 54 [ BB | 16

Tabela 1 — Tabela de Substituicdo para operagdo SubBytes. Fonte:

(HERON, 2009)

Com base na Tabela 1, podemos perceber que, se por exemplo, temos o byte c2
a ser substituido, isso significa que devemos buscar o novo byte na linha c, coluna 2.
Olhando na Tabela, podemos identificar o byte 25.
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2.1.1.3 ShiftRows

Na operacao de ShiftRows, as linhas do Estado s&o rotacionadas ciclicamente,
conforme ilustrado na Figura 3. A operacao inversa, InvShiftRows, realiza os deslo-
camentos na direcao oposta. Esta fase do algoritmo AES garante com que as colunas
da matriz de estado interajam entre si durante as rodadas da cifragéo ou decifragao.

|“un ‘“UL H“n°
!

“LD”“LLH“L°

“UD““DLH“D°

“LL”“L“ “La““L

Q2,0
L—"*-

a0 Hﬂu Hﬂan
. —

"',\".\

=

Figura 3 — Operagéo de ShiftRows.

2.1.1.4 MixColumns

A operacao de MixColumns garante que as linhas da matriz de estado do algo-
ritmo AES interajam entre si durante as rodadas de cifracdo e decifracdo. Combinada
com a operacao de ShiftRows, a operacdo MixColumns garante que cada byte da
saida da matriz de estado dependa de cada byte da matriz de estado de entrada.
Considerando-se cada coluna da matriz de estado [ag, a1, as, ag], constréi-se com os
elementos desta coluna um polinémio de grau menor que 3 com coeficiente em GF'(28)
(isto é, Campo de Galois). Uma nova coluna é produzida utilizando-se o polinémio 1:

a(X) = ap+a1. X + az. X* + a3. X> (1)

e multiplicando-se pelo polinémio:

c(X) = 0x02 + 0x01.X + 0x01.X? + 0x03.X* (2)

e com o resultado da multiplicagdo modulo M (X) = X* + 1. Esta operagéo é repre-
sentada pela seguinte operagdo matricial em GF(28):

bo 0x02 0x03 0x01 0x01 Qg
by _ 0x01 0x02 0x03 0x01 ‘ aq 3)
by 0x01 0x01 0x02 0x03 o
b3 0x03 0x01 0x01 0x02 as

Pelo fato da operagdo matricial da Equagao (3) ser executada em GF'(2%), ela se
torna invertivel. Portanto, a inversa da operagéo de MixColumns, InvMixColumns,
pode ser implementada com a mesma operagao matricial da Equagéo (3).
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Os algoritmos de cifracao e decifracao para o AES128 sao descritos nos Algoritmos
das Figuras 4 e 5, respectivamente.

AddRoundKey(S, Ky)

fori=1to9do
SubBytes(S)
ShiftRows(S)
MixColumns(S)
AddRoundKey (S, Kj;)

SubBytes(S)
ShiftRows(S)
AddRoundKey(S, K1)

Q0N 0k ® b=

Figura 4 — Algoritmo AES128 - Cifracao.

AddRoundKey (S, Kip)

InvShiftRows(5)

InvSubBytes(S)

for i = 9 downto 1 do
AddRoundKey(5S, K;)
InvMixColumns(S)
InvShiftRows(S)
InvSubBytes(S)

AddRoundKey(S, Ky)

o oN2OR@DN=

Figura 5 — Algoritmo AES128 - Decifragéo.

2.1.1.5 KeySchedule

Conforme pode ser observado nos Algoritmos mostrados nas Figuras 4 e 5,
chaves de rodada K;, para i = 0...10, sdo empregadas em cada operacao de
AddRoundKey. A obtencdo dessas chaves de rodada resulta da operagdao de
KeySchedule. Cada uma das 11 chaves de rodada para o algoritmo AES128 con-
siste de 4 palavras de 32 bits, sendo que cada uma dessas palavras corresponde a
uma coluna da matriz de estado. A operacdo KeySchedule faz uso de uma constante
de rodada (RC};) que pode ser descrita como:

RC; + 2" (mod 2° + 2" + 2° + 2 + 1) (4)

Assim, as chaves de rodada sao rotuladas como (Wy;, Wy 1, Waiio, Wyt 3) onde i
indica a rodada. A primeira chave (chave de cifracao) é dividida em quatro palavras de
32 bits, (ko, k1, k2, k3). As chaves de rodada sdo entao calculadas através do Algoritmo
mostrado na Figura 6, onde a operacdo RotBytes € a fungdo que rotaciona uma
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palavra em um byte para a esquerda e SubBytes € a mesma operacao de substituicao
utilizada na cifragéo e aplicada em cada byte da palavra.

1: H'() — Fi?(), Hl — }5?1, H'g — ;CQ, Hg, — }53
2: fori=11t010do

3: T + RotBytes(Wy; 1)

T + SubBytes(T)

T+ T& RC;

Wy Wy &T

I":L"..h-_‘_ 1 — ‘[":["'11'_3 & II'h

Wi ¢ Wiai_o & Wit

Wiivz & Wiy © Wi

o N2 O

Figura 6 — Operagao KeySchedule para AES128.

O algoritmo AES possui diferentes modos de aplicagdo. O mais simples de todos
€ 0 modo ECB (Eletronic Code Book) e sera considerado durante todo este projeto de
pesquisa.

2.2 Principais Ataques por Canais Laterais

Esta Secao revisa o fundamento dos principais ataques por canais laterais. Ata-
qgues por canais laterais utilizam diferentes vazamentos de informagéo nao intencio-
nais a partir de um dispositivo eletrénico. O consumo, inicialmente referenciado por
ataque por analise de poténcia (em inglés, Power Analysis Attack), € apenas uma de-
las. Outros exemplos sdao emissao eletromagnética, tempo de execucgao, temperatura
ou canais acusticos. No entanto, o termo poténcia é utilizado na nomenclatura dos
ataques sem necessariamente indicar que os sinais coletados representem medi¢des
de poténcia.

Uma forma comum de dividir ataques por canais laterais € com relagdo ao modelo
de ameaca. Dessa forma, a divisdo de mais alto nivel € entre ataques non-profiled e
profiled, conforme descrito a seguir.

2.2.1 Ataques Non-Profiled

Esta Secao apresenta os ataques non-profiled que usam modelos de consumo de
energia genéricos para circuitos CMOS, tais como os baseados em Peso Hamming
e Distancia Hamming, e através de analises estatisticas ou modelos de correlacédo
realizam a comparacao entre o consumo hipotético modelado e o consumo medido.

2.2.1.1 Ataques DPA e DEMA

Os ataques DPA apresentados por Kocher; Jaffe; Jun (1999), exploram a relacéao
de dependéncia entre o consumo de um dado circuito digital dedicado a execucao
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de um algoritmo criptografico com os dados processados pelo mesmo. Para realizar
o ataque, ndo é necessario que o atacante tenha um conhecimento detalhado do
algoritmo criptografico nem de sua implementacdo. Porém, DPA exige uma grande
quantidade de tracos para a analise estatistica. Outra caracteristica interessante de
ataques DPA é que mesmo diante de perturbagdes elétricas durante o0 monitoramento
e aquisicdo dos tracos, € possivel realizar ataques bem-sucedidos. Seu custo de
execucgao é relativamente baixo, e por tratar-se de um ataque nao-invasivo, nao deixa
vestigios no dispositivo atacado. Ainda, este tipo de ataque possui um bom indice de
sucesso. Essas caracteristicas tornaram os ataques DPA, os mais populares dentro
da area de criptoanalise.

O ataque DPA é composto de 5 etapas: (i) escolher um resultado intermediario
alvo, (ii) medir e coletar tracos, (iii) calcular valores intermediérios hipotéticos, (iv) apli-
car um modelo de consumo ao dispositivo atacado e (v) avaliar hipéteses de subcha-
ves.

A primeira etapa do ataque consiste em escolher um resultado intermediario do
algoritmo criptografico alvo. Esse resultado precisa ser uma fungéo f(d, k), onde k é
uma porcao da chave secreta e d é parte da mensagem de entrada ou saida conhe-
cida. Se o atacante obtiver uma funcado que satisfaca essa condicao, esta pode ser
utilizada como alvo do ataque para encontrar k. A mensagem conhecida d pode ser
tanto uma mensagem de entrada ou um criptograma de saida, ou até mesmo outro
dado intermediario que seja conhecido.

Na segunda etapa do ataque, a poténcia dissipada € medida enquanto varias en-
criptacées ou decriptacdes sdo executadas sobre um conjunto de D dados distintos,
usando a mesma chave criptografica. Assim, D é um conjunto contendo diferentes
dados aleatérios di, D = {d;,ds,...,dp}.

Para cada encriptacdo ou decriptagdo é armazenado um traco ¢; de poténcia cor-
respondente, formando um conjunto T de tragcos. Como temos um traco a cada encrip-
tacado ou decriptacado de um dado, D e T possuem 0 mesmo tamanho. Sdo armazena-
das J amostras de poténcia em cada trago. Portanto, cada trago ¢; pode ser descrito
como t; ; = {to, ..., to.s}. Finalmente, esses tracos sdo armazenados em uma matriz
My de tamanho DxJ (ou TxJ), conforme Equacéo (5).

too tox top ... tos
tio tip tig ... tig

Mp=| 7 (%)
tpo Ypa tp2 ... tpy

Nesta etapa, pode-se perceber que os tracos de poténcia devem estar bem alinha-
dos para que o atague DPA obtenha sucesso, pois cada coluna t; da matriz M, deve
corresponder as mesmas operac¢des durante a encriptacdo ou decriptacao para que
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possam ser comparadas e analisadas. Assim, para que o ataque tenha eficiéncia, os
tracos de poténcia analisados, devem estar alinhados no dominio do tempo.

A terceira etapa consiste no célculo de valores hipotéticos intermediarios para to-
das as possibilidades de valores de k, relembrando que k sao hipoteses da chave
secreta. Portanto, faz-se o célculo de valores hipotéticos intermediarios, de acordo
com f(d, k), para todos os valores possiveis de chave.

As hipo6teses de chave sao denotadas por um conjunto Hk = {hko, hky, ..., hkk},
onde K € o numero total de possibilidades de chave k. Assim, através do conjunto de
dados D e do conjunto de chaves hipotéticas Hk, o atacante pode calcular todos os
valores intermediérios hipotéticos possiveis para f(d, k).

vij=fldykj)i=1,...,Dej=1,.... K (6)

Esses valores formam uma matriz denominada My, que como visto na Equacao
(6), tem tamanho D x K. A matriz My, é mostrada na Equacao (7).

Voo Vo1 Vo2 ... VoK
V10 V11 V12 ... U1K

My =| | . . . (7)
Upo VUpa VYpg2 ... UDK

Podemos observar, através da Equacéo (7), que cada coluna j da matriz M, con-
tém os resultados calculados para a hipdtese de chave hk;, através de f(d;, k;). Obvia-
mente que, se My, possui 0s resultados intermediarios para todas as possibilidades de
chave k, entdo uma de suas colunas possui 0s valores intermediarios reais calculados
pelo sistema criptografico durante a encriptacao ou decriptacado dos dados, realizados
na segunda etapa.

Também €& o6bvio que a chave secreta € um dos elementos do vetor Hk descrito
anteriormente. Esse elemento € denominado de hk... Assim, o ataque DPA procura
descobrir, em qual coluna da matriz M, encontram-se os mesmos valores produzidos
por f(d, k) durante a encriptagédo ou decriptagdo do vetor D.

A quarta etapa do ataque DPA, € a etapa em que o modelo de consumo € aplicado
ao dispositivo que esta sendo atacado. Sao relacionados os tracos de poténcia com
os Pesos Hamming (quantidade de bits diferentes de zero) dos resultados interme-
diarios v; ; anteriormente calculados, pois o Peso Hamming de um circuito CMOS é
proporcional a poténcia do mesmo. Uma alternativa a este modelo € o uso da Distan-
cia Hamming para modelar a poténcia. Esta alternativa aproxima-se mais do consumo
real de um circuito digital e, portanto, € mais usado na pratica. A Distancia Hamming
entre dados com representacéo binaria € igual a diferenca de seus Pesos Hamming, o
qgue pode ser obtido logicamente pela execug¢ao de uma operacao XOR. Nos ataques



28

DPA a Distancia Hamming é aplicada sobre os valores intermediarios calculados pela
funcéo escolhida na primeira etapa, tal como mostrado na Equacao (8).

HD:TQ@Tl (8)

onde r, e r; sdo pesos Hamming e HD é a distancia Hamming.

Com isso, (KOCHER; JAFFE; JUN, 1999) associaram a cada valor intermediario
hipotético calculado v; ; um Unico valor binario h; ; relacionado ao consumo deste valor
intermediario da seguinte forma: se o consumo relacionado a este valor for alto, ou
seja, v;; = 1, entdo h;; = 1, caso contrario, h; ; = 0 . Estes valores h; ; formam uma
matriz chamada de My.

Finalmente, a ultima e quinta etapa do ataque DPA, tem como objetivo avaliar as
hipéteses de subchaves, atividade realizada a partir das matrizes M, dos tracos de
poténcia e My a matriz dos valores de consumo hipotéticos calculados a partir do
modelo de poténcia utilizado.

Cada coluna h; da matriz My é comparada com a coluna correspondente ¢; da
matriz My, ou seja, nesta etapa o atacante compara os valores de consumo hipoté-
ticos de cada hipétese de chave com os tracos de poténcia coletados do dispositivo
atacado. Os resultados s&o armazenados em uma matriz My de tamanho D x K. Cada
elemento dessa matriz, denominado de r; ; € a compara¢do com base no método da
diferenga das médias, entre as colunas h; e t;, proposto por Kocher et al. em 1999.

Pode-se concluir do exposto até agora que temos os tragos de poténcia t;; do
sistema criptografico ao executar encriptacao ou decriptacao para diferentes dados de
entrada e os resultados intermediarios v; ;, calculados com base nos dados de entrada,
dentre os quais esta o resultado obtido com a chave secreta do sistema de criptografia
ver, POIS todas as possibilidades de chave séo utilizadas nos resultados intermediarios.
Assim, pode-se notar que em algum momento, ou instante de tempo denominado ct,
os tragos de poténcia estdo relacionados ao resultado intermediario v, executado
sobre a chave secreta verdadeira do circuito criptografico atacado.

Como os valores hipotéticos de poténcia h;; sédo calculados sobre os resultados
intermediarios v, ;, podemos perceber que k., que é a poténcia hipotética calculada
com o resultado intermediario da chave secreta verdadeira v, esta fortemente rela-
cionado a t., que é o traco de poténcia medido, no instante que esta executando a
encriptacao ou decriptacdo do resultado intermediario para a chave secreta verdadeira
Vek -

Devido a esta forte relacao entre h.; e t.;, 0 atacante pode descobrir 0 indice ck da
chave secreta, e por sua vez a propria chave hk,, através da observacao dos valores
da matriz Mp.

Como mencionado anteriormente, Kocher et al. apresentaram como método para
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avaliar as chaves hipotéticas hk;, 0 método da diferenca das médias, que no caso dos
ataques DPA ¢é utilizado para relacionar as matrizes My e My. Esse método da-se
da seguinte forma: primeiramente o atacante divide a matriz dos tragcos de poténcia
medidos M7 em duas outras matrizesMrq, € My, sendo Mry composta pelas linhas
da matriz My cujos coeficientes h; ; da matriz My sdo iguais a zero. E a matriz M,
€ montada com as linhas restantes da matriz Mr. Depois disso, a média das linhas
de cada uma das matrizes M, e Mr; é calculada, sendo avg0 o0 vetor que contém a
média das linhas da matriz My, € avgl o vetor que contém a média das linhas da ma-
triz M7 1. A hip6tese de chave k; esta correta se a diferenca absoluta entre os vetores
avg0 e avgl for maior do que para as outras hipéteses de chave. Cabe aqui destacar
que existem outras formas de relacionar as matrizes My e My, dependendo do ata-
que realizado. Como exemplo, podemos citar o coeficiente de correlagédo utilizado no
ataque CPA descrito na Secéo 2.2.1.2. A Figura 7 mostra um fluxo de execucéo do
ataque DPA descrito acima.

D={dpdy..dg} (PTho key)>Co
(PTlg key) £=>Cy

Hypotheses key -Hk

Algorithm
| bko | hk1 | .. | bk o intermediate
value - f(d,k)

Power
Model

T - Instantaneous

power traces

Y Y

avg0 - Average traces avgl — Average traces

\ /

avgl - avel
Difference-of-means

Key guessed Unexpected Key
Successful attack Unsuccessful attack

Figura 7 — Fluxo de execucao do ataque DPA. Fonte: (SOARES, 2010).

Da mesma forma que o ataque DPA, o atague DEMA (AGRAWAL et al., 2002)
avalia e monitora a emissdo de ondas eletromagnéticas do dispositivo atacado. Os
ataques DEMA capturam os tracos gerados pelos campos eletromagnéticos emitidos
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pelos circuitos durante a execucao de encriptacao ou decriptagcao, através de sondas
especiais utilizadas em conjunto com estagios amplificadores devido a baixa intensi-
dade do sinal produzido. Para esse tipo de ataque, o atacante deve levar em conta os
problemas causados por ruidos e interferéncias eletromagnéticas do ambiente onde é
realizado o ataque, ocasionando erros nas leituras dos tracos.

2.2.1.2 Ataques CPA

Os ataques por Analise de Correlacdo de Poténcia (em inglés, Correlation Power
Analysis) operam basicamente do mesmo modo que os ataques DPA/DEMA descri-
tos na Secgéo 2.2.1.1. Na verdade, CPA é uma especializagdo de DPA proposta por
(BRIER; CLAVIER; OLIVIER, 2004). Este tipo de ataque foi proposto com a finalidade
de reduzir o problema de picos fantasmas que eventualmente ocorrem nos ataques
DPA/DEMA.

Neste ataque, o coeficiente de correlagdo € usado para avaliar a relacao entre
cada coluna h; da matriz My com cada coluna t; da matriz M. Isto resulta em uma
comparacgao entre os valores de consumo hipotético e os tragos adquiridos em cada
posicao de tempo. O resultado é armazenado em uma matriz My, onde cada elemento
representa o coeficiente de correlagao estimado. Assim, pode-se descrever cada valor
r;; pela Equagéo (9), onde h; e t; representam os valores médios das colunas h; e t;:

S > aco(hai = hi) - (tay — 1)
1,7 T — —
V2 i — B 52 by — 1)
Segundo (BRIER; CLAVIER; OLIVIER, 2004) estes coeficientes, ou fatores de cor-

relacdo, sdo capazes de rejeitar falsas hipoteses de chave aceitas pela aplicacdo dos
métodos DPA/DEMA.

(9)

2.2.2 Ataques Profiled

Os ataques profiled sdo aqueles que constroem um modelo estatistico a partir
de medicbes obtidas de um dispositivo alvo. O atacante tem o controle total sobre
o circuito atacado e pode usar o conjunto de dados a sua escolha para construir o
modelo de consumo para o circuito alvo. A partir de entdo, por meio de analises
estatisticas pode comparar os tracos de consumo medidos com o modelo construido
para inferir hipdteses sobre os dados usados na computagao.

2.2.2.1 Ataques por Templates (Template Attacks, TA)

Em TAs, o adversario usa um dispositivo experimental, idéntico ao dispositivo em
teste, para identificar uma pequena se¢do da amostra S, ou seja, apenas alguns bits
da chave desconhecidos. Empiricamente, ele constréi modelos correspondentes a
cada valor possivel dos bits de chave desconhecidos. O modelo consiste nas distri-
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buicdes de probabilidade média de sinal e ruido. Ele entdo usa esses modelos para
classificar aquela porcao de S e limitar as escolhas para os bits-chave a um pequeno
conjunto. Isso é entdo repetido com um prefixo mais longo de S envolvendo mais bits
da chave. Assim, os ataques TA usam essencialmente uma estratégia de estender e
remover dirigida pela amostra Unica S a ser atacada: sdo usados prefixos cada vez
mais longos de S e os modelos correspondentes para diminuir o espago de possiveis
prefixos de chave. O sucesso depende criticamente de quao eficazmente a estratégia
de remocao reduz a explosdo combinatéria no processo de extensao.

Em Chari; Rao; Rohatgi (2002) os autores destacam que os ataques DPA/DEMA
assumem o ruido como um obstaculo que precisa ser reduzido ou eliminado. Neste
sentido, a abordagem proposta concentra-se na modelagem precisa do ruido, a fim
de extrair as informacdes presentes em um unico trago. Portanto, é possivel obter-
se sucesso em TA, com apenas um, ou um numero limitado de tragos. Por outro
lado, em um ataque DPA/DEMA muitos tracos sdo necessarios para que o ruido seja
eliminado pela média. Diante disso, a proposta dos autores potencializa ataques a
canais laterais quando o atacante tem acesso a um ou poucos tragos de consumo
disponiveis. Entretanto, os autores destacam que € fundamental para o TA que o
adversario tenha um dispositivo experimental idéntico que pode ser programado, o
gue claramente se traduz em uma desvantagem do método.

E destacado que os experimentos mostram que uma implementacdo de um algo-
ritmo criptografico chamado RC4 (do inglés, Rivest Cipher 4), nao passivel de técnicas
como SPA e DPA, pode ser facilmente quebrada usando TA com um Unico traco.

E explicado que o conceito de TA é baseado na Teoria de Detecgdo e Estimagao
de Sinais e, em particular, no uso de técnicas de Teoria da Informacao, como ra-
zbes de probabilidade para testes de hipdteses. E que embora outras técnicas, como
DPA, também possam ser vistas como aproximagdes grosseiras de razdes de proba-
bilidade, o uso de modelos de mistura Gaussiana é a chave para extrair 0 maximo
de informacdes de uma unica amostra (traco). Empiricamente, observa-se que em va-
rias situacdes as estatisticas univariaveis nao sao suficientes e apresentam resultados
ruins.

Chari; Rao; Rohatgi (2002) colocam que se tivermos um dispositivo executando
uma das possiveis K sequéncias de operagdes {Oy,...,0Ok}, um adversario pode
amostrar o consumo durante a operacado que deseja identificar ou reduzir significativa-
mente o conjunto de hip6teses possiveis. Isto é uma pratica comumente empregada
em processamento de sinais, onde modela-se o sinal, referenciado aqui como um
traco, observado como uma combinagdo de um sinal intrinseco gerado pela operacéao
e ruido que é gerado pelo ambiente. Portanto, enquanto o componente do sinal que
representa a operagdo € o mesmo para diferentes invocagdes da mesma, o ruido é
melhor modelado como uma amostra aleatéria retirada de uma distribuicdo de proba-
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bilidade de ruido que depende da operacao e outras do ambiente de medi¢do. Assim,
a abordagem o6tima para o adversério que esta tentando encontrar a hipétese certa
dada uma unica amostra S é usar a abordagem de maxima probabilidade: a melhor
suposicao é escolher a operacdo de modo que a probabilidade do ruido observado
em S é maximizada. O célculo dessa probabilidade exige que o adversario modele
com preciséo o sinal intrinseco e a distribuicdo de probabilidade de ruido para cada
operagao.

Pode-se perceber, que para o sucesso dos ataques TA, € estritamente necessario
gue o atacante consiga obter caracterizagbes extremamente boas e precisas do ruido.
Contudo, muito embora o adversario se considere altamente competente com tais
caracterizacdes, na pratica aproximagcdées como um modelo Gaussiano multivariavel
para as distribuicbes de ruido produzem resultados satisfatérios.

O trabalho apresentado por Chari; Rao; Rohatgi (2002) enumera quatro passos
para a elaboracdo de um modelo Gaussiano:

i. Coletar um grande numero (L) de amostras (tipicamente mil) no dispositivo expe-

rimental para cada uma das K operagées, O, ..., Og.

ii. Calcular o sinal médio para cada uma das operagdes My, ..., M.

iii. Calcular a diferenga entre os pares de sinais médios Mj, ..., My para identifi-
car e selecionar somente os pontos P, ..., Py em que grandes diferencas aparecem.

O modelo Gaussiano se aplica a esses N pontos. Esta etapa opcional reduz signi-
ficativamente a sobrecarga de processamento com apenas uma pequena perda de
precisao.

iv. Para cada operacao O;, o vetor de ruido N-dimensional para a amostra T &
Ni(T) = (T[P] — M;[ Py, ..., T[Py] — M;[Py]). Calcular a matriz de covariancia entre
todos os pares de componentes dos vetores de ruido para a operagdo O; usando os
vetores de ruido N; s para todas as L amostras. As entradas da matriz de covariancia
> N, séo definidas como:

Z Nilu,v] = cov(N;(P,), Ni(P,)) (10)

Usando a Equacgéo (10), calcula-se os modelos (M;, >  N;) para cada uma das K
operacdes. O sinal para a operacao O; € M; e a distribuicdo da probabilidade de ruido
é dada pela distribuicado Gaussiana multivaridvel pN;(.) onde a probabilidade de um
vetor de ruido n é:

-1
1 -1
N;(n) = ————=—cap | —n' n|,neRN 11
) = e a3 ) (i

-1
Onde | > N;| representa o determinante de Y N; e > € 0 seu inverso.

N;
Os autores observam que neste modelo, a técnica ideal para classificar uma amos-
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tra S é a seguinte: para cada operacao hipotética O;, calcule a probabilidade de S ter
de fato se originado de O;. Esta probabilidade é dada calculando primeiro o ruido n
em S usando o sinal médio M; no modelo e depois calculando a probabilidade de n
usando a expressao para a distribuicao de probabilidade de ruido e 0 > N; calculado
do modelo. Se o ruido for realmente Gaussiano, entdo a abordagem de selecionar
o O, com a maior probabilidade é 6tima. A probabilidade de cometer erros em tal
classificagdo também é computavel. Portanto, se o0 uso dessa abordagem para distin-
guir duas operagdes O; e O, com a mesma caracterizacdo de ruido >_ N, , o erro de
probabilidade é dado por:

1 A
P = §€ch (ﬁ) (12)

Onde A% = (M; — My)T S (M — My) e erfec=1—erf(x).

A sequir, os autores des]%facam que é necessario que 0 processo de remocao re-
duza o conjunto de possiveis hipoteses de opera¢des para um numero muito pequeno,
garantindo com alta probabilidade que a hipétese correta ndo seja descartada.

De acordo com Chari; Rao; Rohatgi (2002), uma abordagem que funciona bem
€ dimensionar as probabilidades de modo que as probabilidades de ruido em todas
as hipéteses somem. Em seguida, descarta-se as hipéteses com as probabilidades
escalonadas mais baixas até que a probabilidade cumulativa de erro devido as hi-
pbteses descartadas alcance o limite de erro desejado. Ao longo do texto, os autores
apresentam outras abordagens para a etapa de remocao das hipbteses de operacgdes.

2.3 Consideracoes sobre o Capitulo

Este Capitulo apresentou a revisdo do algoritmo criptografico AES utilizado como
estudo de caso para os experimentos aqui propostos. Além disso, foi realizada uma
revisdo das principais categorias de ataques por canais laterais, entre eles, ataques
non-profiled e ataques profiled, que sao o foco deste trabalho.

O Capitulo busca revisar os modelos de consumo empregados em ataques classi-
cos, como 0s apresentados na Secgao 2.2. Estes modelos sdo baseados em anélises
estatisticas do comportamento do consumo em circuitos implementados com a tec-
nologia CMOS e, além de serem estaticos, muitas vezes ndo se adaptam da melhor
forma ao real comportamento dos tragos. Desta forma, percebe-se ser interessante o
uso de algoritmos de aprendizado profundo capazes de produzir modelos mais ajus-
tados aos SCA, estratégia usada nos ataques profiled.



3 APRENDIZADO PROFUNDO

Este Capitulo revisa conceitos de Aprendizagem Profunda (do inglés, Deep Lear-
ning — DL). Com isso pretende-se fornecer um background para embasar o entendi-
mento do objeto de estudo desta Tese: redes neurais que s&o capazes de realizar
ataques por canais laterais. Embora possam existir outros tipos de redes neurais que
realizem essa tarefa, aqui nos deteremos nas duas arquiteturas mais recorrentes na
literatura para este fim e que sdo usadas no estudo de caso deste trabalho: redes Per-
ceptron de Multiplas Camadas (do inglés, Multi-Layer Perceptron - MLP) e as Redes
Neurais Convolucionais (do inglés, Convolutional Neural Network - CNN).

3.1 Redes Neurais

A criag&o e o desenvolvimento de redes neurais artificiais teve como motivacéo o
reconhecimento de que o cérebro humano processa informagdes de uma forma to-
talmente diferente do computador digital convencional. O cérebro € uma espécie de
computador altamente complexo, nao-linear e paralelo. Ele tem capacidade de orga-
nizar suas células (neurdnios) de forma a realizar processamentos (reconhecimento
de padrées, percepcao e controle motor, por exemplo) muito mais rapido que os com-
putadores digitais convencionais (HAYKIN, 2001).

Desde o nascimento, um cérebro humano tem uma grande estrutura formada por
diversas areas, que por sua vez sdo formadas por neurbnios e habilidade de desen-
volver suas préprias regras através do que chamamos de "experiéncia", que vai sendo
acumulada com o tempo.

De uma forma mais geral, pode-se ver o sistema nervoso humano como um sis-
tema de trés estagios. Os receptores convertem estimulos do corpo humano ou do
ambiente externo em impulsos elétricos que transmitem informacao para a rede neural
(cérebro). E os atuadores convertem impulsos elétricos gerados pela rede neural em
respostas adequadas para cada saida do sistema (Figura 8).

As conexodes entre as células da rede neural humana (o cérebro) sdo chamadas
de sinapses. As sinapses responsaveis pelas zonas receptivas sdo os dendritos, en-
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Figura 8 — Representacao em diagrama de blocos do sistema nervoso. Fonte: (HAYKIN,
2001)

guanto as sinapses transmissoras denominam-se axonios.

Um neurdnio pode receber 10.000 ou mais conjuntos sinapticos e pode se projetar
sobre milhares de células alvo. Através das sinapses, as informacdes sao transmitidas
de um neurdnio a outro através de pulsos breves de tenséo (ou impulsos - spikes).

A forma como aprendemos a realizar tarefas, e a estrutura organizacional do cére-
bro, com neurdnios conectados entre si, inspiraram o desenvolvimento de equivalentes
eletrdnicos ou computacionais do cérebro humano (mesmo que ainda de uma forma
primitiva).

3.1.1 Modelo de um Neuronio Artificial

No que concerne as redes neurais artificiais, um neurénio consiste na sua unidade
fundamental de operacao, fazendo uma analogia com os neurénios do cérebro hu-
mano. Neuronios, no campo das redes neurais artificiais, sdo também denominados
perceptrons. Usaremos os termos perceptron e neurénio nesta Tese.

Bias

Activation
function

Input @(-) > Output

sign alsﬁ

Summing
junction

Synaptic
weilghts

Figura 9 — Simbologia de um Perceptron. Fonte: (HAYKIN, 2001)

A Figura 9 ilustra o modelo de um perceptron. Aqui, pode-se identificar trés ele-
mentos basicos deste modelo:

1. Um conjunto de sinapses ou elos de conexao caracterizados por um peso. Como
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podemos na Figura 9, um sinal de entrada z; da conexao (sinapse) j conectada
ao neurénio £ é multiplicado pelo seu peso sinaptico correspondente wy;. Ao
contrario da sinapse do cérebro, o peso sindptico de um neurdnio artificial pode
estar em um intervalo que inclui valores negativos bem como positivos;

2. Um somador que realiza uma soma ponderada dos sinais de entrada. Assim,
sdo somados todos os valores resultantes da multiplicagéo de x; por wy,. Essas
operagdes constituem um combinador linear;

3. Uma fungéo de ativagéo para restringir a saida do neurénio. Geralmente o inter-
valo normalizado da amplitude da saida de um neurénio é dado por um intervalo
unitario fechado [0,1], ou ainda [-1,1];

Portanto, para um conjunto de valores de entrada » = (z1,...,z,) (comumente
referidos como features na literatura), o perceptron efetua um somatério da combina-
cao linear com pesos wy1, ..., wr, (OU conexdes) relacionados a cada elemento de

m

entrada z;, isto &, > wy;z;. O resultado do somatério € adicionado a um valor de viés
j=1
(ou bias), b

@) resultado da Equacao do perceptron, b, + Z wy;T;, passa por uma fungéo de
ativagdo ¢, normalmente ndo linear. Exemplos de fungoes de ativagcdo muito utilizadas
na literatura (e como veremos adiante, em ataques por canais laterais) sao as fungoes
tangente hiperbdlica, sigmdide, unidade linear retificada, etc. Dessa forma, o valor de
saida y, de um perceptron é apresentado pela Equacéo abaixo:

e = G(br + Y wiyry) (13)
=1

3.1.1.1 Tipos de Funcées de Ativacao

A forma mais basica de definir o estado de um neurénio é aplicando a saida de

(br + Z wy;x;) uma Funggo de Limiar ou como comumente chamada nas areas de
Jj=
engenharla Fungéao Degrau Unitario. Para simplificar as nota¢des subsequentes, va-

mos considerar:

v = by + Z Wi (14)

j=1
A partir disso, podemos definir matematicamente a Fungdo de Limiar, através da
Equagéo 15:

1 se v>0

0 se v<0
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Neste ponto, é interessante ressalta-se que a Funcdo de Limiar nao é diferencia-
vel, pois esta funcdo apresenta uma descontinuidade na origem. Isso resulta em um
problema para o algoritmo de retropropagacéo, como veremos mais adiante.

Uma fungdo de ativacdo que resolve o problema da diferenciabilidade é a funcao
chamada de Rectified Linear Unit (ReLU). A Funcdo ReLU comporta-se melhor do
que outras fungdes diferenciaveis, como a tanh por exemplo, pois a derivada desta
funcao diminui para valores maiores de v. Isso faz com que o gradiente seja préximo
de zero nesses casos, tornando o treinamento da rede bastante lento. Por outro lado,
a derivada da ReLU com relacdo a sua entrada é sempre 1 para valores positivos.
A funcdo de Ativacao RelU é bastante utilizada em redes neurais (como as MLPs e
CNNs, os estudos de caso presentes nesta Tese).

A Equacéao 16 descreve o comportamento da Fungéo de Ativacdo RelLU:

v se v>0
o(v) = (16)
0 se v<0

As camadas de saida das redes neurais utilizadas como estudo de caso neste
trabalho, aplicam a Funcgéo de Ativacao Softmax. Ela fornece a probabilidade de cada
classe (ou saida) da rede neural. Isso permite que obtenham probabilidades Uteis
para problemas multiclasses (como os SCAS).

Em Softmax, a probabilidade de uma amostra particular com a entrada da rede v
pertencendo a i — sima classe pode ser calculada com um termo de normalizagao no
denominador, ou seja, a soma de todas as M (numero de classes) funcdes lineares:

. e
ply =ilv) = f(v) = 4 (17)
D €Y
j=1

3.1.2 Perceptrons de Multiplas Camadas

Nesta Secao, falaremos sobre redes neurais de multiplas camadas alimentadas
adiante (do inglés, feedforward neural networks). Neste tipo de redes, o sinal de en-
trada se propaga para a frente através da rede, camada por camada. Assim, essas
redes sdo comumente chamadas de perceptrons de mdultiplas camadas (do inglés,
Multi Layer Perceptron -MLP).

As MLPs tém sido aplicadas com sucesso para resolver muitos problemas comple-
X0s, atraves de seu treinamento de forma supervisionada com um algoritmo conhe-
cido como algoritmo de retropropagacdo de erro (do inglés, error back-propagation
algorithm) (HAYKIN, 2001). Como podemos perceber, esse algoritmo baseia-se na
regra de aprendizagem por corre¢cdo de erro (revisada na Sec¢ao 3.2.2).

A aprendizagem por retropropagacao de erro consiste em dois passos atraves das
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camadas da rede: um passo para frente (propagacao), e um passo para tras (retropro-
pagacédo). No passo para a frente, os dados de entrada sédo aplicados as camadas de
entrada da rede, e entdo propagados camada a camada até produzirem uma saida da
rede. Durante a propagacao, os pesos da rede sao fixos. No passo para tras, os pe-
sos s&o todos ajustados de acordo com uma regra de correcao de erro. Neste caso, a
resposta da rede obtida durante o passo de propagacédo é subtraida de uma resposta
desejada (alvo) para produzir um sinal de erro. Este sinal de erro é entao propagado
para tras através da rede, contra a direcao dos pesos (dai 0 nome de retropropagacao
de erro - back-propagation error. Os pesos sdo entdo ajustados para que a resposta
da rede se aproxime da resposta desejada. O algoritmo de retropropagacao de erro
€ também chamado na literatura simplesmente de algoritmo de retropropagacéao (do
inglés, back-propagation). E o processo de aprendizagem realizado com o algoritmo,
por sua vez, é chamado de aprendizagem por retropropagacao.

MLPs, consistem na associacao em camadas de diversos percepetrons (Figura 9).
A Figura 10 ilustra uma estrutura de rede neural com trés camadas:

« Camada de entrada: esta primeira camada da rede neural é definida com o
nuamero de neurbnios equivalente aos dados de entrada (dados de treinamento).

« Camada oculta: esta camada localiza-se entre as camadas de entrada e saida e
pode possuir qualquer numero de neurdnios.

» Camada de Saida: esta ultima camada possui 0 numero de neurdnios corres-
pondente a tarefa definida para rede neural. Para problemas de classificacao, o
numero de neurbénios na camada de saida é equivalente ao numero de possiveis
classes associadas aos dados de treinamento. Para problemas de regressao
linear, o numero de neurbnios da camada de saida é normalmente equivalente
ao numero de neurbnios na camada de entrada. Em problemas de classificagao,
cada neurdnio da camada de saida indica a probabilidade na qual um dado de
entrada processado pertence a uma determinada classe.

Como mostra a Figura 10, todos os neurdnios da camada de entrada sao total-
mente conectados a cada neurdnio da camada seguinte, que no caso € a camada
oculta (do inglés, hidden layer). Da mesma forma, a camada oculta é totalmente co-
nectada aos neur6nios da camada de saida. Como consequéncia, € comum encontrar
na literatura a denominacédo de camadas em redes neurais como camadas totalmente
conectadas (do inglés, fully-connected layers).

Quando define-se uma rede neural com apenas uma camada oculta, esta rede
neural € considerada uma rede neural rasa (ou do inglés, shallow neural networks).
Este tipo de modelo atende ao Teorema de Aproximagao Universal o qual define que
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Input Hidden Output
layer layer layer

Figura 10 — MLP com trés camadas. Fonte: (HETTWER; GEHRER; GUNEYSU, 2020)

“uma rede neural com apenas uma camada oculta € capaz de aproximar qualquer fun-
cao continua” (HORNIK; STINCHCOMBE; WHITE, 1989). Como exemplo, podemos
afirmar que redes neurais rasas sdo capazes de implementar fungdes Booleanas, o
que é referido como Aproximagao Booleana.

Nos ultimas anos, passou-se a utilizar largamente redes neurais com mdltiplas ca-
madas ocultas. Estes modelos mais complexos apresentaram resultados superioroes
aos que vinham sendo reportados com redes neurais rasas ou mesmo outros algo-
ritmos de aprendizado supervisionado. Para estes novos e mais complexos modelos
associou-se o termo aprendizado profundo ou, deep learning, DL. DL € um tipo parti-
cular de técnicas de ML bastante poderosas, que sdo capazes de representar a tarefa
de aprendizado como uma hierarquia aninhada de conceitos, onde representacdes
mais abstratas de conceitos sdo construidas a partir das mais simples. Recente-
mente, técnicas de DL tém ganho crescente interesse, motivado pelo fato de terem
sucesso em resolver problemas centrais de inteligéncia artificial tais como reconheci-
mento de fala e classificacdo de imagens. Como se pode intuir, essas tarefas lidam
com dados de alta dimensionalidade o que torna exponencialmente mais dificil fazer
um classificador aprender a generalizar bem exemplos nao vistos. Isto € um desafio
conhecido como maldicdo da dimensionalidade (do inglés, Curse of Dimensionality)
(GOODFELLOW; BENGIO; COURVILLE, 2016).
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3.2 Aprendizado de uma Rede Neural

Esta Secao aborda alguns detalhes sobre a forma como as redes neurais apren-
dem a realizar uma determinada tarefa. Nos nossos estudos de caso, as redes séao
utilizadas para encontrar as relagdes entre os tragos do consumo medidos e os dados
processados, assim como as operacdes realizadas por um determinado dispositivo
criptogréfico, ou seja, a realizagcao de um ataque por canais laterais.

3.2.1 Aprendizado Supervisionado

Os algoritmos de inteligéncia artificial podem realizar o aprendizado de uma tarefa
sob dois paradigmas: o aprendizado ndo supervisionado, onde o algoritmo aprende
somente a partir dos dados fornecidos, e o aprendizado supervisionado. No caso
das redes neurais mais especificamente, o aprendizado € realizado de forma super-
visionada (aprendizado supervisionado). Nesta categoria de Aprendizado Profundo
0 seu processamento € dividido em duas etapas. Em uma etapa inicial é realizado
um treinamento do sistema, onde s&o fornecidos ao algoritmo um conjunto de dados
com entradas do problema propriamente ditas e suas respectivas saidas esperadas.
A partir destes dados, a rede neural ao computé-los busca aprender uma relagéo, ou
funcéao, existente entre entradas e saidas. Apoés isto, na segunda etapa, o objetivo é
gue para novas entradas, a rede neural seja capaz de predizer as saidas com base
em seu aprendizado.

Algoritmos com estas caracteristicas sdo chamados de supervisionados, pois seu
processo de aprendizagem se assemelha a de um instrutor, ou supervisor, fornecendo
as respostas corretas para as entradas dadas. Para a avaliagao destes algoritmos, di-
versas métricas e técnicas sdo utilizadas. Como exemplo, podemos citar a validacéao
cruzada em que medidas apropriadas sdo calculadas para os conjuntos de treina-
mento e teste dos dados e, posteriormente, comparadas e analisadas.

Uma tarefa na qual esses algoritmos s@o bastante requisitados, inclusive no con-
texto de SCAs é a classificacdo. Até mesmo problemas que podem parecer se en-
quadrar em problemas com solugao por predicao podem na verdade, ser problemas
de classificacdo. Na classificacao, os dados sao divididos em determinadas (através
de rétulos) classes e o algoritmo deve gerar um modelo que vincula novas entradas a
uma dessas classes.

Geralmente no campo de SCAs, um exemplo de entrada de treino sdo vetores de
numeros (z;) que representam os valores de medi¢des de uma caracteristica fisica
do dispositivo criptografico durante uma operacéao de encriptagdo ou decriptacao, ou
seja, os tragos do consumo ou radiacao eletromagnética. Em um processo usual de
ML, como mostrado na Figura 11, esses tragos sdo preprocessados em uma etapa
inicial.
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Figura 11 — Processo padrdo de DL. Fonte: (HETTWER; GEHRER; GUNEYSU, 2020)

Dessa forma, muitos algoritmos de DL exigem que os dados de entrada sejam nor-
malizados (ou seja, reescalado para valores entre 0 € 1) ou padronizados (tendo média
zero e variancia unitaria). Entdo, pontos de dados com maior conteudo de informacéao
sao extraidos ou construidos, combinando ou criando dados adicionais. Depois, um
algoritmo precisa ser selecionado para um dado problema de ML e seus hiperpara-
metros tém que ser adaptados. Os hiperparametros controlam o comportamento do
algoritmo e sao previamente definidos. A partir disto, a performance do modelo otimi-
zado é verificada com dados que nao foram utilizados na etapa de treino. O utilizador
do algoritmo divide o conjunto de dados definidos entre dados para treino e para teste.
Geralmente, é adotada uma divisdo de 60% dos dados para treino e 20% para teste.
Sendo 0s 20% de dados restantes utilizados para otimizagdo dos hiperparametros.
Obviamente, essa divisdo pode ser diferente da apresentada, e diferentes configura-
coes podem ser testadas e experimentos realizados. Contudo, deve-se ter o cuidado
de ndo ter um conjunto de teste pequeno demais, pois isso acarretaria em incerteza
estatistica em torno do erro médio de teste e pode dificultar a comparabilidade entre di-
ferentes algoritmos de ML. Portanto, pode ser empregado um procedimento chamado
k-fold cross-validation. Este procedimento consiste em dividir o conjunto de dados in-
teiro randomicamente em k folds (subconjuntos disjuntos), e usar iterativamente um
deles como conjunto de teste, enquanto o resto dos dados sdo usados como conjunto
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de treinamento. O erro médio em todas as trilhas é o erro de generalizagdo esti-
mado (ou seja, o0 erro de teste esperado ao aplicar novos dados ao modelo treinado).
A validacéo cruzada também é frequentemente usada para estimar hiperparametros
adequados. Sob esse paradigma, dois termos relativos a performance dos algoritmos
de DL sdo underfitting e overfitting.

Quando o modelo n&o é capaz de obter um erro suficientemente baixo nos conjun-
tos de treino e teste dizemos que ocorreu underfitting. Entretanto, se o0 modelo teve
uma boa performance sobre o conjunto de dados de treino, mas ndao no conjunto de
teste, verifica-se uma situagédo de overfitting. Nos casos de overfitting € como se 0
algoritmo de DL ficasse “viciado” nos dados de treino, ndo “aprendendo” a regra que
gera as saidas, mas sim “memorizando” os resultados para dadas entradas (GOOD-
FELLOW; BENGIO; COURVILLE, 2016). Uma maneira de controlar o underfitting e o
overfitting de um dado modelo, € alterando sua capacidade (isto é, a habilidade de se
adequar a uma ampla gama de fungdes) incrementando ou decrementando o nimero
de parametros. A seguir, veremos uma revisdo de alguns dos principais algoritmos
supervisionados e ndo-supervisionados aplicados a SCAs.

3.2.2 Aprendizagem por Correcao de Erro

A principal propriedade de uma rede neural é sua capacidade de aprender a partir
de seu ambiente e de melhorar seu desempenho através da aprendizagem. Uma rede
neural aprende acerca de seu ambiente através de um processo iterativo de ajustes
aplicados a seus pesos (HAYKIN, 2001).

Dessa forma, Haykin (2001) define o processo de aprendizagem de uma rede neu-
ral através da seguinte sequéncia de eventos:

1. A rede neural é estimulada pelo ambiente;

2. A rede neural sofre modificagées nos seus pesos como resultado dessa estimu-
lacéo;

3. A rede responde de uma maneira nova ao ambiente, devido as modificacdes
ocorridas na sua estrutura interna.

Existem diferentes algoritmos de aprendizagem, que determinam as regras para a
solucédo de um problema de aprendizagem. Nesta Tese, aborda-se apenas a Aprendi-
zagem por Corregdo de Erro, pois este é o algoritmo utilizado nas redes neurais que
compdem os estudos de caso desta Tese.

Por simplicidade, consideremos uma rede neural com uma camada de saida cons-
tituida de um unico neurdnio k. Suponhamos, que o neurdnio k receba um sinal z(n)
advindo das camadas ocultas anteriores a esta camada de saida. O sinal de saida do
neurénio k € representado por y,(n). Este sinal de saida € entdo comparado com a
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saida desejada (ou saida-alvo) di(n). Por consequéncia, isso gerara um sinal de erro
er(n). Esta situacao hipotética é representada na Figura 12.

J One or more
Input vector. | layers of x(n) Output
I aden [ newon
i \ neurons k
E L
1
|

Muttilayer feedforward
network

Figura 12 — Diagrama de blocos de uma rede neural, ressaltando o Unico neurénio da camada
de saida. Fonte: (HAYKIN, 2001)

Disso, temos que o erro e, (n) € dado pela Equacéo 18:

ex(n) = di(n) — yr(n) (18)

Nesta abordagem de aprendizagem, o erro e,(n) € utilizado como um mecanismo
de controle, que aplica uma sequéncia de ajustes corretivos nos pesos do neurdnio
k, aproximando passo a passo, o sinal de saida y,(n) da saida desejada di(n). Esse
objetivo € alcangado minimizando-se a fungdo de custo E(n), calculada através da
Equacgéo 19:

1 2
E(n) = 5¢i(n) (19)

Como podemos ver pela Equacao 19, E(n) é o valor instantaneo da energia do erro
er(n). Os ajustes passo a passo dos pesos, mencionados anteriormente, continuam
até o sistema alcancar um estado em que os pesos estejam estabilizados.

Agora, supondo-se que wy;(n) seja o valor do peso do neurbnio k excitado por um
elemento de entrada z;(n), no tempo n. Sob este cenario, o ajuste Awy;(n) aplicado
ao peso wy; € calculado através da Equagéo 20:

Awyj(n) = nek(n)x;(n) (20)

Onde n é uma constante positiva que determina a Taxa de Aprendizado quando
avanca-se no processo de aprendizagem. A Taxa de Aprendizagem (n) € um dos
parametros configuraveis no ambito de redes neurais.

Por fim, o valor atualizado do peso wy;(n + 1) pode ser computado através da
Equacéo 21:
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Aqui, vale ressaltar que, conforme se vé na Figura 12, a Aprendizagem por Cor-
recdo de Erro consiste de um sistema realimentado em malha fechada. E, como se
sabe da teoria de controle, a estabilidade do sistema depende dos parametros que
compdem o laco de realimentacédo. E como se pode ver, o Unico parametro que temos
no unico lagco desta configuracdo € o que representa a Taxa de Aprendizagem (7).
Assim, reforcamos que este parametro deve ser cuidadosamente escolhido, pois além
de implicar diretamente na estabilidade da rede neural, ele dita a velocidade de apren-
dizado da rede. Se escolhermos valores muito baixos para 7, a rede apresentara um
custo muito alto para realizar o treinamento, em termos de tempo e esforgco computa-
cional. Entretanto, se escolhermos valores muito grandes para o referido parametro,
podemos ndo alcangar o minimo global da funcao de custo E(n).

3.2.3 Equacionamento do Algoritmo de Retropropagacao

Aqui, iremos avancar na descricdo matematica das expressdes que envolvem o
algoritmo de retropropagacgao, com o intuito de entender alguns pontos importantes
sobre esse algoritmo de correcao de erro.

Primeiramente, é preciso saber que o algoritmo de retropropagacéo é um algo-
ritmo que se baseia na aprendizagem por correcéao de erro (revisada na Sec¢ao 3.2.2).
Portanto, o algoritmo de retropropagagéo aplica um ajuste ou corre¢do Awy;(n) a um
peso genérico wy; de um neurdnio k. Esse ajuste é proporcional a derivada parcial
0E(n)/0wy; (gradiente). Esse gradiente pode ser representado, através da regra da
cadeia, pela Equagao 22:

OE(n)  O0E(n) Oer(n) Oyr(n) Ouk(n)

Owy;(n) ~ Oeg(n) Oyr(n) Ovg(n) Owys(n)

Retomando-se a expressdo que calcula a energia instantanea do erro para um

neurédnio k (5ei(n)), apresentada na Equagédo 19 desenvolvida na Segéo 3.2.2, pode-

se calcular a primeira derivada parcial da Equacgéao 22, como se segue na Equacéao
23:

(22)

Sy = 3k = ea(m) = ex(o) 29)

Como vimos, através da Equacao 18, o erro ¢,(n) é dado pela diferenga entre a

saida desejada, e a saida real da rede di(n) — yx(n). Isto nos d& informagdes sufici-

entes para calcular a segunda derivada parcial encontrada na Equacgéao 22. Isto é feito
de acordo com a Equagéo 24;

dex(n) 0
Aye(n)  Ayk(n)
Recorrendo a Equagéo 13, temos que a saida real da rede € dada por y, = ¢(bx +

[die(n) — ye(n)] = -1 (24)
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ﬁ wg;(n)z;(n)). E ainda, a Equacdo 14 diz que v = b, + Y wy;(n)x;(n). Dessa forma,
j=1 j=1
a terceira derivada parcial da Equacgéao 22 é resolvida, ou deixada de forma implicita,

na forma apresentada pela Equacéao 25:

Oyr(n) 0 -
Don(n) — Doa(n) [¢(ve(n))] = ¢r(vr(n)) (25)

O apostrofe em ¢’ indica diferenciagdo em relagao ao argumento. Finalmente, a
quarta e ultima derivada parcial da Equacao 22 € dada através da Equacéao 26:

du(n) 0
Owgj(n)  Owgy

) (b + Y wiy(n)z;(n)] = ax(n) (26)
j=1
Portanto, o gradiente da Equacéao 22 é dado pela Equacéo 27:

OE(n)

Owy;(n)

Assim, chegamos em uma expressao que calcula o valor da atualizagdo dos pesos
(Awy;(n)) descrita pela Equagéo 28:

= —ex(n)¢/ (vi(n))zx(n) (27)

Awg;(n) = —ney(n)¢’ (vx(n))zx(n) (28)

Onde n é a Taxa de Aprendizagem, vista anteriormente.

A Equacao 28 nos mostra que, dentre outros fatores, a quantidade pela qual os
pesos wy,; sao atualizados (Awy;(n)) depende da derivada parcial da Fungéo de Ati-
vacdo (¢). E imprescindivel para o funcionamento do algoritmo de retropropagacio
qgue a fungéo de ativacdao dos neurdnios constituintes da rede neural seja derivavel.
Isso fez com que o treinamento das redes fosse muito mais eficiente, ao passo que
funcdes de ativagdo como a fungédo degrau unitario fossem substituidas por fungdes
como a RelLU, por exemplo.

3.2.4 Treinamento de uma Rede Neural

Revisados alguns detalhes sobre a forma de aprendizado das redes neurais, aqui
busca-se apresentar de uma forma resumida, o processo de teinamento de uma rede
neural. Assim, tem-se que o processo de aprendizado supervisionado implementa (ou
treina) uma funcédo de aproximacao a partir de um conjunto de dados de entrada (ou
dados de treinamento). Para cada elemento dentro do conjunto de dados de treina-
mento é associado um rétulo que define a classe a qual pertence este dado. Dessa
forma, a rede neural processa diversas vezes os dados de entrada até satisfatoria-
mente classificar eles acordo com os rétulos esperados. Como esta Tese trata apenas
de problemas de classificagcdo, o processo de treinamento envolve as seguintes fases:
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1. Todos os pesos da rede neural, w,ij, assim como os valores de viés, b, sao inici-
alizados aleatoriamente de acordo com uma distribuicdo estatistica pre-definida
(por exemplo, distribuicdo normal ou uniforme), sendo k e j, a conexao entre o
k-ésimo né da camada i e 0 j-ésimo n6 da camada i + 1.

2. Os dados de treinamento sao previstos pela rede neural, resultando em rétulos
y para cada elemento do conjunto de treinamento.

3. Tendo os rétulos verdadeiros, iy, implementa-se uma fungéao de erro (do inglés,
loss function), que estabelece um valor para o erro do treinamento. Funcdes de
erro comumente utilizadas em problemas de classificagdo sdo entropia cruzada
categérica (do inglés, Categorical Cross Entropy - CCE) e erro quadratico médio
(do inglés, Mean Square Error - MSE). Aqui, a funcdo de erro é definida como

E(y,9).

4. A partir da fungao de erro, os pesos da rede neural sdo atualizados a partir do
calculo do gradiente da fungédo de erro em relagdo a cada um dos pesos da
rede. O mesmo é aplicado para os valores de viés. A atualizacao de cada peso
considera uma taxa de aprendizado (do inglés, learning rate) que é empregada
numa equacao juntamente ao valor do gradiente de cada peso. Existem diversos
algoritmos para atualizacdo de pesos que leva em conta o valor do peso atual,
wy;, 0 gradiente da fungdo de erro em relagdo a wy; e a taxa de aprendizado
n. O mais bésico dentre estes algoritmos é o chamado Gradiente Descendente
Estocéstico (do inglés, Stochastic Gradient Descent ou SGD):

OE(y,7)

- o, (29)

Wgj = W
Portanto, o tempo de treinamento, assim como memdéria necessaria pelo sistema
serd proporcional ao tamanho da rede neural e a complexidade das fungbes de
erro e atualizagcdo. Esta Utlima é também referida como fungéo otimizadora. E
importante ressaltar que esse processo de atualizacdo € comumente referido
como retropropagacao (do inglés, backpropagation).

Apoés a atualizagdo de todos os pesos da rede neural e uma passada completa
dos dados de treinamento, retoma-se a etapa 2. Essa passada completa do conjunto
de dados é chamada de época (do inglés, epoch). Aqui é importante ressaltar que
o SGD opera através de pequenos lotes, 0 que torna o aprendizado mais eficiente e
evita problemas de overfitting.

Além de redes neurais de multiplas camadas, esta Tese também considera redes
neurais por convolucéo, descritas a seguir.
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3.2.5 Redes Neurais Convolucionais

Redes Neurais Convolucionais (do inglés, Convolutional Neural Networks —
CNNs) (LECUN et al., 1999) constituem um modelo de aprendizado capaz de im-
plementar extracdo de detalhes dos dados de entrada através de filtros em camadas
de convolugéo.

C S; C S; n; n;
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32x32 28 x 28 14 x 14 10x 10 5x5
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Figura 13 — Estrutura basica de uma rede neural convolucional. Fonte: (DEOTTE, 2018).

3.2.5.1 Estrutura

A Figura 13 apresenta a estrutura basica de CNN aplicada a classificagdo de ima-
gens ou dados bidimensionais. Para ser uma CNN, a rede neural deve possuir ao
menos as seguintes camadas:

» Camada convolucional (e camada de entrada): esta camada constitui um con-
junto de filtros com dimenséao equivalente ao dado de entrada (por exemplo, uni-
dimensional, bidimensional ou tridimensional). A camada executa uma operagao
de convolucgéao entre os filtros e os dados fornecidos a camada. Uma CNN pode
possuir diversas camadas por convolugdo sequenciais. Os dados de entrada
sdo, obviamente, conectados a primeira camada. A saida de cada camada por
convolugédo € um mapa de detalhes (do inglés, feature map que representa de-
talhes extraidos dos dados de entrada a partir dos filtros de convolugdo. As
operagdes de convolugédo caracterizam-se por um nucleo (ou kernel, que nada
mais € que o tamanho do filtro) e passos (stride).

» Camadas densas: da mesma forma que redes neurais MLP, CNNs apresentam
camadas densas que nada mais s&o que camadas ocultas totalmente conecta-
das. O objetivo destas camadas densas € efetuar a classificacao a partir dos
mapas de detalhes extraidos pelas camadas de convolugéo.

» Camada de saida: esta camada possui a mesma estrutura e atribuicées da ca-
mada de saida de uma rede MLP.
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Alternativamente, embora altamente recomendado, a saida de uma camada de
convolugéo (ou seja, 0 mapa de detalhes) é conectada a camadas de agrupamento
(ou pooling) que efetuam a redugao do tamanho do mapa de detalhes. Camadas de
agrupamento executam uma operagao de downsampling nas suas entradas, a fim de
reduzir o nimero de parametros e a complexidade computacional da rede. Esse pro-
cesso é feito similarmente ao processo de convolugdo. Nesse caso, ao agrupamento
sdo atribuidos um tamanho de nucleo e um passo, que passam por todo o dado de
entrada da camada. Na maioria das vezes considerando o valor maximo (operacao
chamada de max-pooling). Similarmente, o agrupamento também pode considerar a
média (avegare-pooling). A Figura 14 ilustra um exemplo de processo de convolugéo
seguido por uma operagao de agrupamento. Conforme ilustrado na Figura, os filtros
de convolugdo, assim como o nucleo do processo de agrupamento deslizam sobre
o dado de entrada. Aqui € também importante ressaltar que, caso as dimensdes do
nucleo nao se ajustem perfeitamente as dimensées do dado de entrada, um processo
de padding é automaticamente efetuado, normalmente inserindo-se zeros aos valores
faltantes.
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2 Bl11]3
3|~ 5 513 514153
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Figura 14 — Convolugéo e agrupamento em CNNs. Fonte: (CAGLI; DUMAS; PROUFF, 2017)

3.2.5.2 Treinamento

O processo de treinamento de uma CNN segue as mesmas etapas e principios
observados para redes neurais MLPs. O ponto a ressaltar aqui é que cada elemento
dentro de um filtro por convolugdo € considerado como sendo um neurdnio da rede
neural e portanto atualizado pelo algoritmo de otimizacdo durante o processo de re-
tropropagacéao.

Uma caracteistica das CNNs bastante interessante para SCAs é que esse tipo de
rede neural é capaz de extrair as caracteristicas dos dados independentemente da
posicdo destas caracteristicas nas amostras do conjunto de dados.
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3.3 Consideracoes sobre o Capitulo

Neste Capitulo, foram apresentadas definicdes sobre aprendizado profundo. Nesta
revisao, foram abordadas as principais caracteristicas das redes neurais artificiais apli-
cadas a SCAs. A revisdo sobre tais assuntos partiu do elemento basico (o neurdnio
artificial) até a formagao das arquiteturas MLPs e CNNs. Neste contexto, foram abor-
dados tépicos de modo a fornecer um embasamento ao leitor sobre os algoritmos de
DL utilizados como estudo de caso nesta Tese.

Apos revisados estes conceitos é possivel ter um conhecimento basico para melhor
compreensao da utilizagdo de redes neurais aplicadas a SCAs em diferentes cenarios
e ainda em arquiteturas com contramedidas. A seguir, o Capitulo 4 apresenta a revisdo
de trabalhos relacionados ao tema que motiva o desenvolvimento desta Tese.



4 TRABALHOS RELACIONADOS

Este Capitulo apresenta uma revisédo da literatura sobre trabalhos que unem a apli-
cacao de técnicas de DL para realizar ataques a canais laterais. Para isto, foi realizada
uma Revisao Sistematica da Literatura (RSL), detalhada na Secao 4.1. A partir dessa
RSL sé&o encontrados diversos trabalhos que relacionam o uso de inteligéncia artificial
com SCA sob diferentes paradigmas.

Na literatura é possivel encontrar trabalhos com diferentes propésitos, como por
exemplo, Wang et al. (2020), que busca meios de realizar ataques SCA em tempo
real em dispositivos criptograficos usando a metodologia SCARF (do inglés, Detecting
Side Channel Attacks at Real-Time using Low-level Hardware Features). Além disso,
existe uma abordagem baseada em aprendizagem supervisionada para inferir aplica-
tivos em execucgdo na plataforma Android com base nas caracteristicas extraidas de
tracos de radiacao eletromagnética (do inglés, Electromagnetic - EM) e de estados de
escalonamento de frequéncia e de tensao dinamica (do inglés, Dynamic Voltage Fre-
quency Scaling States — DVFS) de Chawla et al. (2019). Ainda, o trabalho de Cristiani;
Lecomte; Maurine (2020) visa avaliar a quantidade de vazamento de informacdes em
um dispositivo criptografico através de algoritmos de aprendizado profundo e de um
estimador conhecido como MI (do inglés, Mutual Information).

Como vemos nas Segbes seguintes, pesquisadores aplicam os algoritmos de
Aprendizado Profundo em diferentes cenarios de ataques SCA. Estes cenarios po-
dem representar casos desde uma situagao ideal de ataque com um algoritmo sem
contramedidas até representar situagdes reais como ataques a diferentes algoritmos
criptograficos, dispositivos diferentes, ambientes com ruido elétrico e dispositivos equi-
pados com contramedidas como Insergdo de Atrasos Aleatérios (do inglés, Random
Delay Insertion - RDI) (YAO; ZHANG, 2012) e Sinal de Reldgio Aleatério (do inglés,
Random Clock - RC) (BOEY et al., 2010), entre outras.

Também foram resgatados da literatura, trabalhos que buscam realizar uma com-
paracao de desempenho entre algoritmos de ML/DL e suas variagdes. Tais compa-
racbes sao importantes, pois ressaltam caracteristicas desses algoritmos, apontando
cenarios e aplicagées mais adequadas para cada algoritmo ou grupos de algoritmos.
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Entretando, a pesquisa aqui desenvolvida concentra maior esforco em trabalhos
encontrados na RSL que procuram melhorar a eficiéncia de tais algoritmos quando
aplicados ao contexto de SCAs. Por este motivo, tais estudos terdo um nivel de deta-
lhamento maior dentro da reviséo.

4.1 Revisao Sistematica da Literatura

Esta Secao apresenta uma Revisdo Sistematica da Literatura (RSL), que explora o
estado da arte sobre o tema da pesquisa, a fim de identificar, avaliar e interpretar os
resultados de estudos relevantes disponiveis na literatura.

Os estudos individuais encontrados através RSL sdo chamados de estudos pri-
marios, enquanto a revisdo em si dos trabalhos retornados na busca € chamada de
estudo secundario.

Para a conducéao da selegéo e analise dos estudos primarios, foi utilizada a metodo-
logia proposta por Kitchenham; Charters (2007). Essa metodologia divide o processo
de revisao em trés partes principais: Planejamento, Realizagdo (também chamada de
execucgao ou condugao da revisao) e Documentagao da Revisao.

Hoje em dia, temos algumas ferramentas que auxiliam no desenvolvimento de
RSLs. Dentre elas, este trabalho utilizou o Parsif.al (PARSIFAL, 2018). Esta ferra-
menta foi escolhida, por estar disponivel on-line, mantendo o progresso da pesquisa
armazenado na nuvem. Outra caracteristica interessante é a possibilidade de com-
partilhar revisbes com outros autores, como por exemplo, o orientador do trabalho. O
Parsif.al estd baseado nos passos descritos em (KITCHENHAM; CHARTERS, 2007).

Antes de comecar a revisdo sistematica da literatura, foram buscados alguns ar-
tigos através do Google Scholar (SCHOLAR, 2021) dentre outros motores de busca,
utilizando-se palavras-chave no contexto da pesquisa. Esses artigos, sdo chamados
de artigos de controle e servem para guiar alguns dos parametros iniciais do plane-
jamento da revisdo, como por exemplo, as bases onde séo realizadas as buscas de
trabalhos. A partir dos artigos de controle, deu-se inicio a RSL com auxilio da ferra-
menta Parsif.al.

Uma dentre muitas informagdes estatisticas interessantes levantadas a partir da
RSL s&o os algoritmos de Aprendizado Profundo utilizados nos trabalhos encontra-
dos durante a RSL. Nota-se através da Tabela 2 que os algoritmos de Aprendizado
Profundo mais utilizados pelos estudos selecionados sdo CNNs, que aparecem em
38,46% dos trabalhos, seguido de MLPs com 35,90% de apari¢coes durante as pes-
quisas.

Também é importante saber quais foram as ferramentas ou frameworks de de-
senvolvimento mais utilizados. Pode-se ver atraves da Tabela 3, que os frameworks
mais utilizados nesse escopo sao a biblioteca Keras (CHOLLET, 2015) baseada na
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Tabela 2 — Algoritmos de Aprendizado Profundo mais utilizados.

Algoritmo %
CNN 38,46
MLP 35,90
LSTM 5,13
AutoEnconder 2,56
RNN 2,56
ResNet 2,56

Tabela 3 — Ferramentas mais utilizadas.

Framework %
Keras 33,33
Matlab 16,67
Sci-Kit Learn 13,89
Weka 13,89
Python 11,11
C 2,78
kit SVM, LIBSVM | 2,78
Scipy 2,78
TensorFlow 2,78

linguagem de programacéao Python com 33,33% do total de ferramentas informadas e
o Matlab (MATLAB, 2010) com 16,67 %.

Sabendo-se que existem Datasets publicos disponiveis na internet para uso de ex-
perimentos em SCAs, buscou-se identificar quais Datasets sao mais utilizados dentre
os trabalhos selecionados. Com isto, pudemos perceber, olhando para a Tabela 4,
que 39,9% dos trabalhos encontrados utilizam tragos proprios para seus experimen-
tos. Também, os Datasets publicos DPA Contest v.4 (UNIVERSITY, 2015) e ASCAD
(PROUFF et al., 2018) também s&o bastante utilizados com 19,70 e 15,15% respecti-
vamente.

Tabela 4 — Datasets mais utilizados.
Dataset %
Tragos Préprios 39,39
DPA Contest v.4 19,70

ASCAD 15,15
DPA Contest v.2 | 9,09
AES RD 7,58
AES HD 4,55
TeSCASE 3,03
Grizzly 1,52

Jit 1,52
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E sabido que implementacdes em hardware dos algoritmos criptograficos sdo mais
dificeis de atacar, visto que as operacdes realizadas acontecem paralelamente devido
a natureza desse tipo de implementacao. Talvez por isso, 41 dos trabalhos que men-
cionam o tipo de implementacdo atacada sdo baseadas em software, enquanto que
apenas 28 sao realizadas em hardware.

Quanto as métricas de avaliagdo dos experimentos, a mais encontrada é Guessing
Entropy (GE), que aparece em 24 trabalhos. A acuracia é a segunda métrica que
mais aparece como métrica de avaliacao dos experimentos dentre os trabalhos sele-
cionados, com 9 ocorréncias. Isso é surpreendente, pois acuracia nao € uma métrica
adequada ao contexto dos Side Channel Attacks (PU et al., 2023). Em seguida, como
outra métrica das mais encontradas nos trabalhos revisados, temos a Success Rate
(SR) que aparece em 6 trabalhos.

Com base nessas informacdes, foi possivel tracar uma tendéncia comum entre
os trabalhos que aplicam técnicas de Aprendizado Profundo a Side Channel Attacks.
Abaixo, segue um resumo que mostra tal tendéncia entre os estudos encontrados:

+ Algoritmos de Aprendizado Profundo mais utilizados: CNN e MLP;

» Frameworks mais utilizados: Keras e Matlab;

Datasets mais utilizados: Préprio, DPA Contest v.4 e ASCAD,;

» A maioria dos trabalhos atacam implementacdes em software do algoritmo crip-
tografico;

» As métricas de avaliacao mais utilizadas sao: Guessing Entropy (GE), acuracia
e Success Rate (SR).

4.2 Artigos de Controle

Nesta Secao, sdo apresentados trabalhos buscados numa fase inicial pré-RSL.
Mesmo se tratando de artigos base, estes artigos trazem estudos importantes sobre
o tema de pesquisa aqui abordado. Portanto, serdo analisados a seguir.

Inicialmente, tem-se o trabalho apresentado por Ramezanpour; Ampadu; Diehl
(2020), no qual os autores mesclam o uso de algoritmos de DL com algoritmos de
ML. Neste trabalho € utilizado Long Short- Term Memory (LSTM) auto-enconder para
extrair caracteristicas dos tracos do consumo. Essas caracteristicas sdo utilizadas
para identificar o modelo de consumo, através de MLPs. A partir disso, as caracteris-
ticas encontradas sao clusterizadas e é utilizada uma abordagem nao supervisionada
para encontrar a chave correta. Com isso, os autores dizem melhorar a eficiéncia dos
ataques em 10x.
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Muitos dos trabalhos encontrados na literatura baseiam-se em criar modelos de
consumo utilizando técnicas de ML/DL para aplicacdo em SCA. Os primeiros a fazer
isto foram Yang et al. (2012), motivados pelo fato de que Redes Neurais (do inglés,
Neural Networks — NNs) sdo capazes de capturar caracteristicas nao-lineares dos tra-
cos do consumo sem restricdes especificas. A eficacia dos ataques foi relatada com
uma série de experimentos, incluindo diferentes niveis de ruido e diferentes métri-
cas de avaliagdo. Portanto, percebe-se que redes neurais sdo capazes de realizar
ataques a canais laterais sem a necessidade de etapas de pré-processamento dos
tracos. Dessa forma, essa etapa pode ser suprimida do fluxo de ataques sem maiores
problemas.

Em Martinasek; Malina; Trasy (2015) os autores sugerem utilizar Momentum ou
Conjugate Gradient Backpropagation para evitar problemas com o algoritmo de back-
propagation nas redes MLP. Os resultados obtidos confirmaram que o MLP & muito
mais eficaz na criacao de profiling de ataques de consumo de energia em termos de
pequeno numero de tracos de energia e pontos interessantes.

No trabalho de Carlet et al. (2016), os autores se propdem a dar continuidade a li-
nha de pesquisa baseada na aplicacao do aprendizado de maquina ao SCA, aplicando
técnicas de profiling mais sofisticadas com base no aprendizado profundo. Seus re-
sultados experimentais confirmam as vantagens esmagadoras dos novos ataques re-
sultantes quando tém como alvo implementacdes criptograficas desprotegidas e pro-
tegidas.

Maghrebi; Portigliatti; Prouff (2016) utilizaram Redes Neurais Convolucionais
(CNNs) aplicadas a area de SCAs. Aléem disso, os autores investigaram o uso de
auto-encoders empilhados, bem como Long and Short Term Memory (LSTM). O uso
de técnicas de DL foi motivado pelo fato destas incorporarem intrinsecamente me-
canismos de extracdo de caracteristicas. Desse modo, ao contrario da maioria dos
classificadores ML padrdo, NNs profundas podem aprender com o conjunto de entra-
das brutas, pois sdo capazes de identificar os pontos de maior vazamento de infor-
mag&o. Como estudo de caso, os autores realizaram uma série de experimentos com
técnicas de DL, classificadores ML classicos (SVM, Random Forest - RF, Multi-Layer
Perceptions - MLP) e TA em implementacdes em hardware e software do algoritmo
AES protegido e desprotegido. Resumindo os resultados, pode-se dizer que os méto-
dos de DL na maioria das vezes superam outras técnicas de ataque. Interessante o
fato de que a combinagédo de uma etapa de pré-processamento com Andlise de Com-
ponente Principal (do inglés, Principal Component Analysis - PCA) para reducéo da
dimensionalidade dos dados de entrada, com MLP n&o melhorou a performance do
ataque. Este trabalho apresenta uma boa gama de experimentos em diferentes ce-
narios, mostrando que DL se sai melhor do que outras técnicas. Aqui, mais uma vez
notamos que etapas de pré-processamento dos tragos sdo desnecessarias quando
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aplicamos redes neurais no contexto de SCAs.

Lerman et al. (2018) faz um estudo comparativo entre TA e ataques baseados em
ML. Os autores concluem que quando a etapa de profiling se aproxima da perfeicéo,
TA é melhor em relacao a ML, porém em casos reais, onde erros estao presentes no
profiling e em casos onde eventualmente poucos tracos sao disponiveis, ML se sai
melhor. Foi observado que RF se sai melhor quando é aumentada a quantidade de
informacao inutil nos tracos, pois 0 método eventualmente detecta pontos de interesse
dos tragos.

Prouff et al. (2018) fazem um comparativo entre técnicas de Aprendizado Profundo
(NN, CNN) com TAs. Neste trabalho os autores dizem mostrar a hiper-parametrizacéo
das redes, diferentemente de outros trabalhos. Para reduzir a dimensionalidade, os
autores utilizaram PCA. Para os experimentos, foram utilizados tragos do banco de
dados ASCAD.

Em Timon (2018), é proposto o uso de poderosas técnicas de Aprendizado Pro-
fundo e Aprendizado de Maquina para ataques non-profiled. No artigo, € mostrado que
€ possivel explorar a propriedade de translation-invariance das CNNs contra tragos
desalinhados e usar técnicas de Data Augmentation também durante os non-profiled
SCAs. Foi comprovado através de experimentos que Data Augmentation melhora os
resultados obtidos para ataques de poténcia baseados em CNN (do inglés, CNN-
based Deep Learning Power Analysis - CNN-DLPA) e ataques de poténcia baseados
em MLP (do inglés, MLP-based Deep Learning Power Analysis - MLP-DLPA). Expe-
rimentos com tracos desalinhados mostram que CPA e MLP-DLPA sem DA falharam.
Enquanto MLP-DLPA com DA e CNN-DLPA com e sem DA obtiveram sucesso. Por-
tanto, através dos resultados os autores mostram que em alguns casos, 0 método
porposto supera alguns Non-Profiled Attacks classicos como CPA. Também estuda-
ram a eficiéncia deste ataque contra implementacées com contramedidas de alta or-
dem e mostram que este método é capaz de quebrar implementacdes com protecdes
de primeira-ordem com um numero razoavel de tracos sem pré-processamento. En-
tretanto, lacunas quanto a outras métricas, tais como Guessing Entropy, ficam abertas
para préximos estudos. O proprio autore explora outra métrica chamada de Analise
de Sensibilidade (do inglés, Sensitivity Analysis - SA) em (TIMON, 2019). Apesar de
ser uma abordagem muito intrigante, seu custo computacional seria elevadissimo, o
que néo é discutido no trabalho apresentado.

4.3 Analise dos Trabalhos Relacionados

Nas Sec¢des seguintes, sdo descritos os trabalhos encontrados na literatura atravées
da RSL realizada nesta tese (e descrita na Secéo 4.1). Estes trabalhos abrangem
a aplicacao de diferentes métodos baseados em aprendizado profundo, no contexto
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dos SCAs. Os trabalhos apresentados, foram divididos em trés grupos: Avaliagdo do
ataque baseado em Inteligéncia Artificial sob diferentes cenarios, comparagéo entre
métodos de ataque, e melhoria da eficiéncia do ataque.

4.3.1 Avaliacao do Ataque baseado em Inteligéncia Artificial sob diferentes ce-
narios

E sabido que SCAs podem ser implementados sob condicées adversas, como por
exemplo, diferentes niveis de ruido ambiente, implementagdo em software ou em hard-
ware do algoritmo criptogréfico, diferentes tipos de dispositivos atacados, entre outras
variacbes. Dessa forma, atacantes se deparam com diferentes cenarios, 0os quais
também sao explorados na literatura.

Ataques realizados em laboratérios de pesquisa geralmente sdo realizados sob
condicdes controladas, como por exemplo, a forma como sédo capturadas as informa-
cbes vazadas do dispositivo criptografico sob ataque. Entretanto, situacdes ou con-
figuracoes diferentes podem ocorrer em ataques reais. Por isso, é importante testar
diferentes possibilidades como foi feito em (WANG; WANG; DUBROVA, 2020) onde os
autores realizam ataques com EM de campo distante, capturados de cinco dispositivos
Bluetooh diferentes em cinco distancias diferentes, utilizando aprendizado profundo.
Com isto, os autores afirmam que é possivel recuperar a chave com menos de 10000
tracos capturados em um ambiente de escritério a 15m de distancia do alvo mesmo
se a medida para cada encriptacdo é tomada somente uma vez. E mencionado que
TAs anteriores precisavam de multiplas repeticbes para a mesma encriptacao.

Ainda considerando-se a variedade de cendrios que podem estar presentes frente
aos SCAs, Weissbart; Picek; Batina (2019) abordaram varias técnicas de aprendizado
de maquina a fim de montar um ataque de anélise de poténcia em um algoritmo cha-
mado EdDSA (do inglés, Edwards-curve Digital Signature Algorithm) usando a curva
25519. Para os experimentos, os autores testaram os algoritmos de RF, SVM e CNN.
Para questoes de comparacao, foi também executado um experimento com TA clés-
sico e covariancia combinada. Os resultados mostram que todas as técnicas conside-
radas sao opcoes viaveis e poderosas. Dentre elas, as redes neurais convolucionais
(CNNs) sao especialmente eficazes, pois foi possivel quebrar a implementacao com
apenas uma unica medi¢do na fase de ataque, e requer menos de 500 tracos na
fase de treinamento. E interessante observar, que a aplicagdo de PCA piorou os re-
sultados de um modo geral. Pode-se observar que ao aplicar-se PCA para obter 10
POls, os resultados sdo mais estaveis. Porém piores do que nao aplicar a redugéo
de dimensionalidade. Isto nos faz perceber que nem sempre técnicas de reducao de
dimensionalidade ou pré-processamento se traduzem em resultados melhores.

Heuser et al., trazem uma questéo interessante quanto a robustez de algoritmos
de cifras leves em (HEUSER et al., 2017). Esse estudo busca descobrir se algoritmos



57

de cifras leves sdo mais vulneraveis a ataques de canais laterais. Para tanto, foram
consideradas varias métricas de avaliacao no contexto dos SCAs. Os algoritmos tes-
tados nesse trabalho sdo o KLEIN, PRESENT, PRIDE, RECTANGLE, Mysterion, AES,
Zorro e Robin, implementados em software. Sendo esses algoritmos testados com
ataques profiled e non-profiled baseados em Naive Bayes, C4.5 (um algoritmo da fa-
milia DT) e MLP. Os resultados mostram que a diferenga entre AES e cifras leves é
menor do que o esperado. Curiosamente, para ataques non-profiled, as SBOXs de
8 bits de AES, Zorro e Robin tém um desempenho semelhante, enquanto que para
as SBOXs de 4 bits tem-se uma classificagédo clara, com a SBOX do Mysterion sendo
a mais fraca para atacar, e a SBOX do KLEIN, a mais dificil. Para ataques profiled,
foram analisadas varias técnicas de aprendizado de maquina para PRESENT e AES.
Neste cenério, os resultados sdo aplicaveis a todas as SBOXs de 4 e 8 bits. Os resul-
tados mostram que atacar PRESENT é um pouco mais facil do que atacar AES. Ainda
assim, essa diferenca nao é tdo aparente quanto se poderia imaginar.

Sob esse paradigma, Zhang et al. (2020) propdem um novo mecanismo chamado
de Analise de Poténcia baseada em Frequéncia e Aprendizado (do inglés, Frequency
and Learning based Power Analysis (FL-PA)) , que é capaz de enfrentar desafios cau-
sados por variagoes de dispositivos (desde dispositivos homogéneos a heterogéneos).
De acordo com os autores, pela primeira vez os tragcos de energia coletados de seus
proprios dispositivos PIC podem ser utilizados para atacar com sucesso 0 conjunto
de dados publico DPA Contest v4, que é baseado em um microcontrolador AVR to-
talmente diferente. A ideia bésica de Zhang et al. (2020) é combinar aprendizado
profundo com analise no dominio da frequéncia. Os resultados mostram que tanto
o TA quanto o DL-PA encontram uma grande dificuldade ao atacar dispositivos hete-
rogéneos. Segundo os autores, a falha dos TA em dispositivos homo/heterogéneos
€ atribuido a regido de selecdo dos POls e ciclos de instrucdo. Ambas diretamente
relacionadas com o relégio no dominio do tempo. Ja, aprendizado de maquina tem
uma maior capacidade de generalizacdo do que essas analises estatisticas. Portanto,
para melhorar DL-PA e mitigar essas questées do dominio do tempo, a transformada
de Fourier (FFT) é aplicada a todos os tragos desses crossed devices.

Também com o intuito de buscar uma generalizagdo para ataques sobre dispositi-
vos diferentes, Das et al. (2019) aplicam aprendizado profundo em SCA sobre cross
devices, e dizem chegar a uma acuracia maior do que 99,9% mesmo na presenca de
variacoes inter-device significativamente altas. Os autores mencionam que o ataque
X-DeepSCA quebram a criptografia de diferentes dispositivos alvo em segundos, em
comparagcao com alguns minutos para um ataque de analise de energia correlacional
(CPA). Aumentando assim, a ameaca para dispositivos embarcados. De acordo com
0s autores, mesmo para cenarios de SNR baixo, o ataque X-DeepSCA necessita de
aproximadamente 10 vezes menos tracos em comparagdo com um CPA tradicional
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para realizar o ataque.

Em Xu et al. (2019), os autores demonstram um ataque pratico contra um médulo
de comunicagdo LoRa WAN. Este ataque usa SCA baseado em aprendizado pro-
fundo para recuperar a chave usada na encriptacao dos dados do payload. Segundo
0s experimentos, com menos de 100 tracos, a CNN treinada é capaz de recuperar a
chave completa de um AES. Sendo que a maioria dos bytes da chave pode ser re-
cuperada com menos de 20 tragos. Através dos experimentos, foi observado que no
melhor caso, apenas 1 traco é necessario para identificar a estimativa correta como
a classificacao mais alta, ou seja, a classe que contém a maior probabilidade, e con-
sequentemente o maior ranking da subchave; enquanto no pior caso, 73 tracos sao
necessarios para reconhecer de forma estavel a suposi¢ao correta como classificacéo
0 do ranking. Com 20 tracos, 14 de todos os 16 bytes alcangcam a classificacdo 0
(byte 3 classificacdes 6 e byte 7 classificacées 2). Para questdes de comparagao, foi
implementado o ataque proposto usando TA. O TA convencional é otimizado com PCA
e LDA para extrair-se os POls. Foi descoberto que o melhor ranking é alcangado com
40 POQOls para PCA e 8 PQOls para LDA. Os resultados do ataque séo avaliados calcu-
lando a classificacdo média alcancada ao atacar todos os 16 bytes da chave usando
um numero diferente de tracos de alvo.

No estudo apresentado por Brisfors; Forsmark; Dubrova (2021), os autores de-
monstram um ataque aos USIMs (do inglés, Universal Subscriber Identity Module)
com base no aprendizado profundo. E mostrado que uma CNN treinada em um USIM
pode recuperar a chave de outro USIM usando no maximo 20 tragos (quatro tracos em
média). Ataques CPA, anteriormente aplicados em cartées USIM, exigiam oscilosco-
pios de alta qualidade para aquisicao dos tracos de consumo, uma quantidade muito
maior de tragos do cartdo da vitima e habilidades de nivel de especialista do invasor.
Segundo os autores, agora o ataque pode ser montado com um orgamento de $ 1000
e habilidades basicas em analise de canal lateral.

Até mesmo dispositivos que intuitivamente supbe-se serem mais robustos como
as GPUs (do inglés, Graphic Processing Units) também podem ser vulneraveis a ata-
ques de canais laterais como mostrado em (MUKHERJEE, 2020). Nesta pesquisa, os
autores apresentam o chamado GIPSim, que € uma estrutura que permite aos pes-
quisadores de seguranga analisar o vazamento de canal lateral presente no contexto
de um simulador orientado para a execucao de GPU. Os autores mostram como os
pesquisadores podem capturar estimativas de energia detalhadas ao executar pro-
gramas CUDA em uma GPU da familia Kepler e usar as informagdes para ofuscar
o consumo de energia, ocultando a dependéncia do vazamento de energia com 0s
dados processados. E mostrado como as técnicas tradicionais de ocultago e masca-
ramento podem ser aplicadas no contexto de uma GPU. Estas, por sua vez, reduzem
a vulnerabilidade presente neste contexto. Também séo apresentadas formas de po-
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tencializar as técnicas de aprendizado de maquina usando redes neurais de memoria
de longo prazo para melhorar ainda mais a ofuscacdo. O objetivo deste trabalho, é
projetar um sistema que possa impedir ataques de canal lateral baseados em energia.
Assim, os autores dizem mostrar que é possivel modelar a dissipacao de energia de-
pendente de dados, capturando a distancia de hamming dos valores de dados usados
durante a execucgao da criptografia AES. Sendo essa, uma abordagem ja usada em
ataques de canal lateral baseados em energia. GIPSim é um dos primeiros ambientes
de simulacao que pode ser usado para avaliar a resiliéncia do canal lateral de energia
e ajudar a construir um acelerador mais seguro.

Uma observacao feita por Kubota et al. (2019) é que a maioria das implementa-
cOes de algoritmos criptograficos atacadas através de DL-SCA é realizada em nivel
de software. Esse estudo destaca que implementacées em hardware sdo mais difi-
ceis de atacar devido a caracteristica de execucao paralela desse tipo de construcéo.
Portanto, é proposta uma investigacdo do uso de DL-SCA contra implementacées em
hardware do AES, mostrando que é possivel revelar a chave secreta aplicando uma
nova técnica chamada mixed model dataset based on round-round XORed value. Tam-
bém foram comparadas a performance e as caracteristicas de DL-SCA com métodos
de analise convencionais tais como CPA e TAs convencionais. Antes de realizar a com-
paracao, os autores lembram que para TA classico é necessario pré-processamento
dos tracos, como por exemplo, realinhamento. O que demanda tempo e ajustes manu-
ais por conta do atacante, ao passo que em DL-SCA esse passo pode ser pulado. Os
resultados mostram que os valores reais da fung¢éo alvo sendo utilizadas para gerar
o modelo superam a utilizacdo do modelo HD utilizando DL-SCA. Outro experimento
consistiu em atacar um AES com a contramedida RSM (do inglés, Rotate Shift Mas-
king). Para o dispositivo utilizado, o DL-SCA nao conseguiu revelar os bytes 6 e 10 da
chave. E também, os bytes 5, 12 e 14 foram ranqueados dentro do quinto lugar como
os principais candidatos corretos. HD-CPA, HW-CPA e TAs nao revelaram nenhum
byte da chave e nenhuma chave foi classificada em quinto lugar.

Um dos trabalhos revisados através da RSL aqui realizada, busca avaliar a eficién-
cia de SCA baseado em aprendizado profundo sobre dispositivos dotados de contra-
medidas que ndo sao encontradas na literatura (MAGHREBI, 2019). Primeiramente, é
testado o esquema de masking SSS (do inglés, Shamir Secret Sharing). Apos, foi con-
duzida uma avaliacdo da seguranca de duas contramedidas de side channel attacks:
embaralhamento (do inglés, shuffling) e 1-entre-N (do inglés, 1-amongst-N) contra DL-
SCA. Experimentos simulados e praticos provam que, como esperado, estas contra-
medidas sao também vulneraveis a estes profiling attacks. Os resultados demonstram
que DL-SCA sao muito eficientes para quebrar a implementacdo de SSS. Mais inte-
ressante, a arquitetura LSTM supera a CNN e a MLP. Esta observagéo destaca que
a LSTM é uma rede neural interessante a ser considerada em uma avaliacao de ca-
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nal lateral, especialmente quando o vazamento de dados sensiveis é a combinacao
de varios compartilhamentos que vazam em diferentes amostras de tempo dos tragos
(como é o caso tipico de SSS). Como esperado, os resultados obtidos para DL-SCA
com os tracos reais sao proximos aos obtidos através de simulacéo. Além disso, o DL-
SCA supera o TA de ordem superior - HOTA (do inglés, High Order Template Attack).
Os resultados demonstraram por meio de diversas simulagdes e experimentos prati-
cos com HOTA, que a escolha dos pontos publicos no esquema SSS tem impacto na
forca da contramedida. Considerando esta propriedade, o LSTM é o melhor modelo
seguido pela MLP e pela CNN_2_ LAYERS. Do ponto de vista do adversério, a arqui-
tetura LSTM em particular (e as redes neurais de dependéncia de tempo em geral)
€ muito adequada para quebrar uma implementacdo de SSS. O DL-SCA (indepen-
dentemente da arquitetura DL usada) neutraliza a contramedida de embaralhamento.
Sendo, a eficiéncia dos modelos DL usados bastante semelhante. No entanto, através
dos resultados praticos (implementacao da Chipwhisperer) pode-se ver que € mais in-
teressante considerar as redes CNN quando o embaralhamento esta envolvido como
protecao.

Também relacionado ao ataque baseado em aprendizado profundo em dispositivos
protegidos com contramedidas, os autores em (ALIPOUR et al., 2020) visam aplicar
non-profiled DL-SCA contra o AES dotado da contramedida baseada em ocultacéo (do
inglés, hiding), na qual é utilizada geracdo de ruido correlacionado. E apontado pe-
los resultados que contramedidas como mascaramento oferecem alta prote¢ao contra
CPA, entretanto DDLA (do inglés, Differential Attack Deep Learning Analysis) conse-
gue quebrar essa contramedida. Os experimentos mostram que uma contramedida
baseada em ocultacdo pode fornecer maior protecdo contra ataques de canal late-
ral de aprendizado profundo non-profiled. Portanto, para implementar contramedidas
que sejam resilientes contra ataques DDLA modernos sem criacéo de perfil, pode ser
necessario usar metodologias que atrapalhem o procedimento de treinamento. Uma
perspectiva é investigar mais a fundo se existem perturbacdes que podem perturbar
ainda mais o procedimento de treinamento de ataques DDLA. Além disso, os autores
planejam investigar contramedidas que podem proteger igualmente contra ataques
DDLA e CPA.

O estudo de ? aplica Aprendizado de Maquina para SCA em tracos desalinhados.
Esse trabalho combina CNNs com Data Augmentation, que trata-se de uma técnica
para gerar novos exemplares de dados de treinamento a fim de aumentar a genera-
lidade do modelo, simulando tanto o efeito de clock jitter (chamadas de add-remove
deformations) quanto insercdo de atrasos aleatérios (chamadas de shifting feforma-
tions). Nesse artigo os autores utilizam uma técnica chamada Data Augmentation,
gue consiste em aumentar o dataset inserindo amostras artificialmente modificadas,
como por exemplo utilizando amostras distorcidas, deslocadas, etc., para evitar o pro-
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blema de Overfitting. As contramedidas aplicadas nos exemplos foram RDI em um
microprocessador ATMega328P. Em outro experimento os autores utilizam tragos re-
sultantes de operacdes sendo realizadas repetidas vezes. Com os resultados con-
cluem que mesmo que a CNN transforme informacdes espaciais (ou temporais) em
caracteristicas discriminativas abstratas, ela ainda mantém uma no¢éo de ordenagéo.
Num terceiro experimento os autores simulam clock jitters. Com esses experimentos,
concluem que CNN é robusta com respeito ao efeito de jitter. A selecao de POl e
o realinhamento na fase de treino sédo efetivos. Por ultimo, os autores executam um
experimento com um smart card (implementado numa tecnologia de 90nm). Nesse
hardware existe uma contramedida que emprega um forte clock jitter. Através dos
resultados, os autores verificaram que CNNs sao eficazes mesmo em casos onde re-
alinhamento ndo se aplicaria. Assim, se o realinhamento falhar, os TA se sairdo mal,
enquanto os CNNs saem bem. Portanto, os autores concluem que CNNs com DA
(para evitar o problema de overfitting) mostraram-se eficientes aplicados a tragos com
diferentes tipos de desalinhamentos.

4.3.2 Comparacao entre Métodos de Ataque

A literatura contém também trabalhos que aplicam algoritmos de aprendizado pro-
fundo em SCAs. Muitos desses trabalhos buscam realizar uma comparacao de de-
sempenho entre tais algoritmos e suas variagdes. Tais comparacdes sdo importantes,
pois ressaltam caracteristicas desses algoritmos, apontando cenarios e aplicacdes
mais adequadas para cada algoritmo ou grupos de algoritmos.

Lerman; Martinasek; Markowitch (2017) fazem uma comparacéo entre diferentes
algoritmos de aprendizado de maquina e aprendizado profundo, com o intuito de veri-
ficar quais algoritmos s&o mais robustos em ambientes ruidosos. Isto é uma caracte-
ristica bem comum em diferentes cenarios de ataque quando da aquisi¢cédo dos tragos,
sejam eles de radiacao eletromagnética ou do consumo. Os resultados destacam que
TA representa os melhores modelos quando: (/) ndo ha (ou ha baixa) variabilidade no
conjunto de perfil e no conjunto de ataque, e (i) o nivel de ruido varia entre os vaza-
mentos. Os autores observam que no geral, o TA classico oferece o menor sucesso
nos ataques. No entanto, o grande destaque em ataques baseados em aprendizado
de maquina encontra-se: (/) quando o numero de erros (ou seja, 0 numero de vaza-
mentos incorretamente associados a um valor alvo) no conjunto de perfil aumenta,
(i) quando os vazamentos estao desalinhados nos conjuntos de perfil e/ou ataque, e
(i) quando os vazamentos do conjunto de perfil e do conjunto de ataque diferem de
um offset DC alto. O estudo apresentado traz comparacdes bastante interessantes,
contudo como os autores mencionaram, experimentos de algoritmos de aprendizado
profundo ficaram para trabalhos futuros. Seria interessante ver como esses algorit-
mos reagiriam frente a tragos desalinhados. Além disso, a quantidade de amostras
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deslocadas nos desalinhamentos dos tragos utilizados nos experimentos nao ficaram
claros.

Sabe-se que técnicas de aprendizado profundo sao ferramentas muito poderosas
para resolver inumeros problemas, dentre os quais estdo os SCAs. Contudo, muitos
parametros precisam ser configurados. Isto se traduz em uma tarefa dificil, além de
gerar inumeras possibilidades para serem testadas. Sob esse aspecto, Carlet et al.
(2016) sao os primeiros a aplicar diferentes algoritmos de aprendizado profundo ao
contexto de SCA, destacando a capacidade de aprendizado profundo de construir um
perfil preciso levando a um ataque de recuperagao de chave de canal lateral eficiente
e bem-sucedido. Os experimentos mostram que os ataques baseados em aprendi-
zado profundo sdo mais eficientes do que os ataques baseados em aprendizado de
maquina e TA quando direcionados a implementacdes criptograficas desprotegidas ou
mascaradas.

Em (ROBISSOUT et al., 2021) os autores propdem uma métrica de avaliacao on-
line dedicada ao contexto da analise de canal lateral. Esta métrica pode ser usada
para realizar a parada precoce em redes neurais convolucionais existentes encontra-
das na literatura. Segundo os autores, esta métrica compara o desempenho de uma
rede no conjunto de treinamento e no conjunto de validacdo para detectar underfit-
ting e overfitting. Consequentemente, pode-se melhorar o desempenho das redes ao
encontrar sua melhor época de treinamento e, assim, reduzir o nimero de tragos usa-
dos em 30%. O tempo de treinamento também é reduzido para a maioria das redes
consideradas. Os experimentos mostram que a parada precoce do treinamento per-
mitiu uma reducgao de 31% do numero de tracos necessarios para atingir uma taxa de
sucesso de 90% e reduziu o tempo de treinamento em 30%.

4.3.3 Melhoria da Eficiéncia do Ataque

Nesta Secao, sao apresentados trabalhos que tem como objetivo melhorar a efici-
éncia de SCA baseado em inteligéncia artificial, seja através de ajuste de hiperpara-
metros, da combinac¢ao de informagdes de entrada para os algoritmos ou até mesmo
propondo novas abordagens de ataque mais eficientes.

Neste sentido Mukhtar; Kong (2019) busca um melhor ajuste dos hiperparametros
de algoritmos de aprendizado de maquina, através da andlise de caracteristicas tem-
porais e do dominio da frequéncia dos tracos de EM. Os resultados fornecem a analise
comparativa das melhores escolhas e conduz a selecao dos parametros. Este traba-
lho ndo aplica técnicas de pré-processamento nos tracos e o ataque é realizado bit a
bit da chave secreta. Foi observado que o pré-processamento do PCA funcionou ape-
nas na classificacao de SVM, levando ao fato de que modelos como RF e MLP lidam
bem com os dados de alta dimensdo. A MLP mostrou uma precisao de classificacao
de mais de 90%, levando a constatacdo de que o uso de algoritmos de aprendizado
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profundo mais complexos pode melhorar a precisdo da classificacdo. Também foi
concluido que varios parametros podem ser alterados para melhorar a acuracia. A
discusséo trazida pelos autores € bastante interessante, pois independentemente do
tipo de algoritmo de inteligéncia artificial utilizado, o ajuste de parametros é uma das
etapas mais complexas e importantes do processo do ataque. No entanto, muitos ou-
tros parametros existem nos algoritmos testados e ndo foram mencionados. A métrica
utilizada é a acuracia, uma métrica que nao é adequada para avaliar SCAs em ata-
gues contra dispositivos protegidos ou com elevados niveis de ruidos. Os resultados
parecem servir apenas para o estudo de caso em questdo. Em outras situagdes, os
parametros determinados nao se encaixam.

Weissbart (2020) também buscam a melhoria de SCA através da sintonia eficiente
de hiperparametros. Neste artigo, os autores concentram seus esforcos em melho-
rar MLP, justificando que este tipo de rede neural € menos presente nas pesquisas
do que CNN. Também, MLPs sao redes mais simples, permitindo o ajuste mais facil
de seus hiperparametros, além de serem menos custosas computacionalmente. Foi
investigado o comportamento de uma rede MLP no contexto de SCA sobre o AES.
Explorando a sensibilidade dos hiperparametros da rede MLP sobre o desempenho
do ataque, os autores visam fornecer uma melhor compreensao do ajuste de hiper-
parametros bem-sucedido e, em ultima analise, o desempenho deste algoritmo. Os
resultados mostram que a MLP (com um ajuste de hiperparametro adequado) pode
facilmente quebrar as implementagdes com contramedidas de atraso aleat6rio ou mas-
caramento. O estudo de Weissbart (2020) é bastante relevante, pois como comentado
pelos autores MLPs sdo mais simples que CNNs. Assim, com o ajuste adequado,
essas redes aplicadas aos SCAs podem se tornar uma ameaca real aos dispositivos
criptograficos. Conforme visto neste trabalho, alguns paradmetros nédo foram testa-
dos nos experimentos, como por exemplo, outras funcbes de ativacdo. MLPs mais
heterogéneas poderiam ser testadas. Também, direrentes nimeros de perceptrons
nas camadas, etc. Ainda, outras técnicas de reducdo de dimensionalidade ou pré-
processamento diferentes do DoM poderiam ser testadas para melhorar o desempe-
nho da MLP. Desse modo, muitos testes ainda podem ser realizados para verificar e
melhorar a eficiéncia das MLPs no contexto de SCA. Em um caminho inverso, e este
€ 0 caminho adotado por esta proposta, podem-se aplicar técnicas as redes CNN com
o intuito de reduzi-las, mantendo sua eficiéncia superior com menos esforco computa-
cional.

E sabido que os pesos de uma rede neural precisam ser inicializados, geralmente
com valores baixos e aleatérios. Entretanto, Li; KrCek; Perin (2020) investigaram como
a escolha dos inicializadores de peso influencia o desempenho das redes neurais pro-
fundas, mais especificamente CNNs, na analise de canal lateral. Notavelmente, os
autores observaram que o grid search pula muitos valores possiveis, limitando a confi-
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guracgao a apenas certos hiperparametros, desconsiderando completamente a influén-
cia de outros. Os autores utilizaram duas arquiteturas CNN encontradas na literatura
para realizar seus experimentos. Os resultados mostram que inicializadores de peso
diferentes fornecem comportamento radicalmente diferentes em termos de guessing
entropy quando os conjuntos de dados sdo mais dificeis de atacar. Foi observado que
mesmo os inicializadores de alto desempenho podem atingir um desempenho signi-
ficativamente diferente ao realizar varias fases de treinamento. Também, os autores
descobriram que esse hiperparametro depende mais da escolha do conjunto de dados
do que outros hiperparametros comumente examinados. Ao avaliar as conexdes com
outros hiperparametros, a maior conexao é observada com as fungdes de ativagdo. Os
resultados mostram que inicializadores de peso diferentes fornecem comportamento
radicalmente diferentes em termos de guessing entropy quando os conjuntos de da-
dos sdo mais dificeis de atacar. Foi observado que mesmo os inicializadores de alto
desempenho podem atingir um desempenho significativamente diferente ao realizar
véarias fases de treinamento. Por fim, os autores descobriram que esse hiperpara-
metro depende mais da escolha do conjunto de dados do que outros hiperparametros
comumente examinados. Ao avaliar as conexdes com outros hiperparametros, a maior
conexao é observada com as funcdes de ativacao.

Pessl; Mangard (2016) mostram que usando TA e a estrutura algébrica simples de
multiplicagc&o, o problema de recuperagéo de chave pode ser convertido para o conhe-
cido problema de Paridade de Aprendizagem com Ruido (do inglés, Learning Parity
with Noise - LPN). No entanto, em vez de usar algoritmos de solucdo LPN padréo, é
apresentado um método que faz uso extensivo de confiabilidade de bits derivada de
informacdes de canal lateral. Isso permite diminuir o tempo de execugao do ataque
em casos com probabilidades de erro de baixa a média. Em um experimento pra-
tico, foi atacada com sucesso uma implementacao de Fresh Re-Keying protegida de
8 bits usando apenas 512 tragos, destacando os autores que seu ataque também se
aplica a outros cenarios que usam a multiplicacao de campo binario, como AES-GCM
(Galois Counter Mode). Os resultados mostram que a estrutura simples da fungéo de
Re-Keying torna os ataques algébricos de canal lateral uma ameaca real. Além disso,
mudar a tarefa de seguranca do DPA para uma funcao de Re-Keying dedicada nao é
trivial. O vazamento de sua saida deve ser considerado em todas as operagdes subse-
quentes e mecanismos de protecado simples, como embaralhamento, podem nao ser
suficientes para protegdo. Existem varias maneiras imaginaveis de proteger o Fresh
Re-Keying contra os ataques apresentados. Uma dbvia é adicionar outras contrame-
didas ao AES, o que, entretanto, aumenta o overhead de protecado. Alternativamente,
pode-se alterar a funcao de Re-Keying, por exemplo, para multiplicacdo polinomial
sobre um campo primo em vez de GF(2%). Embora apresente uma nova forma de
SCA, esse trabalho € tangente a pesquisa realizada nessa tese. Ainda, como 0s pro-
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prios autores afirmam, nao sédo apresentados dados sobre o tempo de execucéo dos
algoritmos.

O trabalho apresentado por Ozgen; Papachristodoulou; Batina (2016) combina téc-
nicas de aprendizado de maquina com TA, com o intuito de melhorar a eficiéncia do
segundo, focando na fase de correspondéncia de modelos (matching). Sdo compara-
dos trés algoritmos de classificagdo em um conjunto de dados de template construido
durante a execucdo de um algoritmo de multiplicacdo escalar regular. Assim, o ata-
que proposto usa algoritmos de classificagdo como um distinguisher alternativo para
a fase de matching de templates do TA, a fim de fornecer templates precisos para
distinguir entre tragos de template e, eventualmente, recuperar a chave. Os autores
mencionam que seu modelo de ataque é bastante genérico e pode funcionar com al-
goritmos simétricos e assimétricos e para vazamentos HW ou HD. O ataque em um
cenario OTA (do inglés, Online Template Attacks), mostrou ser possivel recuperar com
sucesso bits do algoritmo de multiplicacao escalar. Os métodos de classificagdo Naive
Bayes, KNN e SVM podem dar 100% de sucesso na classificacao correta dos tracos
de template, quando os templates sao escolhidos e construidos corretamente. O fato
do cenario de ataque utilizado assumir uma classificagdo binaria torna os resultados
realmente precisos e pode explicar a taxa de sucesso absoluta. Embora os autores
tenham mencionado que seu método € genérico, o trabalho apresentado ndo ataca o
AES, o que pode ser realizado em experimentos de trabalhos futuros. Além disso, nao
sao testados dispositivos com contramedidas, ainda que os autores acreditem que o
meétodo obteria sucesso em tais dispositivos.

Gao, Si et al., em (GAO et al., 2017) questionam se € possivel desenvolver um
método baseado em inteligéncia artificial que aprenda os estados intermediarios do
algoritmo criptografico atacado, a partir dos vazamentos de canal lateral. Sob cer-
tas circunstancias, os autores descobrem que os estados intermediarios podem ser
recuperados de forma eficiente com a conhecida técnica chamada Analise de Com-
ponentes Independentes (do inglés, Independent Component Analysis - ICA). Espe-
cificamente, foram propostos varios métodos para converter os vazamentos do canal
lateral em observacdes ICA eficazes. Para uma recuperacao mais robusta, também
foi apresentado um algoritmo ICA especializado que explora as caracteristicas espe-
cificas dos sinais de circuito. Experimentos mostraram que a analise funciona bem
em certos modelos ICA, recuperando corretamente mais de 80% dos estados inter-
mediarios, com apenas algumas centenas de tracos. Além disso, o SCA baseado
em ICA traz novas possibilidades para o atual estudo de SCA non-profiled, incluindo
o ataque a criptografia intermediaria e a engenharia reversa com menos restri¢cdes.
Considerando que a ICA é uma ferramenta mais agressiva do que a maioria das téc-
nicas anteriores de SCA, os autores acreditam que a SCA baseada em ICA é uma
ferramenta promissora para o futuro estudo de SCA.
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Uma abordagem intermediaria entre aprendizado supervisionado e nao-
supervisionado € empregada em SCA por Picek; Heuser; Jovic (2018). A chamada
abordagem semi-supervisionada, consiste em usar um pequeno numero de medi¢des
rotuladas da fase de perfil, bem como as medi¢cdes nao rotuladas da fase de ataque
para construir um modelo mais confiavel. Na aprendizagem supervisionada, foram uti-
lizados os algoritmos TA e sua verséo agrupada pooled TAp, RF, MLP e Naive Bayes.
Na aprendizagem semi-supervisionada (do inglés, Semi-Supervised Learning — SSL)
baseada em grafico, foi usado o algoritmo kNN (ou seja, 0 método para atribuir rétu-
los), uma vez que produz uma matriz esparsa que pode ser calculada muito rapida-
mente. Os resultados obtidos mostram que a SSL pode ajudar em muitos cenarios.
Melhorias significativas sdo obtidas para quase todos os classificadores, incluindo TA
no cenario de baixo ruido para o pequeno numero de tragos no conjunto de dados
de aprendizagem. Além disso, o TA foi aprimorado para a maioria dos tamanhos de
conjunto de dados usando métodos SSL. Em geral, quando medido sobre todos os
cenarios considerados, o classificador MLP demonstra os melhores resultados, se-
guido por TAp e NB. A abordagem apresentada em (PICEK; HEUSER; JOVIC, 2018)
€ uma saida interessante quando o atacante se depara com cenarios em que o ta-
manho do conjunto de dados de treinamento é restrito. Entretanto, como os préprios
autores mencionam, poderiam ser exploradas mais contramedidas, ja que esse é um
problema preocupante nos SCAs (o ataque em dispositivos protegidos).

Uma forma diferente de buscar uma melhoria nos ataques baseados em aprendi-
zado de maquina e aprendizado profundo é apresentada por Van der valk et al. (2020).
A ideia € explorar a imitacao para comparar modelos aprendidos por uma rede neural.
Os autores exploram uma solucao alternativa para alcancar compressao do modelo
enquanto limita a perda de precisdo. A solugcdo proposta é baseada no conceito de
mimica. Portanto, em vez de treinar uma pequena rede (de alunos) com base no
conjunto de dados original, a simulacao visa treinar a rede de alunos com a saida
de uma grande rede (de professores). Ao treinar nos resultados da rede do profes-
sor, a rede do aluno pode alcancar uma precisdo muito melhor em comparagdao com
o treinamento nos roétulos originais. O ataque tem como alvo o valor intermediario
dependente da chave de um byte do algoritmo cuja atividade de canal lateral € obser-
vada. Nos experimentos, foi utilizado o valor intermediario como rétulo (256 classes)
ou o peso de Hamming (HW) do byte (9 classes). Os experimentos mostraram que é
mais facil imitar com MLP do que com CNN, mas ambas as configuracées podem dar
bons resultados. Melhor desempenho com redes rasas € possivel quando arquiteturas
profundas se ajustam com overfitting.

Diferente dos trabalhos apresentados até aqui, uma linha de pesquisa adotada
por alguns autores refere-se a combinar mais de um tipo de informagdes de entrada
para o algoritmo de inteligéncia artificial que realizard o ataque de canal lateral. Essa
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abordagem, busca melhorar a eficiéncia dos SCA, através do aumento de informacéao
util entregue para os algoritmos de aprendizado de maquina ou aprendizado profundo.

O primeiro estudo sob esse paradigma, encontrado através da RSL aqui realizada
foi (YU; CHEN, 2018). Neste trabalho, os tracos de poténcia dissipada e de emissao
eletromagnética sao capturados juntos. Entdo, uma rede neural profunda (do inglés,
Deep Neural Network — DNN) é usada para modelar a relagao entre o ruido dos tra-
cos de poténcia e o ruido dos tracos de EM, analisando os perfis de consumo e EM
capturados. A partir disso, um ataque é realizado utilizando o ruido da EM para fil-
trar o ruido da poténcia. O dispositivo alvo dos ataques € dotado de contramedida
de DVS (Dynamic Voltage Scaling). Segundo os autores, os resultados mostram que
para SCAs convencionais, mesmo se 1 milhdo de textos claros forem utilizados nao
€ possivel atacar um AES protegido. Ao passo que analisando somente 32500 de
textos claros, através do método proposto, a chave criptografica é revelada. Embora
os resultados tenham se mostrado muito superiores as outras técnicas apresentadas,
uma quantidade muito grande de tracos ainda € necessaria para obter sucesso no
ataque. Assim, a proposta é interessante, entretanto sdo necessarios estudos futuros
para desenvolver melhor o método.

Em (HETTWER; GEHRER; GUNEYSU, 2019), os autores apresentam uma nova
arquitetura CNN para SCAs com perfil que permite codificar informacdes especificas
de dominio (do inglés, Domain Knowledge — DK). Ao fazer isso, é possivel alimentar
o texto claro ou texto cifrado como uma fonte adicional de informagdes na rede (além
das medidas de poténcia). O CNN com DK é dedicado a aprender de forma autbnoma
o vazamento do dispositivo em relagdo a chave secreta. Para inserir informacdes de
conhecimento de dominio ao ataque, sao introduzidos neurénios DK em uma rede
CNN projetada para SCA. Assim, s&o unidas informagdes de caracteristicas extraidas
dos tragos através das camadas convolucionais da CNN com informagdes de dominio
especificas (DK). Melhorando assim, a eficiéncia dos ataques. Os autores demons-
traram por meio de experimentos com dois conjuntos de dados diferentes que o CNN
proposto com DK efetivamente consegue capturar de forma auténoma a fungéo com o
maior vazamento para quebrar a chave secreta diretamente. A ideia de Hettwer; Geh-
rer; Glneysu (2019) é bastante importante para a area de SCA. Entretanto, como os
autores mencionam, outros testes devem ser feitos para consolidar a técnica apresen-
tada. E interessante levar em conta também o tempo de processamento da rede final,
0 que nao foi explorado no trabalho. Sabe-se que CNNs sao redes neurais bastante
poderosas, contudo seu poder computacional esta atrelado a um custo relativamente
alto de tempo e recursos.

O trabalho de Hettwer et al. (2020) combina o vazamento dependente da loca-
lizacdo, de varios capacitores de desacoplamento em um SoC (System on Chip).
Sao combinadas informagdes (vazamento) de diversas fontes usando a abordagem
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de deep learning information fusion. Assim, os autores propéem um método de ata-
gue baseado em aprendizado profundo e medi¢cdes de EM multi-canal. Essa é uma
nova estratégia de ataque que extrai o vazamento de informagdes dependente da lo-
calizagédo que captura a atividade de partes especificas do hardware projetado usando
diferentes capacitores de desacoplamento da fonte de alimentacdo. As medicbes ob-
tidas sdo processadas por uma DNN de multiplas entradas. A DNN é treinada para
combinar informacdes relacionadas ao compartilhamento para fazer previsées sobre
os dados mascarados que estdo sendo processados. Foram avaliadas muitas aborda-
gens de fusdo de dados para fornecer um guia de como a informagéo extraida pode ser
combinada de uma maneira 6tima. Para testar a efetividade da proposta, os autores
compararam o método proposto com medidas de EM multi-canal obtidas diretamente
da superficie de um die e do estado da arte de TAs. No total, o0 método proposto ne-
cessitou de 2750 tracos para alcancar sucesso em um ataque de primeira ordem em
uma implementagao segura do AES. Portanto, os resultados mostram uma vantagem
em relacdo ao numero de tracos necessarios para sucesso na recuperacao da chave
comparado aos profiled attacks do estado da arte. E destacado que foram obtidos
melhores resultados com MLP do que com CNN. Apesar de apresentar uma proposta
interessante, salienta-se que o método proposto nao superou TA quando se trata de
utilizar EM do die como vazamento. Também, os resultados mostram a quantidade de
tragos para um ranking<10 e ranking<2. Nao mostra quantos tragos foram necessarios
para ranking 0. A abordagem da referéncia (SPECHT et al., 2018) necessitou menos
tracos para chegar ao ranking<2 do que o proposto no artigo.

Zhang et al. (2020) apresentam um método SCA com aprendizado profundo multi-
label. O método baseia-se em uma modificacdo da camada de saida de uma rede
neural. Na classificacdo multi-label, cada traco do consumo no dataset de treino é
marcado com um conjunto de labels de bits, assim um grupo de probabilidades de
labels é predito para um traco de ataque. Os experimentos com a classificacao multi-
label sdo realizados com o datasetde benchmark ASCAD. Para uma comparacao justa
com os resultados do artigo original do (PROUFF et al., 2018) ASCAD, somente a ca-
mada de saida é alterada para poder ser ajustada a um modelo multi-label. Modelos
monobittambém sao testados. Os resultados mostram que M LP,,.,.»i: CONSEgue que-
brar todos os bits, exceto o bit1 quando os tragos estao alinhados. Quando os tragos
estdo desalinhados de 50 amostras s6 o bit7 foi quebrado e quando os tragos estao
desalinhados de 100 amostras nenhum bit foi quebrado. J& C N N,,,,..»i: CONSEQUE qUE-
brar todos os bits quando os tracos estao alinhados, mas nem todos quando os tragcos
estdo desalinhados. Entretanto, como mencionado no artigo, multi-label pode ser con-
siderado como um ensemble de varios monobits. Assim, o ensemble de MLP monobit
obtém melhores resultados que M LP,.;. O ensemble do CN N,,onopi: €X€CUta Muito
melhor que o ensemble M LP,,,nopit € C'N Nyest, € aproximadamente 150, 300, 500 tra-
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cOs sao necessarios respectivamente para quebrar o dataset ASCAD. M LP,,.iti—1abel
tem melhores resultados que M LP,.s;. CN Npusi—1a0er Obtém o melhor resultado e
somente 150, 250 e 350 tragos sdo necessarios para quebrar o ASCAD. O modelo
multi-label obtém desempenho semelhante ao conjunto ingénuo de modelos monobit
com apenas um modelo treinado. M LP,,..1i—1a0e; t€M um certo grau de degradacéao
de desempenho quando os tragos sao dessincronizados, enquanto C'N Nt —iaber t€M
um desempenho um pouco melhor. E é intrigante que M LP,,.iti—1abet © CN Noutti—iabel
obtenham o mesmo desempenho de ataque quando os tragos estdo alinhados. A
modificagdo da camada de saida das redes neurais para melhoria da eficiéncia do
SCA mostrou-se eficaz. Contudo, como mencionado pelos autores, o método apre-
sentado necessita ainda de otimizagcdes, como por exemplo, a inclusdo de uma etapa
de pré-processamento.

Uma estratégia interessante, e até onde se sabe, abordada pela primeira vez em
Perin; Wu; Picek (2021) no contexto de SCA, consiste em aplicar uma técnica de poda
(do inglés, pruning) para melhorar o desempenho de redes neurais no ataque. A ideia
central desta técnica é realizar um treinamento em uma rede neural relativamente
grande, com a qual obtém-se sucesso nos ataques a canais laterais. Em seguida,
aplica-se o processo de poda removendo a atividade de alguns pesos da rede. Neste
trabalho, os autores removem os pesos de menor valor, embora existam outras técni-
cas de poda que podem ser aplicadas em trabalhos futuros. Depois disso, a rede é
reinicializada com os mesmos pesos originais. Com este processo, os autores dizem
gue a rede reinicializada mostra desempenho igual ou, na maioria das vezes, superior
em comparagdo com a grande rede treinada. Como visto em (PERIN; WU; PICEK,
2021), outra opcéao de inicializagdo da rede podada pode ser através da escolha alea-
toria de valores, como visto na Figura 15.

O trabalho de Perin; Wu; Picek (2021) baseia-se na hip6tese do bilhete de loteria
(doinglés, Lotery Ticket Hypothesis), o qual assume que redes neurais profundas inici-
alizadas aleatoriamente contém sub-redes que, quando treinadas isoladamente (sem
considerar outras partes da rede), alcangam precisao de teste comparavel a rede ori-
ginal em um numero semelhante de iteracées. As sub-redes sao obtidas por poda
da rede original. Os autores de Frankle; Carbin (2018) observaram que a sub-rede
obtida apds a poda (com um nivel de esparsidade de P%) fornece desempenho su-
perior quando reinicializada com os pesos usados para inicializar os pesos originais.
Essas sub-redes de melhor desempenho sao entdo chamadas de tickets vencedores.
A esparsidade denota a porcentagem da rede removida (por exemplo, 90% de espar-
sidade em um MLP consistindo em uma camada oculta com 100 neurénios removeria
90 neurénios).

Sabe-se que o SCA baseado em aprendizado profundo requer, idealmente, a sele-
¢ao da menor arquitetura de rede neural possivel que forneca boa generalizagdo. Mo-
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Figura 15 — Procedimento de Poda para LTH. Fonte: (PERIN; WU; PICEK, 2021)

delos pequenos sao mais rapidos de treinar e mais faceis de interpretar. O desafio de
encontrar uma arquitetura pequena com bom desempenho pode crescer proporcional-
mente a dificuldade do conjunto de dados do canal lateral avaliado (desalinhamento,
ruido, contramedidas). No entanto, os tracos de canal lateral geralmente fornecem
uma relagdo sinal-ruido baixa e as técnicas de regularizacdo desempenham um papel
importante na capacidade de aprendizagem de vazamento. Os modelos pequenos
sdo autorregularizados, principalmente por oferecerem menos capacidade de overfit
ao conjunto de treinamento. De acordo com os autores, isso justifica a importancia
de encontrar bilhetes vencedores no SCA. Independentemente do conjunto de dados
avaliado, comecar a partir de um grande modelo de linha de base e aplicar a hipotese
do bilhete de loteria aumenta as chances de criar um modelo de rede neural pequeno
e eficiente.

Os autores enfatizam que a poda é conveniente para grandes redes neurais. En-
contrar redes eficientes e pequenas é mais dificil do que comegar com um modelo
grande e depois reduzi-lo. Neste artigo, foram consideradas arquiteturas de rede neu-
ral com até 1 milhdo de parametros treinaveis. Segundo os autores, a poda tem duas
vantagens principais para SCA:

i) Se for encontrado um modelo grande que generaliza bem, a poda favorece a
explicabilidade e a interpretabilidade.

i) A poda atua como um regularizador forte, o que € importante para conjuntos de
dados SCA pequenos e com ruido.
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Sao também discutidos resumidamente os limites que a poda e a hipétese do bi-
lhete de loteria oferecem em relacdo aos resultados e sua explicabilidade:

i) A poda permite fazer redes neurais menores com desempenho no nivel ou até
melhor do que redes neurais maiores.

i) A hipétese do bilhete de loteria pressupde que havera sub-redes menores e de
bom desempenho, os chamados bilhetes premiados

iii) No contexto de SCA, os tickets vencedores sao pequenas sub-redes com bom
desempenho de ataque, medido com GE e SR.

iv) A poda e o LTH ndo sdo métodos para fornecer explicabilidade. No entanto, um
modelo podado representa um pequeno modelo que favorece a explicabilidade (por
exemplo, técnicas de visualizacdo) e interpretabilidade (por exemplo, quais classes
sao melhor classificadas pelo modelo podado).

Neste estudo, foi investigado como a poda pode ser uma estratégia util ao usar
uma unica rede neural para atacar a chave inteira (e ndo apenas um unico byte de
chave como comumente relatado na literatura). Na verdade, os autores observaram
gue a remogao e a reinicializagdo provaram ser opgdes muito poderosas para ajustar a
rede neural a diferentes configuracdes. Sua investigacao experimental permite podar
até 90% dos pesos e ainda alcangar um bom desempenho de ataque. Assim, eles
conseguem atingir o mesmo desempenho de ataque para redes significativamente
menores (mais faceis de ajustar e mais rapidas de treinar). Para os experimentos 0s
autores consideraram o0 modelo de vazamento baseado no peso Hamming devido aos
datasets escolhidos (ASCAD; e CHES CTF 2018).

Com base nos experimentos realizados, os autores fornecem varias observagoes
gerais:

* Se 0 modelo de linha de base funcionar mal para um conjunto limitado de tragos
de ataque, a remocéao ainda pode melhorar o desempenho;

» Se a linha de base funciona bem e ndo acontece overfit, a poda mantém o de-
sempenho, mas produz redes menores;

» Se nao houver tragos de perfil suficientes para a capacidade do modelo, acon-
tece overfit e a poda pode ajudar a evitar isso;

* Mais tracos de criacdo de perfil melhora os resultados de poda, mas também
reduz as diferencas entre as técnicas de inicializacéo de peso;

» O procedimento de poda e reinicializagdo de peso funciona melhor, desde que
as arquiteturas de rede neural sejam grandes o suficiente para utilizar os tickets
vencedores;
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» A poda pode melhorar os resultados do ataque, conforme indicado por varias
métricas de desempenho de SCA;

* A poda representa uma opgao forte ao considerar um modelo de rede neural
treinado para um byte de chave a ser aplicado a outros bytes de chave.

Como trabalho futuro, os autores planejam considerar técnicas de poda mais so-
fisticadas. Finalmente, como discutido, a poda permite redes neurais menores e com
bom desempenho, mas néo fornece insights sobre a explicabilidade das redes neurais.
Pode ser interessante considerar varias técnicas de visualizagdo de caracteristicas
para avaliar as caracteristicas importantes antes e depois da poda.

A técnica apresentada por Perin; Wu; Picek (2021) é bastante popular na area
de inteligéncia artificial e traz muitos beneficios, como revisado acima. Portanto, sua
aplicacao aos side channel attacks pode culminar em redes neurais pequenas e efici-
entes, apontando uma ameaca aos dispositivos criptograficos. Aqui nesta Tese, foram
investigadas formas de realizar a poda, diferentes da aqui apresentada, como sera
visto em secdes sobsequentes. Pois percebeu-se aqui um caminho promissor a ser
trilhado com base nesse método.

4.4 Comparacao dos Trabalhos Relacionados

A Tabela 5 apresenta uma comparacao dos trabalhos relacionados que utilizam
técnicas de aprendizado de maquina e aprendizado profundo no contexto de SCAs.
Para cada um dos trabalhos foram elencadas: (i) as ferramentas utilizadas, (/i) quais
algoritmos de inteligéncia artificial foram aplicados, (iii) que conjuntos de dados fo-
ram usados, (iv) se o dispositivo atacado € dotado de contramedidas, (v) as etapas
de pré-processamento empregadas e (vi) que métricas de avaliacao foram aplicadas,
parametros estes que ajudaram na tomada de decisdo e o respectivo método a ser
aplicado.



Tabela 5 — Comparagéao entre os trabalhos relacionados.

Avaliacao do Ataque baseado em Aprendizado Profundo sob diferentes cenarios

Estudo Ferramenta(s) | Algoritmo(s) ML/DL | Datasel(s) Contramedida(s) Pré- Métrica(s)
Processamento
(WANG et al., 2020) N&o informado MLP e CNN Préprio Nao max_min scaling | Rank, GE e PGE
[0,1]
(WEISSBART; PICEK; | Keras CNN Préprio Nao PCA SR e acuracia
BATINA, 2019)
(HEUSER et al., 2017) | Nao informado NB, C4.5 e MLP Proprio Nao Nao Confusion Coefi-
ciente SR
(ZHANG et al., 2020) N&o informado DNN Proprio e DPA | RSM FFT Loss e GE
Contest v.4
(DAS et al., 2019) Keras com Ten- | DNN Préprio Nao Nao acuracia
sorFlow  como
backend
(XU et al., 2019) Nao informado CNN Préprio Nao PCA, LDA Rank
(BRISFORS; FORS- | N&o informado CNN Préprio Nao Nao Rank e GE
MARK; DUBROVA,
2021)
(MUKHERJEE, 2020) N&o informado LSTM Proprio Ocultagdo e Mascara- | Nao SR
mento
(KUBOTA et al., 2019) | Nao informado CNN Proprio RSM Extracdo de POls | Rank
(n&o explica)
(MAGHREBI, 2019) N&o informado CNN, MLP e LSTM Proprio shuffling e 1-amongst- | Nao Rank

N

€L




(ALIPOUR et al., 2020) | Keras MLP ASCAD e Préprio | Correlated Noise Ge- | Nao acuracia
neration para hiding
(?) Keras CNN Préprio jitter (RDI) Nao acuracia e GE
Comparacao entre Métodos de Ataque

(LERMAN; MARTINA- | Nao informado SVM, RF e MLP DPA Contest v.2 | Desalinhamento  nos | Nao SR

SEK; MARKOWITCH, e DPA Contest | tracos e RSM

2017) v.4

(CARLET et al.,, 2016) | Keras e Sci-Kit | RF, Autoencoder, CNN, | DPA Contestv.2 | mascaramento e hiding | PCA GE

Learn MLP e LSTM

(ROBISSOUT et al., | Nao informado CN Npest ASCAD mascaramento Nao O artigo baseia-

2021) se em criar
uma métrica
adequada  aos
SCA.

Melhoria da Eficiéncia do Ataque
(MUKHTAR,; KONG, | Weka RF, BN, SVM e MLP Préprio Nao PCA e extracdo | acuracia
2019) de caracteristicas
no dominio da
frequencia
(WEISSBART, 2020) Keras MLP ASCAD e | Random Delay e mas- | DoM GE e acuracia
AESRD caramento
(LI; KRCEK; PERIN, | Keras com Ten- | CNN DPA Contest | Random Delay e mas- | Nao GE
2020) sorFlow  como v.4, ASCAD e | caramento
backend AESRD




(PESSL; MANGARD, | Nao informado Um novo algoritmo ba- | Préprio shuffling Nao Complexidade
2016) seado em LPN do ataque, Meta-
probabilidade e
Taxa de ocorrén-
cia
(OZGEN; PAPACHRIS- | Matlab NB, kNN e SVM Préprio Nao Nao SR
TODOULOU; BATINA,
2016)
(PICEK; HEUSER; JO- | Python RF, NB, kNN e MLP DPA Contest | Random Delay Nao GE
VIC, 2018) v4, AES_HD,
AES_RD e
Random  Delay
Dataset
(VAN DER VALK et al., | Nao informado MLP e CNN DPA Contest | Random Delay e mas- | Nao GE
2020) vd4, AFES HD, | caramento
AES_RD e
ASCAD
(YU; CHEN, 2018) Nao informado DNN Préprio DVS Utilizar o ruido | Coeficiente  de
de EM para filtrar | Correlacéo
0s tracos de con-
sumo
(HETTWER; GEHRER; | Keras e Sci-Kit | CNN DPA Contest v.2 | RSM e shuffling PCA para atacar | KGE

GUNEYSU, 2019)

Learn

e DPA Contest
v.4

TA

Gl



(HETTWER; GEHRER; | Nao informado MLP e DNN Proprio mascaramento médiacomum fa- | GE
GUNEYSU, 2020) tor de 250 e PCA
no TA

(ZHANG et al., 2020) Keras com Ten- | MLP e CNN ASCAD mascaramento e desa- | Nao GE

sorFlow  como linhamento

backend
(PERIN; WU; PICEK, | Nao informado MLP e CNN ASCAD e | mascaramento Nao GE
2021) CHESS CTF

2018

9.
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4.5 Consideracoes sobre o Capitulo

Este Capitulo apresentou o processo de Revisdo Sistematica da Literatura reali-
zada para esta Tese, com o intuito de investigar o estado da arte de trabalhos que
empregam Aprendizado Profundo em SCAs. Depois disso, foi feita uma extensa re-
visdo de trabalhos divididos em categorias tais como aplicacdo de DL em SCA sob
diferentes cenarios, comparagdo entre métodos de ataque baseados em DL e me-
lhorias na eficiéncia do ataque proposto. Destas, a ultima categoria recebe especial
destaque por estarem relacionados com o escopo desta proposta.

Através deste Capitulo, foi possivel confirmar a eficiéncia das redes neurais quando
aplicadas em SCAs para atacar dispositivos dotados de contramedidas. Descobriu-se
uma maior dificuldade na realizacao de ataques em dispositivos dotados de contrame-
didas temporais, como por exemplo a insercao de atrasos aleatérios. Contudo, um tipo
especifico de rede neural, a CNN mostrou-se eficiente ao atacar até mesmo tais dis-
positivos. Porém, o sucesso das CNNs se da as custas de um esfor¢o computacional
excessivo. Por isso, esta Tese propde o uso de métodos de reducao do tamanho das
redes neurais, mais especificamente as técnicas de poda (em inglés pruning), para
gue se obtenha sucesso aos ataques por canais laterais baseados em redes neurais,
sem a necessidade de um esforco computacional excessivo.



5 TECNICAS DE PODA

No Capitulo 4 foram resgatados da literatura diversos trabalhos que mostram a
larga aplicacdo de algoritmos de aprendizado profundo aplicados a SCAs. Isto evi-
dencia ainda mais o fato de ser interessante apontar métodos para a reducao de tais
redes. Portanto, neste Capitulo serd apresentado um apanhado sobre os principais
métodos de poda encontrados na literatura até a data de escrita desta Tese. Tais tra-
balhos, serviram como base para o desenvolvimento do trabalho aqui proposto. Para
a busca dos trabalhos relacionados a este assunto, foi seguida a mesma metodologia
de RSL descrita na Secéo 4.1.

Nesta etapa foram analisados desde trabalhos que realizam a poda de pesos (HAN
et al., 2015) e (GUO; YAO; CHEN, 2016), e também trabalhos propostos especifi-
camente para a remoc¢ao de filtros de camadas convolucionais de CNNs como em
(POLYAK; WOLF, 2015), (HE; ZHANG; SUN, 2017) e (YAN et al., 2021). Além disso,
buscou-se trabalhos que utilizassem uma abordagem mais geral, ou seja, estratégias
que fazem a poda em neurbnios (sejam filtros de camadas convolucionais (CNNSs),
ou até mesmo neurdnios de camadas densas encontradas tanto em CNNs como em
redes MLP).

Neste contexto temos o trabalho de Kim; Kwok (2019) que apresenta um método
destinado a poda de filtros, mas que pode ser adaptado para neurénios de camadas
densas. O inconveniente € que além de apresentar um método iterativo, Kim et al.,
realizam a poda de forma suave, em que 0s neurdnios podem até mesmo ser reesta-
belecidos. Isso torna 0 método bastante custoso.

Outro trabalho encontrado na literatura, que apresenta a poda de neurdnios é o
apresentado por Fan; Tang; Ma (2022). Neste trabalho, os autores utilizam a Norma
L1, que se baseia na soma do valor absoluto dos pesos do neurbénio, como métrica
para selecionar os neurbnios a serem removidos. Como mostraremos em Nnossos
experimentos, essa métrica pode ndo ser interessante em alguns casos. Além disso,
o método empregado ¢ iterativo, necessitando de muitos treinamentos da rede para
atingir o objetivo.

Outros exemplos de trabalhos que empregam a poda sobre neurénios foram encon-
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trados: (LAURET; FOCK; MARA, 2006), (BABAEIZADEH; SMARAGDIS; CAMPBELL,
2016), (TAKEDA; NAKADAI; KOMATANI, 2017) e (EVANS, 2018). Dentre os trabalhos
aqui revisados, o trabalho apresentado por (HU et al., 2016) mostrou-se bastante inte-
ressante, apesar de tratar-se de um método iterativo, como outros encontrados nesta
RSL. O método proposto neste trabalho, consiste na realizacdo da poda de neur6-
nios baseado na sua taxa de ativagao, descrita através da Equacéo 30. Esta métrica
pareceu-nos bastante adequada para representar a importancia dos neurénios dentro
da rede. Por esta razao, o trabalho de Hu et al. (2016) foi utilizado como referéncia
para o desenvolvimento da presente Tese, como veremos em se¢des subsequentes.

5.1 Técnicas de Reducao de Redes Neurais através de Poda

Nesta Secao sao apresentados trabalhos relacionados a técnicas de poda (do in-
glés, pruning). Entretanto, antes de iniciar a apresentagcdo desses trabalhos, seria
interessante estabelecer alguns conceitos relativos a poda em redes neurais artifici-
ais. Inicialmente, é interessante saber que a poda pode ser realizada com base em
diferentes elementos dentro das redes neurais. O termo utilizado para definir quais
elementos da rede neural serdo o foco da poda, chama-se granularidade (KOLLEK
et al., 2021). Assim, o alvo da poda podem ser os pesos da rede (conexdes entre 0s
neurdnios), os canais (neurdnios de camadas densas, ou filtros das camadas convo-
lucionais), ou até mesmo camadas inteiras. Outro aspecto importante a considerar
quando estamos nos referindo a técnicas de poda é se iremos proceder com uma
poda estruturada, ou nao-estruturada. Kollek et al. (2021) além de outros trabalhos
encontrados na literatura nos traz esses conceitos:

A poda nao-estruturada remove os pesos individuais, baseada em determinados
critérios. Existem inUmeros critérios encontrados na literatura;

» A poda estruturada, conta com a remoc¢ao de conjuntos de pesos, como por
exemplo, a remocao de neurbnios. Quando removemos um neurbnio da rede
neural, estamos removendo muitos pesos de uma sé vez, pois este neur6nio pos-
suia interconexdes com neurbnios de suas camadas adjacentes. Mais neurénios
sdo removidos, quando abordamos a poda estruturada com foco nas camadas
da rede.

Outra caracteristica que deve-se observar quanto ao processo de poda, diz res-
peito ao processo em si. Portanto, se a poda é realizada através de um procedimento
iterativo no qual uma determinada quantidade de neurdnios é removida a cada itera-
¢ao, ou se todos 0s neur6nios sdo removidos de uma unica vez (essa remog¢ao em
uma unica etapa é também chamada de abordagem One-Shot). Como pode-se per-
ceber, 0 processo iterativo necessita de sucessivos retreinamentos da rede. Assim,
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neurdnios sao removidos em um passo, e no passo seguinte a rede é treinada. Em
seguida uma nova remocgao é realizada e a rede é novamente treinada, e assim suces-
sivamente. E possivel notar que o processo iterativo € muito mais custoso em termos
de tempo de processamento, sendo portanto, recomendavel evita-lo. A partir desses
conceitos, pode-se apresentar os trabalhos encontrados na literatura relacionados a
técnicas de poda.

Han et al. (2015) apresentam um método que reduz tanto o armazenamento de
memoria (que figura um dos gargalos do uso de redes neurais), quanto o esforco
computacional requeridos por uma rede neural em ordem de magnitude sem afetar
sua acuracia por aprender somente as conexdes importantes. Conforme destacam os
autores, as redes neurais geralmente sao super-parametrizadas e existe uma redun-
dancia significativa dentro dos seus modelos. O método proposto realiza a poda de
conexdes redundantes usando um método de trés passos. Primeiro, a rede € treinada
para aprender quais conexdes sao importantes. Depois, as conexdes ndo-importantes
séo podadas. A poda dos pesos se da através de limiar. Dessa forma, pesos com valor
menor do que o limiar, sdo removidos. Finalmente, a rede resultante é retreinada para
um ajuste-fino dos pesos das conexdes restantes. Através desse processo, que pode
ser repetido, 0s pesos menos importantes sao podados, transformando uma camada
totalmente conectada em uma camada esparsa. Este trabalho trata apenas a poda
de pesos (conexdes) da rede. Isso pode tornar o processo menos eficiente frente a
outras técnicas que utilizam uma granularidade maior, como por exemplo neurénios
ou até mesmo camadas inteiras. Também por se tratar de um método iterativo, pode
se tornar altamente custoso, visto que conexdes (pesos) individuais sdo removidos a
cada iteracao.

Guo; Yao; Chen (2016) propéem um método que realiza poda de conexdes jun-
tamente com emendas de conexdes (restauracao de conexdes) para evitar a poda
de conexdes erradas (que diminuem a acuracia da rede). Os processos de poda e
emenda acontecem de uma forma ciclica, ou seja, acontecem constantemente den-
tro do processo inteiro. Os resultados mostram que sem qualquer perda de precisao,
o método apresentado pode comprimir eficientemente o nimero de parametros em
LeNet-5 e AlexNet por um fator de 108x e 17,7x respectivamente. Isso, segundo
0s autores, supera o0 método de poda do estado da arte com margem consideravel.
Apesar de aparentemente atraente, 0 método aqui apresentado pode ser superado
quando aplicamos a poda em granularidades maiores, como por exemplo a canais
(neurénios), uma vez que muitas conexdes (pesos) sdo eliminadas de uma Unica vez.
Além disso, por realizar remocdes de pesos individuais a cada iteracao, esse método
torna-se excessivamente custoso comparado a outras técnicas que aplicam maior gra-
nularidade nas remogoes.

O artigo apresentado por Polyak; Wolf (2015) traz como estudo de caso o pro-
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blema encontrado para realizar a biometria, com hardware limitado. Sao propostos
dois novos métodos de compressdo: um baseado em eliminar canais menos ativos
e outro em acoplar poda com uso repetido de elementos ja computados. Os autores
destacam que a poda de um canal inteiro € uma ideia atraente, uma vez que isso leva
diretamente a economia de tempo de execugcao em quase todas as arquiteturas razoa-
veis. A escolha do neurdnio a ser removido é feita através da medicao da variancia da
ativacdo da saida do neurdnio em questao. Através do método proposto, os autores
destacam que foi alcangada uma reducéo de 2.65 vezes no tempo de execugao com
uma perda de acuracia muito moderada. E mencionado que o método proposto ndo
altera a arquitetura da rede original. O método aqui apresentado é bastante interes-
sante, pois visa a remog¢ao de neurdnios, o que € mais eficiente do que remover pesos
individualmente. A métrica de escolha do neur6nio a ser removido também é muito
pertinente, uma vez que deriva da ativacdo dos neurdnios. Contudo, esse trabalho
visa a remogao de filtros ou camadas de filtro inteiras. Como o método baseia-se na
informacgéo da saida dos filtros, ou mapas de caracteristicas, seria dificil a conversdo
desta técnica para torna-la mais abrangente, como por exemplo, lidar com a remogéo
de neurbnios de camadas densas.

Um novo método de poda de neurdnios para aceleragcdo de CNNs € apresentado
por He; Zhang; Sun (2017). E proposto um algoritmo iterativo de dois passos para o
treinamento de uma CNN. Esse algoritmo efetivamente poda cada camada com uma
selecao de neurdnios baseada em regressao LASSO (TIBSHIRANI, 1996) e em least
square reconstruction. Esse algoritmo é generalizado para casos multicamadas e mul-
tiramos. Os autores mencionam que esse método reduz o erro acumulado € melhora
a compatibilidade com varias arquiteturas. A rede VGG-16 foi utilizada como estudo
de caso, e os resultados mostram um aumento na velocidade da rede de até 5x com
apenas 0.3% de aumento nos erros. Os autores destacam ainda que, o método por
eles proposto é capaz de acelerar redes modernas como ResNet, Xception e sofrer
somente 1.4%, 1.0% de perda de acuracia respectivamente, com um aumento de 2x
na velocidade das redes. Em He; Zhang; Sun (2017) os autores utilizam uma aborda-
gem que explora redundancia dentro do mapa de caracteristicas gerado pelos filtros
da rede. Entretanto, apesar de ser um método interessante, esta voltado exclusiva-
mente a remocao de filtros das camadas convolucionais das CNNs. Isso restringe o
trabalho a aplicacbes mais gerais, como reducao de MLPs, por exemplo.

No trabalho apresentado em (KIM; KWOK, 2019) os autores propéem uma abor-
dagem que realiza a poda de uma maneira suave. Esse método, diferente de outros
encontrados na literatura, permite recuperar componentes anteriormente podados. A
proposta consiste em uma nova técnica para a poda de filtros chamada Dynamic Unit
Surgery - DUS. Com esse método os autores dizem reduzir a degradacao e o tempo
de poda/ajuste fino através de dois mecanismos: (1) permitir que 0s componentes
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podados se recuperem durante o ajuste fino e (2) podar cada componente de forma
continuamente descendente, em vez de eliminar abruptamente o componente. Os re-
sultados apontam que o método foi aplicado a rede VGG-16 (com o dataset CIFAR10),
e a rede resultante ficou com apenas 5% dos elementos da rede original e 23% dos
seus FLOPs (Float Points Operations), enquanto a taxa de erro alcangou 6.65% sem
degradacéo da rede original. Embora o0 método apresentado seja aplicado unicamente
a filtros das camadas convolucionais das CNNs, este poderia ser aplicado a neurénios
de camadas densas, aumentando sua abrangéncia. Entretanto, o método ¢ iterativo,
e ainda mais, realiza a poda dos filtros de forma suave, podendo 0s mesmos serem
recuperados, 0 que torna o método mais custoso em termos de tempo de processa-
mento.

Chen et al. (2021) propdem um método dindmico de poda, o qual poda canais
nao-importantes na fase inicial do treinamento. Contudo, ao invés de utilizar critérios
indiretos como peso normalizado, soma absoluta dos pesos e erro de reconstrugao
para guiar a poda, os autores criaram um critério diretamente relacionado com a acu-
racia final de uma rede para avaliar a importancia de cada canal. Assim, uma estrutura
foi projetada para ativar ou desativar aleatoriamente cada canal para que as alteracoes
de precisao condicional (do inglés, Conditional Accuracy Changes - CACs) pudessem
ser estimadas sob a condi¢cdo de cada canal desativado. Em cada iteracdo do mé-
todo 5% dos canais foi desabilitado por vez. Os resultados em varios conjuntos de
dados (CIFAR, ImageNet e MNIST) para redes com varios tipos de arquitetura (ou
seja, ResNet, VGGNet e MLP) demonstram a eficacia do método de poda de canais.
Sem perda de precisdo em comparagao com a rede de base, mais de 30% e 40% de
FLOPs para multiplos ResNet e VGGNet no CIFAR, respectivamente, mais de 10% de
FLOPs para ResNet-18 no ImageNet, e 80% de FLOPs para MLP no MNIST podem
ser podados pelo método de poda de canal proposto. Como a acuracia da rede deve
ser aferida a cada iteracdo, a rede deve ser treinada pelo menos vinte vezes para que
se saiba quais neurbnios devem ser podados. Isso tende a tornar o processo muito
custos. Além do mais, no contexto de SCA a acuracia nao é a métrica mais adequada
para definir o bom funcionamento de uma rede neural.

Fan; Tang; Ma (2022) adaptam o método de channel pruning as caracteristicas da
unidade de convolugao separavel em profundidade e suas variantes. Segundo os au-
tores, usando a configuracdo de taxa de poda unida, a esparsidade adicional contida,
e certo pré-processamento no dataset, os experimentos mostram uma acuracia mais
alta no dataset CIFAR-10 em alguns casos. Inicialmente, o modelo € pré-treinado. Em
seguida, o processo de selecdo dos neurbnios nao importantes, através da norma L1,
e sua remocao é realizada L vezes. Por fim um ajuste fino é realizado para recuperar
a acuracia e o modelo podado esté disponivel. Este método consiste em método itera-
tivo, o que por si sé é mais custoso, devido aos sucessivos treinamentos necessarios
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para colocar o processo em funcionamento. Além disso, a métrica escolhida para se-
lecdo dos neurdnios a serem removidos poderia ser substituida por uma métrica que
refletisse mais a importancia de cada neurénio, como por exemplo, sua ativacao.

O trabalho apresentado por Yan et al. (2021) realiza a poda dos filiros das cama-
das convolucionais das CNNs. Os autores propéem um algoritmo de poda de canal
através de varios critérios baseado na dependéncia de peso, Channel Pruning Method
via Multi-Criteria - CPMC, que pode comprimir um modelo pré-treinado diretamente. O
CPMC define a importancia do canal em trés aspectos, incluindo seu valor de peso as-
sociado, custo computacional e quantidade de parametros. De acordo com os autores,
(YAN et al., 2021) utiliza como critérios para formar o multi-criteria tanto as entradas
como as saidas dos filtros a serem removidos, 0 que restringe o uso desse método
exclusivamente a filtros das camadas convolucionais das CNNs. Além do mais, para
que possamos obter melhores resultados, existe a possibilidade de tornarmos o mé-
todo iterativo com etapas de poda e treino, o que torna o método bastante custoso
computacionalmente.

Lauret; Fock; Mara (2006), propde um novo algoritmo de poda para obter o niumero
ideal de unidades ocultas de uma Unica camada de uma rede neural totalmente co-
nectada (NN). A técnica conta com uma analise global de sensibilidade da producéo
do modelo. A relevancia dos nds ocultos € determinada pela andlise da decomposicéo
de Fourier da variancia da saida do modelo. Cada unidade oculta recebe uma razao
(a fracao de variancia que a unidade responde) que da sua classificacao. Essa infor-
magcao quantitativa, portanto, leva a uma sugestao das unidades mais favoraveis para
eliminar. Resultados experimentais sugerem que o método pode ser visto como uma
ferramenta eficaz, capaz de controlar a complexidade em NNs. O método apresen-
tado neste trabalho é iterativo. Assim, além de muitos retreinamentos, é necessario
calcular a Transformada de Fourier para cada nd da rede, o que é custoso computa-
cionalmente, inviabilizando o uso deste método em muitos casos. Com este método
nos experimentos, sdo podados mais de 85% dos parametros mantendo-se a acu-
racia. (LAURET; FOCK; MARA, 2006) traz ideias interessantes sobre como realizar
a poda de neurbnios de camadas totalmente conectadas, baseado na sua atividade.
Entretanto, nesta abordagem o processo de poda e retreinamento da rede é repetido
até que a acuracia da rede caia abaixo de um determinado limiar, fazendo com que o
método se torne custoso para alcancar a rede podada.

Babaeizadeh; Smaragdis; Campbell (2016) propdem o NoiseQOut, um algoritmo de
poda totalmente automatizado baseado na correlagéo entre ativagdes de neurénios
nas camadas ocultas. E mostrado que adicionar neurdnios de saida adicionais com
alvos totalmente aleatérios resulta em maior correlacdo entre neurdnios, o que torna
a poda por NoiseQOut ainda mais eficaz. O método foi testado em varias redes e
conjuntos de dados. Os experimentos apresentam altas taxas de poda, mantendo a
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acuracia da rede original.

Hu et al. (2016) mostram que, observando uma NN, € possivel perceber que uma
parcela significativa de seus neurdnios tem sua saida, na maioria das vezes, igual a
zero, independentemente dos valores de entrada. Esses neur6nios sao redundantes e
podem ser removidos sem afetar diretamente a eficiéncia da rede, conforme descrito
na Fig. 16, onde podemos ver que a remogdo do neurénio selecionado se traduz no
corte de varios pesos simultaneamente.

o O O O © 0 0 O
o T 0 @ © W
Figura 16 — Rede Neural antes da poda (esquerda) e depois da poda (direita). Fonte: (HU
et al., 2016)

Para determinar a taxa de ativacao zero, os autores definiram uma métrica cha-
mada Porcentagem Média de Zeros (do inglés, Average Percentage of Zero - APoZ).
Esta métrica é calculada de acordo com a Equacéao 30.

N& L A6
J
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APoZY) = APoZ(0W) = (30)

Onde O denota a saida do c-ésimo canal na i-ésima camada, f (.) serd’1’se o
neurdnio foi ativado e '0’ para o contrario, M denota a dimensao do mapa de caracte-
risticas de saida de OY” e N denota o nimero total de exemplos de validagédo. Depois
de identificar neurdnios com APoZ mais alto, estes sdo removidos.

O método proposto por Hu et al. (2016) € composto por trés etapas, conforme ve-
mos na Figura 16. Assim, primeiro a rede € treinada sob o processo convencional e 0
nuamero de neurénios em cada camada € configurado empiricamente. Em seguida, a
rede é treinada em um grande conjunto de dados de validacao para obter o APoZ de
cada neur6nio. Neurénios com APoZ alto sdo podados de acordo com certos critérios.
As conexdes de e para o neurbnio sdo removidas quando um neurénio é podado (ver
Figura 16). Apds a poda do neurdnio, a rede podada é inicializada usando os pesos
antes da poda. A rede podada exibe algum nivel de queda de desempenho. Assim,
na etapa final, ela € treinada novamente para fortalecer os neurénios restantes, a fim
de melhorar o desempenho da rede podada. Os autores mencionam ainda que a inici-
alizacao dos pesos é necessaria para que a rede obtenha o mesmo desempenho que
tinha antes da poda. Se uma rede podada € treinada a partir do zero, percebe-se que
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ela contém maior porcentagem de neurdnios de ativacao zero do que a contraparte
com inicializagdo de peso. Isso significa que uma rede treinada novamente sem inicia-
lizacdo de peso € muito menos eficiente. Como resultados, os autores destacam que
seu método reduz a quantidade de parametros das redes neurais entre 2 e 3 vezes.

Embora os resultados, tanto com relagédo a acuracia quanto reducao da quantidade
de parametros da rede, sejam bastante satisfatérios, trata-se de um método iterativo e,
portanto, custoso em termos de tempo e esforco computacional. Assim, seria interes-
sante testar uma versdo One-Shot desse método, evitando multiplos retreinamentos.

Takeda; Nakadai; Komatani (2017) apresenta uma poda de nds para um modelo
acustico baseado em redes neurais. Uma fungéo é definida para medir a importancia
de cada né da rede, sendo 0s n6s menos importantes removidos. A funcao calcula
a entropia de atividade de cada né para descobrir os nos cuja saida ndo muda. Os
autores introduzem a entropia de pesos de cada nd para considerar o numero de
pesos e seus padrdes em cada n6. Como o niumero de pesos e os padrdes diferem
em cada camada, a importancia do n6é também deve ser medida usando 0s pesos
relacionados ao no alvo. Os autores relatam os resultados experimentais mostrando
que o método de poda proposto reduziu com sucesso 0 numero de parametros em
cerca de 6% sem qualquer perda de precisdo em comparagdao com uma funcao score
baseada apenas na entropia da atividade do n6. A ativacdo dos neurdnios € uma
meétrica bastante eficaz para a definicao de sua importancia. Entretanto, este trabalho
apresenta baixa reducado da quantidade de parametros em relacdo a linha de base.
Parece ser mais interessante utilizar uma métrica que represente mais diretamente a
ativacao dos neurénios para realizar a selecao de quais devem ser removidos.

Evans (2018) realiza uma poda de nés nas camadas totalmente conectadas (batch
normalization) de uma CNN. Isso é feito através de um método chamado pruning by
distinctiveness. Esta técnica calcula o angulo entre os vetores de ativacao de pares
de unidades e combina unidades que sdo consideradas nao distintas ou exclui unida-
des que sao consideradas opostas ou complementares. Como resultado, os autores
dizem ter conseguido 94.52% (contra os 94.25% da linha de base) de acuracia na
classificagdo utilizando o dataset EMNIST com uma redugéo de 12% no tamanho das
camadas totalmente conectadas da rede. Aqui também é apresentada baixa reducao
da rede neural com relacao a linha de base. Além disso, conforme relatam os autores,
0 passo de poda leva muito tempo para ser executado, devido ao célculo dos angulos
vetoriais para cada par possivel de unidades. A medida que o nimero de neurdnios
ocultos cresce, o tempo necessario para calcular os angulos cresce (na melhor das
hipéteses) exponencialmente, o que torna essa técnica bastante lenta para um grande
namero de neurénios ocultos. Também, os angulos calculados sao sensiveis ao ponto
em que se escolhe medir. Embora seja despendido esforco para escolher um ponto
intermediario valido, é dificil comparar os resultados alcangados nesses limiares com
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outros estudos, a menos que o angulo seja medido a partir da média das ativacoes.



Tabela 6 — Comparativo entre estudos sobre reducao de redes neurais.

Trabalho

Granularidade

Métrica de selecao
dos neuronios a re-
mover

Método iterativo —
Necessita retreina-
mentos

Desvantagens

(HU et al., 2016) Pesos Limiar Sim Método iterativo baseado na remocao de Pe-
sos. E dificil determinar o valor correto para o
Limiar utilizado como parametro para remogao

dos Pesos.
(GUO; YAO; CHEN, | Pesos Limiar Sim Método iterativo baseado na remocao de Pe-
2016) sos. E dificil determinar o valor correto para o
Limiar utilizado como parametro para remogao

dos Pesos.
(POLYAK; WOLF, | Filtros (neurbnios | Variancia de Ativagao | Sim O método baseia-se na informagao da saida
2015) de camadas con- | da Saida (filtro) e Va- dos filtros (mapas de caracteristicas). As-
volucionais) riancia da Saida (ca- sim, esse método é limitado, pois ndo remove
mada) neurdnios de camadas densas, fazendo com

que a redugao nao seja maxima.

(HE; ZHANG; SUN, | Filtros Andlise dos mapas de | Sim Esse trabalho utiliza a redundancia dentro do

2017)

caracteristicas gerados
pelos filtros

mapa de caracteristicas gerado pelos filtros da
rede como parametro de selecao dos filtros a
serem removidos. Ou seja, esta voltado exclu-
sivamente a remocgao de filtros das camadas
convolucionais das CNNs. Isso restringe o tra-
balho a aplicac6es mais gerais, como reducao
de MLPs por exemplo.

/8



(KIM; KWOK, 2019)

Filtros

Fator de Escala de Nor-
malizagdo em Lote

Sim

O método foi aplicado a filtros, mas poderia ser
aplicado também a neurénios de Camadas To-
talmente Conectadas. Contudo, o método é ite-
rativo. E ainda mais, realiza a poda dos filtros
de forma suave, podendo 0s mesmaos serem re-
cuperados, o que torna o0 método mais custoso
em termos de tempo de processamento.

(CHEN et al., 2021)

Neurbnios

Alteragbes de preciséo
condicionais

Sim

A acuréacia da rede é aferida a cada iteracao.
Assim, a rede deve ser treinada muitas vezes
para que se descubra quais neurdnios devem
ser podados. Isso tende a tornar o processo
muito custos. Além do mais, no contexto de
SCA a acuréacia nao é a métrica mais adequada
para definir o bom funcionamento de uma rede

neural.

(FAN;
2022)

TANG;

MA,

Neurénios

Norma L1

Sim

O método é iterativo, necessitando de muitos
retreinamentos da rede. Além disso, 0 método
utilizado para selegédo dos neurbnios poderia
ser mais préximo a sua utilidade na rede, como

por exemplo, sua ativagao.
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(YAN et al., 2021)

Filtros

Multi-critérios

Sim

O método utiliza como critérios para formar o
multi-criteria, tanto as entradas como as saidas
dos filtros a serem removidos, 0 que restringe 0
uso desse método exclusivamente a filtros das
camadas convolucionais das CNNs. Além do
mais, para que possamos obter melhores re-
sultados, existe a possibilidade de tornarmos o
método iterativo com etapas de poda e treino.
O que torna o método bastante custoso com-
putacionalmente.

(LAURET; FOCK;
MARA, 2006)

Neurénios

Andlise da decomposi-
¢ao de Fourier da vari-
ancia da saida do mo-
delo.

Sim

O método apresentado neste trabalho é itera-
tivo. Assim, além de muitos retreinamentos, é
necessario calcular a Transformada de Fourier
para cada n6 da rede, o0 que é custoso compu-
tacionalmente, inviabilizando o uso deste mé-
todo em muitos casos.

(BABAEIZADEH; SMA-
RAGDIS; CAMPBELL,
2016)

Neurbnios

Correlagao entre ativa-
¢des de neurbnios nas
camadas ocultas

Sim

O processo de poda e retreinamento da rede €
repetido até que a acuricia da rede caia abaixo
de um determinado limiar. Fazendo com que o
método se torne custoso para alcangar a rede
podada. Além disso, monitorar a acurécia pode
nao ser a melhor forma de avaliar uma rede no
contexto de SCA.

68



(HU et al., 2016)

Neurbnios

Ativacao

Sim

Trata-se de um método iterativo e, portanto,
custoso em termos de tempo e esfor¢co compu-
tacional. Assim, seria interessante testar uma
versao One-Shot desse método, evitando mal-
tiplos retreinamentos.

(TAKEDA; NAKADAI,
KOMATANI, 2017)

Neurbnios

Entropia de Atividade

Sim/N&o

Este trabalho apresenta baixa redugéo (ape-
nas 6%) em relagdo a linha de base. Parece
ser mais interessante utilizar uma métrica que
represente mais diretamente a ativacdo dos
neurdnios para realizar a selecao de quais de-
vem ser removidos.
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(EVANS, 2018)

Neurbnios

Angulo entre os vetores
de ativacao de pares de
neurdnios

Sim

Baixa reducédo da rede neural com relagédo a
linha de base. A medida que o nimero de
neurdnios ocultos cresce, 0 tempo necessario
para calcular os dngulos cresce (na melhor das
hipéteses) exponencialmente, o que torna essa
técnica bastante lenta para um grande numero
de neurdnios ocultos. Os angulos calculados
sdo sensiveis ao ponto em que se escolhe me-
dir. Embora seja despendido um esforgo para
escolher um ponto intermediario valido, é difi-
cil comparar os resultados alcangados nesses
limiares com outros estudos, a menos que o
angulo seja medido a partir da média das ati-
vacoes.

16
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5.2 Consideracoes sobre o Capitulo

Neste Capitulo de revisao da literatura, foram exploradas diversas técnicas de poda
aplicadas em redes neurais, com um foco particular na analise comparativa entre os
estudos identificados. Esta analise comparativa foi essencial para identificar padrdes,
assim como lacunas nos trabalhos do estado da arte, fornecendo uma base para a
pesquisa aqui desenvolvida.

Na Tabela 6, apresentamos um resumo dos principais estudos selecionados, des-
tacando suas abordagens em relacdo a granularidade da poda, métrica de selecao
de neurbnios e natureza iterativa do método de poda. Esta Tabela oferece uma visao
panoramica das variagcdes nas abordagens adotadas pelos estudos revisados. Nota-
se que a granularidade da poda varia entre neurdnios, pesos e camadas, refletindo
diferentes niveis de eficiéncia entre as técnicas abordadas. A métrica de selecao de
neurdnios a serem podados varia desde critérios baseados em magnitude até méto-
dos mais sofisticados, como a taxa de ativagao.

Nesta Tese, buscamos encontrar um método eficiente tanto na reducéao da rede
neural ao qual € aplicado, como também quanto ao esforco computacional para re-
alizar a tarefa de reducédo das redes. Assim, trabalhos que aplicam a poda sobre os
pesos da rede podem néo ser tao eficientes, pois mesmo pesos com alto valor de mag-
nitude a principio poderiam ser removidos se forem constituintes de neurénios menos
ativos dentro da rede. Da mesma forma, procuramos apresentar uma abordagem
mais abrangente. Portanto, trabalhos que apresentam técnicas aplicaveis a somente
um tipo de né da rede, como filtros por exemplo, ndo se enquadram adequadamente
ao que buscamos. Como buscamos também a eficiéncia do processo de reducao das
redes, métodos iterativos, se possivel, sdo evitados, por serem menos eficientes, de-
vido aos muitos retreinamentos para termos a rede final reduzida. Dentre os estudos
revisados, destacamos o trabalho apresentado por Hu et al. (2016), que apesar de se
tratar de um método iterativo, apresenta caracteristicas buscadas. Assim, considera-
mMos uma op¢ao interessante, a busca por um método baseado no trabalho de Hu et
al. com uma abordagem One-Shot, evitando assim, os multiplos ciclos de treinamento
e remogao inerentes ao processo iterativo.



6 METODO PROPOSTO E EXPERIMENTOS REALIZADOS

Este Capitulo apresenta a estratégia de reducao de redes neurais aplicadas no
ambito dos SCAs, proposta nesta Tese. Também sdo apresentados os experimen-
tos realizados com o intuito de comprovar o funcionamento e eficiéncia do método
proposto, bem como os setups utilizados para implementacao destes experimentos.
Como veremos, foram realizados experimentos com as principais redes neurais apli-
cadas a SCA encontradas na literatura. Além disso, € apresentado o dataset utilizado
como entrada para as redes neurais testadas aqui. Trata-se de um dataset largamente
utilizado nos trabalhos relacionados a estudos envolvendo aprendizado profundo apli-
cado a SCA.

6.1 Método Proposto

Com base na RSL apresentada na Secao 5.1 foi possivel elaborar uma estratégia
baseada em técnicas de poda que se adequasse a SCAs. Assim, o objetivo desta
Tese consiste em demonstrar que as redes neurais empregadas no ambito dos ata-
qgues a canais laterais podem ter seu tamanho reduzido, e por consequéncia, ter me-
nor consumo de recursos como uso de memoria e tempo de treinamento. Com isso,
pretende-se mostrar uma potencial ampliacdo da ameaca representada pelos ataques
conhecidos como DL-SCAs. A possibilidade de realizar ataques com menor custo
computacional, ou seja, com menor exigéncia de memoria e tempo de treinamento,
pode contribuir para a ampla disseminacao desses tipos de ataques, acessiveis tam-
bém a agressores com recursos computacionais limitados.

Na presente Tese, propde-se um framework, fundamentado no trabalho de Hu et al.
(2016), para abordar essa problematica.

Como vimos na Secéo 5.1, a abordagem original de Hu et al. (2016) implementa
uma técnica de poda, chamada pelos autores de cirurgia, baseada na Porcentagem
Média de Zeros (APoZ) calculada através da Equagédo 30. Esta funcdo mede a por-
centagem em que um neurénio fornece uma saida igual a zero durante a etapa de pre-
digéo, ou seja, as vezes em que o neurénio em questdo ndo é ativado. Sob essa estra-
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tégia, a remocao dos neurbnios ocorre somente ao final do processo de treinamento.
Depois disso, 0s pesos sdo atualizados com seus pesos iniciais ¢, Frankle; Carbin
(2018), e o processo se repete. Dessa forma, o processo de poda apresentado por
Hu et al. (2016) gera redes neurais menores a cada iteracao de poda-treinamento, aju-
dando a mitigar o overfitting. Contudo, o processo em si, acarreta um grande overhead
devido as agdes de treinamento e poda sucessivos.

A partir do exposto, surgem duas questoes:

1. E possivel obter informacdes suficientes acerca da identificacdo dos neurdnios
a remover (valores aceitaveis de APoZ), treinando-se a rede original por uma
quantidade de épocas inferior ao estabelecido para realizar a tarefa para qual
ela foi projetada (ou seja, o processo de treinamento da rede neural no contexto
de ataques por canais laterais)?

2. E possivel realizar a remogao (poda) de todos os neurdnios identificados como
menos importantes (maior APoZ) de uma unica vez (One-Shot), eliminando-se
os multiplos treinamentos inerentes ao processo?

6.1.1 Analise e identificacao dos Neurénios a Remover

O calculo de APoZ de acordo com o trabalho de Hu et al. (2016), é realizado a
partir da predicao da rede neural analisada. Pensando nisso, criamos uma fungéo de
callback para calcular APoZ no final de cada época. Sendo assim, € possivel monitorar
quais neurdnios seriam apontados para remogao a cada época computada. Com isto,
propde-se uma estratégia para buscar responder a primeira questao apresentada na
Secao 6.1. Foi desenvolvido um algoritmo que executa as etapas seguintes:

1. Conta-se o0 numero de vezes que cada neurbnio foi selecionado para remogéao
durante as épocas de treinamento.

2. Busca-se os neurbnios que apareceram mais vezes durante as épocas de trei-
namento. Adota-se uma taxa de 75% do numero total de épocas de treinamento.

3. ldentifica-se em quais épocas os neurdnios do passo (2) aparecem.

4. Com base no passo (3) pode-se afirmar que, se temos 0os mesmos neurénios
identificados para remocao por um numero especifico de épocas (5, por exem-
plo), entdo obtivemos os neurbnios a serem removidos.
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Figura 17 — Fluxo para determinar do nUmero de épocas de treinamento necessarios para
identificar os neurdnios a remover.

Este estudo foi aplicado a diferentes redes, conforme a Secao 6.3. Assim, é pos-
sivel concluir que a partir de certo momento, os mesmos neurénios séo indicados
para remogao em épocas consecutivas. Com isso, observa-se que é possivel parar
o treinamento antes de executar o numero de épocas pré-estabelecido para a rede
neural, ou ainda, estabelecer uma nova quantidade de épocas para o treinamento da
rede (menor que a originalmente recomendada para a execugdo dos ataques) para
obtermos os neurdnios a serem removidos através da poda.

6.1.2 Procedimento de Remocao dos Neurénios

Conforme discutido na Secéao 5.1, embora o método apresentado por Hu et al.
(2016) alcance excelentes resultados quanto a redug¢édo do tamanho de redes neurais,
0 processo possui um custo computacional muito elevado. Isso se deve ao fato deste
método ser um processo iterativo, em que sao realizadas extragdes dos neurdnios
seguidas de treinamentos da rede submetida ao método, repetidas vezes.

Dessa forma, neste ponto do trabalho buscou-se responder a segunda questao
da Secao 6.1. Assim, procurou-se aqui desenvolver um método para remover neur6-
nios de redes neurais aplicadas em SCA, reduzindo seu tamanho, com menor esforco
computacional em relagdo ao apresentado na literatura. Para isto, optou-se por uma
abordagem One-Shot, em que a remog¢ao de todos os neurénios com menor atividade
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€ realizada de uma vez, evitando-se loops de treinamento e remocao, reduzindo-se
com isto, o esforco computacional atribuido ao processo de poda.

O método de poda aplicado a redes neurais dedicadas a SCA desenvolvido nesta
Tese é apresentado em Lellis; Soares; Perin (2022), e pode ser dividido nas seguintes
etapas:

1. Primeiramente, busca-se na literatura uma rede neural consolidada, capaz de
realizar SCAs bem sucedidos.

2. Uma vez determinada a rede que sera submetida ao processo de poda, define-
se um limiar de APoZ que servira como métrica para decisdo de remogao ou
nao dos neurbnios. Através de estudos preliminares vimos que valores acima de
0.6 indicam inatividade, ou seja, neurdnios com ativagéo zero acima de 60% tem
uma contribuicdo insignificante na fase de predicéo.

3. Em seguida, os pesos iniciais 6, da rede neural escolhida sdo armazenados,
e a rede é entdo treinada. Apds o treinamento, o0 APoZ de cada neur6nio é
calculado. Lembramos que, conforme vimos na Secao 6.1.1, ndo € necessario
treinar a rede a quantidade total de épocas estabelecida para a realizagao do
ataque.

4. Com base no limiar estabelecido na etapa (2) e no valor de APoZ (calculado na
etapa (3)), determina-se quais neurénios devem ser removidos.

5. Realizada-se a remocao dos neurénios selecionados.

6. Para concluir o processo de poda, 0s pesos iniciais ¢, armazenados na etapa (2)
séo atribuidos as conexdes resultantes apds o processo de poda.

O método proposto, descrito acima, € resumido pelo Algoritmo mostrado na Figura
18:

6.2 Base de dados ANSSI - ASCAD

ASCAD (ANSSI SCA Database) ' é uma base de dados criada para pesquisa em
ataques por canais laterais baseados em aprendizado profundo. ASCAD contém da-
dos de treinamento e dados de validacao ou teste. Trés conjuntos de dados (ou tracos)
estdo disponiveis nestas bases de dados, todos coletados a partir de implementacdes
em software:

1. ASCADv1 com chave fixa: ao todo, sdo 60.000 tracos coletados, que represen-
tam o consumo de energia de operacdes de cifracdo AES executando em um

Thttps://github.com/ANSSI-FR/ASCAD
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1: Escolher uma rede neural consolidada para SCA M e armazenar seus pesos ini-
ciais 6,

2: Treinar M:

3: j+— 0k« 0

4: for (i = 0 to total_neuronios) do

5:  if (get_apoz(neuronioli]) > limiar) then

6

7

8

neuronios_del[j| + neuronioli]

JeJg+1
else
0: neuronios_restantes[k| < neuronioli]
10: k—k+1
11:  endif
12: end for

13: Deletar os neurdnios listados em neuronios_del
14: remaining_neurons <— 6 (recolocar 0s pesos iniciais nos neuronios restantes)

Figura 18 — Algoritmo proposto.

microcontrolador da familia ATmega. Cada trago possui 100.000 amostras, com
texto claro aleatério. O algoritmo AES implementado para este conjunto de da-
dos é protegido contra ataques de primeira ordem através de contramedida por
mascaramento (do inglés masking).

2. ASCADv1 com chave aleatoria: este segundo conjunto de dados consiste de
300.000 tracos coletados de uma implementacao idéntica a anterior (algoritmo
AES protegido contra ataques de primeira ordem). Dentro desse conjunto,
200.000 tragos possuem chave de cifragcdo aleatéria e os restantes 100.000 tra-
cos foram coletados com chave fixa. Assim, o primeiro conjunto é utilizado na
fase de treinamento e o segundo conjunto, com chave fixa, é adequada para
fases de validagao e teste.

3. ASCADv2: esta é uma base de dados maior, consisitindo de 800000 tracos
coletados pela monitoracdo do consumo de poténcia de um microntrolador
STM32F303RCT7 executando o algoritmo AES. Nesse caso, a implementacao
AES é protegida contra ataques de segunda ordem através de contramedidas de
mascaremnto e embaralhamento (comumente referenciados pela literatura em
lingua inglesa como affine masking e shuffling). Cada trago contem 100.0000
de amostras. Dentre os 800.000 tracos coletados, 700.000 foram obtidos com
chaves de cifragdo aleatéria e os restantes 100000 tragos com uma chave fixa.

Para os trés conjuntos de dados ASCAD, o intervalo mensurado de consumo de
energia representa as operacoes referentes a primeira rodada da cifracdo do AES128.
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Para os experimentos realizados nesta Tese, sao utilizados os tragos disponibili-
zados pela base de dados do ANSSI, ASCADv1 com chave fixa Prouff et al. (2018).
Este conjunto de dados ¢é dividido em subconjuntos de 60.000 tracos, conforme des-
crito abaixo:

+ Tragos originais, isto €, tracos adquiridos e sem aplicacao de pré-processamento;
» Extracdo de 700 POls dos tragos originais com contramedida de mascaramento;

» Extracdo de 700 POls dos tracos originais com mascaramento e deslocamento
aleatério (jitter) de até 50 amostras;

» Extracdo de 700 POls dos tracos originais com mascaramento e deslocamento
aleatorio (jitter) de até 100 amostras;

Os tracos do ASCADv1 séo rotulados com o terceiro byte da chave criptogréafica
durante a primeira rodada de encriptacao, e previamente divididos em 50.000 tracos
para treino e 10.000 tracos para o teste da rede empregada no ataque.

6.3 Experimentos Realizados

Esta secdo tem como objetivo apresentar todos os experimentos realizados nesta
Tese, validando desta forma, o fucionamento e eficiéncia da metodologia apresentada
na Secao 6.1. Através dos resultados obtidos a partir desses experimentos, veremos
que é possivel reduzir-se o tamanho das redes neurais que realizam SCA, através
de um processo menos custoso do que os, até entdo, apresentados na literatura.
Isto nos mostra a possibilidade de expansao dessa classe de ataques, uma vez que
para efetuar tais ataques, um usuario mal intencionado necessita de menos recursos
computacionais.

6.3.1 Aplicacao da técnica de Cirurgia em DL-SCA

Como vimos também através da Secéo 6.1, o trabalho aqui proposto consiste em
uma forma de realizacdo de poda a fim de reduzir o tamanho das redes neural empre-
gadas em DL-SCA. Dentre os trabalhos revisados, nos baseamos no estudo apresen-
tado por Hu et al. (2016). A partir disso, os primeiros experimentos visam adaptar o
método empregado por Hu et al., ao contexto de SCA, verificando em primeira instan-
cia, se é possivel aplicar tais técnicas neste contexto.

Antes de apresentarmos esse conjunto de experimentos, € importante destacar-
mos que estes foram realizados em um computador Dell Vostro 3681 — M20M 102
Geracéo Intel Core i5 8GB 1TB. Tendo como ambiente de desenvolvimento o Jupy-
ter Notebook 6.2.0 Kluyver et al. (2016). A linguagem de programacao utilizada foi o
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Python 3.8.5 Van rossum; Drake jr (1995), apoiada pelas bibliotecas mais usuais dis-
poniveis para essa linguagem, além do Keras 2.4.3 Chollet (2015) e TensorFlow 2.3.0
Abadi et al. (2015).

Assim, inicialmente foram realizados testes a partir de um framework para realiza-
cao de poda bastante similar ao apresentado em Hu et al. (2016). O intuito desses
experimentos foi verificar a aplicabilidade da técnica apresentada por Hu et al. em
redes projetadas para realizar SCA. O framework proposto e baseado em Hu et al.
(2016) utilizado em nossos experimentos € mostrado na Figura 19:

Figura 19 — Framework adaptado de Hu et al. (2016) Fonte: Propria

Este framework é aplicado as redes MLPs e CNNs como prova de conceito a fim
de obter-se redes que possuem fases de treinamento e ataque com esforco compu-
tacional reduzido. Como mostrado na Figura 19, o framework apresentado é formado
pelas seguintes etapas:

1. O primeiro passo € buscar uma rede neural ja consolidada e capaz de realizar
com sucesso ataques a um conjunto de dados conhecido. Os procedimentos
realizados nas etapas seguintes sdo executados na rede escolhida;
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[\

. A rede neural é treinada pela primeira vez. Nesta etapa, os pesos iniciais sdo
armazenados. Em seguida, um ataque é realizado para validar o treinamento
obtido;

3. A partir dai, o procedimento cirurgico é realizado, removendo os neurénios da
rede de acordo com suas taxas de ativacdo (APoZ) de acordo com a Equacéao
30 Hu et al. (2016);

4. A rede resultante é reinicializada com os pesos iniciais (0,), retreinada, e reali-
zado um ataque usando essa rede resultante;

5. Se o ataque da etapa (4) for bem-sucedido, as etapas (3) e (4) serdo executadas
novamente. Esse loop é repetido n vezes até que o ataque na etapa (4) nao seja
mais bem-sucedido;

6. Finalmente, os pesos restantes na rodada n— 1 do loop descrito, séo restaurados
com 0s pesos iniciais #,. Obtendo-se assim, a menor rede capaz de executar um
SCA sobre o conjunto de dados apresentado.

Os experimentos realizados nesta etapa utilizaram redes neurais apresentadas em
dois estudos recentes encontrados na literatura Zaid et al. (2020)Prouff et al. (2018).
Como entrada, o conjunto de dados ASCADv1 Prouff et al. (2018) apresentado na
Secao 6.2 foi utilizado.

Abaixo, temos uma descricao das redes neurais utilizadas nestes primeiros expe-
rimentos. Lembrando que maiores detalhes sobre tais redes podem ser encontrados
em Prouff et al. (2018) e Zaid et al. (2020).

A MLP apresentada por Prouff et al. Prouff et al. (2018) é utilizada nos primeiros
experimentos. Esta NN tem uma estrutura relativamente pequena em comparacao
com outras redes utilizadas em SCA. O tamanho dessa rede depende dos dados de
entrada. Prouff et al. (2018) utiliza o dataset ASCADv1, onde os tragos sao obtidos
de uma implementacédo em software do algoritmo criptografico AES que conta apenas
com uma contramedida de mascaramento (contramedida de primeira ordem). A tarefa
executada pela rede € menos complexa do que atacar dispositivos protegidos com
uma contramedida temporal, fato que permite uma rede menor para executar o ataque.
A rede de Prouff et al. Prouff et al. (2018) é composta pelas seguintes camadas:

* Uma camada de entrada densa contém 700 entradas de acordo com as amos-
tras dos tracos de destino disponiveis no conjunto de dados. Esta camada é
adaptada a 100 neurbnios, como sera discutido mais adiante (200 na rede origi-
nal). A fungéo de ativagdo nesta camada € a RelLU;
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» Quatro camadas ocultas densas com 100 neur6nios. Aqui também foi feita uma
adaptacao como sera explicado a seguir. Para essas camadas, a fungédo de
ativacao usada também € a RelLU;

» Finalmente, uma camada de saida com 256 neurdnios em relagéo as 256 pos-
sibilidades de classificacdo para o byte da chave secreta. Para esta camada, a
funcao de ativagdo empregada é Softmax;

A taxa de aprendizado é 0,00001 com o otimizador RMSprop. A descricdo dos
hiperparametros desta rede também pode ser encontrada em Prouff et al. (2018).
Embora essa rede seja pequena, ela ainda é superdimensionada para a tarefa a ser
executada. Isso sera demonstrado com os resultados obtidos a partir do processo ci-
rurgico descrito acima. No entanto, vale ressaltar que antes de realizar esse processo,
o numero de neurdnios das camadas ocultas foi reduzido de 200 (da rede original) para
100, pois, de antem&o, notamos um superdimensionamento da rede apresentado por
Prouff et al. Prouff et al. (2018).

Como mencionado anteriormente, 0s experimentos iniciais também foram aplica-
dos a uma CNN proposta por Zaid et al. (2020). Neste caso, temos uma rede mais
complexa capaz de realizar um ataque a dispositivos equipados com contramedidas
de tempo. Esta rede é basicamente formada pelas seguintes camadas:

« Uma camada de entrada densa contendo as 700 entradas e a funcéo de ativagao
SelLU;

» Trés blocos contendo uma camada Convolucional 1D, uma camada de Baitch
Normalization e uma camada de Average Pooling. Essas camadas tém respec-
tivamente 32, 64 e 128 neurdnios e sua funcao de ativacao é Sel.U;

* Em seguida, ha uma camada de achatamento (Flatten) e trés camadas densas
compostas por 20 neurdénios com funcao de ativacdo SeLU cada uma;

» Para a camada de saida temos uma camada com 256 neurbnios para as 256
possibilidades de valores que um byte da chave criptografica pode assumir. Para
esta camada, a funcao de ativagcdo empregada também é Softmax;

Como na MLP de Prouff et al., a taxa de aprendizagem é 0,00001. No entanto, o
otimizador usado aqui € Adam. Mais informacdes sobre esta rede podem ser encon-
tradas em Zaid et al. (2020).

Para a CNN de Zaid et al. (2020), também é utilizado o conjunto de dados AS-
CADv1 Prouff et al. (2018). Dentro deste dataset, para esta rede é utilizado um sub-
conjunto de tracos oriundos de um dispositivo protegido por uma contramedida de
deslocamento de tempo aleatério de até 100 amostras.
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A partir do exposto, inicialmente foram realizados experimentos aplicando-se o fra-
mework proposto as redes neurais MLP e CNN j& caracterizadas. Os resultados ob-
tidos sdo mostrados na Figura 20. A métrica usada para avaliacdo da eficiéncia da
rede neural é a classificagdo média da chave ou a entropia de adivinhacao Standaert;
Malkin; Yung (2006) (do inglés, guessing entropy). A classificacdo média mede os
tracos necessarios para um ataque bem-sucedido. Uma classificagdo média igual a
zero garante que a chave correta seja recuperada com éxito.

A Figura 20 (a) apresenta os valores médios de classificacdo obtidos a partir da
MLP original, nossa linha de base, representada em azul. Os valores médios de clas-
sificagdo para a rede reduzida, apds a aplicacao do Algoritmo ?? aparecem em la-
ranja. Os pontos identificam quando a classificacdo média chega a zero. Embora o
desempenho do ataque seja bastante semelhante, a rede reduzida apresenta uma li-
geira melhoria, atingindo o rank médio 0 com aproximadamente 700 tracos de ataque,
enquanto a linha de base atinge essa marca com mais tracos de ataque. A Figura 20
(a) também mostra a classificagao tanto para a CNN original quanto para a rede redu-
zida. Aqui ha uma pequena diferenga no numero de tragos para atingir a classificagdo
média 0: 325 tracos para a CNN original e 250 com a rede reduzida. Isso sugere que
as redes reduzidas podem realizar ataques bem-sucedidos mesmo depois de serem
reduzidas. Também em termos de parametros treinaveis, a MLP comeca com 352456
e termina com 234376, representando uma reducao de 33,5%. Na CNN, a reducao
dos parametros treinaveis passa de 142044 para 59126, o que representa uma redu-
céo de 58,37%. Os tempos de treinamento medidos para as redes originais e as redes
reduzidas, excluindo o tempo de execug¢do do método cirurgico, revelam uma redugao
de 23,4 e 36,33% no tempo de treinamento, respectivamente, para os casos de MLP
e CNN.
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Figura 20 — Rank médio vs. Tragos do consumo — MLP de Prouff Prouff et al. (2018) e CNN
de Zaid Zaid et al. (2020) (a) e Tempos de treinamento das redes — MLP (b) e CNN (c) —
Método original de cirurgia Hu et al. (2016) Fonte: Propria

Tais resultados séo relevantes para o SCA principalmente porque os ataques po-
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dem ser executados mais rapidamente, exigindo menos recursos computacionais e
tornando-se mais ameacadores. No entanto, 0 processo cirurgico € bastante longo
devido ao treinamento iterativo. A Figura 20 (c) mostra o tempo para 5 treinamentos:
(i) em vermelho, para CNN original; (i) em azul, para a CNN reduzida iterativa. Em
SCA, esse tempo é justificavel, uma vez que o ataque revela apenas um byte, e é
muito provavel que a mesma rede seja capaz de revelar outros bytes da chave.

6.3.2 Método de Cirurgia de Extracdo Unica

Embora a técnica de cirurgia tenha alcangado resultados significativos, sentimos a
necessidade de aprimorar o processo como um todo. Conforme acabamos de revisar,
sa0 necessarios muitos ciclos de treinamento e poda para atingirmos a rede ideal,
5 para a MLP e 4 para a CNN, sendo que o treinamento das CNNs € mais custoso
geralmente. Dessa forma, buscamos um método para realizar a poda das redes de
uma unica vez (One-Shot), sem a necessidade de ciclos de treinamento e poda.

Portanto, como apresentado em Lellis; Soares; Perin (2022) e descrito na Secao
6.1, aqui abordamos um método de poda através da técnica de cirurgia baseado em
Hu et al. (2016), que nao necessita de multiplos treinamentos.

Para estes experimentos, as redes utilizadas como referéncia sao a MLP Prouff
et al. (2018) e a CNN Zaid et al. (2020), cujas caracteristicas foram apresentadas
anteriormente. Destas, seis redes foram criadas, sendo 3 MLPs: (i) MLP de Prouff
et al. (2018), (ii) MLP v2 - baseado em (i), mas com 300 neurdnios nas camadas
densas ao invés de 200, e (iii) MLP v3 - também baseado em (i), mas com uma
camada densa extra. Além dessas, foram utilizadas 3 CNNs: (i) CNN de Zaid et al.
(2020), (ii) CNN v2 - com base em (i), mas com o dobro de neurdnios nas camadas
totalmente conectadas em comparagao com (i); e (iii) CNN v3 - também com base em
(i), mas com uma camada extra totalmente conectada.

O método proposto é avaliado em um segundo estudo de caso, onde apenas uma
operacgao cirurgica é realizada, ao invés de remocdes iterativas de neurbnios, como
sugerido em 16. Para validar o método, as trés versdes de MLPs descritas anterior-
mente foram usadas. Primeiro, verificamos se as NNs continuaram a realizar ataques
bem-sucedidos ap6s a remog¢ao dos neurdnios.
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Figura 21 — Rank médio vs. Tracos do consumo — Método proposto. Fonte: Propria

A Figura 21 mostra o desempenho do ataque medido com a classificagdo média
para as trés MLPs, onde observamos que a eficiéncia dos ataques é muito préxima dos
modelos originais de linha de base. Todas as redes reduzidas atingem a classificagao
média igual a 0 mais cedo do que suas respectivas linhas de base. Na Figura 21, a
MLP de linha de base n&o atinge a classificagdo média 0 com pelo menos 1400 tragos.
Enquanto isso, as redes reduzidas s&o capazes de recuperar a chave correta com o
uso de 500 tragos. Portanto, as melhorias sdo verificadas para as redes reduzidas
MLP, MLP v2 e MLP v3.

Em seguida, o método proposto também € aplicado as trés CNNs descritas ante-
riormente. As classificacoes médias obtidas para as redes CNN, CNN v2, CNN v3
reduzidas correspondentes sao semelhantes, com pequenas melhorias nas redes re-
duzidas em comparagao com suas CNNs originais, pois as redes reduzidas atingem a
classificacdo média 0 antes das redes originais, como podemos ver através da Figura
21.

A Tabela 7 resume a comparagédo entre o método cirurgico original € 0 método
proposto, quando consideradas as redes MLP de Prouff Prouff et al. (2018) e CNN de
Zaid Zaid et al. (2020). Destaca a reducao do tempo de treinamento e do niumero de
parametros treindveis obtidos em termos percentuais. Além disso, apresenta o tempo
de processamento para a execucao completa de cada método. Obtivemos melhorias
significativas em todos os casos. O método cirurgico melhorado é 9 vezes mais rapido
do que o método original para MLP e 6,38 vezes mais rapido para o caso da CNN.

A Tabela 8 apresenta os resultados obtidos com o método proposto nas seis NNs
previamente definidas. Destaca, em termos percentuais, as redugdes obtidas no
tempo de treinamento e no numero de parametros treinaveis. Observa-se que o0s per-
centuais de reducao tanto para MLPs quanto para CNNs sao proximos. Olhando para
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MLP Prouff et al. (2018) CNN Zaid et al. (2020)
Reducoées Hu et al. (2016) | Nosso | Hu et al. (2016) | Nosso
Tempo (%) 23.4 28.52 36.33 48.33
Param. 33.5 41.29 58.37 70.6
Tempo Proc. (s) 1522.22 169.05 20010.98 3135.38

os resultados obtidos para as redes MLP, a melhor redug¢ao do tempo de treinamento,
28,52%, é alcangada para o MLP proposto por Prouff et al. (2018). Em comparacéo,
a reducao mais significativa no nimero de parametros treinaveis, 44,7%, ocorreu na
MLP v2. Enquanto isso, nas redes CNN, temos uma redug¢do mais significativa no
tempo de treinamento, 51,57% para CNN v2, e uma redugcdo maior no numero de
parametros, 76,36%, é observada na CNN v3.

Tabela 8 — Redugdes nas Redes Neurais - Método Proposto.

Rede Redu. de Tempo (%) | Redu. em Param. (%)
MLP Prouff et al. (2018) 28.52 41.29
MLP V2 28.15 447
MLP V3 20.08 411
CNN Zaid et al. (2020) 48.33 70.6
CNN V2 51.57 70.28
CNN V3 46.41 76.36

Assim, podemos concluir que o método cirurgico, especialmente sua versdo One-
Shot, é bastante efetivo para reduzir o tamanho da rede neural, levando a tempos de
treinamento mais curtos e tornando as redes neurais mais eficientes contra ataques
de perfil. O método proposto mostrou-se bem-sucedido de modo que o tempo gasto
no processo cirurgico foi reduzido 9 vezes para a rede MLP e 6,38 vezes para a rede
CNN em comparacao com a aplicagao direta do processo cirurgico, conforme proposto
na literatura de aprendizagem profunda Hu et al. (2016).

6.3.3 Aceleracao das CNNs Reduzidas por Esparsidade

Apesar de alcangarmos bons resultados em termos de reducao das redes neurais
aplicadas a SCA em Lellis; Soares; Perin (2022), o método utilizado nédo € aplicavel as
camadas Batch Normalization presentes na CNN proposta por Zaid et al. Zaid et al.
(2020), e utilizada como estudo de caso nestes experimentos. Portanto, com o intuito
de encontrarmos a CNN mais rapida, em termos de tempo de treinamento, possivel a
partir de Zaid et al. (2020), buscamos uma técnica que de alguma forma acelerasse o
processamento realizado por esse tipo de camadas.
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A partir de buscas na literatura, verificamos que no trabalho apresentado por Yu
et al. (2021) os autores propéem uma abordagem de poda global One-Shot chamada
Gate Trimming (GT) que estima globalmente o efeito dos canais das camadas de
Batch Normalization (BN) através de uma métrica denominada Informagéao de Ganho
(Information Gain - 1G). Assim, se um canal de uma camada BN possui IG alto, ele tem
uma maior contribuicdo para a saida da rede, e sua exclusao causara grandes danos
no desempenho. Em contraste, podar um canal de uma camada BN com o menor |G
causara pouco efeito na rede. A poda dos canais BN é feita zerando-se seus fatores
de escala e fatores de deslocamento.

Com base no estudo de Yu et al. (2021), foram realizados experimentos a fim de
incorporar uma etapa adicional ao nosso fluxo de reducao de CNNs aplicadas a SCA.
Ou seja, apos aplicarmos 0 método apresentado em Lellis; Soares; Perin (2022), foi
aplicado o método de Yu et al. (2021) para alcancar uma maior aceleracdo da CNN de
Zaid et al. (2020).

Como resultado, observamos uma redugéao adicional de 5,84% no tempo de treina-
mento da rede reduzida anteriormente através de Lellis; Soares; Perin (2022). Assim,
incorporando esta etapa, alcangcamos uma reducao total de 51,35% no tempo de exe-
cucao do ataque em relacao a rede original proposta por Zaid et al. (2020). Ainda,
uma melhora na performance do ataque foi observada, uma vez que a quantidade de
tragcos necessarios para revelar a chave criptografica com a CNN reduzida por Lel-
lis; Soares; Perin (2022) que era de 400 passou para 292, conforme podemos ver na
Figura 22.
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Figura 22 — Rank médio vs. Tragos do consumo para CNN — Método de Lellis; Soares; Perin
(2022) (azul) Método proposto com etapa adicional de aceleracao (laranja). Fonte: Propria

Cabe ressaltar que o tempo gasto no processo de cirurgia teve um aumento de ape-
nas 0,0018%, ou seja, a etapa incorporada ao fluxo de reducéo introduz um overhead
desprezivel ao processo como um todo. Com isto, concluimos que é bastante inte-
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ressante incorporar a aceleracao proposta por Yu et al. (2021) ao método de reducao
de redes neurais apresentado em Lellis; Soares; Perin (2022) para CNNs aplicadas a
SCA.

6.4 Analise Detalhada do Método Proposto

Até aqui, foram realizados testes que mostraram ser possivel a adaptacéao da pro-
posta de Hu et al. (2016) ao contexto de SCAs. Como vimos na Sec¢éo 6.3.2, é possivel
aplicar uma abordagem One-Shot baseada em Hu et al. (2016) sobre redes neurais
utilizadas para realizar esses tipos de ataques. Com isso, é possivel obter resulta-
dos que mostram reduc¢des em termos de tamanho das redes, ou seja, uma menor
quantidade de parametros treindveis e menor tempo de treinamento necessarios para
realizar um ataque bem sucedido. Nesta Secao, além destas andlises iniciais, procu-
ramos estabelecer uma relacdo quanto a quantidade de tragos utilizados no ataque
entre as redes originalmente propostas e suas respectivas redes reduzidas. Ainda, re-
alizamos um estudo com relacao a quantidade de épocas de treinamento necessarias
para realizar-se os ataques, para as redes encontradas na literatura, antes e depois
do processo de cirurgia.

Partindo destas constatacdes, buscou-se extender os experimentos aplicando-se
a abordagem aqui proposta a quatro redes neurais encontradas na literatura e conso-
lidadas na comunidade de SCA. Assim, para esta rodada de experimentos, testamos
nosso método em duas redes MLP: Uma rede MLP apresentada em Perin; Picek
(2020) com 9.966.256 parametros, e também uma MLP com tamanho menor M L P,.;
revisada nos experimentos anteriores, proposta por Prouff et al. (2018), composta por
352.456 parametros. Também foram realizados testes com duas redes neurais convo-
lucionais (CNNs): A rede chamada C'N N,.,; também proposta por Prouff et al. (2018),
contendo 66.652.544 parametros, assim como uma CNN menor encontrada em Perin;
Picek (2020). Esta CNN contém 6.797.246 parametros. Ou seja, nesta Sec¢ao foram
realizados experimentos que aplicam o método de cirurgia One-Shot nos dois tipos de
redes neurais mais recorrentes na area de SCA (MLPs e CNNs), conforme constata-
dos através da RSL apresentada no Capitulo 4, testando MLPs e CNNs de diferentes
tamanhos (uma rede maior e uma rede menor de cada tipo).

Como arede M LP,.. de Prouff et al. (2018) ja foi apresentada na Secao 6.3, nesta
Secao sao apresentadas apenas as configuragdes das outras redes usadas por Perin;
Picek (2020) e Prouff et al. (2018). Inicialmente é apresentanda a arquitetura da rede
MLP usadas por Perin; Picek (2020):

» Uma camada de entrada densa contendo as 700 entradas e a fungéo de ativacao
RelLU;
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» Dez camadas ocultas densas com 1000 neurbnios cada. Para essas camadas,
a fungéo de ativacéo utilizada também é a RelLU,;

 Por ultimo, uma camada de saida com 256 neurbnios, correspontentes as 256
classes possiveis, conforme descrito na Segéo 6.3. Esta camada possui a fun-
cao de ativagao Softmax;

Cabe aqui ressaltar que esta rede neural possui uma taxa de aprendizado de 0,001
com um batch size de 400. O trabalho apresentado em Perin; Picek (2020) realiza
um estudo relacionado a diferentes otimizadores. Para este trabalho, escolheu-se
trabalhar com RMSProp.

A seguir, apresentamos a arquitetura da CNN presente no trabalho de Perin; Picek
(2020):

« Uma camada de entrada densa contendo as 700 entradas e a funcéo de ativa-
¢ao. RelLU;

» Quatro camadas convolucionais 1D com respectivamente 10, 20, 40 e 80 neur6-
nios. O kernel de cada uma dessas camadas é setado com tamamho 4, e sua
funcéo de ativacédo é a RelLU,;

* Depois, temos quatro camadas ocultas totalmente conectadas de 1000 neur6-
nios cada. Essas camadas também tem como funcao de ativacdo RelLU;

* A camada de saida é composta de 256 neurdnios com fung¢do de ativacao de
Softmax.

Esta rede tem como otimizador o RMSPop. A taxa de aprendizado é igual a 0,001
e 0 batch size é igual a 400.
Por fim, descrevemos as configura¢des da rede C'N N,.,; de Prouff et al. (2018):

* Uma camada de entrada densa contendo as 700 entradas e a fungéo de ativa-
cao. RelLU;

« Em seguida, s&o implementados cinco blocos com uma camada convolucional
1D com filtros de tamanhos: 64, 128, 256, 512 e 512. O tamanho para todos os
kernels dos filtros dessas camadas é 11. A funcao de ativacao para estas cama-
das € a ReLU. Ainda, dentro de cada bloco existe uma camada de agrupamento
Average Pooling, com strides igual a dois;

» Depois dos blocos convolucionais, temos duas camadas densas contendo 4096
neurbnios cada uma. Estas camadas também contam com a funcéo de ativacao
RelLU;
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» Por fim, assim como nas outras redes apresentadas, esta também conta com
uma camada de saida com 256 neurénios e funcao de ativagdo Softmax.

Para a rede acima descrita, a taxa de aprendizado € igual a 0,00001 e o otimizador
utilizado foi 0 RMSProp. O batch size definido por Prouff et al. (2018) € igual a 200.

Antes de apresentar os experimentos realizados nesta etapa do trabalho, gosta-
riamos de mencionar que o setup utilizado é constituido de um PC equipado com
uma CPU contendo um processador Intel Core i7 - 12700K operando a uma frequén-
cia de relégio de 3.60 GHz, com 16GB de memoéria RAM. Este PC também possui
uma placa de processamento grafico NVIDIA RTX 3070. Além disso, para as redes
descritas nessa Sec¢ao, a funcao de perdas definida foi a categorical_crossentropy.

6.4.1 Identificacao dos Neurdnios a Remover

A etapa inicial consiste em descobrir qual o numero de épocas de treinamento é
necessario para cada uma das redes de modo a corretamente identificar os neurénios
a serem removidos. Através dessa etapa, é possivel ver que nao € necessario realizar
o treinamento completo das redes, isto €, um treinamento longo com 0 mesmo numero
de épocas considerados nos artigos de referéncia para descobrirmos quais neurénios
sd0 menos relevantes, e que portanto podem ser removidos. Assim, aplicamos o
estudo descrito na Se¢do 6.1.1 para cada uma das redes da Secgédo 6.4. A partir
desse processo, obtivemos como resultado as quantidades de épocas apresentadas
na Tabela 9.

Tabela 9 — Resultados do Estudo de Epocas para Selecionar os Neurdnios a Remover.

Rede Epocas sugeridas | Epocas estudo
CNN Prouff 130 128
CNN Perin 400 350
MLP Perin 200 149
MLP Prouff 200 113

Assim, nos experimentos a seguir, as redes neurais foram treinadas pelos respec-
tivos numeros de épocas apresentados na Tabela 9.

6.4.2 Analise de MLPs Aplicadas a SCA

Uma vez determinada as quantidades de épocas para treinar as redes neurais, a
etapa seguinte nesta Tese consistiu em aplicar o método de poda proposto a MLP de
Prouff et al. (2018). Portanto, foram realizados 10 experimentos utilizando-se como
entrada o dataset ASCADv1, composto por 50.000 tracos de 700 amostras oriundos
de um dispositivo criptografico dotado de contramedida de mascaramento aditivo de
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primeira ordem. Detalhes sobre esse conjunto de dados sdo apresentados na Secao
4.

Dessa forma, a Tabela 10 apresenta os valores de reducdo em termos de tempo
de treinamento, quantidade de parametros e também na quantidade de tragos da MLP
original com relagdo a esta MLP reduzida para os dez experimentos realizados nesta
etapa. Além desses dados, a Tabela 10 traz o tempo de execugéo do processo de
reducéo da rede neural.

Os tempos de treinamento da rede neural reduzida atingem reducdes de 8.45 até
30.26% em relacao a original, ou seja, os dez experimentos realizados obtiveram re-
ducbes em termos de tempo de treinamento. Para alcangar essas redugdes, os tem-
pos de processamento de redugcao dessa rede em particular estdo entre 143.63s a
279.51s. Como explicado na Secao 6.1, a técnica utilizada para remogao dos neuré-
nios, e consequente reducao da rede neural, é realizada de uma sé vez (One-Shot),
0 que justifica os baixos tempos obtidos no processo de redugdo. As reducdes tem-
porais alcangcadas neste experimento estdo apoiadas pelas redu¢dées na quantidade
de parametros da rede reduzida em relagdo a rede original. A Tabela 10 também
apresenta as reducdes na quantidade de parametros para os dez experimentos, que
vao de 28.87 a 38.95%. Conforme vemos na Tabela 10, todos os experimentos aqui
realizados apresentam redugdes significativas em termos de parametros aplicando-se
0 método proposto.

As redes neurais reduzidas também apresentaram melhor desempenho quanto a
guantidade de tracos necessarios para obtencédo de ataques por canais laterais bem
sucedidos. A ultima coluna da Tabela 10 mostra os valores de reducédo na quantidade
de tragos. Sob esse paradigma, temos reducdes que vao de 52.25 a 81.35%. Assim,
vemos que as redes neurais reduzidas necessitam de pelo menos 50% de tracos a
menos para realizar os SCAs. Isso traduz-se em um modelo de ataque de perfil mais
potente, permitindo um atacante recuperar a chave com menos tracos do dispositivo
alvo.



Tabela 10 — Redu¢des na MLP de Prouff - Método Proposto.

Tempo (s) Parametros Tracos
Proc. | Orig. | Nossa | Redu. (%) | Orig. Nossa | Redu. (%) | Orig. | Nossa | Redu. (%)
148.82 | 270.58 | 199.27 26.35 352,456 | 235,607 33.15 1999 | 848 57.58
143.63 | 260.00 | 216.75 16.64 352,456 | 221,520 37.15 1937 | 570 70.57
153.33 | 276.96 | 229.15 17.26 352,456 | 230,589 34.58 1781 683 61.65
158.59 | 282.88 | 258.99 8.45 352,456 | 224,161 36.4 1988 | 463 76.71
177.73 | 317.69 | 234.04 26.33 352,456 | 224,718 36.24 1999 508 74.79
189.76 | 337.74 | 251.75 25.46 352,456 | 233,495 33.75 1980 | 871 56.01
166.49 | 293.62 | 254.02 13.49 352,456 | 250,713 28.87 1995 | 372 81.35
179.21 | 324.02 | 268.64 17.09 352,456 | 236,238 32.97 1997 | 758 62.04
279.51 | 502.75 | 434.68 13.54 352,456 | 223,017 36.72 1354 | 582 57.02
174.89 | 314.34 | 219.22 30.26 352,456 | 215,175 38.95 1952 932 52.25

chi
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Sob o ponto de vista de rank da chave criptogréafica, pudemos perceber que as
redes neurais reduzidas neste experimento apresentam valores rank minimo da chave
criptografica menores ou iguais a rede original. Dessa forma, segundo esse quesito,
de um modo geral, as redes neurais reduzidas apresentam redu¢des com relacao ao
rank minimo da chave. Com isto, podemos concluir que a MLP, ap6s passar pelo
processo de reuducdo, ou cirurgia, sdo ainda mais eficientes do que a MLP original.
Isso é mostrado na Tabela 11.

Tabela 11 — Ranks da MLP de Prouff - Método Proposto.

Rank Min. Original | Rank Min. Reduzidas
0.075 0.0
0.005 0.0
0.015 0.0
1.03 0.0
0.205 0.0
0.125 0.0
0.125 0.0
0.055 0.0

0.0 0.0
0.015 0.0

A Tabela 11 confirma a afirmacao de que as MLPs reduzidas tem uma eficiéncia
maior do que a MLP original. Nesta Tabela, podemos ver que em apenas um dos 10
experimentos executados sobre as MLPs de Prouff et al. (2018) a rede proposta pelos
autores consegue atingir rank zero da chave criptografica, enquanto que para todos
0s experimentos as redes reduzidas atingiram esse rank.

Essa maior eficiéncia das redes neurais reduzidas, MLPs nesse caso, pode ser
vista plotando-se os graficos de rank da chave criptografica das redes reduzidas com
a rede original para cada um dos dez experimentos executados nesta etapa. Podemos
ver isso atraves da Figura 23.

Na Figura 23, os gréaficos dos ranks da MLP original para os dez experimentos rea-
lizados (baselines) estao representados na cor azul, enquanto os graficos correspon-
dentes para as redes reduzidas encontram-se em vermelho. Observando-se a Figura
23 percebe-se que, de um modo geral, as curvas dos ranks x tracos de consumo para
as MLPs reduzidas estao posicionadas mais abaixo do que suas respectivas curvas
da rede original, em relagédo ao eixo y, eixo representante dos ranks das chaves crip-
tograficas. Esta Figura ilustra os resultados de melhor eficiéncia das redes reduzidas
geradas com relagdao a MLP original.

Em resumo, com base nos experimentos, aplicando-se o método proposto nesta
Tese a MLP proposta por Prouff et al. (2018), podemos concluir que as redes reduzi-
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Figura 23 — Ranks MLP de Prouff - 10 execucbes com a rede original (azul) e 10 execucoes
com as redes reduzidas (vermelho).

das resultantes do processo proposto possuem menores tamanhos em relacao a MLP
de Prouff et al. (2018) em termos de quantidade de parametros treinaveis. Como con-
sequencia, o tempo de treinamento para essas redes na realizagcdo de SCAs também
sd0 menores em relagdo a respectiva rede original. Com relagdo a quantidade de
tragos necessarios para ataques bem sucedidos, vemos que as MLPs reduzidas tem
melhores resultados do que a rede original. Isto deve-se, conforme vimos através da
Tabela 11 e do grafico da Figura 23, ao menor rank da chave criptogréfica obtido com
as redes reduzidas com relagéo a MLP original.

Através da revisao apresentada no Capitulo 5.1, foi possivel perceber que alguns
trabalhos encontrados na literatura sobre métodos de poda utilizam métricas de sele-
¢éo dos neurdnios a serem removidos diferentes de APoZ (utilizada nesta Tese). Den-
tre eles, o método mais recorrente utiliza a norma L1 para determinar a importancia
dos neurdnios Li et al. (2017). A norma L1, consiste em calcular a soma dos valores
absolutos dos pesos de cada neurdnio. Esta métrica é correlacionada a ativagao dos
neurénios, pois conforme revisamos no Capitulo 3.1 a ativagdo de um neurdnio se da
através da submissdo do somatério dos seus pesos multiplicados por suas entradas a
uma funcao de ativacdo. Nesta Secao sao apresentados experimentos aplicando-se
o0 método de poda proposto a MLP de Prouff et al. (2018), utilizando a métrica L1 para
selecao e remocao de neurénios. Os resultados sdo apresentados na Tabela 12.



Tabela 12 — Redugdes na MLP de Prouff utilizando a norma L1 como métrica para sele¢do dos neur6nios a remover - Método Proposto.

Tempo (s) Parametros Tracos

Proc. | Orig. | Nossa | Redu. (%) | Orig. Nossa | Redu. (%) | Orig. | Nossa | Redu. (%)
185.97 | 309.15 | 251.01 18.80 352,456 | 226,326 35.79 1999 | 669 66.53
227.33 | 383.44 | 278.86 27.28 352,456 | 235,265 32.25 1994 | 454 77.23
175.61 | 287.74 | 246.48 14.34 352,456 | 270,733 23.19 1984 941 52.57
199.0 | 333.41 | 210.15 36.97 352,456 | 223,852 36.49 1419 | 538 62.09
156.82 | 252.64 | 202.79 19.73 352,456 | 232,139 34.14 1992 838 57.93
157.76 | 258.53 | 226.61 12.35 352,456 | 280,159 20.51 1980 | 870 56.06
153.17 | 247.7 | 228.79 7.63 352,456 | 282,311 19.9 1999 | 628 68.58
168.91 | 278.72 | 220.01 21.06 352,456 | 229,860 34.78 1975 | 918 53.52
211.39 | 349.38 | 282.5 19.14 352,456 | 235,163 33.28 1982 | 1187 40.11
172.67 | 281.59 | 209.81 25.49 352,456 | 220,898 37.33 1895 | 956 49.55

GHi
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Vemos na Tabela 12 que dentre os dez experimentos executados, temos reducdes
de 7.63 a 36.97% quanto ao tempo de treinamento, de 19.9 a 37.33% em termos
de quantidade de parametros e, com relagdo a quantidade de tracos sao apresenta-
das reducbes de 40.11 a 77.23%. Comparando-se os resultados aqui obtidos com
os apresentados na Tabela 10, vemos que os resultados de ambos os experimentos
(com APoZ e com L1) sdo bastante préximos, com resultados levemente superiores
utilizando-se APoZ como métrica de selecao.

Quanto ao rank minimo da chave criptogréfica, os resultados para estes experi-
mentos sdo mostrados na Tabela 13.

Tabela 13 — Ranks da MLP de Prouff utilizando a norma L1 como métrica de sele¢do dos
neurdnios a remover - Método Proposto.

Min. Rank Baseline | Min. Rank Reduced
0.535 0.0
0.98 0.0
0.125 0.0

0.0 0.0
0.205 0.0
0.02 0.0
0.25 0.0
0.05 0.0
0.385 0.055
0.015 0.0

Mais uma vez, vemos que os resultados mostrados na Tabela 13, ou seja, os resul-
tados para norma L1 sdo muito proximos aos obtidos com a métrica APoZ mostrados
na Tabela 11. Podemos ver que a rede original atinge rank zero em somente um dos
experimentos, enquanto as respectivas redes reduzidas atingem o rank zero em nove
dos dez experimentos realizados.

As curvas dos ranks da chave por numeros de tragos para este experimento séo
mostrados na Figura 24, onde é possivel observar que as curvas das redes reduzi-
das (em vermelho) possuem rank médio inferior ao rank da rede original (azul). Isso
corrobora os resultados mostrados nas Tabelas 12 e 13.

Como vimos, os resultados utilizando a norma L1 como métrica de selecédo e remo-
cao de neurdnios sdo muito préximos aos resultados baseados com a métrica APoZ,
havendo uma leve perda de desempenho em relacdo a APoZ. Embora os resultados
alcancados sejam semelhantes, o custo computacional para realizagdo do calculo da
norma L1 para redes maiores torna-se muito significativo. Como o intuito desta Tese
baseia-se em propor um método para reduzir redes neurais com menor custo com-
putacional, seguimos realizando os proximos experimentos utilizando somente APoZ
como forma de selecionar os neurénios a remover.
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Figura 24 — Ranks MLP de Prouff (L1) - 10 execucbes com a rede original (azul) e 10 execucoes
com as redes reduzidas (vermelho).

Dentro das MLPs aplicadas a SCA, existem redes maiores do que a MLP de Prouff
et al. (2018). Como um exemplo, é possivel citar a MLP de Perin; Picek (2020). Assim,
para os préximos experimentos, buscou-se testar o método proposto nesta MLP, a
fim de verificar seu funcionamento para uma rede neural com um numero maior de
parametros.

Assim, para esta rede, foram também executados 10 experimentos com aplicacéo
do método de poda proposto a MLP de Perin; Picek (2020). Num primeiro momento,
foram registradas as reducdes em termos de tempo de treinamento, quantidade de
parametros e quantidade de tragos necessarios para sucesso no ataque das redes
reduzidas em relagdo a MLP original de Perin; Picek (2020). Isto € mostrado na Tabela
14.



Tabela 14 — Redugdes na MLP de Perin - Método Proposto.

Tempo (s) Parametros Tracos
Proc. | Orig. | Nossa | Redu. (%) Orig. Nossa | Redu. (%) | Orig. | Nossa | Redu. (%)
920.09 | 869.79 | 382.12 56.07 9,966,256 | 5,678,616 43.02 3934 | 2711 31.09
733.99 | 851.94 | 366.59 56.97 9,966,256 | 5,546,573 44.35 3985 | 3359 15.71
7411 | 843.71 | 362.78 57.0 9,966,256 | 5,460,232 45.21 3990 | 1218 69.47
650.5 | 840.27 | 359.87 57.17 9,966,256 | 5,385,677 45.96 3830 | 1231 67.86
767.81 | 844.09 | 369.75 56.2 9,966,256 | 5,543,789 44.37 3962 | 747 81.15
587.39 | 843.99 | 375.12 55.55 9,966,256 | 5,478,293 40.03 3985 | 3151 20.93
751.01 | 848.66 | 369.75 56.43 9,966,256 | 5,477,203 45.04 3960 | 1458 63.18
557.66 | 851.78 | 360.33 57.7 9,966,256 | 5,465,070 45.25 3772 | 2314 38.65
648.11 | 857.31 | 382.04 55.43 9,966,256 | 5,622,091 43.59 3948 | 1330 66.31
597.5 | 837.4 | 388.57 53.6 9,966,256 | 5,594,355 43.87 3953 | 998 74.53

8L
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A Tabela 14 nos mostra que temos reducdes desde 53.26 a 57.7% em termos
de tempo de treinamento das MLPs reduzidas em relagdo a MLP de Perin; Picek
(2020). Como mencionado anteriormente, essas redu¢dées em tempos de treinamento,
se devem as redugdes do tamanho das redes reduzidas em relacédo a rede original
de Perin; Picek (2020). Isso € mostrado na 82 coluna da Tabela 14. Nesta coluna,
podemos ver que redugdes na quantidade de parametros vao desde 40.03 a 45.96%
dentre os 10 experimentos realizados a partir dessa MLP. A Ultima coluna da Tabela 14
mostra que em termos de tragos necessarios para ter-se sucesso no ataque também
obtivemos redugcdes em todos os experimentos realizados. Sobre esse ponto, temos
reducdes de 15.71 a 81.15%.

Esses resultados mostram que para uma MLP do tamanho da rede encontrada em
Perin; Picek (2020), o método aqui proposto, apresenta reducoes significativas. Vemos
também através da Tabela 14 que o processo de reducédo para esta MLP vao de 557.66
a 920.09s, que representam tempos relativamente baixos, devido a utilizacdo de uma
abordagem One-Shot, como mencionado anteriormente.

Com relagdo ao rank minimo da chave criptografica das redes reduzidas,
aplicando-se o método aqui proposto a MLP de Perin; Picek (2020) obtivemos me-
lhores resultados em todos os 10 experimentos realizados. Isso pode ser visto na
Tabela 15.

Tabela 15 — Ranks da MLP de Perin - Método Proposto.

Rank Min. Original | Rank Min. Reduzidas
0.035 0.0
0.045 0.015
0.72 0.005
0.08 0.0
0.51 0.0
0.62 0.395
0.255 0.0
0.065 0.005
0.105 0.0
0.21 0.0

Através da Tabela 15, vemos que, para todos os experimentos realizados com a
MLP de Perin; Picek (2020), o rank minimo alcangado com as redes reduzidas é
menor do que para a MLP original. As redes reduzidas atingem rank zero em seis dos
dez experimentos realizados, enquanto a MLP de Perin; Picek (2020) nao atinge esse
rank em nenhum dos experimentos realizados.

A Figura 25, mostra os graficos de rank x numero de tragos necessarios para
ataques bem sucedidos. Mais uma vez, vemos que as redes reduzidas (em vermelho)
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Figura 25 — Ranks MLP de Perin - 10 execugbes com a rede original (azul) e 10 execucdes
com as redes reduzidas (vermelho).

Portanto, como vimos através dos experimentos anteriores, a abordagem aqui pro-
posta atinge resultados promissores quanto a reducao de redes MLP aplicadas aos
SCAs. Seguimos os testes verificando o funcionamento do método proposto para
CNNs que realizam esse tipo de ataques. Com isto, pretende-se atestar o funci-
onamento satisfatério do método desenvolvido nesta Tese sobre as duas principais
arquiteturas de redes neurais aplicadas a SCA até o presente momento na literatura.

6.4.3 Analise de CNNs Aplicadas a SCA

Esta Secao apresenta o processo de cirurgia One-Shot aplicado a rede CNN de
Perin; Picek (2020) executando um ataque ao dataset ASCADv1, com contramedida
de mascaramento e contramedida temporal. Assim, para esta arquitetura de rede
foram obtidos os seguintes resultados de reducdes apresentados na Tabela 16.



Tabela 16 — Redug¢des na CNN de Perin - Método Proposto.

Tempo (s) Parametros Tracos
Proc. | Orig. | Nossa | Redu. (%) Orig. Nossa | Redu. (%) | Orig. | Nossa | Redu. (%)
475.45 | 558.93 | 509.33 8.87 6,797,246 | 4,120,056 39.39 2042 | 1902 20.82
499.53 | 553.28 | 487.21 11.94 6,797,246 | 3,599,353 47.05 2723 | 1533 43.7
520.48 | 563.59 | 503.56 10.65 6,797,246 | 4,089,818 39.83 2384 | 1731 27.39
505.63 | 559.65 | 492.16 12.06 6,797,246 | 3,495,454 39.83 1649 | 989 40.02
507.57 | 557.78 | 494.62 11.33 6,797,246 | 3,682,848 45.82 1458 | 1325 9.12
514.35 | 564.08 | 494.34 12.36 6,797,246 | 3,513,517 48.31 1973 | 1097 44 .4
511.88 | 564.6 | 483.88 14.3 6,797,246 | 2,956,093 56.51 2319 | 1744 24.8
510.07 | 558.15 | 497.85 10.8 6,797,246 | 3,960,294 41.74 2359 | 1737 26.37
514.87 | 563.31 | 491.44 12.76 6,797,246 | 3,608,795 46.91 2006 | 1790 10.77
510.63 | 558.71 | 492.78 11.8 6,797,246 | 3,528,464 48.09 2704 | 1583 41.46

Il
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A Tabela 16 mostra que para os dez experimentos executados sobre esta CNN,
temos redugdes no tempo de treinamento desde 8.87 até 12.76%, redug¢des na quan-
tidade de parametros de 39.39 a 56.51% e, redugdes na quantidade de tracos para o
ataque de 9.12 até 44.4%. Mais uma vez, percebemos que o método aqui proposto
apresenta 6étimos resultados de reducao e eficiéncia das redes neurais aplicadas a
SCA. Outra observacao que gostariamos de fazer, diz respeito aos baixos valores de
tempo de execugao do processo de redugao desta CNN. Tempos estes que vao de
apenas 475.45 a 520.48s.

Da mesma forma que foi feito para os outros tipos de redes neurais, aqui vamos
visualizar os resultados obtidos através do procedimento de poda abordado nesta Tese
com relacdo ao rank da chave criptografica para os dez experimentos executados
nesta etapa. Isto pode ser visto, através da Tabela 17.

Tabela 17 — Ranks da CNN de Perin - Método Proposto.

Rank Min. Original | Rank Min. Reduzidas
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0

A partir da Tabela 17 vemos que tanto a CNN de Perin; Picek (2020), quanto as
redes reduzidas através do processo aqui proposto alcangcam rank zero para todos
os dez experimentos aqui realizados, ou seja, 0 processo de reducdo da CNN em
questdo nao reduz a eficiéncia desta rede neural.

Apesar dos resultados apresentados no paragrafo anterior nos sugerirem uma
mesma eficiéncia em termos de rank da chave para a CNN vista em Perin; Picek
(2020) e para as redes neurais reduzidas a partir do processo aqui proposto, é possi-
vel verificar através da Figura 26 que as CNNs reduzidas apresentam melhor eficiéncia
do que a rede original encontrada em Perin; Picek (2020).

Aqui na Figura 26, mais uma vez, podemos ver que os graficos dos ranks das
chaves criptograficas para a CNN de Perin; Picek (2020) (vistos em azul) mostram
uma menor eficiéncia em relacao as redes reduzidas resultantes do processo de poda
proposto nesta Tese (curvas na cor vermelha). Através da Figura 26 vemos que as
redes reduzidas apresentam uma melhor eficiéncia em relagcdo a CNN encontrada na
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Figura 26 — Ranks CNN de Perin - 10 execugdes com a rede original (azul) e 10 execucoes
com as redes reduzidas (vermelho).

literatura Perin; Picek (2020) quando se trata dos ranks da chave secreta.

Em ultima analise, buscamos testar nosso método aplicando-o a uma CNN apli-
cada a SCA que apresenta uma arquitetura com um tamanho maior a encontrada
em Perin; Picek (2020). Para isto, os mesmos testes empregados até entédo, foram
aplicados a CNN de Prouff et al. (2018).

Desse modo, assim como realizado para as outras redes neurais utilizadas como
estudo de caso, o método proposto nesta Tese foi aplicado a CNN de Prouff et al.
(2018). Para os experimentos realizados nesta etapa, considera-se a aplicagdo ao
dataset ASCADv1 com contramedida de mascaramento e contramedida temporal. A
partir disso, a Tabela 18 mostra as reducdes obtidas através dos dez experimentos
realizados nesta parte desta Tese.



Tabela 18 — Redugdes na CNN de Prouff - Método Proposto.

Tempo (s) Parametros Tracos
Proc. Orig. Nossa | Redu. (%) Orig. Nossa Redu. (%) | Orig. | Nossa | Redu. (%)
1341.36 | 2114.05 | 1539.97 27.16 66,652,544 | 36,042,227 45.93 14379 | 9344 35.02
1341.13 | 2117.59 | 1372.87 35.16 66,652,544 | 32,268,597 51.59 14933 | 9664 35.28
1371.13 | 2114.76 | 1525.53 27.86 66,652,544 | 33,334,302 49.99 14999 | 4367 70.88
1423.41 | 2116.8 | 1513.28 28.51 66,652,544 | 37,131,097 44.29 14987 | 4334 71.08
1333.58 | 2117.37 | 1569.61 25.87 66,652,544 | 36,476,651 45.27 14826 | 11411 23.03
1355.98 | 2119.81 | 1383.10 24.75 66,652,544 | 32,162,890 51.75 14927 | 9587 35.77
1380.17 | 2112.15 | 1445.20 31.58 66,652,544 | 34,568,700 48.14 14950 | 11302 24.4
1446.48 | 2119.18 | 1574.09 25.72 66,652,544 | 38,637,303 42.03 14880 | 6427 56.8
1469.88 | 2118.77 | 1580.38 25.41 66,652,544 | 40,447,633 39.32 14996 | 10826 27.8
1402.98 | 2116.93 | 1553.02 26.64 66,652,544 | 35,847,318 46.22 14635 | 7803 46.68

el



125

A Tabela 18 indica reducbes no tempo de treinamento de 24.75 até 35.16%, em
termos de quantidade de parametros (tamanho da rede neural) que vao desde 39.32
a 51.75%. Também vemos que houve reducdo com relacdo a quantidade de tracos
necessarios para o ataque de 23.03 até 71.08%. Assim, os resultados apresentados
na Tabela 18 confirmam que o método de reducao das redes neurais proposto nesta
Tese apresenta resultados muito bons quando aplicado a CNN de Prouff et al. (2018).
Mais uma vez podemos perceber, através da primeira coluna da Tabela 18, que o pro-
cesso de reducado da rede neural consome baixos valores de tempo, indo de 1333.58
a 1446.48s. Conforme mencionamos anteriormente, isto deve-se a abordagem One-
Shot para a remocao dos neurénios menos ativos de tais redes.

Do ponto de vista de rank da chave secreta, vemos através da Tabela 19, que
tanto a CNN de Prouff et al. (2018) quanto a CNN reduzida ndo alcangcam rank zero
em nenhum dos experimentos realizados. Embora, para todos os dez experimentos
executados para esta rede, o rank minimo da chave criptografica € menor para as
redes reduzidas do que para a CNN original (Prouff et al. (2018)). Assim sendo, vemos
que o0 menor rank minimo da chave € alcangado pela rede neural reduzida (0.02),
conforme destacado na cor amarela na Tabela 18.

Tabela 19 — Ranks da CNN de Prouff - Método Proposto.

Rank Min. Original | Rank Min. Reduzidas
0.755 0.205
0.745 0.26

1.61 0.11

0.79 0.02
0.345 0.19
3.27 2.135
0.41 0.15
0.37 0.04
0.945 0.525
0.94 0.25

Como vimos, os dados da Tabela 19 mostram uma maior eficiéncia das redes neu-
rais reduzidas em relacdo a CNN de Prouff et al. (2018). Isto é confirmado através da
Figura 27, onde vemos que as curvas dos ranks da CNN de Prouff et al. (2018) (em
azul) apresentam, em geral, ranks menores do que suas respectivas redes neurais
reduzidas, para os dez experimentos aqui executados.

Com isto, podemos concluir a partir dos experimentos aqui realizados, que o0 mé-
todo proposto nesta Tese para reducao de redes neurais alcanga étimos resultados
para as redes neurais mais utilizadas no ambito de Side Channel Attacks. Técnicas
como a aqui apresentada podem tornar o risco desta classe de ataques muito maior,
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Figura 27 — Ranks CNN de Prouff - 10 execucdes com a rede original (azul) e 10 execucoes
com as redes reduzidas (vermelho).

pois conforme aqui apresentado, esse tipo de ataques pode ser realizado até mesmo
em dispositivos dotados de contramedidas através de redes neurais menores do que
as principais redes propostas na literatura. Assim, um atacante necessita de muito
menos recursos computacionais e tempo de ataque, e isto pode popularizar ainda
mais esse tipo de ataques.

6.5 Analise da Quantidade de Epocas de Treinamento para SCA

Nesta Secdo, mais alguns experimentos foram realizados. Desta vez, testamos as
menores redes neurais (em termos de quantidade de parametros) alcangadas através
do processo de poda aqui proposto, para cada uma das redes consideradas nos expe-
rimentos anteriores. Portanto, utilizamos como estudo de caso a menor MLP atingida
a partir da MLP de Prouff et al. (2018), assim como a menor MLP alcangada a partir
de Perin; Picek (2020). Os testes descritos a seguir, também foram realizados para
as menores redes encontradas a partir da CNN de Perin; Picek (2020) e Prouff et al.
(2018). Os experimentos, cujos resultados sdo mostrados a seguir, consistem em ve-
rificar quantas épocas de treinamento sdo necessarias para que seja possivel realizar
um ataque bem sucedido em uma etapa posterior do fluxo de ataques. Assim, realiza-
mos testes para verificar a quantidade de épocas para realizar os ataques das redes
originais em relagéo a suas respectivas redes reduzidas (menores redes alcangadas).
Como veremos a seguir, 0s resultados mostram que as redes neurais reduzidas ne-
cessitam de menos épocas de treinamento do que as redes originais para realizar-se
SCAs.
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6.5.1 Treinamento das MLPs Reduzidas

Os testes com relacao a quantidade de épocas foram inicialmente realizadas com
a MLP de Prouff et al. (2018). Os experimentos aqui realizados foram balizados pelo
rank minimo da chave criptografica apds a execucao dos ataques. Para esta rede,
iniciamos ataques com 200 épocas (numero de épocas recomendadas por Prouff et al.
(2018)) e fomos reduzindo esse numero até que o rank minimo da chave possuisse
um valor igual ou superior a 1. A Tabela 20, mostra os resultados para a MLP de Prouff
et al. (2018).

Tabela 20 — MLP de Prouff Original - Epocas para um ataque bem sucedido - Método Proposto.

Epocas | Tracos | Rank
200 1952 | 0.015
180 1991 1.31
160 1998 | 0.915
150 1945 | 0.005
145 1620 0.0
140 1991 0.265
135 1990 2.59
130 1912 0.12
129 1997 0.77
128 1976 6.22
127 1998 | 13.69

Na Tabela 20 vemos que para 180, 135, 128 e 127 épocas o rank minimo da chave
€ maior do que 1. Através dos resultados mostrados na Tabela 20, podemos conside-
rar que precisamos de 129 (destacado em amarelo), das 200 épocas recomendadas,
para realizar SCA. Vemos que apenas para 145 épocas o rank zero € alcancado para
a quantidade de tracos considerados, conforme destacado em verde.

Os gréficos correspondentes as curvas dos ranks x quantidade de tracos par a
MLP de Prouff et al. (2018) sdo mostrados na Figura 28.

A Figura 28 nos mostra que para treinamentos desta MLP com menos de 129
épocas o rank da chave secreta ndo atinge valores considerados satisfatérios para um
ataque bem sucedido, dentro do numero de tragos considerado para este experimento.

Depois desse experimento, a partir do qual extraimos nossa baseline, realizamos
experimentos relacionados a quantidade de épocas necessarias para realizacdo de
SCA para a menor MLP obtida através do processo de cirurgia aqui proposto, aplicado
a MLP de Prouff et al. (2018). Os resultados para este experimentos sao vistos a partir
da Tabela 21.

Como podemos ver através da Tabela 21, necessitamos treinar a MLP em questao
por apenas 97 épocas para que o rank da chave criptografica mantenha-se a um valor
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Figura 28 — Ranks por épocas - MLP de Prouff Original.

Tabela 21 — MLP de Prouff Reduzida - Epocas para um ataque bem sucedido - Método Pro-
posto.

Epocas | Tracos | Rank
200 932 0.0
150 2285 0.0
140 1662 0.0
130 3506 0.0
120 1524 0.0
110 3894 | 0.005
105 1610 0.0
100 2521 0.0

97 3882 | 0.095
96 3990 | 3.605
95 3992 | 12.15
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abaixo de 1 (conforme definimos como um rank aceitavel).Assim, considerando-se um
rank menor do que 1, essa rede pode realizar um ataque bem sucedido com menos
da metade de épocas sugeridas para a rede original.

A Figura 29, mostra as curvas de rank x numero de tracos para as quantidades de
épocas de treinamento consideradas na Tabela 21.
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Figura 29 — Ranks por épocas - MLP de Prouff.

Vemos na Figura 23, que para ataques realizados a partir da MLP testada em que
a rede foi treinada com menos de 97 épocas, 0s resultados em termos de rank nao
convergem para valores que caracterizam ataques bem sucedidos para a quantidade
de tracos considerada.

Estes primeiros experimentos nos mostra que, uma vez que o atacante pondere
realizar o treinamento da MLP de Prouff et al. (2018) para realizacdo de SCA, por uma
quantidade de épocas menor do que o sugerido pelos autores, com o intuito de reduzir
o tempo total dos ataques, a MLP reduzida pode ser treinada por uma quantidade de
épocas menor do que a MLP original.

A seguir, 0s mesmos experimentos foram executados, utilizando-se a MLP de Pe-
rin; Picek (2020) como referéncia. Assim, primeiramente foram realizados testes com
relagdo a quantidade minima de épocas de treinamento para ataques bem sucedidos,
com relacdo a MLP de Perin; Picek (2020). Esses resultados sdo apresentados na
Tabela 22.

Conforme vemos na Tabela 22, sdo necessarias aproximadamente 80 épocas
(amarelo) para realizarmos um SCA bem sucedido. Aqui, afrouxando-se a métrica
anteriormente estabelecida, podemos considerar um ataque aceitavel com 70 épocas
(verde) de treinamento da MLP. Vemos também na Tabela 22 que em nenhum dos ex-
perimentos realizados nesta etapa, o rank da chave minimo alcangou o valor zero. Na
melhor das hipéteses, com 175 épocas (destacado em verde) treinando a rede neural
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Tabela 22 — MLP de Perin Original - Epocas para um ataque bem sucedido - Método Proposto.

Epocas | Tracos | Rank
200 3830 0.08
175 3962 0.02
150 3966 | 0.085
125 3618 0.04
100 3988 0.66

90 3902 0.1

80 3997 0.56
70 3993 2.27
69 3998 5.32
68 3944 | 14.18

o rank minimo da chave € de 0.02. Este foi o melhor resultado atingido pela MLP de

Perin; Picek (2020).

As curvas mostrando os ranks por numero de tragcos sdo mostradas na Figura 30.
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Figura 30 — Ranks por épocas - MLP de Perin Original.
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Agora que temos os dados da baseline (MLP de Perin; Picek (2020)), partiremos
para a descoberta da quantidade de épocas que precisamos treinar a menor MLP
obtida através do método proposto sobre a MLP de Perin; Picek (2020), para que esta
realize um SCA bem sucedido. Esta rodada de experimentos tem seus resultados

mostrados na Tabela 23.

A Tabela 23 nos mostra que a rede neural reduzida, diferentemente da MLP de
Perin; Picek (2020), atinge o rank zero para a chave criptografica quando treinamos a
MLP reduzida por mais de 30 épocas (em verde). E, considerando rank 1 um resultado
satisfatério para termos um ataque bem sucedido (conforme estabelecemos anterior-
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Tabela 23 — MLP de Perin Reduzida - Epocas para um ataque bem sucedido - Método Pro-
posto.

Epocas | Tracos | Rank
200 1231 0.0
150 1790 0.0
100 1553 0.0

70 1289 0.0
50 2390 0.0
30 2270 0.0
20 3767 0.33
19 3968 0.86
18 3953 | 7.045
17 3980 16.3

mente), percebemos que se treinarmos essa rede reduzida por 19 épocas (destacado
em amarelo) ou mais, temos um SCA bem sucedido. Aqui, percebemos que mais uma
vez a MLP reduzida pode realizar um ataque bem sucedido, sendo treinada por uma
quantidade de épocas inferior a sua correspondente MLP original.

Vemos as curvas dos rank da chave para a MLP reduzida na Figura 31.
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Figura 31 — Ranks por épocas - MLP de Perin.

E possivel notar na Figura 31 que o rank médio das curvas vdo aumentando con-
forme vamos reduzindo o numero de épocas de treinamento, principalmente quando
realizamos o treinamento da rede neural com 20 épocas ou menos. Com trinta épocas
ou mais de treinamento, vemos que as curvas de rank sao bastante préximas, e vao
se distanciando em funcgao da reducao de épocas, conforme esperavamos.
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6.5.2 Treinamento das CNNs Reduzidas

Como vimos, as MLPs reduzidas através do método aqui proposto podem ser trei-
nadas por uma quantidade de épocas inferior as suas respectivas MLPs originais. Nos
proximos passos, testamos as CNNs utilizadas como estudo de caso nos exemplos
anteriores. Primeiramente, foram realizados experimentos a partir da CNN encon-
trada em Perin; Picek (2020), descrita em paragrafos anteriores. Os resultados para
esta rede sao mostrados na Tabela 24.

Tabela 24 — CNN de Perin Original- Epocas para um ataque bem sucedido - Método Proposto.

Epocas | Tracos | Rank
400 2319 0.0
200 1752 0.0
160 2664 0.0
155 3105 0.0
154 3727 0.0
153 1379 0.0
152 3987 0.07
151 3997 0.27
150 3914 8.41
149 3993 | 23.03

Com base nos dados da Tabela 24 vemos que para a CNN de Perin; Picek (2020)
apresenta rank minimo da chave criptogréafica abaixo de 1 quando treinamos essa
rede neural com 151 épocas ou mais. Podemos ver também que o rank zero € atingido
qguando a rede é treinada por pelo menos 153 épocas (destacado em verde). Assim,
notamos que com menos de 153 épocas de treinamento o rank da chave criptografica
€ maior do que zero, crescendo rapidamente quando reduzimos o numero de épocas
abaixo de 151 épocas. Confirmando com isso, a necessidade de treinar-se a rede
com pelo menos 151 épocas para obtermos SCAs bem sucedidos.

As curvas do rank da chave para estes experimentos sdo mostradas na Figura 32.

Como mencionamos anteriormente, vemos através da Figura 32 que quando re-
duzimos o numero de épocas de treinamento abaixo de 151 épocas, as curvas dos
ranks da chave secreta tem seus valores médios aumentados consideravelmente. Isto
corrobora a necessidade de treinamento de pelo menos 151 épocas para a realizacéao
de ataques bem sucedidos.

Partindo dessa baseline, os mesmos experimentos em termos de numero de épo-
cas foram realizados considerando a menor CNN obtida aplicando-se o0 método aqui
proposto a CNN de Perin; Picek (2020). Os resultados estdo mostrados na Tabela 25.

Através da Tabela 25 vemos que apesar de o rank da chave criptografica alcancar
valor igual a zero somente para o treinamento da rede reduzida por 400 épocas, o rank
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Tabela 25 — CNN de Perin Reduzida - Epocas para um ataque bem sucedido - Método Pro-

posto.

Epocas | Tracos | Rank

400 1744 0.0

300 3668 | 0.015

200 3983 | 0.05

150 3792 | 0.005

149 3900 | 0.12

148 3992 | 0.94

147 3993 | 2.23

146 3991 2.85

145 3977 | 9.67

144 3999 | 14.36
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abaixo de 1 é atingido quando treinamos essa rede por 148 épocas ou mais. Com um
numero menor de épocas, verificamos que os valores de rank da chave criptografica
aumentam substancialmente, colocando esse numero de épocas como sendo o va-
lor minimo de épocas de treinamento para realizar SCA. Percebemos, portanto, que
apesar de haver uma pequena diferenca neste caso, a CNN reduzida necessita ser
treinada por uma quantidade de épocas menor do que a CNN original de Perin; Picek
(2020).

As curvas dos ranks da chave criptografica para a CNN reduzida através do método
aqui proposto sao mostradas na Figura 33.
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Figura 33 — Rank por épocas - CNN de Perin.

Observando as curvas dos ranks apresentadas na Figura 33, podemos notar que
embora as curvas mostradas na Figura sejam bastante proximas neste experimento,
€ possivel perceber que para treinamentos com 148 épocas ou mais, o rank da chave
atinge valores muito préximos a zero (menores do que 1, conforme definimos).

Por ultimo foram realizados testes com relagdo a quantidade de épocas necessa-
rias para um ataque bem sucedido a partir da CNN de Prouff et al. (2018). Seguindo-se
0s mesmos procedimentos para 0s experimentos anteriores, comecaremos mostrando
os resultados obtidos para esta rede neural, na Tabela 26.

Vemos através da Tabela 26, que para obtermos o rank minimo da chave menor
do que 1, conforme definido para ter-se sucesso no ataque anteriormente, precisamos
treinar a rede neural por 55 épocas (em amarelo). Inclusive, para esse numero de
épocas de treinamento o resultado do ataque (rank) é melhor do que para as 130
epocas recomendada pelos autores. Se formos considerar o rank (3.27) obtido com
130 épocas de treinamento como referéncia, poderiamos considerar um ataque bem
sucedido treinando a rede com 52 épocas de treinamento, ou mais (destacado em
verde).
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Tabela 26 — CNN de Prouff - Epocas para um ataque bem sucedido - Método Proposto.

Epocas | Tracos | Rank Min.
130 14927 3.27
100 14981 1.17
60 14983 2.295
55 14973 0.5
54 14594 1.88
53 14802 1.99
52 14997 1.355
51 13549 5.83
50 14991 6.61
49 14776 13.53

Como fizemos para as outras redes, aqui mostramos na Figura 34 as curvas dos
ranks para os experimentos realizados.
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Figura 34 — Rank por épocas - CNN de Prouff Orig.
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Através da Figura 34 percebemos visualmente através das curvas, que para casos
em que a rede foi treinada por menos de 52 épocas o rank minimo da chave néo
atinge os menores valores, confirmando os resultados da Tabela 26.

Agora, estes experimentos s&o realizados com a menor rede obtida a partir da
CNN de Prouff et al. (2018). A Tabela 27 mostra os resultados obtidos em termos de

rank minimo da chave.

A Tabela 27 mostra que para obtermos rank menor do que 1, precisamos treinar a
rede neural por 40 épocas (em amarelo). No entanto, se considerarmos o rank obtido
com 130 épocas de treinamento (2.14) como referéncia, vemos que se treinarmos a
rede por 29 épocas (verde) ou mais pode-se considerar um ataque bem sucedido.
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Tabela 27 — CNN de Prouff Reduzida - Epocas para um ataque bem sucedido - Método Pro-
posto.

Epocas | Tracos | Rank Min.
130 9587 2.14
100 14927 0.72
70 14995 1.51
50 13939 0.24
40 14974 0.32
30 14932 1.57
29 14799 1.29
28 14963 5.06
27 14936 7.35
26 14506 22.15

As curvas dos ranks para este experimento, podem ser vistas na Figura 35.
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Figura 35 — Rank por épocas - CNN Prouff.

Como podemos ver através da Figura 35, as curvas sdo bastante proximas, atin-
gindo maiores valores de rank médio quando treinamos a rede neural por menos de
29 épocas.

Com base nos experimentos realizados, pudemos ver que para todas as redes
neurais aqui testadas, suas versdes reduzidas, através do método aqui proposto, ne-
cessitam ser treinadas por uma quantidade menor de épocas do que suas respectivas
redes originais, para obtermos sucesso nos SCAs. A Tabela 28, traz um resumo dos
resultados obtidos de modo que possamos fazer uma comparacao entre as redes.

Com base nestes experimentos, concluimos que é possivel um atacante adotar a
estratégia de diminuir a quantidade de épocas de treinamento da rede para reduzir
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Tabela 28 — Comparagéao entre resultados de niumeros de épocas.

Rede Epocas Orig. | Epocas Red. | Reducido%
MLP Prouff 129 97 24.81
MLP Perin 80 19 76.25
CNN Perin 151 148 1.99
CNN Prouff 55 40 27.27

o tempo de execugcdo do SCA, visto que as redes neurais reduzidas pelo método
proposto apresentam melhores desempenho.

6.6 Consideracoes sobre o Capitulo

Este Capitulo apresentou o método de poda proposto nesta Tese, o qual consiste
no desenvolvimento de um fluxo para redugédo de redes neurais capazes de realizar
ataques a canais laterais. Com isto, mostramos que os SCAs podem ser realizados
através de redes neurais com menor esforco computacional, € com menores tempos
de treinamento do que com as redes apresentadas na literatura, apontando um poten-
cial aumento no nivel de ameaca dessa classe de ataques.

Como vimos, a abordagem aqui adotada baseou-se na técnica de cirurgia apresen-
tada por Hu et al. (2016). Assim, os primeiros experimentos consistiram em aplicar o
método de Hu et al. (2016) no contexto de SCA. A partir desses testes iniciais, foi pos-
sivel constatar que tal método pode reduzir as redes disponiveis na literatura usadas
para esta finalidade.

Em um segundo momento, foram realizados um conjunto de experimentos
aplicando-se o método proposto, que teve como objetivo reduzir o esforco compu-
tacional e consequentemente o tempo despendido no processo de redugcao da rede
neural em si. Com base nesses experimentos, finalmente pudemos comprovar que
€ possivel obter-se redes neurais reduzidas para realizacdo de SCA com um custo
computacional e temporal inferiores aos indicados na literatura.

Por fim, mostramos que as redes neurais reduzidas através do nosso método po-
dem ser treinadas por menos épocas do que as redes originais para realizacao dos
ataques. Assim, indicamos que caso o atacante utilize a redu¢ao do numero de épo-
cas de treinamento para realizar ataques mais rapidos, as redes neurais reduzidas
apresentam melhor desempenho que as redes originais.



7 CONSIDERAGOES FINAIS

Este Capitulo visa destacar as principais conclusées decorrentes dos experimen-
tos realizados a partir do método de reducgao de redes neurais aplicadas a SCAs pro-
posto nesta Tese. Além disso, sdo caracterizadas alternativas para continuidade dos
trabalhos, tendo por base os estudos e pesquisa realizados.

7.1 Principais Conclusoes

O expressivo aumento na quantidade de dispositivos que usam criptografia em-
barcada, trouxe consigo uma nova classe de ameacgas que sao os ataques a canais
laterais (KOCHER, 1996) e (KOCHER; JAFFE; JUN, 1999). Embora existam protecées
contra esse tipo de ataques, chamadas contramedidas (BOEY et al., 2010), (CHOU;
LU, 2019), (DAS et al., 2020), (LIU; CHANG; LEE, 2010) e (LIU; CHANG; LEE, 2012),
estudos mostraram que etapas de pré-processamento podem neutralizar tais contra-
medidas (LELLIS; SOARES, 2017), (LODER, 2014), (NAGASHIMA et al., 2007) e (LE
et al., 2007).

Além disso, devido a crescente evolucédo da area de inteligéncia artificial, algorit-
mos de aprendizado de maquina e aprendizado profundo foram também emprega-
dos no contexto dos SCAs (HETTWER; GEHRER; GUNEYSU, 2020), (YANG et al.,
2012) e (LERMAN et al., 2013). Inicialmente, os trabalhos encontrados na literatura
realizavam ataques baseados em inteligéncia artificial sobre dispositivos desprotegi-
dos. Contudo, também s&o encontrados trabalhos que realizam ataques em dispositi-
vos dotados de contramedidas (LERMAN; MARTINASEK; MARKOWITCH, 2017), (?),
(PROUFF et al., 2018), (TIMON, 2018) e (TIMON, 2019).

Embora comprovado através dos estudos apresentados na literatura, que algorit-
mos de aprendizado profundo possam recuperar a chave criptografica através de um
ataque a canal lateral, o custo computacional envolvido é bastante excessivo, pois a
rede neural utilizada para essa tarefa pode conter uma quantidade de parametros trei-
naveis da ordem de milhdes. Alguns experimentos mencionam semanas de tempo de
execucao dos seus algoritmos. Isto pode tornar o ataque inviavel em muitos casos.
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Por outro lado, técnicas de reducao de redes neurais sdo encontradas na literatura,
como por exemplo a poda, que busca eliminar elementos da rede (pesos, neurdnios ou
camadas) baseando-se em algum critério de utilidade de tais elementos (GUO; YAQO;
CHEN, 2016), (HE; ZHANG; SUN, 2017), (KIM; KWOK, 2019), (CHEN et al., 2021),
(FAN; TANG; MA, 2022) e (HU et al., 2016). Através dos experimentos aqui relatados,
pudemos comprovar que técnicas, como a apresentada por Hu et al. (2016) podem ser
empregadas no contexto de SCA com sucesso, encontrando-se redes muito menores,
e por tanto mais eficientes, capazes de realizar ataques bem sucedidos.

Contudo, muitos dos métodos encontrados da literatura, como por exemplo (HU
et al., 2016), sao bastante custosos por tratarem-se de métodos iterativos contendo
repetidos ciclos de poda-treinamento. Assim, aqui propomos um método One-Shot
eliminando os diversos retreinamentos capaz de obter-se redes menores, além de
mais eficientes, do que as encontradas na literatura (LELLIS; SOARES; PERIN, 2022).

Experimentos foram realizados com diferentes configuracbes de redes neurais
mais recorrentes no campo de SCA (MLPs e CNNs), confirmando a eficiéncia do
método aqui proposto para reduzir redes neurais capazes de realizar ataques a ca-
nais laterais. Como vimos, as redes reduzidas através da abordagem desenvolvida
nesta Tese possuem uma quantidade menor de parametros treinaveis e, consequen-
temente menores tempos de treinamento. Além disso, como pudemos ver através dos
resultados apresentados no Capitulo 6.3, as redes neurais reduzidas sao capazes de
realizar SCAs necessitando para isso uma quantidade menor de tragcos do consumo,
meétrica bastante coerente na area de Side Channel Attacks. Ainda, experimentos re-
alizados com relagdo a quantidade de épocas de treinamento das redes necessarias
para realizar-se ataques bem sucedidos. Nesses casos, as redes reduzidas também
se mostraram mais eficientes do que suas respectivas redes neurais.

Com base nos resultados alcangados no desenvolvimento desta Tese, podemos
apontar o crescente potencial desse tipo de ataques, uma vez que através de redes
neurais de tamanho reduzido um atacante é capaz de realizar ataques com menos re-
cursos computacionais e de tempo consumido, até mesmo em dispositivos dotados de
contramedidas. Assim, SCAs podem tornar-se mais ameacadores, pois estes podem
tornar-se acessiveis a uma quantidade cada vez maior de usuarios mal intencionados.

7.2 Trabalhos Futuros

Como concluimos, os ataques por canais laterais podem tornar-se mais ameaca-
dores se conseguirmos realizar tais ataques ao custo de cada vez menos recursos
computacionais. Aqui nesta Tese exploramos a reducéo de tais redes através de um
método de poda (pruning). Como vimos, os métodos de poda apresentam algumas
caracteristicas que apresentam alguns aspectos que podem ser explorados, como fi-
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zemos por exemplo, variando-se a forma de selacao dos neurénios (APoZ, L1, etc.). A
granularidade consiste em outra caracteristica da poda que apresenta variagoes. Aqui,
entendemos que para as redes testadas a melhor granularidade consiste na poda de
neurdnios. Porém, técnicas que mesclam podas em diferentes granularidades podem
ser testadas futuramente. Além disso, outras formas de redugcédo de redes neurais
como a quantizagdo também s&o possiveis. Assim, para passos futuros tais técnicas
podem ser exploradas e até mesmo integradas a fluxos juntamente com técnicas de
poda.

Ainda, as técnicas de reducdo encontradas na literatura tém a funcéo de diminuir
o tamanho de redes neurais pré-existentes. Assim, é necessario que se tenha uma
rede prévia para realizar a sua reducdo. Sabe-se que o projeto de redes neurais
€ uma tarefa extremamente complexa, e que exige profundo conhecimento de seus
projetistas, além de horas de treinamento para chegar-se ao resultado desejado. Para
mitigar esses problemas, técnicas automaticas de projeto de redes neurais, chamadas
de Neural Architecture Search — NAS sao encontradas na literatura. Através de NAS
redes neurais sdo projetadas sem a necessidade de intervengcdo humana, chegando-
se a resultados superiores ao estado da arte até o presente momento. Tais técnicas
podem também ser aplicadas no contexto de SCA em momentos futuros.

Tais frentes de pesquisa elencadas configuram o panorama para o aprimoramento
e expansao do trabalho aqui realizado, ou seja, a busca por técnicas de realizagao de
ataques por canais laterais baseados em redes neurais com menor necessidade de
recursos computacionais e de tempo.
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