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RESUMO

GODINHO, Arthur Cardozo. An Ultra Low-Energy VLSI Approximate Discrete Haar
Wavelet Transform for ECG Data Compression. Advisor: Rafael Iankowski Soares.
2024. 88 f. Dissertação (Mestrado em Computer Science) – Technology Development
Center, Federal University of Pelotas, Pelotas, 2024.

Este trabalho propõe um esquema de compressão VLSI altamente eficiente ba-
seado em DHWT (transformada wavelet Haar discreta) para permitir uma melhor
transmissão e armazenamento, especialmente em ambientes com recursos limitados,
em especial para a realização do processamento de sinais de (eletrocardiograma).
Este trabalho apresenta arquiteturas de hardware podadas, aproximadas e trunca-
das (PDHWT, AxDHWT e TDHWT) até o nível 5 de compressão. Dentre as diversas
soluções desenvolvidas, a solução mais eficiente em termos de consumo energético
e área ocupada foi aquela que utiliza todas as técnicas de compressão simultane-
amente (poda, aproximação e truncagem). Com relação a esta solução, é possível
afirmar que a abordagem PDHWT gera maior redução no consumo de energia ao
remover os componentes desnecessários. A abordagem AxDHWT garante maior de-
sempenho ao remover os componentes mais custosos. E por fim, a solução TDHWT
reduz o número de bits da entrada, reduzindo assim a complexidade geral da arqui-
tetura. Considerando a solução mais eficiente, foi obtido uma taxa de compressão
de 0,03125 (1/32) e um PRD (percent root difference) < 1,54. A implementação da
arquitetura VLSI foi baseada na tecnologia CMOS de 65 nm, com valores de frequên-
cia fixos. O trabalho desenvolvido apresentou como grande diferencial o consumo
energético extremamente baixo sendo este de apenas 0,84 µW , sendo este o menor
consumo entre todas as soluções comparadas, advindas da literatura recente para
compressão de sinais de ECG.

Palavras-chave: Compressão de dados. Transformadas. Hardware. Eletrocardiogra-
fia. Eficiência Energética.



ABSTRACT

GODINHO, Arthur Cardozo. An Ultra Low-Energy VLSI Approximate Discrete Haar
Wavelet Transform for ECG Data Compression. Advisor: Rafael Iankowski Soares.
2024. 88 f. Dissertation (Masters in Computer Science) – Technology Development
Center, Federal University of Pelotas, Pelotas, 2024.

This work proposes a highly efficient compression scheme utilizing a VLSI-based
Discrete Haar Wavelet Transform (DHWT) architecture. This scheme aims to facilitate
improved transmission and storage, particularly in resource-constrained environments
for electrocardiogram (ECG) signal processing. The work presents pruned, approxi-
mated, and truncated DHWT architectures (denoted as PDHWT, AxDHWT, and TD-
HWT, respectively) up to level 5, targeting ultra-high energy efficiency in ECG data
compression. Among the developed solutions, the most energy-efficient and area-
optimized approach employs all three compression techniques simultaneously (prun-
ing, approximation, and truncation). In this combined approach, the PDHWT tech-
nique achieves significant energy savings by eliminating redundant components. The
AxDHWT approach enhances performance by removing the most computationally ex-
pensive elements. Finally, TDHWT reduces the number of input bits, leading to a
lower-complexity architecture. This combined solution achieves a compression ratio of
0.03125 ( 1

32
) and a percent root difference (PRD) less than 2.08. The VLSI architec-

ture implementation leverages 65 nm CMOS technology with maximum frequency of
1.1 GHz. A key differentiator of this work is the remarkably low energy consumption
of 0.6µW , which surpasses all existing ECG signal compression solutions reported in
recent literature.

Keywords: Data compression. Transform. Hardware. Electrocardiography. Energy
efficiency.
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1 INTRODUCTION

This chapter introduces the work by presenting the problem, the primary challenges
to overcome, and a brief presentation of the solution developed. It also offers a brief
explanation regarding the composition of the ECG signal, its wave structure, its main
characteristics, and finally, it presents the main contributions of the work.

1.1 The Challenge

Cardiovascular diseases (CVDs) are the leading cause of death in the world accor-
ding to the World Health Organization (WHO) (CHIANG et al., 2019). Sudden cardiac
death (SCD), mainly caused by arrhythmia, is defined as death due to cardiovascular
causes in a patient with or without known preexisting heart disease, in whom the mode
and time of death are unexpected. It is well known that SCD is the manifestation of
a fatal heart rhythm disorder, such as ventricular tachycardia (VT) and ventricular fi-
brillation (VF) (LAI et al., 2019). Those diseases need to be treated instantly, and the
diagnosis needs to be quick to preserve life. Electrocardiography is one of the most
used techniques to ensure the diagnosis of these diseases in a non-invasive way. This
procedure records the electrical changes on the skin due to the heart’s electrical ac-
tivity. The data provided by this procedure is known as an electrocardiogram (ECG),
which can be utilized for various diagnostic purposes, among them are the detection
and help to diagnose not only cardiovascular diseases but also other problems that
indirectly affect the heart activity (BURGUERA, 2019).

The Electrocardiogram is a graphical of minute electrical samples from cardiac mus-
cles (HAMZA; RIJAB; HUSSIEN, 2021). In a long-range watching of cardiac patients,
record samples of ECG data show a big capacity from memory for storage or a signifi-
cant bandwidth of communication channels in case of sending ECG data (CHANDRA’;
SHARMA; SINGH, 2021). Therefore, ECG data collection must be carried out cons-
tantly to monitor patients health conditions efficiently. This operation generates a large
amount of data, which needs to be handled efficiently and safely to enable constant mo-
nitoring. Another major challenge faced in the persistent collection of medical signals,
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especially in the case of ECG signals, is energy consumption. Since the equipment
for constant monitoring needs to be powered using batteries, the equipment that col-
lects these signals needs to be energetically efficient to guarantee greater autonomy
(ZHANG et al., 2018).

Given the problems above, it is possible to conclude that the transfer and manipula-
tion of raw ECG data is unsuitable for most use cases, especially for continuous moni-
toring, due to the large consumption of computational resources, energy consumption
being the most critical factor. Therefore, the solution used by most works in the litera-
ture is signal compressing. Compression is achieved by eliminating the redundancies
from data, reducing storage requirements, and minimizing the redundant data points
found in the ECG data while protecting the essential diagnosis features of the original
data (SINGH PAL et al., 2022).

There are two main types of compression, i.e., the lossy compression and the los-
sless compression. The former approach presumes that no losses (distortions) are
introduced and, thus, all valuable information is preserved. Unfortunately, in this case,
the compression rate usually is small (KRIVENKO et al., 2018). On the other hand,
lossy compression appears as an option, as it allows much higher compression rates
and can achieve the requirements generating practical compression algorithms for fast
signal transmission (ABDULBAQI et al., 2018).

The ECG signal wave comprises the P and T waves and the QRS complex. This
wave results from contracting and expanding a heart muscle, as seen in Figure 1. The
depolarization of atrial muscles produces a P wave caused by contraction of the atria.
At the same time, the QRS complex describes the effect of the atrium re-polarization
and the essentially concurrently depolarization of ventricles due to atrium contracting.
The ventricular re-polarization generates a T wave, which causes profit to the resting
part of the ventricular mass (HAMZA; RIJAB; HUSSIEN, 2021).

Figure 1 – The ECG Signal (SEIDEL et al., 2021)



18

In summary, collecting ECG signals in real-time and with sufficient quality is ne-
cessary to make a correct medical diagnosis possible. Therefore, working with data
directly is not viable, requiring techniques such as compression to manipulate them.
The proposed solution will be presented below, along with its general details and impli-
cations.

1.2 The Problem Definition and Solution

Regarding methods for performing signal compression, a significant improvement
has been accomplished in transform-based techniques, where signals are transformed
to another domain. The most popular transforms are the Fourier transform, discrete
cosine transform (DCT), and discrete Wavelet transform (DWT), commonly used in
different compression algorithms (SINGH PAL et al., 2022). Among these methods,
DCT compression offers a significant advantage: the ability to analyze a signal through
a two-dimensional time vs. frequency function with a variable resolution. Among the
families of Wavelet transform, the Haar stands out for its mathematical simplicity and
low computational effort required to perform its calculations(SEIDEL et al., 2020).

This way implies that, at the same time, a high reduction in computational resources
is necessary to enable the real-time application of the solution. It is also essential to
ensure that the QRS complex remains unchanged during the compression process,
allowing accurate extraction of information from the signal.

Therefore, the primary objective of the work is to develop an architecture capable of
compressing ECG signals to allow great energy and area savings. We use the Discrete
Haar Wavelet Transform (DHWT) and the three main strategies from the literature for
hardware optimization to perform the compression. As secondary goals, we developed
several sub-architectures that, while failing to achieve the most excellent efficiency
when it comes to the consumption of hardware resources, are solutions with good
trade-off potential between signal quality and savings. Still, as a secondary objective,
we also compare the different forms of hardware implementation of the DWT transform,
highlighting the best solution and its characteristics.

The pruning was the first strategy to optimize the already computationally simple
Haar transform. The pruning primary goal is to reduce the hardware based on custom
acceleration algorithms to maintain the required mathematical property (SEIDEL et al.,
2021). The pruning can be carried out in several different ways, whether to reduce
the size of the training models in IA applications (XIONG et al., 2023), to compress
neural networks (XUANHUI; JUAN; QUAN, 2021), or to reduce the overall project cost
via removal of unused components (SEIDEL et al., 2021). This last case was the
pruning applied to the transform Haar, removing unnecessary components for genera-
ting compression. This way guarantees a gain in energy consumption and hardware
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space without losing compression quality. One can classify compression with pruning
as lossless compression, with the difference that, unlike most lossless compression
techniques, in this case, there is a significant real gain in terms of the total project cost.

The pruning strategy allowed us to obtain a considerable performance gain. Howe-
ver, there are other techniques capable of expanding the gains already obtained. Hard-
ware approximation stands out among the leading existing solutions for optimization at
the hardware level. Approximate computing is one of the effective methods used to op-
timize circuit design. One uses approximate computing by maintaining the desired level
of accuracy in error-resilient applications where approximate results are optimal alter-
natives to exact results (BARAATI et al., 2022). As the lossy compression approach,
like approximate hardware components, uses inexact approximations, understanding
the impact of data compression techniques in terms of bit and error rate could be of
significance in making ECG records usable in remote clinical healthcare (MOON et al.,
2020) (BURGUERA, 2019).

Considering this scenario, the approach will punctually act on the most expensive
hardware component, and its replacement/removal would bring the greatest advantage
to the hardware in terms of performance. This component is the multiplier once multipli-
ers are one of the most widely used arithmetic blocks in digital circuits. Also, multipliers
have high power consumption and hardware area occupation (BARAATI et al., 2022).
Considering the application of the Haar transform, the multiplier is an essential logic
component responsible for most of the overall power consumption in the signal proces-
sing (RAMASAMY; NARMADHA; DEIVASIGAMANI, 2019). Therefore, its optimization
is necessary for developing an efficient compression system.

In addition to the optimization strategies mentioned above, we used bit truncation to
achieve the maximum possible performance. Since, at the moment, the most inherently
adopted approximation in practice for significant savings in power is the reduction of
bit-widths by truncation (SEIDEL et al., 2021). Bit truncation has made it possible
to achieve a higher degree of energy consumption reduction and highly competitive
results compared to other solutions in the recent literature.

We promoted direct comparisons with other solutions in the literature to validate
the developed solution, especially with the current state-of-the-art. Gold standard error
metrics performed the comparisons, allowing a complete analysis of the quality of the
generated signal and an evaluation of the consistency of the essential features of the
ECG signal (DA ROSA et al., 2022a).

1.3 The Contributions of this work

The novel contributions of this work are as follows:

1. It presents a Discrete Haar Wavelet Transform (DHWT) matrix approximation
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capable of satisfying the quality of service in the application and producing a
multiplier-less hardware architecture.

2. It offers pruning in the approximate DHWT matrix, reducing the DHWT hardware
architecture to just seven parallel additions.

3. It demonstrates that the developed solution can support truncation without lo-
sing the signal’s essential characteristics and generating significant distortions,
resulting in considerable energy savings.

4. It promotes comparisons of the developed solutions with the state-of-the-art,
showcasing the trade-offs made during the project’s development while empha-
sizing its primary strengths.

5. It allows a discussion regarding the efficiency in the detection of the main proper-
ties of the ECG signal after compression, outlining the circuit space and power
consumption advantages, guaranteeing the procession of ECG signals with ex-
ceptional quality.

1.4 Outline

The work is organized as follows: Chapter 2 presents the design of the hardware to
be developed, as well as detailed explanations regarding both the construction of the
hardware and the synthesis methodology. Chapter 3 presents the complete solution
and all developed versions in greater details. Chapter 4 brings the obtained results
and their comparisons with other relevant works from the literature and between the
implemented architectures. Finally, Chapter 5 contains the conclusion and possibilities
for future works and improvements.



2 BACKGROUND OF HARDWARE DESIGN CONCEPTS
AND TECHNIQUES

This chapter is divided into five subchapter. First, an overview of power dissipation
and energy consumption is given, highlighting its main problems, and opportunities
for optimization. The second subchapter discusses the conceptualization of approxi-
mate computing and its main applications, focusing on data compression. The third
subchapter presents the methods used: the synthesis method, which is responsible
for describing the main tools and techniques used, as well as the results in terms of
energy and area savings. The other method presented is the accuracy method, which
provides more detailed information on how the signal quality assessment was carried
out and the minimum conditions for acceptance. Soon after, The fourth subchapter
presents wavelet transform theory and its applications, especially in signal compres-
sion and optimization. The fifth and final subchapter presents the topic’s conclusion
and briefly summarizes the main points covered in the chapter.

2.1 Power Dissipation

In recent literature, many works have reduced energy consumption as their central
focus, especially regarding equipment with continuous use or IoT (Internet of Things)
devices. In the era of the IoT, where continuous monitoring of signals, carried out by
wearable devices, becomes increasingly a reality, the concern with reducing energy
consumption becomes immense (ROSA et al., 2021). This section presents the main
concepts of energy consumption and overviews some works that treat energy con-
sumption reduction in the biomedical area.

2.1.1 Power dissipation background

Power dissipation is one of the major concerns when designing digital circuits. The
increase of portable devices requires the design of VLSI (Very Large Scale Integration)
circuits from the point of view of reducing power dissipation (Rabaey (1996)). Exces-
sive power dissipation integrated circuits make their use in portable systems infeasi-
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ble and cause overheating that degrades performance and shortens their life (Najm
(1994)). This section discusses the most influential parameters of power dissipation in
CMOS (Complementary Metal-Oxide Semiconductor) circuits.

The main reason for the popularity of CMOS logic is that conventional logic gates
(AND, OR, NAND, NOR, NOT , XOR) do not have static power dissipation unless
their outputs switch between logic levels (Weste; Eshraghian (1994)). However, power
dissipation is generated in the transistors for each output of a CMOS gate whose logic
value changes (Martin (2000)). The original reason for this power dissipation is the
movement of electric charges that charge and discharge external load capacitances
and internal parasitic capacitances.

There are three primary sources of power dissipation in CMOS circuits (Weste;
Eshraghian (1994)): i) power dissipation caused by leakage currents and sub-threshold
currents, ii) short-circuit power dissipation, which occurs due to the direct current flow
from the power supply to the ground during the switching process in a transistor gate,
and iii) dynamic power dissipation, which is the result of loading and unloading the
capacitances of the circuits.

Static dissipation arises from leakage currents in metal-oxide-semiconductor field-
effect transistors (MOSFETs) and from parasitic elements created by interconnecting
with the substrate. Ideally, the static power dissipation of a CMOS circuit is zero. Howe-
ver, with new technologies below 90nm, this powerful component has become quite
significant. There are always leakage currents that can occur when one transistor is
off, and another active transistor charges the drain concerning the substrate potential
(Chandrakasan; Sheng; Brodersen (1992)) (up/down).

This fraction of power dissipation becomes increasingly more prominent in the to-
tal power dissipation, especially when the semiconductor process technology reaches
values below 100nm (Kim; Blaauw; Mudge (2003)). Studies show that in the case of
an inverter circuit 70nm technology subjected to simulations at 125◦C, leakage cur-
rents can contribute about 49% to the total power consumption of the circuit (Kim; Roy
(2002)).

Equation 1 shows the static power as a function of leakage current and supply vol-
tage. On the other hand, Equation 2 shows the leakage current given by the reverse
diode characteristic equation, where IS is the reverse saturation current, V is the vol-
tage across the diode, and VT = KT

q
is the thermal load.

Pesttica = Ileakage.Vdd (1)

Ileakage = IS(e
V
VT − 1) (2)

According to Chandrakasan; Brodersen (1995), consumption of static power by the
subthreshold current due to the diffusion of carriers between source and drain (Vds)
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occurs when the gate-source voltage (Vgs) exceeds the weak inversion point but still
has a value below the threshold voltage (Vt). In this regime, the MOS (Metal-Oxide
Semiconductor) transistor behaves similarly to a bipolar transistor, and the subth-
reshold current is exponentially dependent on the gate-source voltage (Vgs). Equation
3 shows the subthreshold current, where VT is the thermo-electric voltage and Ke is
a technology-dependent parameter. In the equation, n corresponds to: n = 1 + ωtox

D
,

where tox is the thickness of the gate oxide, D is the channel depletion width, and
ω corresponds to the equation ω = ϵsi

ϵox
, where ϵsi is the permittivity of the insulating

material and ϵox is the permittivity of the oxide.

Ids = Ke
Vgs−Vt
nVT (1− e

−Vds
VT ) (3)

Due to switching operations, dynamic power dissipation comes from the charging
and discharging of circuit capacitances. The dynamic switching component of power
dissipation (Pdin) at a node at the output of a gate charged by a capacitor CL is given
by the Equation 4, where A is the output node activity measured in events/second for
a full charge/discharge, f is the switching frequency, and Vdd is the supply voltage.

Pdin =
1

2
CLAV

2
dd =

1

2
afCLV

2
dd (4)

2.1.2 Synthesis flow for power estimation

Figure 2 shows the current industrial methodology for determining power dissipa-
tion. First, the register transfer level (RTL) description is synthesized using a com-
mercial synthesis tool. We use Cadence GenusTM Synthesis tool in this work. Secon-
dly, the tool generates the circuit netlist in Verilog, the SDF (Standard Delay Format)
file, which records the specific delays for gates and nets, as well as cell area, power
dissipation, and critical path delay (CPD) reports. Then the simulation tool (such as
Cadence GenusTM ) simulates the generated netlist with the testbench files (in VHDL
or Verilog or SystemVerilog language) and feeds the circuit with input data to generate
the dump file, which is either in VCD (Value Change Dump) or TCF (Toggle Count
Format) files. The input data used as stimuli is extracted from the target application
software and stored in text files. Using these text files, the simulation tool obtains these
values and runs the testbench with the gate-level netlist files and the SDF delay files
to generate accurate switching activities. At the end of the simulation, a dump file is
created containing the switching activities of all nodes in the circuit’s netlist. Finally, the
synthesis tool is run a second time with the same parameters. During this process,
the dump file is passed to the software to generate accurate power dissipation reports.
Modern synthesis tools support estimating the drawbacks of gate connections in terms
of circuit area, power dissipation and delay. The Cadence Genus logic synthesis tool
provides physical logic synthesis in Physical Layout Estimator (PLE) mode. This tool
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estimates the length of networks and considers the impact of load capacity on power
dissipation, using an estimate of layout routing. Such analysis requires the inclusion of
Library Exchange Format (LEF) files, which primarily contain the physical layout infor-
mation of the library. The LEF macro contains the capacity of the inner library cell, and
the Tech LEF contains the process metal capacity for estimating interconnect capacity.
In addition, standard cell libraries usually provide an additional file, the capacity table,
which describes the technology capacities in more detail.

(.vhd) GENUS (.v)
(.sdf)

RTL in VHDL
(.vhd)

Tool Command Language (.tcl)
ST Microelectronics  65nm CMOS Standard Cell library (.lib)

Synopsys Design Constraint (.sdc)
Library Exchange Format (.lef)
Capacitance Table (.CapTBL)

Value Change Dump (.vcd) Reports (power, area, timing)

𝐜ത𝐚𝐝𝐞𝐧𝐜𝐞

TM

Gate-level
Netlist (.v)

Standard Delay
Format (.sdf)

Xcelium

(.v)

Testbench and
Library Verilog (.v )

Text
files

1th Synthesis 2th Synthesis

Figure 2 – ASIC-based synthesis methodology diagram (DA ROSA et al., 2023).

2.1.3 Energy consumption overview in biomedical area

The work proposed by (AHMED et al., 2022) highlights the limited energy storage
capacity in IoT and mobile devices in general, primarily because these devices must
be powered by batteries, resulting in a restricted amount of energy available for their
operation. This work also presents some solutions for reducing consumption in image
processing. The leading solution proposed is using the adaptive Haar transform for
compression. In (VAANANEN; HAMALAINEN, 2021), it emphasizes the need to deve-
lop solutions capable of operating independently for long periods and presents energy
consumption as the main limiting factor for this functionality. The work in question
proposes reducing consumption in LoRa sensor networks. The work presented by (XI-
ONG et al., 2023) uses a discrete wavelet transform (DWT) to compress test signals
and facilitate learning AI techniques on broad data sets to facilitate management and
predict consumption in smart electrical grids.

Focusing more on treating medical signs, the work developed by (FATHI et al., 2022)
proposes an algorithm to reduce the energy consumption in Remote Healthcare Moni-
toring Systems. The algorithm uses the discrete Krawtchouk moments and the AALO
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(Ant Lion Optimizer) to compress the ECG signal and extract its features with a signifi-
cant reduction in the hardware resources used and, consequently, in energy consump-
tion. The works (SEIDEL et al., 2021), (ROSA et al., 2021), and (SEIDEL et al., 2020)
use the wavelet transform together with other methods of optimization like hardware
pruning and approximate computing concepts, to reduce the power consumption in the
context of ECG signal collection and transmission.

As we have already seen, energy consumption is a significant challenge that we
have to face. The need to use ever more efficient and, above all, more energy-efficient
devices is on the rise. With the advent of IoT technologies and the proliferation of
edge computing, the need to use ever more sophisticated devices with more powerful
hardware that must also have low consumption is increasing, as they are dependent
on very restrictive energy sources with low autonomy, such as batteries (ZHOU et al.,
2019). These high development restrictions make the constant evolution of the techno-
logies used in these devices essential to meet the demand for new and more efficient
devices.

One of the most critical areas where computing devices, and more recently IoT de-
vices, are widely used is the medical area. In this area, wearable devices have been
increasingly used, obtaining favorable results for improving patients’ quality of life and
data acquisition (CHEN et al., 2020). These devices detect various signals, such as
the oxygen content of the blood, blood pressure, ECG, etc. Among the main moni-
tored signals, the ECG signal has stood out due to its particular need for continuous
monitoring since this signal is vital for detecting diseases with high fatality rates, such
as arrhythmia and heart attack (SEIDEL et al., 2021). Figure 3 presents wearable
applications for collecting ECG signals remotely and continuously.

Figure 3 – ECG wearable devices: a) Wearable 12-lead ECG Smart-Vest System(LIU et al.,
2019). b) Rigid-flex design of the sensor patch for health monitoring(WU et al., 2020). c) Sensor
patch is attached to a subject’s chest using bio-compatible tapes(WU et al., 2020).

The continuous acquisition of this signal over long periods is very costly in energy
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consumption, making it necessary to develop solutions to minimize this consumption.
A widely used form of compression is the application of compression of the signal ob-
tained to alleviate communication and reduce consumption in the transmission/storage
of collected data (SEIDEL et al., 2021). This dissertation follows this trend, focusing
on reducing consumption through data compression to facilitate transportation and sto-
rage. We use the discrete Haar Wavelet transform for this purpose.

2.2 Wavelet Transform

This section presents a background of wavelet transform with concepts and charac-
teristics and offers an overview of works from the literature exploring wavelet transform
in many applications.

2.2.1 Wavelet transform background

The wavelet transform is nothing but a short waveform with finite duration with zero
average value. Compared to the sine function, the wavelets range between −∞ to
+∞. Among the existing types of wavelet transforms, the discrete wavelet transform
(DWT) is the most common technique used for general compression, including image
and 1-D signal compression (KANAGARAJ; MUNEESWARAN, 2020). One of the most
essential properties of wavelet transforms is their ability to capture information in both
the time and frequency domains. Because of this property, these transforms are be-
coming increasingly critical in processing biomedical signals, where high precision and
high optimization values are required (SEIDEL et al., 2021). Among the many medical
signals, wavelet transforms have been widely used for analysis, noise removal, and
compression of respiratory signals (ROSA et al., 2021).

Wavelet transforms are divided into families. There are many families of wavelet
transforms that are used in different fields. Figure 4, created with the Matlab tool,
shows a graphical representation of the waveforms from some of the main families
of transforms. These are the families: Haar, Coiflets, Daubechies and Symlets. This
figure shows its base waveforms in an amplitude x time scheme.

Figures 4 b) and c) shows the Coiflets and Symlets, that are wavelets developed to
have zero moments, both in scale and in the mother wavelet. As for the coiflet, the main
indicative feature of coiflet wavelet is to have the highest number of vanishing moments
for both scaling and wavelet function for given support width (ROHIMA; BARKAH AK-
BAR, 2020). The Symlet wavelet have high symmetry with the waveforms presented
by the ECG signal, which makes it more favorable for denoising and compression of
this type of signal (VIJAYAKUMARI; DEVI; MATHI, 2016).

In Figure 4 c), we have the Daubechies wavelet, this is one of the most widespread
wavelets for signal analysis. Has as main characteristics the compact support, that is,
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it completely cancels itself out of a finite interval of time, and is normally not differen-
tiable, implying a function that does not present smoothness (OLIVEIRA, 2007). The
wavelets of the Daubechies family also have great similarity to those presented by ECG
signals, in order to facilitate their use in compression (BALACHANDRAN; GANESAN;
SUMESH, 2014).

Figure 4 – Representation of wavelet transforms.

Among the transforms presented, the Haar wavelet, Figure 4 a), stands out es-
pecially for data compression, due to its great simplicity and computational efficiency
(SEIDEL et al., 2020). Although its signal does not have great similarities with the ECG
signal, unlike the other wavelets presented, due to its versatility and low complexity,
this transform can be used in the compression of ECG signals.

2.2.1.1 Haar wavelet transform

The Haar wavelet was first introduced by Alfred Haar (1909). It is the most straight-
forward wavelet. Discretely, Haar wavelets are called Haar transform (KANAGARAJ;
MUNEESWARAN, 2020). In addition to being the simplest transform, the Haar trans-
form is a compactly supported orthogonal wavelet basis function (XIONG et al., 2023).
The main advantages presented by the Haar transform are the following:

1. Computational Efficiency: The Haar transform requires minimal mathematical
operations, primarily additions and subtractions. This inherent simplicity ma-
kes it computationally efficient and fast to implement, especially on resource-
constrained hardware (KANAGARAJ; MUNEESWARAN, 2020).

2. Potential for High Compression: The Haar transform’s ability to decompose sig-
nals into localized averages and differences allows for efficient data compression.
By discarding less significant details, the transform can achieve high compression
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ratios while maintaining a reasonable level of signal fidelity, potentially leading to
higher PSNR (Peak Signal-to-Noise Ratio) values (XIONG et al., 2023).

3. Scalable Decomposition: The Haar transform exhibits a recursive property. This
means the decomposition process can be applied iteratively, progressively ex-
tracting finer details from the signal. This recursive nature allows for a flexible
trade-off between compression ratio and signal fidelity (KANAGARAJ; MUNE-
ESWARAN, 2020).

The Haar wavelet, can be represented according to Equation (5).

φ(t) =


1, 0 ≤ t ≤ 1

2

−1, 1
2
≤ t ≤ 1

0, others.

. (5)

The Haar wavelet transform process can be visualized from Mallat’s Algorithm as a
cascade filter-bank structure seen in Figure 5. In this Algorithm, the signal decompo-
sition is performed using high-pass and low-pass filters, which amounts to performing
difference and average calculations, respectively, on adjacent data points. From this,
the high-pass filter coefficients (cDx) offer a view of the changes occurring in the data,
and the low-pass filter coefficients (cAx) give an approximation view (DING; ZILIC,
2016).

Figure 5 – Five levels cascade filter-bank structure for Haar wavelet transform (DING; ZILIC,
2016).

Thanks to the mathematical simplicity of the Haar wavelet, the Haar wavelet trans-
form is particularly efficient in compressing signals and reducing energy loss (ROSA
et al., 2021). In addition to significant energy savings and computational simplicity,
the Haar wavelet exhibited superior performance when compressing ECG signal data,
compared to other transforms (GODINHO et al., 2023). For this reason, the Haar trans-
form has been widely used for data compression, and it is especially suitable to detect
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the ECG R-peaks in low-power embedded systems with a very low power dissipation
and general system cost (SEIDEL et al., 2021).

Many relevant works in the recent literature use wavelet transform for data com-
pression, such as the work developed by (ROSA et al., 2021), which uses the Haar
wavelet to compress respiratory signals in a resource-constrained environment. The
work (XIONG et al., 2023) brings us an application of the Haar transform to compose
a Non-intrusive load monitoring (NILM) to optimize energy consumption monitoring.
With (KANAGARAJ; MUNEESWARAN, 2020), the authors tried and achieved good re-
sults when applying the Haar transform for image compression in environments with
significant hardware restrictions. However, the use case of the Haar wavelet transform
that has gained greater prominence and highly positive results has been its applica-
tion for compression and treatment of ECG signals in constrained systems. The works
(GODINHO et al., 2023), (SEIDEL et al., 2020), (DING; ZILIC, 2016) and (SEIDEL
et al., 2021) use the transform for this purpose. In this way, using this transformation
to optimize ECG data compression is feasible, highly efficient, and competitive, as the
presented solutions achieve equivalent/superior results compared to other techniques
in the literature.

2.2.2 Wavelet transform overview

Discrete Wavelet transform (DWT) is widely used in the literature in several appli-
cations, such as image and signal processing, biomedical, and cryptography. Over the
years, several works have focused on proposing efficient hardware solutions for this
transform. In the work (JANA et al., 2021), an area-efficient VLSI architecture for 2-
dimensional discrete wavelet transform (DWT) and inverse discrete wavelet transform
(IDWT) have been proposed to reduce the hardware space occupation and energy
consumption. In (RANA; HASAN; SINHA SHUVA, 2022), discrete wavelet transform
and discrete cosine transform were used to watermark images and protect them from
copyright. The work presented by (ELHOSENY et al., 2018) shows a model developed
through integrating either 2-D discrete wavelet transform 1 level (2D-DWT-1L) or 2-D
discrete wavelet transform 2 level (2D-DWT-2L) steganography technique with a pro-
posed hybrid encryption scheme. This scheme aims to ensure an exchange of signals
between medical devices connected in IoT networks, with high efficiency and security.
The paper (YU; HOU; LI, 2018) utilizes DWT to operate simultaneously in both the
time and frequency domains and with advanced Deep Neural Networks techniques to
develop a false data injection attack detector capable of capturing spatial and temporal
inconsistencies generated by the attacks.

The work (DING; LIU; YANG, 2021) utilizes a lifting wavelet transform to reduce
the redundancy in the analyzed periodic wavelet data and uses the Deflate algorithm
to compress the waveform data losslessly. The results presented a compression ratio
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close to 4 in a real-time test environment. In (CONTRERAS-VALDES et al., 2019),
a data compression algorithm based on the DWT is implemented to compress the
information generated by electrical consumption monitors. With the work (KUMARI;
RAJALAKSHMI, 2016), it is possible to observe an application of DWT to compress
ECG signals to facilitate communication. The work in question achieves a compres-
sion ratio of 9.34:1, a result superior to other works in the literature. To carry out the
tests, the database MIT-BIH arrhythmia database was utilized. The work presented by
(IFTODE; FOSALAU, 2020) builds a system to collect, compress, and denoise ECG
signals using an embedded system to collect and transmit the signal in real-time. They
compared results with three transforms regarding compression performance, with the
best performance presented by a Biorthogonal wavelet with three decomposition le-
vels.

Among the various existing wavelet families, the Haar wavelet stands out, being
widely used in a series of works presenting highly favorable results regarding energy
savings and reducing hardware space. As far as this transform is concerned, one can
cite a whole series of works with the most diverse applications that make use of this
technique, such as presented by (KANAGARAJ; MUNEESWARAN, 2020), (applied
to image compression), (DING; ZILIC, 2016) (sensors for collecting medical signals),
(SEIDEL et al., 2021) and (DA ROSA et al., 2022a) (reduce general cost via signal
compression using truncation and pruning).

The application of wavelet transformations has dramatically increased in signal pro-
cessing. The discrete wavelet transform (DWT) has vast multimedia signal processing
and numerical analysis applications. In the past few decades, various researchers
extensively researched to develop suitable DWT architectures (JANA et al., 2021).
The wavelet transform is widely used in feature extraction in fault diagnosis tasks as
a mathematical tool to transform time series to another feature space (SHAO et al.,
2019). Given its vast application in several areas, the low-power hardware solutions
for DWT have been proposed in the literature, as in (GUPTHA; RAO; SELVARA, 2023)
that offers a low-power DWT architecture for a pervasive biomedical image processing
application using a multiplier-less structure. This dissertation also proposes a low-
power DWT solution for ECG signal compression, particularly exploring its Haar family.
Beyond the multiplier-less approach, the work also explores pruning and truncation
based on approximate computing capabilities.

2.3 AxC: Approximate Computing

AxC leverages the intrinsic error resilience of applications to inaccuracy in their in-
ner calculations to achieve a required trade-off between efficiency, performance, and
power demand and acceptable error of returned results. In particular, approximate re-
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sults are hard to distinguish from perfect results for signal, audio, image, video proces-
sing, data mining, and information retrieval. Suitable solutions come from approximate
arithmetic operators, implemented both at the hardware (Hegde; Shanbhag (1999);
Palem et al. (2009); Mohapatra et al. (2011); Gupta et al. (2011); Kulkarni; Gupta;
Ercegovac (2011); Chippa et al. (2010, 2011); Dutt et al. (2017); Kundi et al. (2020);
Rosa et al. (2023); Da rosa et al. (2022)) and software (Chippa et al. (2011); Esma-
eilzadeh et al. (2012); Cong; Gururaj (2011)) levels. The AxC paradigm emerged as
a key alternative for trading off accuracy and energy efficiency. Error-tolerant appli-
cations, such as multimedia and signal processing, can process the information with
lower-than-standard accuracy at the circuit level while still fulfilling a good and accep-
table service quality at the application level. The automatic compression of the ECG
signal is the essential step preceding ECG processing and analysis. The DHWT is a
low-complexity pre-processing filter suitable for compression of the ECG signal in em-
bedded systems like wearable devices, which are incredibly energy-constrained. This
work presents an approximate DHWT hardware architecture for ECG processing at
very high energy efficiency.

2.3.1 AxC Background

The optimization of hardware architectures for the Haar Discrete Wavelet Transform
(HDWT) has been an area of intensive research aiming to enhance energy efficiency
and area utilization in integrated circuits without compromising the accuracy of signal
processing operations, particularly in detecting R-peaks in electrocardiogram (ECG)
signals. Among the most prominent techniques used to achieve this optimization are
pruning, truncation, and approximation.

The pruning technique reduces the number of arithmetic operations required in a
DHWT architecture by eliminating redundant calculations that do not directly contribute
to the ultimate goal, such as the compression of ECG signals. It is achieved by remo-
ving unnecessary operations and logical paths, retaining only the essential elements
for accurate compression of ECG signals. Pruning the architecture reduces arithmetic
complexity, saving energy and area without compromising signal processing quality.

The truncation technique aims to reduce the precision of arithmetic operations, es-
pecially those involving multiplication and addition, by decreasing the number of bits
used to represent the data. By truncating the input and output values of the DHWT, it is
possible to reduce the complexity of calculations, energy consumption, and area occu-
pied by the hardware. However, ensuring that truncation does not compromise signal
processing quality is crucial, especially in the accurate compression of ECG signals.

The approximation technique seeks to simplify the matrix operations of the DHWT
by modifying the coefficients of the transformation matrices to values that can be more
efficiently represented in hardware. It may involve rounding coefficients and simplifying
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operations, such as replacing constant values with simpler ones. By performing ap-
proximations on the transformation matrices of the DHWT, it is possible to reduce the
complexity of arithmetic operations, saving energy and area in the hardware without
compromising the accuracy of signal processing.

The mentioned strategies will be detailed in the next section when we show the
developed architectures employing these prominent approaches.

2.3.2 AxC Overview

Approximate computing (AxC) is an emerging trend in digital design (ESPOSITO
et al., 2018). The recent literature has addressed this topic as the work developed by
(ESPOSITO et al., 2018) proposes novel approximate compressors and algorithms to
exploit them to design efficient approximate multipliers. The work aims to develop cir-
cuits with better power and speed for target precision. In (ZANANDREA; MEINHARDT,
2022), the main goal is to evaluate multiplier circuits to explore approximate computing
approaches for power-efficient scenarios, with its main target on machine learning and
IoT applications. The exploration of the Kalman Gain (KG) equation is the focus and
way of implementing hardware approximation in the work (PEREIRA et al., 2022). It
explores approximate arithmetic units to reduce power dissipation and area in the VLSI
design of the KG block, maintaining an appropriate precision level for the target appli-
cation.

Many works use approximate computing techniques applied directly to medical sig-
nals. It is the case with the work (NAJAFI et al., 2023), despite the difficulties in using
approximate computing in critical health monitoring applications. The work shows that
by employing approximate computing properly, even an increase in the final accuracy
is attainable, thanks to the regularization that approximate processing introduces. The
work presented by (SATO; HAMA, 2023) proposes an error correction technique uti-
lizing the Carry-Maskable Adder (CMA) that aims to enable approximate adders in
scenarios where high precision is required. The developed algorithm acts on ECG
signal processing so that approximate components become viable in processing this
signal.

The work developed by (P. et al., 2023) aims to approximate an energy-efficient
HDWT hardware architecture for ECG processing through a clock gating mechanism
and pruning techniques. With (KANANI; BHATTACHARJYA; BANERJEE, 2021), the
authors focused on developing a method that enables approximate computing for ef-
ficient biomedical wearable computing at the edge. The project’s main objective is to
approximate the adders used in ECG signal compression to reduce the power con-
sumption and the chip area utilization. In (DA ROSA et al., 2022a), the approximate
level-3 Haar wavelet transform is utilized for ECG compression to increase the hard-
ware design efficiency and obtain a higher R-peak detection rate, which translates into
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a more efficient and reliable system, capable of being used in critical medical systems
and continuous monitoring. One of the most used forms of AxC is its use directly on
data compression. We will detail this topic in the subsection presented below.

2.3.3 AxC: Approximate computing in compression data

Approximate computing (AxC) in data compression emerged as an appealing alter-
native for building smaller energy-efficient circuits. AxC tries to trade tolerable hardware
errors for higher circuit design efficiency in energy consumption, processing speed,
and circuit area (PEREIRA et al., 2022). AxC is a prominent approach in digital sys-
tems design by relaxing the requirement of exact computation to substantially improve
power, performance, and area (ZANANDREA; MEINHARDT, 2022). AxC can be used
successfully in various fields, even in areas where the susceptibility to error is low and
high precision is required. The primary examples of uses for compression are multi-
media processing, data mining and recognition, machine learning (ESPOSITO et al.,
2018), and the processing of linear signals.

AxC is being addressed at different levels of abstraction, such as physical properties
of the transistors, logical functions of arithmetic operators, and variations in the archi-
tecture of computer systems, having obtained area reductions and energy savings for
the implemented circuits (ZANANDREA; MEINHARDT, 2022). One of the most impor-
tant applications of approximate computing to optimize hardware usage is in arithmetic
operations. Notably, using approximate arithmetic units is among the main successful
strategies for low-power design VLSI circuits (PEREIRA et al., 2022).

Multipliers are one of the most widely used arithmetic blocks in digital circuits. Also,
multipliers have high power consumption (SEIDEL et al., 2021). Multipliers are fun-
damental subsystems for microprocessors, digital signal processors, and embedded
systems with applications ranging from filtering to convolutional neural networks. Un-
fortunately, multipliers comprise complex logic designs and constitute one of the most
energy-hungry digital blocks. Therefore, approximate multiplier design has become an
important research subject in recent years (ESPOSITO et al., 2018) (BARAATI et al.,
2022).

Recently, approximate transforms have been emerging as an alternative to reduce
the complexity of its hardware. However, most of the literature’s transform approxima-
tions have been proposed for multimedia processing, needing more ECG processing
solutions (ZANANDREA; MEINHARDT, 2022). Currently in the literature, to the best
of the author’s knowledge, the works that obtained the viable results are only works
developed by (SEIDEL et al., 2021) and (ROSA et al., 2021), which focus directly on
the use of approximate computing, aiming at compressing ECG signals.

When applying AxC in VLSI design, the designer must use adequate metrics to
evaluate the robustness of the obtained results. Beyond the proper metrics, this work



34

uses a rigorous synthesis methodology to show the benefits of our solutions and to
provide a fair comparison with the state-of-the-art. Next, we present the methodology
adopted in this work, showing the database used and the primary metrics for accuracy
evaluation.

2.4 Methodology

The methodology used to develop the work is divided into the utilized data, synthe-
sis, accuracy, and error measurement methods. This section discusses the utilized
data first and then the metrics for accuracy evaluation.

2.4.1 Utilized database

The signals used for testing were taken from the Physio-Net website, more specifi-
cally from the MIT-BIH Arrhythmia Database (IFTODE; FOSALAU, 2020). The MIT-BIH
is a database created at Boston’s Beth Israel Hospital with the support of MIT. The da-
tabase started as a set of standard test materials for evaluating arrhythmia detectors
and has been used for basic research into cardiac dynamics at more than 500 sites
worldwide. This database contains 48 half-hour excerpts of two-channel ambulatory
ECG recordings obtained from 47 subjects studied by the BIH Arrhythmia Laboratory
between 1975 and 1979 (GOLDBERGER et al., 2000).

The database comprises 23 recordings from a pool of 4000 24-hour ambulatory
ECG recordings gathered from a diverse group of inpatients and outpatients, randomly
selected at Beth Israel Hospital in Boston. The remaining 25 recordings were selected
from the same set to include less common but clinically significant arrhythmias that
would not be well-represented in a small random sample. The recordings were digitized
at 360 samples per second (360 Hz) per channel with 11-bit resolution over a 10 mV
range (GOLDBERGER et al., 2000).

Two concatenations with different types of signals were selected. One contains
only signals of the Normal Sinus Rhythm (NSR) type, which consists of normal ECG
signals, i.e., without anomalies caused by diseases or other factors. The other con-
catenation of signals chosen is composed of signals with Premature Ventricular Con-
tractions (PVCs). PVCs represent anomalous conditions where extra beats begin to
occur in one of the two lower pumping chambers of the heart, disrupting the correct
beating rhythm. Signals with this condition have very different waveforms, making their
compression difficult and ideal signals to test in the proposed compression model.

Figure 23 shows the signals utilized in the tests of the solution. Figure 23 a) pre-
sents the graphical representation of the complete NSR signal, and b) the complete
representation of the PVC signal, c) and d) show parts of the signals NSR and PVC
respectively with 2,000 samples, and e) and f) show parts of bolt NSR and ECG sig-
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nals with 5,000 samples, in the same way. These last four examples aim to facilitate
visualization of the waveform presented by the signals used.

Figure 6 – Graphical representation of the signal concatenations.

2.4.2 Metrics for Accuracy Evaluation

Applications in the medical field require a high level of precision. Small changes
in data can significantly impact obtaining accurate diagnoses (CHIANG et al., 2019)
and thus cause failures with severe consequences, compromising the integrity of the
healthcare system. Therefore, we used several error analysis metrics to evaluate the
compression to ensure that the minimal changes did not affect the original signal in a
way that could compromise the diagnosis. Based on the multiple works in the literature
analyzed, we applied the following error metrics:

1. Peak detection

2. Accuracy

3. Mean Absolute Error (MAE)

4. Normalized Cross-correlation (NC)

5. Percentage Root-mean-square difference (PRD)

6. Root-mean-square Deviation (RMSE)

7. Signal-to-noise ratio (SNR)

8. Structural similarity index measure (SSIM)
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2.4.2.1 Peak detection

Peak detection is one of the main ways to ensure that signal characteristics are ex-
tracted robustly, guaranteeing signal analysis with the required high precision (IFTODE;
FOSALAU, 2020). Correct detection of the QRS complex is essential for an accurate
medical diagnosis (HAMZA; RIJAB; HUSSIEN, 2021). In this way, we have to auto-
matically detect the R-peaks in the ECG signal, which is the essential step preceding
ECG processing and analysis in industrial-strength biomedical applications (SEIDEL
et al., 2021). Figure 7 shows the general waveform of the ECG signal with its main
components and their expected ranges.

Figure 7 – Complete visualization of the QRS complex with intervals (JINDAL et al., 2018)

The QRS complex is the most striking waveform, and it serves as the basis for
the automated determination of other ECG characteristics(WU et al., 2020). Many al-
gorithms are used to detect the QRS complex correctly. The Pan-Tompkins (P&Q)
algorithm has been identified as the most straightforward and efficient algorithm for
embedded devices due to its low computational cost and competitive performance. It
allows reliable peak detection while presenting lower energy consumption than other
existing solutions (CLARK et al., 2018). This algorithm can be considered straight-
forward, since its implementation was carried out individually using a single module to
complete the peak detection process and generation of results.

The algorithm was offered by Jiapu Pam and Willis J. Tompkins in 1985. QRS com-
plex is detected by the digital study of amplitude, width, and slope of ECG signal, which
includes three stages: Digital filtering linearly, Non-linear conversion, and algorithm for
decision making. The linear process constitutes a bandpass filter, moving window
integrator, and derivative. Non-linear conversions are performed by squaring the am-
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plitude of the signal. Adaptive thresholding and discrimination of the T-wave technique
are parts of the decision rule algorithm. Detection sensitivity escalates due to low th-
resholding after filtering (JINDAL et al., 2018). The block scheme of Pan-Tompkins can
be observed in Figure 8.

In this case, the bandpass filter allows only frequencies in a particular range where
there is a more significant possibility of locating peaks, given the behavior presented by
the signal while attenuating frequencies outside it. In turn, the derivative filter computes
the derivatives of the post-integrated data. The main function of this filter is to directly
attenuate the noise generated by previous operations and the original signal. The
derivation process performs this reduction.

Figure 8 – Block scheme of Pan-Tompkins based detector (GALA; BARABAS; KRAJNAK,
2020)

The work developed by (COSTA, 2021) describes the Pan-Tompkins algorithm as
one of the main algorithms for detecting R peaks. Figure 9 shows the signs at the end
of each one of the phases of the algorithm. First, the signal passes through a digital
bandpass filter to attenuate the noise. The desirable band to maximize the energy of
the QRS complex is 5 to 12 Hz (Figure 9 b). After the filtering phase, the five-point
differentiation is executed (Figure 9 c), exposing information about the QRS complex’s
slope. After that, the sign is squared (Figure 9 d). This operation intensifies the slope of
the response curve in derivative frequency. It helps restrict the false positives created
by the T waves with more energy than the usual waves. A movable window integrator,
with a width of 15ms, is used to produce a signal that includes information about both
the slope and the width of the QRS complex (Figure 9 e). To detect the R peak, a
system of adaptive thresholds is used in the output signals of the bandpass filter and
the moving window integrator (Figure 9 e). The window integrator identifies the local
maximum of the R peak, and the exact value of peak R is determined at the output of
the bandpass filter.
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Figure 9 – Algorithm processes of Pan-Tompkins: a) Signal entry, b) Signal resulting from
adaptive filter and adaptive thresholds, c) Resulting signal from derivation, d) Squared signal,
e) Result of the signal at the output of the window integrator and the adaptive thresholds of the
signal, f) Out of the R peak detection algorithm (COSTA, 2021)

2.4.2.2 Accuracy

The direct calculation of accuracy is one of the most traditional methods to measure
the correctness of a signal compared to its original after it has changed, be it through a
compression process, the insertion of noise, or any other change to the original signal.

The accuracy indicator is the ratio between the number of correctly classified sam-
ples and all the test samples. Its mathematical expression is defined in (6), created
by (BUYYA et al., 2023), where TP and TN stand for true positive and true negative,
respectively, and are responsible for the correct detection of the signal. FP and FN
stand out for false positive and false negative, respectively, being responsible for the
incorrect classification of the signal (BUYYA et al., 2023).

Accuracy(%) =
TP + TN

TP + TN + FP + FN
× 100 (6)

The definition presented above is the traditional definition of accuracy calculation
commonly used in classifying AI models. In the experiments, we adapted a version of
the algorithm for 2D ECG signals, which standardizes hits and misses.

2.4.2.3 MAE: Mean Absolute Error

The average absolute error is the predictive value of the average absolute value of
deviation from the true value. Since the deviation is absolute, the positive and negative
offset will not be present. Therefore, the average absolute error is not sensitive to the
abnormal value and reflects the actual situation of the error of the prediction value.
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Equation (7) shows the calculation method of mean absolute error, in which n repre-
sents the number of samples, Y i represents the value of the correct compression, and
M represents the compressed value (ZHANG et al., 2019).

MAE =
1

n

n∑
i=1

(|yi −m|) (7)

The smaller the values of MAE, the better the overall quality of the compression,
and the closer the generated signal is to the original one (XIONG et al., 2023). This
way, we obtain the lowest possible MAE values to guarantee more remarkable similarity
with the original signal.

2.4.2.4 NCC: Normalized Cross-correlation

Analysis of electrocardiogram using cross-correlation is a system that takes advan-
tage of a feature that the ECG signal of a person under similar physical conditions at
different timings shows very minute variations in its anatomy. Thus, this concept can
be used for human authentication and identification purposes (VERULKAR; AMBAL-
KAR, 2016). The Normalized Cross-correlation is given by Equation (8) presented by
(CHANDRA’; SHARMA; SINGH, 2021), where y(n) is the mean value of the recons-
tructed signal. It is the arithmetical quantity of the degree to which deviations to the
value of one variable predict variation to the value of another (CHANDRA’; SHARMA;
SINGH, 2021). The NC is defined so that the closer its value is to 1, the greater the sig-
nal similarity. The minimum acceptable correlation coefficient by the literature is 0,978
for data from human subjects (FRASER et al., 2013). .

yxy =

∑N
n=1(x(n)− x̄(n))(y(n)− ȳ(n))√∑N
n=1(x(n)− x̄(n))2(y(n)− ȳ(n))2

(8)

2.4.2.5 PRD: Percentage Root-mean-square difference

PRD (Percent of Root-Mean-Square Difference) is the ratio of the signal power to
the original signal power. The PRD measures distortion. It also gives an average dis-
tortion in the reconstructed signal (ABDULBAQI et al., 2018). Equation (9) represents
the PRD, presented by (FATHI et al., 2022), where s(x) is the original signal, and S(x)

is the reconstructed signal.

PRD =

√∑
(s(x)− S(x))2∑

s(x)2
× 100 (9)

A lower PRD represents a better quality of the reconstructed signal (CHIANG et al.,
2019), and a PRD of zero denotes a lossless compression (BURGUERA, 2019). Ac-
cording to the literature, an acceptable PRD for medical applications would be less than
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5% since, under that value, the signal has a good reconstruction quality (SINGH PAL
et al., 2022). The distortion level measured by the PRD is one of the most used metrics
when evaluating distortions applied to an ECG signal, being used by a wide range of
works in the literature.

2.4.2.6 RMSE: Root-mean-square Deviation

The RMSE determines the variance between the output predicted by the model
and the actual output. Therefore, a small value of RMSE corresponds to a more mi-
nor difference and better performance (CHIANG et al., 2019). Equation (10) defines
RMSE.

RMSE =

√√√√ 1

N
×

N∑
n=1

(xi − x̂i)2 (10)

The RMSE approach is one of the most accurate performance metrics to estimate
the system’s error rate (PATIL; PAWAR, 2022).

2.4.2.7 SNR: Signal-to-noise ratio

The Signal-to-noise ratio(SNR) represents the dimensionless ratio of the signal
power to the noise power. Thus, SNR quantifies the amount of noise present in the
signal concerning the signal of interest(DAS; CHAKRABORTY, 2017). SNR measures
the amount of noise energy added into a signal due to compression and decompres-
sion procedures (FATHI et al., 2022). Equation (11) presents the SNR representation.

SNR = 10× log (

∑
(s(x)− s(x̄))2∑
(s(x)− S(x))2)

) (11)

The greater the SNR is, the better the performance of the performed compression,
generating a signal with lower error compared to the original signal and more resem-
blance to clean signals (CHIANG et al., 2019).

2.4.2.8 SSIM: Structural similarity index measure

The structural similarity measure (SSIM) has been widely used in the image pro-
cessing field and demonstrated to be superior to other distance metrics, including
straightforward Euclidian metric. This metric distinguishes between the structures of
the images and obtains the similarities between each pair of the predetermined mo-
ving local windows between two images. The total similarity is calculated based on the
average of all the SSIM values over all the local windows in the entire image (SHAH-
RIARI et al., 2018). This way, the metric distinguishes between images corresponding
to ECG signals and compares the original and compressed signals.
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SSIM is a technique for evaluating the quality and structure of two images to deter-
mine their similarity. SSIM measures the quality of image degradation with structural
detail (OKTIVASARI et al., 2022). It incorporates images luminance, contrast, and
structure when quantifying the distance between them. Given two images X and Y ,
where xi and yi are the ith local rectangular window, and M is the total number of
windows in an image (SHAHRIARI et al., 2018), the SSIM between every two local
windows is given by Equation (12).

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(12)

Analyzing the SSIM, we have that an SSIM value closer to one means that the
generated image is more similar to the original one. In contrast, a value closer to
zero means that the generated image is more different from the original. Because
the ECG signals contain semantic information, it is essential to retain their structure.
Therefore, the performance of a generated ECG image in retaining its structure is
measured concerning the SSIM value (LEE et al., 2020).

2.5 Chapter conclusion

This chapter introduced all the main concepts applied in the project’s development.
At first, it briefly discusses the power consumption concepts and energy consumption
of portable devices and devices with limited computing resources, reinforcing the im-
portance of achieving the most significant possible savings to ensure the viability of the
proposed solution. The next section carried out an overview of Wavelet transforms and
their application in compression and optimization, with particular attention to the Haar
transform, as it is used as the basis for the development of the proposed ECG data
compression. The following section offered a contextualization regarding approximate
computing, especially when referring to data compression. Then, the final section des-
cribed the methodology used in the work, highlighting the database used in this work
and the primary metrics for accuracy evaluation.



3 DISCRETE WAVELET TRANSFORM ARCHITECTURE
PROPOSALS

This chapter is divided into two main parts, showing the proposed solutions with
their respective details and a general survey of works in the literature aimed at com-
pressing high-performance ECG data. The developed architectures are described in
detail, presenting their characteristics and complete descriptions. The chapter also of-
fers details about the usage of approximate computing techniques in the architectures.
Finally, a table compares the primary characteristics of the solutions in the literature
and the work developed in this dissertation.

3.1 Developed Architectures

As previously presented, wavelet transforms comprise decomposition levels. As the
levels advance, signal compression increases according to the definition of the mother
Haar wavelet, represented by Equation (5). At the same time as this increase in com-
pression is obtained, in the same way, as we advance the decomposition levels, we
have a worsening signal quality (since we have a progressive reduction in its resolu-
tion).

The work developed by (SEIDEL et al., 2021) constructed a level 4 Haar wavelet
for ECG data compression. With this architecture, the authors achieved highly positive
results when they compared the implemented solution with the state-of-the-art in ECG
signal compression. Considering the gains obtained, it opens a gap to explore even
more advanced compression levels. Therefore, we chose to reduce the compression
level 4, already consolidated in the literature, to study level 5.

There are many ways to construct a Haar wavelet transform. The direct construction
of the transformation is not computationally efficient. Therefore, other methods are
used to perform this construction. A very efficient form of construction widely used in
the literature is the construction using lower-level transformation blocks. This technique
connects these blocks in series to create transforms with higher levels of compression,
mitigating the exponential increase in the complexity of the developed architecture.
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Figure 10 presents two examples of blocks. In Figure 10 a), we can observe an M1
(level 1 Haar wavelet transform) block, while in Figure 10 b), we have an M2 (level 2
Haar wavelet transform) block, both complete according to the literature. Figure 11
presents the M3 (level 3 Haar wavelet transform) block. Due to their low complexity,
those are the most used components in the composition of higher-level architectures.

Figure 10 – Blocks M1 - a) and M2 - b) (ROSA et al., 2021).

Figure 11 – Block M3 (ROSA et al., 2021).

One of the most common ways to represent wavelet transform blocks is in matrix
format. In this way, it is possible to closely observe the coefficients of the blocks that
make up the main transformations and to understand mathematically the impact of
each change in the architecture, especially the removal of components due to pruning
and approximation. Below we have, in matrices H1 (13), H2 (14), and H3 (15), the
matrix representation of the three blocks used as a basis for building the models.
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H1 =

[
1 1

1 −1

]
. (13)

H2 =


1 1 1 1

1 1 −1 −1√
2

√
−2 0 0

0 0
√
2

√
−2

 . (14)

H3 =



1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 0 0 0 0

0 0 0 0 1 1 −1 −1√
2

√
−2 0 0 0 0 0 0

0 0
√
2

√
−2 0 0 0 0

0 0 0 0
√
2

√
−2 0 0

0 0 0 0 0 0
√
2

√
−2


. (15)

Many different configurations can be used to compose a level 5 Haar wavelet trans-
form using lower-level blocks. We performed the steps below to select the most efficient
configurations for carrying out the implementation.

1. Initially, we searched recent literature to locate the state-of-the-art regarding
using high compression levels with the Haar transform, using the works (K; A;
J, 2023; SEIDEL et al., 2020; ROSA et al., 2021) as a basis.

2. Afterwards, several promising architectures were implemented in VHDL, accor-
ding to literature sources. We implemented the architectures with the block com-
binations M5, M2M2M1, M3M1M1, 5M1, M2M1M1M1, and M2M3 since they
have the higher potential to be the most efficient.

3. These architectures were subjected to the co-simulation process using Matlab,
Modelsim, and QuestaSim software

4. The architectures were then tested using signals from the MIT-BIH ECG database
(COMPUTATIONAL PHYSIOLOGY, 1999), which contains real ECG signal data
for use in various experiments.

5. The results were subjected to the error metrics ACC, NCC, RMSE, SSIM, SNR,
and PRD. The tests were realized in the Matlab software.

6. Afterwards, the architectures went through the synthesis process using the Ca-
dence Genus software, and information regarding the critical path, energy con-
sumption, and occupied area was extracted.
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7. We compared the most relevant application characteristics (ECG data compres-
sion).

8. We selected the best architectures for more complete experimentation, i.e.,
M2M2M1, 5M1, and M2M3.

Next, we present the three architectures developed in this dissertation. The archi-
tectures are called ODHWT (Original Haar Wavelet Transform), PDHWT (Pruned Haar
Wavelet Transform), and AxDHWT (Approximate and Pruned Haar Wavelet Transform).
We also present the truncation strategy used in the architectures.

3.1.1 ODHWT: Original Haar Wavelet Transform

As previously mentioned, the first implementation was the original Haar wavelet
transform (ODHWT), according to the literature and in complete form. We implemen-
ted four architectures to realize this transformation, three efficiently implemented by
connecting lower-level blocks in series to create a higher level. The traditional imple-
mentation of the Haar M5 block was only carried out for comparison purposes, as this
form of implementation is inefficient regarding both energy consumption and the area
occupied. The coefficients referring to the blocks used in the implementations can be
observed in the Equations: (13), H2 (14), and H3 (15).

The first architecture implemented comprises five M1 blocks. It can be seen in Fi-
gure 12. This architecture consists of ten registers, five subtractors, five adders, and
ten multiple constant multiplication blocks. The multiplier block is the most computati-
onally expensive component of the entire architecture (DA ROSA et al., 2022b). This
block has the function of multiplying the wavelet signal by the Haar wavelet constant,
equal to 1/

√
2.

Figure 12 – Haar wavelet transform composed of five M1 blocks.

The construction of multiplier blocks considered approximate computing concepts
to optimize the overall performance of the architecture. Therefore, we generated the
optimized single constant multiplications (SCM) for the H coefficient using the Hcub
algorithm by the Spiral tool (SEIDEL et al., 2021). This implementation only uses the
approximated operation of tree adders and four shifters. According to (SEIDEL et al.,
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2021), this implementation considerably reduces the architecture cost while maintai-
ning excellent precision when performing multiplication by the wavelet coefficient. The
architecture of the SCM block can be seen in Figure 13. This implementation aims to
perform better using only the most straightforward component in its composition (M1).

Figure 13 – The SCM block (SEIDEL et al., 2021).

The other two efficiently implemented architectures can be seen in Figures 14 and
15. In Figure 14, it is possible to observe the architecture implementation, which uses
two M2 blocks and one M1 block in series. This implementation uses ten registers, nine
adders, five subtractors, six multipliers, and four shifts. This implementation seeks a
more fundamental approach, aiming to reduce the number of multipliers without using
components with a self-level of complexity (M3 or higher).

Figure 14 – Haar wavelet transform composed of two M2 and one M1 blocks.

The architecture in Figure 15 uses an M2 block in series with an M3 block. This
architecture comprises 12 registers, 15 adders, five subtractors, six multipliers, and six
shifts. This implementation uses a more complex block (M3) to mitigate the critical path
while maintaining the multiplier components.

3.1.2 PDHWT: Pruned Haar Wavelet Transform

The first solution implemented to reduce the computational cost of the architecture
in question uses the pruning technique, as we have already seen. This technique remo-
ves all unnecessary elements to generate valuable outputs for the desired application.
This technique can be applied directly to the Original architecture since compression is
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Figure 15 – Haar wavelet transform composed of one M2 and one M3 blocks.

given only by the approximation coefficients. One can eliminate the detail coefficients
and all components used exclusively for their generation without affecting the quality of
the target signal.

Therefore, removing the detailed components significantly simplifies the coefficients
and the developed architectures. The resulting coefficient matrices will be presented
below after the pruning process, where H1 (16), H2 (17), and H3 (18) are the matrix
representation of the three blocks used as a basis for building the models with pruning.

H1 =

[
1 1

0 0

]
. (16)

H2 =


1 1 1 1

0 0 0 0√
2

√
−2 0 0

0 0 0 0

 . (17)

H3 =



1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

1 1 −1 −1 0 0 0 0

0 0 0 0 0 0 0 0√
2

√
−2 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0
√
2

√
−2 0 0

0 0 0 0 0 0 0 0


. (18)

Figure 16 shows the architecture composed of five M1 blocks with prune, Figure 17
shows an architecture consisting of two M2 and one M1 blocks, and Figure 18 finally
shows the architecture composed of one M2 and one M3 blocks.
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Figure 16 – Pruned Haar wavelet transform composed of five M1 blocks.

Figure 17 – Pruned Haar wavelet transform composed of two M2 and one M1 blocks.

Figure 18 – Pruned Haar wavelet transform composed of one M2 and one M3 blocks.

3.1.3 AxDHWT: Approximate and Pruned Haar Wavelet Transform

The pruning strategy significantly reduced the total computational cost without los-
ses. We use hardware approximation techniques as viable solutions to obtain an even
more significant reduction. Multipliers are the most expensive components of the archi-
tecture and are responsible for performing multiplication by the wavelet constant. They
are the main target for optimization. This way, the approach removes the multiplier
blocks, which allows a massive gain in performance but, at the same time, negatively
impacts the signal generated at the end of the compression process.

After removing the multipliers, the matrix coefficients have their terms
√
2 and

√
−2
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simplified to 1 and -1 since multiplication by the wavelet constant will no longer be
performed. The matrices of the coefficients after the removal of the multipliers are in
the matrices: H1 (19), H2 (20), and H3 (21).

H1 =

[
1 1

0 0

]
(19)

H2 =


1 1 1 1

0 0 0 0

1 −1 0 0

0 0 0 0

 (20)

H3 =



1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

1 1 −1 −1 0 0 0 0

0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0


(21)

As far as the architectures developed with this approach are concerned, they have a
structure very similar to that produced by pruning alone. The only significant difference
is the removal of the multiplier circuits. Observing the architectures developed using
the approximation technique and pruning in the figures below is possible to identify a
structure similar to that presented by pruning, but only without the multiplier blocks.
Figure 19 shows the architecture consisting of five M1 blocks, Figure 20 shows the
architecture consisting of two M2 blocks and one M1. Finally, Figure 21 shows the
architecture consisting of one M2 block and one M3.

Figure 19 – Approximate and pruned Haar wavelet transform composed of five M1 blocks.

The next subsection discusses the implementation of the third hardware-level opti-
mization technique, truncation.
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Figure 20 – Approximate and pruned Haar wavelet transform composed of two M2 and one M1
blocks.

Figure 21 – Approximate and pruned Haar wavelet transform composed of one M2 and one M3
blocks

3.1.4 Truncation

We used the truncation technique to achieve an even more significant improvement
regarding performance and a reduction in overall cost greater than other works in the
literature. There are two ways to implement the truncation technique directly on the
hardware. They are the truncation of the input bits, reducing the bits of the input signal,
and truncation in the hardware to reduce the number of bits in the structures used for
compression, eliminating less significant bits in the process.

We tested both techniques in the present work. By using them, we achieved a
considerable reduction in the cost of the system via an increase in operating frequency
and a reduction in components used in compression. The techniques are used in the
entire circuity so that designing it to operate with a certain width works appropriately
for a specific application, even introducing errors in the magnitude of the processed
results (SEIDEL et al., 2021).

The ECG signals extracted from the database are signals originally quantized into
11 bits. In this way, experiments with all architectures were developed using the two
techniques previously presented, based on 11-bit architectures for greater precision
in signal compression. After extracting the maximum gain by using these techniques,
truncation tests began.

Initially, tests were conducted with bit truncation, with the zero truncation type, which
means the removal of the less significant bits of the signal as it is considered the best
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way to achieve a large gain when it comes to reducing energy consumption by reducing
the least significant bits of the signal (DATTA; MOHANTA; MISHRA, 2019). Tests were
carried out with different signals and using the three most efficient architectures imple-
mented (architectures with approximation and pruning). The tests reduced the number
of input bits, ranging from one to nine. With a reduction of up to five bits, acceptable
values were obtained for most of the error metrics used, making signal compression
more efficient among the proposed solutions, considering some insignificant losses in
signal quality. With more significant reductions in the number of bits, the error becomes
critical and directly impacts obtaining the characteristics of the signal, thus making its
use unfeasible. The work developed by (LEE; KIM, 2023) uses the bit truncation techni-
que to develop an architecture optimized for stochastic computing to reduce stochastic
number generator hardware complexity. This work presents a graphical representation
of the bit truncation and its types. That representation can be seen in Figure 22.

Figure 22 – Block diagram exemplifying the bit truncation (LEE; KIM, 2023)

Figure 23 shows the different types of bit truncation and how it performs the trunca-
tion process in each case. In Figure 23 a) we have an example of how the bit truncation
process was used in the present work. Since truncation was used, which consists of
removing the least significant bits from the input and replacing them with zero. As for
the adaptation of the architecture, the inputs have been reduced to accommodate the
new quantities that are passed through the input and feed the architecture.

We conducted tests using truncation directly in the hardware to use architectures
built using fewer bits than the input. The tests conducted using this technique yielded
unsatisfactory results due to the high errors obtained, even with a minimal reduction of
1 bit in the hardware. Consequently, the quality of the final signal was not satisfactory,
rendering it impractical to implement in signals that demand high precision, which is
the case of the ECG signal. Given the insufficiency of the results, we discarded this
truncation model for use in subsequent tests.

Thus, the architectures developed in the tests with truncation are: The Truncated
and Pruned Discrete Haar Wavelet Transform (TPDHWT), referring to the architecture
using input bit truncation and pruning and Truncated and Approximated Discrete Haar
Wavelet Transform (TAxDHWT) which uses not only truncation and pruning but also
hardware approximation to generate maximum resource savings.
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Figure 23 – Block diagrams presenting the bit truncation types: a) input number with zero
truncation, b) input number with nonzero truncation, c) random number with zero truncation
(LEE; KIM, 2023).

3.2 Related Work: Compression Techniques for Hardware Appli-
cations

In recent literature, many works have focused on using wavelet transforms to im-
prove performance in general, especially when it comes to optimizing systems with
considerable computational constraints and embedded systems (ZHOU et al., 2019;
WU et al., 2020; LIU et al., 2019; P. et al., 2023; ROSA et al., 2021). One of the most
important approaches used in the literature and real applications is optimization direc-
tly on the hardware, as this optimization reflects one of the most critical requirements,
energy consumption. They can significantly reduce consumption, often with little or
no loss in the quality of the information processed (JANA et al., 2021; SEIDEL et al.,
2021).

Considering the abovementioned situation, three main ways to optimize hardware
for general applications exist. The first way, and one of the most commonly used
ways, is to use approximate computing techniques to reduce complexity or remove
more expensive components. This technique takes advantage of the fact that many
signals do not need to maintain their perfect shape and accept minor distortions without
compromising their functionality. It is possible to achieve significant performance gains
in exchange for a controlled loss of quality. In this way, the approach achieves its
performance gain by balancing the trade-off between quality vs resource consumption
(KANANI; BHATTACHARJYA; BANERJEE, 2021; PEREIRA et al., 2022; ESPOSITO
et al., 2018; BARAATI et al., 2022).

The pruning strategy is another form of compression used in some instances to gain
performance without losing quality. Pruning consists of removing components, or parts
of the hardware, that are unnecessary to generate the desired result. This technique
is widely used in neural networks to improve the network and discard incorrect nodes
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(XUANHUI; JUAN; QUAN, 2021; ZHU et al., 2020; RATHI; PANDA; ROY, 2019; LIU
et al., 2017). Now, it is being applied to hardware and obtaining very positive results,
for example, in the case of (NAJAFI et al., 2023) to remove partial products of lesser
significance in arrhythmia detection and to remove unnecessary coefficients generated
from wavelet transforms like those presented in (DA ROSA et al., 2022a).

The third way of hardware compression is by performing truncation. This technique
reduces the number of bits in the signal, thus reducing its computational complexity
and facilitating processing. Like the approximation, this technique reduces the number
of bits in the signal, thereby reducing the complexity of the calculation and promoting
processing. Several examples of work in the literature apply this technique as (ESPO-
SITO et al., 2018; NAJAFI et al., 2023; SEIDEL et al., 2021).

Some projects use the three techniques simultaneously to extract the maximum
possible efficiency from the developed hardware. These works are (SEIDEL et al.,
2021; DA ROSA et al., 2022a), where it was possible to achieve considerable gains in
performance and image quality, as this approach allows the use of a two-dimensional
compromise. This trade-off consists of balancing not just two but four factors, allowing
for a much more precise trade-off that allocates the most significant amount of resour-
ces to the most essential features at the expense of features of lesser importance.

Considering the scenario described above, the three compression techniques are
used simultaneously in this work to achieve the best possible result in compressing
medical ECG signals without losing information necessary for medical diagnosis. Next,
we describe the built architectures, results obtained, and appropriate comparisons with
other existing solutions.

Table 1 compares the main characteristics of the most relevant works in recent
literature with the developed work.

3.3 Chapter Conclusion

This chapter presented the main architectures developed in this work. It shows
one original architecture for the Haar wavelet transform (ODHWT). It also offers two
other architectures using pruning (PDHWT) and approximate and pruning strategies
(AxDHWT). The chapter also details the truncation strategy used in the proposed ar-
chitectures. Besides, the chapter offered a discussion about related work using com-
pression techniques, showing a table with the main differences between relevant works
from the literature and our proposed solutions. The next chapter discusses the main
results obtained in this work.
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Table 1 – Comparison between the main related works and the work developed
Related work A B C D E F G H

(AHMED et al., 2022) Adaptive Haar Wavelet (AHW) ✓ ✓ × × × × ×
(FATHI et al., 2022) Krawtchouk Moments + Ant Lion Optimizer (AALO) × ✓ × × × × ×

(NAJAFI et al., 2023) CNN × × × × ✓ × ×
(P. et al., 2023) HDWT ✓ ✓ ✓ × ✓ × ✓

(KANANI; BHATTACHARJYA; BANERJEE, 2021) N-point FIR Filter ✓ ✓ × × ✓ ✓ ×
(JANA et al., 2021) DWT and IDWT ✓ ✓ × × × × ×

(KUMARI; RAJALAKSHMI, 2016) HDWT × ✓ ✓ ✓ × × ×
(IFTODE; FOSALAU, 2020) Undecimated wavelet transform (UWT) × ✓ ✓ ✓ × × ×

(YIN et al., 2021) Adaptive Derivative ✓ ✓ × × × × ×
(WANG et al., 2019) ADMM ✓ ✓ × × ✓ × ×

(CHEN; CHOU; WU, 2021) FISTA ✓ ✓ × × × × ×
(HAMZA; RIJAB; HUSSIEN, 2021) DWT (Haar, Bio. and Db) × ✓ ✓ ✓ × × ✓

(DING; ZILIC, 2016) HWT × ✓ ✓ ✓ × × ×
(CHUMA et al., 2017) HDWT (level 5) ✓ × ✓ ✓ × × ×
(CHEN; CHEN, 2015) DWT ✓ × ✓ ✓ × × ×
(SEIDEL et al., 2021) HDWT ✓ ✓ ✓ ✓ ✓ ✓ ✓
(ROSA et al., 2021) HDWT (level 5) ✓ ✓ ✓ ✓ × × ×

(SEIDEL et al., 2020) HDWT ✓ ✓ ✓ ✓ × × ×
Our Work HDWT ✓ ✓ ✓ ✓ ✓ ✓ ✓

(A) Utilized solution. (B) Power results. (C) Data-driven methodology. (D) Usage of wavelet transform for ECG
compression. (E) Exploration of multiple levels of wavelet transform compression. (F) Exploration of approxi-
mation techniques. (G) Realizes a study case of ECG pike detection (H) Uses truncation techniques for
optimization.



4 RESULTS AND ANALYSIS

This chapter presents an analysis and discussion of the results obtained in this
work. It commences by examining the synthesis results, focusing on the achieved
energy and area savings. Subsequently, the chapter presents the accuracy and pre-
cision of the signals generated by each compression architecture, employing a com-
prehensive set of metrics.

4.1 Synthesis Results

This section presents the results concerning the total solution cost, encompassing
occupied area, operating frequency, and energy consumption. These metrics are cru-
cial for evaluating system optimization and enabling comparisons with existing literature
to identify the most computationally efficient solution.

Evaluation of optimization is paramount in resource-constrained systems, where
computational resources are limited, and maximizing optimization without signal dis-
tortion is critical. In mobile systems, often battery-powered, energy consumption is
a critical factor for solution viability. For continuous ECG signal acquisition, energy
consumption becomes a limiting factor, and reducing it translates to enhanced system
durability and autonomy.

The developed architectures underwent synthesis to extract key hardware charac-
teristics (energy consumption and occupied area). This process identifies the most
efficient architecture based on the evaluated metrics. Each architecture underwent
two syntheses to assess the impact, particularly on energy consumption, caused by
varying the frequency (and consequently, the period). Table 2 presents the synthesis
results obtained at the maximum operating frequency (period of 909 ps, correspon-
ding to a frequency of 1.10 GHz). The synthesis employed the low-power ST 65 nm
commercial standard cell library with a 1.25V supply voltage.

Table 3 compares the solutions developed at a frequency of 125KHz, generated
using a period of 7812500 ps.

An analysis of the generated tables across all evaluated metrics reveals that so-
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Table 2 – Comparison of synthesis results between the developed architectures with a period
of 909 ms.

Architecture Implementation Leak [µW ] Internal [µW ] Switch [µW ] Total [µW ] Cells [K Gates] Cell Area [µm2] Net. Area [µm2] Total Area [µm2]
Haar5 - M2M2M1 PDHWT 1.167 49.534 58.554 109.255 275 1363.960 557.171 1921.131
Haar5 - M2M2M1 AxDHWT 0.872 26.720 21.509 49.101 176 894.920 308.885 1203.805

Haar5 - 5M1 PDHWT 0.854 39.525 50.838 91.217 250 1022.320 472.261 1494.581
Haar5 - 5M1 AxDHWT 0.777 30.826 42.994 74.597 225 932.880 427.787 1360.667

Haar5 - M2M3 PDHWT 3.572 277.195 609.64 890.407 821 3189.680 1168.184 4385.864
Haar5 - M2M3 AxDHWT 2.281 92.14 381.296 475.717 522 3797.56 1471.044 5268.604

Haar5 - M5 PDHWT 7.848 1085.12 1556.46 2649.428 1644 9196.200 3447.367 12643.567
Haar5 - M5 AxDHWT 6.740 316.996 312.160 635.896 1319 7623.200 2649.260 10272.460

Cells highlighted in green and red represent the best and worst results, respectively.
Table 3 – Comparison of synthesis results between the developed architectures with a period
of 7812500 ms

Architecture Implementation Leak [µW ] Internal [µW ] Switch [µW ] Total [µW ] Cells [K Gates] Cell Area [µm2] Net. Area [µm2] Total Area [µm2]
Haar5 - M2M2M1 PDHWT 1.167 0.0057 0.0068 1.1795 275 1363.960 557.171 1921.131
Haar5 - M2M2M1 AxDHWT 0.842 0.0031 0.0025 0.8476 176 894.920 308.885 1203.805

Haar5 - 5M1 PDHWT 0.854 0.0045 0.0059 0.8644 250 1022.320 472.261 1494.581
Haar5 - 5M1 AxDHWT 0.769 0.0032 0.0049 0.8212 225 932.880 427.787 1360.667

Haar5 - M2M3 PDHWT 3.581 0.0322 0.0442 3.6574 821 3189.680 1168.184 43857.864
Haar5 - M2M3 AxDHWT 2.543 0.0107 0.0091 2.6538 522 3797.56 1471.044 5268.604

Haar5 - M5 PDHWT 7.848 0.1262 0.1810 8.1552 1644 9196.200 3447.367 12643.567
Haar5 - M5 AxDHWT 6.740 0.0368 0.0363 6.8131 1319 7623.200 2649.260 10272.460

Cells highlighted in green and red represent the best and worst results, respectively.

lutions incorporating approximation achieved superior results compared to architectu-
res employing only pruning for optimization within the same construction. In terms of
energy consumption, a significant increase is observed at the maximum frequency, ex-
ceeding the average consumption at lower frequencies by a factor of 100. However,
the most energy-efficient solutions utilize five M1 blocks (5M1), two M2 blocks, and one
M1 block (M2M2M1 configuration). Among these top performers, the M2M2M1 confi-
guration exhibits a slight reduction of 25.496 µW at the maximum frequency. At higher
frequencies, the 5M1 architecture demonstrates the most favorable results, achieving
a consumption reduction of 0.626 µW compared to the second-most efficient M2M2M1
configuration.

As anticipated, the solution employing a single M5 block (M5) directly implemented
based on traditional wavelet mathematics exhibits the worst performance. Regarding
occupied area, solutions 5M1 and M2M2M1 again demonstrate a significant advan-
tage. The M2M2M1 architecture achieves a marginal area advantage of 156.86 µm2

compared to the second-most efficient solution. The M5 architecture exhibits the worst
performance in terms of area, with a total area approximately 8.5 times larger than the
M2M2M1 solution. This result aligns with the increased hardware complexity inherent
to the M5 solution.

In terms of energy consumption, M2M2M1 was the most efficient solution at ma-
ximum frequency. However, based on the number of components that make up the
solution, the 5M1 solution would be the most efficient in both cases. This difference is
due to the fact that the critical path of the M2M2M1 solution is much smaller, resulting
in lower internal energy consumption and, in particular, lower switching requirements.
In relation to the smaller area of the M2M2M1 solutions compared to the 5M1 soluti-
ons. We believe that this is due to the internal optimizations performed by the synthesis
tool, as these optimizations tend to provide more meaningful results for solutions with
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smaller critical paths, thus reducing the overall cost of the solution.

4.2 Accuracy Results

This section presents a comparative analysis of the results obtained using the pre-
viously defined error metrics for the developed architectures. The aim is to evaluate
the implemented architectures based on the quality of the generated signal. A com-
prehensive set of metrics is employed to assess various aspects of the reconstructed
signal, thereby identifying the configurations that achieve optimal quality within the tes-
ted architectures.

The accuracy analysis focuses on verifying if the signals generated through the
optimized compression processes satisfy minimal quality requirements. This ensures
that the original signal remains undisturbed and usable for its intended purpose. This
analysis is particularly crucial for medical signals like ECGs due to the stringent quality
requirements. Even minor distortions or alterations in such signals can significantly
impact information extraction, rendering them unsuitable for medical diagnoses.

The subsections below present the results for each analyzed error metric. The
tests utilize the M2M2M1 architecture, identified as the most energy-efficient and area-
optimized solution, across all its compression levels.

4.2.1 Summary of accuracy results

Tables 4 and 5 present the results for all accuracy metrics applied to each decompo-
sition level developed using the M2M2M1 architecture as the baseline. Table 4 details
the results obtained after subjecting the NRS signal to compression by the developed
architecture. The error metrics are employed to compare these compressed signal re-
sults with those obtained through exact compression performed by the Matlab/Simulink
software. Table 5 follows the same format, but utilizes the more complex PVC signal
as the basis for comparison.

Table 4 – Table containing accuracy metrics for the NRS signal
Level/metric Accuracy SSIM SNR MAE NCC RMSE PRD
Aprox. lv1 0.9982 0.5046 0.1336 42.9582 0.9989 75.8596 0.6419
Aprox. lv2 0.9970 0.4401 0.0564 69.0830 0.9982 95.1245 1.0649
Aprox. lv3 0.9941 0.3242 0.5894 189.3083 0.9194 150.1251 1.5422
Aprox. lv4 0.9919 0.3135 0.0901 184.7260 0.8842 223.1258 1.6001
Aprox. lv5 0.9757 0.3377 0.5287 411.7375 0.8312 392.2132 4.4501
Prune lv1 0.9997 0.5041 0.7854 40.9962 0.9995 74.3200 0.6747
Prune lv2 0.9971 0.4401 0.7590 69.0830 0.9989 95.0010 0.9286
Prune lv3 0.9945 0.3225 0.6887 125.3836 0.9276 149.1263 1.5132
Prune lv4 0.9933 0.3135 0.5977 184.7260 0.8891 223.0954 1.6466
Prune lv5 0.9792 0.3360 0.3258 328.6539 0.8354 402.2356 4.1208
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Table 5 – Table containing accuracy metrics for the PVC signal
Level/metric Accuracy SSIM SNR MAE NCC RMSE PRD
Aprox. lv1 0.9967 0.4400 0.0577 59.1011 0.9975 850.2500 0.6719
Aprox. lv2 0.9961 0.4432 0.0071 78.6420 0.9956 1357.9635 1.1349
Aprox. lv3 0.9941 0.2600 0.1125 153.7234 0.9875 1484.6992 1.7422
Aprox. lv4 0.9933 0.2631 0.0012 216.2800 0.9832 2999.1156 1.7001
Aprox. lv5 0.9792 0.4800 0.0541 303.8553 0.8837 3612.5631 4.5301
Prune lv1 0.9974 0.4409 0.0036 67.4410 0.9975 1103.1266 0.6757
Prune lv2 0.9965 0.4456 0.0071 78.6420 0.9956 1354.1443 0.9349
Prune lv3 0.9944 0.2606 0.0145 149.8548 0.9875 1698.6523 1.4632
Prune lv4 0.9938 0.2652 0.0012 216.2800 0.9832 3000.0010 1.6566
Prune lv5 0.9793 0.4836 0.0253 304.1353 0.8837 4212.8651 4.2508

Tables 4 and 5 solely present the results pertaining to signal quality metrics. Con-
sequently, these tables offer an incomplete view of the solution’s overall quality. In
general, solutions achieving the best error metric values often exhibit lower compres-
sion ratios, resulting in a diminished gain in energy savings. Therefore, identifying the
optimal solution necessitates a trade-off between energy efficiency and signal fidelity,
which can vary depending on the specific application’s constraints.

The following subsections provide a concise explanation and graphical represen-
tation of the results for each metric displayed in the aforementioned tables. The peak
count metric is the only exception, as it will be addressed in greater detail in a dedicated
subsection later.

4.2.1.1 Accuracy

With respect to the accuracy metric, Figure 24 presents a comparative analysis of
the accuracy calculations for the three developed architectures across all five decom-
position levels. Figure 24 a) depicts the comparison for the NRS signal, while Figure
24 b) presents the comparison for the PVC signal.

Since the hardware responsible for compression remains unchanged, the original
and pruned architectures exhibit identical accuracy. The approximate architecture de-
monstrates lower accuracy due to the removal of the multiplier component. When com-
paring accuracy across different compression levels, a trend emerges: lower accuracy
values are associated with higher compression levels. This is expected, as the fifth
level achieves the highest compression ratio but has a limited number of bits available
for signal reconstruction, leading to reduced fidelity.

4.2.1.2 Peak detection

As previously mentioned, peak detection was implemented using the Pan-Tompkins
algorithm. Figures 25 (NSR) and 26 (PVC) illustrate the steps involved in peak detec-
tion according to this algorithm. Figures 25 and 26 a) depict the original raw signal
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Figure 24 – Accuracy comparison in all compression levels for both NSR and PVC signals

obtained from the database. Figures 25 and 26 b) show the signal after passing th-
rough a first band-pass filter. Subsequently, the signal is processed by a derivative
filter, as shown in Figures 25 and 26 c). The signal is then squared (Figures 25 and 26
d)), with the final results for a non-compression scheme presented in Figures 25 and
26 e). To enhance visualization, the images in the figure in question were assembled
on the basis of a segment of the original signal containing 2000 samples.

Figure 25 – Step by step execution of the peak detection algorithm in a sample of the NSR
signal

Figure 27 shows the results of applying the peak detection algorithm to the 2,000
samples NSR signal in all its decomposition levels and both pruned and approximated
architectures. These results consist of the QRS signal complexes, shown in Figures



60

Figure 26 – Step by step execution of the peak detection algorithm in a sample of the PVC
signal

27 a) and b) and the pulse train shown in Figure 27 c). Figure 28 presents the same
analysis but the peak detection algorithm for the PVC signal.

Figure 27 – Results of applying the peak detection algorithm to the NSR signal at the five
compression levels

It is noteworthy that the peak detection algorithm achieved highly precise results for
the first four decomposition levels in both the pruned and approximated architectures.
However, peak detection accuracy was significantly compromised at the fifth level. This
is attributed to the substantial reduction in the number of bits, resulting in a deformation
of the post-compression waveform. The approximate solution, due to the absence of
the multiplier circuit, exhibited a more pronounced loss in peak detection accuracy.
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Figure 28 – Results of applying the peak detection algorithm to the PVC signal at the five
compression levels

4.2.1.3 Mean Absolute Error (MAE)

Figures 29 a) and b) present the MAE for the NSR and PVC signals, respectively.

Figure 29 – MAE values considering the NSR and PVC signals at each compression level

A noteworthy observation is that the MAE error exhibits a proportional increase
with each compression level, reaching its peak values at the fifth level of approxima-
tion. While both graphs display a similar trend, the overall error for the PVC signal is
demonstrably larger.
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4.2.1.4 Normalized Cross-correlation (NCC)

Figures 30 a) and b) show the behavior presented by the NCC as the level of de-
composition increases for both signals tested.

Figure 30 – Evolution of NCC along decomposition levels of NSR and PVC signals

The NCC presents a gradual reduction as decomposition levels increase. The NCC
remained above 0.9 in both tested signals, considering up to the third compression
level. The solutions with approximation present slightly lower values than those with
only pruning.

4.2.1.5 Percentage Root-mean-square difference (PRD)

In Figures 31 a) and b), it is possible to observe the values obtained with the PRD
calculation at the tested decomposition levels. Those figures represent the results of
the tests carried out with the NSR signal a) and the PVC signal b).

The PRD metric exhibits a behavior consistent with the observations from previ-
ous metrics. Similar to the MAE, the approximate solution demonstrates a marginally
higher PRD across all levels. However, this difference is negligible in practical applica-
tions, and the substantial performance gain achieved through the removal of multipliers
outweighs this minor trade-off.

4.2.1.6 Root mean-square error (RMSE)

Figures 32 a) and b) compare the RMSE values at all tested compression levels.
Those figures refer to the NSR signal a) and the PVC signal b).

The RMSE metric exhibits an approximately linear increase, with lower compres-
sion levels corresponding to lower RMSE values and higher compression levels resul-
ting in higher values. This behavior is consistent for both signals; however, the PVC
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Figure 31 – PRD comparison in all compression levels for NSR and PVC signals

Figure 32 – RMSE comparison in all compression levels for NSR and PVC signals

signal inherently possesses greater instability, leading to significantly higher RMSE va-
lues. Notably, the architecture without approximation achieves marginally lower RMSE
values in both scenarios. Nevertheless, this difference is negligible and can be disre-
garded without compromising quality.

4.2.1.7 Signal-to-noise ratio (SNR)

Figures 33 a) and b) compare the SNR values at all tested compression levels.
Those figures refer to the NSR signal a) and the PVC signal b).

Consistent with the behavior observed in other metrics, the SNR metric reveals a
similar trend. Solutions employing pruning exhibit marginally superior values compared
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Figure 33 – SNR comparison in all compression levels for NSR and PVC signals

to those utilizing approximation. In terms of signal types, the PVC signal demonstra-
tes significantly lower SNR values. Notably, the fifth level of approximation presents a
reversal in SNR values, with approximated signals exhibiting lower values than pruned
signals. However, this slight difference has a negligible impact on the overall compres-
sion effectiveness.

4.2.1.8 Structural similarity index measure (SSIM)

Figures 34 a) and b) compare the SSIM values at all tested compression levels.
Figure 34 presents waveforms for both NSR signal a) and the PVC signal b).

Figure 34 – SSIM comparison in all compression levels for NSR and PVC signals
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The SSIM metric exhibits a notable reduction in value across the first three com-
pression levels. This is followed by a stabilization of the metric value for both signals
when transitioning from the third to the fourth level. However, an atypical behavior is
observed in the PVC signal at the fifth level of decomposition, resulting in a significant
increase in SSIM. The NSR signal also demonstrates a slight increase in SSIM at the
fifth level.

4.2.2 Results with truncation

This subsection discusses the results regarding bit truncation performed at the sig-
nal input. Based on an 11-bit input signal, experiments consider truncating 1, 4, 6, and
8 bits. These experiments evaluate the extent to which it is possible to reduce the input
bits without losing the main properties of the original signal.

As truncation experiments are considerably time-consuming, we chose to perform
them only with the PVC signal since it is the signal that presented the worst overall re-
sult in the accuracy metrics analyzed. Hence, this signal will offer greater resistance to
bit removal. We present the results for both architectures developed with input bit trun-
cation, i.e., Truncated and Pruned Discrete Haar Wavelet Transform and (TPDHWT)
Truncated and Approximated Discrete Haar Wavelet Transform (TAxDHWT).

Figures 35 and 36 show a representation of the PVC signals one by one in each of
their input bit reductions. The signals representation are as follows in Figures 35 and
36: a) represents 1-bit truncation, b) 2-bit, c) 3-bit, d) 4-bit, e) 5-bit, f) 6-bit, g) 7-bit
and h) the most significant reduction tested of 8-bit. A reduction in the scale of the
signal is visible as a reduction in the number of bits for its representation. In Figure 35,
we visualize the complete signal after undergoing reductions in the number of bits. In
contrast, Figure 36 sh a bit reduction on just 2,000 samples.

Tables 6, 7, 8, and 9 summarize the accuracy results obtained after applying the
same error metrics used in the original signal tests to the signals subjected to varying
bit truncation levels.

It is crucial to emphasize that, similar to the previous tables, these error metric
tables do not represent the final solution quality. While lower error metric values are
generally achieved with fewer input bit truncations, this translates to less hardware
resource savings. Therefore, the optimal solution typically depends on the application’s
acceptable error tolerance in exchange for maximizing energy and space efficiency.

Table 6 presents the values for 1-bit truncation. Truncation of the smallest number
of bits offers a low reduction in energy consumption despite having the best values in
terms of quality. Based on the seven quality metrics analyzed, it is possible to observe
a slight loss of quality when compared directly with the original solution.

Table 7 showcases the metrics obtained with 4-bit truncation. This truncation pre-
sents an intermediate between energy savings and signal quality, giving up a little more
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Figure 35 – Truncating full PVC signals

Figure 36 – Truncating PVC signals with 2,000 samples

quality to guarantee more energy savings, compared to the previous solution, which re-
moves only 1 bit from the input.

Table 8 displays the results for 6-bit truncation. This truncation presents a greater
focus on saving resources, giving up even more signal quality, and maintaining its
values in the error metrics analyzed within the limits established by the literature.

Table 9 presents the results for the most significant truncation, 8-bit truncation.
Using 8-bit truncation, we focus on energy savings, keeping signal quality at a minimum
acceptable in several analyzed metrics to achieve the best possible energy and area
savings among all the solutions developed.
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Table 6 – Accuracy metrics for 1-bit truncation

level/metric Accuracy SSIM SNR MAE NC RMSE PRD
Aprox. lv1 0.9940 0.8966 0.0418 8.44 0.9975 11.63 0.82
Aprox. lv2 0.9965 0.8611 0.0085 7.14 0.9958 17.72 0.89
Aprox. lv3 0.9938 0.9593 0.0176 17.87 0.9874 41.69 1.48
Aprox. lv4 0.9957 0.9808 0.0053 17.81 0.9923 46.13 1.16
Aprox. lv5 0.9809 0.7764 0.0306 109.76 0.8997 223.63 3.99
Prune lv1 0.9952 0.8594 0.0331 6.90 0.9975 10.94 0.78
Prune lv2 0.9965 0.8611 0.0085 7.14 0.9958 17.72 0.89
Prune lv3 0.9934 0.9534 0.0212 19.07 0.9973 41.83 1.48
Prune lv4 0.9957 0.9808 0.0053 17.81 0.9923 46.13 1.16
Prune lv5 0.9819 0.7760 0.0062 104.03 0.8997 223.30 3.87

Table 7 – Accuracy metrics for 4-bit truncation

level/metric Accuracy SSIM SNR MAE NC RMSE PRD
Aprox. lv1 0.9888 0.6458 0.0912 15.80 0.9969 18.28 1.29
Aprox. lv2 0.9952 0.7398 0.0061 9.65 0.9953 18.52 0.93
Aprox. lv3 0.9906 0.8737 0.0511 26.66 0.9869 45.13 1.6
Aprox. lv4 0.9882 0.9424 0.0817 46.62 0.9917 61.06 1.54
Aprox. lv5 0.9624 0.7615 0.2609 213.11 0.8991 286.19 5.02
Prune lv1 0.9900 0.5192 0.0231 14.12 0.9923 18.02 1.28
Prune lv2 0.9897 0.7398 0.0803 20.47 0.9953 25.94 1.31
Prune lv3 0.9890 0.8352 0.0675 31.50 0.9851 51.33 1.81
Prune lv4 0.9882 0.9424 0.0817 46.62 0.9917 61.06 1.54
Prune lv5 0.9803 0.7589 0.0448 113.59 0.8988 230.79 4.1

Table 8 – Accuracy metrics for 6-bit truncation

level/metric Accuracy SSIM SNR MAE NC RMSE PRD
Aprox. lv1 0.9844 0.2839 0.0233 21.64 0.9827 26.24 1.86
Aprox. lv2 0.9814 0.4428 0.1115 36.69 0.9816 44.93 2.24
Aprox. lv3 0.9827 0.6295 0.0478 48.56 0.9748 62.24 2.2
Aprox. lv4 0.9602 0.7782 0.3410 156.25 0.9776 172.18 4.41
Aprox. lv5 0.9691 0.6801 0.1505 175.70 0.8871 266.33 4.7
Prune lv1 0.9671 0.2190 0.0636 47.02 0.9341 61.36 4.34
Prune lv2 0.9774 0.4431 0.667 32.58 0.9816 39.83 1.99
Prune lv3 0.9746 0.5821 0.0029 72.05 0.9525 92.95 3.3
Prune lv4 0.9638 0.7766 0.0420 63.84 0.9776 82.54 2.08
Prune lv5 0.9660 0.6622 0.1136 171.25 0.8814 268.66 4.75

The following figures present a series of comparisons between the various accu-
racy metrics analyzed and the combined effects of decomposition level and input bit
truncation. Each figure includes two panels: the first representing the approximate
architecture and the second representing the architecture that only employs pruning.
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Table 9 – Accuracy metrics for 8-bit truncation

level/metric Accuracy SSIM SNR MAE NC RMSE PRD
Aprox. lv1 0.9152 0.1165 0.3498 132.34 0.7870 143.89 9.39
Aprox. lv2 0.9232 0.2109 0.1374 153.31 0.7784 187.83 11.69
Aprox. lv3 0.9290 0.3328 0.6232 230.29 0.7764 340.29 10.06
Aprox. lv4 0.9167 0.4748 0.3723 294.60 0.7725 407.74 10.45
Aprox. lv5 0.9081 0.4376 0.2209 465.30 0.7013 593.45 21.55
Prune lv1 0.9016 0.0724 0.6471 277.56 0.7112 288.79 9.97
Prune lv2 0.9106 0.2142 0.3226 176.49 0.7784 194.34 17.08
Prune lv3 0.8459 0.2824 0.4712 434.83 0.7023 464.48 9.17
Prune lv4 0.8192 0.4844 0.1009 321.0 0.7725 361.72 11.26
Prune lv5 0.8060 0.4174 0.2103 479.31 0.6725 638.39 143.89

From Figure 37 to Figure 43, we comprehensively compare the error metrics across
different compression and truncation levels. The compared metrics include accuracy
(in Figure 37), MAE (in Figure 38), NCC (in Figure 39), PRD (in Figure 40), RMSE (in
Figure 41), SNR (in Figure 42), and SSIM (in Figure 43).

Figure 37 reveals highly consistent accuracy results, with acceptable values ob-
served for input truncations up to 4 bits. A more significant loss in accuracy is only
observed at the fifth level of decomposition for the approximate transform. Figure 37 a)
depicts the accuracy values for the approximate solution, while Figure 37 b) presents
the accuracy values for the pruned solution.

Figure 37 – Relationship between accuracy, decomposition levels and approximate number of
bits

Figure 38 compares the MAE values obtained across different truncation levels. For
the architecture employing only pruning (Figure 38 b), acceptable values are achieved
up to 6-bit truncation of the input signal and a decomposition level of 4. In contrast,
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the approximate transform (Figure 38 a) exhibits positive results with truncation up to 6
bits, but only for the first three decomposition levels. At level 4, a significant increase in
error is observed starting from 4-bit truncation. Notably, the fifth level of decomposition
presents high error values even with the minimum truncation of 1 bit.

Figure 38 – Relationship between MAE, decomposition levels and approximate number of bits

The NCC metric, presented in Figures 39 a) and b), reveals that acceptable values
are achievable for both the approximate and pruned architectures with input truncation
up to 4 bits and a decomposition level of 4 or lower. Consistent with previous observa-
tions, the fifth level of decomposition exhibits unsatisfactory results, even with minimal
truncation of 1 bit.

Figure 39 – Relationship between NCC, decomposition levels and approximate number of bits
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Figure 40 depicts remarkably low PRD values observed for both the approximate
architecture (in Figure 40 a) and the pruned architecture (in Figure 40 b) across all
decomposition levels. It is achievable with input bit truncation up to 6 bits. However,
removing a larger number of bits leads to significant errors at all decomposition levels,
particularly for the approximate architecture and the fifth level of the pruned architec-
ture.

Figure 40 – Relationship between PRD, decomposition levels and approximate number of bits

Figure 41 compares RMSE values across input truncation levels. The pruned ar-
chitecture (Figure 41 b) exhibits acceptable error values when removing up to 6 bits
from the input signal and employing a maximum decomposition level of 4. Conver-
sely, the approximate architecture (Figure 41 a) achieves acceptable error values with
a maximum truncation of 4 bits and compression up to level 4. Consistent with prior
observations, the fifth level of decomposition in both architectures displays high error
values, even with minimal truncation of 1 bit.

The SNR metric, presented in Figure 42, exhibits limitations in generating highly
precise results for truncated signals. However, we can still make some observations.
The pruned architecture (Figure 42 b) maintains relatively low SNR values when remo-
ving up to 5 bits from the input signal. Conversely, the approximate architecture (Figure
42 a) only achieves it for minimal truncation of 1 bit.

Like the SNR metric, the SSIM metric presented in Figure 43 demonstrates limited
suitability for evaluating one-dimensional signals with truncated input. However, for
both the approximate architecture (Figure 43 a) and the pruned architecture (Figure 43
b), acceptable and comparable SSIM values are achievable with input truncation up to
2 bits. When removing more bits, the lowest SSIM values are observed at the lowest
compression levels (particularly level 1) in both architectures.
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Figure 41 – Relationship between RMSE, decomposition levels and approximate number of bits

Figure 42 – Relationship between SNR, decomposition levels and approximate number of bits

A comprehensive analysis of all metrics across both architectures and compres-
sion levels has revealed several key findings. The results indicate a highly effective
solution when considering input truncation of up to 4 bits (4 bit truncation) and accep-
table results, for most metrics with up to 6-bit (6 bit truncation) both at a maximum
decomposition level of 4. Error metrics consistently point to minimal information loss
and preservation of overall signal quality. It is important to note that compressions per-
formed at the fifth level of decomposition, even with minimal truncation (1 bit), yielded
unsatisfactory results in most metrics. It suggests that the fifth level is unsuitable for
employing the bit truncation technique at the input.
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Figure 43 – Relationship between SSIM, decomposition levels and approximate number of bits

4.2.2.1 Comparison between solutions with truncation

Table 10 compares various configurations for the most efficient architecture,
M2M2M1. These configurations incorporate input bit truncation ranging from 0 to 6 bits.
We chose this truncation range due to a significant degradation in signal quality obser-
ved with larger truncations. The comparison focuses on three key aspects: energy
savings, cell count, and total area occupancy. For each truncation level, two architec-
tures are presented: one utilizing only truncation and pruning and another employing
all three compression techniques (truncation, pruning, and approximation). Finally, the
baseline architecture, representing the original anatomized version, is included for refe-
rence. We can quantify the gains achieved through optimization by directly comparing
the baseline with the optimized solutions.

Table 10 – Comparison of synthesis results between different truncation levels for the M2M2M1
architecture

Architecture Implementation Leak [µW ] Internal [µW ] Switch [µW ] Total [µW ] Cells [K Gates] Cell Area [µm2] Net. Area [µm2] Total Area [µm2]
M2M2M1 - 11 bits TPDHWT (0 bits trunc) 1.167 0.0057 0.0068 1.1795 275 1363.960 557.171 1921.131
M2M2M1 - 11 bits TAxDHWT (0 bits trunc) 0.842 0.0031 0.0025 0.8476 176 894.920 308.885 1203.805
M2M2M1 - 10 bits TPDHWT (1 bits trunc) 1.607 0.0079 0.0056 1.6211 204 1629.680 459.654 2089.334
M2M2M1 - 10 bits TAxDHWT (1 bits trunc) 1.214 0.0061 0.0045 1.2257 173 1356.160 303.731 1659.891
M2M2M1 - 9 bits TPDHWT (2 bits trunc) 1.469 0.0071 0.0051 1.4810 191 1465.360 421.030 1886.390
M2M2M1 - 9 bits TAxDHWT (2 bits trunc) 1.108 0.0055 0.0040 1.1177 159 1237.600 278.028 1515.628
M2M2M1 - 8 bits TPDHWT (3 bits trunc) 1.327 0.0062 0.0044 1.3380 169 1307.800 370.426 1678.226
M2M2M1 - 8 bits TAxDHWT (3 bits trunc) 1.001 0.0049 0.0036 1.0099 145 1119.040 252.325 1371,365
M2M2M1 - 7 bits TPDHWT (4 bits trunc) 1.189 0.0054 0.0038 1.1987 164 1239.160 355.485 1594.645
M2M2M1 - 7 bits TAxDHWT (4 bits trunc) 0.6842 0.0035 0.0023 0.6900 102 778.440 168.461 946.901
M2M2M1 - 6 bits TPDHWT (5 bits trunc) 0.968 0.0045 0.0030 0.9755 148 1180.201 309.850 1490.051
M2M2M1 - 6 bits TAxDHWT (5 bits trunc) 0.618 0.0029 0.0022 0.6231 91 699.966 151.658 851.624
M2M2M1 - 5 bits TPDHWT (6 bits trunc) 0.912 0.0037 0.0025 0.9192 134 962.520 279.730 1242.522
M2M2M1 - 5 bits TAxDHWT (6 bits trunc) 0.595 0.0027 0.0021 0.6009 83 633.880 137.325 771.205

Baseline Original 4.371 0.0266 0.0272 4.4250 358 1891.240 767.320 2658.560

Analysis of the developed solutions reveals a progressive decrease in energy con-
sumption and occupied area by reducing the number of bits used in the architecture.
Consequently, the solution employing 6-bit truncation in conjunction with approximation
achieves the most significant reduction in both characteristics analyzed.
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Furthermore, it is noteworthy that approximate architectures exhibit a general cost
reduction comparable to that achieved with 2-bit truncation. It highlights the crucial
role of approximation in facilitating compression and enabling a broader range of cost-
quality trade-offs. Notably, the synthesis process to obtain these values was conducted
at 125 kHz, with a period of 7812500 ps.

Table 11 compares the key performance indicators for the principal ECG data com-
pression architectures developed in this study. It compares the baseline architecture,
the AxDHWT solution (with pruning and approximation), and the TAxDHWT solution
(with pruning, approximation, and 6-bit truncation). This table demonstrates the ad-
vantages of the solution incorporating truncation across all analyzed aspects.

Table 11 – Comparison between the main developed solutions and the baseline
Architecture Energy Consumption [µW ] Energy Savings [%] Cells [K Gates] Total Area [µm2] Area Savings [%]

Baseline 4.4250 0 358 2658.560 0
AxDHWT 0.8212 522.06 176 1203.805 220.85

TAxDHWT (6-bit trunc) 0.6009 736.40 83 771.205 344.73

Cells highlighted in green , yellow and red represent the best, the intermediary and worst results, respectively.

4.3 Result comparisons with works from the literature

Table 12 compares the leading performance indicators with state-of-the-art imple-
mentations of ECG data compression.

Table 12 – Comparison with other ECG data compression architectures.
Related Work Design Type Process and Voltage Algorithm MCR ACC PRD Area Clock Freq Power

(YIN et al., 2021) ASIC 65 nm @ 0.9 V Adaptive Derivative 17:1 0.975 <2.75 1.77 mm2 0.128 MHz 0.00263 mW
(WANG et al., 2019) ASIC 40 nm @ 0.6 V ADMM 0.35 N/A N/A 2.51 mm2 265 MHz 9.1 mW to 81.5 mW

(CHEN; CHOU; WU, 2021) ASIC 40 nm @ 0.9 V FISTA 0.25 0.955 <9 0.239 mm2 90 MHz 13.89 mW to 53.8 mW
(P. et al., 2023) ASIC 40 nm @ 2.5 V Clock Gating N/A N/A N/A 2.25 mm2 0.01 Mhz 22 mW to 45 mW

(ROSA et al., 2021) ASIC 65 nm @ 1.25 V DWT 0.03125 N/A N/A 8.287 µm2 500 Mhz 37.82 µW
(SEIDEL et al., 2021) ASIC 65 nm @ 1.0 V DWT 0.0625 0.9968 N/A 0.041 mm2 360 Hz 144.8 µW

(HAMZA; RIJAB; HUSSIEN, 2021) ASIC N/A DWT 16.33:1 N/A <7 N/A 360 Hz N/A
(DING; ZILIC, 2016) ASIC N/A HWT 21.38:1 N/A <2.54 N/A 500 Hz N/A

(CHUMA et al., 2017) FPGA 65 nm @ N/A HDWT 0.03125 N/A N/A N/A 295.6 MHz N/A
(CHEN; CHEN, 2015) ASIC 40 nm @ 1.2 V 1D IDWT N/A N/A <4.22 25,082 µm2 200 MHz 17400 µW

(GODINHO et al., 2023) ASIC 65 nm @ 1.25 V PDHWT 0.125 N/A <1.08 801.25 µm2 125 KHz 0.83 µW
Our Work1 ASIC 65 nm @ 1.25 V PDHWT 0.03125 0.9793 <4.25 1921.131 µm2 125 kHz 1.18 µW
Our Work2 ASIC 65 nm @ 1.25 V TPDHWT 0.0625 0.9606 2.08 1242.522 µm2 125 kHz 0.91 µW
Our Work3 ASIC 65 nm @ 1.25 V AxDHWT 0.03125 0.9792 <4.53 1203.805 µm2 125 kHz 0.82 µW
Our Work4 ASIC 65 nm @ 1.25 V TAxDHWT 0.0625 0.9602 <4.41 771.205 µm2 125 kHz 0.60 µW

Cells highlighted in green and red represent the best and worst results, respectively. 1 - Pruned solution.
2 - Pruned solution with 6-bit truncation of input bits. 3 - Approximate solution. 4 - Approximate solution with trun-
cation of input bits. N/A - Not Available. MCR - Minimum compression ratio.

Our proposed work demonstrates exceptional competitiveness compared to the
most relevant recent publications with a similar focus on optimizing ECG signal trans-
mission and manipulation. Consistent with most of these works, we chose an ASIC
design approach. We opted to develop the solution using a 65nm CMOS cell library
technology at a nominal voltage of 1.25V, as it represents the highest performing re-
adily available cell library for direct experimentation. Notably, the work achieves the
highest compression ratio at the fifth compression level compared to other architectu-
res. It is crucial to acknowledge that the fifth level compression was only evaluated for
architectures without truncation since we did not obtain satisfactory results with input
bit truncation at this level.
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A key takeaway is the trade-off inherent in high-compression solutions. Solutions
pursuing extremely high compression (fifth level) prioritize compression over signal
fidelity, resulting in lower accuracy and PRD values than lower-compression works.
Conversely, when analyzing the solution with input bit truncation and a fourth-level
compression rate, we observe highly competitive accuracy values and the best PRD
values among the studied works. Regarding area, the work is well-positioned with a
significantly smaller footprint than the worst-case scenarios in other solutions, presen-
ting very acceptable and practical values.

The most significant advantage over other works is the remarkably lower energy
consumption. The developed architecture exhibits the most critical energy savings
across all metrics, boasting a substantial margin of advantage compared to existing
solutions. The energy consumption is a mere 0.60 µW , significantly outperforming the
other developed solutions.

A metric-by-metric analysis confirms the advantageous positioning of the developed
work compared to other highly relevant works. We will now delve into the error and
consumption metrics to solidify this position further.

Accuracy-wise, our work exhibits good positioning compared to the literature. It
does not achieve the absolute best accuracy values when directly compared, pre-
senting a negative difference of 1.75% against the solution without truncation and a
difference of 3.06% compared to the solution employing truncation. This disparity is
justifiable, considering that the former utilizes a compression ratio of 1/32 (fifth level),
leading to a more pronounced reduction in accuracy. The work in the literature with the
highest accuracy results utilizes a compression ratio of 1/16 (fourth level), resulting in
a more minor impact. When directly comparing the accuracy metrics obtained at both
level 4 approximations, the difference is minimized to a minimal value of approximately
0.03% compared to the solution without truncation. The solution with truncation exhi-
bits worse results due to the reduction of input bits, which leads to a significant loss of
accuracy but yields substantial energy savings. Them, validating the chosen trade-off.

Regarding the PRD, the solution developed with truncation achieves the lowest va-
lue. This solution surpasses the lowest value reported in the literature by approximately
20%, consequently being the best PRD value obtained for ECG signal compression at
scales exceeding 1/8. We achieved this positive result with a compression ratio of 1/16
and bit truncation. As the solutions without truncation are based on a compression of
1/32, they incur a greater loss in PRD, leading to higher values.

The area occupied by the most efficient solution (TAxDHWT) positions itself consis-
tently as the third-best solution among those analyzed. It possesses an area roughly
93.06 times larger than the smallest area reported in the literature and 3.02 times lar-
ger than the second smallest area. These area discrepancies are primarily attributed
to the utilization of a higher number of compression levels, which necessitates a larger
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footprint in exchange for enhanced compression and energy savings. The significant
difference compared to the largest architecture also stems from discrepancies in the
provided descriptions of the generated architectures and their focus on area optimiza-
tion.

As previously highlighted, the work in question stands out for its exceptional energy
efficiency. The combination of bit truncation with the two other employed techniques
facilitates the realization of maximum savings in the ECG signal compression process.
The developed system exhibits a reduction of 63.03 times in energy consumption for
a compression ratio of 1/16 with bit truncation and a saving of 32.05 times when con-
sidering the solution without input bit truncation at the fifth compression level. When
comparing the developed solutions, the solution with bit truncation delivers a reduction
in consumption of approximately 50% when directly compared to the solution without
truncation and without approximation (only pruning).

The NCC metric, widely employed for evaluating the quality of signal compression,
particularly for medical signals demanding high precision, is not utilized by the primary
works comparable to the developed solution. According to (FRASER et al., 2013),
the minimum acceptable NCC value, for critical applications, reported in the literature
is 0.978. Based on this value, architectures developed up to level 4 of decomposi-
tion exhibit values exceeding this established minimum, thereby providing acceptable
outcomes for data compression.

The remaining metrics, MAE, RMSE, SNR, and SSIM, have limited applicability
in evaluating one-dimensional medical signals but can still provide supplementary in-
sights into signal quality. According to (XIONG et al., 2023), MAE values below 300
are considered acceptable, and all developed architectures satisfy this criterion. Re-
garding normalized RMSE, values consistently below 0.75 indicate acceptable signal
quality, as supported by (CHIANG et al., 2019). For SNR, research by (ZHANG et al.,
2017) suggests a favorable compression range of 0 to 40 dB. All SNR values obtai-
ned in our tests fall within this range, indicating successful compression. However, the
SSIM metric presents a unique scenario. Unlike other metrics where a value closer to
1 signifies better quality, SSIM values closer to 0 indicate more significant errors. While
minimum acceptable values are established around 0.90 in (LEE et al., 2020), it is im-
portant to note that SSIM is primarily used for image quality assessment in the studies
referenced. In our work, SSIM exhibited an inverse relationship with other metrics, ap-
proaching 0 at lower compression levels and increasing with higher compression and
bit reduction. This behavior underscores the limited applicability of SSIM for evaluating
one-dimensional signals like ECG data.



5 CONCLUSION

Considering the great need to compress medical signals, especially ECG signals,
this work presents several architectures with extremely low energy consumption to
compress ECG signals, thus facilitating their acquisition and manipulation in real time
and with the lowest possible use of computational resources.

We developed solutions using the discrete Haar wavelet transform (DHWT) as a
basis, applying three forms of optimization to this base transform, i.e., pruning, hard-
ware approximation, and input bit truncation. With pruning, we removed unnecessary
components, generating an architecture with only the essentials to carry out the signal
compression process, allowing significant savings in occupied area and energy con-
sumption.

We adopted a hardwired approach to achieve a more significant gain in energy
consumption. It occurred by removing the most energetically costly component of the
architecture, the single constant multiplier block. With this removal, at the cost of small
losses in precision and accuracy metrics, an architecture capable of performing com-
pression at an even lower cost was obtained.

To achieve maximum savings on hardware resources, in particular energy savings,
bit truncation of the input was performed, obtaining excellent results considering a
truncation of up to 6 bits at the input and the fourth compression level. The solution
with the highest energy efficiency was developed, even among the best existing in
current literature, using these three techniques together.

With bit truncation, the most energy efficient solution architecture obtained a maxi-
mum compression of the fourth level of Haar wavelet decomposition of 1/16. A worst-
case accuracy of 0.9602. A PRD of a maximum of 4.41, a total area of 771.205 µm²,
and the lowest energy consumption of 0.60 µW . Considering the frequency of 1.25
kHz for greater energy savings. These results place the work developed among the
leading ECG data compression systems regarding energy savings.

In addition to the most efficient solution, we generated other partial architectures
despite not generating the greatest resource savings as the highlighted architecture.
In most cases, they have higher values in accuracy metrics, making them ideal for use
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in systems requiring greater data precision and not necessarily needing the most sig-
nificant possible energy savings. From this, we can conclude that, in addition to the
architecture with the highest possible efficiency, other architectures have been deve-
loped as by-products that are widely used in applications where the trade-off is more
towards data precision at the expense of low energy consumption and area losses.
This proposed design exploration space expands the application possibilities of the
developed architectures.

5.1 Possibilities for future work

According to the excellent results obtained in this dissertation, we can highlight
other possibilities for future works. These main possibilities for future works include:

1. To apply the developed architectures for compression of other one-dimensional
medical signals, such as Electromyogram (EMG) and Electroencephalography
(EEG).

2. To use compression techniques (pruning, approximation, and truncation) on a
broader range of applications: Two-dimensional applications (images) and diffe-
rent types of one-dimensional signals.

3. To use the architecture developed for compressing other non-medical signals with
lower precision requirements and more straightforward reconstruction. It is done
to allow greater bit truncation or use a more significant number of decomposition
levels, generating greater compression and consequent energy savings.

4. To use artificial intelligence (AI) techniques to help reconstruct the original signal
and repair possible losses arising from compression.

5. Use of approximate adders in the developed solution to achieve greater energy
savings.

6. Perform in-depth evaluations of the reliability of the developed system, especially
with respect to the influence of noise and errors generated during the execution
of the compression process, taking into account the wide use of approximation
techniques
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