UNIVERSIDADE FEDERAL DE PELOTAS
Centro de Desenvolvimento Tecnologico
Programa de Pos-Graduacao em Computacao

. NN |
'PS . BRI\S\\'

Dissertacao

Dedicated Hardware Architectures for the Affine Motion Estimation of Versatile
Video Coding Video Standard for Real-Time UHD Videos

Marcello Morales Muihoz

Pelotas, 2025

Marcello Morales Muihoz

Dedicated Hardware Architectures for the Affine Motion Estimation of Versatile
Video Coding Video Standard for Real-Time UHD Videos

Dissertacao apresentada ao Programa de Pés-
Graduacdo em Computacédo do Centro de De-
senvolvimento Tecnoldgico da Universidade Fed-
eral de Pelotas, como requisito parcial a obtencao
do titulo de Mestre em Ciéncia da Computagéo.

Advisor: Prof. Dr. Marcelo Schiavon Porto
Coadvisores: Prof. Dr. Luciano Agostini
Prof. Dr. Guilherme Corréa

Pelotas, 2025

Universidade Federal de Pelotas / Sistema de Bibliotecas
Catalogacdo da Publicacdo

M967d Mufoz, Marcello Morales

Dedicated hardware architectures for the Affine motion estimation
of versatile video coding video standard for real-time UHD videos
[recurso eletrénico] / Marcello Morales Mufioz ; Marcelo Schiavon Porto,
orientador ; Luciano Agostini, Guilherme Corréa, coorientadores. —
Pelotas, 2025.

81 f.

Dissertagao (Mestrado) — Programa de P6s-Graduagdo em
Computagao, Centro de Desenvolvimento Tecnolégico, Universidade
Federal de Pelotas, 2025.

1. Hardware. 2. Affine ME. 3. H.266/VVC. 4. Motion estimation. I.
Porto, Marcelo Schiavon, orient. Il. Agostini, Luciano, coorient. Ill. Corréa,
Guilherme, coorient. IV. Titulo.

CDD 005

Elaborada por Dafne Silva de Freitas CRB: 10/2175

Marcello Morales Muihoz

Dedicated Hardware Architectures for the Affine Motion Estimation of Versatile
Video Coding Video Standard for Real-Time UHD Videos

Dissertacado aprovada, como requisito parcial, para obtencdo do grau de Mestre em
Ciéncia da Computacao, Programa de Pés-Graduacdo em Computacédo, Centro de
Desenvolvimento Tecnolégico, Universidade Federal de Pelotas.

Data da Defesa: 6 de dezembro de 2024

Banca Examinadora:
Prof. Dr. Marcelo Schiavon Porto (orientador)
Doutor em Computacao pela Universidade Federal do Rio Grande do Sul.

Prof. Dr. Bruno Zatt
Doutor em Microeletronica pela Universidade Federal do Rio Grande do Sul.

Prof. Dr. Alan Carlos Junior Rossetto
Doutor em Engenharia Elétrica pela Universidade Federal do Rio Grande do Sul.

Prof. Dr. Vladimir Afonso
Doutor em Microeletronica pela Universidade Federal do Rio Grande do Sul.

AGRADECIMENTOS

Gostaria de agradecer as muitas pessoas que foram fundamentais para mim du-
rante o periodo do mestrado. Agradeco, primeiramente, aos meus pais, Luiz Eduardo
Machado Munoz e Zoila Morales Fernandes, por todo o apoio que me deram ao longo
da minha formacao académica, incluindo esta etapa do mestrado.

Gostaria também de expressar minha gratiddao ao professor Marcelo Porto, meu
orientador. Muito obrigado por ter me aceito como orientando durante a pandemia,
mesmo com minha pouca experiéncia anterior em pesquisa e nesta area de conheci-
mento. Sou extremamente grato por essa oportunidade.

Agradeco igualmente aos meus co-orientadores, Luciano Agostini e Guilherme
Correa, que, junto ao professor Marcelo, me ensinaram muito sobre codificagdo de
video e sobre o mundo da pesquisa académica, areas com as quais eu tinha pouco
contato antes de iniciar o mestrado.

Meus sinceros agradecimentos também ao Murilo Perleberg, que me auxiliou bas-
tante durante todo o processo do mestrado, e ao Denis Maass, cujo apoio foi igual-
mente essencial no desenvolvimento do meu trabalho. A contribuicdo de ambos foi
crucial para a conclusao desta jornada.

Também quero expressar minha gratidao ao ViTech (Video Technology Research
Group), do qual fago parte. Sem a infraestrutura e o suporte do grupo, este mestrado
nao teria sido possivel.

Por fim, deixo meus agradecimentos a UFPel, onde iniciei minha trajetéria em 2014
como estudante de graduagao em engenharia da computacédo. Foi ali que aprendi tudo
sobre computacdo e onde conheci quase todas as pessoas que, de alguma forma,
contribuiram para este trabalho.

ABSTRACT

MUNOZ, Marcello Morales. Dedicated Hardware Architectures for the Affine
Motion Estimation of Versatile Video Coding Video Standard for Real-Time UHD
Videos. Advisor: Marcelo Schiavon Porto. 2025. 81 f. Dissertation (Masters in
Computer Science) — Technology Development Center, Federal University of Pelotas,
Pelotas, 2025.

The demand for streaming digital videos over the internet has significantly increased
in recent years. This substantial rise in video data traffic requires efficient compression
techniques for storage and transmission. Moreover, these compression techniques
must preserve image quality while addressing energy consumption and real-time pro-
cessing constraints. In this context, the Versatile Video Coding (VVC) compression
standard, also known as H.266, is the state-of-the-art video compression standard re-
leased in July 2020 by the Joint Video Experts Team (JVET).

VVC introduced several new tools to aid video compression compared to its pre-
decessor, the H.265/HEVC standard. This results in significant gains in compression
efficiency (the ratio of bit rate reduction to the encoded video quality), allowing for more
efficient transmission or storage of digital videos. One of the new tools added in VVC is
Affine prediction, which is used to characterize non-translational motion. This new tool
has the highest computational cost in the entire inter-frame prediction stage of the VVC
encoder. However, Affine prediction can provide gains of up to 2.18% in compression
efficiency (BD-Rate) in exchange for a 5.26% increase in encoding time.

Affine prediction supports two versions, using four or six parameters, where two
or three motion vectors are used, respectively. These vectors are inherited from the
reference block to be encoded and are used for reconstructing the block. This work
was designed and synthesized using ASIC hardware architectures for the Affine motion
estimation in the VVC standard, focusing on low energy consumption. The architectural
design emphasizes the capability to process real-time UHD 4K videos (3840 x 2160),
aiming for its application in mobile devices. Three architectures are presented: One for
Affine motion compensation with an area utilization of 189k Gates and 121mW power
dissipation. Another for the architecture that calculates the Affine AMV with 245k
Gates and 31mW of power dissipation. Also, an initial version of the gradient-based
coefficient generator is presented with 6,900k Gates and 4.8W power dissipation.

Keywords: Hardware; H.266/VVC; Affine ME; Motion Estimation.

RESUMO

MUNOZ, Marcello Morales. Arquiteturas de Hardware Dedicada para a Estima-
cao de Movimento Affine UHD em tempo real do Padrao de Compressao de
Video Versatile Video Coding. Orientador: Marcelo Schiavon Porto. 2025. 81 f.
Dissertacdo (Mestrado em Ciéncia da Computacao) — Centro de Desenvolvimento
Tecnoldgico, Universidade Federal de Pelotas, Pelotas, 2025.

A demanda de streaming de videos digitais pela internet esta aumentando de forma
significativa nos ultimos anos. Este grande aumento no trafego de dados de video
requer técnicas de compressao eficientes para armazenamento e transmissdo. Além
disso, estas as técnicas de compressdo devem preservar a qualidade da imagem,
enquanto lidam com restricdes de consumo de energia e processamento em tempo
real. Neste cenario, o padrao de compressao de video Versatile Video Coding (VVC),
também conhecido como H.266, é o padrao de compressao de video estado-da-arte,
tendo sido langado em julho de 2020 pelo Joint Video Experts Team (JVET).

O VVC adicionou diversas novas ferramentas para auxiliar na compressao de vi-
deo, quando comparado ao seu antecessor, o padrao H.265/HEVC. Desta forma, pro-
porcionando grandes ganhos em termos de eficiéncia de compressao (relagéo entre
reducdo da taxa de bits e a qualidade do video codificado) e permitindo a transmis-
sdo ou armazenamento de videos digitais de forma mais eficiente. Uma das novas
ferramentas adicionadas no VVC é a predicao Affine, que € utilizada para caracterizar
movimentos ndo-translacionais, sendo que essa nova ferramenta possui 0 maior custo
computacional de toda a etapa de predicao inter-quadros do codificador VVC. A pre-
dicdo Affine pode trazer ganhos de até 2,18% na eficiéncia de compressao (BD-Rate)
em troca de um aumento de 5,26% no tempo de codificacdo.

A predicao Affine suporta duas versoes, utilizando quatro ou seis parametros, onde
dois ou trés vetores de movimento sdo usados, respectivamente. Esses vetores sao
herdados do bloco de referéncia a ser codificado e sao usados para reconstruir o
bloco. Neste trabalho foi projetado e sintetizado arquiteturas de hardware ASIC para
predicao Affine do padrdo VVC com foco em baixo consumo de energia. As arqui-
teturas sdo projetadas para processar videos UHD 4K (3840 x 2160) em tempo real,
visando sua aplicacdo em dispositivos méveis. Trés arquiteturas sdo apresentadas:
uma para compensagao de movimento Affine, com uma de area de 189k Gates e dis-
sipagao de poténcia de 121mW. Outra para a arquitetura que calcula o AMV Affine,
com 245k Gates e dissipacao de 31mW. Além disso, uma verséo inicial do gerador de
coeficientes baseado em gradiente do Affine com 6.900k Gates e dissipagao de 4,8W.

Palavras-chave: Hardware; H.266/VVC; Affine ME; Estimacao de movimento.

Figure 1
Figure 2
Figure 3
Figure 4

Figure 5
Figure 6

Figure 7

Figure 8
Figure 9
Figure 10
Figure 11

Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Figure 18

Figure 19
Figure 20

Figure 21

Figure 22
Figure 23
Figure 24
Figure 25
Figure 26

LIST OF FIGURES

Flowchart of the video compression
Elements present in the ME (Porto, 2012)
Search processoftheME
Affine models. (a) 4-Parameter with LT and RT MVs. (b) 6-
Parameter with LT, RT,and LBMVs.
Affine AMVP Algorithm. L
Affine representation of the subblock split, where 16 subblocks with
4x4 samples compose one 16x16 PU. Each subblock has its own
SMV.
Representation of diagonal interpolation of a 4x4 subblock. The blue
squares are the integers, the triangles are horizontal, and the stars
are diagonalsamples. oL
Representation of the Gradient-Based lterative Algorithm.
The kernel Sobel Filter in the X- and Y-direction.
Representation of the Block-Matching lterative Algorithm.
Representation of all the BMIA possible positions explored after
three rounds for one CPMV.

High-level architecture of Affine MC
Architecture of the Vector Generationunit
Architecture that calculates MV differences
Architecture of the Interpolation Unit
Proposed Architecture of the Interpolation Filter £y
Implementation of the Filter F; using a multiplierless approach in the
Baseline architecture
Proposed Architecture of the Interpolation Filter F or Fi5 (used in
the PE architecture), depending on the order of the inputs.
Proposed Hardware-Efficient Architecture.
The Architecture of the Coefficient Multiplier C4, used in HE archi-
tecture.
Time diagram of the Affine MC architecture when LT = [4,—1332]
and RT = [—72, —1336]
High-level architecture ofthe GBIA
Architecture of the Sobel Engine
Sobel Unit architecture
Architecture of the Affine Parameter Generator
Architecture of the Coefficient generator

Figure 27 Architecture of the Affine Mode Adapter 58

Figure 28 Architecture of the Affine Mode Adapter Converter 58
Figure 29 Temporal Analysis of the Gradient-Based Coefficient Generator. . . 60
Figure 30 The Affine AMV Architecture. 61

Figure 31 Time diagram of the proposed Affine AMV architecture. 62

Table 1
Table 2
Table 3

Table 4
Table 5
Table 6
Table 7
Table 8

Table 9
Table 10

Table 11
Table 12

Table 13

Table 14

Table 15

Table 16

Table 17

Table 18

LIST OF TABLES

Affine Filter Coefficients.
SLE of 6-parameters.
SLE of 4-parameters.

Results of the Affine Motion Estimation in the VVC for four Refer-
ence Frames. e
Average Processing of the Affine Motion Estimation divided by PU
size for four Reference Frames.
Results of the Affine Motion Estimation in the VVC for one Reference
Frames. e e
Average Processing of the Affine Motion Estimation divided by PU
size for one Reference Frames.
BD-Rate of the PU constraints evaluated.
BD-Rate of the Iteration constraints evaluated.
BD-Rate of the proposed combined constraints evaluated.

Conversions Equations of the SLE 6-parameters to 4-parameters.

Synthesis results for Interpolation Unit using four Filter Cores work-
ingat808.7MHz.
Synthesis Results for the Affine MC for 4K@60fps while only pro-
cessingGBIAand16x16 PUs.
Synthesis Results for the Gradient-Based Coefficient Generator for
UHD 4K@60fps for both throughputs, GBIA and quadratic sizes
(186MHz) and GBIA and 16x16 (48MHz).
Synthesis results of the Affine AMV architecture when targeting 4K
UHD 60 fpsvideos o o i
Comparison among the proposed Affine MC architecture and FPGA
related works. L
Comparison among the proposed Affine MC architecture and ASIC
related Works. e
Comparison with related work for the Affine AMV architecture when
targeting HD 1080p@60fpsvideos

LIST OF ABBREVIATIONS AND ACRONYMS

UHD Ultra-High Definition
JVET Joint Video Experts Team
VVvC Versatile Video Coding
SDR Standard Dynamic Range
HDR High Dynamic Range
WCG Wide Color Gamut

ME Motion Estimation

CME Conventional Motion Estimation
AME Affine Motion Estimation

FPS Frames per Second

CuU Coding Unit

MC Motion Compensation

MV Motion Vectors

FME Fractional Motion Estimation

VTM VVC Test Model

BD-Rate Bjontegaard Delta Rate

GBIA Gradient-Based lterative Algorithm
BMIA Block Matching lterative Algorithm
SLE System of Linear Equations
VCEG Video Coding Experts Group
MPEG Moving Picture Experts Group
HEVC High Efficiency Video Coding

NAL Network Abstraction Layer
CTuU Coding Tree Unit
PU Prediction Unit

RD Rate Distortion

CPMV
MM
AMVP
AMC
SMV
LT
RT
LB
PROF
FPGA
ASIC
MCM
CTC
QP
PE
HE
MMCM
TSMC
RTL

Corner Point Motion Vectors

Merge Mode

Advanced Motion Vector Prediction

Affine Motion Compensation

Subbblock Motion Vectors

Left-Top

Right-Top

Left-Bottom

Prediction Refinement with Optical Flow
Field-Programmable Gate Array
Application-Specific Integrated Circuit
Multiple Constant Multiplication

Common Test Conditions

Quantization Parmeters

Power-Efficient

Hardware-Efficient

Multiplexed Multiple Constant Multiplication
Taiwan Semiconductor Manufacturing Company

Register-Transfer Level

CONTENTS

1 INTRODUCTION e e et e e e e e e e 15
2 BACKGROUND it e et e e e e e et e ens 18
2.1 VersatileVideoCoding 18
2.2 Affine Motion Estimation L. 21
2.21 InterpolationFilters L 24
2.2.2 Gradient-Based lterative Algorithm oL 26
2.2.3 Block Matching lterative Algorithm 31
23 RelatedWorks 32
3 SOFTWAREEVALUATIONSt e e e e e e e et 35
3.1 ExperimentalSetup L 35
3.2 Hardware-Oriented Constraints Evaluation 36
3.2.1 Results and BD-Rates of Reference Frames Constraints 36
3.22 BD-Rateof PUSizeConstraints 41
3.2.3 BD-Rate of lteration Constraints 42
3.2.4 BD-Rate of Proposed Approach for the AME Hardware Design 43
3.3 Experiments Conclusions 44
4 PROPOSED AME HARDWARE ARCHITECTURES 46
41 AffineMC 46
4.1.1 Vector Generator 47
41.2 InterpolationUnit L 47
4.1.3 Design Exploration of Filter Core 48
4.1.4 Temporal Analysis 53
4.2 Gradient-Based Coefficient Generator Architecture 54
421 RowBuffer 54
422 SobelEngine 55
423 ParameterGenerator L 56
4.2.4 CoefficientGenerator. 57
425 Affine Mode Adapter 58
4.2.6 Temporal Analysis 59
4.3 Affine AMV Architectureo 60
4.3.1 Gauss-Jordan Elimination Algorithm 60
4.3.2 Proposedarchitecture 61

4.3.3 Temporal Analysis 62

5 SYNTHESIS RESULTS AND COMPARISONS 63

5.1 Interpolation UnitResults 63
5.2 Affine MC SynthesisResults 65
5.3 Gradient-Based Coefficient Generator 66
5.4 Affine AMV Architecture o oL 68
5.5 Comparison withrelatedworks 69
6 CONCLUSION. ittt s e e e e e e e e e et s ens 72
REFERENCES i et e e e e e e e e e e e e e 74

APPENDIX A LIST OF PUBLICATIONS DURING THIS MASTERS DEGREE 79

1 INTRODUCTION

The COVID-19 pandemic greatly impacted global internet traffic (bitmovin, 2020).
With internet usage continuing to rise, it is estimated that in 2023, 5.3 billion people
have had access to the internet (Cisco, 2018), an increase from 3.9 billionin 2018. As a
result, data consumption on the internet has also been increasing year after year, with
video streaming representing a significant portion of this data transfer volume. Data
from the first half of 2021 shows that video streaming dominated internet bandwidth,
accounting for 53% of the total data transfer volume (Sandvine, 2022). In addition to the
growing demand, there is an increasing evolution in video resolutions and frame rates.
Projections estimated that, in 2023, two-thirds (66%) of TVs were 4K UHD (Ultra-High
Definition) resolution (Cisco, 2018). In this scenario, the need for greater efficiency in
digital video compression becomes evident.

There is an ongoing effort within the scientific community to advance video com-
pressors. In 2020, the Joint Video Experts Team (JVET) released the Versatile Video
Coding (VVC) standard (Chen; Ye; Kim, 2021), which represents the state-of-the-art in
video coding standards. VVC is the successor to High Efficiency Video Coding (HEVC)
(Jet-ve, 2013), also developed by JVET. VVC was designed to efficiently encode 4K
Ultra-High-Definition (UHD) with Standard Dynamic Range (SDR) and also encode 8K
UHD or even larger resolutions, High Dynamic Range (HDR), and Wide Color Gamut
(WCG).

The VVC was designed to reduce bit rate and be versatile by processing different
types of content such as process screen content, gaming, and 360° video for immersive
and augmented reality (Bross et al., 2021) In VVC, many tools were added to assist
in video compression, enabling a 44.4% reduction in the amount of data required to
represent videos (also known as bitrate) (Siqueira; Correa; Grellert, 2020), with a 5-
fold increase in encoding complexity in terms of encoding time, compared to the HEVC
(Pakdaman et al., 2020).

One of the tools of the VVC is inter-frame prediction, which uses a reference frame
to predict the current frame samples. The Motion Estimation (ME) is a step inside the
inter-frame prediction that determines the motion vectors between the reference frame

16

and the current frame being encoded. The ME is one of the most essential steps in
video encoding because two frames that are temporally near each other may have a lot
of redundancies. The ME is divided into Conventional ME (CME) and Affine ME (AME):
CME uses one Motion Vector (MV) to describe translation motion, which is motion in
which all points move in the same direction and distance. The AME uses two or three
MV to represent more complex types of motion, such as rotation, zoom in/out, and
shear.

Inter-frame prediction accounts for, on average, 59% of the total encoding time in
the VVC standard (Goncalves, 2021). Inter-frame prediction can be subdivided into
unilateral, bilateral, and Affine predictions. Affine prediction has the highest computa-
tional cost, representing an average of 54.75% of the total inter-frame prediction time
(Park; Kang, 2019). Since AME constitutes a significant portion of the total motion es-
timation processing time, reducing this complexity becomes crucial for real-time video
encoding, especially for high resolutions like UHD 4K and 8K and high frame rates
(FPS). Along with reducing complexity, it is also necessary for AME to have low en-
ergy consumption for applications on battery-powered mobile devices, making the use
of dedicated hardware essential for encoding UHD videos under the H.266/VVC stan-
dard.

Only one work in the literature proposes dedicated hardware architecture for the
entire AME process, which is (Taranto, 2022). However, it simplifies the algorithm,
skipping many steps to reduce the overall computational complexity, which leads to
visual degradation not being calculated in the work. Besides that, many works are
proposing dedicated hardware architectures that can process one of the many steps of
the AME: Sheng et al. (2024) propose solver for System of Linear Equations (SLE) for
the Affine ME and Maass et al. (2023) propose an SLE solver and final processing to
calculate the new set of MV. Perleberg et al. (2023) proposes a hardware architecture
for the Prediction Refinement with Optical Flow (PROF) algorithm. The Affine MC can
be compared to the Fraction Motion Estimation (FME) because of the filtering opera-
tions, and there are many works for the FME such as Azgin et al. (2018); Canmert;
Kalali; Hamzaoglu (2018); Azgin; Kalali; Hamzaoglu (2020); Mahdavi; Azgin; Hamza-
oglu (2021); Silva et al. (2021) even though choosing the filter uses Affine equations,
which would require an additional calculation.

To understand the throughput necessary to process the AME, this work performed
an analysis of the Affine ME done using the reference software of the VVC, the VVC
Test Model (VTM). This analysis may also be used to understand how often the AME
is processed inside the ME. With the results from the analysis, this work presents ded-
icated hardware architectures with the objective of processing steps inside the AME
algorithm for the Affine 4-parameter and 6-parameter. These architectures were also
designed to process any Prediction Unit (PU) size ranging from 16x16 to 128x128. In

17

addition, this work presents a design space exploration showing different approaches
to designing these architectures for different target throughput and area/power con-
straints.

The main contributions of this Master’s dissertation work:

* An analysis of the AME algorithm. This analysis shows the Bjontegaard Delta
Rate (BD-Rate) of different constraints, the number of times the AME 4-parameter
and 6-parameter are processed, the number of times Gradient-Based lteration
Algorithm (GBIA) and Block-Matching Iterative Algorithm (BMIA) are processed,
and these values for each PU size.

» The development of energy-efficient hardware designs for the AME of the VVC
encoding standard. These architectures were developed to process all PU sizes
supported in VVC AME. These architectures can process 4K Ultra High-Definition
(UHD) videos at 60 frames per second.

This work presents three hardware architectures for the Affine ME. The first ar-
chitecture presented is the Affine MC, which is used by both GBIA and BMIA. The
synthesis of this architecture presents an area utilization of 189.2k gates with a power
dissipation of 121.15mW with a frequency of 598MHz for processing UHD 4K@60fps.
The second architecture presented is the Gradient-Based Coefficient Generator. The
synthesis of this architecture presents an area utilization of 4849k gates with a power
dissipation of 3932mW with a frequency of 48MHz for processing 4K@60fps. The
results are prohibitive for real applications; however, the Gradient-Based Coefficient
Generator is the first architecture for this step of the iterative algorithm in the litera-
ture. The last architecture presented is the Affine AMV architecture, which solves the
SLE generated by the Gradient-Based Coefficient Generator and generates the Affine
AMYV, which is added to the current MV being evaluated, generating the next set of
MVs to be evaluated. The synthesis of this architecture presented an area of 262k
gates and 74.95mW of power dissipation.

This dissertation is organized as follows: The chapter 2 explains basic concepts of
the VVC video coding standard, the AME algorithm, which is the focus of this work,
and presents the related works. After, chapter 3 presents the evaluations performed to
define the throughput of the developed architectures, while chapter 4 shows in detalil
the developed architectures. In chapter 5, the obtained syntheses are presented and
compared with relevant related works. Finally, the chapter 6 concludes this work.

2 BACKGROUND

In this chapter, some background information necessary to understand this disser-
tation will be presented. Section 2.1 presents the Versatile Video Coding (VVC) and the
basic information on how it encodes a video. Section 2.2 presents the AME algorithm,
which is a new tool added in VVC and the focus of this work. Section 2.3 discusses the
related works, presenting all published hardware architectures that will be compared to
the synthesis results achieved in this work.

2.1 Versatile Video Coding

The VVC standard (Chen; Ye; Kim, 2021) is the state-of-the-art video compressor.
The VVC was developed by the Joint Video Experts Team (JVET), which was formed
by the Video Coding Experts Group (VCEG) and the Moving Picture Experts Group
(MPEG). JVET issued a call for proposals in October 2017, and the first draft of the
VVC was released in April 2018, with the completion of the standard in July 2020 (Jvet,
2018).

The VVC is the successor of the H.265/High Efficiency Video Coding (HEVC) (Jct-
vc, 2013), and it has an improvement of 50% of bitrate reduction over its predecessor
(Bross et al., 2021). The standard is named Versatile because it covers current and
emerging media needs:

Higher resolutions than its predecessor (up to 8K or larger), HDR and WCG.

Computer-generated or screen content, as occurs in screen sharing and gaming.

360° video for immersive and augmented reality.

Applications requiring ultralow delay, such as wireless displays and online gam-
ing.

The VVC, similar to its predecessor, the HEVC, uses a block-based hybrid video
coding scheme and the bitstream structure based on the network abstraction layer
(NAL), and the basic processing unit is the Coding Tree Unit (CTU).

19

The VVC uses the same block-based partitioning scheme as its predecessor. The
encoder divides the frame into Coding Tree Units (CTU). The CTU in VVC has a size
of 128x128, which is the largest Coding Unit (CU) supported. Each CTU is then further
divided into one or more blocks known as CU of varying sizes, and the CU is the basic
processing unit of the encoder. Finally, the CU is divided into Prediction Units (PU),
the units evaluated in the prediction steps of the video encoders, such as Inter-Frame
or Intra-Frame prediction. The PU was chosen by evaluating its rate-distortion (RD)
cost. The encoder selects the PU with the smallest RD cost because a smaller RD
cost leads to fewer bits needed in the bitstream.

After the frame is split into PU, the VVC encoder uses the encoding steps of its
predecessor, the core design of video data compression can be seen in Figure 1 and
has five stages: prediction, transform, quantization, in-loop filters, and entropy en-
coding. The prediction stage can be divided into two: intra-frame prediction, which
uses the similarities of the current frame to encode it, and inter-frame prediction, which
searches for similarities in previously encoded frames. The transform stage changes
the values to the frequency domain. In a lossy stage, the data in the frequency domain
gets quantized to reduce information irrelevant to human visual perception. Finally, in
the entropy encoding stage, the statistical redundancies are reduced by an entropy
encoder applying arithmetic coding.

The Motion Estimation (ME) is a step inside the inter-frame prediction used to de-
scribe the motion from two frames, a reference frame and the current frame being
encoded. The ME is one of the most essential steps in video encoding because two
frames that are temporally near each other may have a lot of redundancies. The ME

Transform & Quantization

Decoder

Frame Partition

Inv. Quantization

Inv. Transform

- Entropy Encoding
Prediction Bitstream

' In-Loop Filters

Decoded Picture Buffer

Figure 1 — Flowchart of the video compression

20

is divided into Conventional ME (CME) and Affine ME (AME): CME uses one Motion
Vector (MV) to describe translation motion, which is motion in which all points move
in the same direction and distance. The AME uses two or three MV to describe more
complex types of motion, such as rotation, zoom in/out, and shear.

The Figure 2 presents the ME process. The ME searches for the best match for the
current block in the reference frame; this search is not performed in all of the positions
in the reference frame but only in a search area around the position of the block in the
reference frame. A MV describes the motion between the block position in the current
frame and the best match. This best match has its cost calculated and compared with
the best matches found in the other reference frames.

The inter-frame prediction exploits similarities of the frames temporally close to re-
duce massively the data transferred. The process of finding a match in a reference
frame in the inter-frame prediction is called ME. The ME process can be seen in Figure
3. The process applies different types of prediction in succession, however, it can be
skipped early depending on the cost calculated. The ME divides the frames into two
lists (LO, L1), one for frames in the past and another for frames in the future then the
prediction modes are tested. With the two lists of frames, two types of prediction modes
are supported: unilateral and bilateral. Uni-lateral prediction searches the frames in LO
or L1 for the best match to encode the PU. The bi-lateral prediction mode uses two
frames to encode the PU, using both lists LO and L1. These prediction modes can be
further split into two types of prediction modes: Conventional and Affine. Conventional
ME describes translation motion between two frames, that is, motion in which all points
have the same direction. The Affine Motion Estimation is a new tool added to the VVC
that uses multiple MVs to better encode more complex motions such as rotation and
zoom. The Affine Motion Estimation has two different modes, which use two MVs (4-
parameters) or three MVs (6-parameters) to describe the motion. Both Conventional
ME and Affine ME support uni-lateral and bi-lateral modes.

Reference
MV Frame
—

Current
- Best match Frame

J—

I

YA A T

T LAA LT

Search Area

PRV
ERAEEEE)

| —
| —
| —
| —
|
| —
| —
|

Position of the
block in the
reference frame

(LA R R RN
ALY T

—
|
| —
| —
|
|
|
|
| —
b

_—
[
[
| —t
| —t
-
ft
{
|
|

AT EE RN

VAT T

Ty LT ey

—
[~ eb—1
| =4
|41
| 4
| 41
| 41
|_+—1
|1
| 14—

R REEEAEN

Current Block

Figure 2 — Elements present in the ME (Porto, 2012)

21

» Uni-Prediction
In LO

Conventional ME

Affine Uni-Prediction l Uni-Prediction
In LO In L1
Affine 4 Prediction
Affine Uni-Prediction l Bi-Prediction
e Affine 6 Prediction

‘

Determine Best Mode

Figure 3 — Search process of the ME

Affine Bi-Prediction

The AME can describe more complex motion, leading to reduced error, reducing the
bits necessary for transmission, and increasing visual fidelity. However, this reduced
bandwidth/size and better visual fidelity have a higher computational complexity cost
than Conventional ME.

The many new tools added to VVC enable the gain in coding efficiency. This work
focuses on AME, one of the new tools added to the Inter-frame prediction.

2.2 Affine Motion Estimation

The Affine Motion Estimation (AME) is a new tool adopted in ME of VVC. The AME
is used in inter-frame prediction to identify and represent more complex movements
than the traditional translational movement, such as scaling, rotation, and skewing
(Bross et al., 2021). As in ME, the AME performs a search for a similar block in a
reference frame previously encoded, resulting in a set of two or three MVs that will be
used to represent the current block with a non-translational movement (Chen; Ye; Kim,
2021).

The VVC AME supports two Affine models, with 4 or 6 parameters (Bross et al.,
2020), as presented in Figure 4 (a) and (b). The 4-parameter model uses Corner Point
Motion Vectors (CPMVSs) in the top-right corner and the top-left corner of the PU, while
the 6-parameter uses the three CPMVs in the top-left, bottom-left, and top-right corner
of the PU as can be seen in Figure 4 (Bross et al., 2020). The AME is applied over 12
Prediction Unit (PU) sizes ranging from 16x16 to 128x128 (Bross et al., 2020).

The Affine MVs can be obtained in two ways: Affine Merge Mode and Affine Ad-
vanced Motion Vector Prediction (AMVP) (Chen; Ye; Kim, 2021). Affine Merge Mode
inherits the MV from the neighboring PUs that were used to encode either the AME or

22

T\ o~— RT 1 - RT
Current Current
Block Block
LB

(a) (b)
Figure 4 — Affine models. (a) 4-Parameter with LT and RT MVs. (b) 6-Parameter with LT, RT,
and LB MVs.

ME. Affine AMVP is an iterative algorithm that minimizes the error in the starting MVs
of a block, and this algorithm may motion compensate the block up to 82 times, leading
to high complexity.

The Affine Merge Mode (MM) requires very few CPMVs to be evaluated. The list of
candidate CPMVs that need to be evaluated is formed by using CPMVs from the Affine
MM of neighboring PUs, candidates constructed CPMVs that are derived from the CME
of neighboring PUs, and Zero MVs. This list has a maximum size of five CPMVs that
are required to be evaluated. This algorithm has a very low complexity compared to
Affine AMVP, but it may have a higher error, which leads to reduced encoding efficiency.

The Affine AMVP algorithm evaluates only two candidates: the first uses two CP-
MVs (Affine 4-parameter), and the second uses three CPMVs (Affine 6-parameter).
Even though the list of candidates is smaller, it uses a more complex algorithm to min-
imize the error and find the best CPMVs. This algorithm is divided into two steps: A
Gradient-Based lterative Algorithm (GBIA) and a Block Matching Iterative Algorithm
(BMIA). Affine AMVP candidate list of two CPMVs requires higher computational com-
plexity than Affine Merge Mode, with up to 82 CPMVs needing to be evaluated. Also,
this does not consider the steps necessary to generate a new set of MVs, which has a
high computational complexity and requires a lot of memory access.

As can be seen in Figure 5, both iterative algorithms in the AMVP require Affine
Motion Compensation (MC) of the PU with the starting CPMVs. In each iteration of the
algorithms, the CPMVs are updated, either through the use of the error, in the case
of the GBIA, or through searching neighboring positions, in the case of the BMIA. The
GBIA can repeated up to five times, while the BMIA can be up to 24 times per CPMV
(up to 48 times for Affine 4-parameter or 72 for Affine 6-parameter). The AMVP also
contains five additional Affine MCs between GBIA and BMIA, one for each CPMV, one
to keep rotation/zoom, and one to keep translation (Chen; Ye; Kim, 2021).

The Gradient-Based lterative Algorithm (GBIA), as can be seen in Figure 5, first

23

GBIA BMIA

! Affine MC I Yes
Di | Search Search
Sobel Filters

I
Gradient SLE A=

Generating and Solving
Updating MV

No

Affine MC

No Haorizontal/Vertical
Search

Yes

New Best?
andrnds<3

Figure 5 — Affine AMVP Algorithm.

performs the Affine MC the PU with the starting CPMVs, then uses Sobel Filters to
calculate four or six Affine parameters depending on the model. These Affine parame-
ters and the residual (error between the predicted and original samples) are then used
to generate a System of Linear Equations (SLE) based on the gradient, and this SLE
has a size of 4x5 or 6x7. This SLE, when solved, generates 4 or 6 AMYV, one for
each CPMV, depending on the Affine model, which is added to the respective CPMV,
generating a new set of CPMVs that are evaluated in the next iteration. This repeats
as long as at least one CPMV is updated or up to five times (Chen; Ye; Kim, 2021).
After the GBIA, there are five motion compensations: one for each CPMV up to three,
one to keep rotation/zoom, and another to keep translation.

Following the GBIA, the Block Matching lterative Algorithm (BMIA) is used, as seen
in Figure 5. The BMIA contains up to 24 Affine MC for each CPMV. First, there is a
horizontal/vertical search of the nearest neighbors. If any neighbor leads to a lower
cost, the current CPMV is updated as the new starting CPMV. After the last step, a
search is performed in the diagonal neighbors, and the CPMV is updated if any have a
lower cost. The horizontal/vertical search, followed by the diagonal search, is repeated
three times. The diagonal search is only performed if a better MV is found in the
horizontal/vertical search, and the horizontal/vertical is repeated up to three times, as
long a better CPMV is found (Chen; Ye; Kim, 2021).

Evaluating each set of MVs requires an Affine Motion Compensation (AMC) to re-
construct the current Prediction Unit (PU) with the samples related to the set of CPMVs
(Chen; Ye; Kim, 2021). In the AMC of VVC, the PU is split into subblocks of 4x4 sam-
ples, and each subblock passes by an individual 4x4 MC, similar to the conventional
ME (Chen; Ye; Kim, 2021; Bross et al., 2020). This split may be seen in Figure 6,

24

AN
T/« & 4 yRT
AN
4] A A X
/S S

8
Al 77 A
4

16

Figure 6 — Affine representation of the subblock split, where 16 subblocks with 4x4 samples
compose one 16x16 PU. Each subblock has its own SMV.

where 16 subblocks of 4x4 samples are used to compose a 16x16 PU. The difference
in the AMC is that each subblock receives a Subblock Motion Vector (SMV) that is ob-
tained using the Affine equations defined in 1 and 2, according to the Affine model of
4-parameter or 6-parameter, respectively (Bross et al., 2020).

bw 274 (1)

SMVV = BL_LTY (| RIZ_LTR) o [TV

SMVH — BLE_LTY). | RIV_LTY .\ o [TH
W oW

bW H (2)

SMVV = RT‘;;VLTV cr + LBVb;ILTV cy + LTV

{SMVH = BITSLT oy LBO=LT oy 4 LTH

In (1) and (2), the LT, RT, and LB are the Left-Top, Right-Top, and Left-Bottom
CPMVs inherited from the PU, where the H and V' represent the horizontal and vertical
parts of those CPMVs. The cx and cy are the positions of the center of the subblock,
while the bW/ and bH represent, respectively, the width and height of the PU. The output
is the horizontal and vertical parts of the SMV, which are used for the MC of each 4x4
subblock.

These SMVs generated using the equation may have a motion that does not align
with the samples of the reference frame or a position between samples, making it nec-
essary to interpolate fractional samples. The VVC has a precision of 1/16 (Bross et al.,
2021), which means that up to 15 different samples can be interpolated between two
samples depending on SMV. These fractional samples are interpolated using filters.

2.2.1 Interpolation Filters

In digital videos, the motion that occurs between adjacent frames may not align in
integer sample positions, resulting in SMVs having fractional parts. Therefore, VVC
requires a Motion Compensation (MC) with 1/16 sample interpolation to interpolate the

25

4x4 subblock in the fractional positions (Sullivan et al., 2012; Bross et al., 2020).

To reach an MC with 1/16 sample interpolation, the VVC adopts a set of 15 interpo-
lation filters (Bross et al., 2020, 2021). Therefore, between two horizontally neighbor
samples, 15 horizontal samples may be interpolated. The horizontal interpolation oc-
curs when the component SMV"V is equal to zero. In the same way, between two
vertically neighbor integer samples, 15 new vertical fractional samples can be gen-
erated, which occurs when the component SMV# is equal to zero. Besides, when
both SMVH and SMVV are different from zero, the diagonal interpolation process can
generate up to 225 diagonal fractional samples. To do this diagonal interpolation, it
is required first to interpolate the horizontal fractional samples, and then the fractional
samples can be used as input in vertical interpolation (Afonso et al., 2016).

Figure 7 presents the interpolation of fractional samples to reconstruct a 4x4 sub-
block for a diagonal SMV (when X and Y are different from zero). The blue squares
represent the integer samples, and the colored stars represent the samples of the 4x4
subblock to be interpolated, with the triangles being the temporary samples required for
the interpolation. Nine horizontal neighboring squared samples are used to interpolate
the four triangle temporary samples for each line (colored triangles inside the horizon-
tal ellipses). Then, the colored star samples are interpolated using a similar process.
However, using temporary triangle neighboring samples, this process is performed for
each of the four columns to generate the diagonal samples (colored stars inside the
vertical ellipses). Finally, after processing nine lines and four columns, a 4x4 subblock
can be obtained.

The AME adopted 6-tap filters during the interpolation process. Therefore, to in-
terpolate one fractional sample, six input samples are necessary. The interpolation

= = KA BN BA BACEH = =

7

.........

%) _frﬁ:--.lﬁz___.rg}_
E = DA_‘_DA EAEAE B B
ey ___ﬁ-':'.l'ﬁﬁ-';-l ul

_d’
................
7 ;
‘,i} ‘ik'

= = KA BN BA BACE = =

L] [EA HA HA BACE [[

Figure 7 — Representation of diagonal interpolation of a 4x4 subblock. The blue squares are
the integers, the triangles are horizontal, and the stars are diagonal samples.

26

process involves passing the input samples by a weighted average process, adopting
different coefficients. The complete processing to interpolate one sample F,, can be
seen in (3), where the six input samples are given by A,, while the six coefficients are
given by C.,. Also, besides the weighted sum of entries, offset and shift operations are
performed (Chen; Ye; Kim, 2021). These operations are due to rounding properties
and were performed to keep sample precision when consecutive interpolations.

Fn = (C()A,Q -+ ClA,1 + CQA() -+ CgAl -+ C4A2 -+ C5A3 -+ Off5€t> >> Shlft (3)

The fractional sample F;, is obtained by giving more weight to the input samples
closer to the sample to be interpolated. In addition, the value varies according to
the distance between the input and fractional samples (Chen; Ye; Kim, 2021). The
Equation (4) represents an example of the use of Equation (3) for the interpolation
filter Fg, which interpolates a sample in 1/2 position. Table 1 shows the coefficients
for the F to Fi; filters. Note that the Fy to Fi5 coefficients are symmetric to the F; to
I coefficients. The Fi; filter uses the same coefficients as the Fj filter but inverts the
input samples order. The same occurs between the F» and Fi, filters, and so on.

Fy = (SA_Q — 1].A_1 + 40A0 + 40A1 — 11A2 -+ 3143 + 32) >> 06 (4)

Also can be seen in Table 1 the sum of the weights of each row of the filter table
is equal to 64, which is used to give more weight to a sample. This is also used to
calculate the shift and offset values in Equation (3). The shift value is used to divide
the final sample interpolated by the row’s total weight, so a division by 64 is the same
as shifting by 6, and the offset value is equal to half the weight, so 32. For diagonal
samples, the values of the offset and shift are not so simple to understand. However,
the idea is to return the sample value to an 8-bit sample after the process. In the first
interpolation, the shift value is 0, and the offset is -8192. For the second diagonal
interpolation, the shift value is 12, and the offset is 526336. Both these values are
generated by shifting internal precision values of the VVC.

2.2.2 Gradient-Based lterative Algorithm

This section presents the Gradient-Based lterative Algorithm (GBIA). Figure 8
presents the visual representation of the GBIA. As can be seen in Figure 8, GBIA
starts with a set of CPMVs and generates a new set of CPMVs each iteration (up
to five times) using a gradient-based algorithm which will be explained in this section,
ending with a final set of CPMVs which have lower error and better encoding efficiency.

The Affine MC with the starting CPMVs will, most of the time, not generate the best
block. To find the best block, VVC uses an algorithm based on gradient descent to min-

27

Table 1 — Affine Filter Coefficients.

Co 4 Cy Cs Cy Cs
Fy 1 -3 63 4 -2 1
F, 1 -5 62 8 -3 1
F; 2 -8 60 13 -4 1
F, 3 -10 58 17 -5 1
F; 3 -11 52 26 -8 2
Es 2 -9 47 31 -10 3
Fx 3 -11 45 34 -10 3
Fy 3 -11 40 40 -11 3
Fy 3 -10 34 45 -11 3
Fi 3 -10 31 47 -9 2
Fiy 2 -8 26 52 -11 3
Fiy 1 -5 17 58 -10 3
Fis 1 -4 13 60 -8 2
Fiy 1 -3 8 62 -5 1
Fis 1 -2 4 63 -3 1

imize the error. This is an iterative algorithm that may be processed up to five times or
until the generated CPMVs are the same as the previous iteration. The algorithm used
in VVC utilizes kernel convolutions with Sobel Filters, which are utilized to generate
Affine parameters. These Affine parameters are multiplied by themselves to generate
an SLE that generates the AM V', which will be added to the current CPMVs.

Figure 9 presents the Sobel Filter in the X-direction and Y-direction, which are used
in image processing for edge detection. This type of operation is called a kernel convo-
lution. It is a process of adding each image element to its local neighbors multiplied by

s =
ot / ,?4,&\0?\\“
5 /// gc.’_?-“\" / "
. S5
/ S
LT RT =~
Current
PU

Figure 8 — Representation of the Gradient-Based lterative Algorithm.

28

X-direction Y-direction
-1 +1 -1 -2 -1
-2 +2
-1 +1 +1 +2 +1

Figure 9 — The kernel Sobel Filter in the X- and Y-direction.

the filter value in that location. The Sobel Filters are not applied to the first and last row,
as well as the first and last column, because the Sobel value utilizes samples around
the target interpolated Sobel value. The first row is a copy of the second; the last row is
a copy of the last but one; the first column is a copy of the second column, and the last
column is a copy of the last but one. The Sobel filters are used to calculate the Affine
coefficients. These Affine coefficients are different depending on the Affine prediction
model being utilized.

The coefficients of the Affine 6-parameter prediction model can be seen in Equation
(5). The SobelH and SobelV are the Sobel in X- and Y-directions, respectively. The cx
and cy are the centers of the 4x4 subblock current being processed; this is calculated
using the equation cy = ((j > 2) < 2)+2and cz = ((> 2) < 2) + 2 where i and j
are the vertical and horizontal position of the subblock inside the PU, these values may
range from 2 to 126.

iC] [SobelH]
1Cy cx * SobelH
?Cz _ SobelV (5)
iCs cx * SobelV
iCy cy * SobelH
iC5 | cy * Sobel\/_

The coefficients of the Affine 4-parameter prediction model can be seen in Equa-
tion (6), and they can be seen as adding and subtracting the Affine 6-parameter coef-
ficients. The iC; of Affine 4-parameter is Affine 6-parameter iC, added to iC5; and The
iC5 of Affine 4-parameter is Affine 6-parameter iC, subtracted from iCs.

29

iCy SobelH
iCy| [cx * SobelH + cy * SobelV (6)
iCy| SobelV

iCg cy x SobelH — cx * SobelV

The Affine coefficients are multiplied by each other, as seen in Equation (7). This
is performed over the whole PU. The bH and bW are the PU height and width; The
row and col choose the Affine coefficient and range from 0 to 5 if it is the 6-parameter
mode or 0 to 3 if it is the 4-parameter model; the i and j are the current samples being
processed in the PU, which ranges from 0 to bH — 1 for i and 0 to bW — 1 for j. These
values are added up for the whole PU.

bH oW

Glrow,col] = Z Z iCrow [Z] []] X iCeol [Z] []] (7)

i=1 j=1

Table 2 shows the matrix resulting from the Equation (7) for the Affine 6-parameter
prediction model where h and v are the horizontal and vertical Sobels. hx and vz are
the horizontal and vertical Sobels multiplied by the position of the center of the subblock
in X. hy and vy are the horizontal and vertical Sobel multiplied by the position of the
center of the subblock in y. Table 3 presents the resulting matrix of the Equation (7)
for the Affine 4-parameter prediction mode. The values in Table 2 can be manipulated
algebraically to output the values in Table 3.

There is an additional column generated by multiplying the error by the Affine coef-
ficients, as can be seen in Equation (8).

bH bW

€lrow] = Z Z(iCn[row] X errorli,j]) < 3 (8)

i=1 j=1
The error utilized is calculated using the original samples minus the predicted sam-
ples, as can be seen in Equation (9), where O is the original samples and P is the
predicted samples.

Table 2 — SLE of 6-parameters.

h hx v vx hy vy
h h? h - hx h-v h-vx h - hy h - vy
hx ha? hx - v hx-vx | hx-hy | hx-vy
v v? Vv v-hy vy
vE v’ ve-hy | vx-oy
hy hy? hy - vy
vy vy?

30

Table 3 — SLE of 4-parameters.

h hx + vy v hy — vz
h h? h-hx+h-vy h-v h-hy—nh-vx
hx +uvy hx? 42 - hx - vy +vy? | he-vtvvy | ha -hy — hx -vx +vy - hy — vy - vz
v v? v-hy —v-vx
hy —vx hy* —2 - hy - va + va?
errorli][j] = Oli[j] = Pl][j] 9)

The coefficient matrix and the error column are joined, as in Equation (10). This
System of Linear Equation (SLE) can be 4x5 or 6x7, depending on the Affine prediction
model being calculated. After solving this SLE, 4 or 6 Affine parameters are generated,
one for each row.

g1 9m2 o 9wl |oeqy

g 922 0 9eal |oem 10)
. | .

Il 92 0 Ymml | €m

The four or six values of the solution to the SLE are the Affine parameters that go
through a final step in which the new CPMVs are generated. The equations (11), (12),
and (13) present this final step. The AffineP is one of the four or six Affine parameters,
bW and bH are the PU width and height, AMV. These values are clipped to 14 bits
(8.191 to0 -8.192).

The Equation (11) presents the AM V', which are common for both prediction mod-
els.

oMV,
IMV,

(11)
AffineP,

Aﬁ‘ineP()]

The Equation (12) presents the AMYV, which is used in the Affine 4-parameter
prediction model that uses two CPMVs.

MV,
IMV3

(12)

AfﬁnePl xXbW + AfﬁnePo
—AffineP3xbW + AffineP,

The Equation (13) presents the AMYV, which is used in the Affine 6-parameter
prediction model that uses three CPMVs

31

oMV, AffineP; xbW + AffineP,
OMV3| | AffineP3xbW + AffineP, (13)
SMVy| | AffineP,xbH + AffineP,

OMV5 AffinePsxbH + AffineP,

The oMV calculated in the previous step is then used to calculate the AMV that
will be added up to the CPMVs currently being evaluated, generating the next set of
CPMVs. This can be seen in Equation (14). Where the § MV are the values calculated
in the previous step, the bW and bH are the PU width and height, and the sign returns
1 if the number is positive or -1 if the number is negative. The AMV calculated is
clipped to 1/16 precision and then added to the current CPMVs, generating the next
set of CPMVs.

AMVy| [(Ax6MVy + 0.5xsign(0MVy)) < 2]
AMV, (4x0MVy + 0.5xsign(0MV)) < 2
AMVa| | (4x0MVy + 0.5xsign(0MV3)) < 2 (14)
AMV; (4xOMV3 4 0.5xsign(dMV3)) < 2
AMV, (4x0MVy + 0.5xsign(0MVy)) < 2
| AMV5| | (4X6MV5 +0.5xsign(dMV;)) < 2]

With the new set of the CPMVs calculated, if they are different than the set evalu-
ated, the PU is then Affine MC again, and this process repeats. The GBIA described
in this section is repeated up to five times or until all the AMV calculated are zero,
minimizing the error of the predicted block. Then, after this step, the BMIA algorithm
is applied over the PU predicted with the last CPMVs calculated in this step, which are
the best CPMVs currently found.

2.2.3 Block Matching lterative Algorithm

The BMIA is an algorithm that is applied on the PU with the best CPMVs calculated
in the GBIA step. However, this algorithm is much simpler compared to the GBIA.
The CPMVs in this step are evaluated by adding +1 to the CPMVs, the block is AMC,
and the RD-Cost of the predicted block is calculated. If there are CPMVs with lower
RD-Cost, they become the new origin, and the process repeats three times.

The BMIA is divided into two exploration steps in which +1 are added to the CP-
MVs, one horizontal/vertical and one diagonal. Figure 10 is a visual representation of
the horizontal/vertical exploration and the diagonal exploration of the Block Matching
Algorithm. As can be seen in Figure 10, BMIA starts with a set of CPMVs and evalu-
ates all neighboring positions of the PU and the position with the smaller RD-Cost is
chosen as the final set of CPMVs. Then, a diagonal exploration is done; if any diagonal
position has a lower RD-Cost, it becomes the new origin. This repeats three times or

32

until it does not find any neighboring position with lower RD-Cost.

The BMIA has three rounds of exploration performed for each CPMV, which means
that each CPMV can do three horizontal/vertical explorations and three diagonal ex-
plorations. This lets the CPMV explore up to radius six around its starting position after
the three rounds of exploration. This can be seen in Figure 11, where the black square
is the starting position of the CPMV and the blue are all possible ending positions to
the CPMV. This heuristic updates the CPMV with the local best neighbor, which may
not lead to the best CPMV. However, this algorithm lets the CPMV access 113 possible
positions with only 24 iterations. There are 168 positions in a block 13x13 (without
counting the origin). The CPMV could access 113 of these positions, or 67% of the
search range, with only 24 iterations, or 14% of the iterations, if it were performed an
exhaustive search.

For each iteration of the BMIA, an RD-Cost calculation is used to evaluate the new
CPMV. If the CPMV evaluation leads to a predicted block with the RD-Cost smaller
than the current best-predicted block, the CPMV with the smaller RD-Cost replaces
the current CPMV. This step was unnecessary for the GBIA because the error was
used to calculate the next set of CPMVs.

2.3 Related Works

There are several works in the literature proposing hardware architectures for differ-
ent video coding standards. However, very few works in the literature present hardware
designs for the Affine ME of the VVC standard. Taranto (2022) presents a simplified
algorithm and hardware design for the Affine ME on the encoder side. Sheng et al.
(2024) presents a SLE solver for the Affine ME.

To achieve a more complete comparison of the hardware designs in the literature,
hardware designs for the interpolation filters of the FME were also selected. However,
it should be noted that only values related to hardware results, such as area and power

K\ T i e
e SN i [

Q097 d N\ 09\4\ i ‘5@« e
5\'& ’@&(\ ?\(\a """""""""""" il 6\0(2 \ ?\(\

v~ rt.2 LT RT

Current Current
PU PU
(a) Horizontal/Vertical éxploration (b) Diagonal expldration

Figure 10 — Representation of the Block-Matching lterative Algorithm.

33

Figure 11 — Representation of all the BMIA possible positions explored after three rounds for
one CPMV.

dissipation, are presented and will be compared as the Affine MC and the FME inter-
polation filters work similarly. Other results, such as coding efficiency for these works,
are not taken into consideration as they are not comparable. These works are Azgin
et al. (2018); Canmert; Kalali; Hamzaoglu (2018); Azgin; Kalali; Hamzaoglu (2020);
Mahdavi; Azgin; Hamzaoglu (2021); Silva et al. (2021).

The work in Taranto (2022) is the only in current literature presenting a dedicated
hardware design for the Affine ME of the VVC standard. This work, however, made
a couple of simplifications to the algorithm. The first of the simplifications that will be
discussed is the removal of fractional samples. This removes the need for interpolation
filters and reduces the computational complexity because a lot of the computational
complexity of the interpolation process is processed by intermediate samples. The
second simplification discussed is that all PU is broken down to 16x16 blocks and
only the corner 4x4 subblocks are processed, processing four subblocks every 16,
this reduces the overall computational complexity by 3/4. Also, the architecture only
supports PUs in sizes 16x16 up to 64x64. These simplifications are significant changes
to the algorithm and lead to an increase in the BD-Rate, which is not provided in the
work.

The works Azgin et al. (2018); Canmert; Kalali; Hamzaoglu (2018); Azgin; Kalali;
Hamzaoglu (2020); Mahdavi; Azgin; Hamzaoglu (2021); Silva et al. (2021) presents
hardware designs for the interpolations filters for the FME. Canmert; Kalali; Hamzaoglu
(2018) use offsets to reduce the number of additions and multiplications. The hardware

34

has eight 8-tap filters, and they present results for both FPGA and ASIC 90nm. Azgin
et al. (2018) uses eight 15-tap filters with reconfigurable paths to reduce the number of
operations, and the results are presented for both FPGA and ASIC 90nm. Azgin; Kalali;
Hamzaoglu (2020); Mahdavi; Azgin; Hamzaoglu (2021) both use 15 4-tap approximate
filters, which have low area and power dissipation, and their results are only for FPGA.
Silva et al. (2021) presents 15 6-tap approximate filters and MCM approach, which
both lead to low area and power dissipation, their present results for ASIC 65nm.

3 SOFTWARE EVALUATIONS

This chapter presents the simulations performed on the reference software VTM
(VVC Test Model) (Chen; Ye; Kim, 2021). The simulations were performed to evaluate
many different constraints:

« Limiting the number of reference frames.

Limiting PU sizes.

Limiting the number of Affine MC iterations.

Combination of constraints.

The number of reference frames increases the number of starting CPMVs that need
to be evaluated in the GBIA algorithm. The Affine ME of the VVC standard uses PU
sizes from 16x16 to 128x128, so limiting the processed sizes has a great impact be-
cause Affine MC is processed on 4x4 subblocks. Limiting the number of iterations in
the GBIA and BMIA reduces the number of times the Affine MC is processed. Finally,
this chapter presents an analysis of the combination of these constraints regarding the
encoding efficiency losses.

3.1 Experimental Setup

The simulations presented use the VVC Test Model (VTM), which is the the VVC
reference software. The version of the VTM used on all simulations is version 16.2,
and the video sequences utilized are the 26 sequences presented in the Common Test
Conditions (CTC) (Bossen et al., 2020). Also, the Quantization Parameters (QP) were
recommended in the CTC (22, 27, 32, and 37) (Bossen et al., 2020). The simula-
tion uses the default configuration for the sequences, and the temporal profile used is
low delay P. The other temporal profiles were not simulated because this simulation is
performed focusing on the use in low-power real-time devices, in which low delay is
optimal because the future frames are not involved. The setup used for simulation is a
Linux server with a CPU XEON Gold 5118 2.30GHz with AMD DIMM 56GB 2400MHz
of RAM.

36

3.2 Hardware-Oriented Constraints Evaluation

This section presents the evaluations for the simulations of the constraints utilized,
which are:

» Reduction of the reference frames from four to one.

» PU sizes limited to only Quadratic (128x128, 64x64, 32x32, and 16x16) sizes or
only 16x16.

» Reduction of iterations to only GBIA (which Affine MC up to 5 times, see section
2.2.2) and to only Affine MC on the starting CPMVs (GBIA and BMIA disabled).

Then, the combination of these constraints is also evaluated:

« Limiting to only GBIA (see section 2.2.2) and Quadratic PUs

* GBIA and only 16x16 PUs

The reason that the combination only takes into consideration the GBIA is that
BMIA significantly increases the overall computational complexity of the algorithm (see
section 2.2.3). In contrast, the GBIA iterates very few times and can quickly converge to
a minimum error because of the gradient descent (see section 2.2.2). The constraints
being changed in the combined evaluation are processing only quadratic PUs and
processing only PUs of 16x16.

The recommended test video sequences are divided by classes: A1 and A2 are
composed of UHD 4K video sequences; B is composed of FHD 1080p; C, D, and
E are composed of low-resolution videos; And F is composed of synthetic videos, of
varying resolutions. Also, the results presented in this section are related to the total
per frame. The reason for presenting the results per frame is that the framerate of the
sequences is variable, with some sequences being 30 fps while others are 50 or 60 fps.
Since the data is presented per frame calculating the necessary frequency for different
throughputs is straightforward, multiply the data of the desired class by the fps.

3.2.1 Results and BD-Rates of Reference Frames Constraints

This section presents data from the Affine ME of VVC, which was extracted from
the VTM using the previously mentioned configuration. This section first presents the
data for the Affine with four reference frames and then for one reference frame.

The results presented in Table 4 are ME, which is how many times the Affine ME
is tested in the ME process; AME, which means how many times the Affine ME, 4-
parameter or 6-parameter, is processed; Affine-4 and Affine-6, which are the number of
each model is used; GBIA and BMIA, which are how many iterations for each algorithm.

37

Table 4 presents both the average number of occurrences per frame and the standard
deviation results considering each class of the recommended test video sequences.

For the most demanding UHD 4K class (A2), as can be seen in Table 4, the Affine
ME is to be processed around 30% of the time it the ME is executed. The Affine 6-
parameter is processed 23% of the times the 4-parameter is processed. The GBIA
processes the Affine MC an average of 5 times per AME. The BMIA processes the
Affine MC an average of 2 times. Another important point to pay attention to, especially
when calculating the frequency necessary for the processing Affine, is that the standard
deviation is as big as the average.

Also, Table 4 shows that Affine computational complexity is extremely high, espe-
cially for 4K videos. Ignoring the standard deviation, which is not recommended, and
adding the GBIA and BMIA columns together for the less demanding 4K Class (A1),
the result is 5.2M Affine MC per frame, and at 60 fps, this gets to 312M Affine MC
per second. This calculation shows that even if the Affine MC of a PU of any size is
processed in one clock cycle, which would require an enormous area for parallelism
and power dissipation, it would still need 312MHz of frequency.

Table 5 presents the average amount of processing performed by the AME for
each PU size considering one frame of each class of the recommended test video
sequences. In Table 5, PU presents the number of times a PU of that size is pro-
cessed, GB is the number of iterations the GBIA, and BM is the number of iterations
the BMIA. Table 5 shows that the bigger PU sizes, such as 128x128, use the BMIA
more on average than the smaller PUs, such as 16x16.

Table 5 can also be used to show the high bandwidth of the AME. For the UHD 4K
Class A1, using the Equation 15, where Nyu,,,s are the number of samples interpo-

Table 4 — Results of the Affine Motion Estimation in the VVC for four Reference Frames.
Class \ ME \ AME \ AFFINE-4 \ AFFINE-6 \ GBIA \ BMIA

A1 Avg | 2.49M 720k 589k 131k 3.73M | 1.47M
Std | 2.88M 505k 407k 99.4k 2.59M | 1.38M
A2 Avg | 2.75M 811k 659k 152k 4.09M 2.3M
Std | 2.65M 474k 380k 94.2k 2.35M | 1.97M
B Avg | 708k 190k 154k 36.1k 944k 573k
Std 705k 108k 86.5k 21.6k 531k 441Kk
c Avg 197k 41.5k 33.5k 7.9k 210k 134k
Std 149k 14.1k 11.3k 2.86k 72.7K 57.3k
D Avg | 55.2k 8.82k 7.12k 1.69k 44 1k 34.5k
Std 41.8k 2.56k 2.09k 482 13k 15.5k
E Avg | 82.4k 41.9k 33.7k 8.16k 189k 93.7k
Std 101k 31k 24.9k 6.14k 141k 84.1k
F Avg | 235k 71.6k 57.9k 13.7k 330k 177K
Std 336k 74.5k 60.1k 14.4k 350k 211k

38

lated per frame, Npy is the number of PU evaluated, the PU, and PU,, are PU width
and height. The number of samples interpolated per frame for PU 16x16 is 46.3M.
Calculating this for all PU sizes, the result is 629M samples of input. This calculation
does not take into consideration that two PUs may overlap samples or even be the
same PU with different MVs, which reduces the number of samples necessary to be
stored. However, all PUs will generate different output samples, either because of the
different CPMVs or input samples. So, without taking into consideration the GBIA and
BMIA, the amount of data that needs to be processed is extremely high.

Nsamples = NPU * PUh * PUw (15)

As previously mentioned, the computational complexity and data bandwidth neces-
sary to process the AME in the default configurations is extremely high. So, to reduce
this processing demand when targeting real-time processing, especially for battery-
powered devices, the number of reference frames was reduced to only one, which is a
strategy commonly used in hardware design. Table 6 presents the results considering

Table 5 — Average Processing of the Affine Motion Estimation divided by PU size for four Ref-
erence Frames.

128 | 128 | 64 | 64 | 64 | 32 | 64 | 16 | 32 | 32 16 16
Class| x X X X X X X X X X X X
128 | 64 | 128 | 64 | 32 | 64 16 | 64 | 32 16 | 32 16

PU |2.38k|3.04k|3.04k|13.6k|30.7k|31.1k|40.7k|41.8k|69.5k| 151k | 152k | 181k
A1 GB| 11k |14.6k|14.6k|66.4k| 154k | 156k | 209K | 215k | 352k | 785k | 792k | 957k
BM | 17.3k|14.8k|13.5k|53.6k|98.2k|95.6k|91.1k|85.2k| 146k | 313k | 305k | 239k
PU [2.39Kk|2.25k|2.25k|12.1k|26.7k|26.9k|43.4k |43.7k| 80k | 177k | 173k | 221k
A2 GB |11.4k|10.8k|10.7k|58.6k| 132k | 132k | 219Kk | 219K | 395k | 895k | 871k [1.14M
BM21.2k|13.1k|11.6k|65.1k| 114k | 102k | 138k | 111k | 252k | 574k | 483k | 416k
PU | 598 | 517 | 517 |2.83k|6.04k|5.95k|10.2k| 10k |18.3k|38.9k|38.4k|57.9k
B GB |2.69k|2.36k|2.32k|13.1k|28.9k|28.3k|49.9k|48.6k |88.6k| 195k | 191k | 293k
BM 4.27k|2.42k| 2.2k |13.3k|24.1k|21.8k| 31k [25.2k|58.8k| 135k | 121k | 134k
PU | 89.8|22.1|22.1| 471 | 855 | 836 |1.74k|1.71k|3.65k|8.08k|8.12k| 15.9k
C GB| 433 | 104 | 102 |2.28k| 4.2k |4.03k|8.72k|8.33k|18.1k|41.4k|41.1k| 81.5k
BM| 624 | 105 | 83.3 | 2.7k |4.03k|3.18k|6.63k|4.36k|13.8k|30.7k| 26k | 42k
PU| 15 | 3.1 | 3.1 |91.4| 144 | 137 | 323 | 295 | 716 |1.59k|1.53k|3.97k
D GB|73.8(14.8|14.5| 447 | 709 | 665 |1.62k|1.44k|3.53k| 8k |7.58k| 20k
BM| 124 | 17.6 | 14.6 | 617 | 812 | 621 |1.52k| 914 |3.34k| 7.3k |5.87k|13.3k
PU | 249 | 379 | 381 |1.21k|2.24k|2.31k|3.45k|3.55k|5.17k|6.87k|7.14k|8.91k
E GB| 959 [1.51k| 1.5k [5.04k|9.61k|9.73k|15.6k|15.5k|22.7k|31.8k|32.7k| 42.4k
BM| 668 | 854 | 688 |2.87k|5.47k|4.74k|6.17k|4.58k|9.92k| 21k |18.9k|17.8k
PU | 314 | 285 | 286 |1.35k|2.65k|2.53k|4.57k|4.28Kk|7.59k|13.7k| 13k | 21k
F GB|1.06k| 906 | 898 [5.09k(10.7k|10.1k|19.7k|18.1k|32.9k|65.7k|61.8k| 103k
BM|1.11k| 537 | 526 | 4k | 6.5k |5.89k|8.97k|7.33k|17.7k|41.1k|36.8k|46.1k

39

Table 6 — Results of the Affine Motion Estimation in the VVC for one Reference Frames.
Class |Affine-4|Affine-6| GBIA | BMIA | Hor4 | Hor6 | Ver4 | Ver6 |Diag4|Diag6

Avg| 150k | 129k |1.35M|1.45M|7.59M |8.56M|5.43M |7.43M|59.3M |94.7M
Std| 102k | 99.2k | 946k |1.34M|3.08M|5.32M |2.37M |4.76M |28.3M |64.1M
Avg| 166k 149k |1.46M|2.23M| 7.3M |10.6M| 5.3M |9.08M |58.8M | 124M
Std | 95.6k | 94.6k | 863k |1.92M|2.65M|5.19M|1.75M |4.54M |18.7M |62.2M
Avg| 39.2k | 36.2k | 352k | 570k |2.14M|2.74M|1.38M [2.29M | 13.1M| 28M
Std | 22k 22k | 200k | 430k |1.15M|1.38M| 599k |1.17M |4.73M|14.3M
Avg| 8.4k | 7.73k | 77.8k | 131k | 560k | 654k | 273k | 447k |2.28M|5.09M
Std | 2.74k | 2.78k | 26.6k | 55.2k | 237k | 242k | 129k | 163k | 641k |1.68M
Avg| 1.83k 1.7k | 171k | 32.2k | 79.4k | 114k | 73.3k | 123k | 475k |1.14M
Std | 567 535 |5.32k | 15.7k | 57.4k | 70.3k | 37.7k | 44.6k | 152k | 535k
Avg| 8.61k | 8.19k | 71.6k | 89.8k |1.08M| 682k | 517k | 532k [3.14M|4.87M
Std | 6.51k | 6.38k | 54.7k | 81.3k | 415k | 374k | 228k | 290k |1.37M|2.76M
Avg| 14.7k | 13.5k | 124k | 175k |1.49M| 940k | 556k | 745k |4.11M|7.74M
Std | 15.4k | 14.5k | 134k | 205k | 1.1M | 918k | 472k | 749k |4.16M|8.43M

A1

A2

B

Cc

the constraint of only using one reference frame.

Table 6 had the column ME removed because the focus of this dissertation is on
the AME algorithm and not on how the ME evaluates if the AME is processed. The
column AME was also removed because it is the sum of the columns Affine-4 e and
Affine-6, making it redundant. Table 6, however, added six new columns, and these
columns are the number of 4x4 subblocks interpolated. Columns Hor4 and Hor6 are
the horizontal interpolations for the Affine 4- and 6-parameter, respectively. Similarly,
the columns Ver4 and Ver6 are the vertical interpolations for Affine 4- and 6-parameter.
Lastly, the columns Diag4 and Diag6 are the diagonal interpolations for Affine 4- and
6-parameter.

As can be seen for Class A1, The Affine 6-parameter is used 86% of the time
the Affine 4-parameter is used, a significant increase compared with four reference
frames, which was 28%. The average number of GBIA iterations is 4.8 for one refer-
ence, a slight decrease when compared to one reference frame, which was 5.2. While
the BMIA average increased to 5.17, in contrast to 2 when considering four reference
frames, this is a significant increase.

The Affine MC, as explained in section 2.2.1, is performed on 4x4 subblocks, and if
the interpolation is horizontal/vertical, the subblock MC is performed without requiring
generating intermediate samples. However, if the interpolation is diagonal, 9x4 inter-
mediate samples are required before interpolating the 4x4 subblock. These additional
intermediate samples are needed to be taken into consideration when calculating the
throughput.

As can be seen for Class A1, by dividing the number of interpolations per Affine
model, the Affine 4-parameter has an average of 50 horizontal subblocks, 36 vertical

40

Table 7 — Average Processing of the Affine Motion Estimation divided by PU size for one Ref-
erence Frames.

128 | 128 | 64 | 64 | 64 | 32 | 64 | 16 | 32 | 32 16 16
Class| x X X X X X X X X X X X
128 | 64 | 128 | 64 | 32 | 64 16 | 64 | 32 16 | 32 16

PU | 952 1.23k|1.23k|5.46k|12.3k|12.5k|15.9k|16.5k|27.3k|58.9k| 60k |67.6k
A1 GB| 3.9k |5.31k|5.31k|24.2k|56.7k|57.8k|76.1k|79.4k| 129k | 287k | 291k | 337k
BM|16.2k|14.1k|12.8k|50.5k| 94k [90.9k|88.7k|83.2k| 144k | 310k | 301k | 248k
PU | 960 | 907 | 908 |4.83k|10.6k|10.7k|16.9k|17.2k|31.4k|69.1k| 68k |83.4k
A2 GB 3.89k|3.92k|3.93k|20.9k|47.4k|47.7k|78.4k|79.8k| 142k | 320k | 314k | 399k
BM 20.1k|11.8k|10.5k| 61k | 106k |96.5k| 130k | 108k | 243k | 557k | 473k | 414k
PU | 240 | 206 | 206 |1.13k| 2.4k |2.37k|4.04k| 4k |7.28k|15.5k|15.3k|22.8k
B GB| 973 | 872 | 864 (4.82k|10.7k|10.5k|18.6k|18.3k| 33k |72.5k|71.5k| 109k
BM 4.12k|2.28k|2.11k|12.9Kk|23.2k|21.2k|30.1k|25.2k|58.2k| 133k | 121k | 137k
PU| 36 |8.91 891|188 | 338 | 331 | 683 | 675 |1.42k| 3.1k |3.14Kk|6.19k
C GB| 163 | 39.2 | 38.9 | 854 |1.57k|1.51k|3.26k|3.14k| 6.7k |15.1k|15.1k|30.4k
BM| 618 | 99.5 | 82.2 |2.57k|3.75k|3.04k|6.12k| 4.3k |13.1k|29.5k|25.4k|42.4k
PU| 6 [1.28|1.28|36.5|58.4|559| 131 | 120 | 286 | 634 | 611 |1.59k
D GB|279(6.03| 6 | 171|279 | 262 | 638 | 567 |1.36k|3.09k|2.93k|7.72k
BM| 121 | 14.4 /12,7 | 570 | 711 | 564 |1.32k| 867 | 3k |6.67k|5.53k|12.8k
PU| 100 | 152 | 153 | 484 | 897 | 924 |1.38k|1.43k|2.08k|2.76k| 2.9k |3.55k
E GB| 354 | 576 | 572 [1.92k|3.67k|3.74k|5.96k|6.01k| 8.7k |11.9k|12.4k| 15.8k
BM| 643 | 792 | 652 | 2.7k | 5.1k |4.51k|5.75k|4.53k|9.43k| 20k |18.3k|17.5k
PU| 124 | 113 | 114 | 537 |1.06k|1.01k|1.82k|1.72k| 3k |5.39k|5.16k|8.13k
F GB| 399 | 343 | 344 [1.93k| 4.1k |3.88k|7.52k| 7k |12.5k|24.6k|23.5k|38.2k
BM|1.08k| 482 | 472 |3.85k|6.23k|5.64k|8.59k| 7.2k |17.3k|40.2k|36.6k | 46.9k

subblocks, and 631 diagonal subblocks, and the Affine 6-parameter has an average
of 66 horizontal subblocks, 57 vertical subblocks, and 734 diagonal subblocks. There
are 7.3 diagonal subblocks per horizontal/vertical subblock interpolated for the Affine
4-parameter and 6 diagonal subblocks for every horizontal/vertical subblock for the 6-
parameter.

Table 7 presents the average amount of processing performed by the AME for each
PU size. In Table 7, there is a significant decrease in the number of iterations, as
expected, when reducing from four to one reference frame. The results in Table 7 will
be used to calculate further constraints in the following sections, such as reducing the
number of iterations and PU sizes. It can also be seen in Table 7 that for UHD 4K Class
A1, the reduction in the number PU evaluated for each PU is not a reduction of 4 times
but a reduction 2.7 times on average, and this is because the Affine 6-parameter is
evaluated relatively more for one reference frame.

The impact on encoding efficiency of the AME is evaluated using the Bjontegaard
Delta Rate (BD-Rate) (BJONTEGAARD, 2001). The BD-Rate quantifies the bitrate
variation required to achieve an equivalent objective image quality. Reducing from four

41

to one reference frame provides an average BD-Rate increase of 15.81%, considering
all classes, and of 8.22% for the most demanding classes (A1, A2, and B). The increase
per class is 2.36% for A1, 4.55% for A2, 13.93% for B, 21.93% for C, 31.35% for D,
14.46% for E, and 16.01% for F.

The reduction of reference frames impacts all the ME algorithms and not only the
AME, and this is why the impacts on encoding efficiency in this section are so signifi-
cant. However, it is a very common strategy used to reduce the overall complexity of the
algorithm when targeting real-time power-constrained devices. As already presented,
the computational complexity and bandwidth necessary for the AME are unachievable
for real-time power-constrained devices. From this moment onward, the baseline of all
comparisons will be the one reference frame.

3.2.2 BD-Rate of PU Size Constraints

This section presents an evaluation of the encoding efficiency of different PU size
constraints using only one reference frame:

» Process only quadratic PUs (16x16, 32x32, 64x64, 128x128)
* Process only 16x16 PUs

Table 8 presents the average BD-Rate for all video classes and the overall average
in the columns Quad and 16x16 for the Quadratic size constraint and the only using
16x16 constraint. The objective of these evaluations is the reduction of subblock inter-
polation. The Affine MC is processed on 4x4 subblocks, so removing some PU sizes
has a low impact on encoding efficiency, but depending on how big the PU is, it might
have a huge impact on the reduction of the number of subblock interpolations.

The number of PU tested in the AME when using only quadratic PU is reduced to
36% of the total number. The same reduction to 36% can be seen for the total number
of GBIA iterations, while for the BMIA, the reduction is to 31% of the total number of
iterations. This reduction is significant, especially when the increase in BD-Rate is
0.09% for Class A1, as can be seen in Table 8. This huge reduction of iterations and
the number of samples processed can be seen in all classes with similar values. The
average BD-Rate increase for all classes with the quadratic PU size limitation is 0.19%.

The evaluation of limiting to 16x16 PU is also presented in Table 8. The PU tested
in Class A1 is reduced to 24%, and the GBIA is also reduced to 25%, while the BMIA
is reduced to 17%. Similar results were obtained with the quadratic PUs, with the
main difference being the BMIA, which is used less when the PU size is smaller. This
constraint enormously impacts the computational complexity required and the number
of samples processed with an increase in BD-Rate of 0.43% for the Class A1 and
0.76% for all classes, which can be seen in Table 8.

42

Table 8 — BD-Rate of the PU constraints evaluated.

Class | Quad | 16x16
A1 0.0900 0.4368
A2 0.3443 2.0826
B 0.1654 0.6307
C 0.1151 0.2126
D 0.0458 0.1923
E 0.3200 0.5285
F 0.3242 1.5160

Avg. | 0.1935 | 0.7685

When comparing the support of only quadratic PUs against only PUs of 16x16,
the latter has a BD-Rate increase of four times (0.19% to 0.76%). Even though the
increase in BD-Rate can be considered high, there is a significant reduction in overall
data needed, and there is a significant reduction in the number of iterations required,
allowing more efficient hardware design.

3.2.3 BD-Rate of lteration Constraints

This section presents an evaluation of reducing the number of iterations in the AME
algorithm using only one reference frame:

» Processing only AMC (Skipping both GBIA and BMIA)

 Processing the unrestricted GBIA (see section 2.2.2).

Table 9 presents the average BD-Rate of the video classes separated and the av-
erage for all videos. The columns GBIA and AMC present the BD-Rate increase when
skipping BMIA and the BD-Rate increase when skipping both BMIA and GBIA, respec-
tively.

Table 9 — BD-Rate of the Iteration constraints evaluated.

Class IGBIA | AMC |
A1 0.0567 0.4242
A2 0.0900 1.9431
B 0.0826 0.6368
C 0.0629 0.3366
D -0.0033 0.3699
E 0.1635 0.6123
F 0.0944 2.4687

Avg. 0.0754 | 0.9547 |

43

For the UHD 4K class A1, the constraint of only processing GBIA leads to a reduc-
tion of 48% of the total number of iterations. This constraint has a BD-Rate increase of
0.05% for Class A1 and 0.07% for the average of all video sequences, as can be seen
in Table 9, which is small compared to its overall reduction in computational complexity
and necessary data.

The limitation of only processing the AMC on the starting MV reduces the number
of iterations and necessary data to 9% for the UHD 4K Class A1. When skipping
both GBIA and BMIA it leads to the greatest reduction in overall complexity and data,
however, this also leads to the highest increase in BD-Rate of a single limitation. This
limitation has a BD-Rate increase of 0.42% for UHD 4K Class A1 and 0.95% for the
average of all video sequences, as can be seen in Table 9.

Comparing both GBIA and AMC is straightforward because AMC has a significant
BD-Rate increase, 0.07% to 0.95%, compared to GBIA, with a significant reduction in
data and iterations, 48% of the total number of iterations to 9% of the total number of
iterations.

3.2.4 BD-Rate of Proposed Approach for the AME Hardware Design

This section presents evaluation results for combined constraints: GBIA with only
quadratic PU sizes; and GBIA with only PU size of 16x16. GBIA was selected for both
constraints due to its minimal impact on BD-Rate while offering a notable reduction in
both iterations and data requirements. The rationale behind testing quadratic PU sizes,
along with 16x16, is that quadratic PU sizes, like GBIA, have a low impact on BD-Rate,
contributing to a significant reduction in overall complexity and required data. The
choice to support only 16x16 PU was made because it substantially reduces algorithm
iterations without causing the largest increase in BD-Rate. Both of these constraints
can be used to design more efficient hardware implementations.

Table 10 presents the average BD-Rate increase for all classes and for all videos.
The column GBIA+Quad presents the BD-Rate increase for the constraint of using
only quadratic sizes and only processing GBIA. The GBIA+16x16 column presents the
BD-Rate increase for the same constraint but supports only PU sizes of 16x16.

For the UHD 4K Class A1, the combined constraints of supporting only quadratic
sizes and only processing GBIA leads to a reduction to 17% of the total number of
iterations of the AME algorithm. Class A1 also presents a BD-Rate increase of 0.10%,
and the average BD-Rate increase for all classes is 0.27%, which is slightly higher than
the sum of each BD-Rate constraint separately.

For the UHD 4K Class A1, the combined constraints of supporting only PU of size
16x16 and only processing GBIA leads to a reduction in the number of iterations to
12% with a BD-Rate increase of 0.46%. The average BD-Rate increase for all classes
is 0.80%, which is lower than the sum of the BD-Rate of the constraints separately.

44

Table 10 — BD-Rate of the proposed combined constraints evaluated.

Class | GBIA+Quad | GBIA+16x16
A1l 0.1060 0.4617
A2 0.4745 2.0409
B 0.2618 0.6547
C 0.1509 0.2553
D 0.1407 0.2587
E 0.2229 0.5690
F 0.5479 1.5874
Avg. | 02722 | 0.8036

Both constraints reduce the number of iterations significantly while having a low
BD-Rate increase. The GBIA with only 16x16 reduces the number of iterations by a
higher amount. However, it has a higher BD-Rate increase than GBIA with quadratic
sizes.

3.3 Experiments Conclusions

This chapter presented, in three sections, the evaluation of different hardware-
oriented constraints in the AME process, focusing on efficient hardware design for
real-time processing on battery-powered devices.

When comparing the evaluation of PU size and iteration, the sizes have an impact,
which is between only processing one AMC and only doing GBIA. This is expected
because the GBIA uses the error to calculate new MV, which leads to a lower error,
and when it is skipped, this leads to a PU with the highest error possible inside the
AME algorithm. The opposite, only doing GBIA, shows that the BD-Rate increase is
minimal because, as already explained, the GBIA finds the minimal error in up to 5
iterations. The BMIA algorithm has a low impact because it is much more used for
the biggest PU sizes, and more importantly, the MVs generated in GBIA already have
reduced error.

Because of the points presented, the GBIA was kept, and the PU size constraints
were evaluated. This evaluation is done because the GBIA is processed an average
of 4.8 times per PU. This makes the number of PU being processed really high, and
the Affine ME algorithm is a high-complexity algorithm that needs multiple steps for the
refinement of the MVs. So, the removal of PU sizes being processed by the GBIA was
presented to reduce the overall iterations in the algorithm.

Only processing quadratic sizes leads to a very low impact on the BD-Rate. This is
expected because any non-quadratic PU size can be represented as two quadratic PU
with a higher cost. The evaluation of processing of only 16x16 is presented to show a
bigger reduction in overall iterations, which is very useful when targeting real-time and

45

battery-powered devices. Both these constraints will be used to calculate the frequency
target of the hardware architecture presented in the following chapter.

4 PROPOSED AME HARDWARE ARCHITECTURES

This section presents the three proposed hardware architectures for the Affine mo-
tion estimation of the H.266/VVC. The first architecture presented is the Affine MC,
which is used in both the GBIA and BMIA algorithms to generate the predicted PU.
The second architecture presented is the Gradient-Based Coefficient Generator, which
generates the Affine system of linear equations in the GBIA. The third architecture is
the Affine AMV, which solves the SLE and generates the AM V.

4.1 Affine MC

The Affine MC hardware architecture is presented in Figure 8. This architecture
interpolates the PU evaluated in the AME algorithm, and it is used up to 82 times per
PU, as discussed in section 2.2. A previous version of this architecture was published
(Mufoz et al., 2023), and this version is submitted to the IEEE Design & Test (Mufioz
et al., Under Review (28-Aug-2024)).

It supports all PU sizes of the VVC standard, from 16x16 to 128x128, and supports
both Affine prediction models. The inputs of the high-level architecture are the three
pairs of 13-bit MVs, two 8-bit values that represent the width and height of the PU,
two 8-bit horizontal and two vertical positions of the subblocks, one bit to represent the
Affine model being used, and two lines of nine 8-bit input samples for each Interpolation
Unit.

The high-level architecture can be divided into three components: the Vector Gen-
erator for generating the Subblock MVs (SMV), the Buffers that store the SMV, and
Interpolation Units to motion compensate four 4x4 subblocks in parallel. Since each
Vector Generator generates one SMV per clock cycle, the Buffers implement a pipeline
of SMVs being processed. Each Buffer stores the SMV by two up to five clock cycles
that the Interpolation Unit requires for processing a 4x4 subblock.

47

4.1.1 Vector Generator

Affine MC subdivides the PU into 4x4 subblocks. Each of these subblocks requires
a Subblock MV. The Vector Generator is responsible for providing these MV to the sub-
blocks of the Affine MC. Figure 13 presents the architecture of the Vector Generator.
The Vector Generator receives the three CPMVs as inputs, the Affine model that is
being used (4-parameter or 6-parameter model), the PU size, and the subblock posi-
tion. The output is one SMV. This SMV can be divided into the fractional part (bits on
positions 3 down to 0) and the integer part (bits on positions 12 down to 4). The frac-
tional part is used in the Interpolation Unit, while the integer part points to the sample
positions in the frame.

The MV Difference unit gives the difference between the input vectors (LT, RT, and
LB), presented in Figure 14, which computes the differences of the input MVs according
to the CU%*¢ and the Affine model. This difference is required by all SMVs, which are
multiplied by the sbp value associated with each SMV, thus resulting in the values of
Equations (1) and (2) of the Affine that generate the subblock MV. This is done to
simplify the equation when implementing it in hardware and remove the need for the
divisor.

The Vector Generator architecture needs four multipliers. However, since it per-
forms only multiplications by 2+4n, thus multiplying from 2 up to 126, those multiplica-
tors can be substituted by Multiple Constant Multiplication (MCM) (Tummeltshammer;
Hoe; Puschel, 2007), which leads to reduced power and area utilization.

4.1.2 Interpolation Unit

The Interpolation Unit, shown in Figure 15, interpolates the 4x4 subblock. Each Fil-
ter Core receives six samples and outputs one fractional sample that depends on the
SMV generated by the Vector Generator. Depending on the SMV, these samples can
be a reconstructed line or column of the subblock for horizontal and vertical interpola-
tions. In the case of diagonal interpolation, intermediate samples must be generated

Affine MC
LT » 5 [SMV » Interpolation | _
» O (o) c —_—
Si » O C > Interpolation T8
pUSize Bike > 8 — Buffer [{5} Unit —»éé‘
> 5 > > Interpolation T @
sbpfi|5l 5 & [TLBUe | 1 Unit Lo
3 O O .
2 © » Interpolation | |
Affine6 +45|> @| | Buffer Unit
Integer o
Samples

Figure 12 — High-level architecture of Affine MC

48

first and then stored in the Buffer, as seen in Figure 15. After, the stored samples are
used as input in the Interpolation Unit. This architecture contains eight Filter Core,
so it interpolates eight fractional samples per cycle, half a subblock for horizontal and
vertical interpolations. Diagonal interpolation requires 9x9 fractional samples as input;
this architecture can generate them in five cycles and then two additional cycles to in-
terpolate the output subblock itself. The inputs of this architecture are the SMV and 18
(9 per row) 8-bit integer samples per cycle, while the outputs are eight (two rows of the
subblock) fractional samples, each generated by a Filter Core.

Each Filter Core module supports the processing of any of the 15 filters. Six of the
nine integer samples of the Affine MC are passed to each Filter Core. So, Filter Core
1 receives the inputs from 1 to 6, Filter Core 2 receives the samples from 2 to 7, and
so on for the first row, and the same slicing of the samples is performed for the second
row of samples (1-6 for the Filter Core 5, 2-7 Filter Core 6, etc.). Since constant values
make all the multiplications on the filters, it was possible to exploit an MCM approach.
Even though there are eight Filter Core, only one SMV is required to choose the filter.
Finally, all the samples that compose a reconstructed line or column of the subblock
are clipped to an 8-bit value.

The 15 Affine filters can be implemented in multiple ways. In the following section, a
design space exploration of the filters will be presented, explaining in more depth detail
the implementation of the filters hardware.

4.1.3 Design Exploration of Filter Core

The Filter Cores take six input samples and output one sample, which can be any
of the 15 Affine filters. This section presents two dedicated hardware architectures for
the Filter Core: The Power Efficient (PE) and the Hardware Efficient (HE), which were
published in (Mufioz et al., 2023a). A baseline implementation is also presented to
be used for comparison purposes (Mufoz et al., 2023b). Besides the six 8-bit Integer
Samples, each Filter Core also receives the SMV as input to choose which of the 15

LTH Vector Generator
LTY -
%] — . % SMVH
w1 e [NIk
pPUS=ze | X © v
> = c SMV
Affine6 S <<7 +— 3
sbp" —U] (2
o +
MIES2 e
P_ +

Figure 13 — Architecture of the Vector Generation unit

49

MV Difference

Height 0123 DiffHorX

PU o S
— N

LTH _E] %] | DiffVerY

LBH | + << 1

LBY | B I

LTY | _ "||_Diffverx

RTY_ ——{ << {2 1o/
p Width — DiffHorY
Affine6 0123

Figure 14 — Architecture that calculates MV differences

filters will be used, along with the offset and shift values used in the Equation (3).

Figure 16 presents the proposed Baseline architecture of Filter Fg, while the archi-
tectures of the other filters follow a similar approach in the baseline implementation.
The input samples of each Filter Core are 16-bit since diagonal SMV requires interme-
diate fractional samples (which have 16-bit) as input for the interpolation filters. Each
Filter has its coefficients that multiply each input sample, and those values are accumu-
lated. Furthermore, two other values, shift and offset, are used to calculate the value of
the filters, where the offset is accumulated to the output before the shift operation. For
example, Equation (4) has adopted the offset and shift values as 32 and 6, respectively.
All the 15 interpolation filters used in the Affine MC hardware were designed using no
multiplier approach since the multiplication is performed only by constant coefficients.
As a result, only shifts and adders were used in the design. This approach leads to a
more efficient design, reducing area and power results since 16-bit multipliers would
use multiple adders and have a 32-bit output.

The following sections will present, first, the Baseline architecture, which is the
implementation of 15 Affine filters using no multiplier; second, the Power-Efficient ar-
chitecture, which exploits the symmetry of the Affine filters; and last, the Hardware-

Interpolation Unit

>
SMV : ER:
Filters Core 1 |— Clip S5
; 58
Offset [0=3] - Lwn
° Filters Core 2
= [Shift f
5 [1~6]
© Filters Core 3
Integer | [2~7]
Samples | gx2 Filters Core 4 |—
J [3~8]
I;[Buffer (9x4x16b) |.7

Figure 15 — Architecture of the Interpolation Unit

50

>

16-bit input samples
so|dweg [euopoel IndinQ 1g-9|

>
&

Figure 16 — Proposed Architecture of the Interpolation Filter Fyg

Efficient architecture, which uses six coefficient generators instead of having to gener-
ate 15 filters.

4.1.3.1 The Baseline Architecture

In the Baseline architecture, all 15 filters in Table 1 were implemented indepen-
dently. Figure 17 shows the implementation of the filter F; without the use of multipli-
ers but instead using Multiple Constant Multiplication (MCM) (Tummeltshammer; Hoe;
Puschel, 2007). As can be seen, inside the filter, each input sample is multiplied by
its respective coefficient, and then the obtained values accumulate, generating the fi-
nal interpolated sample. A similar approach was adopted to implement the other 14
filters of the VVC standard. In the Baseline, each Filter Core has 15 filters individually.
The SMV defines which of those 15 filters should be used to interpolate the fractional
sample. Only the filter chosen by the SMV has its inputs changed, while all other filters
have their input values unchanged, so whenever a new filter is selected, only one of the
15 filters dissipates power. This version of this architecture was published in LASCAS
2023 (Mufioz et al., 2023b).

As can be noted in Table 1, in section 2.2, there are several similarities between the

A-2
= e
p—f e { O

+
A, -
AM—————==2+ — F1

3

Figure 17 — Implementation of the Filter F} using a multiplierless approach in the Baseline
architecture

16-bit input samples

16-bit Output Fractional Samples

51

filters. The Filter F} is symmetric with the Filter F}5 when the order of the coefficients
(or the input samples in Equation (3)) are inverted. Similarly, the Filters from F; to F;
are also symmetric with the Filters from Fi5 to Fy and, therefore, this characteristic is
explored in the PE version of the Filters Core, which is presented in the next section.

4.1.3.2 Power-Efficient Architecture

In the Power-Efficient (PE) architecture, each Filters Core implements eight ded-
icated hardware filters to perform the interpolations, being seven hardware filters to
implement the F; to F; or the Fi5 to Fy filters, plus one dedicated hardware for the F;
filter. For this, seven of those filters (from F; to F%) have an additional logic able to
invert the order of the input samples, as can be seen in Figure 18 that implements both
the F} and Fi5 Filters. In this additional logic, a control signal controlled by the SMV
defines if the order of the input samples should be inverted, thus implementing the F}
Filter or the Fy; Filter. Similarly to the Baseline, the PE architecture also adopts a multi-
plierless approach. Each coefficient of the filters is multiplied by one input sample, and
then the obtained values accumulate, generating the final interpolated sample. This
architecture was published in ISVLSI 2023 (Mufioz et al., 2023a).

Compared with the Baseline, the Filter Core with the PE architecture reduces from
15 to only eight dedicated filter designs. This reduction in the PE makes it almost
use half the area of the baseline approach with lower power dissipation, an all-around
improvement over the baseline. The results of the area and power of this architecture
will be presented in the chapter 5.

Both the Baseline and the PE architectures implemented each filter separately,
where only one filter was enabled according to the SMV, while all other filters were
disabled. As can be noted in Table 1, each column contains only a couple of differ-
ent coefficients, so instead of implementing the 15 filters (eight in the PE architecture)
independently, it is possible to implement a generic filter composed of six coefficient

Control—
A,—
=1 — -
A, <<1

Ay <<

A —

A2 <<1 —
A +
A —h

2

Figure 18 — Proposed Architecture of the Interpolation Filter F; or Fy5 (used in the PE architec-
ture), depending on the order of the inputs.

16-bit input samples
> >

S =

; 4

16-bit Output Fractional Samples

52

multipliers. This approach will be used in the next section.

4.1.3.3 Hardware-Efficient Architecture

The Hardware Efficient (HE) architecture implements a generic filter, as seen in
Figure 19. This generic filter can multiply the samples by the coefficient requested by
the SMV before accumulating the values to compose the fractional sample. As can be
seen, it receives six samples as input. Each of those samples is passed to a different
Coefficient Multiplier, along with a control value, which is the filter chosen. The output
of each Coefficient Multiplier is the input sample multiplied by the coefficient related to
the SMV. Then, the samples are accumulated, the same as the other two approaches.
This version was also published in ISVLSI 2023 (Mufioz et al., 2023a).

Figure 20 presents the proposed architecture of Coefficient Multiplier C;, which
is employed in the HE architecture. As can be noted in Figure 19, the Coefficient
Multiplier C receives the input sample A_; or A,, according to the control signal. So,
according to the SMV, the Coefficient Multiplier C, can multiply the input sample by 3,
5, 8,9, 10, or 11, the values in column C; from the first eight rows of Table 1. The
Coefficient Multipliers only need to implement the first eight rows of coefficients from
Table 1 since the HE architecture also exploits the similarities between different filters
by inverting the order of the input samples. Finally, since all coefficients from C; and
C, are negative, as can be noted in Table 1, the product of the Coefficient Multiplier C;
and C; are turned negative inside the Filter Core, as can be seen in Figure 19.

Each one of the Coefficient Multiplier architectures, including the C; from Figure
20, was implemented using the Multiplexed Multiple Constant Multiplication (MMCM)
(Tummeltshammer; Hoe; Puschel, 2007). The MMCM allows performing the multipli-
cation of the input value by a given set of constant values by only using shifts, adders,
and multiplexers that exploit the use of the available operators according to the control
input, which leads to less area usage.

Compared with the Baseline, the Filter Core with the HE architecture reduces from

Control Y

MSB

S Ay = uss

2 A1 Y vsB

MSB

MSB

so|dwes [euoyoeld ININO 119-91

Figure 19 — Proposed Hardware-Efficient Architecture.

53

<<3 ’—|<<2}—I+ ||—

In <<2 Out
<<1

Figure 20 — The Architecture of the Coefficient Multiplier C1, used in HE architecture.

15 to six Coefficient Multiplier. This reduction in the HE makes it use one-quarter of the
area of the baseline approach; however, it has a slight increase in power dissipation,
and a significant decrease in area usage is essential when this architecture is multi-
plied to increase parallelism. The HE architecture was chosen because of its low area
utilization. Since Affine MC contains eight of the HE architecture, the overall reduction
in area is significant. The results of the area and power of this architecture will be
presented in Chapter 5.

4.1.4 Temporal Analysis

This section presents the temporal analysis of the Affine MC architecture. The
Affine MC can interpolate and deliver up to 32 (8 per Interpolation Unit) samples at
each clock cycle. However, the actual performance may be lower based on the SMVs.
Each Affine MC was proposed to interpolate eight fractional samples per clock cycle.
So, when the SMV is purely horizontal or vertical, one complete 4x4 subblock is inter-
polated by the Affine MC in two clock cycles. When the SMV is diagonal, first, the Affine
MC requires five clock cycles to generate intermediate horizontal samples. These inter-
mediate samples are buffered and used to interpolate the diagonal fractional samples
in the following two clock cycles. Thus, seven clock cycles are required to compose
the 4x4 subblock with a diagonal SMV. Therefore, four Affine MCs were adopted since
they can all be fed by two Vector Generator when all SMVs are horizontal or vertical.

Figure 21 shows an example of the processing of the architecture for the MVs
LT = [4,-1332] and RT = [-72,—1336]. The Vector Generator takes the input MV
set, which can be two (Affine 4-parameter) or three (Affine 6-parameter) pairs of MVs,
and generates a pair of SMV per cycle. In the first cycle, the SMVs [7,0] and [2,0]
are generated for processing by the two Interpolation Units, then in the second cycle,
the SMVs [13, 0] and [8, 0] are generated for processing by the other two Interpolation
Units. After that, the first two 4x4 subblocks are finished, so the process repeats. In this
case, the next SMVs are [4,15] and [15, 15], so these subblocks will take seven cycles
to finish processing instead of only two. This process is repeated until all subblocks are
processed.

54

5555870 FYa L

MV []]) J4/-1832], [/72, /1336]
Inter. Unit1 [2/[/ 7 /) /7 |

Inter. Unit2 |/ [2/ 7/ 7
Inter. Unit3 [2/} 7 f 7 |

Inter. Unit 4 [2 7 i 7
Clock Cycles [0:1:2:3:4:5.6:7:8:9101112131445.

Figure 21 — Time diagram of the Affine MC architecture when LT = [4,—1332] and RT =
[—72, —1336]

4.2 Gradient-Based Coefficient Generator Architecture

This section presents the Gradient-Based Coefficient Generator Architecture used
to generate the gradient of the GBIA. This architecture receives as input one line of 128
8-bit samples per cycle. This line can be one PU of width 128 or any sum of PU widths
that adds up to 128. For example, two PU with a width of 64, four with a width of 32, or
eight with a width of 16. This enables the architecture to process all PU sizes that the
Affine ME supports, ranging from 16x16 up to 128x128, and if the width of the PU is
less than 128, this lets the architecture process it in parallel with other PUs. Because of
the possible parallelism, this architecture outputs one up to eight Coefficient Matrices,
depending on how many PU are currently being processed.

Figure 22 presents the architecture and contains many components to calculate the
final coefficients. The first of the components is the row buffer that stores three lines
of 128 8-bit samples; the second component is the Sobel engine that generates 128
vertical and horizontal Sobel samples; after that, the two following components are
the parameter generator used to calculate the six parameters and the error generator
that calculates the error of the row currently being processed. Then, the coefficient
generator generates the coefficient matrices. Finally, the last three components are
an Adder Tree that adds up all the coefficient matrices, the Affine mode adapter that
converts the coefficients to Affine four parameters if necessary, and an accumulator
that stores the matrices for 16 up to 128 cycles, depending on the PU height.

4.2.1 Row Buffer

The Row Buffer contains three 128 8-bit buffers linked in cascade. The output of
the first 128 8-bit buffer (C) is the input of the second, and the output of the second (B)
is the input of the third. This reduces redundancies as the Sobel filter always uses the
three most recent lines of the PU for processing, and this implementation makes the
most recent line overwrite the oldest one.

The row buffer architecture is used as input for the Sobel Engine, which will be

55

Pos Gradient-Based Coefficient Generator
1282 8-bits 128x 128x
W .
» = A £ o >
Ko} g 128 8-bits) 0] . e
2 Row S < o Q) ©
€ > @ . L £ = o 2 X
& 128 8-bits 128 8-bits - © [128x6 18-bits 1 |: % . s
© i : by —_
» % © QD [12s@itbis| o) & S o
5 ¢ | 1288bits o o [Lo < ®© >
a 2] o T 5 () = o
= 128x 'E 128x27 36-bits| <_‘: @ | 8x27 36-bits g 8x27 36-bits g 8x42 36-bits =
= . k) R=) = o (%))
X —> c o > N Qo —
0 8 % joh 8 < m
© : =
N Org | 1288-bits o < :::
128 8-bits o o
—
. L
Affine6 it

Figure 22 — High-level architecture of the GBIA

detailed in the next section.

4.2.2 Sobel Engine

This section presents the Sobel Engine, as seen in Figure 23. The Sobel Engine
receives three 128 8-bit rows of the PU (A, B, C) and outputs 128 11-bit Sobel vertical
and horizontal samples. Each Sobel Core receives three 16 8-bit samples and out-
puts 14 11-bit horizontal and vertical Sobel samples. Because the Sobel requires eight
samples around the target sample being interpolated for applying both horizontal and
vertical Sobel, this makes the first and last column/rows impossible to interpolate, so
to solve that, the first and last Sobel samples in the columns are copies of the sam-
ple interpolated closest to it, and the same is true for the first and last rows of Sobel
samples. Because of what was previously explained, this architecture contains Sobel
Dividers, which are components that either copy the two adjacent horizontal and ver-
tical Sobels between two Sobel Cores or interpolate two new horizontal and vertical
Sobel samples, depending on the PU width.

Each Sobel Core contains 14 Sobel Units, while the Sobel Dividers contain two So-

A B C

128 8-bits A\'

[97~112] [113~128]+

\

128 8-bits 1 128 8-bits

\
\
\

[~16] + 17~321F¢ [33~48]+ [49~64]]
[15~18]

[65~80] [81~96]

Ll

\
66]
\
\

50]
A)
T

\

Sobel
Core

Sobel Sobel Sobel

Core

Sobel Sobel

Core 1 [Core lﬁ Core [Core [Core lﬁ Core _l
11b

ox14 11-bits + | Sobel Sobel obel Sobel obel obel Sobel
Divider Divider Divider Divider Divider Divider Divider

2] R :<>‘\c) [127]
KPS
(‘l:\('l/

S
1 s S s S S S [128]
[2~15] 18~31 [34~47] 50~63 [66~79] S [82~95] [98~111] [113~127]
S[1s~17] []S[32~33] S[48~49] []8[64~65] [80~81] S[96~97] S[112~113]

Figure 23 — Architecture of the Sobel Engine

Sobel Sobel

[— [r1L

le—1T [31~34]
nl—147

l——T 163
ol—1179+82]
ol——119598]

56

indino 1ua9-11

8-bit input samples

B, <<1

Figure 24 — Sobel Unit architecture

bel Units. The Sobel Engine contains 112 Sobel units in Sobel Cores and 14 in Sobel
Dividers, totaling 126 Sobel Units. The architecture of the Sobel Units can be seen in
Figure 24. It receives eight 8-bit samples, which are positioned around the target inter-
polated sample where A is the top row, B is the middle row, and C is the bottom row.
It outputs two 11-bit samples, one for the horizontal and one for the vertical Sobel. It
was performed using only adders and shifts to reduce the overall area utilization since
so much of this architecture is used.

The 128 calculated horizontal and vertical Sobel samples are input for the coef-
ficient generator. The Coefficient generator receives the error as well, which is the
subtraction of the original samples and row A, as can be seen in Equation (9). The
Coefficient generator will be detailed in the next section.

4.2.3 Parameter Generator

This section presents the architecture that calculates the Affine Affine 6-parameter
parameters of the Equation (5), called Parameter Generator, which can be seen in Fig-
ure 25. The architecture receives 11-bit samples of the horizontal and vertical Sobel
and 8-bit x and y positions of the PU. The output is six 18-bit Affine 6-parameter pa-
rameters that will be used to generate the coefficients of the Affine System of Linear
Equations (SLE).

The input position is manipulated through shifts, and two are added to the position
to point to the center position of the subblock currently being processed. Because only
the center of each subblock is used in the multiplication, this multiplicator is substituted
with MCM that can multiply the input Sobels by 32 constants (ranging from 2 to 126)
that follow the series ¢ = 2 + 4n where n is a number between 0 and 31.

The high-level architecture only processes one row per cycle. However, it processes
128 columns per cycle, which requires this architecture to be replicated 128 times. With
the parameters calculated for each column together with the error, the Affine SLE can

57

11-bit input samples
se|dwes IndinQ Hg-g|

x
5

_

X
6

Figure 25 — Architecture of the Affine Parameter Generator

be generated.

4.2.4 Coefficient Generator

The Coefficient Generator architecture is used to calculate the coefficients of the
Affine SLE, and it is presented in Figure 26. This architecture implements the equa-
tions (7) and (8). This architecture implements the Affine 6-parameter prediction model
coefficients. This architecture receives six 18-bit coefficients and one 9-bit error and
outputs the SLE with 21 36-bit outputs for the coefficients and six 27-bit outputs for the
error.

This architecture only implements the upper triangle of the Affine SLE because it is
a multiplication of six parameters by themselves, and the lower triangle is symmetric.
This is important in reducing the overall area utilization by almost half, and the lower
triangle can be generated without any cost in the last step of the high-level architec-

ic, iC, iC, ic, iC, iC, er

g LRl Ih bbbt

% |C1 g[1,1 7] §
Jummsyzaereo 1o g
é. iC @ ’—C)b .—Qb .—® 9[3,3-7]‘;
; o H30 00 0 %0 9y 0 &
© |C4 @ *Q'Q ”@ 96 57

Figure 26 — Architecture of the Coefficient generator

58

Affine6 € € € €5 € €y 9

1,1
3 o T
[1~6, 6] [1~5, 5]

AL

€ €l Y66 Y55 C ®m O i Y0, Yay o3 9uay Ypy Gy

Figure 27 — Architecture of the Affine Mode Adapter

ture. Furthermore, architecture requires 27 full multiplicators because the coefficients
calculated in the last step are not predictable. Full multiplicators are expensive, mainly
because this architecture is replicated 128 times.

This architecture is followed by an Adder Tree of 4 levels, which reduces the Affine
SLE from 128 to 8: 64 full adders in the first, 32 in the second, 16 in the third, and
8 in the fourth. The Affine SLE of the 6-parameter is not equal to the 4-parameter
version. However, the 6-parameter can be converted to the 4-parameter only through
adders and shifts; the next section presents the Affine Mode Adapter, which does this
conversion.

4.2.5 Affine Mode Adapter

This section presents the Affine Mode Adapter architecture. This architecture con-
verts the Affine 6-parameter SLE to the Affine 4-parameter SLE, as shown in Figure 27.
It receives 27 Affine 6-parameter coefficients and a 1-bit flag Affine6 and outputs either
the same SLE if the 1-bit flag is one or converts the SLE to the equivalent 4-parameter
SLE if the 1-bit flag is zero.

This architecture has a converter that uses adders, shifts, and subtractors to convert
the 6-parameter to the 4-parameter version. The Converter architecture is shown in the
Figure 28. This architecture enables the architecture to process both Affine prediction
models and removes the need for two different SLE generator architectures.

Affine® Guz G1e 9p2966926 JusOua 924%s19s6%s Jes ua 951934 ua9s5 9 €2 G €e G

[4.5]

9 9
921 [2.2) 914 9.4 I3 o

Figure 28 — Architecture of the Affine Mode Adapter Converter

59

Table 11 — Conversions Equations of the SLE 6-parameters to 4-parameters.

91 93 9 9i el
91 | 9h 92 9 9 95— 9 el
9 Izt Glos T2) | Yl T Isel | Is) — Yo T Irel — G | Oy Ty
gg 9?3,3] 9[%1,5} - 9%,4} 6?3}
91 9551+ 9iaal — 2" 9las | €5 €l

The converter implements the equations in Table 11. This table presents the SLE
for the 4-parameter prediction model using the SLE for the 6-parameter as input, with
g* being the coefficient for the Affine 4-parameter prediction model, ¢° for the six-
parameter model, ¢! being the error column in Affine 4-parameter prediction model,
and e° being the error column in Affine 6-parameter prediction model. The subscripted
numbers are the position of the coefficient in the 6-parameter SLE. For example, the co-
efficient in the position [1, 1] is the same in both SLE; however, the coefficient in the po-
sition [1, 2] is different, but the 4-parameter coefficient [1,2] can be generated by adding
the 6-parameter coefficients using the equation in the table g, 5 = gf 5 + g{4- The
Affine Mode Adapter implements all these equations from Table 11 when the Affine6
flag is one. Otherwise, the output SLE is the same as the input one.

This architecture is repeated eight times because the high-level architecture can
process up to eight PUs with a width of 16 simultaneously, which requires this archi-
tecture to be repeated. The output of this architecture is added up in the accumulator
every cycle.

The final step in the Gradient-Based Coefficient Generator is the accumulator,
which accumulates the SLE every single cycle while the current cycle is smaller than
the PU height. The accumulator architecture receives 8 SLE with 27 coefficients of 36
bits and outputs 8 Affine SLE with 42 coefficients of 36 bits. Because the Affine SLE
is symmetrical, these additional 15 coefficients have no cost in components or need to
be stored; they can be implemented only through wiring.

4.2.6 Temporal Analysis

This section presents a temporal analysis of the Gradient-Based Coefficient Gen-
erator architecture. The Gradient-Based Coefficient Generator can process any PU
size, and if the PU width is less than 128, the architecture can process multiple PUs
in parallel. This architecture processes the PU in one row per cycle. This architecture
takes 16 up to 128 cycles to finish a PU, depending on the height. The 16-wide pro-
cessing slot that enables the parallelism of working in multiple PUs simultaneously will
be called Gradient Engine in this section.

Figure 29 presents an example of the processing of the architecture. The architec-
ture starts on the first cycle of processing two PUs of size 16x16, which takes up two of

60

CU Size 1 16,16) | [16,64] [128,128]
CU Size 2 16,16
CU Size 3 16,32
CU Size 4
CU Size 5 32,16
CU Size 6 32,16
CU Size 7 32,32
CU Size 8
Gradient Engine 1| 16

Gradient Engine 2| 16
Gradient Engine 3

16

Gradient Engine 4 128
Gradient Engine 5 32
Gradient Engine 6 32

Gradient Engine 7
Gradient Engine 8
Clock Cycles 16 1+ 32 | 48 | 64 | 80 . 96 | M2 | 128 | 144 . 160

Figure 29 — Temporal Analysis of the Gradient-Based Coefficient Generator

eight possible Gradient Engines for 16 cycles. This architecture also starts processing
two PUs of size 32x16, which also takes two of eight Gradient Engines, however, for
32 cycles. The last four Gradient Engines are taken by PUs of size 16x32 and 32x32.
After 16 cycles have passed, a PU of size 16x64 starts processing, taking up half of
the Gradient Engines. Finally, this architecture starts processing a PU size of 128x128
for 128 cycles.

Even though Gradient Engines 4 and 8 never received a PU directly, they both were
never idle. This size of parallelism is chosen because processing a PU takes a long
time, at least 16 up to 128, so processing multiple PUs simultaneously reduces the
cost of waiting.

4.3 Affine AMV Architecture

This section first presents the Gauss-Jordan Elimination Algorithm and then the
proposed Affine AMV architecture employing this algorithm. This architecture solves
the SLE generated by the Gradient-Based Coefficient Generator Architecture and out-
puts the AMV of the Affine ME of the VVC standard. To generate the AMV/, the Affine
parameters, which is the solution of the SLE, need to be converted in a final process-
ing step in which three of the four Equations are applied (11), (12), (13), and (14),
depending on the Affine prediction model being used is 4-parameter or 6-parameter. A
previous version of this architecture that implemented a different algorithm to solve the
SLE was published in JICS (Maass et al., 2023), and this version of this architecture
was published in SBCCI (Maass et al., 2024).

4.3.1 Gauss-Jordan Elimination Algorithm

The Gauss-Jordan elimination is an algorithm used to solve SLE in which opera-
tions are performed by adding and subtracting rows from each other until all values in
the main diagonal are one and all other positions are zero.

61

To solve the SLE (10), the algorithm starts by selecting the element in the first row
and column, gy, 3j, as the pivot and normalizing its row by dividing all elements of the
row by the pivot. With the first row normalized, all other rows are updated using the
Equation (16), in which the R is the current row, and R, is the pivot row, and E, is the
element in the pivot column of current row; this operation ensures that the element in
the column of the pivot will always become zero. After this process is performed, only
one element is non-zero in the pivot column, then the next element in the main diagonal
is normalized and becomes the new pivot, and then the process is repeated. When the
process is completed, the last column of the matrix contains the Affine parameters that
will be used and converted into AMV.

It is very unlikely that the pivot values become zero during the algorithm because
the SLE is generated in the last step. However, if the pivot is zero, then the process
stops, and the output is set to zero.

Ryew = R. — R, x E, (16)

4.3.2 Proposed architecture

The architecture presented in this section solves the SLE generated by Gradient-
Based Coefficient Generator architecture and also does the final processing. This
architecture is able to process both Affine 4-parameter and Affine 6-parameter and all
12 PU sizes. The Architecture can be seen in the Figure 30. The input of architecture is
1-bit for the Affine model, 4x5 or 6x7 47-bit matrix, and two 8-bit values that represent
the PU height and width, which ranges from 16x16 up to 128x128. The output of this
architecture is four or six 18-bit AMV, depending on the Affine model.

The architecture presented in Figure 30 is divided into three modules: The first
module is the Float Conversion which is responsible for converting the integer inputs
into a 32-bit single-precision floating-point representation; The Calculator that imple-
ments the Equation (16) to solve the SLE, also it performs the final processing which is
the implementing the Equations (11), (12), (13), and (14); the last module is the Control
Unit. The Calculator comprises three dividers, 15 multipliers, and 15 subtractors, all

Calculator
System Matrix Float 15x .
BX7x47bits Conversion 3x =|| N l, AMV
i = —ﬂ—]|—| 6x18bits

Affine Model : x

bW > Control Unit I B R cocecoortbonen e H

bH

[7-column bus = 4-column bus —» 1-column bus — Control signal - |

Figure 30 — The Affine AMV Architecture.

62

using 32-bit floating point values.

4.3.3 Temporal Analysis

This section presents the temporal analysis of the Affine AMV architecture. This
architecture is able to process three columns of the matrix at each clock cycle, and
this leads to this architecture taking 12 cycles when processing the Affine 6-parameter
model and eight clock cycles for the 4-parameter model to generate the AMV. Fig-
ure 31 presents a time diagram of the architecture processing each cycle. Figure 31
presents the operations performed for both Affine 4-parameter and 6-parameter, where
one is blue and the other is red, respectively. As can be seen in figure 31, the first cy-
cle in both models is to convert the inputs into floating point. The following five or nine
cycles, depending on the Affine model, are for updating each row. Then, finally, the last
two cycles are for the final processing and enabling the output.

Clock 112]13]4]5[6]7]8]9][10][11]12
Float Conversion i

Column
Being
Updated

N[OV B |W(IN

Final Processing
Output

[] 4-Paramater []6-Paramater
Figure 31 — Time diagram of the proposed Affine AMV architecture.

5 SYNTHESIS RESULTS AND COMPARISONS

This chapter presents the synthesis results for all architectures developed. The
architectures presented in this master dissertation were described in VHDL and val-
idated with the ModelSim tool (Intel, 2022). The syntheses were performed for the
40nm standard-cell technology of TSMC using the Cadence RTL Compiler tool (Ca-
dence, 2024). The area results presented are related to the number of equivalent
NAND2 gates, which are obtained according to the NAND2 size in the specific tech-
nology. For TSMC 40nm, a NAND2 occupies 0.9408mm?, and the power dissipation
results considered the switching activity for real input data obtained from the reference
software implementation of the VVC standard, the VTM version 16.2 (Chen; Ye; Kim,
2021).

This section presents the synthesis of four architectures: The Filter Cores, which
are used in the Interpolation Unit; the Affine MC, which is used in the Affine ME to
evaluate every MV; The Gradient-Based Coefficient Generator Architecture, which is
the architecture used in GBIA to generate the SLE used to calculate the next set of MV
being evaluated; and the Affine AMV architecture, which solves the SLE generated by
the Gradient-Based Coefficient Generator Architecture.

5.1 Interpolation Unit Results

This section presents the synthesis results and comparison between the three dif-
ferent implementations of the Filter Core (Baseline, Power-Efficient, and Hardware-
Efficient) used in the Interpolation Unit in Table 12. The Baseline architecture was pub-
lished in (Mufioz et al., 2023b), while the Power-efficient (PE) and Hardware-Efficient
(HE) architectures were presented in (Muioz et al., 2023a). The synthesis of each In-
terpolation Unit is performed using four Filter Core, enough for one line of the subblock.
Also, at the frequency of 808MHz, this architecture outputs 202M horizontal/vertical
subblocks or 62.2M diagonal subblocks per second. This enables the architecture
to process UHD 4K video at 44 fps, the closest this architecture is able to get to 60
fps, with GBIA enabled while supporting only 16x16 PUs. The power results consider

64

the switching activity for 100k filtering operations of the BasketballDrive test video se-
qguence (Bossen et al., 2020).

Table 12 presents the power dissipation and area for the three architectures divided
per module. It is organized into several columns: Filter Core, detailing the Filter Core
implementations being compared; Buffer, representing the buffer responsible for stor-
ing intermediate samples; Other, which includes any additional logic necessary for the
architecture; and Interpolation Unit, which reflects the entire architecture. This break-
down allows for a more granular comparison of how different components contribute to
the overall power dissipation and area requirements of each architecture.

It can be seen in Table 12 that the Power-Efficient architecture (PE), when com-
pared to the Baseline Architecture, reduces the area to 44.2% and reduces the power
dissipation by 4.5%. These reductions in area and power dissipation are expected
since seven filters are substituted by six multiplexers to invert the input, reducing the
number of filters from 15 to eight and leading to a significant area reduction. The re-
duction in power dissipation is also expected, with the removal of almost half of the
components. Still, it is not significant because only the selected filter has switching
activity. Hence, this reduction comes from the leakage power dissipation of the com-
ponents used to control the filters, such as the multiplexers, that keep the input stable
and without dynamic power dissipation if not selected.

Table 12 also presents the Hardware-Efficient architecture (HE) when compared to
the Baseline Architecture, which reduces the area by 77.5% and increases the power
dissipation by 7.5%. This is a significant reduction in area, which is expected since it
only uses six components, one for each input, instead of 15 filters. The increase in
power dissipation is because all components in this architecture are constantly switch-
ing, which leads to a higher dynamic power dissipation different than the Baseline,
which would have 14 of the 15 filters disabled.

When comparing both the PE and HE architecture, both reduce the area utilization
when compared with the Baseline, but the PE minimizes the power dissipation while the
HE increases. Because the difference in power dissipation between PE and HE is 12%,
this can be significant depending on how many Filter Core are used. However, since
the Filter Core are used eight times per Interpolation Unit in the Affine MC, reducing

Table 12 — Synthesis results for Interpolation Unit using four Filter Cores working at 808.7 MHz.

Filter Cores | Buffer | Other | Interpolation Unit
Baseline Area (k Gates) 90.67 5.10 1.74 97.59
Total Power (mW) 4.27 6.18 2.95 13.40
PE Area (k Gates) 47.86 5.12 1.46 54.43
Total Power (mW) 5.08 6.17 1.54 12.80
HE Area (k Gates) 15.14 5.10 1.67 21.91
Total Power (mW) 6.7 6.17 1.54 14.41

65

the area by almost one-quarter of the baseline, or half of the PE, is considered more
important.

5.2 Affine MC Synthesis Results

This section discusses the synthesis results for the Affine MC, as presented in Table
13. Table 13 presents area and power results for the architecture when processing the
required number of Affine MCs for the GBIA at UHD 4K@60fps for only PUs of size
16x16. The power results consider the switching activity for 100k filtering operations
of the Tango?2 test video sequence (Bossen et al., 2020). The Interpolation Unit in this
version has double the throughput of our previous version (Mufioz et al., 2023), and
the increase in throughput is to enable the processing of UHD 4K videos with GBIA
enabled. This version of the architecture was submitted to IEEE Design & Test (Mufioz
et al., Under Review (28-Aug-2024)).

Different from the Filter Cores frequency, the frequency of the Affine MC architec-
ture was chosen by calculating the average amount of Affine MC for the PU size of
16x16 per frame while only the GBIA is enabled. The Equation (17) is used to cal-
culate the frequency necessary to process that PU size, where AMC' is the average
number of PUs being interpolated per frame, CUg, is the number of 4x4 subblocks in a
PU of that width and height, througput;, and througput,; are how many cycles takes for
horizontal/vertical and diagonal subblocks to be interpolated, ratioy, is ratiog is ratio
of between horizontal/vertical and diagonal subblocks, and finally, multiply by the fps.
This is done for each PU size separately, which the architecture needs to process, and
then it is accumulated; for the case of only one PU size, this equation is only required
once.

freqe, = AMC' - PUgy(througputy, - ratiop, + througputy - ratiog) fps (17)

Using the Equation (17), there is an average number of 399k 16x16 Affine MC per
frame, and since each 16x16 PU contains 16 4x4 subblocks, this is equal to 6.384M
subblocks of 4x4. Each Interpolation Unit has eight filter cores, which enables the in-

Table 13 — Synthesis Results for the Affine MC for 4K@60fps while only processing GBIA and
16x16 PUs.

Vector | Interpolation
Generator Unit

Area 33.1 147.7 8.4 189.2
(k Gates) | (17.50%) | (78.05%) | (4.45%)| (100%)
UHD 4K@60 16x16 | Total Power | 31.486 77.908 | 11.759 | 121.153
(598 MHz) (MW) (25.99%) | (64.31%) | (9.71%)| (100%)

Throughput Other | AffineMC

66

terpolation of two subblocks per cycle if the SMV is horizontal/vertical or seven cycles
if the SMV is diagonal. Since this architecture has four Interpolation Units, it interpo-
lates two subblocks per cycle, or the throughput of one subblock every 0.5 cycles. For
the diagonal throughput, there is a subblock every 1.75 cycles. The ratio of horizon-
tal/vertical is 15%, and the diagonal is 85% for UHD 4K videos. Using all the values
presented here, the frequency calculated is 598MHz for UHD 4K at 60 fps.

It can be seen in Table 13 that Affine MC has 189k gates of area and a power
dissipation of 121mW. Also, it can be seen in Table 13 that the two Vector Generators
are 17.5% of the total area utilization while the four Interpolation Units are equal to
78% of the total area, which is expected since the Interpolation Unit has eight Filter
Cores each. Similar results can be seen for power dissipation; the Interpolation Units
are 64% of the total power, and the Vector Generator 25% is the total power.

It can be seen in Table 13 that the Affine MC architecture has 189k gates of area
and a power dissipation of 121mW. Also, it can be seen in Table 13 that the two Vector
Generators are 17.5% of the total area utilization while the four Interpolation Units are
equal to 78% of the total area, which is expected since the Interpolation Unit has eight
Filter Cores each. Similar results can be seen for power dissipation; the Interpolation
Units are 64% of the total power, and the Vector Generator 25% is the total power.

The 4K synthesis is shown only for the GBIA and 16x16 because, by using the
equation explained before, this architecture would require a frequency of 2.3GHz to
process quadratic sizes. This frequency is prohibitive for 40nm TSMC without taking
into consideration the power dissipation, which would be very high. The limitation of
UHD 4K@60fps with GBIA and only processing 16x16 has a BD-Rate increase of
0.8%, which is good enough depending on the application.

5.3 Gradient-Based Coefficient Generator

This section presents the synthesis results for the Gradient-Based Coefficients
Generator Architecture in Table 14. Two syntheses for the architecture are presented,
both able to process UHD 4K (3840x2160 pixels) at 60fps videos. The frequencies
186MHz and 48MHz were calculated using the average amount of 16x16 PU pro-
cessed per frame in GBIA and the average amount of quadratic PUs processed per
frame in GBIA. The power dissipation results considered the switching activity for real
input data from 100k PUs of the BasketballPass test video sequence (Bossen et al.,
2020).

This section discusses the synthesis results for the Gradient-Based Coefficients
Generator Architecture, as presented in Table 14. Two syntheses for the architecture
are presented, both able to process UHD 4K (3840x2160 pixels) at 60fps videos. The
frequency is calculated using the Equation (18), which is the frequency necessary to

67

Table 14 — Synthesis Results for the Gradient-Based Coefficient Generator for UHD 4K@60fps
for both throughputs, GBIA and quadratic sizes (186MHz) and GBIA and 16x16 (48MHz).

UHD 4K@60 UHD 4K@60
Throughput GBIA Quad GBIA 16x16
Error Gen. & Total Power (mW) 179.05 (2.59%) \ 58.38(1.48%)
Sobel Engine Area (k Gates) 117,021 (2.41%)
Parameter Total Power (mW) 741.34 (10.71%) \ 284.07(7.22%)
Generator Area (k Gates) 423,136 (8.73%)
Coefficient Total Power (mW) 594.28 (8.58%) \ 248.07(6.31%)
Generator Area (k Gates) 549,878 (11.34%)
Adder Total Power (mW) 5,347.69 (77.25%) \ 3,265.43(83.03%)
Trees Area (k Gates) 3,653,765 (75.35%)
Other Total Power (mW) 60.55 (0.87%) \ 76.97(1.96%)
Area (k Gates) 104,955 (2.16%)
Total Total Power (mW) | 6,922.90 (100.00%) \ 3,932.92(100.00%)
Area (k Gates) 4,848,754 (100.00%)

calculate one PU, then this is performed for all PU sizes and added up. Where AMC
is the average number of Affine MC being processed per frame, the 128/CU. a1 iS
because this architecture can process multiple PU simultaneously if the width of the PU
is less than 128, C'U.; s is the height of the PU and how many cycles this architecture
takes to process the PU.

freqe, = (AMC - PUpeignt - fs)/(128/ PUyiarn) (18)

Calculating the frequency for 16x16 using GBIA by using the Equation (18), where
average AMC is equal to 399k for UHD 4K Class A2 video, the PU width and height
is 16, and the fps is 60, this is equal to 48MHz which is the frequency for only 16x16.
The same is done for all other quadratic sizes and added up to calculate the frequency
to process quadratic sizes, which is equal to 186MHz. As can be seen in Table 14,
the architecture was synthesized for both UHD 4K at 60 fps frequencies, 48MHz and
186MHz. However, this level of parallelism has a high cost, with an area of 4,848k
gates and power dissipation of 6,922mW for all quadratic sizes and 3,932mW when
processing only 16x16 PUs. This makes the architecture impractical for real applica-
tions.

The high area and power dissipation in the GBIA algorithm were always expected
since it is the most complex part of the AME algorithm, requiring not only calculating
the Sobel and error for each row of the PU being processed but also generating ma-
trices of 27 coefficients for each sample, which are added up together in Adder Trees.
This architecture contains many full adders and multiplicators that cannot be removed,
followed by Adder Trees, which increase the sample size. All these lead to the area

68

and power dissipation being the highest of all the architectures presented.

Some strategies could be adopted to solve this area and power dissipation issues:
first, the reduction of the parallelism from 128 to other PU sizes would reduce the
overall area significantly since more than half of the multipliers and adders would be
removed, and the Adder Trees reduced; however, this would increase the overall fre-
quency. Another strategy is the copying of neighboring values, which is already done
in the edge samples of the PU for the Sobel. This could be done for every couple
of samples to reduce the number of numbers that need to be calculated; this would
have much less impact on the overall area and power dissipation; however, it would not
impact the frequency. Therefore, these strategies will be explored in future works.

As can be seen in Table 14, architecture can process UHD 4K videos at 60fps with
a BD-Rate increase of 0.80% when targeting 16x16 with GBIA and 0.27% when tar-
geting quadratic sizes with GBIA. This is the first architecture in literature to implement
the Gradient-Based Coefficient Generation of the GBIA of the VVC standard. This ar-
chitecture can be integrated into the architecture presented in the next section to solve
the System of Linear Equations and generate the AM V.

5.4 Affine AMYV Architecture

This section shows the results for the Affine AMV Architecture. The average num-
ber of SLE is used to calculate the frequency of the architecture by using the Equation
(19), where AMC' is the number of Affine MC being processed, ratio, and ratiog are
the ratios of Affine 4-parameter and 6-parameter and throughput, and throughputg are
how many cycles to generate the SLE. The architecture results (Maass et al., 2024),
which implements the Gauss-Jordan Algorithm, is an optimized version of our previ-
ous work (Maass et al., 2023), which implemented Gaussian elimination with partial
pivoting algorithm.

freqe, = AMC(ratioy - throughputy + ratiog - throughputs) - fps (19)

Using the Equation (19), the average number of Affine MC 16x16 is 399K, the ratio
of Affine each parameter for one reference frame is 0.53% for 4-parameter and 0.47%
for 6-parameter, and the architecture takes eight cycles for 4-parameter and 12 cycles
for 6-parameter, all this data is for the for UHD 4K video class using one reference
frame. This results in an operational frequency of 236MHz for processing GBIA and
only 16x16 PU, and for the quadratic sizes, the necessary frequency is 334MHz.

Table 15 presents the synthesis results for UHD 4K (3840x2160 pixels) at 60fps
videos for the two targets, GBIA only 16x16 and GBIA quadratic sizes. This also
presents the results for each module. The power dissipation results considered the
switching activity for real input data from 100k SLE of the RaceHorses test video se-

69

Table 15 — Synthesis results of the Affine AMV architecture when targeting 4K UHD 60 fps
videos

UHD 4K@60fps (236MHz) | UHD 4K@60fps (334 MHz)
GBIA and 16x16 GBIA and quadratic

Cell Area Total Power Cell Area Total Power

(k Gates) (mW) (k Gates) (mW)
Control 0.05 0.022 0.05 0.031
Conversion 53.3 17.260 53.3 23.682
Calculator 180.2 9.052 180.2 16.013
Total \ 2457 31.444 \ 245.7 47.146

quence (Bossen et al., 2020). As can be seen in Table 15, the float conversion module
has the highest power dissipation, and the Calculator has the highest area utilization.
The complete architecture requires 245.7k gates in total while dissipating 31.44mW for
GBIA only 16x16 and 47.15mW for GBIA quadratic sizes.

5.5 Comparison with related works

This section presents the comparisons of the achieved results with related works.
For the Affine MC architecture, there is only one work that proposes hardware (Taranto,
2022). However, to increase the number of comparisons, the proposed architecture is
also compared to other works that process the Fractional ME, as the Fractional ME
uses filter interpolation in a similar way to the Affine MC even though the visual degra-
dation cannot be compared as they are different steps of the ME. For Affine AMV
architecture, there are two compared related works, one of our previous implementa-
tions Maass et al. (2023), which implements the final processing step, and Sheng et al.
(2024), which is a SLE solver without the final processing. Unfortunately, it was im-
possible to compare the results achieved for the proposed Gradient-Based Coefficient
Generator architecture since no other published work was found in the literature.

The Affine MC and Affine AMV architectures were resynthesized for processing
FHD 1080p (1920x1080 pixels) at 60 fps since most related works have synthesis
for this target. The frequency this time was calculated using the average PUs being
processed in Class B of the CTC, which is the HD 1080p class.

The operational frequencies of the Affine MC for this new synthesis are 560MHz
for Quadratic GBIA and 160MHz for 16x16 GBIA for processing FHD 1080p at 60
fps. The results for the Affine MC are presented in Tables 16 and 17, where Table
16 presents results from FPGA implementations, and Table 17 presents the results of
ASIC implementations. Two different throughputs are shown in Tables 17 and 16, one
for AME with quadratic sizes and GBIA enabled and another for the AME with only
16x16 PUs with GBIA enabled. The BD-Rate increase for both proposed throughputs

70

Table 16 — Comparison among the proposed Affine MC architecture and FPGA related works.

Azgin | Mahdavi Proposed

FPGA ASIC

Design FME FME AME AME
Quad 16x16

Technology Virtex 7 - 40nm
Area (um?) - - 178005
Area (k Gates) - - 189.2
Frequency (MHz) 227 236 560 160
Power (mW) 320.18 225 119.099 42.763
BD-Rate - - 0.27% 0.80%
Resolution 1080p 1080p 1080p
FPS 47 49 60

is 0.27% for the quadratic version and 0.80% for only 16 x 16 PUs, respectively.

Table 16 shows that Azgin; Kalali; Hamzaoglu (2020) require much more power
to process FHD 1080p at 47 fps while having much lower frequency when compared
to both proposed architectures. Similar to the previous related work, Mahdavi; Azgin;
Hamzaoglu (2021) also requires much more power to process FHD 1080p at 49 fps
than both of the proposed architectures; however, the architecture of quadratic sizes
requires a higher frequency. These results can be seen even though the AME is a more
complex algorithm than the FME, which does not require multiple iterative algorithms,
which leads to a huge number of Affine MC to be processed. It is important to highlight
that FPGA synthesis results cannot be directly compared to ASICs, especially regard-
ing area and power since these two technologies serve different purposes. However,
this comparison is made due to the limited number of related works.

As can be seen in Table 17, when compared to the FME related works, the pro-
posed architectures have the highest number of gates. However, the 16x16 version is
the second lowest power, only losing to Silva et al. (2021) while the GBIA and Quadratic
version is the third, losing to also Canmert; Kalali; Hamzaoglu (2018) but being below
Azgin et al. (2018), even though the AME requires much more interpolations than the
FME because of the iterative algorithms. Taranto (2022) is the only comparison of the
proposed hardware for the Affine ME. Both of our proposed architectures have a higher
number of gates and power dissipation, however, Taranto (2022) employed many sim-
plifications to the AME process. First, it divides each PU into 16x16 subblocks, and It
only processes the four corner subblocks; the second simplification is the removal of
fractional interpolation, which is one of the most expensive components regarding the
area in our proposed Affine MC architectures is the Filter Core. The last simplification is
the removal of the iterative algorithms GBIA and BMIA. All these simplifications signifi-
cantly reduce the overall frequency necessary, but also the coding efficiency, however,
the authors do not provide the coding efficiency losses its proposed solution (Taranto,

71

Table 17 — Comparison among the proposed Affine MC architecture and ASIC related works.

Azgin | CanMert| Silva | Taranto | Proposed

ASIC ASIC

Design FME FME FME AME AME AME
Quad 16x16
Technology 90 nm | 90 nm 65nm 45 nm 40nm
Area (um?) - - - 23,889 178,005
Area (k Gates) 11.7 37.6 68.7 29.9 189.2
Frequency(MHz)| 357 435 522 341 560 160
Power(mW) 77.06 | 467.93 23.9 1.82 119.099 42.763
BD-Rate - - - not 0.27% 0.80%
calculated
Resolution - 1080p | 1600p 1080p 1080p
FPS - 88 30 50 60
2022).

Table 18 presents the new synthesis results for both throughputs of the proposed
Affine AMV architectures, with operation frequencies of 87MHz for Quadratic and
GBIA and 64MHz for only 16x16 PU and GBIA. Sheng et al. (2024) presents an ar-
chitecture that solves the SLE, and it does not provide results on power dissipation.
However, it provides how many mega equations are solved per second, and as can
be seen in the proposed architectures throughputs, Sheng et al. (2024) is not able to
process the throughput necessary for GBIA using quadratic or 16x16 PU sizes. Our
previous work (Maass et al., 2023), on the other hand, provides data power dissipation
and area, and the throughput is enough to process 16x16 PUs and perform the GBIA.
However, it cannot be used for all quadratic sizes. Also, Maass et al. (2023) requires
much more power and area when compared to either throughput of the Affine AMV
architecture.

Table 18 — Comparison with related work for the Affine AMV architecture when targeting HD
1080p@60fps videos

(Sheng et al., (Maass Proposed Proposed
2024) et al., 2023) Quad 16x16

Tecnology FPGA 40nm 40nm 40nm
Frequency (MHz) 100 540 87 64
Area (mm?) - - 231178 231178
Area (k Gates) - 333.89 245.7 245.7
Total Power (mW) - 120.37 13.247 9.630
Throughput 16.7 Meq/s 29.9Meq/s 33.9Meq/s 23.9Meq/s

6 CONCLUSION

This work presented three dedicated hardware architectures for the Affine ME of the
VVC standard. The proposed architectures were described in VHDL and synthesized
using the 40nm standard-cell technology of TSMC. This work also analyzed Affine ME
complexity and showed that the Affine ME without restriction has too high complexity
for real-time encoding, requiring prohibitive power dissipation and/or area utilization
to meet necessary throughput. The analysis also evaluated different constraints and
their impact on computational complexity and encoding efficiency. Two combinations
of these constraints were chosen when focusing on low-power real-time devices.

All architectures presented can process both prediction models, the Affine 4-
parameter and 6-parameter, and quadratic PU sizes or 16x16 PU sizes. In the Affine
MC architecture, two different Filter Core implementations were presented, one focus-
ing on lower power dissipation, the Power-Efficient, and one focusing on area reduc-
tion, the Hardware-Efficient. Both the Affine MC and the Filter Cores applied an MCM
approach to substitute the multipliers for sum and shifts at the design of the Vector
Generator and the Interpolation Unit, reducing the area and power requirement of the
individual components. The Gradient-Based Coefficient Generator Architecture can
process multiple PUs simultaneously if the width is smaller than 128, with the maxi-
mum number of PUs processed simultaneously being eight of the width of 16 samples.
This architecture processes one row of the PU per cycle and takes as many cycles as
the height of the PU being processed. The Affine AMYV is able to process the Affine
SLE in eight up to 12 cycles and generate the AMV that will be used to generate the
next set of MV.

Synthesis results for the Affine MC targeting the processing of UHD 4K videos at
60fps demonstrate an area requirement of 189k Gates with 121mW of power dissipa-
tion when running at 598MHz with a BD-Rate increase of 0.80%. For the Gradient-
Based Coefficient Generator, the synthesis results targeting UHD 4K videos at 60fps
demonstrate an area requirement of 4,700k Gates with 3,114mW of power dissipation
when running at 48MHz with a BD-Rate increase of 0.80% or when running at 186MHz
the power dissipation of 4963mW with BD-Rate increase of 0.27%. This work is the first

73

in the literature to present an architecture for the Gradient-Based Coefficients defined
by the VVC standard. However, the presented Gradient-Based Coefficient Generator
results are impractical for real applications due to its high area requirements and power
dissipation. Therefore, strategies for reducing hardware utilization will be explored in fu-
ture works, mainly reducing the parallelism and reusing of neighboring values. Finally,
the synthesis results for the Affine AMV targeting the processing of UHD 4K videos at
60fps show an area requirement of 245k Gates with 31mW of power dissipation when
running at 236MHz with a BD-Rate increase of 0.80%.

REFERENCES

AFONSQO, V. et al. Hardware implementation for the HEVC fractional motion estima-
tion targeting real-time and low-energy. Journal of Integrated Circuits and Systems,
[S.L], v.11, n.2, p.106—120, 2016.

AZGIN, H.; KALALI, E.; HAMZAOGLU, I. An Approximate Versatile Video Coding Frac-
tional Interpolation Hardware. In: IEEE INTERNATIONAL CONFERENCE ON CON-
SUMER ELECTRONICS (ICCE), 2020. Anais. .. [S.I.: s.n.], 2020. p.1-4.

AZGIN, H.; MERT, A. C.; KALALI, E.; HAMZAOGLU, I. A reconfigurable fractional in-
terpolation hardware for VVC motion compensation. In: DSD, 2018., 2018. Anais...
[S.l.: s.n.], 2018. p.99-103.

BITMOVIN. COVID-19’s Impact on streaming video. Acesso em: 2
de dez. de 2022. Disponivel em: <https://go.bitmovin.com/hubfs/Covid-
19%200T T%20streaming_Bitmovin_Analytics_Infographic.pdf>.

BOSSEN, F. et al. VTM common test conditions and software reference configu-
rations for SDR video. Teleconferéncia: [s.n.], 2020. JVET-T2010.

BROSS, B.; CHEN, J.; LIU, S.; WANG, Y.-K. Versatile Video Coding Editorial Re-
finements on Draft 10. JVET-T2001.

BROSS, B. et al. Overview of the versatile video coding (VVC) standard and its appli-
cations. IEEE Transactions on Circuits and Systems for Video Technology, [S..],
v.31, n.10, p.3736-3764, 2021.

CADENCE. RTL Compiler. accessed in November 22 of 2024. Disponivel
em: <https://www.cadence.com/en_US/home/tools/digital-design-and-
signoff/synthesis.html>.

CANMERT, A.; KALALI, E.; HAMZAOGLU, I. A Low Power Versatile Video Coding
(VVC) Fractional Interpolation Hardware. In: CONFERENCE ON DESIGN AND AR-
CHITECTURES FOR SIGNAL AND IMAGE PROCESSING (DASIP), 2018. Anais...
[S.l.: s.n.], 2018. p.43-47.

75

CHEN, J.; YE, Y.; KIM, S. Algorithm description for Versatile Video Coding and
Test Model 11 (VTM 11). JVET-T2002.

CISCO. Cisco Annual Internet Report (2018-2023) White Paper. Disponivel em:
<https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-
internet-report/white-paper-c11-741490.html>. Acesso em: 31 de setembro de
2022.

GONCALVES, P. H. R. Um esquema rapido baseado em aprendizado de maquina
para a predicao interquadros do codificador de video VVC. 2021. Dissertagao
(Mestrado em Ciéncia da Computacao) — Universidade Federal de Pelotas.

INTEL. ModelSim*-Intel® FPGA Edition Software. ac-
cessed in November 29 of 2022. Disponivel em:
<https://www.intel.com.br/content/www/br/pt/software/programmable/quartusprime/model-
sim.html>.

JCT-VC. High Efficiency Video Coding (HEVC). Disponivel em:
<https://hevc.hhi.fraunhofer.de/>. Acesso em: 2022-09-16.

JVET. Versatile Video Coding (VVC). Disponivel em: <https:/jvet.hhi.fraunhofer.de/>.
Acesso em: 2022-09-16.

MAASS, D. et al. High-Throughput Hardware Design for Linear Equation System Solv-
ing of VVC Affine Prediction. Journal of Integrated Circuits and Systems, [S.1.], v.18,
n.3, p-1-11, 20283.

MAASS, D. et al. A Real-Time UHD 4K Hardware for VVC Affine Linear Equation
System Solving. In: SBC/SBMICRO/IEEE SYMPOSIUM ON INTEGRATED CIRCUITS
AND SYSTEMS DESIGN (SBCCI), 2024., 2024. Anais... [S.l.: s.n.], 2024. p.1-5.

MAHDAVI, H.; AZGIN, H.; HAMZAOGLU, I. Approximate versatile video coding frac-
tional interpolation filters and their hardware implementations. IEEE Trans. Consum.
Electron., [S.l.], v.67, n.3, p.186—194, 2021.

MUNOZ, M. M. et al. 4K UHD@ 60fps Design For The VVC Affine Motion Estimation
Reconstructor. In: SBC/SBMICRO/IEEE/ACM SYMPOSIUM ON INTEGRATED CIR-
CUITS AND SYSTEMS DESIGN (SBCCI), 2023., 2023. Anais... [S.l.: s.n.], 2023.
p.1-6.

MUNOZ, M. M. et al. Efficient hardware design for the VVC affine motion compensation
exploiting multiple constant multiplication. In: IEEE COMPUTER SOCIETY ANNUAL
SYMPOSIUM ON VLSI (ISVLSI), 2023., 2023. Anais... [S.l.: s.n.], 2023. p.1-6.

76

MUNOZ, M. M. et al. Hardware design for the affine motion compensation of the vvc
standard. In: IEEE 14TH LATIN AMERICA SYMPOSIUM ON CIRCUITS AND SYS-
TEMS (LASCAS), 2023., 2023. Anais... [S.l.: s.n.], 2023. p.1-4.

MUNOZ, M. M. et al. Design Space Exploration of Real-Time VVC Affine Motion Esti-
mation Reconstructor. Design & Test, [S.l.], Under Review (28-Aug-2024).

PAKDAMAN, F.; ADELIMANESH, M. A.; GABBOUJ, M.; HASHEMI, M. R. Complexity
Analysis Of Next-Generation VVC Encoding And Decoding. In: IEEE INTERNATIONAL
CONFERENCE ON IMAGE PROCESSING (ICIP), 2020., 2020. Anais... [S.l.: s.n.],
2020. p.3134-3138.

PARK, S.-H.; KANG, J.-W. Fast affine motion estimation for versatile video coding
(VVC) encoding. IEEE Access, [S.l.], v.7, p.158075-158084, 2019.

PERLEBERG, M. et al. An UHD 4K@ 120fps Hardware for the VVC Prediction
Refinement with Optical Flow. In: SBC/SBMICRO/IEEE/ACM SYMPOSIUM ON IN-
TEGRATED CIRCUITS AND SYSTEMS DESIGN (SBCCI), 2023., 2023. Anais...
[S.l.: s.n.], 2023. p.1-6.

PORTO, M. S. Desenvolvimento algoritmico e arquitetural para a estimacao de
movimento na compressao de video de alta defini¢co. 2012. Tese (Doutorado em
Ciéncia da Computacao) — UFRGS.

SANDVINE. 2022 Global Internet Phenomena Report. Acesso em: 2 de dez. de
2022. Disponivel em: <https://www.sandvine.com/global-internet-phenomena-report-
2022>.

SHENG, Q. et al. Fast Linear Equation Solving Algorithm and its Pipelined Hardware
Architecture Design for VVC Affine Motion Estimation. IEEE Transactions on Circuits
and Systems for Video Technology, [S.l.], 2024.

SILVA, G. G.; SIQUEIRA, i. G.; GRELLERT, M.; DINIZ, C. M. Approximate Hardware
Architecture for Interpolation Filter of Versatile Video Coding. JICS, [S.l.], v.16, n.2,
p.1-8, 2021.

SIQUEIRA, i.; CORREA, G.; GRELLERT, M. Rate-distortion and complexity compar-
ison of HEVC and VVC video encoders. In: IEEE 11TH LATIN AMERICAN SYMPO-
SIUM ON CIRCUITS & SYSTEMS (LASCAS), 2020., 2020. Anais... [S.l.: s.n.], 2020.
p.1-4.

SULLIVAN, G. J.; OHM, J.-R.; HAN, W.-J.; WIEGAND, T. Overview of the high effi-
ciency video coding (HEVC) standard. IEEE Transactions on Circuits and Systems
for Video Technology, [S.l.], v.22, n.12, p.1649-1668, 2012.

77

TARANTO, C. Simplified affine motion estimation algorithm and architecture for
the versatile video coding standard. 2022. Tese (Doutorado em Ciéncia da Com-
putacdo) — Politecnico di Torino.

TUMMELTSHAMMER, P; HOE, J. C.; PUSCHEL, M. Time-Multiplexed Multiple-
Constant Multiplication. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, [S.|.], v.26, n.9, p.1551-1563, 2007.

Appendices

79

APPENDIX A —LIST OF PUBLICATIONS DURING THIS MASTERS DEGREE

During this master’s degree, a total of seven papers were published in conferences
and journals. Two of them (SBCCI 2023) were invited to extended version submissions
to a journal, and these submissions are still under review. There is also a submission
to ISCAS 2025 that is still under review.

Papers published in conferences:

 Title: A Power-Efficient Architecture for LES Solving and AMV Calculation of
VVC Affine Prediction
Authors: Denis Maass, Marcello Mufioz, Murilo Perleberg, Luciano Agostini,
Marcelo Porto
Journal: |IEEE International Symposium on Circuits and Systems (ISCAS)
Conference: Oct-2024 (Submitted, Under review)

* Title: A Real-Time UHD 4K Hardware for VVC Affine Linear Equation System
Solving
Authors: Denis Maass, Marcello Munoz, Murilo Perleberg, Luciano Agostini,
Marcelo Porto
Conference: 2024 37th SBC/SBMicro/IEEE Symposium on Integrated Circuits
and Systems Design (SBCCI)

« Title: 4K UHD@ 60fps Design For The VVC Affine Motion Estimation Recon-
structor
Authors: Marcello M Munoz, Denis Maass, Murilo Perleberg, Luciano Agostini,
Guilherme Correa, Marcelo Porto
Conference: 2023 36th SBC/SBMicro/IEEE/ACM Symposium on Integrated
Circuits and Systems Design (SBCCI)

« Title: An UHD 4K@ 120fps Hardware for the VVC Prediction Refinement with
Optical Flow
Authors: Murilo Perleberg, Marcello M Mufioz, Denis Maass, Vladimir Afonso,
Luciano Agostini, Marcelo Porto

80

Conference: Conferéncia 2023 36th SBC/SBMicro/IEEE/ACM Symposium on
Integrated Circuits and Systems Design (SBCCI)

« Title: Efficient hardware design for the VVC Affine motion compensation exploit-
ing multiple constant multiplications
Authors: Marcello M Muiioz, Denis Maass, Murilo Perleberg, Luciano Agostini,
Marcelo Porto
Conference: 2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

« Title: Hardware design for the Affine motion compensation of the VVC standard
Authors: Marcello M Mufioz, Denis Maass, Murilo Perleberg, Luciano Agostini,
Marcelo Porto
Conference: 2023 I[EEE 14th Latin America Symposium on Circuits and
Systems (LASCAS)

« Title: Transistor Reordering for Electrical Improvement in CMOS Complex Gates
Authors: Marcello M Mufoz, Henrique Kessler, Marcelo Porto, Vinicius V
Camargo
Conference: 2022 35th SBC/SBMicro/IEEE/ACM Symposium on Integrated
Circuits and Systems Design (SBCCI)

Papers published in journals:

« Title: Design Space Exploration of Real-Time VVC Affine Motion Estimation
Reconstructor
Authors: Marcello M. Muioz, Denis Maass, Murilo Perleberg, Luciano Agostini,
Guilherme Corréa, Marcelo Porto
Journal: |IEEE Design & Test
Publication Date: Aug-2024 (Submitted, Under review)

« Title: An Efficient Hardware Design for the VVC Prediction Refinement with
Optical Flow
Authors: Murilo Perleberg, Marcello Mufioz, Denis Maass, Vladimir Afonso,
Luciano Agostini, Marcelo Porto
Journal: |IEEE Design & Test
Publication Date: Aug-2024 (Submitted, Under review)

81

« Title: High-Throughput Hardware Design for Linear Equation System Solving of
VVC Affine Prediction
Authors: Denis Maass, Marcello Muioz, Murilo Perleberg, Luciano Agostini,
Marcelo Porto
Conference: Journal of Integrated Circuits and Systems (JICS)
Publication Date: 2023/12/28

