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ABSTRACT

BANDEIRA, Yan B.. Electroweak gauge boson production in hadronic collisions
at forward rapidities in the color - dipole S - matrix framework. Advisor: Victor
Gonçalves. 2025. 121 f. Thesis (Doctorate in Physics) – Institute of Physics and
Mathematics, Federal University of Pelotas, Pelotas, 2025.

Understanding the internal structure of the proton in the high-energy regime re-
mains a key challenge in Quantum Chromodynamics (QCD). At small values of
Bjorken-x, the proton dynamics becomes saturated with gluons, leading to a nonlinear
regime characterized by a high-density QCD dynamics and saturation effects. Forward
rapidity processes in hadronic collisions offer a unique opportunity to probe this regime,
complementing information obtained from deep inelastic scattering experiments. In
this thesis, we study the production of electroweak gauge bosons (G = W±, Z0, γ)
at forward rapidities within the hybrid factorization framework, using the color dipole
S-matrix (CDSM) formalism. We derive the differential cross-sections of the processes
qp → GX and qp → GJX, both in impact parameter and transverse momentum
spaces, taking into account the longitudinal and transverse polarizations of the gauge
bosons. We show that the final results can be expressed in terms of the dipole–proton
cross–section or the target unintegrated gluon distribution, enabling a quantitative
analysis of saturation effects in the LHC kinematics and beyond. Furthermore, we
present, for the first time, the general expressions for electroweak gauge boson +
jet at forward rapidities. Our results generalize and reproduce previous findings in
the literature for real photon and Z0 production and we present for the first time the
description to W± boson production. In addition, we analyze dilepton production at
forward rapidities, deriving the angular coefficients associated with the decay of virtual
photons, Z0, and W± bosons. Numerical results are presented for

√
s = 14 TeV in

the rapidity range 2.0 ≤ y ≤ 4.5, including comparisons between different models for
the unintegrated gluon distribution and tests of the Lam–Tung relation. The results
presented in this thesis provide novel insight into the dynamics of QCD in the small-x
regime and offer new tools for phenomenological studies of forward electroweak
processes at current and future high-energy colliders.

Keywords: Forward Electroweak boson production; Color Dipole S-Matrix; Hybrid
Factorization; Small-x physics.



RESUMO

BANDEIRA, Yan B.. Produção de bósons de calibre eletrofracos em colisões
hadrônicas em regiões de rapidez frontal no formalismo da matriz-S de dipolo de
cor. Orientador: Victor Gonçalves. 2025. 121 f. Tese (Doutorado em Física) – Instituto
de Física e Matemática, Universidade Federal de Pelotas, Pelotas, 2025.

Compreender a estrutura interna do próton em altas energias segue como um dos
principais desafios da Cromodinâmica Quântica. Para pequenos valores de Bjorken-
x, a distribuição interna torna-se saturada com glúons, levando a um regime não
linear, caracterizado por dinâmicas da QCD em alta densidade e efeitos de saturação.
Processos em rapidez frontal em colisões hadrônicas oferecem uma oportunidade
única de investigar esse regime, complementando os dados de espalhamento inelás-
tico profundo. Nesta tese, estudamos a produção de bósons de calibre eletrofracos
(G = W±, Z0, γ) em regiões de rapidez frontal no descrição da fatoração híbrida, uti-
lizando o formalismo da matriz-S de dipolo de cor. Derivamos as seções de choque
diferenciais dos processos qp→ GX e qp→ GJX, tanto no espaço do parâmetro de
impacto quanto no espaço de momento, considerando as polarizações longitudinal e
transversal. Mostramos que os resultados podem ser expressos em termos da seção
de choque dipolo–próton ou da distribuição de glúons não integrada, possibilitando
uma análise quantitativa dos efeitos de saturação nas cinemáticas do LHC e além.
Além disso, apresentamos, pela primeira vez, as expressões gerais para a produção
associada de bósons de calibre eletrofracos com jatos em regiões de rapidez frontal.
Nossos resultados generalizam e reproduzem expressões anteriores da literatura para
a produção de fótons reais e bósons Z0, e introduzem pela primeira vez a descrição
teórica da produção do bóson W± nesse formalismo. Adicionalmente, analisamos a
produção de pares de léptons em regiões de rapidez frontal, derivando os coeficientes
angulares associados ao decaimento dos bósons virtuais γ∗, Z0 e W±. Apresenta-
mos resultados numéricos para

√
s = 14 TeV no intervalo de rapidez 2.0 ≤ y ≤ 4, 5,

incluindo comparações entre diferentes modelos para a distribuição não integrada de
glúons e uma análise da relação de Lam–Tung. Os resultados apresentados nesta tese
oferecem novas perspectivas sobre a dinâmica da QCD no regime de pequeno-x e
fornecem ferramentas inéditas para o estudo fenomenológico de processos eletrofracos
em regiões de rapidez frontal nos atuais e futuros colisores de altas energias.

Palavras-chave: Produção de bósons eletrofracos em rapidez frontal; Matriz S de dipolo
de cor; Fatoração híbrida; Física de pequeno-x.
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1 INTRODUCTION

Since antiquity, the nature of matter’s fundamental constituents has captivated hu-
man inquiry, evolving into a rigorous scientific pursuit by the 19th century with the
establishment of atomic theory and the identification of the electron by J. J. Thomson.
Subsequent discoveries, including the atomic nucleus by Rutherford, the neutron by
Chadwick, and the positron and neutrino in the 1930s, progressively revealed the grow-
ing complexity of the subatomic world. These findings challenged existing models and
led to the formulation of nuclear theories describing protons and neutrons as composite
systems bound by the strong force, mediated by mesons. However, the increasing
number of strongly interacting particles observed in high-energy experiments necessi-
tated a new classification – hadrons, encompassing baryons and mesons. In the early
1960s, the quark model emerged as a framework to describe hadrons as composites of
more elementary constituents. Although initially viewed with skepticism, quarks gained
substantial empirical support in the late 1960s through deep inelastic electron-proton
scattering experiments conducted at the Stanford Linear Accelerator Center (SLAC).
These groundbreaking experiments revealed point-like substructures within the proton,
providing the first direct evidence for the existence of quarks and revolutionizing our
understanding of hadronic matter. These discoveries laid the foundation for Quantum
Chromodynamics (QCD), which explains key phenomena such as color confinement
and asymptotic freedom, and it is now a central component of the Standard Model
(SM) of particle physics. This insight, combined with the development of accelerator
technologies, paved the way for the modern understanding of hadronic matter in terms
of partons – quarks and gluons.

However, many open questions remain, requiring an extension of our understanding
of the Standard Model and/or its future modification. One of the unresolved problems
or mysteries is the description of hadrons in the high-energy regime of the strong
interactions theory. QCD predicts that, for large atomic numbers and high energies,
the hadronic system is characterized by a high parton density. This leads from a linear
dynamic regime, where only emission processes are considered, to a nonlinear regime
where parton recombination becomes significant.
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The lepton-hadron process was fundamental to improving the proton structure. In
Deep Inelastic Scattering (DIS), the large momentum transfer between the lepton and
the target allows one to resolve the individual partons — quarks and gluons — inside the
proton. Measurements from DIS have been essential in establishing the parton model
and in determining parton distribution functions (PDFs), which encode the momentum
distribution of partons within the proton. Experiments such as those at HERA extended
the reach of DIS into previously unexplored kinematic regions, further refining our
understanding of quantum chromodynamics (QCD) and the internal dynamics of the
proton. One main result from HERA is that in the low-x regime, the gluon distribution
becomes larger, and then in this region, the gluon densities dominate. As the HERA
experiment ceased operations in 2007, hadron colliders such as the Large Hadron
Collider (LHC) now provide our most powerful experimental platform for probing proton
structure, via hadronic interactions.

In this context, a natural path toward advancing our understanding of the proton’s
internal structure is through the Drell–Yan (DY) process, pp → [GX → ll]X, in which
a lepton–antilepton pair is produced via an intermediate electroweak boson (G =

γ, Z0, W±) originating from a quark–antiquark annihilation in hadronic collisions (pp
or pp). These processes are particularly valuable because the electroweak bosons
involved are color-neutral, which suppresses final-state QCD interactions. This feature
allows for a cleaner interpretation of the observed final states in terms of the initial-state
parton dynamics, making electroweak boson production a powerful probe of parton
distribution functions (PDFs), especially in kinematic regimes that complement those
accessed via DIS.

Moreover, the electroweak gauge boson production in association with hadronic jets
is among the most important processes studied at hadron colliders. Electroweak gauge
bosons — photons, Z, and W — mediate electroweak (EW) interactions, while the
associated hadronic jets arise from QCD processes, specifically from the fragmentation
and hadronization of high-energy partons (quarks and gluons) produced in the collision.
Therefore, the study of G+ jets events constitutes an ideal probe for testing QCD and
electroweak interactions as well as a major source of backgrounds to searches for new
physics. Measurements of G+ jets also validate the adequacy of the approximations
used in theoretical calculations and models used for background estimates in precision
measurements. Thanks to their large cross-sections, the colorless nature of the γ, W ,
and Z bosons as carriers of electromagnetic and weak forces, respectively, and their
high sample purities, accurate studies of G+ jets are of paramount importance for the
success of a hadron collider physics program (Tricoli; Schönherr; Azzurri, 2021). In this
scenario, the proton structure dynamics remains an open question.

For hadronic collisions, the proton structure dynamics can be investigated at forward
rapidities where there is an imbalance between the projectile parton’s and the target’s
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energy scale, allowing us to investigate the small x region of the proton dynamics.
At forward rapidities, we have an asymmetric kinematic configuration, dominated by
the interaction between partons with a large momentum fraction, x, in one of the
hadrons with partons with small x in the other. As the number of partons increases
with decreasing x, in this kinematic configuration, we have the interaction between a
diluted system (the hadron with large x) and a dense system (the hadron with small x).
Such processes are considered ideal for proving the dynamics of strong interactions in
the nonlinear regime (Gelis; Iancu; Jalilian-marian; Venugopalan, 2010; Weigert, 2005;
Jalilian-marian; Kovchegov, 2006).

The primary HERA result is the proton structure picture at small x, where it is densely
populated. This physical system description is an open question. In this thesis, our
objective is to enhance our understanding of proton dynamics in this regime, which can
be investigated at forward rapidities in hadronic collisions. However, evaluating cross-
sections in hadronic collisions is inherently nontrivial, since hadrons are not point-like
objects, but composite systems governed by QCD. Then, partons exhibit both pertur-
bative and nonperturbative dynamics, manifested through two fundamental properties
of QCD: asymptotic freedom at high energies, where interactions become weak and
perturbative calculations are reliable, and confinement at low energies, where the strong
coupling prevents the isolation of individual partons. Fortunately, factorization schemes
provide a robust theoretical framework that allows the separation of perturbative and
nonperturbative contributions, ensuring that the total cross-section can be expressed
as a convolution of these components. The most widely used framework is collinear
factorization, which assumes that partons are collinearly distributed relative to the parent
hadron. In this scheme, all nonperturbative information is encapsulated in the parton
distribution functions (PDFs) of the hadrons, while the hard scattering cross-section
is computed perturbatively. However, in specific kinematic regimes — particularly at
forward rapidities and small x — the assumptions underlying collinear factorization
may break down, then one expects a violation of collinear factorization due to the
emergence of high gluon densities and significant transverse momentum components.
Consequently, in recent years, several groups have proposed generalized factorization
schemes, which involve new objects in addition to the usual (un)integrated parton
distribution functions. In this thesis, we’ll explore the hybrid factorization formalism as
given in the Color Dipole S-Matrix framework (CDSM) proposed in the Refs. (Nikolaev;
Schafer; Zakharov; Zoller, 2003; Nikolaev; Schafer, 2005; Nikolaev; Schafer; Zakharov;
Zoller, 2005a; Nikolaev; Schafer; Zakharov, 2005a; Nikolaev; Schafer; Zakharov; Zoller,
2005b; Nikolaev; Schafer; Zakharov, 2005b). In this framework the hadronic cross-
section for the dihadron production at forward rapidities is given as a convolution of the
standard parton distributions for the dilute projectile, the parton–target cross-section
(which includes the high-density effects) and the parton fragmentation functions. This
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formalism connects perturbative QCD at high momentum transfer with the nonlinear
small x dynamics, offering a consistent framework to study forward rapidity phenomena
in collider experiments.

In this thesis, motivated by the challenges in describing proton dynamics in the high-
energy regime where high-density effects are expected to play a significant role, our
main objective is to improve the understanding of the proton structure and its impact on
physical observables. As discussed, this kinematic region is best accessed in hadronic
collisions at forward rapidities. Furthermore, the Drell–Yan process has been identified
as a powerful probe to investigate and disentangle the internal structure of the proton.
In this context, we present, for the first time, a detailed analysis of electroweak gauge
boson production at forward rapidities in hadronic collisions within the hybrid factoriza-
tion framework. In Refs. (Bandeira; Goncalves; Schäfer, 2024, 2025), we presented,
for the first time in the literature, a full derivation of the general formulae for inclusive
electroweak gauge boson production at forward rapidities within the Color Dipole S-
Matrix framework. We demonstrated that, in the appropriate limits and representations,
our results consistently reduce to those previously employed in Refs. (Kopeliovich;
Rezaeian; Pirner; Schmidt, 2007; Kopeliovich; Levin; Rezaeian; Schmidt, 2009; Santos;
Silveira; Machado, 2020; Gelis; Jalilian-marian, 2002a; Jalilian-marian; Rezaeian, 2012;
Ducloué; Lappi; Mäntysaari, 2018; Goncalves; Lima; Pasechnik; Šumbera, 2020; Lima;
Giannini; Goncalves, 2024; Kopeliovich; Raufeisen; Tarasov, 2001; Raufeisen; Peng;
Nayak, 2002; Kopeliovich; Raufeisen; Tarasov; Johnson, 2003; Betemps; Gay ducati,
2004; Betemps; Ducati; Machado; Raufeisen, 2003; Golec-biernat; Lewandowska;
Stasto, 2010; Ducati; Griep; Machado, 2014; Schäfer; Szczurek, 2016; Ducloué, 2017;
Gelis; Jalilian-marian, 2002b; Baier; Mueller; Schiff, 2004; Stasto; Xiao; Zaslavsky,
2012; Kang; Xiao, 2013; Basso; Goncalves; Krelina; Nemchik; Pasechnik, 2016; Basso;
Goncalves; Nemchik; Pasechnik; Sumbera, 2016; Marquet; Wei; Xiao, 2020) for es-
timating real photon and Z0 production. Moreover, the cross-section for W± boson
production within the hybrid factorization framework was derived for the first time, repre-
senting a novel contribution to the theoretical description of electroweak processes at
forward rapidities. Lastly, in Ref. (Bandeira; Goncalves; Schäfer, 2025), we investigate
the angular distributions of leptonic pairs (l1l2), extending the results of Ref. (Schäfer;
Szczurek, 2016) to cases where the dilepton system originates from the decay of Z0

or W± gauge boson. We present the main theoretical ingredients required to explore
spin-vector and tensor polarization effects, among other polarization observables. As a
result, we provide a comprehensive framework to study proton dynamics in hadronic
collisions at forward rapidities through inclusive observables, offering new insights into
the interplay between QCD dynamics and electroweak processes in the high-energy,
small x regime.

This document is structured as follows. In the next chapter, we introduce the
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fundamental concepts of Quantum Chromodynamics (QCD), including confinement
and asymptotic freedom. As a direct consequence of these properties, the calculation
of hadronic cross-sections becomes nontrivial and requires the use of factorization
schemes. We will discuss the collinear factorization framework in detail, followed by an
overview of the kinematics involved in hadronic collisions. Special attention will be given
to the forward rapidity region, where the asymmetric momentum configuration leads to
the breakdown of collinear factorization and necessitates alternative approaches.

In Chap. 3, the color dipole S-matrix framework which is a hybrid factorization scheme
will be presented where the hadronic cross-section is described as a convolution of
the dilute incoming parton PDF and the parton-target cross-section. Although a series
of analysis was performed using such framework, we will extend it to the electroweak
gauge boson production — which was a gap in the literature. For such extension, the
parton-target cross section depends on the dipole-proton cross-section and the light
front wave function (LFWF) of an electroweak gauge boson radiated off a quark. We
will derive for the first time the generic LFWF’s.

From the derivation present before, in Chap. 4 we will derive both isolated and
gauge boson + jet parton-target cross-section. We will also demonstrate that, in the
appropriate limits and representations, our expressions consistently reduce to those
found in the literature for real photon and Z0 production, thereby validating the formalism.
Additionally, we will present, for the first time within this framework, the derivation of the
cross-section for W± boson production.

Furthermore, in Chap. 5, we extend our formalism showed so far to a less inclusive
observable, the lepton pair angular distribution. We will demonstrate that our formalism
implies that the angular distribution is fully characterized by six nonvanishing angular
coefficients. In addition, we present the results for the transverse momentum depen-
dence of the distinct angular coefficients considering pp collisions. Finally, in Chap. 6
we will summarize our main results and conclusions.

Some remarks are in order. All figures in this document that do not have an explicitly
indicated source were produced by the author. The conventions and notations adopted
throughout this thesis are summarized in Appendix A. Additionally, this document was
reviewed with the assistance of AI tools to enhance the clarity and grammar of the
English text. To maintain the narrative focus and flow, we have chosen not to include
the study performed in Ref. (Bandeira; Goncalves, 2023), which analyzed higher-twist
contributions in eA collisions within the context of the EIC proposal. Lastly, it is worth
mentioning that a six-month research internship was conducted at the Institute of
Nuclear Physics (INP/PAN) in Kraków, Poland, with funding provided by CAPES. During
this period, the author had the opportunity to present and discuss several of the results
reported in this thesis.



2 BASIC CONCEPTS

The current understanding of the fundamental constituents of matter is encapsulated
in the Standard Model. This theory provides a comprehensive description of elementary
particles and their interactions. There are four fundamental forces known to exist:
gravitational, electromagnetic, weak, and strong. Notably, the Standard Model does
not encompass gravity. Fig. 1 presents a schematic overview of the Standard Model,
delineating between fermions and bosons, characterized by their fractional or integer
spins, respectively. Fermions are further categorized into quarks and leptons. These
three particle types — quarks, leptons, and bosons — form the basis of the Standard
Model.

Bosons are classified into gauge bosons and the Higgs boson. Gauge bosons
mediate the interactions described by quantum field theories, while the Higgs boson
is responsible for endowing other particles with mass (Thomson, 2013). Quarks and
leptons are organized into three generations, with each subsequent generation having
particles with identical quantum numbers but larger masses.

The photon (γ), a gauge boson, mediates electromagnetic interactions as described
by quantum electrodynamics (QED). Any charged fermion can participate in electro-
magnetic interactions. The Z and W bosons, on the other hand, mediate the weak
force, which is responsible for certain types of radioactive decay. Fermions possess a
quantum number known as “flavor”, which distinguishes different types of quarks and
leptons. For instance, leptons have flavors such as electron, electron neutrino, muon,
muon neutrino, tau, and tau neutrino. Quarks, conversely, have flavors like up, down,
charm, strange, top, and bottom. The electromagnetic and weak forces can be unified
into a single electroweak theory.

Finally, the gluon, another gauge boson, mediates the strong force, which is de-
scribed by quantum chromodynamics (QCD). Quarks possess a quantum number called
“color charge”, which allows them to interact via the strong force. Unlike the other forces,
color charge is unique to quarks and gluons. A distinguishing feature of quarks is that
they are always bound together in composite particles, such as protons and neutrons,
because of the confining nature of the strong force. This phenomenon will be explored
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Figure 1 – Illustration of the Standard Model.

in more detail in the subsequent section.

2.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is a quantum field theory that describes the
strong interactions occurring within hadrons between quarks and gluons, endowed with
a non-Abelian gauge symmetry of the SU(3) color group. That is, all color carriers are
subject to strong interactions. The Lagrangian density for QCD, invariant under SU(3)
group transformations, is ( /D = γµDµ)

LQCD =
∑
f

ψf

(
i /D −mfI

)
ψf −

1

4
F a
µνF

aµν + LGF + LFPG. (1)

The first term describes quarks, where the quark field is represented by ψ with mass
mf , and the sum is over all six flavors f . I represents the identity matrix and Dµ is the
covariant derivative, defined as follows

Dµ ≡ I∂µ + igtaAa
µ, (2)

where g determines the coupling of both the quark field and the gluon field, as well
as of the gluons among themselves. The color matrix t a acts as a generator of the
SU(3) color group. In a fundamental representation, the color matrices are related to
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the Gell-Mann matrices as follows ta = λa/2 (Muta, 2010), which satisfy

[
ta, tb

]
= ifabctc and Tr

(
tatb
)
=

1

2
δab, (3)

where a, b, c = 1, 2, . . . 8. The structure constants fabc are antisymmetric under the
exchange of two indices, i.e., fabc = −f bac and satisfy the Jacobi identity:

fadcf bcd + f bdcf cad + f cdefabd = 0. (4)

The tensor F a
µν in the second term of Eq. (1), which represents the interaction

between the gluon fields, is defined as follows

F a
µν ≡ ∂µA

a
ν − ∂Aa

µ + gfabcAb
µA

c
ν . (5)

From a simple comparison between the tensor Fµν of QED and the tensor F a
µν of

QCD, we see that in the case of QCD there is the presence of the term gfabcAb
µA

c
ν ,

which allows the self-interaction of the gluon field, that is, in QCD the gauge bosons
self-interact. This property is fundamental to justify the properties and effects that will
be seen later.

To finalize our analysis of the QCD Lagrangian density, we have that the last two
terms in Eq. (1) correspond to gauge fixing (GF) and the Faddeev-Popov ghost (FPG)
field. For more details, see Ref. (Muta, 2010).

A crucial feature of QCD arises from the renormalization process, employed to
address infinities that emerge in quantum field theories such as QCD. In QED, renor-
malization is used to manage infinities arising from loop diagrams, as illustrated in
Fig. 2. These calculations reveal that the coupling constant varies with distance and is
inversely proportional to the scale Q. The explicit summation of loop diagrams, depicted
in Fig. 2, produces an expression for electromagnetic coupling, αem(Q

2). The distance
dependence in the electromagnetic case is weak, which implies that the approximation
αem ≃ 1/137 is sufficiently accurate (Griffiths, 2008). In QED, the electron is surrounded
by virtual photons and virtual electron-positron pairs that continually annihilate and
create each other (Greiner; Reinhardt, 2008). Due to the attraction between oppo-
site charges, virtual positrons tend to approach the electron, thereby screening the
electron’s charge. This phenomenon is analogous to the polarization of a dielectric
medium in the presence of an electric charge and is termed vacuum polarization. This
interpretation accounts for the fact that in QED, the coupling becomes stronger as the
charges approach each other (larger Q2).

In QCD, the same interpretation cannot be inferred, as the QCD vacuum is not
solely composed of virtual qq pairs but also contains gluons, given that gluons are self-
interacting. Consequently, unlike QED, in QCD, in addition to quark-quark-gluon vertices
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Figure 2 – Renormalization in QED
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(quark loops), which screen the quark’s color charge, leading to a strong increase in the
strong interaction coupling constant at short distances, there are also direct gluon-gluon
vertices (gluon loops), as seen in Figure 3, which have an opposite effect to quark loops,
producing antiscreening that decreases the coupling at short distances. The resulting
form of the QCD coupling constant is given by (Muta, 2010):

αs(Q
2) =

12π

(11Nc − 2Nf ) ln (Q
2/Λ2QCD)

, for Q≫ ΛQCD, (6)

where the parameter ΛQCD is introduced as a scale characterizing the non-perturbative
region. The value ΛQCD ≈ 200 ∼ 300MeV is not predicted theoretically but is determined
experimentally and depends on the renormalization scheme used (Bethke, 2009).

From the Standard Model, we have that for quarks Nc = 3 and Nf = 6, hence
11Nc > 2Nf , causing the antiscreening effect to dominate and, consequently, the
coupling constant to decrease with increasing Q2. This leads to quarks confined within
hadrons acting almost as free particles when probed at sufficiently high energies.
This property of strong interactions is called asymptotic freedom. Asymptotic freedom
enables the use of perturbation theory, leading to quantitative predictions for physical
observables in hadronic interactions. Conversely, as the distance increases, the coupling
becomes so strong that it becomes impossible to isolate a quark from a hadron. This
mechanism is called confinement.

The behavior of the coupling constant given by Eq. (6) is presented in Figure 4,
where the properties of asymptotic freedom and confinement are explicitly shown by
the asymptotic limits of the coupling constant. A comprehensive discussion of this topic
is presented in Ref. (d’enterria et al., 2024), which provides an updated perspective.
Furthermore, Figure 4 shows that the intensity of the QCD coupling varies considerably
within the range of Q relevant to particle physics in the high energy regime. The low
transverse momentum regime, Q≪ ΛQCD, where αs ≈ 1, is the regime in which the use
of perturbation theory is not valid (soft QCD). This is the regime of color confinement.
On the other hand, the high transverse momentum regime, Q ≫ ΛQCD, where αs is
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Figure 4 – The evolution of the QCD coupling αs as a function of the scale Q
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sufficiently small, allows for the use of perturbation theory, hence we have perturbative
QCD (pQCD) (Collins, 2023).

Therefore, QCD predicts two opposed behaviors for the coupling, implying that in
collision processes, both short-distance (pQCD) and long-distance non-perturbative
QCD effects will be present. Consequently, the calculation of cross-sections for these
processes that depend on QCD dynamics becomes complex. However, factorization
theorems allow for the separation of these contributions and the realization of precise
calculations of the observables.

The hadron structure dynamics is ruled by QCD and its evolution is given by the
DGLAP evolution equation (Dokshitzer, 1977; Altarelli; Parisi, 1977; Gribov; Lipatov,
1971),

∂qi(x,Q
2)

∂ lnQ2
=
αs

2π

∫ 1

x

dy

y

[
qi(y,Q

2)Pqq(x/y) + g(y,Q2)Pqg(x/y)
]

(7)

for the quark sector and

∂g(x,Q2)

∂ lnQ2
=
αs

2π

∫ 1

x

dy

y

[∑
i

qi(y,Q
2)Pgq(x/y) + g(y,Q2)Pgg(x/y)

]
. (8)

for the gluon sector. In eq. (7) and eq. (8), qi(x,Q2) and g(x,Q2) are the quark distribution
of flavor i and the gluon distribution, respectively. These evolution equations govern
the scale dependence of the parton distribution functions (PDFs), allowing them to be
evolved to a given virtuality Q2.

Using global fits that account for both nonperturbative and perturbative contributions,
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Figure 5 – Parton densities as extracted from HERA data by H1, ZEUS and CTEQ collaborations
at Q2 = 10 GeV2. The sea quark and gluon densities are reduced by a factor of 20.
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one can reconstruct the internal structure of the proton in terms of its parton content.
Figure 5 illustrates this, presenting the valence quark densities, the total sea quark
contribution, and the gluon distribution, as extracted by the HERA collaborations H1
and ZEUS (Adloff et al., 2003; Chekanov et al., 2003), compared with the CTEQ global
fit results (Pumplin; Stump; Huston; Lai; Nadolsky; Tung, 2002), which incorporate a
wide range of DIS data. It is important to note that, in Fig. 5, both the sea quark and
gluon distributions have been rescaled by a factor of 20 for visualization purposes. This
rescaling emphasizes that, at small values of x, the proton becomes densely populated
by gluons.

2.2 Factorization

The fundamental problem that factorization theorems address is how to compute
high-energy scattering cross-sections. In the following, we will consider the example
of hadron-hadron interactions. More specifically, we will address the production of
dihadrons in pp collisions, p + p → H1 + H2 + X, as depicted in Fig. 6, using the
collinear factorization scheme, where partons inside the hadron move collinearly with
the hadron. Thus, the partons have momenta approximately xP , where x ∈ (0, 1) and
P is the momentum of the hadron. The description of partons inside the hadron is
given by parton distribution functions fi(x,Q2), which are non-perturbative quantities
that characterize the probability of finding a parton of a given flavor i with a momentum
fraction x. However, the interaction between partons from different incident hadrons
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Figure 6 – Illustration of the collinear factorization theorem for a dihadron production in a pp
collision.
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occurs at short distances and is therefore amenable to a perturbative description. Such
a description is given by the cross-section for the partonic process i + j → q + q, σ̂ij.
The partons will form hadrons in the final state due to the confinement property. This
hadronization is generally described by fragmentation functions (FFs), Dk/h, which
provide the probability that a flavor parton k will generate a given hadron h. The
factorization theorem is based on the fact that the description of the initial state, the
interaction, and the formation of hadrons in the final state occurs at different distance
scales, which can be factorized and described by PDFs, partonic cross-sections, and
FFs. Therefore, the cross-section of the discussed process is:

σpp→H1H2X =
∑
i,j

∫ 1

0

dx1dx2fi(x1, µF )fj(x2, µF )σ̂ij→fk(µF , µ)

×
∫ 1

zmin

dz

z2
DH1(z, µ2)

∫ 1

z′min

dz′

z′2
DH2(z′, µ2) , (9)

where µF is the factorization scale. Thus, the pp collision is divided into three steps: the
collinear distribution of partons inside the protons, the hard interaction between partons
(perturbative part), and the fragmentation of the produced heavy quark. This separation
and convolution of the elements are a consequence of factorization.
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In the case of the Drell–Yan process, pp→ [GX → ll]X, where G = γ, Z0, W±, the
collinear factorization framework implies that the cross-section can be expressed as a
convolution of the proton parton distribution functions (PDFs), the partonic cross-section
i+ j → G+X, denoted by dσ̂ij, and a function FG(M), which encodes the decay of the
electroweak gauge boson into a lepton pair. The function FG(M) plays a role analogous
to fragmentation functions (FFs) in dihadron production processes discussed previously.

Therefore, summarizing, in the collinear factorization the cross-section for lepton
pair production is written as a convolution of the partonic cross-section with the PDFs
for each of the colliding protons as

dσ(pp→ [G→ ll]X)

dQ2dydM2
= FG(M)

dσ(pp→ GX)

dQ2dy
,

= FG(M)
∑
i,j

∫ 1

0

dx1dx2fi(x1, µF )fj(x2, µF )
dσ̂ij→GX(µF , Q

2)

dQ2dy
,

(10)

where µF is the factorization scale. In the collinear factorization, the pp collision —
whether in dihadron or Drell–Yan processes — is typically described in three stages: (i)
the collinear distribution of partons inside the protons, (ii) the hard scattering between
partons, which is treated perturbatively, and (iii) the decay of the produced particle. This
separation, and the convolution of these components, is a direct consequence of the
factorization theorem.

Despite its many successes, collinear factorization is expected to break down in the
high-energy regime and/or in collisions involving nuclei (Gelis; Iancu; Jalilian-marian;
Venugopalan, 2010; Weigert, 2005; Jalilian-marian; Kovchegov, 2006). Such breakdown
is anticipated when the transverse momentum of partons becomes non-negligible and
the parton density reaches high values. This motivates the development and application
of alternative factorization schemes, which will be explored in the following chapters.

2.3 Hadron scattering variables

In hadron–hadron collisions, the momentum fractions x1 and x2 of the two interacting
partons are unknown, and the event kinematics have to be described by three variables,
for example Q2 , x1 and x2 . These three independent kinematic variables can be related
to three experimentally well-measured quantities. In hadron collider experiments, the
scattered partons are observed as jets. In a process such as pp → two jets +X, the
angles of the two-jets with respect to the beam axis are relatively well measured. In this
context, the most commonly used variables to describe the event kinematics are the
transverse momentum pT and the rapidities of the final-state particles. The transverse
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Figure 7 – A simpler picture of detector’s angular relation at pp collisions, and how it connects
with the rapidity variable.

Detector

momentum is defined as the component of momentum perpendicular to the beam axis,

pT =
√
px + py , (11)

and is a Lorentz-invariant quantity under boosts along the beam direction. Rapidity is
defined as

y =
1

2
ln

(
E + pz
E − pz

)
, (12)

and is essential to treat the very high energy product of a collision, in the highly relativistic
regime. If a particle is directed mainly in the transverse plane, perpendicular to the
beam, then pz is small and the rapidity is close to zero. On the other hand, if the particle
moves predominantly along the beam axis (+z direction), then E ≃ pz and y → ∞.
Similarly, if the particle travels in the −z direction, y → −∞. Thus, rapidity is near zero
for transverse particles and tends to ±∞ for particles collimated with the beam axis.

The angles of the outgoing jets relative to the beam are often expressed in terms of
pseudorapidity which is defined as,

η = − ln

[
tan
(θ
2

)]
, (13)

and depends only on the polar angle θ with respect to the beam axis. For highly
relativistic particles, y ≃ η. Hence, in high-energy hadron colliders such as the LHC, the
two quantities are effectively equivalent.

In Fig. 7, we have the pp collision description within the detector and how the angle
between the jet, the product of the collision, and the collision plane is used to determine
the rapidity. Additionally, particles produced perpendicularly with the collision plane
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imply in η ≈ 0 and this is called the central region, in contrast when the particle produced
is close to the collision plane and the rapidity goes into larger values it is in what is
called the forward rapidity region.

The momentum fractions x1 and x2 can be directly related to the final-state observ-
ables via the expressions (Thomson, 2013)

x1 =
pT√
s
(ey1 + ey2) , (14)

x2 =
pT√
s

(
e−y1 + e−y2

)
, (15)

where
√
s is the center-of-mass energy of the proton-proton system, y1 and y2 are the

rapidities of the two final-state particles (e.g., jets, gauge bosons).
In the forward rapidity region, we have an asymmetric kinematic configuration,

dominated by the interaction between partons with a large momentum fraction, x, in
one of the hadrons with partons with small x in the other. As the number of partons
increases with decreasing x, in this kinematic configuration, we have an interaction
between a diluted system (the hadron with large x) and a dense system (the hadron with
small x). This is precisely the kinematic regime where the study of small-x dynamics,
high gluon densities, and nonlinear QCD effects becomes essential.

In addition, as mentioned in the previous section, nonlinear effects are expected to
become comparable in magnitude to linear ones at small values of x, due to the high
gluon density in the proton. As a result, the QCD dynamics in this regime cannot be
properly described by linear evolution equations such as DGLAP, which neglect these
effects.

2.4 Conclusion

In this chapter, we provided a comprehensive review of the foundational concepts
underlying the calculation of hadronic collision cross-sections. We began by presenting
the Standard Model, detailing the current understanding of the fundamental constituents
of matter, categorized into fermions and bosons. Furthermore, we discussed the
quantum field theories that govern the behavior and interactions of these particles. Of
particular importance is Quantum Chromodynamics (QCD), the theory describing the
strong interaction between quarks and gluons — the color-charged fundamental building
blocks of matter.

Hadronic observables governed by QCD dynamics cannot be calculated directly from
first principles and are therefore treated using perturbative QCD at a given perturbative
scale. Although perturbative QCD provides mathematical results, physical processes
such as proton-proton (pp) collisions depend on more than just these perturbative calcu-
lations. Consequently, factorization schemes are employed, allowing the description
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of these processes as a convolution of perturbative and non-perturbative contributions.
Additionally, QCD dynamics describe the internal structure of hadrons, and it has been
shown that at small values of the momentum fraction x, the proton is densely populated
with gluons.

The collinear factorization scheme is often used to describe hadron-hadron scat-
tering, however at forward rapidities we have an asymmetric kinematic configuration,
dominated by the interaction between partons with a large momentum fraction, x, in
one of the hadrons with partons with small x in the other. As the number of partons
increases with decreasing x, in this kinematic configuration, we have an interaction
between a diluted system (the hadron with large x) and a dense system (the hadron
with small x). Consequently, one expects that nonlinear effects become of the same
order as linear ones in the dense system (small x) which leads to collinear factorization
violation.

Thus, at forward rapidities region, others schemes of factorization are proposed.
In what follows, it will be presented the hybrid factorization scheme which provides
a consistent framework for processes at forward rapidities. It incorporates both the
dilute nature of the projectile (described by standard PDFs) and the dense, nonlinear
dynamics of the small x target (encoded in unintegrated gluon distributions or dipole
cross-sections). This framework will be the focus of the following chapters, where we
explore its application to electroweak gauge boson production in hadronic collisions.



3 THE COLOR - DIPOLE S - MATRIX FRAMEWORK AND THE
GAUGE BOSON PRODUCTION

The description of particle production at forward rapidities in hadronic collisions at
high energies and nuclear targets is still an open question. In recent years, several
groups have proposed generalized factorization schemes, which involve new objects
in addition to the usual (un)integrated parton distribution functions (Nikolaev; Schafer;
Zakharov; Zoller, 2003; Nikolaev; Schafer, 2005; Nikolaev; Schafer; Zakharov; Zoller,
2005a; Nikolaev; Schafer; Zakharov, 2005a; Nikolaev; Schafer; Zakharov; Zoller, 2005b;
Nikolaev; Schafer; Zakharov, 2005b; Fujii; Gelis; Venugopalan, 2005; Dominguez;
Marquet; Xiao; Yuan, 2011; Dominguez; Marquet; Stasto; Xiao, 2013; Kotko; Kutak;
Marquet; Petreska; Sapeta; Hameren, 2015). In particular, in the hybrid factorization
scheme, the hadronic cross-section for the dihadron production at forward rapidities is
schematically expressed as a convolution of the standard parton distribution function
for the dilute projectile, fa/A(x1), the parton-target cross-section, dσ(aB → bc), which
includes the QCD dynamics effects, and the parton fragmentation functions, DH1/b and
DH2/b, i.e.,

dσ(hAhB → H1H2X) ∝ fa/A(x1)⊗ dσ(aB → bc)⊗DH1/b ⊗DH2/b. (16)

The references mentioned above have demonstrated the parton-target cross-section
derivation where the final state particles are partons is not trivial and implies, depending
on the approach considered for estimating this quantity, the presence of quadrupole
correlators of fundamental Wilson lines or the contribution of a four partons S matrix.

In this chapter, we introduce a hybrid factorization framework used to describe the
parton–target cross-section, known as the Color Dipole S-Matrix (CDSM), originally
proposed by Nikolaev and collaborators. We then focus on a simplified case in which
one of the final-state particles is an electroweak gauge boson (G = W±, Z0, γ), a
configuration that has not been explored in the literature so far. Additionally, this chapter
serves as a brief review of the results presented in Ref. (Bandeira; Goncalves; Schäfer,
2024).
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Figure 8 – The color dipole structure (left-hand side) of the generic three-parton state and
(right-hand side) of the three-parton state entering the color-dipole description of fragmentation
a → bc with formation of the bc dipole of size rrr.

Source: extract from (Nikolaev; Schafer, 2005).

3.1 The color - dipole S - matrix framework

At forward rapidity, the projectile parton has a large longitudinal momentum x1 and
the target structure is dominated by gluons, since x2 ≪ 1. As a consequence, the
pp cross-section is determined by the ag → bc subprocess, where b and c can be
both partons or a combination of a quark and an electroweak gauge boson for an
incident quark (a = qf ). In the laboratory frame, such a process can be viewed as
an excitation of the perturbative |bc⟩ Fock state of the physical projectile |a⟩ by a one -
gluon exchange with the target proton (Nikolaev; Piller; Zakharov, 1995, 1996). At high
energies, the parton a can be assumed to propagate along an arbitrary line with a fixed
impact parameter. The perturbative transition a→ bc can be described in terms of the
Fock state expansion for the physical state |a⟩phys, which at the lowest order is given by
(Nikolaev; Schafer; Zakharov; Zoller, 2003)

|a⟩phys = |a⟩0 +Ψ(zb, r)|bc⟩0 , (17)

where |...⟩0 refers to bare partons and Ψ(zb, r) is the probability amplitude to find the bc
system with separation r in the two-dimensional impact parameter space. Considering
that the impact parameter is conserved in the process, the action of the S matrix on
|a⟩phys can be expressed as follows (Nikolaev; Schafer; Zakharov; Zoller, 2003)

S|a⟩phys = Sa(b)|a⟩0 + Sb(bb)Sc(bc)Ψ(zb, r)|bc⟩0
= Sa(b)|a⟩phys + [Sb(bb)Sc(bc)− Sa(b)]Ψ(zb, r)|bc⟩ , (18)

where in the last line we have decomposed the final state into the elastically scattered
|a⟩phys and the excited state |bc⟩. Moreover, one has assumed that the impact parameter
of the parton a is b, which implies bb = b+ zcr and bc = b− zbr, with zi the fraction of
the longitudinal momentum of parton a carried by the particle i (for i = b, c), see Fig. 8.

The last two terms in eq. (18) describe the scattering on the proton of the bc system,



31

Figure 9 – Two-body density matrix S-matrix structure for a → bc excitation.

Source: extract from (Nikolaev; Schafer, 2005).

which was formed before the interaction, and the transition a→ bc after the interaction
of a with the proton. It is important to emphasize that the contribution associated
with the transition a → bc inside the target vanishes in the high - energy limit. The
differential cross-section for the production of a dijet system, with momenta pb and pc, is
proportional to the modulus square of the scattering amplitude for the ag → bc process,
which is given by (Nikolaev; Schafer, 2005)

A =

∫
d2bb d

2bc exp [−i(pb · bb + pc · bc)][Sb(bb)Sc(bc)− Sa(b)]Ψ(zb, r) . (19)

As a consequence, the master formula for the dijet production in the color - dipole S
- matrix framework is given by (Nikolaev; Schafer; Zakharov; Zoller, 2003)

dσ(a→ b(pb)c(pc))

dzd2pbd
2pc

=
1

(2π)4

∫
d2bbd

2bcd
2b′bd

2b′c exp[ipb · (bb − b′b) + ipc · (bc − b′c)]

× Ψ(z, bb − bc)Ψ
∗(z, b′b − b′c)

{
S
(4)

b̄c̄cb
(b′b, b

′
c, bb, bc)

× +S
(2)
āa (b

′, b)− S
(3)

b̄c̄a
(b, b′b, b

′
c)− S

(3)
ābc(b

′, bb, bc)
}
, (20)

where we have defined the quantities

S
(2)
aā (b

′, b) = S†
a(b

′)Sa(b) , (21)

S
(3)
ābc(b

′, bb, bc) = S†
a(b

′)Sb(bb)Sc(bc) , (22)

S
(3)

b̄c̄a
(b, b′b, b

′
c) = S†

b(b
′
b)S

†
c(b

′
c)Sa(b) , (23)

S
(4)

b̄c̄cb
(b′b, b

′
c, bb, bc) = S†

b(b
′
b)S

†
c(b

′
c)Sc(bc)Sb(bb) . (24)

As the hermitian conjugate S† can be viewed as the S matrix for an antiparticle, one
has that S(2)

aā (b
′, b) represents the S matrix for the interaction of the aā state with the

target, with ā propagating at the impact parameter b′. The averaging over the color
states of the beam parton a implies that one has a color - singlet aā state. Similarly, S(3)

ābc

and S(4)

b̄c̄cb
can be associated with the interaction of the color - singlet ābc and b̄c̄cb systems,
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respectively. This is shown schematically in Fig. 9. From the optical theorem, one can
connect the S matrix with the dipole cross-section. Therefore, the S(2) and S(3) are
readily calculated in terms of the 2-parton and 3-parton dipole cross-section (Nikolaev;
Schafer, 2005).

A detailed discussion about how to calculate these quantities (S(3)
ābc and S(4)

b̄c̄cb
) in the

general case was presented in a series of publications (Nikolaev; Schafer; Zakharov;
Zoller, 2003; Nikolaev; Schafer, 2005; Nikolaev; Schafer; Zakharov; Zoller, 2005a; Niko-
laev; Schafer; Zakharov, 2005a; Nikolaev; Schafer; Zakharov; Zoller, 2005b; Nikolaev;
Schafer; Zakharov, 2005b), which we refer for the interested reader. In what follows,
we focus on the a→ Gc process, where G denotes an electroweak gauge boson. This
channel, which had not been previously addressed in the literature, was investigated in
Ref. (Bandeira; Goncalves; Schäfer, 2024), filling an important gap in the theoretical
description.

3.2 Electroweak gauge boson production

In what follows, we will consider one simplest case, where one of the particles
in the final state is an electroweak gauge boson (G = W±, Z0, γ), as represented in
Fig. 10, where qf is the incoming quark and qk is the outgoing quark. For producing
an electroweak gauge boson, one has that the master equation simplifies, since they
are color - singlet objects. In particular, for b = G and c = q, we have the following
simplifications: S(4)

b̄c̄cb
→ S

(2)
qq̄ and S(3)

ābc → S
(2)
qq̄ . Therefore, the differential cross-section for

the production of gauge boson associated with a quark is given by

dσf
T,L(qfp→ G(pG)qk(pq))

dzd2pGd
2pq

=
1

(2π)4

∫
d2bGd

2bqd
2b′Gd

2b′q

× exp
[
ipG · (bG − b′G) + ipq · (bq − b′q)

]
×ΨT,L(z, bG − bq)Ψ

∗
T,L(z, b

′
G − b′q)

×
{
S
(2)
qq̄ (b

′
q, bq) + S

(2)
qq̄ (b

′, b)− S
(2)
qq̄ (b, b

′
q)− S

(2)
qq̄ (b

′, bq)
}
.

(25)

Here, the G-boson and the final state quark share the light-cone plus momentum of
the incoming quark in fractions z and 1− z, respectively. Conservation of orbital angular
momentum leads to the relations

b = zbG + (1− z)bq , b
′ = zb′G + (1− z)b′q , (26)

between the impact parameters of incoming and outgoing partons in amplitude and
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Figure 10 – Typical diagram contributing for the gauge boson + hadron production in hadronic
collisions, where the gauge boson is irradiated by a quark of flavor f after the interaction with
the target color field (denoted by a shaded circle). For the W± radiation one has qk ̸= qf .

G = γ, Z0, W±

qf
qk

h

Proj. Target

complex conjugate amplitude, respectively. Introducing

r = bG − bq , r
′ = b′G − b′q , (27)

we can thus express the relevant impact parameters as

bG = b+ (1− z)r , bq = b− zr

b′G = b′ + (1− z)r′ , b′q = b′ − zr′ . (28)

Changing variables in the impact parameter space integration, we can write

dσf
T,L(qf → G(pG)qk(pq))

dzd2pGd
2pq

=
1

(2π)4

∫
d2rd2r′ exp

[
i((1− z)pG − zpq) · (r − r′)

]
×ΨT,L(z, r)Ψ

∗
T,L(z, r

′)

×
∫
d2bd2b′ exp

[
i(pG + pq) · (b− b′)

]
×
{
S
(2)
qq̄ (b

′ − zr′, b− zr) + S
(2)
qq̄ (b

′, b)

−S(2)
qq̄ (b

′ − zr′, b)− S
(2)
qq̄ (b

′, b− zr)
}
.

(29)

One has that the conjugate variable to r − r′ is the light-cone relative momentum

k = (1− z)pG − zpq . (30)

Introducing the transverse momentum decorrelation ∆ = pG + pq, as well as

s = b− b′ , B =
b+ b′

2
, (31)

allows us to express the differential cross-section in terms of the qq̄ dipole cross-section
after integrating out B. To simplify the notation, we express the cross-section in terms
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of the variables kand ∆, for which it takes the form

dσf
T,L(qf → G(pG)qk(pq))

dzd2kd2∆
=

1

2(2π)4

∫
d2rd2r′ exp[ik · (r − r′)]

×ΨT,L(z, r)Ψ
∗
T,L(z, r

′)

∫
d2s exp[i∆ · s]

×
{
σqq̄(s+ zr′) + σqq̄(s− zr)− σqq̄(s− z(r − r′))− σqq̄(s)

}
,

(32)

where we made use of the definition of the dipole cross-section in terms of the qq̄

S-matrix:

σ(r) = 2

∫
d2B

[
1− S

(2)
qq̄

(
B +

r

2
,B − r

2

)]
. (33)

The equation (32) is the main ingredient to estimate the associated production of
an electroweak gauge boson with a hadron. Assuming that the projectile quark is
unpolarized, we can write parton-target cross-section for the electroweak gauge boson
production as

dσf
T,L(qf → G(pG)qk(pq))

dzd2kd2∆
=

1

2(2π)4

∫
d2rd2r′ exp[ik · (r − r′)]

×
(
ρVT,L(z, r, r

′) + ρAT,L(z, r, r
′)
) ∫

d2s exp[i∆ · s]

×
{
σqq̄(s+ zr′) + σqq̄(s− zr)− σqq̄(s− z(r − r′))− σqq̄(s)

}
,

(34)

where r and r′ are the quark-G transverse separations in the total radiation amplitude
and its conjugated, respectively. Moreover, the average over quark polarization implies
that

ρVT,L(z, r, r
′) + ρAT,L(z, r, r

′) =
∑

quark pol.
ΨT,L(z, r)Ψ

∗
T,L( r

′) , (35)

with

ρTV (z, r, r
′) =

1

2

∑
λ,λ′,λG

ΨT,λG

V (z, r)ΨT,λG∗
V (z, r′) , (36a)

ρTA(z, r, r
′) =

1

2

∑
λ,λ′,λG

ΨT,λG

A (z, r)ΨT,λG∗
A (z, r′) , (36b)

ρLV (z, r, r
′) =

1

2

∑
λ,λ′

ΨL
V (z, r)Ψ

L∗
V (z, r′) , (36c)
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ρLA(z, r, r
′) =

1

2

∑
λ,λ′

ΨL
A(z, r)Ψ

L∗
A (z, r′) . (36d)

Therefore, the transverse momentum spectrum for the electroweak gauge boson
production in the qp → GX channel is fully determined by the dipole - proton cross -
section σqq̄, which encodes the QCD dynamics, and by the squared light cone wave
functions, represented by the functions ρji , defined in eq. (36). Since the dipole -
proton cross - section can be determined, e.g., using the HERA data (Golec-biernat;
Wusthoff, 1998, 1999; Iancu; Itakura; Munier, 2004; Rezaeian; Siddikov; Klundert;
Venugopalan, 2013; Kowalski; Teaney, 2003; Kowalski; Motyka; Watt, 2006), the main
unknown component for evaluating the parton-target cross - section for electroweak
gauge boson production is the wave function, ΨT,L(z, r), associated with an electroweak
gauge boson radiated off a quark, qf → Gqk. This calculation was performed in detail in
Ref. (Bandeira; Goncalves; Schäfer, 2024).

3.3 Light cone wave function of the gauge boson radiation off a
quark

To estimate the light front wave function for the gauge boson radiation off a quark, let
us consider the diagram presented in Fig. 11, which represents the qa → qbG transition1,
where quarks a, b are allowed to have different masses ma, mb which generalizes the
transition to flavor exchange from the production of a W± boson.

The gauge boson polarization vectors are

ET
µ (λG) = E⊥

µ (λG)−
pG · E⊥(λG)

p+G
n−
µ , EL

µ =
1

MG

pGµ −
MG

p+G
n−
µ , (37)

where λG is the gauge boson helicity. We denote the LF components of four-vectors as
a = [a+, a−,a], so that the polarization vectors take the form

ET (λG) =

[
0 ,

pG ·E(λG)

p+G
, E(λG)

]
, EL =

1

MG

[
p+G ,

p2
G −M2

G

2p+G
, pG

]
, (38)

with

E(λ) = − 1√
2
(λêx + iêy) . (39)

Therefore, the four momenta of the on-shell particles read in component form:

pµa =
[
p+a ,

m2
d

2p+a
,000
]
, kµ ≡ pc =

[
zp+a ,

k2 +M2
W

2zp+a
,k
]
, pµb =

[
(1− z)p+a ,

k2 +m2
u

2(1− z)p+a
,−k

]
,(40)

1In what follows, the indexes a and b are equals to the f and k indexes used previously.
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Figure 11 – Diagram representing the emission of a gauge boson of mass MG and polarization
λG by an incident quark of mass ma and polarization λ that becomes a quark of mass mb and
polarization λ′. For γ and Z0 radiation one has qa = qb, which implies ma = mb.

qa(λ,ma)

qb(λ
′,mb)

G(λG,MG)

p+a

zp+a , k

(1− z)p+a , k

so that we obtain for the LF-“energy denominator”

p−a − p−b − k− = − k2 + ϵ2

2z(1− z)p+a
, (41)

with

ϵ2 = (1− z)M2
G + zm2

b − z(1− z)m2
a = (1− z)M2

G + z(m2
b −m2

a) + z2m2
b . (42)

From the light cone perturbative theory (LCPT), the light cone wave function for an
electroweak gauge boson emission has the general structure

Ψ(z,k) ∝ CG
f g

G
(V,A),f jµE

µ , (43)

where CG
f g

G
(V,A),f are the couplings, jµ denotes the current associated with the process

and Eµ is the polarization vector of the gauge boson. The relevant couplings for this
study – namely CG

f , g
G
V,f , g

G
A,f for G = W±, Z0, γ∗ – are summarized in Table 1. A detailed

discussion of the photon case can be found in Ref.(Kovchegov; Levin, 2013), and in
Brazilian Portuguese in Ref.(Bandeira, 2021).

Finally, to encapsulate our results uniformly for all gauge bosons (G = W±, Z0, γ∗),
we introduce the light-cone wave functions (LCWFs) of effective “vector” and “axial
vector” boson as in the qa → qbG transition. The factor 1/

√
z(1− z) is absorbed into the

wave function, so that the phase space is ∝ dz. Our effective wave functions, are given
by:

ΨV (z,k) = CG
f g

G
V,f

√
z(1− z)

jµE
∗µ

k2 + ϵ2
, ΨA(z,k) = CG

f g
G
A,f

√
z(1− z)

jAµE
∗µ

k2 + ϵ2
, (44)

with

jµ = uλ′(pb)γµuλ(pa) , j
A
µ = uλ′(pb)γµγ5uλ(pa) , (45)
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Table 1 – Vector and axial couplings and coefficients for the distinct gauge bosons, with θW being
the Weinberg angle, fu = u, c, t and fd = d, s, b are the flavors of up- and down-type quarks,
respectively, and Vfufd the corresponding CKM matrix elements.

Gauge Boson CG
f gGv,f gGa,f

Z0 CZ
f =

√
αem

sin 2θW
gZv,fu = 1

2
− 4

3
sin2 θW gZa,fu = 1

2

gZv,fd = −1
2
+ 2

3
sin2 θW gZa,fd = −1

2

W± CW+

f =
√
αem

2
√
2 sin θW

Vfufd gWv,f = 1 gWa,f = 1

CW−

f =
√
αem

2
√
2 sin θW

Vfdfu

Photon Cγ
f =

√
αemef gγv,f = 1 gγa,f = 0

which we evaluate using the Lepage and Brodsky spinors (Lepage; Brodsky, 1980),
adjusted for the fact that we define the light front components as p± = (p0 ± p3)/

√
2. In

general, the spinors for initial and final state quarks can belong to different masses,

u(pb, λ
′,mb)1uλ(pa, λ,ma) =

√
p+b p

+
a χ

†
λ′

{(
ma

p+a
+
mb

p+b

)
1− σσσ · pppb

p+b
(σσσ · nnn)

}
χλ (46)

u(pb, λ
′,mb)γ5u(pa, λ,ma) =

√
p+a p

+
b χ

†
λ′

{(
mb

p+b
− ma

p+a

)
(σσσ · nnn)− σσσ · pppb

p+b

}
χλ , (47)

the evaluation of these simpler results are presented in details in the Appendix B. For
j = [j+, j−, j], we obtain for the vector and axial vector bilinear are given, respectively,
by

jV+
λ′λ = 2

√
p+b p

+
a χ†

λ′1χλ

jV−
λ′λ =

√
p+b p

+
a χ†

λ′

{mamb

p+a p
+
b

1− ma

p+a p
+
b

(σ · pb)(σ · n)
}
χλ

jVλ′λ · a =
√
p+a p

+
b χ†

λ′

{(pb · a
p+b

+ i
[pb,a]

p+b
(σ · n)

)
1

+
p+amb − p+b ma

p+a p
+
b

(σ · a)(σ · n)
}
χλ , (48)

and

jA+
λ′λ = 2

√
p+a p

+
b χ

†
λ′(σ · n)χλ

jA−
λ′λ =

√
p+a p

+
b χ†

λ′

{
− mamb

p+a p
+
b

(σ · n) + ma

p+a p
+
b

σ · pb

}
χλ

jAλ′λ · a =
√
p+a p

+
b χ†

λ′

{(pb · a
p+b

(σ · n) + i
[pb,a]

p+b

)
1
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+
p+amb + p+b ma

p+a p
+
b

σ · a
}
χλ . (49)

Above, vectors pb is the transverse momentum of quark b, a is an arbitrary transverse
vector, and n = (0, 0, 1). Pauli spinors χλ are eigenstates of σ · n:

(σ · n)χλ = λχλ, λ = ±1, (50)

so that λ/2 is the quark helicity.
Let us collect explicitly the LFWFs by inserting the results above into the definitions

presented in eq. (44). Firstly, for transverse polarizations λG = ±1, we have

ΨT,λG

V (z,k) = CG
f g

G
V,f

√
z(1− z)

k2 + ϵ2
χ†
λ′

(
− j ·E∗(λG) +

k ·E∗(λG)

zp+a
j+
)
χλ (51)

ΨT,λG

V (z,k) = CG
f g

G
V,f

√
z

k2 + ϵ2
χ†
λ′

{(2− z

z
k ·E∗(λG) + iλ[k,E∗(λG)]

)
1

− (mb − (1− z)ma)λσ ·E∗(λG)
}
χλ , (52)

where the polarization state of the quark is given by the Pauli-spinor χλ. For longitudinal
gauge boson polarizations, we have

ΨL
V (z,k) = CG

f g
G
V,f

1√
z

1

MG

χ†
λ′

{(z2ma(mb −ma)− z(m2
b −m2

a)− 2(1− z)M2
G

k2 + ϵ2

)
1

+ z(mb −ma)
λσ · k
k2 + ϵ2

}
χλ

(53)

For the axial vector coupling, we obtain for the transverse polarizations

ΨT,λG

A (z,k) = CG
f g

G
A,f

√
z

k2 + ϵ2
χ†
λ′

{(2− z

z
k ·E∗(λG) + iλ[k,E∗(λG)]

)
λ1

−(mb + (1− z)ma)σ ·E∗(λG)
}
χλ , (54)

and for the longitudinal case, we have

ΨL
A(z,k) = CG

f g
G
A,f

1√
z

1

MG

χ†
λ′

{(
− z2ma(mb +ma) + z(m2

b −m2
a) + 2(1− z)M2

G

k2 + ϵ2

)
λ1

−z(mb +ma)
σ · k
k2 + ϵ2

}
χλ . (55)
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We now obtain the LCWFs in the mixed z, r representation

Ψ(z, r) =

∫
d2k

(2π)2
exp(−ik · r)Ψ(z,k) . (56)

For the transverse wave functions, we obtain

ΨT,λG

V (z, r) = CG
f g

G
V,f

1

2π

1√
z
χ†
λ′

{(
(2− z)

r ·E∗(λg)

r
+ ziλ

[r,E∗(λg)]

r

)
1 iϵK1(ϵr)

−λσ ·E∗(λG) (z(mb −ma) + z2ma)K0(ϵr)
}
χλ , (57)

ΨT,λG

A (z, r) = CG
f g

G
A,f

1

2π

1√
z
χ†
λ′

{(
(2− z)

r ·E∗(λg)

r
+ ziλ

[r,E∗(λg)]

r

)
λ1 iϵK1(ϵr)

−σ ·E∗(λG) (z(mb +ma)− z2ma)K0(ϵr)
}
χλ , (58)

while the longitudinal functions become

ΨL
V (z, r) = CG

f g
G
V,f

1

2π

1√
z

1

MG

χ†
λ′

{(
z2ma(mb −ma)− z(m2

b −m2
a)

− 2(1− z)M2
G

)
1K0(ϵr) + z(mb −ma)λ

σ · r
r

iϵK1(ϵr)
}
χλ , (59)

ΨL
A(z, r) = CG

f g
G
A,f

1

2π

1√
z

1

MG

χ†
λ′

{
−
(
z2ma(mb +ma) + z(m2

b −m2
a)

+ 2(1− z)M2
G

)
λ1K0(ϵr)− z(mb +ma)

σ · r
r

iϵK1(ϵr)
}
χλ . (60)

Calculating all the combinations presented in eq. (36),

ρTV (z, r, r
′) =

1

2

∑
λ,λ′,λG

ΨT,λG

V (z, r)ΨT,λG∗
V (z, r′),

ρTA(z, r, r
′) =

1

2

∑
λ,λ′,λG

ΨT,λG

A (z, r)ΨT,λG∗
A (z, r′) ,

ρLV (z, r, r
′) =

1

2

∑
λ,λ′

ΨL
V (z, r)Ψ

L∗
V (z, r′),

ρLA(z, r, r
′) =

1

2

∑
λ,λ′

ΨL
A(z, r)Ψ

L∗
A (z, r′) . (61)

one has that

ρTV (z, r, r
′) =

(CG
f )

2(gGV,f )
2

2π2

{1 + (1− z)2

z

r · r′

rr′
ϵ2K1(ϵr)K1(ϵr

′)

+z
(
(mb −ma) + zma

)2
K0(ϵr)K0(ϵr

′)
}

ρTA(z, r, r
′) =

(CG
f )

2(gGA,f )
2

2π2

{1 + (1− z)2

z

r · r′

rr′
ϵ2K1(ϵr)K1(ϵr

′)
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+z
(
(mb +ma)− zma

)2
K0(ϵr)K0(ϵr

′)
}

ρLV (z, r, r
′) =

(CG
f )

2(gGV,f )
2

4π2

{z(mb −ma)
2

M2
G

r · r′

rr′
ϵ2K1(ϵr)K1(ϵr

′)

+
(z2ma(mb −ma)− z(m2

b −m2
a)− 2(1− z)M2

G)
2

zM2
G

K0(ϵr)K0(ϵr
′)
}

ρLA(z, r, r
′) =

(CG
f )

2(gGA,f )
2

4π2

{z(mb +ma)
2

M2
G

r · r′

rr′
ϵ2K1(ϵr)K1(ϵr

′)

+
(z2ma(mb +ma) + z(m2

b −m2
a) + 2(1− z)M2

G)
2

zM2
G

K0(ϵr)K0(ϵr
′)
}
(62)

3.4 Summary

In this chapter, within the hybrid factorization scheme we have the CDSM formal-
ism which was proposed in a series of publications (Nikolaev; Schafer; Zakharov;
Zoller, 2003; Nikolaev; Schafer, 2005; Nikolaev; Schafer; Zakharov; Zoller, 2005a; Niko-
laev; Schafer; Zakharov, 2005a; Nikolaev; Schafer; Zakharov; Zoller, 2005b; Nikolaev;
Schafer; Zakharov, 2005b) where they presented a general formula to describe the
ag → bc subprocess in hadronic collisions at forward rapidities which depends on a
quadrupole S-matrix term. However, evaluating such a formula for the electroweak
gauge boson production qag → Gqb was a completely new unexplored subprocess which
was analyzed in this chapter.

The parton-target master formula simplifies due to the electroweak gauge boson’s
non-colored nature reducing the higher S-matrix order to S(2) which is readily calculated
in terms of the two-parton dipole cross-section. As a result, we can write the hard
cross-section in terms of the dipole cross-section, model dependent, and the emission
light front wave function, eq. (34). However, the generalized electroweak boson radiated
from a quark light front wave function wasn’t presented in the literature. Therefore, we
have derived, for the first time, the generic expressions for the LFWF’s in ref. (Bandeira;
Goncalves; Schäfer, 2024).

From this result, one can construct the parton-target cross-sections for the isolated
electroweak gauge boson production as well as the electroweak gauge boson + jet
production. In the following chapters, we will present those parton-level cross-sections
which are the main ingredient to prove our understanding of the hadronic dynamics.



4 ELECTROWEAK GAUGE BOSON PRODUCTION AT FOR-
WARD RAPIDITIES IN COLOR - DIPOLE S - MATRIX FRAME-
WORK IN THE MOMENTUM REPRESENTATION

In the previous chapter, we have seen that in the CDSM framework the electroweak
gauge boson production parton-target cross-section, eq. (34), is expressed in terms
of the squared LFWF’s, derived previously, and the dipole - proton cross-section σqq̄.
As this quantity is usually derived in the impact parameter space, e.g., by solving the
Balitsky - Kovchegov equation (Balitsky, 1996, 1998, 1999, 2001; Balitsky; Belitsky,
2002; Kovchegov, 1999, 2000), a natural representation of the spectrum is at this same
space. However, it is also possible to use the relation between the dipole - proton
cross-section and the unintegrated gluon distribution f(x,k) given by

σ(r, x) =
1

2

∫
d2kf(x,k)

(
2− eik·r − e−ik·r

)
, (63)

and represent the spectrum in the transverse momentum space. It is important to
emphasize that both representations are equivalent, and approximated limits of both
have been used in the literature to estimate the Drell - Yan process and the real photon
production. The choice of one particular representation is, in general, associated with a
description of the QCD dynamics, which sometimes is performed in terms of σqq̄ and in
other cases of f(x,k).

Furthermore, in this chapter, we will construct the final expression for the generic
electroweak gauge boson dipole-target cross-section within the momentum space for
the isolated and associated production. In the Appendix D we present the parton-
target cross-section derivation in the impact parameter space for didactic purposes.
Additionally, this chapter is based on the following publications (Bandeira; Goncalves;
Schäfer, 2024, 2025).
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4.1 Isolated gauge boson production

The equation (34) is the main ingredient to estimate the associated production of an
electroweak gauge boson with a hadron, which will be discussed in the forthcoming sec-
tion. Here, we focus on the isolated gauge boson production, which has a cross-section
that can be derived integrating the master equation over the transverse momentum of
the quark in the final state or, equivalently, integrating eq. (34) over ∆. Assuming that
the projectile quark is unpolarized and integrating eq. (34) over ∆, one has that the
differential cross-section for the qfp→ GX process reads

dσf
T,L(qf p→ GX)

dzd2p
=

1

(2π)2

∑
quark pol.

∫
d2rd2r′ exp[ip · (r − r′)] ΨT,L(z, r)Ψ

∗
T,L(z, r

′)

× 1

2
[σqq̄(zr, x) + σqq̄(zr

′, x)− σqq̄(z|r − r′|, x)] . (64)

Using the relation between the dipole - hadron cross-section and the unintegrated
gluon distribution, given in Eq. (63), one has that the differential cross-section will be
given by

dσf
T,L

dzd2p
=

1

2(2π)2

∑
quark pol.

∫
d2rd2r′eip·(r−r′

) ΨT,L(z, r)Ψ
∗
T,L(z, r

′)∫
d2kf(x,k)

[
1− eizk·r − eizk·r′

+ eizk·(r−r′
)
]
. (65)

Remembering that
∑

quark pol.ΨT,L(z, r, r
′)Ψ∗

T,L(z, r, r
′) = ρVT,L(z, r, r

′) + ρAT,L(z, r, r
′),

for transverse polarization, one has that

dσf
T

dzd2p
=

1

2(2π)2

∫
d2r d2r′eip·(r−r′

)ρTV (z, r, r
′)

×
∫
d2kf(x,k)

[
1− eizk·r − eizk·r′

+ eizk·(r−r′
)
]

+
1

2(2π)2

∫
d2r d2r′eip·(r−r′

)ρTA(z, r, r
′)

×
∫
d2kf(x,k)

[
1− eizk·r − eizk·r′

+ eizk·(r−r′
)
]

(66)

In what follows, we’ll consider only the vector contribution (dσf
T |V ). Thus, substituting

the expression for the squared LFWF, ρTV , presented at eq. (62) one gets

dσf
T

dzd2p

∣∣∣∣∣
V

=
(CG

f )
2(gGV,f )

2

(2π)4

∫
d2kf(x,k)

{

×1 + (1− z)2

z
ϵ2
∫
d2r d2r′ eip·(r−r′

) r · r′

rr′
K1(ϵr)K1(ϵr

′)
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×
[
1− eizk·r − eizk·r′

+ eizk·(r−r′
)
]

+ z
[
(mb +ma − zma

]2 ∫
d2r d2r′ eip·(r−r′

) K0(ϵr)K(ϵr′)

×
[
1− eizk·r − eizk·r′

+ eizk·(r−r′
)
]}

, (67)

from the equation above, one gets a series of eight integrals over r and r′ to evaluate
which depends on the Bessel functions and the exponentials products. In the Appendix C
we present the results for each one of them considering that the integral over eizk·r is
similar to the integral over eizk·r′

. Additionally, each integral is evaluated using Bessel
function integrals, which are included in this appendix for reference. Thus, as a result,
we obtain that the transverse parton-level differential cross-section vector contribution is
expressed as follows:

z
dσf

T

dzd2p

∣∣∣∣∣
V

=
(CG

f )
2(gGv,f )

2

2π2

∫
d2kf(x,k)

{
z2[(mb −ma) + zma]

2 E1(p,k, ϵ, z)

+ [1 + (1− z)2]E2(p,k, ϵ, z)

}
,

(68)

where we have defined the auxiliary functions:

E1(p,k, ϵ, z) ≡
[
1

2

1

(p2 + ϵ2)2
− 1

[(p− zk)2 + ϵ2]

1

(p2 + ϵ2)
+

1

2

1

[(p− zk)2 + ϵ2]2

]
=

1

2

[
1

p2 + ϵ2
− 1

(p− zk)2 + ϵ2

]2
(69)

E2(p,k, ϵ, z) ≡
[
1

2

p2

(p2 + ϵ2)2
− p · (p− zk)

(p2 + ϵ2)[(p− zk)2 + ϵ2]
+

1

2

(p− zk)2

[(p− zk)2 + ϵ2]2

]
=

1

2

[
p

p2 + ϵ2
− p− zk

(p− zk)2 + ϵ2

]2
(70)

Similarly, substituting the expression for ρTA, one has that the axial contribution is given
by:

z
dσf

T

dzd2p
|A =

(CG
f )

2(gGa,f )
2

2π2

∫
d2kf(x,k)

{
z2[(mb +ma)− zma]

2E1(p,k, ϵ, z)

+[1 + (1− z)2]E2(p,k, ϵ, z)
}
. (71)

Following similar steps, one can derive that the vector and axial contributions for the
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longitudinal cross-section will be given by

z
dσf

L

dzd2p
|V =

(CG
f )

2(gGv,f )
2

4π2

∫
d2kf(x,k)

{z2(mb −ma)
2

M2
G

E2(p,k, ϵ, z)

+
(z2ma(mb −ma)− z(m2

b −m2
a)− 2(1− z)M2

G)
2

M2
G

E1(p,k, ϵ, z)
}

(72)

and

z
dσf

L

dzd2p
|A =

(CG
f )

2(gGa,f )
2

4π2

∫
d2kf(x,k)

{
z2(mb +ma)

2

M2
G

E2(p,k, ϵ, z)

+
(z2ma(mb +ma) + z(m2

b −m2
a) + 2(1− z)M2

G)
2

M2
G

E1(p,k, ϵ)

}
(73)

The eqs. (68), (71), (72) and (73) are the main results of this section. They allow us to
estimate the vector and axial contributions for the spectrum associated with the isolated
gauge boson production in the transverse momentum space. At the Appendix D, we
present the eqs. (232), (235), (236), (237), which are the results in the impact parameter
space.

The expressions are valid for massive (Z0 and W±) and massless (γ) electroweak
gauge bosons and take into account the transverse and longitudinal polarizations as
well as do not disregard the masses of the quarks, which is fundamental to derive
realistic predictions for the W± production. However, as we will demonstrate in the
next section, some particular cases of our expressions already have been used in the
literature, with a successful description of the current data.

4.1.1 Particular cases

4.1.1.1 Real photon production

The simplest case to which we can apply the expressions derived in the previous
section is the real photon production in the qp→ γX process. For the production of a
real photon, one has that gγa,f = 0, gγv,f = 1, Cγ

f =
√
αemef , M2

G = 0 and ma = mb = mf .
Moreover, the longitudinal polarization does not contribute. Consequently, the differential
cross-section is given in the transverse momentum space by:

z
dσf

T

dzd2p

∣∣∣∣∣
qp→γX

=
αeme

2
f

2π2

∫
d2kf(x,k)

{
m2

fz
4 E1(p,k, ϵ, z) + [1 + (1− z)2]E2(p,k, ϵ, z)

}
.

(74)

Neglecting the quark mass, this expression reduces to those used e.g. in Refs. (Gelis;
Jalilian-marian, 2002a; Jalilian-marian; Rezaeian, 2012; Ducloué; Lappi; Mäntysaari,
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2018; Goncalves; Lima; Pasechnik; Šumbera, 2020; Lima; Giannini; Goncalves, 2024)
considering the CGC formalism to estimate the isolated photon production.

4.1.1.2 Drell - Yan process

Another possible application of our results is the emission of an off-mass shell gauge
boson G∗ that decays into a dilepton system with invariant mass M , characteristic of the
Drell - Yan (DY) process. For G∗ = γ∗ and Z∗, one has the production of l+l− system
in the final state and such a process was analyzed in Refs. (Kopeliovich; Raufeisen;
Tarasov, 2001; Raufeisen; Peng; Nayak, 2002; Kopeliovich; Raufeisen; Tarasov; John-
son, 2003; Betemps; Gay ducati, 2004; Betemps; Ducati; Machado; Raufeisen, 2003;
Golec-biernat; Lewandowska; Stasto, 2010; Ducati; Griep; Machado, 2014; Schäfer;
Szczurek, 2016; Ducloué, 2017; Gelis; Jalilian-marian, 2002b; Baier; Mueller; Schiff,
2004; Stasto; Xiao; Zaslavsky, 2012; Kang; Xiao, 2013; Basso; Goncalves; Krelina;
Nemchik; Pasechnik, 2016) using the color dipole and CGC formalisms. The results
derived in the previous section can be directly applied to this case, if we take into
account that the decay process can be factorized as follows

dσ(qp→ [G∗ → ll̄]X)

dzd2pdM2
= FG(M)

dσ(qp→ G∗X)

dzd2p
, (75)

where the function FG(M) describes the process G∗ → l+l− and is given by

Fγ(M) =
αem

3πM2
for G∗ = γ∗ , (76)

FZ(M) = Br(Z0 → ll̄)ρZ(M) for G∗ = Z∗ , (77)

where ρZ(M) is the invariant mass distribution of the Z0 boson in the narrow width
approximation (Basso; Goncalves; Nemchik; Pasechnik; Sumbera, 2016)

ρZ(M) =
1

π

MΓZ(M)

(M2 −m2
Z)

2 + [MΓZ(M)]2
, ΓZ(M)/M ≪ 1 , (78)

with generalized total Z0 decay width being given by

ΓZ(M) =
αemM

6 sin2 2θW

(160
3

sin4 θW − 40 sin2 θW + 21
)
, (79)

where θW is the Weinberg gauge boson mixing angle in the SM.
For the particular case of a virtual photon (G∗ = γ∗) with virtuality M2, one has that

the axial contributions vanishes and differential cross-section for the qp → [γ∗ → ll̄]X
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process will be given in the transverse momentum space by:

z
dσf

total

dzd2pdM2

∣∣∣∣∣
DY

=
αeme

2
f

2π2
Fγ(M)

∫
d2kf(x,k)

{
[m2

fz
4 + 2M2(1− z)2] E1(p,k, ϵ, z)

+[1 + (1− z)2]E2(p,k, ϵ, z)
}
, (80)

which was derived in the massless limit in Ref. (Gelis; Jalilian-marian, 2002b) using the
CGC formalism and applied for pp/pA collisions at the LHC, e.g., in Refs. (Baier; Mueller;
Schiff, 2004; Stasto; Xiao; Zaslavsky, 2012; Kang; Xiao, 2013; Basso; Goncalves;
Krelina; Nemchik; Pasechnik, 2016). Finally, it is important to emphasize that we have
verified that our results also reproduce the expressions presented in Ref. (Basso;
Goncalves; Nemchik; Pasechnik; Sumbera, 2016) for the G∗ = Z∗ case.

4.2 Associated gauge boson production in the transverse momen-
tum and impact parameter representations

In the previous section, we have derived using the CDSM framework, the gen-
eral formulae for the inclusive electroweak gauge boson production at forward rapidi-
ties and demonstrated that it reduces to those used in Refs. (Kopeliovich; Rezaeian;
Pirner; Schmidt, 2007; Kopeliovich; Levin; Rezaeian; Schmidt, 2009; Santos; Silveira;
Machado, 2020; Gelis; Jalilian-marian, 2002a; Jalilian-marian; Rezaeian, 2012; Ducloué;
Lappi; Mäntysaari, 2018; Goncalves; Lima; Pasechnik; Šumbera, 2020; Lima; Giannini;
Goncalves, 2024; Kopeliovich; Raufeisen; Tarasov, 2001; Raufeisen; Peng; Nayak,
2002; Kopeliovich; Raufeisen; Tarasov; Johnson, 2003; Betemps; Gay ducati, 2004;
Betemps; Ducati; Machado; Raufeisen, 2003; Golec-biernat; Lewandowska; Stasto,
2010; Ducati; Griep; Machado, 2014; Schäfer; Szczurek, 2016; Ducloué, 2017; Gelis;
Jalilian-marian, 2002b; Baier; Mueller; Schiff, 2004; Stasto; Xiao; Zaslavsky, 2012; Kang;
Xiao, 2013; Basso; Goncalves; Krelina; Nemchik; Pasechnik, 2016; Basso; Goncalves;
Nemchik; Pasechnik; Sumbera, 2016; Marquet; Wei; Xiao, 2020) to estimate the real
photon and Z0 production in the appropriate limits and representations. Moreover, for
the first time, we have derived the cross-section for the W± production in the hybrid
factorization formalism. Such results are an important improvement in describing the
inclusive electroweak gauge boson production. They are useful to investigate the impact
of the nonlinear effects in the transverse momentum and rapidity distributions of the
gauge boson probed in the kinematical range of the LHCb detector.

A more detailed information about the QCD dynamics is expected to be provided
through the study of processes where two particles are tagged in the final state (See,
e.g., Ref. (Morreale; Salazar, 2021) for a recent review). Such expectation is directly
associated with the presence in the dense target of a characteristic momentum scale –
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the saturation scale Qs –, which implies that the incident partons acquire a momentum
imbalance due to its multiple scattering with the target (Gelis; Iancu; Jalilian-marian;
Venugopalan, 2010; Weigert, 2005; Jalilian-marian; Kovchegov, 2006). As a conse-
quence, the nonlinear effects are expected to generate a depletion of the back-to-back
peak predicted by the collinear formalism (Marquet, 2007; Albacete; Marquet, 2010;
Stasto; Xiao; Yuan, 2012; Stasto; Wei; Xiao; Yuan, 2018). Such an expectation has been
confirmed by the analyses performed in Refs. (Dominguez; Marquet; Xiao; Yuan, 2011;
Stasto; Xiao; Zaslavsky, 2012; Jalilian-marian; Rezaeian, 2012; Basso; Goncalves;
Nemchik; Pasechnik; Sumbera, 2016; Ducloué; Lappi; Mäntysaari, 2018; Goncalves;
Lima; Pasechnik; Šumbera, 2020; Taels, 2024), which have estimated the azimuthal
angle correlation for the associated hadron + γ and hadron +Z0 production considering
different frameworks and distinct approximations in the calculation of the qp → qGX

cross-section. Our goal, in this section, is to extend the formalism presented previously
for the associated jet plus electroweak gauge boson production at forward rapidities in
hadronic collisions and present the general formulae for the qp→ qGX cross-section
considering the longitudinal and transverse polarizations of the gauge boson.

The treatment of the two - particle production at forward rapidities in hadronic
collisions at high energies and the derivation of the corresponding cross-sections is
still a challenge, especially when both particles in the final state are generated by
partons, since in this case it depends in a non-trivial way on quadrupole correlators
of fundamental Wilson lines or four partons S matrix, depending on the approach
considered estimating this quantity (Nikolaev; Schafer; Zakharov, 2005b; Dominguez;
Marquet; Xiao; Yuan, 2011), as seen in eq. (25). We have seen that the calculation of
these objects in the general case is a hard task, in contrast if one of the particles in
the final state is an electroweak gauge boson, which does not interact strongly, these
quantities can be expressed in terms of dipole correlators or two partons S matrix, as
seen in previous chapter. As explicitly demonstrated so far, the cross-sections for the
isolated electroweak gauge boson production in pp collisions can be expressed in terms
of the unintegrated gluon distribution or, equivalently, of the dipole - proton cross-section,
which can be constrained using experimental data for ep collisions. Such characteristic
motivates a more detailed investigation of the associated jet + electroweak gauge boson
production.

The hadronic cross-section for the associated jet + G production, represented in Fig.
12, can be schematically expressed as follows

dσ(hAhB → GJ X) ∝ qa/A ⊗ dσ(qahB → qbGX) , (81)

i.e., as a convolution of the standard quark distributions for the dilute projectile, qf/A,
and the parton - target cross-section, dσ(qahB → qbGX), which includes the nonlinear
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Figure 12 – Typical diagram contributing for the associated G + jet production in hadronic
collisions, where the gauge boson is irradiated by a quark of flavor f after the interaction with
the target color field (denoted by a shaded circle). The quark qk generates the jet J . For the W±

radiation qk ̸= qf .

G(pG)

qf
qk(pq)

J

Proj. Target

QCD effects, with the quark qb generating the jet J . We already presented the master
formulae for the parton -target cross-section, dσ(qahB → qbGX), in eq. (34) which in the
momentum space is written as

dσf
T,L(qa → Gqb)

dzd2pd2∆
=

1

2(2π)4

∫
d2k f(x,k)

∫
d2r d2r′ e−ip·(r−r′)

×
[
ρT,LV (z, r, r′) + ρT,LA (z, r, r′)

] ∫
d2s e−i∆·s

×
{
eik·s + eik·(s−z(r−r′)) − eik·(s+zr′) − eik·(s−zr)

}
.

(82)

In comparison with the isolated electroweak gauge boson production case, the
associated production differs by not neglecting the jet momentum, i.e., by including
the integral over s, which accounts for the correlation between the electroweak gauge
boson and the final-state quark. From the master equation, the transverse dipole-target
cross-section is given by

dσf
T (qf → Gqk)

dzd2pd2∆
=

1

2(2π)4

∫
d2k f(x,k)

∫
d2r d2r′ e−ip·(r−r′)

× ρTV (z, r, r
′)

∫
d2s e−i∆·s

×
{
eik·s + eik·(s−z(r−r′)) − eik·(s+zr′) − eik·(s−zr)

}
+

1

2(2π)4

∫
d2k f(x,k)

∫
d2r d2r′ e−ip·(r−r′)

× ρTA(z, r, r
′)

∫
d2s e−i∆·s

×
{
eik·s + eik·(s−z(r−r′)) − eik·(s+zr′) − eik·(s−zr)

}
,

(83)
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using the definition of ρTV , eq. (62), evaluated on the previous chapters, one gets

dσf
T (qf → Gqk)

dz d2p d2∆

∣∣∣∣∣
V

=
2

2(2π)4
(CG

f )
2(gGV,f )

2

2π2

∫
d2k f(x,k)

{∫
d2r d2r′ e−ip·(r−r′)

×
∫

d2s e−∆·s [1 + 1(1− z)2]

z

r · r′

rr′
ϵ2K1(ϵr)K1(ϵr

′)

×
(
eik·s + eik·(s−z(r−r′)) − eik·(s+zr′) − eik·(s−zr)

)
+

∫
d2r d2r′ e−ip·(r−r′)

∫
d2s e−∆·s

× z
[
(mb −ma) + zma

]2
K0(ϵr)K0(ϵr

′)

×
(
eik·s + eik·(s−z(r−r′)) − eik·(s+zr′) − eik·(s−zr)

)}
,

(84)

then, the vector contribution to the transverse cross-section depends on a series of
integrals over r, r′ and s. In the Appendix C we present the results for each one of them
which were obtained using the Bessel functions integral which are also present in the
Appendix. Therefore, as a result, the vector contribution to the transverse gauge boson
+ jet dipole-target cross-section is:

dσf
T (qf → Gqk))

dz d2p d2∆

∣∣∣∣∣
V

=
(CG

f )
2(gGV,f )

2

(2π)6

∫
d2k f(x,k) δ(2)(∆− k)

×
{
[1 + (1− z)2]

z
ϵ2

[
− 2(2π)2

ϵ2
p · (p− zk)

(p2 + ϵ2)[(p− zk)2 + ϵ2]

+
(2π)4

ϵ2
(p− zk)2

[(p− zk)2 + ϵ2]2
+

(2π)4

ϵ2
p2

(p2 + ϵ2)2

]

+ z
[
(mb −ma) + zma

]2[− 2(2π)4

(p2 + ϵ2)[(p− zk)2 + ϵ2]

+
(2π)4

[(p− zk)2 + ϵ2]2
+

(2π)4

(p2 + ϵ2)

]}
,

(85)

using the delta function to evaluate the integral over k, one gets

z
dσf

T (qf → Gqk)

dz d2p d2∆

∣∣∣∣∣
V

=
(CG

f )
2(gGV,f )

2

2π2
f(x,∆)

{
z2
[
(mb −ma) + zma

]2 E1(p,∆, ϵ, z)

+
[
1 + (1− z)2

]
E2(p,∆, ϵ, z)

}
,

(86)



50

where

E1(p,∆, ϵ, z) =
1

2

[
1

p2 + ϵ2
− 1

(p− z∆) + ϵ2

]2
, (87)

E2(p,∆, ϵ, z) =
1

2

[
p

p2 + ϵ2
− p− z∆

(p− z∆) + ϵ2

]2
. (88)

Accomplishing the same procedure for the axial contribution, one gets:

z
dσf

T (qf → Gqk)

dz d2p d2∆

∣∣∣∣∣
A

=
(CG

f )
2(gGA,f )

2

2π2
f(x,∆)

{
z2
[
(mb +ma)− zma

]2 E1(p,∆, ϵ, z)

+
[
1 + (1− z)2

]
E2(p,∆, ϵ, z)

}
.

(89)

Likewise, for the longitudinal dipole-target cross-section, the vector contribution is:

z
dσf

L(qf → Gqk)

dz d2p d2∆

∣∣∣∣∣
V

=
(CG

f )
2(gGV,f )

2

(2π)2
f(x,∆)

{
z2(mb −ma)

2

M2
G

E2(p,∆, ϵ, z)

+

[
z2ma(mb −ma)− z(m2

b −m2
a)− 2(1− z)M2

G

]2
MG

E1(p,∆, ϵ, z)

}
,

(90)

and the axial contribution is

z
dσf

L(qf → Gqk)

dz d2p d2∆

∣∣∣∣∣
A

=
(CG

f )
2(gGA,f )

2

(2π)2
f(x,∆)

{
z2(mb +ma)

2

M2
G

E2(p,∆, ϵ, z)

+

[
z2ma(mb +ma) + z(m2

b −m2
a) + 2(1− z)M2

G

]2
MG

E1(p,∆, ϵ, z)

}
.

(91)

The expressions derived above constitute the central input for estimating associated
jet + W± production at forward rapidities in hadronic collisions. Our results demonstrate
that the differential cross-section is highly sensitive to the modeling of the unintegrated
gluon distribution (UGD), which plays a key role in encoding the small x structure of the
target. In particular, the UGD governs the transverse momentum imbalance between
the jet and the gauge boson, thereby controlling the degree of momentum decorrelation
observed in the final state. This highlights the potential of such processes as precision
probes of gluon saturation and nonlinear QCD dynamics in the forward regime.
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4.2.1 Associated Jet + photon production

For the photon production, the axial contribution vanishes, since gγ
∗

A,f = 0. Moreover,
gγ

∗

V,f = 1, Cγ∗

V,f =
√
αemef and mb = ma = mf once the emitting quark does not change

its flavor. Thus, the differential cross-section for this final state is given by

dσ

dzd2pd2∆

∣∣∣∣
qp→γ∗X

=
dσT

dzd2pd2∆

∣∣∣∣
V

+
dσL

dzd2pd2∆

∣∣∣∣
V

,

dσ

dzd2pd2∆

∣∣∣∣
qp→γ∗X

=
αeme

2
f

2π2
f(x,∆)

{
1 + (1− z)2

z
E2(p, z∆, ϵ) + z3m2

fE1(p, z∆, ϵ)

}
+

αeme
2
f

4π2
f(x,∆)

{
4(1− z)2M2

γ

z
E1(p, z∆, ϵ)

}
dσ

dzd2pd2∆

∣∣∣∣
qp→γ∗X

=
αeme

2
f

2π2
f(x,∆)

{
1 + (1− z)2

z
E2(p, z∆, ϵ)

+

[
z3m2

f +
2(1− z)2M2

γ

z

]
E1(p, z∆, ϵ)

}
, (92)

where ϵ2 = (1− z)M2
γ + z2m2

f in the general case of a virtual photon. In the massless
quark case, one has

dσ

dzd2pd2∆

∣∣∣∣mf=0

qp→γ∗X

=
αeme

2
f

2π2
f(x,∆)

{
1 + (1− z)2

z
E2(p, z∆, ϵ)

+
2(1− z)2M2

γ

z
E1(p, z∆, ϵ)

}
, (93)

which can be expressed as follows

z
dσ

dzd2pd2∆

∣∣∣∣mf=0

qp→γ∗X

=
αeme

2
f

(2π)2
f(x,∆)

{[
1 + (1− z)2

]
× z2∆2(

(p− z∆)2 + (1− z)M2
γ

) (
p2 + (1− z)M2

γ

)
− z2(1− z)M2

γ

[
1(

(p− z∆)2 + (1− z)M2
γ

)
− 1(

p2 + (1− z)M2
γ

)]2}. (94)

Finally, for a real photon (M2
γ = 0) and massless quarks, we obtain

z
dσ

dzd2pd2∆

∣∣∣∣
qp→γX

=
αeme

2
f

(2π)2
f(x,∆)

[
1 + (1− z)2

] z2∆2

(p− z∆)2p2
. (95)
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In this case one needs to take care of the collinear pole in the final state q → qγ

splitting at p = z∆, for example by imposing a photon isolation condition. The Eqs. (94)
and (95) agree with those used in Refs.(Dominguez; Marquet; Xiao; Yuan, 2011; Stasto;
Xiao; Zaslavsky, 2012; Basso; Goncalves; Nemchik; Pasechnik; Sumbera, 2016; Taels,
2024) to estimate the jet + photon production in hadronic collisions.

4.2.2 Associated Jet + Z0 production

For the Z0 production, the axial and vector contributions must be included, and the
total differential cross-section will be given by

dσ

dzd2pd2∆

∣∣∣∣
qp→Z0X

=
dσT

dzd2pd2∆

∣∣∣∣
V

+
dσT

dzd2pd2∆

∣∣∣∣
A

+
dσL

dzd2pd2∆

∣∣∣∣
V

+
dσL

dzd2pd2∆

∣∣∣∣
A

. (96)

Moreover, one has that CZ
f =

√
αem

sin 2θW
and gZV,A depends on the quark flavor. For

up-type flavors (fu = u, c, t) gZV,fu = 1
2
− 4

3
sin2 θW and gZA,fu

= 1
2
, while for down-type

flavors (fd = d, s, b) gZV,fd = −1
2
+ 2

3
sin2 θW and gZA,fd

= −1
2
. Also, mb = ma = mf , as

this kind of process does not imply a change of quark flavor. Then, the parton level
cross-sections for each contribution will be given by:

dσf
T

dzd2pd2∆

∣∣∣∣∣
Z0

V

=
(CZ

f )
2(gZV,f )

2

2π2
f(x,∆)

{
1 + (1− z)2

z
E2(p, z∆, ϵ)

+ z3m2
fE1(p, z∆, ϵ)

}
(97)

dσf
T

dzd2pd2∆

∣∣∣∣∣
Z0

A

=
(CZ

f )
2(gZA,f )

2

2π2
f(x,∆)

{
1 + (1− z)2

z
E2(p, z∆, ϵ)

+ z(2− z)m2
fE1(p, z∆, ϵ)

}
(98)

dσf
L

dzd2pd2∆

∣∣∣∣∣
Z0

V

=
(CZ

f )
2(gZV,f )

2

(2π)2
f(x,∆)

{
4
(1− z)2

z
M2

ZE1(p, z∆, ϵ)

}
(99)

dσf
L

dzd2pd2∆

∣∣∣∣∣
Z0

A

=
(CZ

f )
2(gZ

0

A,f )
2

(2π)2
f(x,∆)

{
4
zm2

f

M2
Z

E2(p, z∆, ϵ)

+

[
4z2m2

f − 2(1− z)M2
Z

]2
zM2

Z

E1(p, z∆, ϵ)

}
, (100)

where ϵ2 = (1− z)M2
Z + z2m2

f . In the massless quark case, the total cross-section can
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be expressed as follows,

dσ

dzd2pd2∆

∣∣∣∣mf=0

qp→Z0X

=
(CZ

f )
2

(2π)2
[
(gZV,f )

2 + (gZA,f )
2
]
f(x,∆)

×
{
1 + (1− z)2

z

[
p− z∆

[(p− z∆)2 + ϵ̄2]
− p

(p2 + ϵ̄2)

]2
+ 2

(1− z)2

z
M2

Z

[
1

[(p− z∆) + ϵ̄2]
− 1

(p2 + ϵ̄2)

]2}
, (101)

with ϵ̄2 = (1 − z)M2
Z . Such an expression was used in Refs. (Basso; Goncalves;

Nemchik; Pasechnik; Sumbera, 2016; Basso; Goncalves; Krelina; Nemchik; Pasechnik,
2016) to estimate the associated jet + Z0 production at forward rapidities in hadronic
collisions.

4.3 Summary

In this chapter, we have derived the parton-target cross-section for the isolated elec-
troweak gauge boson and the associated jet plus electroweak gauge boson production.

We have discussed so far that the description of the particle production at forward
rapidities in proton-proton and proton-nucleus collisions at high energies is still one
of the main challenges of the strong interactions theory. In this kinematical region,
new effects associated with the nonlinear effects in the QCD dynamics are expected
to contribute and the usual treatment of the cross-section in terms of the collinear
factorization formalism is predicted to breakdown. Over the last decades, several authors
have discussed possible generalized factorization formalisms as well as improved the
description of saturation effects in the hadronic wave functions. In general, the final
formulas for the cross-sections associated with the production of two partons/hadrons
involve new quantities, which are non-trivial to estimate. In this chapter, we addressed a
simpler process, where one of the particles in the final state is an electroweak gauge
boson G. In particular, two - particle production is predicted to be sensitive to the
description of the dense target. In the general case, when two partons are produced,
the presence of nonlinear effects implies a complex structure for the cross-section, that
involves quantities that are not probed in the single particle production. Such aspects
motivate the analysis of the associated jet plus electroweak gauge boson production
which was performed in this chapter as well.

As we have demonstrated in Chap. 3, the differential cross-section for the associated
production of the gauge boson with a quark can be fully expressed in terms of the
squared light cone wave function (LCWF) for the qf → Gqk transition, and the usual
dipole-proton cross-section, which can be constrained by the HERA data. Moreover, we
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have derived, for the first time, the generic expressions for the LCWF’s. From this result,
we were able to construct the parton-target cross-sections for the isolated electroweak
gauge boson in section 4.1. In addition, we demonstrated that our results reduce
to expressions previously used in the literature for the description of the real photon
production and Drell - Yan process at forward rapidities in some particular limits. Finally,
in the Appendix D, analytical expressions for the spectrum have been derived in the
color transparency limit, which is a reasonable approximation of the linear regime of
QCD dynamics together with a full description of the isolated electroweak gauge boson
production within the impact parameter space. In section 4.2, we have extended the
formalism presented so far for the associated jet + G production and derived the general
formula for the differential cross-section at the partonic level, which is the main input
to estimate the corresponding observable. In particular, we have presented, for the
first time, the expressions associated with the jet + W± case and demonstrated that
the general formula reproduces the approximated expressions previously used in the
literature to estimate the jet + γ and jet + Z0 production.

The results derived in this chapter are the main ingredients for the calculation of the
pp and pA cross - sections, which can be compared with the current and forthcoming
LHC data.



5 DRELL - YAN ANGULAR DISTRIBUTIONS AT FORWARD
RAPIDITIES IN THE COLOR - DIPOLE S - MATRIX FRAME-
WORK

The dilepton production in the hadronic interactions – the Drell - Yan process – is one
of the main tools for studying the partonic structure of hadrons. In particular, the study
of dilepton production at forward rapidities is considered a promising probe of quantum
chromodynamics (QCD) at high energies. Over the last decades, several groups have
estimated the transverse and rapidity differential distributions considering proton - pro-
ton (pp) and proton - nucleus (pA) collisions at the RHIC and LHC energies assuming
different approaches for the description of the cross-section and distinct models for the
treatment of the nonlinear effects, which are expected to modify the QCD dynamics
at small x (Kopeliovich; Rezaeian; Pirner; Schmidt, 2007; Kopeliovich; Levin; Reza-
eian; Schmidt, 2009; Santos; Silveira; Machado, 2020; Gelis; Jalilian-marian, 2002a;
Jalilian-marian; Rezaeian, 2012; Ducloué; Lappi; Mäntysaari, 2018; Goncalves; Lima;
Pasechnik; Šumbera, 2020; Lima; Giannini; Goncalves, 2024; Kopeliovich; Raufeisen;
Tarasov, 2001; Raufeisen; Peng; Nayak, 2002; Kopeliovich; Raufeisen; Tarasov; John-
son, 2003; Betemps; Gay ducati, 2004; Betemps; Ducati; Machado; Raufeisen, 2003;
Golec-biernat; Lewandowska; Stasto, 2010; Ducati; Griep; Machado, 2014; Schäfer;
Szczurek, 2016; Ducloué, 2017; Gelis; Jalilian-marian, 2002b; Baier; Mueller; Schiff,
2004; Stasto; Xiao; Zaslavsky, 2012; Kang; Xiao, 2013; Basso; Goncalves; Krelina;
Nemchik; Pasechnik, 2016; Basso; Goncalves; Nemchik; Pasechnik; Sumbera, 2016;
Marquet; Wei; Xiao, 2020; Celiberto; Gordo gómez; Sabio vera, 2018; Marquet; Wei;
Xiao, 2020). One of the largely used approaches is the hybrid factorization formalism,
which is motivated by the fact that at forward rapidities the partons from the projectile
scatter off a dense gluonic system in the target. In this formalism, the DY process is
considered as an electroweak gauge boson bremsstrahlung off a fast projectile quark
propagating through the low - x color field of the target, as illustrated in Fig. 13, and the
cross-section is described in terms of a convolution of the standard quark distributions
for the dilute projectile and the quark - target cross-section, which can include the
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nonlinear QCD effects. This scenario was largely discussed throughout this thesis
where in Chap. 3 and Chap. 4 — which are based on Refs. (Bandeira; Goncalves;
Schäfer, 2024, 2025) — we have derived the general formulae for the inclusive elec-
troweak gauge boson production at forward rapidities using the S - matrix framework
proposed in Refs. (Nikolaev; Piller; Zakharov, 1995, 1996; Nikolaev; Schafer; Zakharov;
Zoller, 2003; Nikolaev; Schafer, 2005; Nikolaev; Schafer; Zakharov; Zoller, 2005a; Niko-
laev; Schafer; Zakharov, 2005a; Nikolaev; Schafer; Zakharov; Zoller, 2005b; Nikolaev;
Schafer; Zakharov, 2005b).

A natural next step is to extend the results derived in the previous chapters for less
inclusive observables, which provide additional information about the hadronic structure,
as e.g., the angular distribution of the leptons pairs (l1l̄2). The important roles of the
lepton angular distribution in understanding the mechanisms for W , Z and γ boson
production in hadronic collisions were pointed out e.g. in Refs. (Mirkes, 1992; Mirkes;
Ohnemus, 1994; Boer; Vogelsang, 2006). Differently from γ and Z boson production,
where both l1 and l̄2 = l̄1 decay products are detected, only the charged lepton from
W boson decay is measured. It implies that distinct experimental uncertainties are
encountered in the measurements of lepton angular distributions associated with the
production of the different gauge bosons. Another important difference is that these
distributions involve different couplings. In particular, W and Z boson productions
involve different parity-violating couplings, which makes instructive to compare the
corresponding lepton angular distributions. Such aspect has motivated the improvement
of theoretical description of the DY process (See e.g. Refs. (Lyubovitskij; Zhevlakov;
Anikin, 2024; Nefedov; Nikolaev; Saleev, 2013; Piloneta; Vladimirov, 2024)), as well
as the measurement of the angular coefficients in pp collisions at high energies by the
distinct LHC experimental collaborations (Aad et al., 2012, 2016; Khachatryan et al.,
2015; Aaij et al., 2022).

In this chapter, we will focus on the calculation of the angular distributions of leptonic
pairs (l1l̄2) at forward rapidities and LHC energies, expanding our work presented so
far (Refs. (Bandeira; Goncalves; Schäfer, 2024, 2025)) and generalizing the results
derived in Ref. (Schäfer; Szczurek, 2016) for the cases where the dilepton system is
produced by a Z0 or a W± gauge boson. Our goal is to derive all density matrix elements
needed to estimate the angular coefficients using the CDSM. As we will demonstrate,
the resulting expressions will be linearly dependent of the target unintegrated gluon
distribution (UGD), which is sensitive to the description of the QCD dynamics, and are
valid for pp and pA collisions. In our analysis, we will calculate the angular coefficients
in pp collisions at

√
s = 14 TeV, assuming that the dileptons are produced in the rapidity

range covered by the LHCb detector, and considering distinct models for the proton
UGD. In particular, we will consider a model that takes into account nonlinear effects in
the QCD dynamics and will compare with those derived disregarding these effects. The
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Figure 13 – Drell - Yan process in the hybrid factorization.

G∗ = γ, Z0, W±

qf
qk

Proj. Target l1

l̄2

One of two diagrams for the Drell - Yan process in the hybrid factorization formalism. In the high energy
limit, the gauge boson vertex can occur before or after interaction with the target fields.

results presented in this chapter are the basis of an article in preparation (Bandeira;
Goncalves; Schäfer, 2025).

We organize this chapter as follows. In the next section, we derive the expressions
for the gauge boson polarization density matrix elements (DME) in terms of the structure
functions present in the decomposition of the hadronic tensor. In particular, we will
demonstrate that distinctly from the case of virtual photons, where there are four parity
conserving structure functions (Lam; Tung, 1978), for the case of electroweak gauge
bosons W±, Z0, the lepton angular distributions give access to nine independent struc-
ture functions (Körner; Mirkes, 1991; Mirkes, 1992; Lyubovitskij; Vogelsang; Wunder;
Zhevlakov, 2024). In section 5.2 we will present the derivation of the density matrix
elements using the color - dipole S - matrix framework for the generic q → qG process,
with G = γ, Z or a W boson. We will demonstrate that the results derived in Ref.
(Schäfer; Szczurek, 2016) are recovered for G = γ. Moreover, the collinear limit of the
Lam - Tung relation will be discussed. Our predictions for the distinct density matrix
elements will be presented in section 5.3, considering the dilepton production at forward
rapidities (2.0 ≤ y ≤ 4.0) in pp collisions at

√
s = 14 TeV. In order to estimate the impact

of the non - linear effects on the density matrix elements, we will present the results
associated with distinct models for the proton UGD.

5.1 Structure functions and the gauge boson polarization density
matrix

The cross–section for the Drell–Yan process in pp collisions at the center-of-mass
energy

√
s can be expressed in terms of the leptonic Lµν and hadronic tensors Wµν as
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follows

(2π)4
dσ(pp→ ℓ1(l1)ℓ̄2(l2) +X)

d4q
=

1

2s

WµνL
µν

(M2 −M2
G)

2 + Γ2
GM

2
G

dΦ(q, l1, l2), (102)

where q = l1 + l2 is the four-momentum of the virtual gauge boson, M2 = q2 is the
invariant mass of the lepton pair, MG is the gauge boson mass, ΓG is its total decay
width and dΦ is the dilepton phase space. We have adopted the relativistic Breit–Wigner
form as appropriate for a narrow resonance. As emphasized, e.g., in Ref. (Mirkes, 1992),
the lepton tensor Lµν acts as an analyzer of the gauge boson polarization. In contrast,
Wµν contains all the dynamical information on the gauge boson production.

As there is no standard notation for the relevant structure functions, in this work
we will adopt the decomposition and notational conventions recently proposed in
Ref.(Lyubovitskij; Vogelsang; Wunder; Zhevlakov, 2024) and write:

W µν = (XµXν + Y µY ν)WT + i (XµY ν − Y µXν)WTp + ZµZνWL

+ (Y µY ν −XµXν)W∆∆ − (XµY ν + Y µXν)W∆∆p

− (XµZν + ZµXν)W∆ − (Y µZν + ZµY ν)W∆p

+ i (ZµXν −XµZν)W∇ + i (Y µZν − ZµY ν)W∇p .

(103)

Here Xµ, Y µ, Zµ is an orthogonal basis of spacelike vectors, which fulfill X2 = Y 2 =

Z2 = −1. Together with the timelike unit vector T µ = qµ/M, T 2 = 1, they form
a right-handed, i.e., Y µ = ϵµναβTνZαXβ, basis of Minkowski space. In a given
rest frame of the gauge boson, they can be thought of having the canonical form
T µ = (1, 0, 0, 0), Xµ = (0, 1, 0, 0), Y µ = (0, 0, 1, 0), Zµ = (0, 0, 0, 1). For useful covariant
expressions of Xµ, Y µ, Zµ in terms of the four momenta of incoming hadrons and the
gauge boson, which fix the orientation of axes with relation to these particle momenta,
see e.g. (Boer; Vogelsang, 2006). In our discussion, we will adopt a convention where
Xµ, Zµ span the gauge–boson production plane, and Y µ is the out-of plane direction.
The frames such as Gottfried–Jackson (GJ) and Collins–Soper (CS) ones differ by a
rotation in the production plane as shown in the Appendix E. Other frame choices are
discussed, e.g., in (Richter-was; Was, 2017). Moreover, in eq. (103), the hadronic tensor
Wµν has being parametrized in terms of

1. Two transverse functions, the P -even WT and the P - odd WTp,

2. One longitudinal function, WL which is P - even,

3. Two transverse-transverse interference (double-spin-flip) functions, the P -even
W∆∆ and the P -odd W∆∆p,

4. Four transverse-longitudinal interference (single-spin-flip) functions, the P -even
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W∆, W∇ and the P -odd W∆p, W∇p.

On the other hand, the lepton tensor Lµν , for massless leptons coupled to gauge
bosons with the respective vector and axial couplings gV , gA, reads

Lµν = 4(g2V + g2A)
(
l1µl2ν + l2µl1ν − (l1 · l2)gµν

)
− 8gV gAiϵµναβl

α
1 l

β
2 . (104)

In a given rest frame of the lepton pair, we parameterize the four vectors of leptons
as

l1µ =
M

2
(Tµ + nµ), l2µ =

M

2
(Tµ − nµ) , (105)

with

nµ = sin θ cosϕXµ + sin θ sinϕYµ + cos θ Zµ. (106)

Consequently, the lepton tensor can be expressed as follows

Lµν = 2M2(g2V + g2A)Lµν , (107)

with

Lµν = −gµν + TµTν − nµnν + icG ϵµναβT
αnβ , (108)

where cG = 2gV gA/(g
2
V + g2A). In the Standard Model cγ = 0, cW = 1, cZ ≈ 0.08.

In our analysis, we are interested in the lepton angular distributions, dN/dΩ, which
can be obtained in a straightforward manner from the differential cross-section for the
DY process, given by

dσ

d4qdΩ
=

dσ

d4q

dN

dΩ
. (109)

As a consequence, one has that

dN

dΩ
=

3

8π

WµνLµν

2WT +WL

. (110)

Such a distribution can be expressed as follows

dN

dΩ
=

3

8π

1

2WT +WL

[
gTWT + gLWL + g∆W∆ + g∆∆W∆∆

+cGgTP
WTP

+ cGg∇P
W∇P

+ cGg∇W∇ + g∆∆P
W∆∆P

+ g∆P
W∆P

]
(111)
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=
3

8π

[
gTρT + gLρL + g∆ρ∆ + g∆∆ρ∆∆

+cGgTP
ρTP

+ cGg∇P
ρ∇P

+ cGg∇ρ∇ + g∆∆P
ρ∆∆P

+ g∆P
ρ∆P

]
, (112)

where gi = gi(θ, ϕ) are the angular coefficients

gT = 1 + cos2 θ , gL = 1− cos2 θ , gTP
= 2 cos θ ,

g∆∆ = sin2 θ cos 2ϕ , g∆ = sin 2θ cosϕ , g∇P
= 2 sin θ cosϕ ,

g∆∆P
= sin2 θ sin 2ϕ , g∆P

= sin 2θ sinϕ , g∇ = 2 sin θ sinϕ , (113)

with θ and ϕ being the polar and azimuthal lepton decay angles. Moreover, the angular
coefficients

ρi ≡
Wi

2WT +WL

, i ∈ {T, L,∆∆,∆∆p, Tp,∆,∇,∆p,∇p}, (114)

are defined in terms of combinations of the gauge boson polarization DMEs, ρλλ′,
defined in a helicity basis as

ρλλ
′
=
W µνϵ

(λ)
µ ϵ

(λ′)∗
ν

2WT +WL

, (115)

with the gauge boson polarization vectors ϵµλ(q) being given by

ϵµ±(q) =
∓Xµ − iY µ

√
2

, ϵµ0(q) = Zµ . (116)
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In particular, one has that

ρT =
1

2
(ρ++ + ρ−−),

ρL = ρ00,

ρ∆∆ =
1

2
(ρ−+ + ρ+−),

ρ∆∆p =
i

2

(
ρ+− − ρ−+

)
,

ρTp =
1

2

(
ρ++ − ρ−−) ,

ρ∆ = − 1

2
√
2

(
ρ−0 + ρ0− − ρ+0 − ρ0+

)
,

ρ∇ =
i

2
√
2

(
ρ−0 − ρ0− + ρ0+ − ρ+0

)
,

ρ∆p =
i

2
√
2

(
−ρ0− + ρ−0 − ρ0+ + ρ+0

)
,

ρ∇p = − 1

2
√
2

(
ρ0− + ρ−0 + ρ0+ + ρ+0

)
.

(117)

For completeness, in Appendix F we present the relation between our representation
for the angular distribution and other conventions used in the literature. Some aspects
are important to be emphasized. First, the angular coefficients ρi depend on the
invariant mass, transverse momentum, and rapidity of the lepton pair, being sensitive to
the description of the QCD dynamics. Second, for the purely electromagnetic Drell-Yan
process, only the four structure functions WT , WL, W∆ and W∆∆ contribute. Third, the
parton model predicts that the quantity ALT = (2WL−4W∆∆)/(2WT +WL), denoted Lam
- Tung relation (Lam; Tung, 1978), is equal to zero. Recent high-statistics measurements
of the lepton angular distribution coefficients in Z boson production in pp collision at the
LHC (Aad et al., 2016; Khachatryan et al., 2015; Aaij et al., 2022), over a broad range
of the gauge boson transverse momentum, by the ATLAS, CMS and LHCb experiments
revealed a clear violation of the Lam-Tung relation, in contrast with the experimental
results at smaller center - of - mass energies. One possible physical explanation for
this violation is that QCD radiative effects, which arise at next - to - leading order (or
beyond), become important at LHC energies (Gauld; Gehrmann-de ridder; Gehrmann;
Glover; Huss, 2017). Another possibility is that intrinsic transverse momenta of the
initial partons (Peng; Chang; Mcclellan; Teryaev, 2016; Motyka; Sadzikowski; Stebel,
2017) and/or higher-twist contributions (Brandenburg; Brodsky; Khoze; Mueller, 1994;
Eskola; Hoyer; Vanttinen; Vogt, 1994; Gelis; Jalilian-marian, 2007), usually neglected in
the calculations based on the collinear factorization framework, may become relevant,
and its contributions cannot be neglected in the description of the cross-sections. Such
aspects motivate the analysis of the angular distributions using the hybrid factorization



62

formalism, which is expected to take into account of the contributions associated with
the intrinsic momentum of the target, part of the NLO corrections as well the higher -
twist contributions associated, e.g., with the nonlinear QCD effects.

5.2 Helicity density matrix elements from the q → Gq process in
the color–dipole S–matrix framework

In this section we focus on the helicity density matrix for the gauge-boson production,
which can be obtained from the different contractions ϵ

(λ)
µ ϵ

(λ′)∗
ν W µν . In the following,

we will further simplify the calculation by replacing the Breit-Wigner distribution of the
dilepton mass by a delta function. We therefore do not discuss the dependence on
lepton invariant mass, nor do we include the Z0 − γ interference. We start from the
cross-section for inclusive gauge–boson production which can be expressed through
the hadronic tensor as

dσ(pp→ G(xF , q)X)

dxFd2q
=

1

32π3sxF
(2WT +WL) . (118)

We are interested in the forward rapidity region of one of the protons which has, say,
a large light cone plus-momentum, and the gauge boson carries a fraction xF thereof.
By q we denote the transverse momentum of the gauge boson in the pp center-of-mass
frame. Now the polarization density matrix elements in the helicity basis are related to
the hadronic tensor via

ρλλ
′ dσ(pp→ G(xF , q)X)

dxFd2q
=

1

32π3sxF
ϵ(λ)µ ϵ(λ

′)∗
ν W µν . (119)

As we have demonstrated in this thesis (Chap. 3), the gauge boson production at forward
rapidities can be described using the hybrid factorization formula, which implies that

ρλλ′
dσ
(
pp→ G(xF , q)X

)
dxFd2q

=
∑
f

∫
dx1dz δ(xF − zx1)

[
qf (x1, µ

2) + qf (x1, µ
2)

]

×ρ̂λλ′
dσ̂
(
qp→ G(z, q)X

)
dzd2q

, (120)

where qf (x1, µ2) are the projectile parton distributions with a momentum fraction x1 at a
factorization scale µ2 ≈ q2 +M2

G, z is the fraction of the quark’s longitudinal momentum
carried by the gauge boson. Moreover, the partonic density matrix is given in the
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color–dipole S–matrix approach by

ρ̂λλ
′ dσ(qp→ GX)

dzd2q
=

1

2(2π)2

∑
ηη′

∫
d2rd2r′e−iq(r−r′)Ψ

(λ)
ηη′(z, r)Ψ

(λ′)†
ηη′ (z, r′)

×
[
σ(x, zr) + σ(x, zr′)− σ(x, z(r − r′))

]
,

(121)

where Ψ
(λ)
ηη′ is the light front wave function (LFWF) for the qη → Gq′η′ transition in the

impact parameter space, with η, η′, λ, λ′ denoting the helicities of particles, and σ(x, r) is
the color dipole–proton cross–section (Nikolaev; Zakharov, 1991), which is determined
by the QCD dynamics. For an early discussion of Drell–Yan lepton angular distributions
in the color-dipole approach, see (Brodsky; Hebecker; Quack, 1997).

In what follows, we will use the results for the LFWF obtained in Chap. 3 in order to
derive the elements of the partonic density matrix. As demonstrated in that chapter, the
calculation can be performed in two equivalent representations, the impact parameter
and momentum space representations, which are related by a Fourier transform. Here
we will perform our study in the momentum space representation. In order to do that,
we will use in Eq. (121) the relation between the dipole - proton cross–section and the
unintegrated gluon distribution, f(x,k), given by

σ(x, r) =
1

2

∫
d2kf(x,k)

(
1− e−ikr

) (
1− eikr

)
. (122)

Inserting this expression into eq.(121), we obtain the following representation, now
fully in momentum space:

ρ̂λλ
′ dσ(qp→ GX)

dzd2q
=

1

2(2π)2

∑
ηη′

∫
d2kf(x2,k)

×
(
Ψ

(λ)
η′η(z, q)−Ψ

(λ)
η′η(z, q − zk)

)(
Ψ

(λ′)
η′η (z, q)−Ψ

(λ′)
η′η (z, q − zk)

)†
=

1

2(2π)2

∫
d2k f(x2,k) I

(λ,λ′)(z, q, zk) . (123)

Here, the argument of the unintegrated gluon distribution is caculated from the trans-
verse mass of the q +G–system:

x1x2s =M2
qG + k2 =

M2
G + q2

z
+
m2

f + (k − q)2

1− z
. (124)

As demonstrated in the previous chapters, the LFWF in the momentum space are
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defined as1

Ψ±
V (z,k) =

CG
f g

G
V,f

√
z

k2 + ϵ2
χ†
η′

{2− z

z
(k · e∗(±))1+ i (k × e∗(±))ẑ σ3

− ΓV (σ · e∗(±))σ3

}
χη

(125)

Ψ0
V (z,k) =

CG
f g

G
V,f√

zM [k2 + ϵ2]
χ†
η′ {ΛV 1+ z(mb −ma) (σ · k)σ3}χη (126)

Ψ±
A(z,k) =

CG
f g

G
A,f

√
z

k2 + ϵ2
χ†
η′

{2− z

z
(k · e∗(±))σ3 + i (k × e∗(±))ẑ 1

− ΓA (σ · e∗(±))
}
χη

(127)

Ψ0
A(z,k) =

CG
f g

G
A,f√

zM [k2 + ϵ2]
χ†
η′ {−ΛAσ3 − z(mb +ma) (σ · k)1}χη (128)

where

ΓV ≡ mb − (1− z)ma, ΓA ≡ mb + (1− z)ma

ΛV ≡ z2ma (mb −ma)− z
(
m2

b −m2
a

)
− 2(1− z)M2

ΛA ≡ z2ma (mb +ma) + z
(
m2

b −m2
a

)
+ 2(1− z)M2,

It is useful to introduce the shorthand notations

Φ0 =
1

q2 + ϵ2
− 1

(q − zk)2 + ϵ2
, Φ =

q

q2 + ϵ2
− q − zk

(q − zk)2 + ϵ2
, (129)

so that the combinations of relevant wave functions for the density matrix in momentum
space take the form

Ψ
(λ)
η′η(z, q)−Ψ

(λ)
η′η(z, q − zk) = χ†

η′O(λ) χη , (130)

with

O(±) = CG
f

√
z

{2− z

z
(Φ · e∗(±))

(
gGV,f1+ gGA,fσ3

)
+ i(Φ× e∗(±)) · ez

(
gGV,fσ3 + gGA,f1

)
−Φ0 (σ · e∗(±))

(
gGV,fΓV σ3 + gGA,fΓA1

)}
, (131)

and

O(0) =
CG

f√
zM

{
Φ0

(
gGV,fΛV 1− gGA,fΛAσ3

)
+ z(σ ·Φ)

(
gGV,f (mb −ma)σ3 − gGA,f (mb +ma)1

)}
.

(132)
1Note that we only redefined some terms in order to make the calculations less complicated. However,

are the same expressions seen in Chap. 3.
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Therefore, the relevant integrands of Eq.(123) can be written as

I(λ,λ
′)(z, q, zk) =

1

2
Tr[O(λ)O(λ′)†] . (133)

The traces are readily evaluated using

Tr (1) = 2, Tr (σi) = 0, Tr (σiσj) = 2δij, Tr (σlσjσk) = 2i εljk. (134)

Consequently, for the transverse polarizations of gauge bosons, one has:

I(±,±)(z, q, zk) = |CG
f |2
{(

(gGV,f )
2 + (gGA,f )

2
) 1 + (1− z)2

z
Φ2 ± 2gGV,fg

G
A,f (2− z)Φ2

+
(
(gGV,f )

2Γ2
V + (gGA,f )

2Γ2
A ± 2gGV,fg

G
A,fΓV ΓA

)
zΦ2

0

}
(135)

I(±,∓)(z, q, zk) = |CG
f |2
(
(gGV,f )

2 + (gGA,f )
2
)
2
1− z

z

(
Φ2

y − Φ2
x

)
= |CG

f |2
(
(gGV,f )

2 + (gGA,f )
2
)
2
1− z

z

{
Φ2 − 2

(q ·Φ
|q|

)2}
, (136)

while for the longitudinally polarized bosons results

I(0,0)(z, q, zk) =
|CG

f |2
zM2

{(
(gGV,f )

2Λ2
V + (gGA,f )

2Λ2
A

)
Φ2

0

+z2
(
(gGV,f )

2(mb −ma)
2 + (gGA,f )

2(mb +ma)
2
)
Φ2
}
. (137)

Finally, the interference contributions are given by

I(±,0)(z, q, zk) =
|CG

f |2

M
√
2

{
∓ 2− z

z2

(
(gGV,f )

2ΛV − (gGA,f )
2ΛA

)
−
gGV,fg

G
A,f

z
(ΛV − ΛA)

±(gGV,f )
2ΓV (mb −ma)∓ (gGA,f )

2ΓA(mb +ma)

+gGV,fg
G
A,f

(
ΓA(mb −ma)− ΓV (mb +ma)

)}
zΦ0

q ·Φ
|q| (138)

I(0,±)(z, q, zk) =
(
I(±,0)(z, q, zk)

)∗
= I(±,0)(z, q, zk) . (139)

The above expressions can be used to estimate the different elements of polarization
density matrix, ρλλ′ . Moreover, these quantities allow us to derive the angular coefficients
defined in eq. (117). In particular, ρT and ρ∆∆, which are the parity conserving transverse
structure functions, will be proportional to

IT (z, q, zk) = |CG
f |2
{(

(gGV,f )
2 + (gGA,f )

2
) 1 + (1− z)2

z
Φ2 +

(
(gGV,f )

2Γ2
V + (gGA,f )

2Γ2
A

)
zΦ2

0

}
(140)



66

and

I∆∆(z, q, zk) = |CG
f |2
(
(gGV,f )

2 + (gGA,f )
2
)
2
1− z

z

{
Φ2 − 2

(q ·Φ
|q|

)2}
, (141)

respectively. There is only one nonvanishing parity odd transverse combination, namely

ρTp ∝ ITp(z, q, zk) = |CG
f |2 2gGV,fgGA,f

{
(2− z)Φ2 + zΦ2

0

}
, (142)

while ρ∆∆p = 0 since I∆∆p = 0. For the longitudinal polarizations we have

ρL ∝ IL(z, q, zk) = I(0,0)(z, q, zk) . (143)

As far as the longitudinal-transverse interference structure functions are concerned, the
identities of eq. (139) immediately yield the vanishing of

ρ∇ = ρ∆p = 0 since I∇ = I∆p = 0 . (144)

In addition, we obtain one nonvanishing parity even LT-interference structure function
ρ∆, with the kernel

I∆(z, q, zk) =
|CG

f |2
M

{2− z

z

(
(gGA,f )

2ΛA − (gGV,f )
2ΛV

)
+z
(
(gGV,f )

2ΓV (mb −ma)− (gGA,f )
2ΓA(mb +ma)

)}
Φ0

q ·Φ
|q| , (145)

and a parity odd ρ∇p proportional to

I∇p(z, q, zk) =
|CG

f |2
M

gGV,fg
G
A,f

{
ΛV − ΛA + z

(
(mb −ma)ΓA − (mb +ma)ΓV

)}
Φ0

q ·Φ
|q| .

(146)

For the case of virtual photons, our results are in agreement with the results of
(Schäfer; Szczurek, 2016). Notice that for massless quarks ΓV,A → 0, and the parity–
conserving structure functions of electroweak gauge bosons become proportional to
the ones for virtual photons. For finite quark masses, this is evidently not the case, due
to the non-conservation of the axial current. Substantial simplifications occur in the limit
of massless quarks, which is relevant for the practical applications. For example it is
instructive to analyze in the massless quark limit the integration kernel relevant for the
Lam–Tung relation which reads

ILam-Tung(z, q, zk) = IL(z, q, zk)− 2I∆∆(z, q, zk)

= |CG
f |2
(
(gGV,f )

2 + (gGA,f )
2
) 4(1− z)

z
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×
{
(1− z)M2Φ2

0 −Φ2 + 2
(q ·Φ)2

q2

}
. (147)

Expanding in the limit of k2 ≪ q2 + ϵ2 ≡ µ2, i.e.

ILam-Tung(z, q, zk) = I0 +
1

2
z2
k2

µ2
I2 + . . . , (148)

one immediately finds that not only is I0 = 0 (see eq. (129)), but also I2 = 0. Now, we
have ∫

d2kk2 f(x,k) → xg(x, µ2) , (149)

where g(x) is the collinear gluon distribution of the target, so that in the collinear limit,
the Lam-Tung structure function vanishes. In our case a finite contribution violating the
Lam–Tung relation comes from the large–k tail of the unintegrated gluon distribution, as
in the approach of (Motyka; Sadzikowski; Stebel, 2017).

5.3 Results

In this section, we will present our predictions for the transverse momentum de-
pendence of the six nonvanishing angular coefficients ρi, with i = T, L,∆,∆∆, Tp and
∇p. We will consider pp collisions at the LHC energy of

√
s = 14 TeV and focus on

dileptons produced at forward rapidities (2.0 ≤ y ≤ 4.0), where the hybrid factorization
assumed in our calculations is expected to be valid. The results derived in the previous
section indicate that the structure functions Wi are linearly proportional to the target
unintegrated gluon distribution, f(x,k). Together with the collinear parton distributions
of quarks and antiquarks, this quantity is the main input in our calculations and is
determined by the QCD dynamics.

5.3.1 Input: Unintegrated gluon distribution and collinear quarks and antiquarks

At forward rapidities, the collinear distributions q(x, µ2) and q̄(x, µ2) in eq. (120) are
probed at large values of x, where the parton distribution functions obtained by the
distinct groups that perform the global analysis are similar. In what follows, we use the
CT14LL parameterization of the CTEQ collaboration (Dulat; Hou; Gao; Guzzi; Huston;
Nadolsky; Pumplin; Schmidt; Stump; Yuan, 2016) for the collinear distributions q(x, µ2)

and q̄(x, µ2) in eq. (120). As the angular coefficients are given in terms of ratios of
structure functions, the impact of next - to - leading order corrections to the PDFs on
our results is expected to be small.

On the other hand, as the small - x region is probed in the proton target, we will
consider three distinct models for the proton UGD: two based on a linear QCD dynamics



68

Figure 14 – Unintegrated gluon distribution behavior.
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(CCFM and KS-linear), proposed in Refs. (Hautmann; Jung, 2014; Kutak; Sapeta,
2012), and one based on a non - linear QCD dynamics (KS-nonlinear). In particular, the
KS-nonlinear UGD is based on the solution of the Balitsky - Kovchegov (BK) equation,
with the free parameters adjusted using the ep HERA data, while the KS-linear UGD has
been obtained neglecting the non - linear term in the BK equation. As a consequence,
the comparison between the predictions derived using these two models allow us to
estimate how sensitive is the quantity to non - linear effects in the QCD dynamics. For
completeness, we also present the predictions associated with the CCFM, which also is
able to describe the HERA data at small values of Bjorken - x variable, but are based on
distinct assumptions. In Fig. 14 we present a comparison between these distinct UGD’s
for two different values of x. One has that the UDG’s differ on the predicted transverse
momentum dependence. At small kT , one has that the CCFM and KS-linear models
are similar, but become distinct with the increasing of the transverse momentum. In
both models, one has that f(x,k) increases for kT → 0. In contrast, the KS-nonlinear
model predict that f(x,k) → 0 when kT → 0. Another important aspect is that the value
of kT where the KS-nonlinear and KS-linear UGD’s become identical is dependent of
x, increasing for smaller values of x. Such result is expected, since the transition line
between the non - linear and linear regimes of QCD dynamics is determined by the
saturation scale Qs, which is dependent of x (For a more detailed discussion see, e.g.,
Ref. (Golec-biernat; Wusthoff, 1998, 1999; Bandeira; Goncalves, 2023)).

5.3.2 Helicity density matrix elements

In order to present our predictions for the angular coefficients, we must to specify
the choice of the coordinate system in the gauge boson rest, with respect to which
the momentum of one of the two decay products is expressed in spherical coordinates.
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Figure 15 – Density matrix elements plot for Z0 decay at GJ frame.
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(2 ≤ y ≤ 4).

Such choice is arbitrary, which implies that distinct coordinate systems are often used
in different studies in the literature (See discussion in Ref. (Faccioli; Lourenco, 2023)).
Two of the more used frames are the Gottfried - Jackson (GJ) and Collins - Soper
(CS) frames, which differ in the way the momenta of the colliding hadrons are used as
reference directions. While in the GJ frame the polarization axis z is the direction of one
of the two colliding hadrons, in the CS frame such a polarization axis has the direction
of the bisector of the angle formed by the direction of the incoming hadrons in the gauge
boson rest frame. In what follows, we will present our results considering the GJ frame.
For completeness, in Appendix E the transformation matrix connecting the description
of the structure function Wi’s in the GJ and CS frames is presented.

In Figs. 15 and 16 we present our predictions for the six nonvanishing dilepton
angular coefficients ρi’s, associated with the Z0 and W decay, respectively, derived
considering the different models for the proton UGD’s. As the angular coefficients
are defined by the ratio between structure functions, ρi = Wi/(2WT + WL), we can
anticipate that these quantities will not be strongly sensitive to the modelling of f(x,k).
However, as the integrands are distinct for different i’s, with the main contribution
for the transverse momentum integrations coming from different k regions, we can
expect that the magnitude and transverse momentum dependence of some of the
ρi’s will be dependent on f(x,k). Such expectations are confirmed by the results
presented in Figs. 15 and 16. We have that the more sensitive angular coefficients
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Figure 16 – Density matrix elements plot for W+ decay at GJ frame.
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to the description of f(x,k) are ρ∆∆ and ρ∆. In addition, our results also indicate that
the angular coefficients associated with the Z0 and W+ decay are, in general, similar,
differing mainly in the predictions for ρ∆, ρTP

and ρ∇P
.

5.3.3 Lam-Tung relation

Finally, in Fig. 17 we present our predictions for the transverse momentum depen-
dence of the Lam - Tung relation, defined by ALT = (2WL − 4W∆∆)/(2WT +WL). As
discussed in the previous section, the parton model predicts ALT = 0. We present our
predictions associated with the Z0 (left panel) and W+ (right panel) decays, which were
estimated considering the GJ frame and the gauge boson production at forward rapidi-
ties (2.0 ≤ y ≤ 4.0). Clearly, we predict ALT ̸= 0 in the kinematical range considered,
with the the results for both gauge bosons being similar. Moreover, one has that the
CCFM UGD predicts a peak at smaller values of pT in comparison with the predictions
from the other UGD’s. In addition, we have that the KS-linear and KS-nonlinear predic-
tions are almost identical, which indicates that the nonlinear effects have a small impact
on the Lam-Tung relation.
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Figure 17 – Transverse momentum dependence of the Lam-Tung relation.
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5.4 Summary

In this chapter, we have seen Drell–Yan angular coefficients associated with Z and
W decays at forward rapidities using the framework constructed in the previous chapters
of this thesis.

Over the last years, the measurement, and the description of the Drell–Yan angular
coefficients has been a subject of intense experimental and theoretical activity. Such
studies were strongly motivated by the possibility to use these quantities to improve
our understanding of the particle production mechanism. In this chapter, we have
focused on forward rapidities, where new dynamical effects are expected to modify the
description of the gauge boson production, implying the breakdown of the standard
collinear factorization formalism. In particular, we have considered the color dipole S
matrix framework, which was used discussed in this thesis and extended by us to the
electroweak gauge boson production, and derived, for the first time, the corresponding
DY angular coefficients associated with the Z and W decays. We have demonstrated
that our formalism implies that the angular distribution is fully characterized by six non-
vanishing angular coefficients. Moreover, we have presented results for the transverse
momentum dependence of the distinct angular coefficients considering pp collisions
at

√
s = 14 TeV and that the dileptons are produced in the rapidity range 2 ≤ y ≤ 4.

Three distinct models for the proton UGD have been considered, which has allowed to
estimate the sensitivity of the coefficients on the description of the QCD dynamics. Our
results indicate that the predictions associated with the Z and W decays are similar and
that the impact of the nonlinear QCD effects is small.

A final comment is in order. In this chapter, we have established the formalism
needed to estimate the DY angular coefficients using the color–dipole S–matrix frame-
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work. Although we have presented predictions for the transverse momentum depen-
dence of these coefficients, a comparison with the data was not performed since the
experimental cuts assumed by the LHC collaborations were not considered. Moreover,
the magnitude of the next–to–leading order corrections for our predictions is still an
open question (For recent advances on this topic see, e.g., Ref. (Taels, 2024)). Both
aspects deserve more detailed analysis, which we intend to perform in forthcoming
studies.



6 CONCLUSIONS

Understanding the internal structure of the proton in the high–energy regime remains
one of the central challenges in Quantum Chromodynamics (QCD). As discussed in the
introduction, at small values of Bjorken–x, the proton wave function becomes densely
populated with gluons, leading to a nonlinear regime where saturation effects and
high–density QCD dynamics become relevant. Forward rapidity processes in hadronic
collisions provide a unique opportunity to probe this regime, offering complementary
information to that obtained from deep inelastic scattering (DIS) experiments, such as
those performed at HERA.

At high energies, QCD processes like pp collisions cannot be fully described from
first principles and are typically approached using perturbative QCD combined with
factorization schemes. The collinear factorization framework, commonly applied in
hadronic scattering, assumes a symmetric momentum configuration and becomes
inadequate at forward rapidities, where interactions occur between large x and small
x partons. In this asymmetric regime, the small x component of the hadron develops
a dense gluon system, making nonlinear QCD effects significant and leading to the
breakdown of collinear factorization. To address this, alternative approaches such
as the hybrid factorization scheme have been developed to properly account for both
perturbative and non-perturbative dynamics in the forward region.

In this thesis, we addressed this challenge by performing a comprehensive study of
electroweak gauge boson production at forward rapidities within the hybrid factorization
framework, as formulated in the Color Dipole S–Matrix (CDSM) formalism (Nikolaev;
Schafer; Zakharov; Zoller, 2003; Nikolaev; Schafer, 2005; Nikolaev; Schafer; Zakharov;
Zoller, 2005a; Nikolaev; Schafer; Zakharov, 2005a; Nikolaev; Schafer; Zakharov; Zoller,
2005b; Nikolaev; Schafer; Zakharov, 2005b). This approach is particularly suited for
describing asymmetric collisions between a dilute projectile — characterized by large x
partons — and a dense target populated by small x gluons, capturing both perturbative
and nonlinear QCD dynamics.

In Chap. 3, we extended the CDSM formalism to cover the electroweak gauge boson.
As seen, the differential cross-section to describe such process depends on proton’s
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inner dynamics description — dipole cross-section for the impact parameter space or
the unintegrated gluon distribution for the momentum space — and the Light Front Wave
Function of an electroweak gauge boson radiated from a quark generalized for any
electroweak gauge boson, along the chapter we have derived, for the first time, the
LFWF expressions for the production of any electroweak gauge boson radiated off a
quark. From this result, we were able to construct the general formulae for the inclusive
electroweak gauge boson production at forward rapidities using the CDSM framework
and demonstrated that it reduces to those used in the literature to estimate the real
photon and Z0 production in the appropriate limits and representations, in Chap. 4.
Also, the cross-section for the W± production in the hybrid factorization formalism was
derived for the first time. Furthermore, in Chap. 5 we extended our previous result to less
inclusive observables, which provides additional information about the hadronic structure,
such as the angular distribution of lepton pairs (l1l2). We have demonstrated that our
formalism implies that the angular distribution is fully characterized by six nonvanishing
angular coefficients. Moreover, we have presented results for the transverse momentum
dependence of the distinct angular coefficients considering pp collisions at

√
s = 14

TeV and that the dileptons are produced in the rapidity range 2 ≤ y ≤ 4. Three distinct
models for the proton UGD have been considered, which has allowed to estimate the
sensitivity of the coefficients on the description of the QCD dynamics. Our results
indicate that the predictions associated with the Z and W decays are similar and that
impact of the nonlinear QCD effects is small.

Throughout this work, we derived general expressions for inclusive electroweak
gauge boson production — including real photons, Z0, and, for the first time, W±

bosons — within this formalism. Additionally, we extended the application of the CDSM
framework to the study of angular distributions in the Drell–Yan process. These results
provide a robust theoretical foundation for investigating the interplay between QCD
dynamics and electroweak processes in the forward region.

The developments presented in this thesis represent a step forward in the theoretical
understanding of proton structure at small x and establish new tools for interpreting
current and future data from hadron colliders, particularly in the kinematic regions where
saturation effects are expected to manifest.

Building upon the general formalism derived, we demonstrated that, in appropriate
limits, our expressions reduce to the well-established results in the literature for real pho-
ton and Z0 production, serving as a consistency check of the framework. The derivation
of the cross-section for W± production within the hybrid factorization represents a novel
contribution, expanding the applicability of the CDSM approach to processes involving
charged electroweak currents in the forward region — a gap in the literature addressed
here for the first time.

Furthermore, we extended our formalism to the angular distributions of dilepton
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pairs resulting from electroweak gauge boson decays, which is a less inclusive ob-
servable. In particular, we provided a systematic description of the relevant density
matrix elements within the CDSM framework, including their dependence on the proton’s
partonic structure at small-x. This allowed us to compute angular coefficients, offering a
deeper insight into the connection between QCD dynamics and the final-state angular
distributions in forward processes.

Finally, we emphasize that the formalism developed in this thesis lays the groundwork
for future theoretical and phenomenological studies, which are part of a series of already
published papers (Bandeira; Goncalves; Schäfer, 2025, 2024) and one in preparation.
These include the analysis of less inclusive observables, correlations between jets
and vector bosons, and applications to proton–nucleus and nucleus–nucleus collisions.
Numerical implementations of our results, along with comparisons to experimental data,
are natural next steps, especially within the forward physics programs of the LHC and
RHIC. These results are not only theoretically relevant but also timely, considering the
growing experimental efforts focused on forward physics at the LHC and the future
Forward Physics Facility (FPF) (Feng et al., 2023). The theoretical framework developed
here can directly support the interpretation of forthcoming data, particularly in processes
involving electroweak bosons accompanied by hadronic activity in the forward region.
Moreover, we plan to apply the formalism developed here to phenomenological studies,
particularly in light of available experimental data such as W± production measured by
the LHCb Collaboration. Similarly, an extension of this framework to nuclear targets is
envisioned, paving the way for phenomenological analyses in pA and AA collisions.
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APPENDIX A – Conventions

This appendix outlines the general conventions adopted throughout this thesis. In
particular, we provide a compact comparison between the instant form and the light–front
form of relativistic dynamics, as shown in Fig. 18, which highlights the key differences in
their respective variable definitions and symmetry properties.

Given the central role of light-front quantization in the framework adopted in this
work — especially in describing high–energy scattering processes and light-cone wave
functions— we present the conventions used in both the instant and light–front forms.
The light–front formalism offers significant advantages in the study of relativistic systems,
including a more intuitive treatment of parton dynamics and boost invariance along the
longitudinal direction.

For a comprehensive review of the light–front approach and its applications in
quantum field theory and high-energy physics, we refer the reader to Refs. (Brodsky;
Hebecker; Quack, 1997; Kovchegov; Levin, 2013). For an introductory discussion in
Brazilian Portuguese, see Ref. (Bandeira, 2021).

A.1 Instant form

A.1.1 Lorentz vectors

We write contravariant position four–vectors, xµ in the instant form as

xµ =
(
x0, x1, x2, x3

)
=
(
x0, x⃗⊥, x

3
)
= (x0, x⃗) . (150)

Moreover, the covariant four-vector, xµ is given by

xµ = (x0, x1, x2, x3) = (t,−x,−y,−z) = gµνx
ν (151)
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Figure 18 – Dirac’s two dynamical forms

Source: adapted from (Brodsky; Pauli; Pinsky, 1998).

and obtained from the contravariant vector by the metric tensor

gµν =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


. (152)

The scalar products are

x · p = xµpµ = x0p0 + x1p1 + x2p2 + x3p3 = tE − x⃗ · p⃗ , (153)

with the four–momentum pµ = (p0, p1, p2, p3) = (E, p⃗). The metric tensor gµν raises the
indices.

A.1.2 Dirac matrices

Up to unitary transformations, the 4× 4 Dirac matrices γµ are defined by

γµγν + γνγµ = 2gµν , (154)
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where γ0 is hermitean and γk anti–hermitean. Useful combinations are β = γ0 and
α = γ0γk, as well as

σµν =
i

2
(γµγν − γνγµ) , γ5 = iγ0γ1γ2γ3 . (155)

The γ’s matrices are usually expressed in terms of the 2× 2 Pauli matrices

I =

1 0

0 1

 , σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 , (156)

moreover, there are different representations for those σ’s matrices which forms the
Dirac matrices. In what follows, we’ll see the Dirac and chiral representations.

Dirac representation: In this representation, the matrices are (Brodsky; Pauli;
Pinsky, 1998)

γ0 =

I 0

0 −I

 , γk =

 0 σk

−σk 0

 ,

γ5 =

0 I

I 0

 , αk =

 0 σk

σk 0

 , σij =

σ
k 0

0 σk

 .

(157)

Chiral representation: In this representation the matrices are (Brodsky; Pauli;
Pinsky, 1998)

γ0 =

0 I

I 0

 , γk =

 0 σk

−σk 0

 ,

γ5 =

I 0

0 −I

 , αk =

σ
k 0

0 −σk

 , σij =

σ
k 0

0 σk

 .

(158)

A.2 Dirac spinors

The spinors u(p, λ) and v(p, λ) are solutions of the Dirac equation

(/p−m)γµu(p, λ) = 0 , −(/p+m)γµv(p, λ) = 0 , (159)
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where /a = aµγ
µ. They are orthonormal and complete:

u(p, λ)u(p, λ′) = −v(p, λ)v(p, λ′) = 2mδλΛ′ , (160)∑
λ

u(p, λ)u(p, λ) = /p+m,
∑
λ

v(p, λ)v(p, λ) = /p−m. (161)

Some useful relations are the Gordon decomposition of the currents:

u(p, λ)γµu(p, λ′) = v(p, λ)γµv(p, λ′) =
1

2m
u(p, λ) ((p+ q)µ + iσµν(p− q)ν)u(q, λ

′) ,

(162)
and

γµ/aγµ = −2a , (163)

γµ/a/bγµ = 4ab , (164)

γµ/a/b/cγµ = /c/b/a , (165)

with λ = ±1, the spin projection is s = λ/2.

A.3 Polarization vectors

The two polarization 4–vectors ϵµ(p, λ) are labeled by the spin projectors λ = ±1.
Moreover, as solutions of the free Maxwell equations they are orthonormal and complete,
i.e.,

ϵµ(p, λ)ϵ∗(p, λ′) = −δλΛ′ , pµϵµ(p, λ) = 0 . (166)

The polarization sum is∑
λ

ϵλ(p, λ)ϵ
∗
ν(p, λ) = −gµν +

ηµpν + ηνpµ
pκηκ

, (167)

with the null vector as ηµηµ = 0.

A.4 Light front form

In the light–front formalism, a redefinition of coordinates is performed by rotating the
time and one spatial direction to construct a new set of light–cone coordinates. However,
multiple conventions exist for carrying out this transformation from instant–form to
light–front variables. These different conventions lead to distinct prescriptions for key
quantities such as Dirac spinors and polarization vectors. In what follows, we present
the two most widely used conventions: the Kogut–Soper (KS) convention (Kogut; Soper,
1970) and the Lepage–Brodsky (LB) convention (Lepage; Brodsky, 1980).
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A.4.1 The Lepage–Brodsky convention (LB)

A.4.1.1 Lorentz vectors

In the light front approach, the contravariant 4–vectors of position xµ are written as

xµ = (x+, x−, x1, x2) = (x+, x−,xxx) , (168)

The time–like and space–like components are related to the instant form by the
following transformations:

x+ = x0 + x3 and x− = x0 − x3, (169)

and referred to as the ‘light–cone time’ and ‘light–cone position’, respectively. The
covariant vectors are obtained by the contraction with the metric tensor, xµ = gµνx

ν ,
which is given by

gµν =



0 2 0 0

2 0 0 0

0 0 −1 0

0 0 0 −1


and gµν =



0 1
2

0 0

1
2

0 0 0

0 0 −1 0

0 0 0 −1


. (170)

The scalar products are

x · p = xµpµ = x+p+ + x−p− + x1p1x
2p2 =

1

2
(x+p− + x−p+)− xxx · ppp , (171)

and all other 4-vectors including γµ are treated correspondingly.

A.4.1.2 Dirac matrices

As well as the coordinates, we can construct the + and − γ-matrices via

γ+ = γ0 + γ3 and γ− = γ0 − γ3, (172)

where we use the Dirac representation of the γ–matrices, particularly

γ+γ+ = γ−γ− = 0 . (173)

Other useful products are

γ+γ−γ+ = 4γ+ and γ+γ−γ− = 4γ− . (174)
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A.4.1.3 Dirac spinors

Lepage and Brodsky use a particularly simple spinor representation defined as

uλ(q) =
1√
q+
(
q+I4 + βm+ α⃗ · q⃗

)
χλ

χ(↑) forλ = +1

χ(↓) forλ = −1
(175)

vλ(q) =
1√
q+
(
q+I4 − βm+ α⃗ · q⃗

)
χλ

χ(↓) forλ = +1

χ(↑) forλ = −1
(176)

where

χ(↑) = 1√
2



1

0

1

0


; χ(↓) = 1√

2



0

1

0

−1


.

A.4.1.4 Polarization vectors

The null vector is
ηµ = (0, 2,000) , (177)

the transversal polarization vector are ϵ⃗(+1) = −1/
√
2(1, i) and ϵ⃗(−1) = 1/

√
2(1,−i),

which collectively is

ϵ⃗(±1) =
−1√
2
(±1x̂+ iŷ) , (178)

with x̂ and ŷ as unit vectors in px− and py− direction, respectively. In the light-cone
gauge, ϵ+(p, λ) = 0, then the polarization vector is

ϵµ(p, λ) =

(
0,

2ϵ⃗(λ) · ppp
p+

, ϵ⃗(λ)

)
, (179)

for λ = +1 =↑ and λ = −1 =↓.
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A.4.2 The Kogut–Soper convention (KS)

A.4.2.1 Lorentz vectors

In the Kogut and Soper convention, they have used the following coordinates trans-
formations to define the light cone time and light cone position,

x+ =
1√
2

(
x0 + x3

)
and x− = x0 − x3 . (180)

The covariant vectors are obtained by the contraction with the metric tensor, xµ =

gµνx
ν , which is given by

gµν = gµν =



0 1 0 0

1 0 0 0

0 0 −1 0

0 0 0 −1


, (181)

and the scalar products are (the same values to all other four–vectors including the
gamma matrices, γµ)

xµpµ = x+p− + x−p+ − xxx · ppp . (182)

A.4.2.2 Dirac matrices

The + and − gamma matrices are build following the same transformation as for the
coordinates, so

γ± =
1√
2
(γ0 ± γ3) , (183)

using the chiral representation for the γ’s matrices. Particularly,

γ+γ+ = γ−γ− = 0 , (184)

and the alternate products are

γ+γ−γ+ = 2γ+ and γ−γ+γ− = 2γ− . (185)
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A.4.2.3 Dirac spinors

In this convention, Kogut and Soper use a spinor representation defined as

u(k, ↑) = 1√√
2k+



√
2k+

kx + iky

m

0


, u(k, ↓) = 1√√

2k+



0

m

−kx + iky

√
2k+


,

v(k, ↑) = 1√√
2k+



0

−m

−kx + iky

√
2k+


, v(k, ↓) = 1√√

2k+



√
2k+

kx + iky

−m

0


.

(186)

A.4.2.4 Polarization vectors

Following the ref. (Brodsky; Pauli; Pinsky, 1998), the null vector is

ηµ = (0, 1,000) , (187)

and the polarization vector which corresponds to linear polarization λ = 1 and λ = 2 are

ϵµ(p, λ = 1) =

(
0,
px
p+
, 1, 0

)
,

ϵµ(p, λ = 1) =

(
0,
py
p+
, 0, 1

)
.

(188)
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APPENDIX B – Spinors and matrix elements

B.1 Modified Lepage–Brodsky spinors

The LFWF calculations present in the section 3.3 were done using the Lepage-
Brodsky spinors which are given by 1

uλ(q) =
1√√
2q+

(√
2q+I4 + βm+ α⃗ · q⃗

)
χλ

χ(↑) forλ = +1

χ(↓) forλ = −1
(189)

vλ(q) =
1√√
2q+

(√
2q+I4 − βm+ α⃗ · q⃗

)
χλ

χ(↓) forλ = +1

χ(↑) forλ = −1
(190)

where

χ(↑) = 1√
2



1

0

1

0


; χ(↓) = 1√

2



0

1

0

−1


.

For convenience, let’s remember the explicit expressions for all these spinors in the
Dirac representation of γ matrices:

β = γ0 =

I 0

0 −I

 γk =

 0 σk

−σk 0

 αk =

 0 σk

σk 0

 γ5 =

0 I

I 0

 . (191)

1The
√
2 is because we are using the Kogut-Soper convention for the coordinates
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moreover, also for convenience, we can rewrite the spinor as a 2× 2 matrix defined as

uλ(q) =
1

√
2
√√

2q+


√
2q+ +mq σ · q

σ · q
√
2q+ −mq


 χλ

λχλ

 (192)

vλ(q) =
1

√
2
√√

2q+


√
2q+ −mq σ · q

σ · q
√
2q+ +mq


 χ−λ

−λχ−λ

 (193)

where we redefine χλ as

χλ=+1 =

1

0

 ; χλ=−1 =

0

1

 . (194)

In what follows, we’ll perform two simpler vertex calculations to teach the method to
perform these kinds of calculations. To obtain jµ and jµA as presented in the section 3.3,
it just follows the steps that will be present straightforwardly.

B.1.1 The identity vertex

Let’s start with an easy vertex calculation

uλ′(p)1uλ(q) (195)

which we can rewrite as a matrices product like (using that in LC-QFT q = 0)

uλ′(p)1uλ(q) =

 1
√
2
√√

2p+


√
2p′+ +mp σ · p

σ · p
√
2p′+ −mp


 χλ′

λ′χλ′




†

γ01

× 1
√
2
√√

2q+


√
2q+ +mq 0

0
√
2q+ −mq


 χλ

λχλ



uλ′(p)1uλ(q) =
1

2
√
2
√
p+q+

(
χ†
λ′ λ′χ†

λ′

)
Î

 χλ

λχλ


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where

Î =


√
2p+ +mp σ · p

σ · p
√
2p+ −mp

 γ01


√
2q+ +mq 0

0
√
2q+ −mq



Î =


√
2p′+ +mp σ · p

σ · p
√
2p+ −mp


I 0

0 −I


I 0

0 I



√
2q+ +mq 0

0
√
2q+ −mq



Î =


√
2p+ +mp σ · p

σ · p
√
2p+ −mp


I 0

0 −I



√
2q+ +mq 0

0
√
2q+ −mq



Î =


√
2p+ +mp σ · p

σ · p
√
2p+ −mp



√
2q+ +mq 0

0 −(
√
2q+ −mq)



Î =

(
√
2p+ +mp)(

√
2q+ +mq) −(

√
2q+ −mq)σ · p

(
√
2q+ +mq)σ · p −(

√
2p+ −mp)(

√
2q+ −mq)


returning to the vertex expression

uλ′(p)1uλ(p) =
1

2
√
2p+q+

(
χ†
λ′ λ′χ†

λ′

)

×

(
√
2p+ +mp)(

√
2q+ +mq) −(

√
2q+ −mq)σ · p

(
√
2q+ +mq)σ · p −(

√
2p+ −mp)(

√
2q+ −mq)


 χλ

λχλ


as

(
A B

)1 2

3 4


C
D

 = A1C +B3C + A2D +B4D,

we have that

uλ′(p)1uλ(p) =
1

2
√
2
√
p+q+

{
χ†
λ′(

√
2p+ +mp)(

√
2q+ +mq)χλ + λ′χ†

λ′(
√
2q+ +mq)σ · pχλ
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−λχ†
λ′(

√
2q+ −mq)σ · pχλ − λ′λχ†

λ′(
√
2p+ −mp)(

√
2q+ −mq)χλ

}
uλ′(p)1uλ(p) =

1

2
√
2
√
p+q+

{
χ†
λ′(

√
2p+ +mp)(

√
2q+ +mq)χλ + λ′χ†

λ′(
√
2q+ +mq)σ · pχλ

−λχ†
λ′(

√
2q+ −mq)σ · pχλ − λ′λχ†

λ′(
√
2p+ −mp)(

√
2q+ −mq)χλ

}
as χ†

λ′χλ = δλ′λ this implies that λλ′ in the 4th term will be equals to one. Therefore,

uλ′(p)1uλ(p) =
1

2
√
2
√
p+q+

{
δλ′λ

[
(
√
2p+ +mp)(

√
2q+ +mq)− (

√
2p+ −mp)(

√
2q+ −mq)

]
−λχ†

λ′(
√
2q+ −mq)σ · pχλ + λ′χ†

λ′(
√
2q+ +mq)σ · pχλ

}
uλ′(p)1uλ(p) =

1

2
√
2
√
p+q+

{
δλ′λ

[
����2p+q+ +

√
2p+mq +

√
2q+mp +����mpmq

−����2p+q+ +
√
2p+mq +

√
2q+mp −����mpmq

]
√
2q+χ†

λ′σ · pχλ(λ
′ − λ) +mqχ

†
λ′σ · pχλ(λ

′ + λ)
}

is easy to see, just by inserting the definition of χλ and modifying λ values, that the
product χ†

λ′σ · pχλ will be non-zero only when λ′ ̸= λ. Thus, the sum λ′ + λ will be equal
zero for this case. Remaining us with,

uλ′(p)1uλ(p) =
1

2
√
2
√
p+q+

[
2
√
2δλ′λ

[
p+mq + q+mp

]
− λ2

√
2q+χ†

λ′σ · pχλ

]
uλ′(p)1uλ(p) =

√
p+q+

[
δλ′λ

(
mq

q+
+
mp

p+

)
− λ

χ†
λ′σ · pχλ

p+

]

uλ′(p)1uλ(p) =
√
p+q+

[
δλ′λ

(
mq

q+
+
mp

p+

)
+
p(λ)

p+

]
,

where p(λ) = −λpx − ipy.

B.1.2 The γ5 vertex

The next vertex to be evaluated is

uλ′(p)γ5uλ(q), (196)

which we will evaluate using the B-L spinors as in the last subsection. Hence, using the
γ5 definition shown in eq.(191),

uλ′(p)γ5uλ(q) =
1

2
√
2
√
p+q+

(
χ†
λ′ , λ′χ†

λ′

)
Q̂

 χλ

λχλ

 (197)
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where the operator is defined as

Q̂ =


√
2p+ +mp σ · p

σ · p
√
2p+ −mp

 γ0γ5


√
2q+ +mq 0

0
√
2q+ −mq



Q̂ =


√
2p+ +mp σ · p

σ · p
√
2p+ −mp


I 0

0 −I


0 I

I 0



√
2q+ +mq 0

0
√
2q+ −mq



Q̂ =


√
2p+ +mp −σ · p

σ · p −(
√
2p+ −mp)


 0

√
2q+ −mq

√
2q+ +mq 0



Q̂ =

 −σ · p(
√
2q+ +mq) (

√
2p+ +mp)(

√
2q+ −mq)

−(
√
2p+ −mp)(

√
2q+ +mq) σ · p(

√
2q+ −mq)


returning the result for the operator into eq.(197),

uλ′(p)γ5uλ(q) =
1

2
√
2
√
p+q+

(
χ†
λ′ , λ′χ†

λ′

)

×

 −σ · p(
√
2q+ +mq) (

√
2p+ +mp)(

√
2q+ −mq)

−(
√
2p+ −mp)(

√
2q+ +mq) σ · p(

√
2q+ −mq)


 χλ

λχλ

 ,

we get

uλ′(p)γ5uλ(q) =
1

2
√
2
√
p+q+

{
− (

√
2q+ +mq)χ

†
λ′σ · pχλ

−λ′(
√
2p+ −mp)(

√
2q+ +mq)χ

†
λ′χλ

+λ(
√
2p+ +mp)(

√
2q+ −mq)χ

†
λ′χλ

+λ′λ(
√
2q+ −mq)χ

†
λ′σ · pχλ

}
,

we have seen that χ†
λ′χλ = δλλ′ and χ†

λ′σ · pχλ is non-zero when λ′ ̸= λ which implies
that λ′λ = −1 in the 4th term. So,

uλ′(p)γ5uλ(q) =
1

2
√
2
√
p+q+

{
λδλ′λ

[
(
√
2p+ +mp)(

√
2q+ −mq)− (

√
2p+ −mp)(

√
2q+ +mq)

]



100

−χ†
λ′σ · pχλ

[
(
√
2q+ +��mq) + (

√
2q+ −��mq)

]}
uλ′(p)γ5uλ(q) =

1

2
√
2
√
p+q+

{
λδλ′λ

[
����2p+q+ −

√
2p+mq +

√
2q+mp −����mpmq −����2p+q+

−
√
2p+mq +

√
2q+mq +����mpmq

]
− 2

√
2q+χ†

λ′σ · pχλ

}
uλ′(p)γ5uλ(q) =

1

2
√
2
√
p+q+

{
2
√
2λδλ′λ

(
q+mp − p+mq

)
− 2

√
2q+χ†

λ′σ · pχλ

}
uλ′(p)γ5uλ(q) =

√
p+q+χ†

λ′

{
λ

(
mp

p+
− mq

q+

)
1− σ · p

p+

}
χλ.

To connect with the momentum labels presented in section 3.3, one must do pb ↔ p

and pa ↔ q. Here we have used a simpler notation.

B.2 Spinor matrix elements

Here we collect the spinor matrix elements relevant for the calculation of LCWFs.
We use the spinors of Lepage and Brodsky (Lepage; Brodsky, 1980), adjusted for the
fact, that we define LF components as p± = (p0 ± p3)/

√
2. Notice that in general the

spinors for initial and final state quark can belong to different masses.

u(pb, λ
′,mb)1uλ(pa, λ,ma) =

√
p+b p

+
a χ

†
λ′

{(
ma

p+a
+
mb

p+b

)
1− σσσ · pppb

p+b
(σσσ · nnn)

}
χλ

u(pb, λ
′,mb)γ5u(pa, λ,ma) =

√
p+a p

+
b χ

†
λ′

{(
mb

p+b
− ma

p+a

)
(σσσ · nnn)− σσσ · pppb

p+b

}
χλ (198)

For completeness, we give all components of the vector and axial vector bilinears,
although the LF minus component does not appear in the gauge adopted in this paper.
For j = [j+, j−, j], we obtain for the vector and axial vector bilinear

jVµ = ū(pb, λ
′,mb)γµu(pa, λ,ma) , j

A
µ = ū(pb, λ

′,mb)γµγ5u(pa, λ,ma) , (199)

are given, respectively, by

jV+
λ′λ = 2

√
p+b p

+
a χ†

λ′1χλ

jV−
λ′λ =

√
p+b p

+
a χ†

λ′

{mamb

p+a p
+
b

1− ma

p+a p
+
b

(σ · pb)(σ · n)
}
χλ

jVλ′λ · a =
√
p+a p

+
b χ†

λ′

{(pb · a
p+b

+ i
[pb,a]

p+b
(σ · n)

)
1+

p+amb − p+b ma

p+a p
+
b

(σ · a)(σ · n)
}
χλ ,

(200)

and

jA+
λ′λ = 2

√
p+a p

+
b χ

†
λ′(σ · n)χλ
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jA−
λ′λ =

√
p+a p

+
b χ†

λ′

{
− mamb

p+a p
+
b

(σ · n) + ma

p+a p
+
b

σ · pb

}
χλ

jAλ′λ · a =
√
p+a p

+
b χ†

λ′

{(pb · a
p+b

(σ · n) + i
[pb,a]

p+b

)
1+

p+amb + p+b ma

p+a p
+
b

σ · a
}
χλ .

(201)

Above, vectors pb is the transverse momentum of quark b, a is an arbitrary transverse
vector, and n = (0, 0, 1). Pauli spinors χλ are eigenstates of σ · n:

(σ · n)χλ = λχλ, λ = ±1, (202)

so that λ/2 is the quark helicity.
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APPENDIX C – Useful functions and integrals

C.1 Bessel Functions

J0(pr) =
1

2π

∫
dϕeip·r =

1

2π

∫
dϕeipr cosϕ. (203)

J1(pr) =
1

2πi

∫
dϕeipr cosϕ cosϕ. (204)

K0(εr) =
1

2π

∫
d2leil·r

1

(l2 + ϵ2)
(205)

K1(εr) = −1

ϵ

d

dr
K0(ϵr) =

1

2πiϵ

∫
d2leil·r

l

(l2 + ϵ2)
· r
r

(206)

Consequently:

r

r
K1(εr) =

1

2πiϵ

∫
d2leil·r

l

(l2 + ϵ2)
(207)

Moreover, we can also write:

K1(εr) = −1

r

d

dϵ
K0(ϵr) =

ϵ

πr

∫
d2leil·r

1

(l2 + ϵ2)2
(208)

C.2 Useful integrals for the calculations in the impact parameter
space

∫
d2rd2r′ exp[ip · (r − r′)]K0(ϵr)K0(ϵr

′)σqq̄(zr) =
(2π)2

(p2 + ϵ2)

∫
drrJ0(pr)K0(ϵr)σ(zr)

=
(2π)2

(p2 + ϵ2)
I1(z, p) (209)
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∫
d2rd2r′ exp[ip · (r − r′)]K0(ϵr)K0(ϵr

′)σqq̄(z|r − r′|) =
2π2

ϵ

∫
drr2J0(pr)K1(ϵr)σ(zr)

=
2π2

ϵ
I2(z, p) (210)

∫
d2rd2r′ exp[ip · (r − r′)]

r · r′

rr′
K1(ϵr)K1(ϵr

′)σqq̄(zr) =
(2π)2

ϵ

p

(p2 + ϵ2)

×
∫
drrJ1(pr)K1(ϵr)σqq̄(zr)∫

d2rd2r′ exp[ip · (r − r′)]
r · r′

rr′
K1(ϵr)K1(ϵr

′)σqq̄(zr) =
(2π)2

ϵ

p

(p2 + ϵ2)
I3(z, p)

(211)

∫
d2rd2r′ exp[ip · (r − r′)]

r · r′

rr′
K1(ϵr)K1(ϵr

′)σqq̄(z|r − r′|) =
(2π)2

ϵ2
I1(z, p)−

2π2

ϵ
I2(z, p)

(212)

C.3 Useful integrals for the calculations in the transverse momen-
tum space

∫
d2rd2r′ exp[ip · (r − r′)]K0(ϵr)K0(ϵr

′) = (2π)2
1

(p2 + ϵ2)2
(213)

∫
d2rd2r′ exp[ip · (r − r′)]K0(ϵr)K0(ϵr

′)eizk·r = (2π)2
1

[(p− zk)2 + ϵ2]

1

(p2 + ϵ2)
(214)

∫
d2rd2r′ exp[ip · (r − r′)]K0(ϵr)K0(ϵr

′)eizk·(r−r′
) = (2π)2

1

[(p− zk)2 + ϵ2]2
(215)

∫
d2rd2r′ exp[ip · (r − r′)]

r · r′

rr′
K1(ϵr)K1(ϵr

′) =
(2π)2

ϵ2
p2

(p2 + ϵ2)2
(216)
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∫
d2rd2r′ exp[ip · (r − r′)]

r · r′

rr′
K1(ϵr)K1(ϵr

′)eizk·r =
(2π)2

ϵ2
p · (p− zk)

(p2 + ϵ2)[(p− zk)2 + ϵ2]

(217)

∫
d2rd2r′ exp[ip · (r − r′)]

r · r′

rr′
K1(ϵr)K1(ϵr

′)eizk·(r−r′
) =

(2π)2

ϵ2
(p− zk)2

[(p− zk)2 + ϵ2]2

(218)
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APPENDIX D – Isolated electroweak gauge boson production in the impact
momentum space

In this appendix, we’ll derive in detail the electroweak gauge boson production cross
section at the parton level in the impact parameter representation for a transverse
polarization and vector contribution. The other three cross-sections can be derived
similarly, therefore we’ll present only their results.

From what we have seen at chapter 3, the main formulae which describe the parton-
target cross-section for the transverse polarization is

dσf
T

dzd2p
=

1

2(2π)2

∫
d2rd2r′eip·(r−r′

)ρTV (z, r, r
′)

× [σqq̄(zr, x) + σqq̄(zr
′, x)− σqq̄(z|r − r′|, x)]

+
1

2(2π)2

∫
d2rd2r′eip·(r−r′

)ρTA(z, r, r
′)

× [σqq̄(zr, x) + σqq̄(zr
′, x)− σqq̄(z|r − r′|, x)] . (219)

Substituting the expression for ρTV (z, r, r′), one has that the vector contribution can
be expressed by:

dσf
T

dzd2p
|V =

1

2(2π)2
(CG

f )
2(gGv,f )

2

2π2
z[(mb −ma) + zma]

2

×
∫
d2rd2r′eip·(r−r′

)K0(ϵr)K0(ϵr
′)

× [σqq̄(zr, x) + σqq̄(zr
′, x)− σqq̄(z|r − r′|, x)]

+
1

2(2π)2
(CG

f )
2(gGv,f )

2

2π2

[1 + (1− z)2]

z
ϵ2

×
∫
d2rd2r′eip·(r−r′

)r · r′

rr′
K1(ϵr)K1(ϵr

′)

× [σqq̄(zr, x) + σqq̄(zr
′, x)− σqq̄(z|r − r′|, x)] . (220)

From eq. (220), we can identify as the sum of three integrals terms, T1, T2 and T3,
which are:
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T1 =
(CG

f )
2(gGf,V )

2

(2π)4

∫
d2r

∫
d2r′eip·(r−r′)

{
1 + (1− z)2

z

r · r′

rr′
ϵ2K1(ϵr)K1(ϵr

′)

+z [(mb −ma) + zma]
2K0(ϵr)K0(ϵr

′)
}
σqq(zr, x)

(221)

T2 =
(CG

f )
2(gGf,V )

2

(2π)4

∫
d2r

∫
d2r′eip·(r−r′)

{
1 + (1− z)2

z

r · r′

rr′
ϵ2K1(ϵr)K1(ϵr

′)

+z [(mb −ma) + zma]
2K0(ϵr)K0(ϵr

′)
}
σqq(zr

′, x)

(222)

T3 = −
(CG

f )
2(gGf,V )

2

(2π)4

∫
d2r

∫
d2r′eip·(r−r′)

{
1 + (1− z)2

z

r · r′

rr′
ϵ2K1(ϵr)K1(ϵr

′)

+z [(mb −ma) + zma]
2K0(ϵr)K0(ϵr

′)
}
σqq(z|r − r′|, x)

(223)

Therefore, let’s approach each term at a time. Beginning with T1,

T1 =
(CG

f )
2(gGf,V )

2

(2π)4

∫
d2r

∫
d2r′eip·(r−r′)

{
1 + (1− z)2

z

r · r′

rr′
ϵ2K1(ϵr)K1(ϵr

′)

+z [(mb −ma) + zma]
2K0(ϵr)K0(ϵr

′)
}
σqq(zr, x)

T1 =
(CG

f )
2(gGf,V )

2

(2π)4

{
1 + (1− z)2

z
ϵ2Γ1 + z [(mb −ma) + zma]

2 Γ2

}
(224)

where, is easy to see that it was divided into two integrals as:

Γ1 =

∫
d2rd2r′eip·(r−r′)r · r′

rr′
K1(ϵr)K1(ϵr

′)σqq(zr, x)

Γ2 =

∫
d2rd2r′eip·(r−r′)K0(ϵr)K0(ϵr

′)σqq(zr, x).

before we start the evaluation of these integrals, it’s recommended to take a look in the
Appendix C where we show the Bessel Functions into their respective integral form.
All those integral forms will be important in what follows, in this first case we’ll show
them along the text but in the other cases will be done straightforwardly. Thus, as the
modified Bessel Function of the second kind at zeroth order in its integral is

K0(ϵr) =
1

2π

∫
d2l

eil·r

l2 + ϵ2
,

and we can extract the integral form of the next order by a differential over ϵ or r.
Therefore, doing the derivative over r,

K1(ϵr) = −1

ϵ

d

dr
K0(ϵr) =

1

2πiϵ

∫
d2leil·r

l

l2 + ϵ2
· r
r
,
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which implies in
r

r
·K1(ϵr) =

1

2πiϵ

∫
d2leil·r

l

l2 + ϵ2
.

Moreover, we can also represent K1(ϵr) by the differential over ϵ:

K1(ϵr) = −1

r

d

dϵ
K0(ϵr) =

ϵ

πr

∫
d2l

eil·r

(l2 + ϵ2)2
.

Using the integral form to r′

r′
K1 (ϵr

′) , we have that

Γ1 =

∫
d2rd2r′eip·(r−r′)r

r
K1(ϵr)

1

2πiϵ

∫
d2leil·r

′ l

l2 + ϵ2
σqq(zr, x)

Γ1 =
1

2πiϵ

∫
d2rd2leip·r r · l

r (l2 + ϵ2)
K1(ϵr)σqq(zr, x)

∫
d2r′eir

′·(l−p)

identifying the integral over r′ as a Delta function over 2D space:

1

(2π)2

∫
d2xeix·(k−q) = δ(2) (k − q) ,

then,

Γ1 =
1

2πiϵ

∫
d2rd2leip·r r · l

r (l2 + ϵ2)
K1(ϵr)σqq(zr, x) (2π)

2 δ(2) (l− p)

Γ1 =
2π

iϵ (p2 + ϵ2)

∫
d2reip·r r · p

r
K1(ϵr)σqq(zr, x)

as r · p = rp cosϕ

Γ1 =
2πp

iϵ (p2 + ϵ2)

∫
dϕdr reip·r cosϕσqq(zr, x),

in addition to the Bessel Function of the second kind, is important look at the Bessel
Function of the first kind in its integral form which at zeroth order is

J0(pr) =
1

2π

∫
dϕeip·r =

1

2π

∫
dϕ eipr cosϕ,

once more, the next order is obtained by a differential over p or r, which give us

J1(pr) = − 1

r

d

dp
J0(pr) =

1

2πi

∫
dϕ eipr cosϕ cosϕ

J1(pr) = − 1

p

d

dr
J0(pr) =

1

2πi

∫
dϕ eipr cosϕ cosϕ
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now, using this representation we obtain

Γ1 =
2πp

iϵ (p2 + ϵ2)

∫
dr r (2πi) J1(pr)K1(ϵr)σqq(zr, x)

Γ1 =
(2π)2

ϵ

p

(p2 + ϵ2)

∫
dr rJ1(pr)K1(ϵr)σqq(zr, x)

Γ1 =
(2π)2

ϵ

p

(p2 + ϵ2)
I3(z, p),

where we have defined

I3(z, p) =

∫
dr rJ1(pr)K1(ϵr)σqq(zr, x). (225)

Now, let’s evaluate Γ2, in what follows the use of the Bessel Functions integral form
as well as the Delta Dirac function definition will be done in a direct manner. So,

Γ2 =

∫
d2rd2r′eip·(r−r′)K0(ϵr)

1

2π

∫
d2l

eil·r
′

l2 + ϵ2
σqq(zr, x).

Γ2 =
1

2π

∫
d2rd2l eip·rK0(ϵr)σqq(zr, x)

1

l2 + ϵ2

∫
d2r eir

′·(l−p)

Γ2 =
1

2π

∫
d2rd2l eip·rK0(ϵr)σqq(zr, x)

1

l2 + ϵ2
(2π)2 δ(2) (l− p)

Γ2 =
2π

p2 + ϵ2

∫
drdϕ reip·rK0(ϵr)σqq(zr, x)

Γ2 =
(2π)2

p2 + ϵ2

∫
dr rJ0(pr)K0(ϵr)σqq(zr, x)

Γ2 =
(2π)2

p2 + ϵ2
I1(z, p),

where
I1(z, p) =

∫
dr rJ0(pr)K0(ϵr)σqq(zr, x). (226)

Thus, returning those results into T1 definition, eq. (224):

T1 =
(CG

f )
2(gGf,V )

2

(2π)4

{
1 + (1− z)2

z
ϵ2
(2π)2

ϵ

p

(p2 + ϵ2)
I3(z, p)

+z [(mb −ma) + zma]
2 (2π)2

p2 + ϵ2
I1(z, p)

}

T1 =
(CG

f )
2(gGf,V )

2

(2π)2

{
1 + (1− z)2

z
ϵ

p

(p2 + ϵ2)
I3(z, p)

+z [(mb −ma) + zma]
2 1

p2 + ϵ2
I1(z, p)

}
. (227)
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To obtain the parton-target cross-section, we need to evaluate T2 and T3 still. So, for
T2:

T2 =
(CG

f )
2(gGf,V )

2

(2π)4

∫
d2r

∫
d2r′eip·(r−r′)

{
1 + (1− z)2

z

r · r′

rr′
ϵ2K1(ϵr)K1(ϵr

′)

+z [(mb −ma) + zma]
2K0(ϵr)K0(ϵr

′)
}
σqq(zr

′, x),

T2 =
(CG

f )
2(gGf,V )

2

(2π)4

{
1 + (1− z)2

z
ϵ2Ω1 + z [(mb −ma) + zma]

2Ω2

}
, (228)

where

Ω1 =

∫
d2rd2r′eip·(r−r′)r · r′

rr′
K1(ϵr)K1(ϵr

′)σqq(zr
′, x),

Ω2 =

∫
d2rd2r′eip·(r−r′)K0(ϵr)K0(ϵr

′)σqq(zr
′, x),

now we have two more integrals to evaluate, they will be evaluated directly likewise Γ2

was. Then,

Ω1 =

∫
d2rd2r′eip·(r−r′) 1

2πiϵ

∫
d2l eil·r

l

l2 + ϵ2
· r

′

r′
K1(ϵr

′)σqq(zr
′, x),

Ω1 =
1

2πiϵ

∫
d2r′d2l

1

l2 + ϵ2
e−ip·r′ l · r′

r′
K1(ϵr

′)σqq(zr
′, x)

∫
d2r eir·(l+p),

Ω1 =
1

2πiϵ

∫
d2r′d2l

1

l2 + ϵ2
e−ip·r′ l · r′

r′
K1(ϵr

′)σqq(zr
′, x) (2π)2 δ(2) (l + p) ,

Ω1 =
2π

iϵ

1

p2 + ϵ2

∫
dr′dϕ r′e−ip·r′

(−p) cosϕK1(ϵr
′)σqq(zr

′, x),

assuming p = −p, one have

Ω1 =
(2π)2

ϵ

p

p2 + ϵ2

∫
dr′ r′J1(pr

′)K1(ϵr
′)σqq(zr

′, x),

Ω1 =
(2π)2

ϵ

p

p2 + ϵ2
I3(z, p).

Doing the calculations of Ω2:

Ω2 =

∫
d2rd2r′eip·(r−r′) 1

2π

∫
d2l

eil·r
′

l2 + ϵ2
K0(ϵr

′)σqq(zr
′, x)

Ω2 =
1

2π

∫
d2r′d2le−ip·r′

K0 (ϵr
′)σqq(zr

′, x)
1

l2 + ϵ2

∫
d2reir·(l+p)

Ω2 =
1

2π

∫
d2r′d2le−ip·r′

K0 (ϵr
′)σqq(zr

′, x)
1

l2 + ϵ2
(2π)2 δ(2) (l + p)

Ω2 =
2π

(−p)2 + ϵ2

∫
dr′dϕ r′e−ip·r′

K0 (ϵr
′)σqq(zr

′, x)
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Ω2 =
(2π)2

p2 + ϵ2

∫
dr′ r′J0(pr

′)K0 (ϵr
′)σqq(zr

′, x)

Ω2 =
(2π)2

p2 + ϵ2
I1(z, p),

returning these results to T2, eq.(228), then

T2 =
(CG

f )
2(gGf,V )

2

(2π)4

{
1 + (1− z)2

z
ϵ2
(2π)2

ϵ

p

p2 + ϵ2
I3(z, p) ,

+z [(mb −ma) + zma]
2 (2π)2

p2 + ϵ2
I1(z, p)

}

T2 =
(CG

f )
2(gGf,V )

2

(2π)2

{
1 + (1− z)2

z
ϵ

p

p2 + ϵ2
I3(z, p) ,

+z [(mb −ma) + zma]
2 1

p2 + ϵ2
I1(z, p)

}
. (229)

At last, we need to evaluate T3 (eq.(223)), which is defined as

T3 = −
(CG

f )
2(gGf,V )

2

(2π)4

∫
d2r

∫
d2r′eip·(r−r′)

{
1 + (1− z)2

z

r · r′

rr′
ϵ2K1(ϵr)K1(ϵr

′)

+z [(mb −ma) + zma]
2K0(ϵr)K0(ϵr

′)
}
σqq(z|r − r′|, x)

T3 = −
(CG

f )
2(gGf,V )

2

(2π)4

{
1 + (1− z)2

z
ϵ2χ1 + z [(mb −ma) + zma]

2 χ2

}
, (230)

where

χ1 =

∫
d2rd2r′eip·(r−r′)r · r′

rr′
K1(ϵr)K1(ϵr

′)σqq(z|r − r′|, x),

χ2 =

∫
d2rd2r′eip·(r−r′)K0(ϵr)K0(ϵr

′)σqq(z|r − r′|, x),

before we start the calculation of χ1 and χ2, is important to do a shift in the integral
variables in order to the ride of the angular dependency in the dipole model argument.
Let’s assume:

η = r − r′; η′ = r′; η + η′ = r.

Thus, χ1, is rewrite as

χ1 =

∫
d2ηd2η′eip·η (η + η′) · η′

|η + η′| η′ K1(ϵ |η + η′|)K1(ϵη
′)σqq(zη, x),

χ1 =

∫
d2ηd2η′eip·η 1

2πiϵ

∫
d2leil·(η+η′) l

l2 + ϵ2
· 1

2πiϵ

∫
d2l′eil

′
·η′ l′

l′2 + ϵ2
σqq(zη, x),
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χ1 =

∫
d2ηd2η′eip·η 1

2πiϵ

∫
d2leil·(η+η′) l

l2 + ϵ2
· 1

2πiϵ

∫
d2l′eil

′
·η′ l′

l′2 + ϵ2
σqq(zη, x),

χ1 =
1

(2πiϵ)2

∫
d2ηeip·ησqq(zη, x)

∫
d2l′d2leil·η

l

l2 + ϵ2
· l′

l′2 + ϵ2

∫
d2ηe

iη·
(
l+l′

)

χ1 =
1

(2πiϵ)2

∫
d2ηeip·ησqq(zη, x)

∫
d2l′d2leil·η

l

l2 + ϵ2
· l′

l′2 + ϵ2
(2π)2 δ(2) (l + l′)

χ1 =
(2π)2

(2πiϵ)2

∫
d2ηeip·ησqq(zη, x)

∫
d2leil·η

−l · l
(l2 + ϵ2)2

inserting −ϵ2 + ϵ2, i.e., a zero, the equation above become

χ1 =
(2π)2

(2πiϵ)2

∫
d2ηeip·ησqq(zη, x)

∫
d2leil·η

− (l · l− ϵ2 + ϵ2)

(l2 + ϵ2)2

χ1 =
1

ϵ2

∫
d2ηeip·ησqq(zη, x)

∫
d2leil·η

(l2 + ϵ2)

(l2 + ϵ2)2

− 1

ϵ2

∫
d2ηeip·ησqq(zη, x)

∫
d2leil·η

ϵ2

(l2 + ϵ2)2

χ1 =
1

ϵ2

∫
d2ηeip·ησqq(zη, x)

∫
d2leil·η

1

l2 + ϵ2

−
∫

d2ηeip·ησqq(zη, x)

∫
d2leil·η

1

(l2 + ϵ2)2

χ1 =
1

ϵ2

∫
d2ηeip·ησqq(zη, x)2πK0 (ϵη)

−
∫

d2ηeip·ησqq(zη, x)
π

ϵ
ηK1(ϵη)

χ1 =
2π

ϵ2

∫
dηdϕ ηeip·ησqq(zη, x)K0 (ϵη)

− π

ϵ

∫
dηdϕ η2eip·ησqq(zη, x)K1(ϵη)

χ1 =
(2π)2

ϵ2

∫
dη ηJ0 (pη)K0 (ϵη)σqq(zη, x)

− 2π2

ϵ

∫
dη η2J0 (pη)K1(ϵη)σqq(zη, x)

χ1 =
(2π)2

ϵ2
I1(z, p)−

2π2

ϵ
I2(z, p),

where we have used the definition of K1 in it’s two integrals forms. Moreover, we have
defined

I2(z, p) = dη η2J0 (pη)K1(ϵη)σqq(zη, x) .

For χ2:

χ2 =

∫
d2ηd2η′eip·ηK0(ϵ |η + η′|)K0(ϵη

′)σqq(zη, x),
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χ2 =

∫
d2ηd2η′eip·η 1

2π

∫
d2l

eil·(η+η′)

l2 + ϵ2
1

2π

∫
d2l′

eil
′
·η′

l′2 + ϵ2
σqq(zη, x),

χ2 =
1

(2π)2

∫
d2ηd2ld2l′eip·ησqq(zη, x)

eil·η

(l2 + ϵ2) (l′2 + ϵ2)

∫
d2η′ e

iη′·
(
l+l′

)

χ2 =
1

(2π)2

∫
d2ηd2ld2l′eip·ησqq(zη, x)

eil·η

(l2 + ϵ2) (l′2 + ϵ2)
(2π)2 δ(2) (l + l′)

χ2 =

∫
d2ηd2leip·ησqq(zη, x)

e−il·η

(l2 + ϵ2)2

defining −l = l,

χ2 =

∫
d2ηeip·ησqq(zη, x)

∫
d2l

eil·η

(l2 + ϵ2)2

χ2 =

∫
dηdϕ ηeip·η πη

ϵ
K1 (ϵη)σqq(zη, x)

χ2 =
2π2

ϵ

∫
dη η2J0 (pη)K1 (ϵη)σqq(zη, x)

χ2 =
2π2

ϵ
I2(z, p).

Returning to eq.(230),

T3 = −
(CG

f )
2(gGf,V )

2

(2π)4

{
1 + (1− z)2

z
ϵ2

[
(2π)2

ϵ2
I1(z, p)−

2π2

ϵ
I2(z, p)

]

+z [(mb −ma) + zma]
2 2π

2

ϵ
I2(z, p)

}
,

T3 = −
(CG

f )
2(gGf,V )

2

(2π)2

{
1 + (1− z)2

z

[
I1(z, p)−

ϵ

2
I2(z, p)

]
+ z

1

2ϵ
[(mb −ma) + zma]

2 I2(z, p)

}
.

(231)

Assemble T1, T2 and T3 (eq. (227), eq. (229) and eq. (231)) together, we get the
parton-target cross-section for the transverse-vector contribution which is 1

dσf
T

dzd2p

∣∣∣∣
V

=
β

(2π)2

□

1 + (1− z)2

z
ϵ

p

(p2 + ϵ2)
I3(z, p) +

△

β

(2π)2
z [(mb −ma) + zma]

2 1

p2 + ϵ2
I1(z, p)

β

(2π)2

□

1 + (1− z)2

z
ϵ

p

(p2 + ϵ2)
I3(z, p) +

β

(2π)2

△

z [(mb −ma) + zma]
2 1

p2 + ϵ2
I1(z, p)

− β

(2π)2

□

1 + (1− z)2

z
I1(z, p) +

β

(2π)2

□

1 + (1− z)2

z

ϵ

2
I2(z, p)

1using β = (CG
f )

2(gGf,V )
2
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− β

(2π)2

△

z
1

2ϵ
[(mb −ma) + zma]

2 I2(z, p)

gathering the same pre-factor terms, we obtain

dσf
T

dzd2p

∣∣∣∣
V

=
β

(2π)2

{
1 + (1− z)2

z

[
ϵ

p

(p2 + ϵ2)
I3(z, p) + ϵ

p

(p2 + ϵ2)
I3(z, p)− I1(z, p) +

ϵ

2
I2(z, p)

]
+z [(mb −ma) + zma]

2

(
1

p2 + ϵ2
I1(z, p) +

1

p2 + ϵ2
I1(z, p)−

1

2ϵ
I2(z, p)

)}
z

dσf
T

dzd2p

∣∣∣∣
V

=
β

(2π)2

{(
1 + (1− z)2

)
ϵ2
[
2

ϵ

p

(p2 + ϵ2)
I3(z, p)−

1

ϵ2
I1(z, p) +

1

2ϵ
I2(z, p)

]
+z2 [(mb −ma) + zma]

2

(
2

p2 + ϵ2
I1(z, p)−

1

2ϵ
I2(z, p)

)}
z

dσf
T

dzd2p

∣∣∣∣
V

=
β

2π2

{(
1 + (1− z)2

)
ϵ2
[
1

ϵ

p

(p2 + ϵ2)
I3(z, p)−

1

2ϵ2
I1(z, p) +

1

4ϵ
I2(z, p)

]
+z2 [(mb −ma) + zma]

2

(
1

p2 + ϵ2
I1(z, p)−

1

4ϵ
I2(z, p)

)}
z

dσf
T

dzd2p

∣∣∣∣
V

=
(CG

f )
2(gGf,V )

2

2π2

{
z2 [(mb −ma) + zma]

2D1(z, p, ϵ) +
[
1 + (1− z)2

]
ϵ2D2(z, p, ϵ)

}
,

(232)

where we have defined the auxiliary functions:

D1(z, p, ϵ) ≡
[

1

(p2 + ϵ2)
I1(z, p)−

1

4ϵ
I2(z, p)

]
(233)

D2(z, p, ϵ) ≡
[
1

ϵ

p

(p2 + ϵ2)
I3(z, p)−

1

2ϵ2
I1(z, p) +

1

4ϵ
I2(z, p)

]
. (234)

Similarly, doing the step-by-step process shown before, substituting the expression
for ρAV (z, r, r′), one has that the axial contribution is given by:

z
dσf

T

dzd2p
|A =

(CG
f )

2(gGa,f )
2

2π2

{
z2[(mb +ma)− zma]

2D1(z, p, ϵ)

+[1 + (1− z)2]ϵ2D2(z, p, ϵ)
}

(235)

Furthermore, for the longitudinal polarization, results that the vector contribution is
given by

z
dσf

L

dzd2p
|V =

(CG
f )

2(gGv,f )
2

4π2

{(z2ma(mb −ma)− z(m2
b −m2

a)− 2(1− z)M2
G)

2

M2
G

D1(z, p, ϵ)
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+
z2(mb −ma)

2

M2
G

ϵ2D2(z, p, ϵ)
}
m (236)

while the axial contribution can be written as

z
dσf

L

dzd2p
|A =

(CG
f )

2(gGa,f )
2

4π2

{(z2ma(mb +ma) + z(m2
b −m2

a) + 2(1− z)M2
G)

2

M2
G

D1(z, p, ϵ)

+
ϵ2z2(mb +ma)

2

M2
G

D2(z, p, ϵ)
}
. (237)

D.1 Particular cases

D.1.1 Real photon produciton

The simplest case that which we can apply the expressions derived in the previous
section is the real photon production in the qp→ γX process. For the production of a
real photon, one has that gγa,f = 0, gγv,f = 1, Cγ

f =
√
αemef , M2

G = 0 and ma = mb = mf .
Moreover, the longitudinal polarization does not contribute. Consequently, the differential
cross-section will be given in the impact parameter space by

z
dσf

T

dzd2p

∣∣∣∣∣
qp→γX

=
αeme

2
f

2π2

{
m2

fz
4D1(z, p, ϵ) + [1 + (1− z)2]ϵ2D2(z, p, ϵ)

}
(238)

with ϵ2 = z2m2
f . Such an expression was used as input in the calculations of the

cross-section for the real photon production in pp collisions performed e.g. in Refs.
(Kopeliovich; Rezaeian; Pirner; Schmidt, 2007; Kopeliovich; Levin; Rezaeian; Schmidt,
2009; Santos; Silveira; Machado, 2020) using the color dipole formalism.

D.1.1.1 Drell - Yan process

Another possible application of our results is the emission of an off-mass shell gauge
boson G∗ that decays into a dilepton system with invariant mass M , characteristic of the
Drell - Yan (DY) process. For G∗ = γ∗ and Z∗, one has the production of l+l− system in
the final state and such a process was analyzed largely in the literature using the color
dipole and CGC formalisms. The results derived in this appendix can be directly applied
for such case, taking into account the DY description shown in Chap. 4,

dσ(qp→ [G∗ → ll̄]X)

dzd2pdM2
= FG(M)

dσ(qp→ G∗X)

dzd2p
. (239)

For the particular case of a virtual photon (G∗ = γ∗) with virtuality M2, one has that
the axial contributions vanishes and differential cross-section for the qp → [γ∗ → ll̄]X
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process will be given in the impact parameter space by

z
dσf

total

dzd2pdM2

∣∣∣∣∣
DY

= z
dσf

T

dzd2pdM2

∣∣∣∣∣
V

+ z
dσf

L

dzd2pdM2

∣∣∣∣∣
V

=
αeme

2
f

2π2
Fγ(M)

{
[m2

fz
4 + 2M2 (1− z)2]D1(z, p, ϵ)

+ [1 + (1− z)2]ϵ2D2(z, p, ϵ)
}

(240)

with ϵ2 = (1 − z)M2 + z2m2
f . Such an expression was used e.g. in Ref. (Kopeliovich;

Raufeisen; Tarasov, 2001; Raufeisen; Peng; Nayak, 2002; Kopeliovich; Raufeisen;
Tarasov; Johnson, 2003; Betemps; Gay ducati, 2004; Betemps; Ducati; Machado;
Raufeisen, 2003; Golec-biernat; Lewandowska; Stasto, 2010; Ducati; Griep; Machado,
2014; Schäfer; Szczurek, 2016; Ducloué, 2017) to estimate the DY production in
hadronic collisions at the LHC, assuming different models for the dipole - target cross-
section.

D.2 The color transparency regime

The behavior of the spectrum for the electroweak gauge boson production is strongly
dependent on the dipole–proton cross–section, which is determined by the QCD dy-
namics at high energies. In recent years, several groups have proposed distinct models
for this quantity, some derived from the solutions of the Balitsky–Kovchegov equation
(Albacete; Armesto; Milhano; Salgado, 2009; Albacete; Armesto; Milhano; Quiroga-
arias; Salgado, 2011) or inspired by its solutions in the saturation and linear regimes
(Iancu; Itakura; Munier, 2004), and others based on a particular phenomenological
ansatz (Kowalski; Teaney, 2003; Kowalski; Motyka; Watt, 2006; Watt; Kowalski, 2008).
In general, the dependence on r2 is non-trivial and energy dependent, which makes
the calculation of the auxiliary functions Di’s present in the spectrum a hard task due
to the presence of oscillatory functions in its definitions. Here we will analyze in more
detail the color transparency regime, predicted to be valid when r → 0, which implies
that the dipole–proton cross–section can be approximated by σqq̄ ∝ r2. Such behavior
is also denoted in the literature by r2–approximation, and is expected to be valid when
the impact of the saturation corrections is negligible. As we will demonstrate below, in
this regime, it is possible to derive analytical expressions for the spectrum, which can
be used to study the z and p dependencies in the linear regime and can be considered
as a baseline for future comparisons with the results derived using more sophisticated
models for the dipole–proton cross–section.

In order to perform our calculations, we will consider the linear prediction of the
GBW model (Golec-biernat; Wusthoff, 1998, 1999), in which σqq̄(r, x) = C(x)r2 with
C(x) = σ0Q

2
s(x)/4, where Qs = (x0/x)

λ/2 is the saturation scale and the parameters
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σ0, x0 and λ are determined by a fit to the HERA data. In this approximation the r –
integrals in the functions I1, I2 and I3 can be performed analytically and are given by

I1(z, p) =

∫
drrJ0(pr)K0(ϵr)σqq̄(zr) = C(x)4z

2(ϵ2 − p2)

(p2 + ϵ2)3
(241)

I2(z, p) =

∫
drr2J0(pr)K1(ϵr)σqq̄(zr) = C(x)16z

2ϵ(ϵ2 − 2p2)

(p2 + ϵ2)4
(242)

I3(z, p) =

∫
drrJ1(pr)K1(ϵr)σqq̄(zr) = C(x) 8z2ϵp

(p2 + ϵ2)3
(243)

As a consequence, the auxiliary functions D1(z, p, ϵ) and D2(z, p, ϵ) can be expressed
as follows

D1(z, p, ϵ) =
1

(p2 + ϵ2)
C(x)4z

2(ϵ2 − p2)

(p2 + ϵ2)3
− 1

4ϵ
C(x)16z

2ϵ(ϵ2 − 2p2)

(p2 + ϵ2)4
(244)

D2(z, p, ϵ) =
1

ϵ

p

(p2 + ϵ2)
C(x) 8z2ϵp

(p2 + ϵ2)3

− 1

2ϵ2
C(x)4z

2(ϵ2 − p2)

(p2 + ϵ2)3
+

1

4ϵ
C(x)16z

2ϵ(ϵ2 − 2p2)

(p2 + ϵ2)4
, (245)

which can be simplified as

D1(z, p, ϵ) = C(x) 4z2p2

(p2 + ϵ2)4
(246)

D2(z, p, ϵ) = C(x) 2z2ϵ2

(p2 + ϵ2)4

[
1 +

p4

ϵ4

]
. (247)

Such expressions can be used in eqs. (232)), (235), (236) and (237) to obtain the
distinct contributions for the differential cross-section in the color transparency regime.
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APPENDIX E – Frame transformation

In eq. (112) we present the full expression for the angular distribution in terms of
density matrix elements, however using the eq. (114) one can connect the density matrix
elements with the structure functions elements. Therefore, the angular distribution in
terms of the structure functions at a given production plane frame F is:

dN

dΩ
=

3

8π

1

2WT +WL

[
gTWT + gLWL + g∆W∆ + g∆∆W∆∆

+cGgTP
WTP

+ cGg∇P
W∇P

+ cGg∇W∇ + g∆∆P
W∆∆P

+ g∆P
W∆P

]
, (248)

where

gT = 1 + cos2 θ , gL = 1− cos2 θ , gTP
= 2 cos θ ,

g∆∆ = sin2 θ cos 2ϕ , g∆ = sin 2θ cosϕ , g∇P
= 2 sin θ cosϕ ,

g∆∆P
= sin2 θ sin 2ϕ , g∆P

= sin 2θ sinϕ , g∇ = 2 sin θ sinϕ . (249)

We can parameterize the transformation from one observation frame to another by a
single angle, describing a rotation around the y axis. The rotation matrix

Ry(γ) =


cos γ 0 − sin γ

0 1 0

sin γ 0 cos γ


(250)

transforms the components of a vector, reproducing the effect of a rotation of the Z and
x axis in the production plane. The coordinates of the unit vector indicating the positive
lepton direction in the old frame,

r̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) , (251)
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can be expressed as a function of the coordinates in the new frame as

sin θ cosϕ = cos γ sin θ′ cosϕ′ + sin γ cos θ′ , (252)

sin θ sinϕ = sin θ sinϕ , (253)

cos θ = − sin γ sin θ′ cosϕ′ + cos γ cos θ′ . (254)

Substituing eq. (252) into eq. (248), we obtain the angular distribution in the rotated
frame

dN

dΩ
=

3

8π

1

2WT +WL

{
gT

[(
1− sin2 γ

2

)
WT +

sin2 γ

2
WL +

sin 2γ

2
W∆ +

sin2 γ

2
W∆∆

]
+ gL

[
sin2 γWT + cos2 γWL − sin 2γW∆ − sin2 γW∆∆

]
+ g∆

[
− sin 2γ

2
WT +

sin 2γ

2
WL + cos 2γW∆ +

sin 2γ

2
W∆∆

]
+ g∆∆

[sin2 γ

2
WT − sin2 γ

2
WL − sin 2γ

2
W∆ +

(1− sin2 γ

2

)
W∆∆

]
+ cGgTp

[
cos γWTp + sin γW∇p

]
+ cGg∇p

[
− sin γWTp + cos γW∇p

]
+ g∆∆p

[
cos γW∆∆p − sin γW∆p

]
+ g∆p

[
sin γW∆∆p + cos γW∆p

]
+ cGg∇W∇

}
. (255)

Therefore, comparing eq. (248) and eq. (255), we obtain the relation between the
structure function in different frames,



WT

WL

W∆

W∆∆

WTp

W∇p

W∆∆p

W∆p

W∇


F

=



1− sin2 γ
2

sin2 γ
2

sin 2γ
2

sin2 γ
2

0 0 0 0 0

sin2 γ cos2 γ − sin 2γ − sin2 γ 0 0 0 0 0

− sin 2γ
2

sin 2γ
2

cos 2γ sin 2γ
2

0 0 0 0 0

sin2 γ
2

− sin2 γ
2

− sin 2γ
2

1−sin2 γ
2

0 0 0 0 0

0 0 0 0 cos γ sin γ 0 0 0

0 0 0 0 − sin γ cos γ 0 0 0

0 0 0 0 0 0 cos γ − sin γ 0

0 0 0 0 0 0 sin γ cos γ 0

0 0 0 0 0 0 0 0 1





WT

WL

W∆

W∆∆

WTp

W∇p

W∆∆p

W∆p

W∇


F ′

,(256)
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To connect the GJ frame with the CS frame, the angular relation is

cos γ =
1√

1 + β2
, sin γ =

β√
1 + β2

(257)

for β = q/M . Therefore,



WT

WL

W∆

W∆∆

WTp

W∇p

W∆∆p

W∆p

W∇


CS

= 1
1+β2



1 + β2

2
β2

2
β β2

2
0 0 0 0 0

β2 1 −2β −β2 0 0 0 0 0

−β β 1− β2 β 0 0 0 0 0

β2

2
−β2

2
−β 1 + β2

2
0 0 0 0 0

0 0 0 0
√
1 + β2 β

√
1 + β2 0 0 0

0 0 0 0 −β
√
1 + β2

√
1 + β2 0 0 0

0 0 0 0 0 0
√

1 + β2 −β
√
1 + β2 0

0 0 0 0 0 0 β
√
1 + β2

√
1 + β2 0

0 0 0 0 0 0 0 0 1 + β2





WT

WL

W∆

W∆∆

WTp

W∇p

W∆∆p

W∆p

W∇


GJ

.(258)
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APPENDIX F – The angular coefficients

In eq. (112) we present the angular distribution parametrization, nevertheless one
need connects it with the angular distribution which given us the Ai (i = 0, 1, 2, 3, 4, 5, 6, 7)
values in terms of the structure functions Wj (for j = T, L,∆,∆∆, TP ,∇P ,∇,∆∆P ,∆P ).
In what follows, we’ll show how to obtain such connection. Therefore, starting from the
angular distribution which is written as

dN

dΩ
=

3

8π

1

2WT +WL

[
gTWT + gLWL + g∆W∆ + g∆∆W∆∆

+cGgTP
WTP

+ cGg∇P
W∇P

+ cGg∇W∇ + g∆∆P
W∆∆P

+ g∆P
W∆P

]
, (259)

where

gT = 1 + cos2 θ , gL = 1− cos2 θ , gTP
= 2 cos θ ,

g∆∆ = sin2 θ cos 2ϕ , g∆ = sin 2θ cosϕ , g∇P
= 2 sin θ cosϕ ,

g∆∆P
= sin2 θ sin 2ϕ , g∆P

= sin 2θ sinϕ , g∇ = 2 sin θ sinϕ . (260)

Multiplying the angular distribution by (WT +WL)/(WT +WL), one gets

dN

dΩ
=

3

4π

1

λ+ 3

[
1 + λ cos2 θ + µ sin 2θ cosϕ+

ν

2
sin2 θ cos 2ϕ

+τ sin θ cosϕ+ η cos θ + ξ sin2 θ sin 2ϕ+ ζ sin 2θ sinϕ+ χ sin θ sinϕ

]
,(261)

where

λ =
WT −WL

WT +WL

, µ =
W∆

WT +WL

, ν =
2W∆∆

WT +WL

, τ =
2cGW∇P

WT +WL

,

η =
2cGWTP

WT +WL

, ξ =
W∆∆P

WT +WL

, ζ =
W∆P

WT +WL

, χ =
2cGW∇

WT +WL

. (262)

The eq. (261) is a usual parametrization for the angular distribution, this form is quite
often present in theoretical papers (see for instance (Boer; Vogelsang, 2006; Faccioli;
Lourenco; Seixas; Wohri, 2010; Faccioli; Lourenco; Seixas, 2010; Faccioli; Lourenco;
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Seixas; Wohri, 2011; Lyubovitskij; Zhevlakov; Anikin, 2024)). However, the most used
parametrization found in experimental works is

dN

dΩ
=

3

16π

(
1 + cos2 θ +

A0

2

(
1− 3 cos2 θ

)
+ A1 sin 2θ cosϕ+

A2

2
sin2 θ cos 2ϕ

+ A3 sin θ cosϕ+ A4 cos θ + A5 sin
2 θ sin 2ϕ+ A6 sin 2θ sinϕ+ A7 sin θ sinϕ

)
.

(263)

Therefore, by comparison, one has that these two parametrization connects trough

A0 =
2(1− λ)

λ+ 3
=

2WL

2WT +WL

, A1 =
4µ

λ+ 3
=

2W∆

2WT +WL

,

A2 =
4ν

λ+ 3
=

4W∆∆

2WT +WL

, A3 =
4τ

λ+ 3
=

4cGW∇P

2WT +WL

,

A4 =
4η

λ+ 3
=

4cGWTP

2WT +WL

, A5 =
4ξ

λ+ 3
=

2W∆∆P

2WT +WL

,

A6 =
4ζ

λ+ 3
=

2W∆P

2WT +WL

, A7 =
4χ

λ+ 3
=

4cGW∇

2WT +WL

. (264)

where we have used that

4

λ+ 3

(
1 + λ cos2 θ

)
=

1

λ+ 3

(
4 + (λ+ 3λ) cos2 θ

)
,

4

λ+ 3

(
1 + λ cos2 θ

)
=

1

λ+ 3

(
4 + λ− λ+ (λ+ 3λ+ 3− 3) cos2 θ

)
,

∴
4

λ+ 3

(
1 + λ cos2 θ

)
= 1 + cos2 θ +

(1− λ)

λ+ 3
(1− 3 cos2 θ) . (265)
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