UNIVERSIDADE FEDERAL DE PELOTAS

Faculdade de Agronomia Eliseu Maciel Programa de Pós-Graduação em Ciência e Tecnologia de Sementes

Tese

Padronização de sementes de trigo e influência na expressão do vigor: caracteres agronômicos e produtividade das plantas

Gustavo Henrique Demari

Gustavo Henrique Demari

Padronização de sementes de trigo e influência na expressão do vigor: caracteres agronômicos e produtividade das plantas

Tese apresentada ao Programa de Pós-Graduação em Ciência e Tecnologia de Sementes da Universidade Federal de Pelotas, como requisito parcial à obtenção do título de Doutor em Ciências.

Orientador:

Prof. Dr. Tiago Zanatta Aumonde (FAEM/UFPEL)

Co-Orientadores:

Prof. Dr. Tiago Pedó (FAEM/UFPEL)

Prof. Dr. Velci Queiróz de Souza (UNIPAMPA)

Pelotas, 2019 Rio Grande do Sul – Brasil

Universidade Federal de Pelotas / Sistema de Bibliotecas Catalogação na Publicação

D372p Demari, Gustavo Henrique

Padronização de sementes de trigo e influência na expressão do vigor: caracteres agronômicos e produtividade das plantas / Gustavo Henrique Demari ; Tiago Zanatta Aumonde, orientador ; Tiago Pedó, Velci Queiróz de Souza, coorientadores. — Pelotas, 2019. 77 f.

Tese (Doutorado) — Programa de Pós-Graduação em Ciência e Tecnologia de Sementes, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, 2019.

Triticum aestivum.
 Qualidade de sementes.
 Peneira de furos oblondos.
 Aumonde, Tiago Zanatta, orient.
 Pedó, Tiago, coorient.
 Souza, Velci Queiróz de, coorient.
 Título.

CDD: 631.521

Gustavo Henrique Demari

Padronização de sementes de trigo e a influência na expressão do vigor, caracteres agronômicos e produtividade das plantas

Tese aprovada, como requisito parcial, para obtenção do grau de Doutor em Ciências, Programa de Pós-Graduação em Ciência e Tecnologia de Sementes, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas.

Data da Defesa: 05/06/2019
Banca examinadora:
Prof. Dr. Tiago Zanatta Aumonde (Orientador) Doutor em Ciências pela Universidade Federal de Pelotas - UFPel.
·
Prof. Dr. Tiago Pedó Doutor em Ciências pela Universidade Federal de Pelotas - UFPel.
Prof. Dr. Luís Eduardo Panozzo Doutor em Fitotecnia pela Universidade Federal de Viçosa – UFV.
Prof ^a . Dr ^a . Emanuela Garbin Martinazzo Doutora em Fisiologia Vegetal pela Universidade Federal de Pelotas – UFPel.
Prof. Dr. Luis Osmar Braga Schuch Doutor em Agronomia pela Universidade Federal de Pelotas - UFPel.

"Ser sábio é melhor que ser forte; o conhecimento é mais importante que a força. A final, antes de entrar em uma batalha é preciso planejar bem, e, quando há muitos conselheiros é mais fácil vencer".

(Provérbios 24.21)

Dedico...

A minha esposa Andrêssa, meus filhos Otávio Henrique e José Henrique, e aos meus pais Gilmar e Beatriz

Agradecimentos

Inicialmente quero agradecer a Deus, por me iluminar durante esta trajetória, mostrando o melhor caminho e proporcionado força para vencer.

A meu pai Gilmar Alfeu Demari, minha mãe Beatris Terezinha Calgaro Demari, meus avós Dorly Demari e Elena Maria Demari, meus irmãos Pablo Ricardo e Felipe Eduardo, pela educação, incentivo, ajuda financeira, e por acreditaram em minha capacidade profissional.

Em especial, as pessoas que mais me deram força durante esta etapa, que é a minha esposa Andrêssa Cristina Datsch Demari, pelo apoio e a paciência auxiliando em tudo, e por ter aceitado o desafio da minha saída de casa e ficar cuidando de nossos filhos Otávio Henrique e José Henrique que são minha inspiração de vida.

Agradeço também ao sogro Olívio e a sogra Zilá, que em todo o momento deram o suporte e apoio necessário.

Ao meu tio Gilson Roberto Demari, por estar sempre estar disposto em ajudar.

Ao meu orientador, Prof. Dr. Tiago Zanatta Aumonde, pela receptividade, confiança em meu trabalho, orientação, aprendizado, conselhos, convivência, e principalmente amizade.

A meus co-orientadores, Prof. Dr. Tiago Pedó, pelo apoio, ensino, amizade, e aos trabalhos que nos geraram ótimos resultados. Prof. Dr. Velci Queiróz de Souza, pela co-orientação e confiança no meu trabalho.

Ao Dr. Paulo Dejalma Zimmer, pela orientação inicial ao meu projeto e pela receptividade.

Aos meus amigos, colegas de pesquisa, Vinicius, Simone, João, Cristian, Felipe, Ítala, Manoela, Geison, por nós formar uma equipe de trabalho, com muita força e dedicação.

Ao meu amigo, colega, compadre Ivan Ricardo Carvalho, o cara da melhoria nos projetos, da estatística, do "pega" no campo, das idéias, projetos e metas ousados, uma pessoa extraordinária. Fico feliz e agradeço pelo convite feito por você, para trabalharmos juntos, o que me ajudou a me torar um pesquisador, oportunidado que não tive durante a graduação.

Aos estagiários (as), Igor, Angecion, Vitor, Guilherme, Natan, Sandro, Felipe, Bruno, Eduardo, Helena, Marine, Tamires, Angélica, Liriana, Andrine, Katiele.

A Universidade Federal de Pelotas (UFPel) e ao Programa de Pós-Graduação em Ciência e Tecnologia de Sementes pela oportunidade, pelo corpo docente composto por excelentes professores e pela estrutura disponível para realização das avaliações e atividade da pesquisa.

A CAPES pela concessão da bolsa de estudos.

Enfim, a todos aqueles não citados, que de uma forma ou outra contribuíram indiretamente ou diretamente para que eu pudesse vencer mais esta importante etapa de minha vida.

A todos vocês, **MUITO OBRIGADO!**

Resumo

DEMARI, Gustavo Henrique. **Padronização de sementes de trigo e a influência na expressão do vigor, caracteres agronômicos e produtividade das plantas** 2019. 77f. Tese (Doutorado em Ciências) – Programa de Pós-Graduação em Ciência e Tecnologia de Sementes, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, 2019.

Este trabalho teve objetivo de estudar a influência da classificação de sementes de trigo na expressão do vigor, caracteres agronômicos e na produtividade das plantas. O capítulo I teve objetivo de avaliar a influência da classificação na expressão do vigor, e foi avaliado a massa de mil sementes, peso hectolitro, germinação, primeira contagem de germinação, índice de velocidade de germinação, emergência a campo, índice de velocidade de emergência, comprimento de parte aérea e da raiz de plântulas, massa seca da parte aérea e raiz de plântula, condutividade elétrica, e análise de correlação entre os caracteres físicos e fisiológico. Conclui-se que há variabilidade dos atributos físicos e fisiológicos frente a espessura das sementes de trigo, específicos para os efeitos de cultivar e lotes de sementes. Sementes de trigo com espessura intermediaria potencializam o vigor, e sementes com espessuras menores e maiores apresentarem menor vigor. No capítulo II o objetivo foi avaliar a influência no tamanho de sementes nos caracteres agronômicos relacionados ao crescimento de plantas de trigo, e foi avaliado o número de afilhos férteis, altura de inserção da espiga da planta principal, altura da planta principal, altura de inserção da espiga do afilho secundário, altura do afilho secundário, onde foi possível concluir que existe a tendência de sementes menores resultarem em plantas com menor inserção da espiga da planta principal, altura da planta principal, altura do afilho principal e altura de inserção da espiga do afilho secundário, e as plantas oriundas do orifício oblongo <2,00 mm proporciona desempenho a campo inferior. No capítulo III objetivo foi determinar a influência do tamanho das sementes de trigo nos componentes do rendimento e na produtividade de grãos, sendo avaliado número de espiguetas por espiga da planta principal, número de espiguetas por espiga dos afilhos primário, número de espiguetas por espiga dos afilhos dos afilhos secundário, número de sementes da planta principal, número de sementes afilhos primários, número de sementes dos afilhos secundários, contribuição dos afilhos na produtividade, contribuição da planta principal na produtividade dos grãos, produtividade de grãos, massa de mil sementes, peso hectolitro e análise econômica. Pode-se concluir que o tamanho das sementes de trigo influencia no número de espiguetas da planta principal, números de sementes do afilho primário e afilho secundário, número de sementes da planta principal, afilho primário e secundário, massa de mil sementes, peso hectolitro, e produtividade que as sementes <2,00 mm resultaram em plantas com menor produtividade, sementes oriundas da peneira 2,5 a 2,99 formaram plantas com produtividade superior, sendo 2.3% maior à amostra original, bem como, 2% a mais que as sementes >3,0 mm, 2,7% em relação a 2,0 a 2,49 mm, e 6% das sementes <2,0 mm.

Palavras chave: *Triticum aestivum*, espessura, peneira de furos oblondos, qualidade, rendimento

Abstract

DEMARI, Gustavo Henrique. **Standardization of wheat seeds and influence on the expression of vigor, agronomic traits and plant productivity in 2019**. 77f.Thesi (Doctorate in Sciences) - Postgraduate Program in Seed Science and Technology, Faculty of Agronomy Eliseu Maciel, Federal University of Pelotas, Pelotas, 2019.

The objective of this work was to study the influence of wheat seed classification on the expression of vigor, agronomic traits and plant productivity. The objective of this study was to evaluate the influence of the classification on the expression of vigor, and evaluated the mass of one thousand seeds, hectoliter weight, germination, first germination count, germination speed index, field emergence, emergency speed index, aerial and root length of seedlings, shoot dry mass and seedling root, electrical conductivity, and correlation analysis between physical and physiological characters. It is concluded that there is variability of the physical and physiological attributes against the thickness of the wheat seeds, specific for the effects of cultivar and seed lots. Seeds of wheat with intermediate thickness potentiate the vigor, and seeds with smaller and larger thickness present less vigor. In Chapter II the objective was to evaluate the influence of seed size on the agronomic traits related to the growth of wheat plants, and evaluated the number of fertile tiller, height of insertion of the main plant stem, height of the main plant, height of insertion of the secondary spike, secondary height, where it was possible to conclude that there is a tendency for smaller seeds to result in plants with lower stem plant insertion, main plant height, main plant height, and height of stem insertion. And the plants originating from the oblong hole < 2.00 mm provide inferior field performance. The objective of this study was to determine the influence of wheat seed size on grain yield and yield components. The number of spikelets per spike of the main plant, number of spikelets per spike of primary tiller, number of spikelets per spike were evaluated, secondary tillers, number of seeds of primary plant, number of primary tiller seeds, number of secondary tiller seeds, contribution of tiller in productivity, main plant contribution in grain yield, grain yield, thousand seed mass, weight hectoliter and economic analysis. It can be concluded that wheat seed size influences the number of spikelets of the main plant. primary and secondary seed numbers, number of seeds of the main plant, primary and secondary seed, mass of one thousand seeds, hectoliter weight, and productivity that the seeds <2.00 mm resulted in plants with lower yield, seeds from the sieve 2.5 to 2.99 formed plants with higher productivity, being 2.3% greater to the original sample, as well as 2% to more than seeds> 3.0 mm, 2.7% relative to 2.0 to 2.49 mm, and 6% of seeds <2.0 mm.

Key words: Triticum aestivum, thickness, oblong hole sieve, quality, yield

LISTA DE ABREVIATURAS

- AAP: Altura do afilho principal
- AAS: Altura do afilho secundário
- AE: Análise econômica
- AIEAP: Altura de inserção da espiga do afilho principal
- AIEAS: Altura de inserção da espiga do afilho secundário
- AIEPP: Altura de inserção da espiga da planta principal
- APP Altura da planta principal
- AO: Amostra Original
- CE: Condutividade elétrica
- CAP: Contribuição dos afilhos na produtividade
- CPA: Comprimento da parte aérea de plântula
- CPPP: Contribuição da planta principal na produtividade
- CR: Comprimento da raiz de plântula
- DAS: Dias após a semeadura
- EC: Emergência a campo
- G: Germinção
- IVE: Índice de velocidade de emergência
- IVG: Índice de velocidade de germinação
- MSPA: Massa seca da parte aérea de plântula
- MSR: Massa seca da raiz de plântula
- MMS: Massa de mil sementes
- NAF: Número de afilhos férteis
- NAP: Número de afilho principal
- NAS: Número de afilhos secundários
- NEEAP: Número de espiguetas por espiga do afilho primário
- NEEAS: Número de espiguetas por espiga do afilho secundário
- NEEPP: Número de espiguetas por espiga da planta principal
- NSAP: Número de sementes do afilho principal
- NSAS: Número de sementes do afilho secundário
- NSPP: Número de sementes da planta principal
- PCG: Primeira contagem de Germinação
- PH: Peso hectolitro

Sumário

LISTA DE ABREVIATURAS	8
1 INTRODUÇÃO GERAL	10
2 CAPÍTULO I	15
2.1 INTRODUÇÃO	15
2.2 MATERIAL E MÉTODOS	16
2.3 RESULTADOS E DISCUSSÃO	18
2.4 CONCLUSÕES	29
3 CAPÍTULO II	30
3.1 INTRODUÇÃO	30
3.2 MATERIAL E MÉTODOS	31
3.3 RESULTADOS E DISCUSSÃO	33
3.4 CONCLUSÕES	44
4 CAPÍTULO III	45
4.1 INTRODUÇÃO	45
4.2 MATERIAL E MÉTODOS	46
4.3 RESULTADOS E DISCUSSÃO	48
4.4 CONCLUSÕES	64
5 CONSIDERAÇÕES FINAIS	66
REFERÊNCIAS	67

1 Introdução geral

O trigo (*Triticum aestivum* L.) caracteriza-se como uma gramínea de ciclo anual, considerado um cereal básico para a civilização por ser utilizado na alimentação humana na forma de pão, bolacha, biscoito e massas. Seu uso também é importante para alimentação animal na formulação de rações, pois sua constituição bromatológica evidencia elevada presença de proteína e glúten. A cultura é considerada de médio investimento, de grande risco, responsiva a fatores abióticos do meio, tais como geada, granizo e excessos pluviométricos.

Esta espécie possui ciclo anual, hermafrodita, autógama, e sua domesticação ocorreu no Sudeste da Ásia de 7000 a 9000 A.C., posteriormente introduzida na Índia, China e Europa cinco mil anos A.C. (BRAMMER, 2001), e caracteriza-se como planta pertencente à classe Liliopsida, família Poaceae. Em nível mundial abrange mais de 25% da produção total de cereais, onde a produção em 2017 foi de 740 milhões de toneladas de grãos (FAO, 2017). Em nível Nacional, foram produzidos 57 milhões de toneladas de grãos do cultivo de 1,9 milhões de hectares, sendo para a Região Sul considerada a principal cultura de inverno. Esta região é responsável por 4,6 milhões de toneladas, sendo o Rio Grande do Sul o segundo maior produtor com 1,6 milhões de toneladas (CONAB, 2018).

A cultura do trigo, no Rio Grande do Sul passou por curto desaparecimento durante a metade do século XIX e ressurgiu sobre áreas ocupadas pela pecuária (MANTELLI, 2006). Ao longo dos anos, a cultura tem passado por um período em que a pesquisa e avanços tecnológicos ficaram estagnados, porém gradativamente, ressalvo nos últimos anos, a pesquisa brasileira atingiu destaque no lançamento de novas cultivares, e frente a utilização do manejo mais adequado da lavoura, possibilitando a cultura expressar maiores tetos produtivos.

Apesar da influência durante produção por fatores abióticos nos últimos anos, a triticultura brasileira vem em busca de altas produtividades, auxiliada pelo melhoramento genético do trigo com lançamento de novos cultivares, práticas de manejo como correção e manejo da fertilidade do solo, manejos fitossanitários

adequados, conjuntamente com a utilização de sementes de maior qualidade obteve o acréscimo de produtividade média por área que em 1977 foi de 655 kg⁻¹ (CONAB, 2015), passou para a produtividade média em 2018 de 3739 kg⁻¹ (CONAB, 2018).

A utilização de sementes de alta qualidade pode trazer benefícios econômicos à cultura do trigo. Conforme Hossen et al. (2014) sementes mais vigorosas proporcionam uniformidade no estande de plantas, refletindo diretamente na produtividade do trigo, pois a qualidade da semente interfere no potencial produtivo (PRANDO et al., 2012). Nos últimos anos frente aos avanços tecnológicos, passou a ser considerado o tamanho das sementes como fator influente na produtividade de algumas culturas. Para formação de uma semente de qualidade, é necessário o emprego de manejos que possibilitam manter o seu elevado potencial genético e fisiológico. Durante o desenvolvimento a semente pode sofrer interferência negativa na composição bioquímica, danos mecânicos e de patógênos que interferem na qualidade fisiológica da semente. Além disso, é importante considerar que a formação das sementes dentro da espiga de trigo é variável, assim, sementes maiores da base tendem a ser "mais velhas" e podem apresentar diferentes níveis de qualidade comparativamente as demais.

Existe diversidade de enzimas e proteínas que influenciam na integridade e metabolismo celular. Neste sentido, tem se desenvolvido pesquisas para verificar reações metabólicas que interferem na germinação e deterioração durante o armazenamento (DINIZ et al., 2009). Na maioria das culturas, o máximo de qualidade fisiológica é atingido na maturidade, pois neste ponto ocorre o maior acúmulo de massa seca, promovendo formação dos sistemas bioquímicos, estrutural e morfológico (NAKADA et al., 2011).

A perda de água também é um atributo observado na manutenção da qualidade fisiológica da semente, sofrendo interferência pela secagem natural (SANTOS et al., 2010). O atraso na colheita afeta a formação e o tamanho das sementes.

A qualidade fisiológica da semente está relacionada ao vigor, que é influenciado pelas condições climáticas durante a maturação, condição de armazenamento, injuria mecânica e tamanho da semente (FAVARATO et al., 2012). O vigor existente nas sementes na linha de semeadura interfere na qualidade das sementes oriundas (ALVES et al., 2012). No entanto, apesar de todos os cuidados nos manejos de fertilidade e fitossanitários em campos de produção de sementes, e pela diferença de

maturação das sementes durante a maturidade fisiológica, não é possível obter uniformidade no tamanho das sementes. Mattioni et al. (2011) verificou que existe variabilidade na produtividade em campos de produção, no tamanho e vigor das sementes.

O tamanho da semente está ligado ao desenvolvimento inicial das plântulas, pois sementes maiores propiciam plantas com maior altura e maior acúmulo de fitomassa (SANGOI et al., 2004). Segundo Grieve & Francois (1992) o tamanho da semente aumenta os componentes de rendimento, pois são definidos nos estádios inicias de desenvolvimento. A velocidade de emergência pode ser influenciada pelo tamanho da semente, que está relacionada com as características genéticas de cada genótipo e com a quantidade de reservas e os componentes bioquímicos da semente.

As cultivares de trigo podem apresentar sementes com diferentes comprimentos, largura, espessura e densidade volumétrica (GUILERME et al., 2014). No entanto na cultura do trigo são poucos os trabalhos que revelam a influencia do tamanho da semente, Bredemeier et al. (2001) avaliaram o tamanho da semente de trigo e evidenciaram a maior taxa de emissão de folhas no colmo principal, em plantas de sementes com maior tamanho. Battisti et al. (2011) avaliaram a influência do peso hectolitro (PH) na qualidade fisiológica da semente e comprovaram que o mesmo pode ser utilizado como teste para qualidade de semente.

Em outras culturas como milho, soja e feijão inúmeros trabalhos relatam a importância do tamanho da semente. Carneiro et al. (2003) avaliaram o tamanho da semente na qualidade de milho-pipoca, concluíram que sementes maiores apresentam maior vigor e germinação. Na cultura da soja, o tamanho das sementes também influencia seu desenvolvimento, segundo Santos et al. (2005) sementes com tamanhos intermediários apresentam maior qualidade fisiológica durante o armazenamento. Sementes de soja com tamanhos diferentes apresentam diferença de qualidade fisiológica, sendo que sementes menores produzem plantas com menor vigor, menor altura de colheita e menor produtividade (PÁDUA et al., 2010), e a qualidade sanitária das sementes é influenciada pelo tamanho (PICCININ et al., 2012). Bredemeier et al. (2001) evidenciaram diferença no desenvolvimento inicial em resposta ao diâmetro de sementes de trigo. Pádua et al. (2010) concluíram que tamanhos diferentes de sementes de soja apresentam diferenças na qualidade fisiologia, e sementes menores apresentam produtividade inferior. Semelhante ao

encontrado por Vazquez et al. (2012) que evidenciaram a influencia do tamanho da semente no desenvolvimento inicial de plantas, por Neto et al. (2014) evidenciaram que sementes de menores tamanho, apresentaram vigor inferior em feijão-caupi.

O controle de qualidade de sementes no Brasil permite monitorar todas as fases de um sistema de produção de sementes, normatizada pelo Ministério da Agricultura, Pecuária e Abastecimento (MAPA). Esta normativa está denominada N°25 de 16 de dezembro de 2005, que estabelece aplicações nos índices de padrões e identidade de qualidade das sementes produzidas. Existem dois tipos de controle de qualidade, o interno e o externo.

O controle interno é basicamente para o produtor de semente conhecer o histórico do lote, envolvendo a seleção da área de produção, entre outros fatores que permitem o produtor obter sementes de alta qualidade com custo baixo e o mínimo possível de perdas. O controle externo de qualidade é feito por entidades privadas autorizadas ou pelo governo, com objetivo de garantir ao agricultor a disponibilidade de utilizar uma semente com mínimo de qualidade física e fisiológica (PESKE et al., 2012).

O beneficiamento de sementes sucede os processos de produção a campo, com intuito de obter sementes de alta qualidade utilizando processos de limpeza para retirar materiais indesejáveis, posteriormente passam para secagem, armazenagem e padronização ou classificação (PESKE et al., 2012). Contudo, na cultura do trigo são poucos os trabalhos que revelam a influência do tamanho da semente na produtividade e rendimento econômico causados pelo tamanho da semente, principalmente quando se refere à interação tamanho da semente, com a cultivar, e o efeito de lote sobre a cultivar, isso porque o tamanho da semente pode estar relacionado às características genéticas de cada cultivar (MARTINS et al., 2016). Além disso, pode sofrer influência dos manejos e dos ambientes de cultivo, apresentar inter-relações entre as caractirsticas morfológicos e o rendimento de grãos (CARGNIN et al., 2006; SZARESKI et al., 2016).

No Brasil, as sementes de soja sofrem padronização de acordo com a largura, o milho passa por um processo de classificação pela largura, espessura e comprimento (PESKE et al., 2012). Para sementes de trigo, embora exista conhecimento que lotes de sementes de trigo apresentam dimensões e tamanhos, e

podem resultar em distintos desempenhos no campo durante a formação da plântula, a padronização não é empregada em escala comercial.

Em busca por uniforminadade no comprimento, espessura e largura similiar, lotes podem ainda apresentar variabilidade, que reflete em vigor (VAZQUEZ et al., 2012; PÁDUA et al., 2010; BARBOSA et al., 2010). Neto et al. (2015) afirmam que é necessário a identificação do tamanho das sementes, pois, isso permite eliminar sementes indesejáveis, formando lotes homogêneos, que propiciam sementes de melhor qualidade, o tornaria atrativo a utilização de sementes certificadas.

Para a cultura do trigo, são poucos os trabalhos que revelam a influência nos caracteres agronômicos relacionados ao crescimento, características primordiais que influenciam na produtividade, acamamento e nas práticas de colheita mecanizada (CARVALHO et al., 2016). Por esses fins, a análise da qualidade fisiológica, do vigor, dos componentes de rendimento e produtividade do trigo, produzidos por sementes de diferentes tamanhos pode vir a trazer benefícios econômicos à agricultura regional e brasileira, revelada pela utilização de diferentes cultivares e lotes de sementes de trigo.

2 Capítulo I

Padronização de sementes de trigo e influência na expressão do vigor

2.1 Introdução

O trigo (*Triticum aestivum* L.) é um cereal, com ampla aptidão nutricional, respalda na produção mundial em 2018 cerca de aproximadamente 747 milhões de toneladas de grãos (USDA, 2018), no setor nacional a produção foi 5,7 milhões de toneladas de grãos, sendo o Rio Grande do Sul um dos maiores produtores com 1,6 milhões de toneladas de grãos (CONAB, 2018).

É de conhecimento que qualidade fisiológica da semente se apresenta como um dos principais atributos que refletem na produtividade de plantas cultivadas por influenciar no desempenho inicial das plântulas, crescimento e desenvolvimento da cultura (PÁDUA et al., 2010; SZARESKI et al., 2018).

A qualidade fisiológica das sementes é determinda no campo de produção, a partir de práticas mais apropriadas de manejo e de produção, envolvendo o posicionamento estratégico, nutrição para alto desempenho, controle fitossanitário eficaz, colheita mais próximo da maturidade fisiológica, menor tempo de armazenamento no campo em associação a boas práticas e a precisão na póscolheita de sementes (LUDWIG, 2017). Entretanto, o desenvolvimento das sementes em campo pode ser influenciado por fatores bióticos e abióticos (AUMONDE et al., 2017), assim como, por características inerentes ao próprio processo de formação que resulta em diferenças físicas como o tamanho da semente (PIRES et al., 2011).

O tamanho da semente pode influenciar no seu desempenho em campo, fator que conduz ao processo de padronização em soja e classificação em milho. Para o trigo, atualmente, não se realiza padronização das sementes, mesmo que em um lote observe-se diferentes tamanhos e possa haver variabilidade com ação na germinação

e no vigor distinto (VAZQUEZ et al., 2012; PÁDUA et al., 2010; BARBOSA et al., 2010).

Desta forma, este trabalho teve o objetivo de avaliar a resposta do tamanho das sementes de trigo oriundas de cultivares e lote nos caracteres físicos e fisiológicos das sementes.

2.2 Material e métodos

Este trabalho utilizou lotes de sementes de diferentes cultivares produzidos no Norte do estado do Rio Grande do Sul, Brasil. Posteriormente, realizou-se no Laboratório do Departamento de Ciência e Tecnologia de Sementes da Universidade Federal de Pelotas o fracionamento dos lotes por espessura através de um conjunto de peneiras oblongas (>3,00 mm, 2,5 a 2.99 mm, 2,0 a 2,49 mm, e < 2,0 mm) e se realizou os testes para a qualidade fisiológica.

Utilizou-se o delineamento experimental de blocos ao acaso organizado em esquema fatorial, sendo três cultivares de trigo (Quartzo, Ametista e TBIO Sinuelo) x seis lotes de sementes (A, B, C, D, E e F) x cinco espessuras de orifícios de peneiras oblongas (I: amostra padrão utilizado por agricultores e produtores de semente (AO), II: sementes > 3,00 mm, III: sementes 2,5 a 2,99 mm, IV: sementes entre 2,0 a 2,49 mm e V: < 2,0 mm), sendo os tratamentos dispostos em quatro repetições.

Os caracteres mensurados foram:

Germinação (G): Foi utilizada oito sub-amostras com 50 sementes para cada tratamento, semeadas em rolo de papel *germitest*, umedecido com volume de água 2,5 vezes a massa do substrato seco e mantidas em câmara de germinação tipo BOD a temperatura de 20°C e fotoperíodo de 12 horas. As contagens foram realizadas aos quatro e oito dias após semeadura, conforme as Regras para Análise de Sementes (BRASIL, 2009) e os resultados foram expressos em percentagem de plantas normais.

Primeira contagem de germinação (PCG): Foi avaliada a percentagem de plântulas normais, quatro dias após semeadura, sendo os resultados expressos em percentagem (BRASIL, 2009).

Índice de velocidade de germinação (**IVG**): foi contando diariamente a partir do início da germinação, o número de plântulas emergidas até que o processo se

estabilizar. O cálculo do índice de velocidade de germinação foi realizado através da equação de Maguire (1962).

Emergência a campo (EC): sementes foram semeadas de forma manual a campo em quatro repetições de 100 sementes, e a contagem foi efetuada quando ocorreu o estabeleciemento das plântulas, e os resultados expresso em percentual (BRASIL, 2009).

Índice de velocidade de emergência (IVE): contando diariamente a partir do início da emergência, o número de plântulas emergidas até o processo se estabilizar. O cálculo do índice de velocidade de emergência foi realizado através da equação de Maguire (1962) e expresso na forma de índice.

Comprimento da parte aérea de plântulas **(CPA)**: foram coletadas quatro subamostras com 10 plântulas normais ao acaso por tratamento, e medidas com auxílio de um paquímetro digital, realizado aos oito dias, em laboratório conjuntamente com o teste de germinação, e os resultados foram expressos na média individual de plântulas em mm plântula-1 (NAKAGAWA, 1999).

Comprimento de raiz **(CR)**: foram coletadas quatro sub-amostras com 10 plântulas normais ao acaso por tratamento, e medidas com auxílio de um paquímetro digital, realizado aos oito dias, em laboratório conjuntamente com o teste de germinação, e os resultados foram expressos na média individual de plântulas em mm plântula-1 (NAKAGAWA, 1999).

Condutividade elétrica **(CE)**: foi utilizado quatro sub-amostras de 50 sementes, com sua massa determinada previamente. Após a determinação da massa, as sementes foram colocadas em copos plásticos contendo 75 mL de água deionizada e mantidas em germinador a temperatura de 25°C, durante o período de 24 horas, e a condutividade foi determinada por meio de condutívimetro digital, modelo CD-4303, e os resultados expressos em µS cm⁻¹ g⁻¹ de sementes (AOSA, 1983).

Massa seca da parte aérea da plântula (MSPA): realizado aos oito dias, em laboratório, conjunto com o teste de germinação, onde foi coletada quatro sub-amostras com 10 plântulas por tratamento, separadas em parte aérea e raiz e colocadas em envelopes de papel pardo, levadas a estufa de circulação de ar forçado, à temperatura de 70 °C, até massa constante, onde a massa foi determinado em balança de precisão, e os resultados expressos em mg plântula-1 (NAKAGAWA, 1999).

Massa seca da raiz **(MSR)**: realizado aos oito dias, em laboratório, conjunto com o teste de germinação, onde foi coletada quatro sub-amostras com 10 plântulas por tratamento, separadas em parte aérea e raiz e colocadas em envelopes de papel pardo, levadas a estufa de circulação de ar forçado, à temperatura de 70 °C, até massa constante, onde o peso foi determinado em balança de precisão, e os resultados expressos em mg plântula-1 (NAKAGAWA, 1999).

Peso hectolítro (**PH**): a determinação foi efetuada com auxilio da balaça para peso hectolítro com capacidade de 250 ml, e com auxilio de uma balança digital realizou a aferição do peso e os dados com o auxilio de uma tabela foram transformados em g cm⁻³.

Massa de mil sementes (**MMS**): determinada pela massa de oito repetições com 100 sementes de cada unidade experimental. Posteriormente, os resultados foram expressos em gramas (BRASIL, 2009).

Os dados obtidos foram submetidos à análise de variância a 5% de probabilidade onde para verificar as pressuposições do modelo estatístico (RAMALHO et al., 2012). Posteriormente, testou-se a interação entre as cultivares de trigo *x* lotes de sementes *x* tamanho das sementes a 5% de probabilidade. Ao identificar significância às interações foram desmembrados aos efeitos simples. Após, estabeleceu-se os grupos canônicos como, caracteres físicos (grupo 1) sendo este composto pelo peso hectolitro (PH) e massa de mil sementes (MMS), enquanto o grupo 2 foi composto pelos caracteres fisiológicos das sementes, sendo estes comprimento da parte aérea (CPA), comprimento de raiz da plântula (CR), primeira contagem de germinação (PCG), germinação (G), índice de velocidade de emergência (IVE), índice de velocidade de germinação (IVG), condutividade elétrica (CE) e massa seca da parte aérea de plântula (MSPA). Procedeu-se então a análise das correlações canônicas com significância baseada na Máxima verossimilhança restrita (LRT) a 5% de probabilidade.

2.3 Resultados e discussão

Análise de variância revelou significância para a interação entre cultivares de trigo x lotes de semente x tamanho das sementes a 5% de probabilidade para a primeira contagem de germinação, germinação, comprimento da parte aérea e raiz

das plântulas, índice de velocidade de germinação, emergência, massa de mil sementes, peso hectolitro, condutividade elétrica e massa seca da plântula. Houve interação entre cultivares de trigo x lotes de sementes para a emergência a campo aos 7 dias e 14 dias após semeadura, bem como, entre tamanhos de sementes x lotes de sementes para a massa seca de raiz.

Tabela 1: Caracterização física dos lotes de sementes das cultivares de trigo, e a proporções dos tamanhos de semenets de cada lote utilizado.

Espessura do orifício da peneira de furo oblongo											
		> 3,0 mm	2,5 a 2,99 mm	2,0 a 2,49 mm	< 2,00 mm						
Cultivar	Lote	% de semente no lote									
Ametista	Α	6,08	36,02	52,52	5,38						
Ametista	В	2,70	55,13	37,11	5,06						
Ametista	С	3,81	55,98	36,11	4,10						
Ametista	D	1,69	24,33	67,21	6,77						
Ametista	Ε	1,74	26,66	65,94	5,66						
Ametista	F	1,95	27,62	68,76	1,67						
Quartzo	Α	0,94	94 22,75 70,66		5,66						
Quartzo	В	0,97	23,11	70,20	5,72						
Quartzo	С	1,78	77,41	19,04	1,78						
Quartzo	D	5,29	62,11	27,89	4,72						
Quartzo	Ε	8,74	78,43	11,81	1,02						
Quartzo	F	3,27	70,90	20,43	5,41						
TBIO Sinuelo	Α	4,58	67,31	26,89	1,22						
TBIO Sinuelo	В	2,72	67,16	26,63	3,49						
TBIO Sinuelo	С	3,76	81,70	12,52	2,03						
TBIO Sinuelo	D	2,92	76,82	17,18	3,08						
TBIO Sinuelo	Ε	7,45	72,51	15,50	4,54						
TBIO Sinuelo	F	3,68	32,61	48,55	15,16						

A massa de mil sementes e o peso hectolitro (Tabela 2) revelou para todas as cultivares e lotes que a peneira V (< 2,0 mm) foi inferior, pesquisas definem que a massa de mil sementes pode ser um indicativo para classificação de sementes (ORMOND et al., 2013; GUTKOSKI et al., 2008), estando este atributo associado positivamente com o potencial fisiológico das sementes (BATTISTI et al., 2011), sendo este caráter altamente afetado durante a maturação fisiológica das sementes a campo (CARNEIRO, 2003). A massa de mil sementes na cultivar foi superior na amostra original (AO) independente da cultivar, existindo especificidade dos lotes quanto às

peneiras. Entre os cultivar, as variações são impostas através das diferentes frações de peneiras e lotes utilizados.

Para o peso hectolitro (PH) (Tabela 2) a cultivar Ametista apresentou inferioridade através da amostra original (AO), peneira < 2,0 mm (lote B), peneira 2,0 a 2,49 mm e < 2,0mm (lote C), peneira >3,0 mm (lote D, E e F). A cultivar Quartzo independente da peneira os lotes A, B, e F foram os lotes com menor valor deste caráter, evidenciando ainda que muitos lotes apresentaram peso hectolitro inferior a comercialização de grãos que é desmembrado em três tipos, tipo 1 acima de 78 kg⁻¹, tipo 2 entre 75-77,99 kg⁻¹ e tipo 3 entre 70-74,99 kg⁻¹ (BRASIL, 2001). Perante as cultivares utilizadas constatou-se inferioridade no tamanho de peneira e lotes através das cultivares Quartzo e TBIO Sinuelo para este caráter. O peso hectolitro é dependente das características impostas pelo ambiente de cultivo, cultivares utilizadas, uniformidade, densidade e tamanho das sementes (ORMOND et al., 2013).

A germinação (G) das sementes oriundas da cultivar Ametista e peneira < 2,0mm (lotes A, B e C), peneira >3,0 mm (lotes C, D, E e F) foram inferiores para este caráter (Tabela 1). A cultivar Quartzo revelou que a amostra original (lote B), peneira > 3,0 mm (lote A e C), peneira < 2,0 mm (lote E) foram inferiores. Para TBIO Sinuelo através da peneira >3,0mm (lotes A, C e F), peneira 2,5 a 2,99 mm (lote A), peneira 2,0 a 2,49 mm (lote D) e peneira < 2,0mm (lote E) evidenciaram menor germinação (Tabela 3).

Sementes de tamanho intermediário revelam germinação superior, pois possivelmente estas evidenciaram menor período no campo de produção e degradação de reserva, devido à exposição ao ambiente não controlado (CARNEIRO et al., 2005), o que pode afetar á redução da quantidade de amido, açúcares solúveis e a capacidade de mobilização das reservas (HENNING et al., 2010; SZARESKI et al., 2018). Lotes que apresentaram germinação inferior necessitam de prévia padronização das sementes, isto poderá potencializar os atributos fisiológicos e uniforme do crescimento e desenvolvimento inicial do campo de produção de grãos (MATTIONI et al., 2011; SZARESKI et al., 2017). Pesquisas de Prando et al. (2012), revelam que há grande variação dos atributos fisiológicos entre cultivares de trigo e lotes da mesma cultivar.

Tabela 2: Médias para interação cultivar x tamanhos de sementes x lotes, para variável massa de mil sementes (MMS), e Peso Hectolítro (PH).

massa de mii s	ementes (ivi	1010), e Pesi	o nectonito	(Pn).				
	Massa de mil sementes (MMS)							
	Ametista							
TP**	Lote A	Lote B	Lote C	Lote D	Lote E	Lote F		
I (AO)***	33,00 cBα	41,71 bAα	31,19 cCβ	26,86 dDβ	27,80 cDF	27,34 bDβ		
II (>3,0 mm)	41,54 aCα	43,60 aAβ	42,18 aBCα	36,56 bEF	37,11 aDEβ	37,64 aDΓ		
III (2,5 a 2,99mm)	38,32 bABα	38,00 cAα	37,84 bBα	37,57 aBα	34,76 bCΓ	35,43 cCβ		
IV (2,0 a 2,49mm)	28,07 dAα	27,66 dAβ	27,04 dBα	26,99 cBα	26,89 cBβ	25,80 dCα		
V (< 2,0 mm)	18,69 eAα	17,91 eAβ	16,30 eBβ	18,07 eAα	18,33 dAβ	17,58 eAα		
	70,00 0710	11,01 0/10		artzo	10,00 0,10	11,00 0/10		
TP**	Lote A	Lote B	Lote C	Lote D	Lote E	Lote F		
I (AO)***	29,59 cDβ	29,90 bDF	34,01 cBα	32,51 cCα	37,19 cAα	32,75 cCα		
II (>3,0 mm)	37,64 bCГ	37,63 aCα	42,88 aAα	40,55 aBβ	43,47 aAα	43,52 aAα		
III (2,5 a 2,99mm)	38,25 aAα	37,46 aBα	36,50 bBβ	37,00 bBα	38,98 bAα	35,63 bCαβ		
IV (2,0 a 2,49mm)	29,31 dAα	29,19 bAα	26,16 dCα	26,64 dCα	28,21 dBα	26,24 dCα		
V (< 2,0 mm)	18,70 eABα	19,08 cAα	18.16 eBα	17,76 eBβ	19,57 eAα	17,31 eBα		
	10,70 0/104	10,00 0/10		Sinuelo	10,07 0710	17,01 000		
TP**	Lote A	Lote B	Lote C	Lote D	Lote E	Lote F		
I (AO)***	30,46 dDβ	32,57 cCβ	33,71 dBα	32,92 cBCα	34,99 cAβ	25,76 cEΓ		
II (>3,0 mm)	39,43 aDβ	43,88 aAβ	41,79 aBCβ	41,54 aCα	42,51 aBα	41,06 aCβ		
III (2,5 a 2,99mm)	32,65 cCβ	35,41 bBβ	36,02 cAβ	35,76 bAβ	36,51 bAβ	36,58 bAα		
IV (2,0 a 2,49mm)	24,53 bCβ	27,39 dAβ	26,32 bBα	25,37 dCβ	24,92 dCΓ	25,66 cBCα		
V (< 2,0 mm)	18,10 eAα	18,92 eAα	17,75 eBα	15,44 eCГ	18,30 eAβ	15,72 dCβ		
CV (%)	10,10 0/10	10,02 0/10		19	10,00 0/10	10,12 400		
		Pes	o Hectolítro (PH)					
				etista				
TP**	Lote A	Lote B	Lote C	Lote D	Lote E	Lote F		
I (AO)***	78,60 aAα	74,70 cCβ	77,50 bBβ	77,55 aBα	77,70 abAα	77,25 aBα		
II (>3,0 mm)	79,45 aAα	79,01 aAβ	78,58 aAβ	77,25 bBα	76,80 bBβ	76,80 aBα		
III (2,5 a 2,99mm)	79,60 aAα	80,50 aAα	77,83 aBCβ	78,30 aBα	78,45 aBα	76,95 aCα		
IV (2,0 a 2,49mm)	77,40 bABα	77,85 bABβ	76,95 bBβ	77,85 aABα	78,00 aAα	76,95 aBα		
V (< 2,0 mm)	73,20 cCα	71,85 dDß	71,55 cDβ	75,45 bBα	75,30 cBα	76,80 aAα		
	-,	7.5.5.1		artzo	-,	-,		
TP**	Lote A	Lote B	Lote C	Lote D	Lote E	Lote F		
I (AO)***	74,45 aDβ	73,95 cDβ	82,00 aAα	77,85 aBα	78,45 aBα	75,60 bCβ		
II (>3,0 mm)	75,00 aCβ	75,15 bCF	81,68 aAα	77,85 aBα	78,00 aBα	75,60 bCβ		
III (2,5 a 2,99mm)	74,40 aDβ	77,10 aCβ	82,00 aAα	78,45 aBα	78,00 aBCα	76,80 aCα		
IV (2,0 a 2,49mm)	74,55 aCβ	73,86 cCF	81,00 aAα	75,75 bBβ	76,05 bBβ	74,10 cCβ		
V (< 2,0 mm)	71,10 bBβ	69,90 dCF	78,73 bAα	70,80 cBCβ	66,00 cDβ	66,90 dDβ		
TP**	1 -4 ^	1.4.5		Sinuelo	1.4.5	1.4 5		
L (A C)+++	Lote A	Lote B	Lote C	Lote D	Lote E	Lote F		
I (AO)***	74,10 aDβ	81,25 aAα	76,05 aCF	77,85 aBα	78,15 abBα	68,40 bEF		
II (>3,0 mm)	74,63 aDβ	80,95 bcAα	76,50 aCF	77,25 bBα	77,85 bBα	68,25 bEF		
III (2,5 a 2,99mm)	74,81 aDβ	80,20 cAα	76,80 aCF	78,30 aBα	79,00 aBα	69,95 aEβ		
IV (2,0 a 2,49mm)	72,75 bEF	80,20 cAα	75,00 bCF	73,50 cDF	76,95 cBβ	68,55 bFF		
V (< 2,0 mm)	69,51 cBF	77,40 dAα	67,65 сСГ	69,45 dBF	66,15 dDβ	66,00 cDβ		
CV (%)			0	83				

^{*}Médias seguidas pela mesma letra minúscula na coluna para tamanhos de peneira, mesma letra maiúscula na linha para o tamanho de semente entre lotes, e mesma letra grega entre cultivar não diferem estatisticamente a Tukey com 5 % de probabilidade de erro.

^{**}TP Tamanho de peneira.

^{***}AO Amostra original do lote sem fracionamento de tamanho.

Tabela 3: Médias para interação cultivar x tamanhos de sementes x lotes, para variável Primeira contagem de germinação (PCG), e Germinação (G).

	ornagoni (contagem de germinação (PCG), e Germinação (G).						
	Germinação (%)										
TP**	Ametista										
	Lote A	Lote B	Lote C	Lote D	Lote E	Lote F					
I (AO)***	86 abAα	87 aΑα	86 abAα	69 aBβ	58 bСГ	66 aBβ					
II (>3,0 mm)	83 abAα	86 abAα	83 bAa	45 cBβ	48 сВГ	37 сСβ					
III (2,5 a 2,99mm)	88 aΑα	89 aΑα	90 aΑα	56 bBβ	49 сСГ	49 bCΓ					
IV (2,0 a 2,49mm)	82 abAα	83 bAβ	87 abAα	73 aBβ	65 aCβ	53 bDΓ					
V (< 2,0 mm)	78 bAβ	81 bAβ	83 bAa	70 аСГ	70 aCβ	61 аDГ					
TD**			Qua	artzo	-						
TP**	Lote A	Lote B	Lote C	Lote D	Lote E	Lote F					
I (AO)***	86 aΒα	62 bDβ	84 aBCα	94 aΑα	78 abCβ	84 aBCα					
II (>3,0 mm)	78 bΒα	73 aBβ	74 bBβ	92 aA	75 bcBβ	77 bΒα					
III (2,5 a 2,99mm)	83 abΒαβ	69 aDβ	81 aBβ	94 aΑα	81 aΒβ	76 bCβ					
IV (2,0 a 2,49mm)	84 abΒα	67 abСГ	85 aAΒα	91 aAα	70 cCβ	71 bCβ					
V (< 2,0 mm)	87 aΒα	68 abDГ	86 aΒα	94 aΑα	60 dEr	75 bCβ					
				Sinuelo		<u> </u>					
TP**	Lote A	Lote B	Lote C	Lote D	Lote E	Lote F					
I (AO)***	85 abCα	87 aCα	88 aBCα	98 aΑα	93 аАВα	89 aABCα					
II (>3,0 mm)	81 bΒα	86 aΒα	70 bCβ	95 abA	95 αΑα	80 bΒα					
III (2,5 a 2,99mm)	79 bCβ	86 aBα	85 αΒCαβ	94 abAα	94 aΑα	90 aABα					
IV (2,0 a 2,49mm)	86 abAα	90 aAα	86 aAα	89 bAα	90 aAα	92 aAα					
V (< 2,0 mm)	88 aAα	89 aAα	82 aABα	80 сВβ	80 bΒα	88 aAα					
CV (%)		7,83									
	Pri	Primeira contagem de Germinação (%)									
				etista		_					
TP**	Lote A	Lote B	Lote C	Lote D	Lote E	Lote F					
I (AO)***	78 abAα	83 aAα	81 abAα	60 aBβ	44 bСГ	57 аВГ					
II (>3,0 mm)	78 abAα	81 aAα	81 abAα	37 cBβ	37 bВГ	28 dCF					
III (2,5 a 2,99mm)	80 aΑα	84 aΑα	86 aΑα	49 bBβ	39 bCF	37 сСГ					
IV (2,0 a 2,49mm)	73 bBβ	78 aAβ	80 abAα	63 aCβ	52 aDβ	42 сЕГ					
V (< 2,0 mm)	66 сВГ	67 bВГ	77 bΑΓα	58 аСГ	58 aCβ	49 bDΓ					
			Qua		'						
TP**				aitzu							
1.1	Lote A	Lote B	Lote C		Lote E	Lote F					
	Lote A 83 aBα	Lote B 51 bEß	Lote C 82 aBα	Lote D	Lote E 67 bDß	Lote F 74 aCβ					
I (AO)***	83 aBα	51 bEβ	82 aBα	Lote D 92 aAα	67 bDβ	74 aCβ					
I (AO)*** II (>3,0 mm)	83 aBα 74 bBα	51 bΕβ 61 aDβ	82 aBα 68 bCβ	Lote D 92 aAα 91 aAα	67 bDβ 65 bCβ	74 aCβ 66 bCβ					
I (AO)*** II (>3,0 mm) III (2,5 a 2,99mm)	83 aBα 74 bBα 78 aBα	51 bΕβ 61 aDβ 62 aCβ	82 aBα 68 bCβ 77 aBβ	Lote D 92 αΑα 91 αΑα 93 αΑα	67 bDβ 65 bCβ 74 aBβ	74 aCβ 66 bCβ 59 cCβ					
I (AO)*** II (>3,0 mm) III (2,5 a 2,99mm) IV (2,0 a 2,49mm)	83 aBα 74 bBα 78 aBα 80 aBα	51 bΕβ 61 aDβ 62 aCβ 58 aCΓ	82 aBα 68 bCβ	Lote D 92 aAα 91 aAα	67 bDβ 65 bCβ 74 aBβ 57 cCβ	74 aCβ 66 bCβ 59 cCβ 63 bcCβ					
I (AO)*** II (>3,0 mm) III (2,5 a 2,99mm) IV (2,0 a 2,49mm) V (< 2,0 mm)	83 aBα 74 bBα 78 aBα 80 aBα	51 bΕβ 61 aDβ 62 aCβ	82 aBα 68 bCβ 77 aBβ 82 aAα 79 aBα	Lote D 92 αΑα 91 αΑα 93 αΑα 88 αΑα	67 bDβ 65 bCβ 74 aBβ	74 aCβ 66 bCβ 59 cCβ					
I (AO)*** II (>3,0 mm) III (2,5 a 2,99mm) IV (2,0 a 2,49mm)	83 aBα 74 bBα 78 aBα 80 aBα	51 bΕβ 61 aDβ 62 aCβ 58 aCΓ	82 aBα 68 bCβ 77 aBβ 82 aAα 79 aBα	Lote D 92 αΑα 91 αΑα 93 αΑα 88 αΑα 91 αΑα	67 bDβ 65 bCβ 74 aBβ 57 cCβ	74 aCβ 66 bCβ 59 cCβ 63 bcCβ					
I (AO)*** II (>3,0 mm) III (2,5 a 2,99mm) IV (2,0 a 2,49mm) V (< 2,0 mm)	83 aBα 74 bBα 78 aBα 80 aBα 76 bBβ	51 bEβ 61 aDβ 62 aCβ 58 aCΓ 57 abDβ	82 aBα 68 bCβ 77 aBβ 82 aAα 79 aBα	Lote D 92 αΑα 91 αΑα 93 αΑα 88 αΑα 91 αΑα Sinuelo	67 bDβ 65 bCβ 74 aBβ 57 cCβ 52 cDβ	74 aCβ 66 bCβ 59 cCβ 63 bcCβ 65 bcCβ					
I (AO)*** II (>3,0 mm) III (2,5 a 2,99mm) IV (2,0 a 2,49mm) V (< 2,0 mm) TP**	83 aBα 74 bBα 78 aBα 80 aBα 76 bBβ	51 bEβ 61 aDβ 62 aCβ 58 aCΓ 57 abDβ	82 aBα 68 bCβ 77 aBβ 82 aAα 79 aBα TBIO S	Lote D 92 αΑα 91 αΑα 93 αΑα 88 αΑα 91 αΑα Sinuelo Lote D	67 bDβ 65 bCβ 74 aBβ 57 cCβ 52 cDβ	74 aCβ 66 bCβ 59 cCβ 63 bcCβ 65 bcCβ					
I (AO)*** II (>3,0 mm) III (2,5 a 2,99mm) IV (2,0 a 2,49mm) V (< 2,0 mm) TP**	83 aBα 74 bBα 78 aBα 80 aBα 76 bBβ Lote A	51 bEβ 61 aDβ 62 aCβ 58 aCΓ 57 abDβ Lote B 82 abCα	82 aBα 68 bCβ 77 aBβ 82 aAα 79 aBα TBIO S Lote C	Lote D 92 aAα 91 aAα 93 aAα 88 aAα 91 aAα Sinuelo Lote D 95 aAα	67 bDβ 65 bCβ 74 aBβ 57 cCβ 52 cDβ Lote E 92 aABα	74 aCβ 66 bCβ 59 cCβ 63 bcCβ 65 bcCβ Lote F 87 aBCα					
I (AO)*** II (>3,0 mm) III (2,5 a 2,99mm) IV (2,0 a 2,49mm) V (< 2,0 mm) TP** I (AO)*** II (>3,0 mm)	83 aBα 74 bBα 78 aBα 80 aBα 76 bBβ Lote A 84 aCα 80 aBα	51 bEβ 61 aDβ 62 aCβ 58 aCΓ 57 abDβ Lote B 82 abCα 80 bBα	82 aBα 68 bCβ 77 aBβ 82 aAα 79 aBα TBIO Lote C 84 aCα 62 bCβ	Lote D 92 aAα 91 aAα 93 aAα 88 aAα 91 aAα Sinuelo Lote D 95 aAα 90 abAα	67 bDβ 65 bCβ 74 aBβ 57 cCβ 52 cDβ Lote E 92 aABα 94 aAα	74 aCβ 66 bCβ 59 cCβ 63 bcCβ 65 bcCβ Lote F 87 aBCα 77 bBα					
I (AO)*** II (>3,0 mm) III (2,5 a 2,99mm) IV (2,0 a 2,49mm) V (< 2,0 mm) TP** I (AO)*** II (>3,0 mm) III (2,5 a 2,99mm)	83 aBα 74 bBα 78 aBα 80 aBα 76 bBβ Lote A 84 aCα 80 aBα 78 aCα	51 bEβ 61 aDβ 62 aCβ 58 aCΓ 57 abDβ Lote B 82 abCα 80 bBα 86 abBα	82 aBα 68 bCβ 77 aBβ 82 aAα 79 aBα TBIO Lote C 84 aCα 62 bCβ 82 aBCα	Lote D 92 aAα 91 aAα 93 aAα 88 aAα 91 aAα Sinuelo Lote D 95 aAα 90 abAα 92 abAα	67 bDβ 65 bCβ 74 aBβ 57 cCβ 52 cDβ Lote E 92 aABα 94 aAα 94 aAα	74 aCβ 66 bCβ 59 cCβ 63 bcCβ 65 bcCβ Lote F 87 aBCα 77 bBα 89 aAα					

^{*}Médias seguidas pela mesma letra minúscula na coluna para tamanhos de peneira, mesma letra maiúscula na linha para o tamanho de semente entre lotes, e mesma letra grega entre cultivar não diferem estatisticamente a Tukey com 5 % de probabilidade de erro.

^{**}TP Tamanho de peneira.

^{***}AO Amostra original do lote sem fracionamento de tamanho.

A primeira contagem de germinação (PCG) (Tabela 3) evidenciou para a cultivar Ametista inferioridade foi conferida através da peneira < 2,0mm (lote A, B, e C). A cultivar Quartzo revelou para as peneiras > 3,0mm e < 2,0 mm (lote A) e amostra original (lote B), peneiras > 3,0mm (lote C), peneira 2,0 a 2,49 mm (lote E), peneira 2,5 a 2,99 mm (lote F) foram inferiores para a primeira contagem de germinação e possivelmente expressam menor vigor. Para TBIO Sinuelo inferioridade foi conferida para a amostra original (AO) (lote A, B e C), peneira 2,5 a 2,99 mm (lote A), peneira > 3,0 mm (lote C) e peneira 2,0 a 2,49 mm (lote E).

O índice de velocidade de germinação (IVG) para a cultivar Ametista revelou que as sementes oriundas da peneira >3,0 mm (lotes C, D, E e F), peneira 2,0 a 2,49 mm (lote A e B), peneira < 2,0mm (lotes A, B e C) evidenciaram redução deste caráter. Entretanto, para a cultivar Quartzo através da amostra original (AO) sem a padronização (lote B), peneira >3,0mm (lotes A, C e F), peneira < 2,0mm (lotes E e F), peneira 2,5 a 2,99 mm e 2,0 a 2,49 mm (lote F) apresentaram maior índice de velocidade de germinação. Através da TBIO Sinuelo a peneira >3,0 mm (lotes A, C e F), peneira (2,5 a 2,99 mm (lote A), peneira < 2,0 mm (lotes D, E e F) minimizaram a expressão deste caráter (Tabela 4).

Plantas com maior desenvolvimento inicial apresentam qualidade fisiológica superior, bem como, capacidade competitiva (RIGOLI et al., 2009). O tamanho das sementes e as características dos lotes influenciam o crescimento e desenvolvimento da planta, número de estruturas reprodutivas por unidade de área e qualidade fisiológica das sementes produzidas (OHLSON et al., 2010). Pesquisas definem que sementes menores podem evidenciar menor vigor e velocidade de emergência a campo (BARBOSA et al., 2010). Perante as cultivares estudadas, menor evidência da velocidade de emergência foi constatada para a cultivar Ametista, sendo a TBIO Sinuelo responsável pelo mais rápido estabelecimento a campo.

Perante o comprimento da parte aérea da plântula (CPA) (Tabela 5) da cultivar Ametista através da peneira < 2,0mm (lote A, B e C), peneira > 3,0 mm (lote E), peneira 2,5 a 2,99 mm (lote E e F). Para Quartzo a amostra original (lote B), peneira < 2,0 mm (lotes A, B, C, E e F). A cultivar TBIO Sinuelo por meio da peneira 2,0 a 2,49 mm (lotes A e C) e peneira < 2,0mm para todos os lotes reduziram este caráter. Sementes de trigo com maiores dimensões tendem a incrementar o comprimento da plântula e indiretamente expressar alto vigor (RIGOLI et al., 2009).

Tabela 4: Médias para interação cultivar x tamanhos de sementes x lotes, para variável Índice de Velocidade de Germinação (IVG), e Índice de Velocidade de Emergência (IVE).

(· v 🗀 <i>)</i> ·												
			Índic	e de Velo	cidade d	le Germir	nação (IV	'G)				
TP**						Am	netista					
11	L	ote A	L	ote B	L	ote C	Lo	te D	L	₋ote E	L	ote F
I (AO)***	8,24	aAα	8,57	aAα	8,40	abAα	6,58	аВβ	5,24	bСГ	6,24	аВГ
II (>3,0 mm)	8,10	аΑα	8,39	aAα	8,17	bΑα	4,20	сВβ	4,36	сВГ	3,37	dCβ
III (2,5 a 2,99mm)	8,49	аΑα	8,69	aAα	8,80	аΑα	5,36	bΒβ	4,54	сСГ	4,44	сСГ
IV (2,0 a 2,49mm)	7,84	bAβ	8,08	bΑα	8,42	abAα	6,91	аВβ	5,99	аСβ	4,88	сDГ
V (< 2,0 mm)	7,33	bΒβ	7,55	bABβ	8,07	bΑα	6,54	аСГ	6,52	аСβ	5,65	bDΓ
TD**						Qı	ıartzo					
TP**		ote A	L	ote B	L	ote C	Lo	te D	1	_ote E	L	ote F
I (AO)***	8,49	аВα	5,77	bDα	8,35	aΒα	9,33	aAα	7,36			аВβ
II (>3,0 mm)	7,67	bΒCα	6,82	aDβ	7,18	bCDβ	9,15	аΑα	7,09	bCDβ	7,27	bCDα
III (2,5 a 2,99mm)	8,08	abΒαβ	6,64	аСβ	7,95	аВβ	9,37	аΑα	7,81	аВβ	6,94	bCβ
IV (2,0 a 2,49mm)	8,25	abΒαβ	6,33	abCα	8,40	aABα	8,99	аΑα	6,48	сСβ	6,77	bCβ
V (< 2,0 mm)	8,28	abΒαρ	6,36	abDΓ	8,32	аВα	9,26	aΑα	5,66		7,13	bCβ
TP**			· · ·		<u> </u>	TBIO	Sinuelo				· ·	
IP""	L	ote A	L	ote B	L	ote C	Lo	te D	L	₋ote E	L	ote F
I (AO)***	8,43	аВα	8,47	аВα	8,64	аВα	9,46	аΑα	9,24	аΑα	8,80	аВα
II (>3,0 mm)	8,01	bΒα	8,35	аВα	6,67	bDβ	9,14	abAα	9,48	aAα	7,86	bCα
III (2,5 a 2,99mm)	7,87	bCβ	8,60	аВα	8,36	аВСαβ	9,27	abAα	9,42	аΑα	8,92	аΑВα
IV (2,0 a 2,49mm)	8,51	аΑα	8,90	aAα	8,46	аΑα	8,75	bΑα	8,97	аΑα	9,05	аΑα
V (< 2,0 mm)	8,65	аΑα	8,73	аΑα	8,06	аВα	7,85	сВβ	7,47	bΒα	8,75	bAα
CV (%)						8	3,11					
			Índic	e de Velo	cidade d	de Emerg	ência (IV	Έ)				
TP**							netista	•				
IP""	L	ote A	L	ote B	L	ote C		te D	L	_ote E	L	ote F
I (AO)***	1,99	аΑВα	3,23	аΑα	2,12	аΑВα	0,64	bBCβ	0,09	аСГ	0,58	аВСβ
II (>3,0 mm)	2,94	аΑα	2,21	abABα	2,83	aAα	0,51	bCβ	0,44	аСβ	0,92	аВСβ
III (2,5 a 2,99mm)	1,78	аΑВβ	2,83	aAα	2,50	αΑαβ	3,35	аΑα	0,50	аВβ	0,59	аВβ
IV (2,0 a 2,49mm)	1,62	аВСαβ	3,26	аΑα	2,92	aABα	1,17	bCα	0,80	аСβ	0,87	аСβ
V (< 2,0 mm)	1,75	αΑΒαβ	0,83	bABα	2,10	аΑα	1,33	bABα	0,51	аВα	0,82	аΑВβ
TP**						Qı	ıartzo					
IP	L	ote A	L	ote B	L	ote C	Lo	te D	L	₋ote E	L	ote F
I (AO)***	2,35	аΑα	1,21	аАβ	2,48	аΑα	2,37	аΑα	1,73	abAβ	1,73	abΑαβ
II (>3,0 mm)	2,23	aABα	0,67	аСβ	1,48	aBCα	3,44	aAα	2,42	abABα	1,96	αΑΒαβ
III (2,5 a 2,99mm)	1,66	aABβ	0,30	аВβ	1,35	аАВβ	2,66	aAα	2,76	aAα	1,44	abABβ
IV (2,0 a 2,49mm)	1,33	аАВβ	0,92	аВβ	1,80	аΑВα	2,68	aAα	1,71	abABαβ	1,51	abABβ
V (< 2,0 mm)	1,17	aABβ	1,37	aABα	1,12	aABα	2,12	aAα	1,07	bABα	0,18	bΒβ
TP**							Sinuelo					
I (AO***		ote A		ote B		ote C		te D		_ote E		ote F
I (AO)***	3,09	aAα	3,39	abΑα	2,56	aΑα	3,82	aAα	3,75	aΑα	2,96	bΑα
II (>3,0 mm) III (2,5 a 2,99mm)	3,16 3,98	аАВα аАВα	3,51 2,10	aABα abBα	2,06 2,87	аВα аВα	3,75 2,50	aAα abBα	3,37 3,53	аАВα аВα	2,94 5,21	bABα aAα
III (2,5 a 2,99mm) IV (2,0 a 2,49mm)	3,96 2,94	аАвα аВα	3,25	abΒα	2,07 2,21	авα аВα	2,50 2,45	abΒα	3,53 2,69	abα abΒα	5,21 5,55	aAα
V (< 2,0 mm)	3,04	аВα аАВα	2,01	bABα	2,16	аВα аАВα	1,62	bΒα	1,67	bΒα	3,28	bAα
CV (%)	5,04	anbu	۷,0۱	שתטע	۷,۱۵		8,24	שטע	1,07	DDU	5,20	υΛu
				. ,	_	- +	0,24					

^{*}Médias seguidas pela mesma letra minúscula na coluna para tamanhos de peneira, mesma letra maiúscula na linha para o tamanho de semente entre lotes, e mesma letra grega entre cultivar não diferem estatisticamente a Tukey com 5 % de probabilidade de erro.

^{**}TP Tamanho de peneira.

^{***}AO Amostra original do lote sem fracionamento de tamanho.

Tabela 5: Médias para interação cultivar x tamanhos de sementes x lotes, para variável Comprimento da parte aérea de plântula (CPA), e Comprimento da raiz de plântula (CR).

<u>\U. ().</u>												
			Compri	mento da	parte ár			n)				
TP** -	Lot	- Δ	1.0	te B	1.0	Ame te C		e D	1.0	te E	1.0	te F
I (AO)***	7,02		6,37			abAαβ		<u>e D</u> aBCГ	5,46			bABβ
II (>3,0 mm)	8,66	аАβ	7,06	аВβ	7,10	abAup	5,85	abCГ	5,40	bСГ	7,66	•
III (2,5 a 2,99mm)	6,58	bΒβ	7,21	аАβ	7,10	аΑβ	5,29	bСГ	6,24	аВГ	5,63	•
IV (2,0 a 2,49mm)	5,22	•	7,53	•	6,64	bcBα	5,91	abСГ		abDβ	7,42	•
V (< 2,0 mm)	4,95	сСβ	5,32	сВГ	6,19	сΑα	6,27	аАГ	6,00	abABβ	5,93	
	7,55	сор	0,02	СВІ	0,10	Qua		ал	0,00	ардър	0,00	ьсьор
TP** -	Lot	e A	Lo	te B	Lo	te C	Lot	e D	Lo	te E	Lo	te F
I (AO)***	7,62	αΑαβ	6,28	bΒβ	7,38	bΑα	6,69	аВβ	6,34	bcBβ	6,59	аВβ
II (>3,0 mm)	7,71	аАГ	7,55	аАβ	7,42	bABα	7,19	аΑВβ	6,85	bcBCβ	6,51	аСГ
III (2,5 a 2,99mm)	7,04	abCDβ	7,44	аВСβ	8,47	аΑα	6,76	aDβ	8,02	аΑВβ	5,53	bΕβ
IV (2,0 a 2,49mm)	7,34	abAα	7,38	аΑα	6,06	сВα	7,05	аАβ	6,21	сВβ	5,01	bcCΓ
V (< 2,0 mm)	6,74	bAα	6,47	bAβ	4,82	dВСГ	6,64	аАβ	5,13	dΒΓ	4,36	сСГ
TP** -						TBIOS						
	Lot			te B		te C		e D		te E		te F
I (AO)***	7,97	bΒα	8,86	аΑα	6,45	bCβ	7,92	bΒα	9,16		8,70	bΑα
II (>3,0 mm)	9,38	аΑα	9,00	aA	7,20	аВα	8,80	aΑα	8,83	аΑα	9,32	аΑα
III (2,5 a 2,99mm)	8,36	bΒCα	8,06	bCα	6,96	abDβ	8,92	aΑα	9,10	аΑα	8,87	abABα
IV (2,0 a 2,49mm)	7,33	сСα	7,72	bcBCα	5,14	cDβ	7,93	bΒCα	8,17	bΒα	9,05	abAα
V (< 2,0 mm)	7,11	cABα	7,42	cAα	5,70	сСβ	7,26	сΑα	7,14	сΑВα	6,64	сВα
CV (%)						20,						
			Com	primento	da raiz		. , ,					
TP** -	Lot	- Λ		to P	Lot	Ame		. D		to E		to E
	Lot			te B	Lot		Lote			te E		te F
I (AO)***		bABβ		bBCβ	11,17	•	8,81	•	7,11		9,53	•
II (>3,0 mm) III (2,5 a 2,99mm)	14,70	aΑα	10,89	abBβ	11,40	аВα ьвг	7,50	bСГ	7,70	bcCF	10,55	
IV (2,0 a 2,49mm)	9,79	bcBΓ	11,22		9,90	bBF	7,49	bСГ	8,78	abBCF	8,09	сСβ
V (< 2,0 mm)	8,25	dCβ	11,70		10,50	abBα	8,49	abCΓ	8,89	abCF	11,71	аΑβ
v (> 2,0 mm)	9,43	сАβ	9,90	bΑα	9,54	bAα	9,55	аАГ	9,86	аАГ	9,52	bAβ
TP** -		- ^		4- D		Qua		- D		4- =		4
	Lot			te B		te C		e D		te E		te F
I (AO)***	13,11			bcCβ	•	aABα	12,04		,	bCβ	9,57	
II (>3,0 mm)	10,11		10,99	abBβ	12,20		11,99	=	11,08	•	10,47	
III (2,5 a 2,99mm)	11,42		.,	abΒα	13,11		11,73	•	11,15		8,18	
IV (2,0 a 2,49mm)	,	aAα	11,81		10,48		11,54	-		bcDβ	7,73	
V (< 2,0 mm)	11,48	bΑα	9,46	сВα	8,21	сСβ	11,05	аАβ	8,04	сСВ	7,62	bСГ
TP** -						TBIO S						
	Lot			te B		te C		e D		te E		te F
I (AO)***	12,70			abBCα		abDαβ	13,09		14,12		15,24	
II (>3,0 mm)		аΑВα	13,58			bcDβ		aBCα		aBCα	15,30	
III (2,5 a 2,99mm)	13,98		12,44		11,58		14,41			abΒα	15,56	
IV (2,0 a 2,49mm)	12,78	bΒα	11,96			dCβ	12,85		12,68	bΒα	16,20	
V (< 2,0 mm)	12,12	bABα	10,13	dCα	10,04		12,29	bΑα	12,40	bΑα	11,05	bΒα
CV (%)						22,	63					

^{*}Médias seguidas pela mesma letra minúscula na coluna para tamanhos de peneira, mesma letra maiúscula na linha para o tamanho de semente entre lotes, e mesma letra grega entre cultivar não diferem estatisticamente a Tukey com 5 % de probabilidade de erro.

^{**}TP Tamanho de peneira.

^{***}AO Amostra original do lote sem fracionamento de tamanho.

O comprimento da raiz da plântula (CR) evidenciou para as cultivares Quartzo e TBIO Sinuelo que a peneira < 2,0 mm reduz o comprimento da raiz (Tabela 5). Sementes de trigo maiores tendem a potencializar a emissão e a área foliar das plântulas (RIGOLI et al., 2009). Para a cultivar TBIO Sinuelo amostra original (lotes B, E e F), peneira >3,0mm (lotes A, B, E e F), peneiras 2,5 a 2,99 mm e 2,0 a 2,49 mm (lote F), peneira <2,0mm (lotes C, E e F) apresentaram menor evidência para o comprimento da raiz da plântula de trigo. Plântulas de trigo que apresentam crescimento radicular mais rápido proporcionam maior potencial competitivo e variam em função das características do genótipo (RIGOLI et al., 2009) (Tabela 5).

A condutividade elétrica foi superior em sementes oriundas da peneira < 2,0 mm independente do lote e cultivar analisada (Tabela 6). Entretanto, as cultivares Ametista e Quartzo mesmo quando oriundas de lotes diferentes evidenciam condutividades similares para este caráter. Para todas as cultivares a massa seca da parte aérea da plântula foi inferior para as peneiras < 2,0 mm. Em contrapartida, a peneira >3,0 mm (lote D e F) foi superior para a cultivar Ametista, e para a peneira 2,0 a 2,49 mm (lote B) superioridade foi conferida para TBIO Sinuelo (Tabela 6). Entre as cultivares a TBIO Sinuelo foi superior as demais na maioria dos tamanhos de peneira e lotes. Pesquisas apontam que quanto maior a massa seca das plântulas, mais potencializa será a habilidade competitiva do trigo (RIGOLI et al., 2009), sendo o estabelecimento inicial atribuído ao vigor das sementes (OLIVEIRA et al., 2016; KOCH et al., 2018).

A emergência a campo aos 7 e 14 dias após a semeadura (DAS) (Tabela 7), revelou que a cultivar TBIO Sinuelo foi superior as demais. Aos 14 DAS a cultivar Ametista (lotes E e F) foi inferior as demais cultivares analisadas. De forma geral, as sementes oriundas da peneira < 2,0 mm minimizam a emergência a campo. Portanto, se estabelece que as dimensões das sementes determinam o vigor, estabelecimento e crescimento inicial do trigo (RIGOLI et al., 2009; AISENBERG et al., 2016; PEDÓ et al., 2016), pois sementes menores reduzem a velocidade de emergência a campo (BARBOSA et al., 2010; FERRARI et al., 2016; CARVALHO et al., 2017; KAVALCO et al., 2017).

Tabela 6: Médias para interação cultivar x tamanhos de sementes x lotes, para variável Condutividade Elétrica (CE) e Massa Seca da Parte Aérea (MSPA).

Condutividade	Eletri	ca (CE						rea (ivi	3PA)			
	Condutividade Elétrica μS cm-1 Ametista											
TP**	Lo	te A	Lo	te B	Lo	te C		te D	Lo	te E	Lo	te F
I (AO)***	39,69	bΑα	36,92	bΑα	36,80	сΑβ	20,08	сВα	38,83	bcΑα	20,94	сВβ
II (>3,0 mm)	13,84	сСβ	35,08	bΒα	31,83	dΒβ	48,11	аΑα	46,30	bAα	15,89	сСβ
III (2,5 a 2,99mm)	43,70	bCα	15,33	сDГ	42,50	сСα	56,98	аВα	67,88	аΑα	16,90	сDβ
IV (2,0 a 2,49mm)	20,87	сСβ	21,16	сСβ	55,59	bΒα	48,01	аВα	67,66	аΑα	48,51	bΒα
V (< 2,0 mm)	63,32	аΑВα	58,80	аВβ	65,45	аΑВα	41,64	bCα	33,25	сСα	70,83	аΑα
TP**		1- A	l a	to D			artzo	to D		40 F		to [
		ote A		te B		ote C		te D		te E		te F
I (AO)***	38,04	bΒα	19,80	cDβ	55,70	аΑα	17,34	cDα	26,38	cdCβ		abBCα
II (>3,0 mm)	15,09	сСβ	27,10	сВα	51,21	bΑα	14,49	сСβ	46,01	аΑα	30,05	abΒα
III (2,5 a 2,99mm)	19,72	сВβ	40,70	bAβ	38,41	cAα	15,62	сВβ	18,30	dΒΓ	23,34	bΒαβ
IV (2,0 a 2,49mm)	36,09	bΒα	39,69	bABα	46,90	bcAα	38,61	bABβ	31,42	bcBβ	36,20	aBβ
V (< 2,0 mm)	61,77	аΑα	70,89	аΑα	61,30	aΒα TBIO :	50,47 Sinuelo	аСα	35,78	bDα	38,09	аDГ
TP**	Lo	te A	Lo	te B	Lo	te C		te D	Lo	te E	Lo	te F
I (AO)***	35,46	bcAα	42,29	bΑα	20,44	bcΒΓ	26,51	bΒα	18,93	сВβ	34,91	bAα
II (>3,0 mm)	30,74	сΑВα	28,29	сΑВα	17,45	сСГ	16,52	сСβ	24,43	bcBCβ	35,60	bAα
III (2,5 a 2,99mm)	40,78	bΒα	56,90	аΑα	18,91	bcCβ	19,29	bcCβ	32,73	abBβ	31,21	bΒα
IV (2,0 a 2,49mm)	41,65	abA	42,54	bAα	28,10	bΒβ	44,58	аΑαβ	38,78	аАβ	43,53	abAαβ
V (< 2,0 mm)	50,78	аАβ	36,31	bcΒΓ	37,90	аВβ	50,40	аΑα	35,33	аВα	50,72	аАβ
CV (%)			Mac	ea Soca	da Darto	18 Aérea (N	3,27 4SDA) (a	1				
			ivias	isa occa	ua i aite		etista	,				
TP**	Lo	te A	Lo	te B	Lo	te C		te D	Lo	te E	Lo	te F
I (AO)***	0,068	аΑВα	0,053	bΒβ	0,070	аΑα	0,045	abBCβ	0,039	аСГ	0,050	аВСβ
II (>3,0 mm)	0,070	аАβ	0,078	аАβ	0,076	аΑα	0,034	bΒΓ	0,038	аВβ	0,036	bΒΓ
III (2,5 a 2,99mm)	0,068	аΑα	0,070	abAαβ	0,069	аΑαβ	0,041	abΒΓ	0,040	аВГ	0,041	abBβ
IV (2,0 a 2,49mm)	0,054	bABα	0,061	bΑα	0,056	bABα	0,054	aABα	0,046	аВβ	0,048	abABβ
V (< 2,0 mm) TP**	0,035	сΑВβ	0,039	сΑВβ	0,047	bAα	0,045 artzo	abABα	0,033	аВβ	0,038	abABβ
11	Lo	te A	Lo	te B	Lo	te C		te D	Lo	te E	Lo	te F
I (AO)***	0,067	аΑα	0,066	αΑΒαβ	0,066	bcABα	0,063	abABα	0,053	bΒβ	0,055	аΑВβ
II (>3,0 mm)	0,061	abAβ	0,054	аВβ	0,074	abAα	0,070	аАβ	0,075	аΑα	0,047	abBβ
III (2,5 a 2,99mm)	0,054	abBβ	0,058	аВβ	0,081	аΑα	0,061	аВβ	0,063	abBβ	0,047	abCβ
IV (2,0 a 2,49mm)	0,058	abABα	0,061	аΑα	0,050	cABαβ	0,056	bABα	0,045	bBCβ	0,039	bCβ
V (< 2,0 mm)	0,052	bAα	0,040	bAβ	0,039	cAα	0,039	cAα	0,019	сВГ	0,021	сВГ
TP**	Lo	ote A	Lo	ote B	Lo	TBIO :	Sinuelo Lo	te D	Lo	te E	Lo	te F
I (AO)***	0,071	bcΑα	0,079	bAα	0,070	aAα	0,066	bAα	0,700	bcAα	0,078	
II (>3,0 mm)	0,096	аΑα	0,095	аΑα	0,073	аВα	0,077	аВα	0,080	abΒα	0,106	аΑα
III (2,5 a 2,99mm)	0,076	bABα	0,073	bcΒα	0,064	аВβ	0,081	abAα	0,086	аΑα	0,086	bAα
IV (2,0 a 2,49mm)	0,060	cdBα	0,063	cAα	0,042	bBβ	0,054	bcΒα	0,058	cdBα	0,075	bAα
V (< 2,0 mm)	0,049	dBCα	0,079	bAα	0,026	cDβ	0,043	сСα	0,048	dCα	0,061	сВα
CV (%)						13	3,84					

^{*}Médias seguidas pela mesma letra minúscula na coluna para tamanhos de peneira, mesma letra maiúscula na linha para o tamanho de semente entre lotes, e mesma letra grega entre cultivar não diferem estatisticamente a Tukey com 5 % de probabilidade de erro.

^{**}TP Tamanho de peneira.

^{***}AO Amostra original do lote sem fracionamento de tamanho.

Tabela 7: Médias para interação cultivar x lotes, para as variáveis Emergência a Campo 7 DAS (EC 7 DAS) e Emergência a Campo 14 DAS (EC 14 DAS), e médias para interação tamanho de semente x lotes de sementes para a variável Massa Seca de Raiz (MSR), e médias para tamanho de semente para a variável Emergência a Campo 14 DAS (EC 14 DAS).

Campo 14 DAS (EC 14	DAS	<i>)</i>									
Emergência a Campo 7 DAS												
Genótipo	Lote	Α	Lote	Lote B Lote C			Lote	D	Lote E		Lote F	
Ametista	14,90	аА	15,50	аА	14,82	аА	10,68	aAB	3,30	bB	3,76	bB
Quartzo	11,00	аА	7,52	bA	7,72	aА	13,84	аА	7,70	bΑ	6,36	bΑ
Sinuelo	19,10	aAB	18,30	aAB	12,52	аВ	16,60	aAB	17,52	aAB	22,56	аА
CV (%)						92,	66					
			Emer	gência	a Campo	14 D	AS					
Genótipo	Lote	Α	Lote	В	Lote	С	Lote	D	Lote	Е	Lote	F
Ametista	26,54	bB	38,84	аА	39,30	abA	18,90	bBC	9,46	сС	13,68	сС
Quartzo	26,90	bB	11,50	bC	30,52	bB	44,90	аА	35,14	bAB	26,76	bB
Sinuelo	52,30	аВ	43,40	aBC	42,00	аC	46,42	aBC	47,40	aBC	71,26	аА
CV (%)						43,	20					
				N	1SR (g)							
TP**	Lote	Α	Lote	В	Lote	С	Lote	D	Lote	Е	Lote	F
I (AO)***	0,3003	аА	0,3017	аА	0,3060	bA	0,2920	аА	0,2786	bA	0,2857	аА
II (>3,0 mm)	0,2984	аА	0,3043	аА	0,3026	bA	0,2968	аА	0,2863	bA	0,2800	аА
III (2,5 a 2,99mm)	0,2911	аВ	0,2898	аВ	0,4339	aA	0,2833	аВ	0,4332	aA	0,2819	аВ
IV (2,0 a 2,49mm)	0,2934	аА	0,2949	аА	0,3135	bA	0,2808	аА	0,2743	bA	0,2821	аА
V (< 2,0 mm)	0,2798	аА	0,2788	аА	0,2696	bA	0,2731	аА	0,2634	bA	0,2673	аА
CV (%)						123	,15					
TP**						EC	14					
I (AO)***						19,32	а					
II (>3,0 mm)	18,75 a											
III (2,5 a 2,99mm)						18,72	а					
IV (2,0 a 2,49mm)		17,66 a										
V (< 2,0 mm)						13,02	b					
CV (%)						43,	20					

^{*}Médias seguidas pela mesma letra minúscula na coluna para tamanhos de peneira, mesma letra maiúscula na linha para o tamanho de semente entre lotes, não diferem estatisticamente a Tukey com 5 % de probabilidade de erro.

A massa seca de raiz (Tabela 7) foi incrementada em sementes oriundas da peneira 2,5 a 2,99 mm (lotes C e E). Sementes classificadas em diferentes tamanhos apresentam variabilidade dos atributos fisiológicos (PÁDUA et al., 2010; KEHL et al., 2016; DEMARI et al., 2016). De maneira geral, a resposta ao tamanho das sementes de trigo variou em função das cultivares, sendo a TBIO Sinuelo superior em vigor e germinação, primeira contagem de germinação, índice de velocidade de germinação e emergência a campo, comprimento da raiz de plântula, massa seca da parte aérea, em contrapartida, os atributos físicos foram superiores através das cultivares Ametista e Quartzo.

^{**}TP Tamanho de peneira.

^{***}AO Amostra original do lote sem fracionamento de tamanho.

As sementes intermediáres da cultivar Ametista e Quartzo apresentam maior germinação quando comparadas a de tamanho intermediário. Perante o comprimento da parte aérea da plântula para a cultivar Quartzo a peneira < 2,0 mm tende a apresentar menor comprimento, assim como, comprimento da raiz da plântula para as cultivares Quartzo e TBIO Sinuelo. A condutividade elétrica e a massa seca da parte aérea da plântula evidenciaram que as sementes oriundas da peneira < 2,0 mm independente do lote e cultivar analisada apresentam menor qualidade fisiológica.

Dois pares canônicos foram significativos, sendo o primeiro responsável pela inter-relação (r=0,68) entre os caracteres físicos e fisiológicos (Tabela 8), onde as maiores massas de mil sementes incrementam o comprimento da parte aérea, comprimento da raiz da plântula, primeira contagem de germinação, germinação, índice de velocidade de germinação e emergência, massa seca da parte aérea, porém, reduzem a condutividade elétrica. O segundo par canônico (r=0,33) determina que a redução do peso hectolitro podem incrementar o comprimento da plântula da parte aérea, comprimento da raiz de plântula, germinação, índice de germinação e emergência a campo.

Tabela 7: Cargas dos caracteres físicos (grupo I) e qualidade fisiológica das sementes (grupo 2) nas correlações de canônicas (r) entre os grupos, em três cultivar de trigo, 18 lotes de sementes e 5 tamanhos de sementes.

	Grupo I						
Caráter	1º Par Canônico	2º Par Canônico					
PH	0,347	-0,288					
MMS	0,689	-0,022					
	Grupo II						
	1º Par Canônico	2º Par Canônico					
CPA	0,311	0,048					
CR	0,169	0,218					
PCG	0,132	0,070					
G	0,050	0,034					
IVG	0,085	0,509					
CE	-0,495	-0,063					
IVE	0,228	0,129					
MSPA	0,526	-0,162					
r	0,691	0,333					
LRT	< 0,001	< 0,001					

2.4 Conclusão

Há variabilidade dos atributos físicos e fisiológicos frente a espessura das sementes de trigo, sendo estes específicos para os efeitos de cultivar e lotes de sementes.

Lotes com qualidade semelhante e sementes de trigo com espessura intermediária potencializam o vigor das sementes de forma geral para as cultivares de trigo, e sementes com espessuras menores e maiores apresentarem menor vigor.

As sementes de espessura < 2,00 mm reduzem a massa de mil sementes e o peso hectolítro para todas as cultivares e lotes avaliados.

As sementes intermediáres da cultivar Ametista e Quartzo apresentam maior germinação quando comparadas a de tamanho intermediário.

Através da condutividade elétrica e a massa seca da parte aérea da plântula é possível afirmar que as sementes oriundas da peneira < 2,0 mm apresentam menor qualidade fisiológica.

3 Capítulo II

Tamanho da semente e influência nos caracteres agronômicos relacionados ao crescimento de plantas de trigo.

3.1 Introdução

O trigo (*Triticum aestivum* L.) é pertencente à família Poaceae, ciclo anual, utilizado para a alimentação humana e animal. Em nível mundial a produção em 2017 foi de 740 milhões de toneladas de grãos (FAO, 2017), enquanto, no âmbito Nacional foi 5,7 milhões de toneladas produzidas em aproximadamente 1,9 milhões de hectares. Deste montante, a região Sul do Brasil produziu 4,6 milhões de toneladas de grãos, sendo o Rio Grande do Sul um dos maiores produtores com 1,6 milhões de toneladas (CONAB, 2017).

Atualmente a produtividade média do trigo no Brasil é entorno de 2431 kg⁻¹ (CONAB, 2018), considerada baixa, podendo ser aprimorada pela padronização das sementes, que possibilita retirar sementes com qualidade fisiológica indesejável, melhorando o manejo de semeadura, desempenho das plantas a campo e produtividade, pois está a qualidade fisiológica é determinada por atributos químicos, sanitários, fisiológicos e físicos (MARTINS et al., 2016), que influenciam na germinação, vigor, desenvolvimento inicial das plântulas e acúmulo de fitomassa (BRZEZINSKI et al., 2014).

Pelo fato de não ser realizado a padronização de sementes em trigo, um lote apresenta sementes com comprimento, largura e espessura variada, pois em prática é separado por peso específico, proporcionando um lote com sementes de diferentes tamanhos, que pode apresentar qualidade fisiológica e desempenho diferente (PÁDUA et al., 2010), já comprovada na cultura da soja (PÁDUA et al., 2010, BARBOSA et al., 2010), milho (VAZQUEZ et al., 2012). Neste cenário, para a cultura do trigo são poucos os trabalhos que revelam a influência nos caracteres agronômicos relacionados ao crescimento, características primordiais que influenciam na

produtividade, acamamento e nas práticas de colheita mecanizada (CARVALHO et al., 2016).

Neste contexto, este trabalho teve por objetivo avaliar a influência do tamanho de sementes nos caracteres agronômicos relacionados ao crescimento de plantas de trigo.

Material e Métodos

Para a realização dos experimentos as sementes foram coletadas em campos de produção do Norte do estado do Rio Grande do Sul, Brasil (Tabela 1). Em Laboratório, no Programa de Pós-Graduação em Ciência e Tecnologia de Sementes da Universidade Federal de Pelotas, foi realizada a padronização das sementes por meio de um conjunto de peneiras de furos oblongos que separou por espessura >3,00 mm (semente retidas na peneira 3,0 mm), 2,5 a 2,99 mm (semente retidas na peneira de 2,5mm que passou pela peneira 3,0 mm), 2,0 a 2,49 mm (semente que passou pela peneira 2,5mm e ficou retida na peneira 2,0mm), e < 2,0 mm (sementes que passaram pela peneira 2,0 mm).

Posteriormente, o experimento foi colocado a campo no município de Tenente Portela – RS, no ano de 2016, sob latitude 27°23'31.04"S, longitude 53°46'50.71"O e altitude de 420 m. O clima é caracterizado como subtropical úmido do tipo Cfa segundo a classificação de Köppen com precipitação média anual de 2085 mm (SOTÉRIO et al., 2005), o solo é classificado como Latossolo vermelho alumino férrico típico (STRECK, 2008).

O delineamento experimental utilizado foi o de blocos ao acaso, organizado em esquema fatorial, sendo três cultivares de trigo (Quartzo, Ametista e TBIO Sinuelo) x seis lotes de sementes (A, B, C, D, E e F) x cinco orifícios da peneira (I: amostra padrão, sem a padronização, que é a utilizada por agricultores (AO), II: sementes > 3,00mm, III: sementes 2,5 a 2,99 mm, IV: sementes entre 2,0 a 2,49mm e V:< 2,0mm), sendo os tratamentos dispostos em três repetições. As unidades experimentais foram constituídas por cinco linhas de semeadura espaçadas por 0,17 metros e dois metros de comprimento, com área útil 0,51 m² provenientes das duas linhas centrais.

A semeadura foi realizada manualmente em sistema direto com população de 330 mil sementes viáveis por hectare, adubação de base e cobertura de acordo com

os resultados da análise prévia do solo (CQFS-RS/SC 2004). O controle de doenças, plantas daninhas e insetos-praga foram realizados de maneira preventiva e as avaliações a partir de dez plantas amostradas aleatoriamente na área útil da unidade experimental, sendo estes:

Número de afilhos férteis (NAF): aferido pela contagem do número de afilhos férteis por planta. Os resultados foram expressos em unidades.

Altura de inserção da espiga da planta principal (AIEPP): correspondeu à medida da distância entre o nível do solo e a inserção da espiga. Os resultados foram apresentados em centímetros.

Altura da planta principal (AP): determinada pela planta que sobressaia as demais, mensurada pela distância entre o nível do solo até o ápice da última espigueta. Os resultados foram exibidos em centímetros.

Altura de inserção da espiga do afilho principal (AIEAP): determinada pelo afilho mais próximo da planta principal sendo este superior aos demais. Para isso, mensurou-se a distância entre o nível do solo até a inserção da espiga do afilho. Os resultados foram apresentados em centímetros.

Altura do afilho principal **(AAP)**: definido como o afilho mais próximo da planta considerada principal, mensurando da distância entre o nível do solo até o ápice da última espigueta. Os resultados foram exibidos em centímetros.

Altura de inserção da espiga do afilho secundário (AIEAS): para isso identificou-se o afilho mais próximo ao afilho principal e determinou-se a distância entre o nível do solo até a inserção da espiga. Os resultados foram apresentados em centímetros.

Altura do afilho secundário (AAS): considerado o afilho mais próximo ao afilho principal e aferiu-se a distância entre o nível do solo até o ápice da última espigueta. Os resultados foram exibidos em centímetros.

Os dados obtidos foram submetidos à análise de variância a 5% de probabilidade para verificar as pressuposições do modelo estatístico (RAMALHO et al., 2012). Posteriormente, testou-se a interação entre cultivares de trigo *x* lotes de sementes *x* tamanho das sementes a 5% de probabilidade, ao identificar significância às interações foram desmembrados aos efeitos simples.

Resultados e discussão

Análise de variância revelou significância para a interação entre cultivares de trigo x lotes de sementes x tamanho das sementes a 5% de probabilidade para os caracteres número de afilhos férteis (NAF), altura de inserção da espiga da planta principal (AIEPP), altura da planta principal (APP), altura de inserção da espiga do afilho principal (AIEAP), altura do afilho principal (AAP), altura de inserção da espiga do afilho secundário (AIEAS) e altura do afilho secundário (AAS).

O número de afilhos férteis (NAF), para a média dos lotes avaliados, o tamanho de peneira não apresentou diferença nas cultivares Ametista e TBIO Sinuelo, no entanto, as plantas da cultivar Quartzo oriundas de sementes retidas na peneira IV (2,0 a 2,49 mm) obtiveram maior número de afilhos férteis (Tabela 1). Entre cultivares, a Ametista apresentou-se superior ou igual as demais cultivares testada em todos os tamanhos de peneira.

A emissão de afilhos férteis no trigo se relaciona com os componentes do rendimento e a produtividade, sendo estes, influenciados pela densidade de plantas e as características intrínsecas da cultivar utilizada (VALÉRIO et al., 2008; CARVALHO et al., 2017).

Entre lotes, a TBIO Sinuelo não demonstrou diferença no número de afilhos férteis (NAF). Para a cultivar Ametista os lotes E e F, e para a Quartzo, o lote B incrementaram o número afilhos férteis. Entre cultivares, o número de afilhos férteis foi superior para a cultivar Quartzo nas sementes do lote B, e para a cultivar Ametista do lote E.

Na interação tamanho de sementes e lotes, os lotes A, C e D não apresentaram diferença no número de afilhos férteis (NAF) entre os tamanhos de peneira utilizados para a padronização, porém, o lote B foi superior através das sementes da peneira IV (2,0 a 2,49mm), assim, como o lote E a peneira II (>3,0mm), lote F peneiras II (>3,0mm) e III (2,5 a 2,99mm), evidenciando a presença de variabilidade quanto ao tamanho das sementes nos lotes amostrado. Entre lotes, o número de afilhos férteis (NAF) as sementes retidas na peneira V (<2,0mm) não variaram entre os lotes avaliados, porém, a amostra original (AO) proporcionou a redução no número de afilhos férteis em 50% dos lotes, peneira II (>3,0mm) 66%, peneira III (2,5 a 2,99 mm) 16% e peneira IV (2,0 a 2,49mm) 86% dos lotes testados (Tabela 1).

Tabela 1: Médias para interação cultivares x tamanhos de sementes, cultivares x lotes, e tamanhos de peneiras x lotes para variável número de afilhos férteis (NAF).

						<u> </u>
TP** -			Número	de Afilhos férte	is	
TF -	Am	netista		Quartzo	TBIO-S	Sinuelo
I (AO)***	2,02	aA	2	,11 bA	1,78	aA
II (>3,0 mm)	2,33	aA	1	,87 bA	2,09	aA
III (2,5 a 2,99mm)	2,33	аА	1	,79 bB	2,11	aAB
IV (2,0 a 2,49mm)	2,30	аА	2	,69 aA	1,73	аВ
V (< 2,0 mm)	2,29	аА	1	,83 bAB	1,69	аВ
Lote	Am	netista		Quartzo	TBIO-S	Sinuelo
Α	1,88	bA	1	,81 bA	1,57	aA
В	1,96	bB	2	,68 aA	1,65	аВ
С	2,28	abA	1	,82 bA	2,09	aA
D	2,34	abA	1	,82 bA	2,00	aA
E	2,62	аА	2	,32 abAB	1,94	аВ
F	2,43	аА	1	,90 bA	2,04	аА
TP**	Lote A	Lote B	Lote C	Lote D	Lote E	Lote F
I (AO)***	1,64 aB	1,63 bB	2,20 aA	В 2,29 аА	B 2,47 abA	1,60 bB
II (>3,0 mm)	1,58 aB	2,03 bB	1,95 aB	1,78 aB	2,88 aA	2,35 aA
III (2,5 a 2,99mm)	1,65 aB	1,75 bAB	2,17 aA	B 2,11 aA	B 2,38 abA	2,38 aA
IV (2,0 a 2,49mm)	2,08 aB	3,31 aA	1,79 aB	2,20 aB	1,93 bB	2,14 abB
V (< 2,0 mm)	1,81 aA	1,78 bA	2,22 aA	1,88 aA	1,77 bA	2,15 abA
CV (%)				36,9		

^{*}Médias seguidas pela mesma letra minúscula na coluna, e mesma letra maiúscula na linha, não diferem estatisticamente a Tukey com 5 % de probabilidade de erro.

A altura de inserção da espiga da planta principal (AIEPP) apresentou variabilidade para as cultivares (Tabela 2). Para a cultivar Ametista, plantas originadas da amostra original (AO) obteve altura de inserção da espiga da planta principal inferior para os lotes B e D, assim como, plantas originadas de sementes retidas na peneira IV (2,0 a 2,49 mm) dos lotes D e F, e peneira V (< 2,00 mm) do lote D. Para a cultivar Quartzo, as sementes retidas na peneira III (2,5 a 2,99 mm) apresentaram inferioridade no lote A e F, assim como, a peneira V (< 2,00 mm) dos lotes, B, C, D, E e F. Na cultivar Sinuelo, a amostra original (AO) apresentou menor altura de inserção de espiga da planta principal no lote D, assim como, a peneira II (> 3,0 mm) dos lotes C e E, peneira IV (2,0 a 2,49 mm) do lote B, e peneira V (< 2,00 mm) do lote E.

Plantas com menor altura formam menor área foliar e crescimento (COLLARES et al., 2008), no entanto, podem apresentar tolerância ao acamamento (ESPINDULA

^{**}TP Tamanho de peneira e suas respectivas sementes retidas.

et al., 2010) que está relacionado com a translocação dos fotoassimilados e peso de grãos, consequentemente a produtividade de grãos (SILVA et al., 2006).

Entre lotes, ocorreu diferença entre os tamanhos e cultivares utilizadas. Para a cultivar Ametista as sementes retidas na peneira II (> 3,0 mm) e III (2,5 a 2,99 mm) foram inferior em 16% dos lotes avaliados, assim como, a peneira IV (2,0 a 2,49 mm) em 50% dos lotes, e peneira V (< 2,00 mm) em 33% dos lotes. Para a Quartzo a não padronização das sementes conforme amostra original (AO) resultou em menor altura de inserção de espiga em 16% dos lotes avaliados, assim como, as sementes retidas na peneira IV (2,0 a 2,49 mm) em 33% dos lotes. Para a cultivar TBIO Sinuelo a amostra original (AO), as sementes retidas na peneira III (2,5 a 2,99 mm) e IV (2,0 a 2,49 mm) assim como, na peneira II (> 3,0 mm), e V (< 2,0 mm) em 16% dos lotes avaliados. Portanto, para estas cultivares há variação de quanto a peneira utilizada para a padronização, em função da amostragem do lote e ambiente de produção das sementes. Os caracteres morfológicos do trigo são afetados pela época de semeadura, ambiente de cultivo e características genéticas (CARVALHO et al., 2016), compactação do solo (COLLARES et al., 2008), adubação nitrogenada (ESPINDULA et al., 2010), competição entre plantas (FERREIRA et al., 2008) e déficit hídrico (SANTOS et al., 2012).

A altura da planta principal (APP) diferiu entre lotes e tamanho de sementes, enquanto, nas plantas originadas da cultivar Ametista, as peneiras utilizadas para a padronização da semente não influenciaram no desempenho dos lotes A, C e E (Tabela 2). No entanto, as sementes não padronizadas obtidas - amostra original (AO) do lote B, peneira III (2,5 a 2,99 mm) do lote D, e IV (2,0 a 2,49 mm) do lote F resultaram em plantas de menor estatura (APP). Para a cultivar Quartzo o tamanho de sementes não influenciou a altura da planta principal (APP) do lote F, porém para o lote As sementes retidas na peneira III (2,5 a 2,99 mm), lote C peneira IV (2,0 a 2,49 mm) e V (> 2,0 mm), e peneira V (> 2,0 mm) dos lotes B, D e E apresentaram redução na estatura das plantas produzidas. Em relação a cultivar TBIO Sinuelo os lotes A, D e E não revelaram diferença na altura da planta principal para a padronização de semente, no entanto, as sementes retidas na peneira II (> 3,0 mm) apresentaram menor altura da planta principal nos lotes C e E, assim como, a peneira IV (2,0 a 2,49 mm) e V (> 2,0 mm) do lote B (Tabela 2).

Tabela 2: Médias para interação cultivares x tamanhos de sementes x lotes, para variável Altura de Inserção de Espiga da Planta Principal (AIEPP), e Altura da Planta Principal (APP).

Fillicipal (AF	г <i>)</i> .											
			Altura	de Inserç	ão de Espi	ga da Pla	nta Principa	al (cm)				
					•	Ar	netista .					
TP**	Lote	e A	Lo	te B	Lot	e C		te D	Lo	te E	Lo	te F
I (AO)***	89,90	аΑα	86,06	bAβ	90,53	аΑβ	88,00	bAβ	91,63	аΑα	91,36	aΑα
II (>3,0 mm)	87,90	аВα	92.11	aAα	89.96	aABα	93.07	aAα	90.96	aABα	90.43	aABα
III (2,5 a 2,99mm)	90,83	aABα	92,60	aABα	86,87	аСβ	89,26	abBCα	94,43	aΑα	90,60	aABCα
IV (2,0 a 2,49mm)	89,03	аΑВβ	89,60	abABα	88,76	аВα	88,03	bΒα	92,80	aΑα	86,23	bΒαβ
V (< 2,0 mm)	87,38	аВβ	88,71	abABα	88,23	аВα	88,73	bABα	90,83	aABα	91,45	аАα
* (=,*)	0.,00	e. -	00,7 1	0.07.12.0	00,20		uartzo			0.0 1.2 0.	0.1,10	o 10.
TP**	Lote	e A	Lo	te B	Lot	e C		te D	Lot	te E	l c	te F
I (AO)***	92,56	аΑВα	92,05	aABα	95,60	aΑα	94,70	aABα	91,13	аВСαβ	87,58	bCα
II (>3,0 mm)	91,70	aΑbα	90,11	abAα	92,48	aλα	93,83	abAα	92,20	аВсир	91,86	aAα
III (2,5 a 2,99mm)	87,52	bΑα	88,98	abAα	91,03	bAα	90,13	bcAα	91,43	αΑαβ	87,53	bAα
IV (2,0 a 2,49mm)	93,73	aΑα	91,96	aABα	89,26	bcBα	89,16	cdBα	91,43	адир аАВα	89,86	abABα
V (< 2,0 mm)	95,73	aΑα	87,35	bΒα	87,32	сВα	85,93	dΒα	86,23	bΒβ	87,46	bΒβ
v (~ ∠,U IIIIII)	ا د,ده	anu	01,33	DDU	01,32		05,93 O Sinuelo	aba	00,∠3	որի	01,40	որի
TP**	Lote	o A	1 -4	te B	1 -4	e C		ote D	1	te E	1 -	ote F
I (AO)***	85,86	aABβ	87,98	аΑβ	87,36	abAβ	83,31	bΒΓ	87,66	аΑβ	83,28	аВβ
II (>3,0 mm)	89,63	aΑα	87,30	abABβ	84,84	ьвсβ	86,96	abABCβ	81,48	bDβ	83,26	aCDβ
III (2,5 a 2,99mm)	88,10	aABα	89,90	aΑα	89,73	аΑαβ	84,90	abBβ	88,20	aABβ	84,63	аВβ
IV (2,0 a 2,49mm)	87,83	аАβ	83,33	сВβ	87,00	abABα	87,10	abΑBα	86,27	аАβ	85,83	аВβ
V (< 2,0 mm)	88,86	аАβ	83,41	bcBCβ	86,80	abABα	87,63	аΑα	82,20	bСГ	86,88	аΑВβ
CV (%)							8,72					
				Altu	ra da Plant							
							netista					
TP**	Lote	e A	Lo	te B	Lot	e C	Lo	te D	Lot	te E	Lo	te F
I (AO)***	97,11	аΑα	93,10	bAα	97,93	αΑαβ	94,53	abAβ	100,3	аΑα	98,50	аΑα
II (>3,0 mm)	95,16	аАα	96,32	abAα	97,36	aAα	99,46	aAα	99,53	aAα	99,53	aAα
III (2,5 a 2,99mm)	94,66	аВα	100,08	aAα	93,66	аВα	93,03	bΒαβ	102,26	aAα	98,06	aABα
IV (2,0 a 2,49mm)	96,43	aABβ	96,83	abABα	96,39	aABα	95,55	abABα	99,86	аΑα	93,00	bΒα
V (< 2,0 mm)	94,75	аАβ	96,64	abAα	95,73	aAα	93,36	abAα	98,36	aAα	96,42	abAα
-						Q	uartzo					
TP**	Lote	e A	Lo	ie B	Lot	e C	Lo	te D	Lot	te E	Lo	te F
I (AO)***	98,73	abAα	96,53	abAα	101,95	аΑα	101,90	аΑα	99,33	αΑαβ	94,50	αΑαβ
II (>3,0 mm)	98,43	abAα	96,36	abAα	98,68	abAα	100,48	abAα	98,60	abAα	99,03	aAα
III (2,5 a 2,99mm)	95,42	bAα	95,67	abAα	97,76	abAα	97,66	abAα	99,06	αΑαβ	95,16	αΑαβ
IV (2,0 a 2,49mm)	103,53	аАα	99,76	aABα	96,36	bΒα	96,73	bΒα	98,74	aAΒαβ	97,53	аВα
V (< 2,0 mm)	102,82	aΑα	94,04	bBCαβ	95,01	bΒCα	90,23	сСα	93,53	bΒCαβ	95,86	аВα
	•					TBIC) Sinuelo		·			
TP**	Lote	e A	Lo	te B	Lot	e C		te D	Lot	te E	Lo	te F
I (AO)***	93,06	аΑα	95,91	aAα	94,36	abAβ	90,82	аΑВβ	94,93	аАβ	89,87	аВβ
II (>3,0 mm)	97,46	aΑα	94,50	abAα	91,54	bAβ	93,15	аАβ	82,22	сВβ	95,03	аАα
III (2,5 a 2,99mm)	97,16	аΑα	97,36	аΑα	97,3	aAα	92,16	аВβ	94,73	аАВβ	92,16	аВβ
IV (2,0 a 2,49mm)	95,08	аΑβ	90,43	bAβ	94,36	abAα	94,40	аВρ	93,72	abAβ	93,3	аАα
V (< 2,0 mm)	95,75	аАβ	90,25	bΒβ	94,28	abABα	94,13	aABα	89,24	bBβ	94,22	aABα
CV (%)	00,10	3/ \p	00,20	2 0 p	01,20		10,56	., .Du	00,£ T	2 5 p	01,22	a, 10 a
UV (70)							10,00					

^{*}Médias seguidas pela mesma letra minúscula na coluna para tamanhos de peneira, mesma letra maiúscula na linha para o tamanho de semente entre lotes, e mesma letra grega entre cultivares não diferem estatisticamente a Tukey com 5 % de probabilidade de erro.

Entre lotes da cultivar Ametista, as plantas oriundas de sementes da amostra original (AO), quando sementes retidas nas peneiras II (> 3,0 mm) e V (> 2,0 mm) não afetaram a altura da planta principal (APP), porém, o a espessura de orifício de peneira III (2,5 a 2,99 mm) influenciou negativamente neste caráter em 50% dos lotes, assim como, a espessura de orifício da peneira de tamanho IV (2,0 a 2,49mm) afetou 16% dos lotes avaliados. Para a cultivar Quartzo, as sementes provenientes da amostra original (AO), as sementes retidas na peneira II (> 3,0 mm) e III (2,5 a 2,99 mm) não

^{**}TP Tamanho de peneira e suas respectivas sementes retidas.

^{***}AO Amostra original do lote sem fracionamento de tamanho.

diferem na APP. As sementes retidas das peneiras IV (2,0 a 2,49mm) e V (>2,0mm) afetaram negativamente este caráter em 66 % e 16% dos lotes avaliados. Em relação a cultivar TBIO Sinuelo, os lotes A, D e E não apresentaram diferença para as diferentes peneiras, no entanto, plantas da amostra original (AO) e as sementes retidas na peneira II (>3,0mm) influenciaram negativamente a altura da planta principal (APP) em 16% dos lotes avaliados, bem como, as sementes retidas na peneira III (2,5 a 2,99 mm) e V (< 2,0 mm) reduziram a altura da planta principal em 33% dos lotes.

Plantas com menor altura podem apresentar menor acamamento e contribuíram para aumentar o comprimento, número de espiguetas, peso da espiga e número de grão por espiga (SILVA et al., 2006), no entanto, estas plantas podem resultar em efeitos negativos (HARWIG et al., 2006), bem como, a massa de sementes (ESPINDULA et al., 2010).

De forma geral, entre cultivar, há superioridade da cultivar Quartzo na altura de inserção de espiga da planta principal (Tabela 2), assim como, as cultivares Ametista e Quartzo na altura de inserção de espiga do afilho principal (AIEAP), e altura do afilho principal (AAS) (Tabela 3). A altura de inserção da espiga do afilho principal (AIEPP) determinou que as plantas da cultivar Ametista dos lotes C e D não demonstraram influência do tamanho de sementes, no entanto, as sementes retidas na peneiras II (> 3,0 mm) do lote A, amostra original do lote B, peneira IV (2,0 a 2,49 mm) e V (< 2,0 mm) do lote E, amostra original (AO) e peneira IV (2,0 a 2,49 mm) do lote F apresentaram menor altura de inserção da espiga do afilho principal (AIEAP). Sementes maiores emergem mais rapidamente e incrementam a altura da planta (CHASTAIN et al., 1994). Entre lotes, as plantas originadas, originadas das sementes da amostra original (AO) influenciaram negativamente na altura de inserção de espiga do afilho principal (AIEAP) em 33% dos lotes, bem como, as sementes retidas nas peneiras II (> 3,00 mm), III (2,5 a 2,99mm), IV (2,0 a 2,49) e V (< 2,0 mm) para 16% dos lotes avaliados.

Para a cultivar Quartzo a padronização não diferiu no lote E, porém, as plantas formadas a partir das sementes retidas na peneira III (2,5 a 2,99 mm) do lote A, peneira V (< 2,0 mm) dos lotes B e C, peneira II (>3,0mm) e V (<2,0mm) lote D, amostra original (AO) do lote F apresentaram menor altura de inserção de espiga do afilho principal (AIEAP). Entre lotes, as sementes provenientes das peneiras II (>3,0mm) e IV (2,0 a 2,49 mm) não diferiram, porém, amostra original (AO) e peneira

III (2,5 a 2,99mm) 16% dos lotes, bem como, a peneira V (< 2,0 mm) em 66% dos lotes apresentaram plantas com menor altura de inserção de espiga do afilho principal (AIEAP).

É possível realçar a qualidade de um lote de sementes através da padronização, pois, a variação do tamanho de sementes em um lote influencia no crescimento e uniformidade das plântulas (SAINIO et al., 2011), pois, sementes que não passaram pelo processo de padronização apresentam características físicas como forma e densidade diferente (ORMOND et al., 2013) e podem apresentar desempenho diferente a campo.

Para a cultivar TBIO Sinuelo, a padronização não teve influência no lote C em relação à altura de inserção de espiga do afilho principal (AIEAP). Para as plantas provenientes das sementes da peneira IV (2,0 a 2,49) do lote A, amostra original (AO) sem a padronização, peneira III (2,5 a 2,99), IV (2,0 a 2,49) e peneira V (< 2,0 mm) do lote B, amostra original (AO) dos lotes D e F e as plantas originadas da peneira V (< 2,0 mm) do lote E, evidenciaram inferioridade. Entre lotes, as plantas provenientes da peneira II (> 3,00 m) não diferiram, porém, amostra original (AO), peneiras III (2,5 a 2,99mm), e V (< 2,0mm) influenciam negativamente em 33% dos lotes, e as plantas provenientes da peneira IV (2,0 a 2,49) em 50% dos lotes avaliados.

A altura de inserção de espiga do afilho principal (AIEAP) (Tabela 3) variou entre lotes e cultivar, com a tendência de que sementes maiores proporcionam plantas mais altas, com maior altura de inserção de espiga (SAINIO et al., 2011), evidenciando a variabilidade entre os lotes avaliados e a necessidade da utilização de peneiras para a padronização de semente de trigo para obtenção de lotes que originam plantas com desempenho a campo uniforme, e proporciona melhor manejo fitossanitário e a mesmas condições para a competição entre plantas.

Tabela 3: Médias para interação cultivares x tamanhos de sementes x lotes, para variável Altura de Inserçãode Espiga do Afilho Principal (AIEAP), e Altura do Afilho Principal (AAP).

			Ailura 0	e Inserção	ue ⊑sbić		•	ai (GIII)				
TP**							netista					
	L	ote A	Lo	ote B	Lo	te C	L	ote D	L	ote E	L	ote F
I (AO)***	78,73	аΑα	65,36	bΒα	71,50	аΑВα	74,90	αΑΒαβ	81,13	abAα	63,66	bΒα
II (>3,0 mm)	61,60	bΒα	80,28	аΑα	80,43	аΑα	75,52	аΑВα	83,73	abAα	76,00	abABo
III (2,5 a 2,99mm)	78,60	аΑВα	82,63	аΑВα	73,33	аВα	74,30	аΑВα	88,50	аΑα	78,03	abABo
IV (2,0 a 2,49mm)	73,53	abABαβ	82,63	аΑα	68,30	аΑВα	74,30	аΑВα	73,20	bΑΒαβ	64,30	bΒβ
V (< 2,0 mm)	69,30	abBβ	73,53	abABα	80,00	аΑВα	81,80	aABα	72,36	bABα	86,28	аΑα
TP**						Q	uartzo					
	L	ote A	Lo	ote B	Lo	te C	L	ote D	L	ote E	L	ote F
I (AO)***	72,93	bΒCα	71,71	abBCα	83,9	аΑВα	88,33	аΑα	83,33	аΑВα	60,15	bCα
II (>3,0 mm)	74,23	bAα	78,66	abAα	72,99	abAα	70,54	bAα	80,73	аΑα	79,6	аΑα
III (2,5 a 2,99mm)	49,87	сВβ	73,19	abAαβ	79,26	abAα	77,06	abAα	76,46	αΑαβ	75,26	аΑα
IV (2,0 a 2,49mm)	84,33	abAα	83,7	аΑα	78,3	abAα	75,8	abAα	82,99	аΑα	78,1	аΑα
V (< 2,0 mm)	89,99	аΑα	65,67	bΒα	67,01	bΒα	66,06	bΒβ	68,96	аВα	78,1	aABαβ
TP**				TBIO Sinuelo								
T.F.	L	ote A	Lo	ote B	Lo	te C	L	ote D	L	ote E	L	ote F
I (AO)***	66,01	abBCα	60,64	bCα	75,8	аΑВα	64,3	ьВСβ	82,63	аΑα	59,17	bCα
II (>3,0 mm)	70,43	abAα	79,00	аΑα	77,71	аΑα	76,18	abAα	74,69	abAα	81,03	аАα
III (2,5 a 2,99mm)	79,70	аΑα	63,53	bΒβ	75,73	аΑВα	76,43	abABα	68,56	abcABβ	73,66	abABo
IV (2,0 a 2,49mm)	63,59	bΒβ	61,83	bΒβ	64,06	аВα	80,60	аΑα	67,92	bcABβ	71,13	abABo
V (< 2,0 mm)	72,48	abABβ	62,54	bΒα	77,9	аΑα	73,06	abΑΒαβ	59,63	сВα	68,46	abAB(
CV (%)							10,56					
				Altura	do Afilho	Principal	(cm)					
						Ar	netista					
TP**	L	ote A	Lo	ote B	Lo	te C	L	ote D	L	ote E	L	ote F
I (AO)***	85,15	аΑα	70,90	bABα	76,96	аΑВα	80,73	αΑΒαβ	84,56	abAα	68,73	bΒα
II (>3,0 mm)	66,30	bΒα	86,59	abAα	87,23	аΑα	81,81	аΑВα	90,50	abAα	82,0	abABo
III (2,5 a 2,99mm)									05.00	аΑα	84,23	abABo
	84,26	aABα	88,80	aABα	79,66	аВα	81,03	aABα	95,93			
•	84,26 78,35	aABα abABαβ	88,80 89,80	аАВα аАα	79,66 74,08	aΒα aAΒα	81,03 80,90	аАВα аАВα	95,93 78,96	Βαbαβ	71,60	bΒα
•										Babαβ bABα		bΒα aAα
IV (2,0 a 2,49mm) V (< 2,0 mm)	78,35	abABαβ	89,80	аΑα	74,08	аАВα аАВα	80,90	аΑВα	78,96	•	71,60	
IV (2,0 a 2,49mm)	78,35 75,15	abABαβ	89,80 78,74	аΑα	74,08 86,55	аАВα аАВα	80,90 85,53 uartzo	аΑВα	78,96 77,53	•	71,60 92,81	
IV (2,0 a 2,49mm) V (< 2,0 mm)	78,35 75,15	abABαβ abBβ	89,80 78,74	aAα abABα	74,08 86,55	aABα aABα Q	80,90 85,53 uartzo	аАВα аАВα	78,96 77,53	bABα	71,60 92,81	аΑα
IV (2,0 a 2,49mm) V (< 2,0 mm) TP**	78,35 75,15	abABαβ abBβ ote A	89,80 78,74 Lo	aAα abABα ote B	74,08 86,55 Lo	aABα aABα Q ote C	80,90 85,53 uartzo L	aABα aABα ote D	78,96 77,53	bABα ote E	71,60 92,81 L	aAα ote F
IV (2,0 a 2,49mm) V (< 2,0 mm) TP**	78,35 75,15 Left 79,30	abABαβ abBβ ote A bABCα	89,80 78,74 Lo	aAα abABα ote B abBCα	74,08 86,55 Lc	aABα aABα Q ote C aABα	80,90 85,53 uartzo L 94,86	aABα aABα ote D	78,96 77,53 L	bABα ote E aABα	71,60 92,81 L 65,24	aAα ote F bCα
IV (2,0 a 2,49mm) V (< 2,0 mm) TP** I (AO)*** II (>3,0 mm) III (2,5 a 2,99mm)	78,35 75,15 Le 79,30 80,53	abABαβ abBβ ote A bABCα bAα	89,80 78,74 Lo 78,03 85,6	aAα abABα ote B abBCα abAα	74,08 86,55 Lc 90,85 78,70	aABα aABα Q te C aABα abAα	80,90 85,53 uartzo L 94,86 76,1	aABα aABα ote D aAα bAα	78,96 77,53 L 90,83 87,23	bABα ote E aABα abAα	71,60 92,81 L 65,24 84,93	aAα ote F bCα aAα
IV (2,0 a 2,49mm) V (< 2,0 mm) TP** I (AO)*** II (>3,0 mm) III (2,5 a 2,99mm)	78,35 75,15 Lo 79,30 80,53 53,22	abABαβ abBβ ote A bABCα bAα cBβ	89,80 78,74 Lc 78,03 85,6 78,68	aAα abABα ote B abBCα abAα abAαβ	74,08 86,55 Lc 90,85 78,70 85,16	aABα aABα Q te C aABα abAα abAα	80,90 85,53 uartzo L 94,86 76,1 83,2	aABα aABα ote D aAα bAα abAα	78,96 77,53 Lu 90,83 87,23 83,50	bABα ote E aABα abAα abAαβ	71,60 92,81 L 65,24 84,93 81,86	aAα ote F bCα aAα aAα aAα
IV (2,0 a 2,49mm) V (< 2,0 mm) TP** I (AO)*** II (>3,0 mm) III (2,5 a 2,99mm) IV (2,0 a 2,49mm) V (< 2,0 mm)	78,35 75,15 Lo 79,30 80,53 53,22 90,90	abABαβ abBβ ote A bABCα bAα cBβ abAα	89,80 78,74 Lc 78,03 85,6 78,68 89,86	aAα abABα ote B abBCα abAα abAαβ aAα	74,08 86,55 Lc 90,85 78,70 85,16 83,70	aABα aABα Q ote C aABα abAα abAα abAα bBα	80,90 85,53 uartzo L 94,86 76,1 83,2 82,0	aABα aABα ote D aAα bAα abAα abAα	78,96 77,53 L 90,83 87,23 83,50 87,39	bABα ote E aABα abAα abAαβ abAα	71,60 92,81 L 65,24 84,93 81,86 85,26	aAα ote F bCα aAα aAα
IV (2,0 a 2,49mm) V (< 2,0 mm) TP** I (AO)*** II (>3,0 mm) III (2,5 a 2,99mm) IV (2,0 a 2,49mm)	78,35 75,15 Li 79,30 80,53 53,22 90,90 96,9	abABαβ abBβ ote A bABCα bAα cBβ abAα	78,74 Lc 78,03 85,6 78,68 89,86 70,72	aAα abABα ote B abBCα abAα abAαβ aAα	74,08 86,55 Lc 90,85 78,70 85,16 83,70 73,74	aABα aABα Q ote C aABα abAα abAα abAα bBα	80,90 85,53 uartzo L 94,86 76,1 83,2 82,0 74,4 O Sinuelo	aABα aABα ote D aAα bAα abAα abAα	78,96 77,53 LL 90,83 87,23 83,50 87,39 74,10	bABα ote E aABα abAα abAαβ abAα	71,60 92,81 L 65,24 84,93 81,86 85,26 85,66	aAα ote F bCα aAα aAα aAα
IV (2,0 a 2,49mm) V (< 2,0 mm) TP** I (AO)*** II (>3,0 mm) III (2,5 a 2,99mm) IV (2,0 a 2,49mm) V (< 2,0 mm)	78,35 75,15 Li 79,30 80,53 53,22 90,90 96,9	abABαβ abBβ ote A bABCα bAα cBβ abAα aAα	78,74 Lc 78,03 85,6 78,68 89,86 70,72	aAα abABα ote B abBCα abAα abAαβ aAα bBα	74,08 86,55 Lc 90,85 78,70 85,16 83,70 73,74	aABα aABα Q tte C aABα abAα abAα abAα abAα TBIC	80,90 85,53 uartzo L 94,86 76,1 83,2 82,0 74,4 O Sinuelo	aABα aABα ote D aAα bAα abAα abAα bBα	78,96 77,53 LL 90,83 87,23 83,50 87,39 74,10	bABα ote E aABα abAα abAαβ abAα bBα	71,60 92,81 L 65,24 84,93 81,86 85,26 85,66	aAα ote F bCα aAα aAα aAα aAβα
IV (2,0 a 2,49mm) V (< 2,0 mm) TP** I (AO)*** II (>3,0 mm) III (2,5 a 2,99mm) IV (2,0 a 2,49mm) V (< 2,0 mm) TP**	78,35 75,15 Lu 79,30 80,53 53,22 90,90 96,9	abABαβ abBβ ote A bABCα bAα cBβ abAα aAα ote A	89,80 78,74 Lc 78,03 85,6 78,68 89,86 70,72	aAα abABα ste B abBCα abAα abAαβ aAα bBα	74,08 86,55 90,85 78,70 85,16 83,70 73,74	aABα aABα Q te C aABα abAα abAα abAα bBα TBIC	80,90 85,53 uartzo L 94,86 76,1 83,2 82,0 74,4 O Sinuelo	aABα aABα ote D aAα bAα abAα abAα abAα bBα	78,96 77,53 LL 90,83 87,23 83,50 87,39 74,10	bABα ote E aABα abAα abAαβ abAα bBα	71,60 92,81 L 65,24 84,93 81,86 85,26 85,66	aAα ote F bCα aAα aAα aAα ote F
IV (2,0 a 2,49mm) V (< 2,0 mm) TP** I (AO)*** II (>3,0 mm) III (2,5 a 2,99mm) IV (2,0 a 2,49mm) V (< 2,0 mm) TP** I (AO)***	78,35 75,15 10 79,30 80,53 53,22 90,90 96,9 Lo 70,74	abABαβ abBβ ote A bABCα bAα cBβ abAα aAα ote A abBCα	89,80 78,74 Lc 78,03 85,6 78,68 89,86 70,72 Lc 66,10	aAα abABα ote B abBCα abAα abAαβ aAα bBα ote B	74,08 86,55 90,85 78,70 85,16 83,70 73,74	aABα aABα Q te C aABα abAα abAα abAα bBα TBIC te C abABα	80,90 85,53 uartzo L 94,86 76,1 83,2 82,0 74,4 O Sinuelo L 67,77	aABα aABα ote D aAα bAα abAα abAα bBα ote D bBCβ	78,96 77,53 L 90,83 87,23 83,50 87,39 74,10 L 89,71	bABα ote E aABα abAα abAαβ abAα bBα ote E aAα	71,60 92,81 L 65,24 84,93 81,86 85,26 85,66	aAα ote F bCα aAα aAα aAβαβ ote F bCα
IV (2,0 a 2,49mm) V (< 2,0 mm) TP** I (AO)*** II (>3,0 mm) III (2,5 a 2,99mm) IV (2,0 a 2,49mm) V (< 2,0 mm) TP** I (AO)*** II (>3,0 mm)	78,35 75,15 	abABαβ abBβ ote A bABCα bAα cBβ abAα aAα ote A abBCα abAα	89,80 78,74 Lc 78,03 85,6 78,68 89,86 70,72 Lc 66,10 86,16	aAα abABα ote B abBCα abAα abAαβ aAα bBα ote B	74,08 86,55 90,85 78,70 85,16 83,70 73,74 Lc 82,36 84,63	aABα aABα Q te C aABα abAα abAα abAα abAα abAα abAα abAα abA	80,90 85,53 uartzo L 94,86 76,1 83,2 82,0 74,4 O Sinuelo L 67,77 81,98	aABα aABα ote D aAα bAα abAα abAα bBα ote D bBCβ abAα	78,96 77,53 Lu 90,83 87,23 83,50 87,39 74,10 Lu 89,71 78,61	bABα ote E aABα abAα abAαβ abAα bBα ote E aAα abAα	71,60 92,81 65,24 84,93 81,86 85,26 85,66 L 64,04 87,60	ote F bCα aAα aAα aABα ote F bCα aAα aAβα aABα
IV (2,0 a 2,49mm) V (< 2,0 mm) TP** I (AO)*** II (>3,0 mm) III (2,5 a 2,99mm) V (< 2,0 mm) TP** I (AO)*** II (>3,0 mm) III (>3,0 mm) III (2,5 a 2,99mm)	78,35 75,15 10 79,30 80,53 53,22 90,90 96,9 10 10 10 10 10 10 10 10 10 10	abABαβ abBβ ote A bABCα bAα cBβ abAα aAα ote A abBCα abAα aAα	89,80 78,74 Lc 78,03 85,6 78,68 89,86 70,72 Lc 66,10 86,16 68,60	aAα abABα ote B abBCα abAα abAα bBα bCα abAα bBα	74,08 86,55 90,85 78,70 85,16 83,70 73,74 Lc 82,36 84,63 81,73	aABα aABα Q te C aABα abAα abAα abAα bBα TBIC te C abABα aAAα abABα aAα	80,90 85,53 uartzo L 94,86 76,1 83,2 82,0 74,4 O Sinuelo L 67,77 81,98 83,36	aABα aABα ote D aAα bAα abAα abAα bBα ote D bBCβ abAα abAα abAα	78,96 77,53 L 90,83 87,23 83,50 87,39 74,10 L 89,71 78,61 74,33	bABα ote E aABα abAα abAα bBα ote E aAα abAα abAβ	71,60 92,81 65,24 84,93 81,86 85,26 85,66 L 64,04 87,60 79,16	aAα ote F bCα aAα aAα aABα ote F bCα aAα

^{*}Médias seguidas pela mesma letra minúscula na coluna para tamanhos de peneira, mesma letra maiúscula na linha para o tamanho de semente entre lotes, e mesma letra grega entre cultivares não diferem estatisticamente a Tukey com 5 % de probabilidade de erro.

^{**}TP Tamanho de peneira e suas respectivas sementes retidas.

^{***}AO Amostra original do lote sem fracionamento de tamanho.

Em relação a altura do afilho principal (AAP) (Tabela 3) para a cultivar Ametista, observa-se que os lotes C e D não tiveram influência da padronização de sementes, porém, as plantas originadas das sementes retidas na peneira II (> 3,0 mm) do lote A, amostra original (AO) do lote B, e sementes retidas na peneira V (< 2,0 mm) do lote C, amostra original (AO) e peneira IV (2,0 a 2,49mm) do lote F apresentaram menor altura da planta do afilho principal. Entre lotes, as sementes provenientes das peneiras II (> 3,0 mm) e IV (2,0 a 2,49 mm) não diferem, no entanto, a amostra original (AO) e as plantas provenientes das sementes da peneira III (2,5 a 2,99 mm) afetam negativamente a altura da planta principal em 16% dos lotes, e peneira V (<2,0mm) 66% dos lotes.

Para a cultivar Quartzo, em plantas oriundas do lote E a altura do afilho principal não diferiu entre os tamanhos de sementes, porém, as plantas originadas das sementes retidas na peneira III (2,5 a 2,99 mm) do lote A, peneira V (< 2,00 mm) dos lotes B, C e D, e amostra original (AO) do lote F obtiveram menor altura do afilho principal (AAP). Entre lotes, a amostra original (AO) afetou negativamente 50% dos lotes, assim como, na peneira III (2,5 a 2,99mm) e V (< 2,0 mm) em 16% dos lotes.

Na cultivar TBIO Sinuelo para a altura do afilho principal (AAP), as plantas provenientes das sementes da peneira IV (2,0 a 2,49mm) do lote A, amostra original (AO), sementes retidas na peneira III (2,5 a 2,99mm), IV (2,0 a 2,49 mm) e V (< 2,0 mm) do lote B, assim como, as plantas oriundas da peneira IV (2,0 a 2,49mm) do lote C, amostra original (AO) dos lotes D e F, e as sementes retidas na peneiras IV (2,0 a 2,49 mm) e V (< 2,0 mm) do lote E apresentaram menor altura de planta do afilho principal. Entre lotes, verifica-se quem as sementes oriundas da peneira II (>3,00 mm) não diferem, porém, a amostra original (AO) e as plantas oriundas de sementes da peneira V (< 2,0 mm) afetaram 33% dos lotes, bem como, as sementes da peneira III em 16% e da peneira IV (2,0 a 2,49 mm) influenciaram negativamente 66% dos lotes. Foi observado que sementes maiores resultam em maior altura do afilho principal, possivelmente por apresentarem maior reserva de assimilados (SAINIO et al., 2011), proporcionados plantas com menor massa de panícula, massa de grãos por panícula (HARWIG et al., 2006).

A altura de inserção de espiga do afilho secundário (AIEAS) (Tabela 4), para a Ametista a padronização de semente não teve influência nos lotes A, C, D e F, porém, no lote B a amostra original (AO), e as plantas oriundas das sementes retidas na

peneira V (< 2,0 mm) do lote E apresentaram inferior. Sementes menores de trigo e cevada tendem a possuir menor germinação causada pela menor disponibilidade de reservas, resultando em plântulas menores (SAINIO et al., 2011), consequentemente produzir plantas menores (CHASTAIN et al., 1994).

Na cultivar Quartzo, para a altura de inserção de espiga do afilho secundário observa-se que para o lote E não houve diferença entre as plantas oriundas da padronização das sementes. No lote A, a amostra original (AO) sem a padronização, assim como, as plantas provenientes das sementes retidas na peneira II (> 3,0 mm) e III (2,5 a 2,99 mm) obtiveram menor altura de inserção de espiga do afilho secundário, bem como, as plantas oriundas da peneira III (2,5 a 2,99 mm) do lote B, peneira II (> 3,0 mm) e III (2,5 a 2,99mm) do lote C, assim como, as da peneira II (> 3,0 mm), IV (2,0 a 2,49mm) e V (< 2,0 mm) do lote D, amostra original (AO) do lote F. Entre os lotes, observa-se que as plantas provenientes e sementes da peneira III (2,5 a 2,99 mm) não diferem, porém, a amostra original (AO) não padronizada, peneira III (2,5 a 2,99 mm) e IV (2,0 a 2,49 mm) afetaram negativamente altura de inserção de espiga do afilho secundário em 16% dos lotes, bem como, das sementes retidas na peneira V (< 2,0 mm) em 66% dos lotes. Fica evidente a importância do lote sobre o desempenho das plantas a campo onde a origem dos lotes contribui na viabilidade das sementes (SAINIO et al., 2011), assim, a utilização de peneiras para a padronização proporciona retirar sementes de trigo indesejáveis de um lote, e proporcionar a campo a uniformidade das plantas para que todas tenham a mesma capacidade competitiva e melhore o manejo fitossanitário.

A cultivar TBIO Sinuelo a altura de inserção de espiga do afilho secundário (AIEAS) (Tabela 4) nos lotes A, B, D não teve influência da padronização de sementes, porém, no lote C as plantas provenientes da peneira IV (2,0 a 2,49 mm) foram inferior aos demais peneiras, bem como, as plantas oriundas das peneiras III (2,5 a 2,99 mm), IV (2,0 a 2,49 mm) e V (< 2,0 mm) do lote E, amostra original (AO) e peneira V (< 2,0 mm) do lote F. Entre lotes, as sementes retidas na peneira III (2,5 a 2,99mm) proporcionaram plantas com altura de inserção do afilho secundário semelhante em todos os lotes, no entanto, a amostra original 16% dos lotes apresentaram altura inferior, assim como, as sementes retidas na peneiras II (> 3,0 mm) com 33%, peneira IV (2,0 a 2,49 mm) 50%, peneira V (< 2,0 mm) 83% dos lotes. Entre os cultivares,

quando ocorreu diferença significativa, observa-se a superioridade dos cultivares Quartzo e Ametista.

Tabela 4: Médias para interação cultivares x tamanhos de sementes x lotes, para variável Altura de Inserção de Espiga do Afilho Secundário (AIEAS) e Altura do Afilho Secundário (AAS).

		Altur	ra de Ins	serção de E	spiga d			ário (cm)				
TD**		4- ^		-t- D			etista	4- D		4		F
TP**		te A		ote B		e C		te D		te E		te F
I (AO)***	38,70	aABα	33,16	bΒβ	52,73	aABα	59,03		56,33	abΑα	44,53	aΑBα
II (>3,0 mm)		аВα	51,99	abAα	59,3	aAα	58,37	aAα	69,03	aΑα	58,86	aΑα
III (2,5 a 2,99mm)	46,97	аАα	61,00	aAα	48,13	aAα	56,43	aAα	67,36	abAα	56,26	aAα
IV (2,0 a 2,49mm)	47,43	aAα	63,33	aAα	52,85	aAα	48,99	аΑαβ	51,56	abAαβ	51,3	aAα
V (< 2,0 mm)	51,10	аΑαβ	55,06	аΑα	63,16	aAα	58,8	аΑα	48,1	bΑα	64,06	аАα
					Quartzo			_				
TP**		Lote A Lote B				Lote C Lote D				te E		te F
I (AO)***	,	bΒCα	58,83	aABα	65,53	аАα	66,06	aAα	51,96	aABα	29,79	bCα
II (>3,0 mm)	41,96	bΑα	56,83	abAα	43,89	bΑα	41,92	bΑα	55,52	aAα	49,86	abAc
III (2,5 a 2,99mm)	33,20	bΒα	37,93	bABβ	41,65	bABα	49,16	abABα	57,13	αΑαβ	42,90	abAE
IV (2,0 a 2,49mm)	52,16	abABα	53,76	abAαβ	60,68	abAα	32,70	bΒβ	58,34	aAα	48,00	abAE
V (< 2,0 mm)	68,65	аΑα	43,77	abΒα	45,30	abBβ	37,20	bΒβ	40,26	аВαβ	54,80	aABo
						TBIO	Sinuelo					
TP**	Lo	te A	L	ote B	Lot	e C	Lo	te D	Lo	te E	Lote F	
I (AO)***	25,79	aCα	33,55	аВСβ	49,43	аΑВα	41,03	аВСβ	65,30	aAα	30,53	bBC
II (>3,0 mm)	41,33	аВα	42,40	аВα	55,69	аΑВα	45,93	aABα	63,89	aAα	45,53	abAE
III (2,5 a 2,99mm)	45,73	аΑα	38,73	аАβ	56,66	аΑα	48,90	aAα	39,70	bAβ	55,63	аΑα
IV (2,0 a 2,49mm)	45,89	aABα	35,63	аВβ	28,00	bBβ	59,73	aAα	31,27	bΒβ	46,23	abAE
V (< 2,0 mm)	37,79	аВβ	37,90	аВα	62,86	aAα	39,84	аВαβ	25,16	bΒβ	33,26	bΒβ
CV (%)						83	3,17					
			F	Altura do A	filho Sec							
							etista					
TP**		te A		ote B		e C		te D		te E		te F
I (AO)***	41,53		35,90	bΒβ	56,73		64,03	аΑαβ	64,33	abAα	48,50	aABo
II (>3,0 mm)	33,10	аВα	55,86	abAα	64,23	аАα	63,62	aAα	75,56	aAα	63,50	аАα
III (2,5 a 2,99mm)	50,69	аВα	65,73	aABα	52,06	аΑВα	61,26	aABα	73,56	abAα	60,70	aABo
IV (2,0 a 2,49mm)	51,50	aAα	68,13	aAα	56,21	аАα	53,09	αΑαβ	56,13	abAαβ	55,60	аАα
V (< 2,0 mm)	55,12	αΑαβ	60,15	aAα	68,71	аАα	63,76	аΑα	52,03	bΑα	69,56	аАα
						Quartzo						
TP**		te A		ote B		e C		te D		te E		te F
I (AO)***	46,06	bΒα	63,62		67,93		71,66	aAα	56,50	aΑα	32,43	bΒα
II (>3,0 mm)	45,53	bAα	61,93		47,05		45,28	bΑα	60,41	aAα	54,13	abAc
III (2,5 a 2,99mm)	35,87	bΒα	40,97	bABβ	48,18	aABα	53,40	abABα	61,93	аΑαβ	46,36	abAE
IV (2,0 a 2,49mm)	46,30	abABα	55,66	abABαβ	62,57	aAα	35,10	bΒβ	63,40	aAα	52,16	abAE
V (< 2,0 mm)	69,67	аΑα	47,20	abΒα	49,56	аΑВα	40,53	bΒβ	43,56	аВαβ	59,76	aABo
						IO Sinu						
TP**		te A		ote B		e C		te D		te E		te F
I (AO)***	27,86	aΒα	36,31	аВβ	53,53		44,46	аВβ	69,75	aΑα	33,09	bΒα
II (>3,0 mm)	44,66		43,13	аВα	60,45		49,25	aABα	69,12	aΑα	55,93	abAE
III (2,5 a 2,99mm)	49,80	aAα	41,76	аАβ	61,30	aAα	53,66	aAα	42,90	bAβ	60,13	aAα
11/(2.0 - 2.40 mm)	49,90	аΑВα	38,69	аВβ	29,96	bΒβ	65,16	aAα	34,22	bΒβ	49,80	abAE
IV (2,0 a 2,49mm)			43,12 aBβ 41,07 aBα 68,34 aAα 43,25 aBαβ 83,28						~= ~~		0 = =0	
V (< 2,0 mm) CV (%)	43,12	аВβ	41,07	аВα	68,34	aAα	43,25	аВαβ	27,33	bΒβ	35,73	bΒβ

^{*}Médias seguidas pela mesma letra minúscula na coluna para tamanhos de peneira, mesma letra maiúscula na linha para o tamanho de semente entre lotes, e mesma letra grega entre cultivares não diferem estatisticamente a Tukey com 5 % de probabilidade de erro.

^{**}TP Tamanho de peneira e suas respectivas sementes retidas.

^{***}AO Amostra original do lote sem fracionamento de tamanho.

Altura do afilho secundário (AAS) (Tabela 4), para a cultivar Ametista os lotes A, C, D, e F não diferem entre a padronização das sementes, no entanto, as plantas oriundas da amostra original (AO) do lote B, e as sementes retidas na peneira V (< 2,0 mm) do lote E apresentaram inferior. Entre lotes, as plantas provenientes das sementes retidas na peneiras IV (2,0 a 2,49 mm) e V (< 2,0 mm) não diferiram, porém, a amostra original (AO) não padronizada afetou negativamente 33% dos lotes, possivelmente devido à diferença entre porcentagem das sementes em cada lote, bem como, as plantas originárias das sementes das peneiras II (> 3,0 mm) e III (2,5 a 2,99 mm) em 16% dos lotes, evidenciando a necessidade da realização do fracionamento de lotes de sementes de trigo, pois, a padronização pode influenciar de forma positiva a altura de inserção de espiga.

Para a cultivar Quartzo a padronização dos lotes C e E não afetaram a altura de planta do afilho secundário, porém, a amostra original (AO) não padronizada, e as plantas oriundas da peneira II (> 3,0 mm) e III (2,5 a 2,99 mm) do lote A obtiveram inferioridade, bem como, peneira III (2,5 a 2,99 mm) do lote B, peneira II (> 3,0 mm), IV (2,0 a 2,49 mm) e V (< 2,0 mm) do lote D, e amostra original (AO) não padronizada do lote F. Entre os lotes, as plantas oriundas das sementes retidas na peneira II (> 3,0 mm) não difere entre os lotes, no entanto, as sementes da amostra original (AO) afetaram negativamente 33% dos lotes, assim como, as sementes retidas nas peneiras III (2,5 a 2,99 mm) e IV (2,0 a 2,49 mm) em 16% dos lotes, e peneira V (< 2,0 mm) em 50 % dos lotes. Sementes pequenas tendem a aumentar a variação de altura de plântulas, bem como, a variação do tamanho de sementes dentro de um lote (SAINIO et al., 2011).

Na cultivar TBIO Sinuelo os lotes A, B, e D não diferiram entre os tamanhos de sementes, porém, nas sementes provenientes da peneira IV (2,0 a 2,49 mm) do lote C resultaram em menor altura de planta do afilho secundário, assim como, as plantas retinas nas peneiras III (2,5 a 2,99 mm), IV (2,0 a 2,49 mm), V (< 2,0 mm) do lote E, e amostra original (AO) e as semente retidas na peneira V (< 2,0 mm) do lote F. Entre os lotes avaliados, as plantas originadas a partir de sementes da peneira III (2,5 a 2,99 mm) não diferiram, porém, a amostra original (AO) e as sementes da peneira IV (2,0 a 2,49mm) influenciaram negativamente em 50% dos lotes, bem como, as sementes da peneira II (> 3,0 mm) em 33% dos lotes, e a peneira V em 83% dos lotes, as plantas apresentaram menor alutra do afilho secundário.

De modo geral, ocorreu variação entre lotes e cultivares em resposta a padronização de sementes de trigo, onde a padronização permitiu identificar a variabilidade entre lotes e espessura de orifício da peneira, com a tendência de que as plantas oriundas da amostra original (AO) e sementes menores, apresentem menor desempenho a campo, assim como, sementes maiores, produzem maior número de afilhos férteis e altura da planta principal, de acordo com os caracteres avaliados.

3.4 Conclusão

O número de afilhos, a altura das plantas e a altura de inserção das espigas variam conforme a cultivar, lote e possuem relação ao tamanho de sementes.

Os caracteres avaliados são influenciados pelo tamanho da semente, com tendência de sementes menores resultarem em plantas de menor de inserção da espiga da planta principal, inferior altura da planta principal, da altura do afilho principal e altura de inserção da espiga do afilho secundário.

A padronização de sementes permite identificar que a peneira de orifício oblongo < 2,00 mm proporciona desempenho a campo inferior para os caracteres avaliados.

4 Capítulo III

Padronização das sementes e implicações no rendimento e produtividade do trigo

4.1 Introdução

O trigo (*Triticum aestivum* L.) é uma gramínea da família Poaceae, ciclo anual, classificado como um cereal básico para a alimentação humana e animal, isto reflete no elevado consumo e na necessidade de produção. Expressa importância mundial, pois em 2017 produziram-se 740 milhões de toneladas de grãos (FAO, 2017). A nível nacional, foram obtidos 57 milhões de toneladas de grãos cultivados em 1,9 milhões de hectares. Deste montante a Região Sul foi responsável por 4,6 milhões de toneladas, sendo o Rio Grande do Sul o segundo maior produtor com 1,6 milhões de toneladas de grãos (CONAB, 2018).

O tamanho das sementes apresenta-se relacionado com às características genéticas de cada genótipo (MARTINS et al., 2016), no entanto, estes aspectos podem influenciar substancialmente o desenvolvimento inicial das plântulas, onde probabilisticamente sementes maiores proporcionam plantas com estatura e acúmulo de fitomassa superior (SANGOI et al., 2004), bem como, respostas positivas aos componentes do rendimento (GRIEVE e FRANCOIS, 1992), em contrapartida, estes efeitos podem influenciar na qualidade e variabilidade das sementes produzidas (FAVARATO et al., 2012).

As cultivares de trigo apresentam variabilidade pronunciável no que tange o comprimento, largura, espessura e a densidade volumétrica das sementes (GUILERME et al., 2014), isto poderá influenciar a qualidade fisiológica das sementes utilizadas e aquelas a serem produzidas (BATTISTI et al., 2011). Bredemeier et al. (2001), determinaram que o tamanho das sementes de trigo potencializa a taxa de emissão das folhas no colmo principal, mas há carência de informações pormenorizadas deste fenômeno em relação aos componentes do rendimento.

Neste sentido, este trabalho teve como objetivo determinar a influência do tamanho das sementes de trigo nos componentes do rendimento e na produtividade de grãos.

4.2 Material e métodos

O trabalho foi realizado no município de Tenente Portela – RS na safra 2016, em ambiente caracterizado de altitude de 420 metros, com Latitude 27°23'31.04"S e Longitude 53°46'50.71"O. O clima é subtropical úmido do tipo *Cfa* segundo Köppen (SOTÉRIO et al., 2005), e o solo é caracterizado como um Latossolo vermelho alumino férrico típico.

As sementes foram obtidas em campos de produção oriundas do Norte do Rio Grande do Sul, onde as cultivares foram selecionadas devido a sua adaptabilidade e estabilidade produtiva, sendo estas: Quartzo (trigo tipo pão, com grãos duros e ciclo médio), Ametista (trigo tipo pão/melhorador, com grãos duros, de cor vermelho-escuro e ciclo médio), TBIO Sinuelo (pertencente ao tipo pão, com grãos duros e ciclo médio a tardio), estas sementes foram submetidas a padronização utilizando um conjunto de peneiras.

O delineamento experimental utilizado foi o de blocos ao acaso, organizado em esquema fatorial, sendo três cultivares de trigo (Quartzo, Ametista e TBIO Sinuelo) x seis lotes de sementes (A, B, C, D, E e F) x cinco tamanhos de peneiras (I: amostra original sem a padronização (AO), II: sementes retidas na peneira > 3,00 mm, III: sementes de 2,5 a 2,99 mm, IV: sementes entre 2,0 a 2,49 mm e V: < 2,0 mm), sendo os tratamentos dispostos em três repetições. Utilizou-se adubação de base e cobertura de acordo com a análise do solo (CQFS-RS/SC, 2004). A semeadura foi realizada na segunda quinzena de julho de 2016, na densidade populacional de 330 sementes viáveis por metro quadrado. O controle de plantas daninhas, insetos-praga e doenças foram procedidos preventivamente. As unidades experimentais foram constituídas por cinco linhas de semeadura espaçadas por 0,17 metros e dois metros de comprimento, com área útil 0,51 m² provenientes das duas linhas centrais.

Os caracteres mensurados correspondem:

Número de espiguetas por espiga da planta principal **(NEEPP)**: mensurado em 10 plantas aleatórias em cada parcela, obtidas da área útil e aferido e números.

Número de espiguetas por espiga dos afilhos primário (NEEAP): avaliado em 10 plantas ao acaso em cada parcela, adquiridas da área útil, medido em números.

Número de espiguetas por espiga do afilho secundário (NEEAS): mensurado em 10 plantas de cada parcela, obtidas da área útil e aferido e números.

Número de sementes da planta principal (NSPP): efetuado a contagem das sementes de cada planta principal de 10 plantas de cada parcela.

Número de sementes do afilho primário (NSAP): avaliado em 10 plantas de cada parcela, obtidas da área útil e aferido e números.

Número de sementes dos afilhos secundários (NSAS): mensurado em 10 plantas aleatórias em cada parcela, obtidas da área útil e aferido unidades.

Contribuição dos afilhos na produtividade (CAP): efetuado a pesagem de todos os afilhos obtidos das 10 plantas coletadas na área útil, aferido em gramas por planta.

Contribuição da planta principal na produtividade **(CPPP)**: realizado a pesagem dos grãos da espiga da planta principal, adquiridos nas 10 plantas coletadas na área útil, aferido em gramas por planta.

Produtividade de grãos (**P**): efetuado a coletada das plantas da área útil de cada parcela e os resultados expressos em kg ha⁻¹.

Massa de mil sementes (MMS): coletada das sementes obtidas da área útil de cada parcela, aferidoes em gramas, determinada pela massa de oito repetições com 100 sementes de cada unidade experimental (BRASIL, 2009).

Peso hectolítro (**PH**): adquiridos pelas sementes da área útil, com auxilio da balaça para peso hectolítro com capacidade de 250 ml, e com auxilio de uma balança digital, onde os transformados em g cm⁻³.

Análise econômica **(AE)**: obtida através da lucratividade por hectare (R\$ ha⁻¹) com base no preço mínimo do trigo.

Os dados obtidos foram submetidos à análise de variância a 5% de probabilidade, onde verificou-se as pressuposições do modelo estatístico (RAMALHO et al., 2012). Posteriormente, testou-se a interação entre as cultivares de trigo *x* lotes de sementes *x* tamanho das sementes a 5% de probabilidade. Os caracteres que revelaram interação significativa foram desmembrados aos efeitos simples para cada fator conjuntamente.

4.3 Resultados e discussão

Análise de variância revelou significância para a interação entre as cultivares de trigo x lotes de semente x tamanho das sementes a 5% de probabilidade para o número de espiguetas por espiga do afilho primário (NEEAP), número de espiguetas por espiga do afilho secundário (NEEAS), número de sementes da planta principal (NSPP), número de sementes do afilho primário (NSAP), número de sementes do afilho secundário (NSAS), massa de mil sementes (MMS) e peso hectolitro (PH). Houve interação lotes de semente x tamanho das sementes referentes ao número de espiguetas por espiga da planta principal (NEEPP) e peso dos afilhos (PA). Também revelou efeito entre as cultivares de trigo x lotes de sementes para o número de espiguetas por espiga da planta principal (NEEPP) e peso dos afilhos (PA).

O número de espiguetas por espiga da planta principal (NEEPP) (Tabela 1), evidenciou ausência de diferenças entre os tamanhos de peneira nos lotes A, B e C, no entanto, as plantas oriundas da peneira II (> 3,0 mm) do lote D, peneira V (< 2,0 mm) dos lotes D e E, amostra original (AO), resultaram no decréscimo de espiguetas por espiga da planta principal. Perante os lotes a amostra original (AO) não padronizada não diferiu dos demais lotes, no entanto, as plantas oriundas da peneira II (> 3,0 mm), peneira III (2,5 a 2,99mm) e peneira IV (2,0 a 2,49 mm) reduziram o número de espiguetas da planta principal em 16% dos lotes testados. A variação atribuída ao número de espiguetas por espiga é dependente das características do genótipo e das condições em que o ambiente de cultivo revelava no momento da diferenciação ou duplo anel (PIRES et al., 2011), estes efeitos afetam diretamente o tamanho de grãos da espiga (VESOHOSKI et al., 2011) e a produtividade (MULLER et al., 2012).

Entre cultivares (Tabela 1), a cultivar Quartzo obteve o número de espiguetas por espiga da planta principal (NEEPP) igual ou superior as demais cultivares. A diferença entre cultivares está atribuída a variabilidade genética (VESOHOSKI et al., 2011) e condições impostas pelo ambiente (SANTOS et al., 2012; SZARESKI et al., 2017; SZARESKI et al., 2018).

Tabela 1: Médias para interação tamanho	de peneira <i>x</i> lotes <i>x</i> cultivar para o número
de espiguetas/espiga da planta principal.	

ac copigaciae, co	JP. 90. 0											
TP**			Νú	úmero	de Espig	uetas/E	Espiga d	a planta	principa	ĺ		
	Lote	e A	Lote	е В	Lote	e C	Lot	e D	Lote	eΕ	Lote	e F
I (AO)***	15,46	аА	15,39	aA	15,74	аА	15,12	abA	15,65	abA	15,47	bA
II (>3,0 mm)	15,46	аВ	15,94	aA	15,63	аА	14,91	bB	16,06	аА	16,14	aA
III (2,5 a 2,99mm)	14,94	аВ	15,25	aAB	15,28	aAB	15,34	abAB	15,83	abA	15,85	abA
IV (2,0 a 2,49mm)	15,14	аВ	15,96	aA	15,58	aAB	15,68	аА	15,63	abA	15,52	bA
V (< 2,0 mm)	15,56	aAB	15,37	аВ	15,9	aAB	15.00	bB	15,18	bB	16,17	aA
Cultivar	Lote	e A	Lote	e B	Lote	e C	Lot	e D	Lote	e E	Lote	e F
Ametista	14,59	b	15.00	b	14,77	b	14,59	b	15,63	ab	15,45	b
Quartzo	15,52	ab	15,95	а	15,8	а	15,78	а	16,03	а	16,22	а
TBIO Sinuelo	15,83	а	15,8	а	16,31	а	15,25	С	15,35	b	15,81	а
CV (%)						14,30						

^{*}Médias seguidas pela mesma letra minúscula na coluna para tamanhos de peneira, mesma letra maiúscula na linha entre lotes não difere estatisticamente a Tukey com 5 % de probabilidade de erro. **TP Tamanho de peneira.

O número de espiguetas da espiga do afilho primário (NEEAP) (Tabela 2) revelou que a cultivar Ametista com sementes oriundas da amostra original (AO) foi menor nos lotes B, C e F, para a as plantas oriundas da peneira II (> 3,0 mm) nos lotes A e D, e peneira V (< 2,0 mm) do lote E.

Para a cultivar Quartzo, a amostra original (AO) apresentou menor número de espiguetas no lote F, assim como, as plantas da peneira II (> 3,0 mm) no lote D, peneira III (2,5 a 2,99 mm) no lote A, e peneira V (< 2,0 mm) dos lotes B e E. No TBIO Sinuelo a amostra original (AO) apresentou menor número de espiguetas no afilho primário no lote D e F, assim como, a peneira IV (2,0 a 2,49 mm) dos lotes C e E, e peneira V (< 2,0 mm) do lote E apresentaram inferior. De maneira geral, a não padronização representada pela amostra original (AO) e sementes de maior e menor tamanho apresentaram menor número de espiguetas por espiga do afilho primário. Afilhos férteis estão relacionados ao aumento da produção de sementes, principalmente quanto mais cedo for a formação da espiga, maior é o número de primórdios foliares que se acumulam no meristema apical que formaram espiguetas (MULLER et al., 2012).

Entre lotes (Tabela 2), para a cultivar Ametista, as plantas provenientes da amostra original (AO) apresentaram menor número de espiguetas por espiga do afilho primário (NEEAP) em 83% dos lotes, assim como, a peneira II (> 3,0 mm) 16%,

^{***}AO Amostra original do lote sem fracionamento de tamanho.

peneira III (2,5 a 2,99 mm) em 33%. Para a cultivar Quartzo, as peneiras II (> 3,0 mm) e IV (2,0 a 2,49 mm) não diferiram, porém, a amostra original (AO) e peneira II (> 3,0 mm) foram inferiores em 16% dos lotes, assim como, a peneira em 33% dos lotes testados. Na TBIO Sinuelo a amostra original (AO) apresentou redução em 50% dos lotes avaliados, assim como, a peneira III (2,5 a 2,99 mm) e V (< 2,0 mm) em 16%, peneira IV (2,0 a 2,49 mm) 66%. Através destes resultados evidencia-se a importância da padronização de sementes de trigo, pois independente do lote avaliado, existe resposta diferencial entre sementes padronizadas nas peneiras de diferentes orifícios (MULLER et al., 2012).

Entre cultivares, quando ocorreu diferença significativa, a cultivar Quartzo obteve igual ou superior às demais em todas as peneiras utilizadas para a padronização e lotes avaliados (Tabela 2). Entre cultivares de trigo existe variabilidade, havendo tendência de plantas com menor número de afilhos produzirem maior número de espiguetas (MOTZO et al., 2004).

O número de espiguetas por espiga do afilho secundário (NEEAS) (Tabela 3) entre tamanhos de semente, para a cultivar Ametista a padronização não diferiu nos lotes A, C, e F, no entanto, a não padronização obtida pela amostra original (AO) do lote B foi inferior, assim como, as plantas provenientes das sementes retidas na peneira IV (2,0 a 2,49 mm) do lote E, e peneira V (< 2,0 mm) do lote E. Para a cultivar Quartzo os lotes B e E não diferiram, porém, a amostra original (AO), peneira II (> 3,0 mm) e III (2,5 a 2,99 mm) do lote A, peneiras II (> 3,0 mm), IV (2,0 a 2,49 mm) e V (< 2,0 mm) do lote D, e amostra original (AO) do lote F apresentaram menor número de espiguetas.

Para o TBIO Sinuelo, o lote B não diferiu na padronização das sementes, no entanto, as plantas provenientes da não padronização obtida pela amostra original (AO) do lote A apresentaram inferior, assim como, as sementes retidas na peneira IV (2,0 a 2,49 mm) do lote C, amostra original (AO) e peneira V (< 2,0 mm) do lote C, peneira e III (2,5 a 2,99 mm), IV (2,0 a 2,49 mm) e V (< 2,0 mm) do lote E, assim como, a peneira V (< 2,0 mm) do lote F. A diferença da resposta ao número de espiguetas do afilho secundário pode estar atribuída pelo número de afilhos produzido por cada plantas, pois, cultivares de trigo com elevado potencial de afilhamento, tem capacidade de modificar e compensar a falta de um componente de rendimento,

dependendo da cultivar e ambiente, que são controlados pelo fitocromo e relações hormonais (VALÉRIO et al., 2009).

Tabela 2: Médias para interação cultivar x tamanhos de sementes x lotes, para a variável número de espiguetas do afilho primário.

			Núr	nero de e	spigueta	s do afilh	o primár	io				
TP**						Ame	etista					
	Lo	te A	Lo	te B	Lo	te C	Lo	te D	Lo	te E	Lo	te F
I (AO)***	13,46	аВα	11,10	bΒα	10,76	bΒβ	12,93	abΒαβ	17,20	аΑα	10,83	bΒα
II (>3,0 mm)	9,66	bCβ	13,60	abABα	13,93	аΑα	11,85	bΒCα	14,96	abAα	13,16	abABα
III (2,5 a 2,99mm)	12,45	abΒα	13,76	abABα	12,46	abΒα	15,63	аΑα	14,90	abABα	13,63	abABα
IV (2,0 a 2,49mm)	12,20	abAα	14,83	аΑα	12,64	abAαβ	13,37	abAα	12,46	bcΑαβ	13,03	abAα
V (< 2,0 mm)	12,55	abAβ	13.00	abAα	13,56	abAα	14,40	abAα	11,63	cAα	14,23	аΑα
TP**						Qua	artzo					
	Lo	te A	Lo	te B	Lo	te C	Lo	te D	Lo	te E	Lo	te F
I (AO)***	13,46	abABα	13,32	abABα	14,83	аΑα	15,16	аΑα	14,76	abAα	10,65	bΒα
II (>3,0 mm)	12,36	bΑαβ	14,60	аΑα	12,75	аΑα	11,70	bAα	14,31	abAα	14,03	аΑα
III (2,5 a 2,99mm)	9,09	сВβ	12,69	abAα	13,43	аΑα	13,80	abAα	14,90	abAα	13,96	аΑα
IV (2,0 a 2,49mm)	14,30	abAα	15,13	аΑα	14,20	аΑα	12,96	abAα	15,24	аΑα	14,63	аΑα
V (< 2,0 mm)	15,93	аΑα	11,54	bCα	12,50	аВСα	12,86	abBCα	12,03	bCα	15,16	аΑВα
TP**						TBIO :	Sinuelo					
117	Lo	te A	Lo	te B	Lo	te C	Lo	te D	Lo	te E	Lo	te F
I (AO)***	12,46	аΑВα	11,14	аВα	14,3	аΑα	11,24	bΒβ	14,31	аΑα	10,60	bΒα
II (>3,0 mm)	12,83	аΑα	13,96	аΑα	15.00	аΑα	13,26	abAα	14,73	аΑα	14,93	аΑα
III (2,5 a 2,99mm)	14,95	аΑα	11,80	аВα	13,86	abABα	14,70	аΑВα	12.00	abABα	13,20	аΑВα
IV (2,0 a 2,49mm)	12,12	аВα	11,90	аВβ	11,06	bΒβ	15,73	аΑα	11,24	bΒβ	13,20	аΑВα
V (< 2,0 mm)	13,37	αΑαβ	12,09	аΑВα	14,83	аΑα	13.00	abABα	10,16	bΒα	12,63	abABα
CV (%)						44	,46					

^{*}Médias seguidas pela mesma letra minúscula na coluna para tamanhos de peneira, mesma letra maiúscula na linha para o tamanho de peneira entre lotes, e mesma letra grega entre cultivares não diferem estatisticamente a Tukey com 5 % de probabilidade de erro.

Entre lotes (Tabela 3), para a cultivar Ametista, a peneira IV (2,0 a 2,49 mm) resultou em plantas com o mesmo número de espiguetas do afilho secundário (NEEAS) para todos os lotes. No entanto, a amostra original (AO) e a da peneira III (2,5 a 2,99 mm) apresentaram plantas com redução no número de espiguetas por espiga do afilho secundário em 33% dos lotes avaliados, assim como, a peneira II (> 3,0 mm) e a V (< 2,0 mm) em 16% dos lotes.

Para a cultivar Quartzo as plantas oriundas da peneira II (> 3,0 mm) apresentaram o mesmo número de espiguetas por espiga do afilho secundário em todos os lotes avaliados. No entanto, a amostra original (AO) apresentou foi inferior

^{**}TP Tamanho de peneira.

^{***}AO Amostra original do lote sem fracionamento de tamanho.

em 33% dos lotes, assim como, a peneira III (2,5 a 2,99 mm) e IV (2,0 a 2,49 mm) em 16% dos lotes, e a peneira V (< 2,0 mm) em 66% dos lotes avaliados.

Tabela 3: Médias para interação cultivar *x* tamanhos de sementes *x* lotes, para a variável número de espiguetas do afilho secundário.

		N	úmero d	e sement	es por es	spiga do a	afilho sed	cundário				
TP**						Ame	etista					
IF	Lo	te A	Lo	te B	Lo	te C	Lo	te D	Lo	te E	Lo	te F
I (AO)***	6,26	аВα	5,63	bΒβ	8,50	аΑВα	11,03	abAαβ	10,9	abAα	8,06	аΑВα
II (>3,0 mm)	4,86	аВα	9,00	abAα	10,36	аАα	9,71	abAα	12,73	аΑα	9,70	аΑα
III (2,5 a 2,99mm)	7,90	аВα	10,30	аΑВα	8,50	аВα	13,36	аΑα	11,7	abABα	9,73	аΑВα
IV (2,0 a 2,49mm)	7,93	аΑα	11,20	аΑα	8,97	αΑαβ	7,89	bΑαβ	9,03	abAαβ	8,96	аΑα
V (< 2,0 mm)	8,62	αΑΒαβ	10,14	аΑВα	11,86	аАα	10,96	abABα	7,93	bΒα	11,19	аΑВα
TP**						Qua	artzo					
TP***	Lo	te A	Lo	te B	Lo	te C	Lo	te D	Lo	te E	Lo	te F
I (AO)***	7,56	bΒCα	10,45	аΑВα	11,60	аАα	11,76	аΑα	9,46	аΑВα	5,36	bCα
II (>3,0 mm)	7,13	bΑα	10,10	аΑα	7,55	bAα	6,70	bAα	10,33	аΑα	9,20	abAα
III (2,5 a 2,99mm)	5,81	bΒα	7,06	аΑВα	8,23	abABα	8,56	abABβ	11,03	аΑα	7,40	abABα
IV (2,0 a 2,49mm)	8,80	abABα	10,03	аΑα	10,66	abAα	5,60	bΒβ	10,65	аАα	9,06	abABα
V (< 2,0 mm)	12,46	аΑα	7,64	аВα	8,21	abΒα	7,53	bΒαβ	7,70	аВα	10,73	аΑВα
TP**						TBIO S	Sinuelo					
TP .	Lo	te A	Lo	te B	Lo	te C	Lo	te D	Lo	te E	Lo	ote F
I (AO)***	4,62	bCα	7,76	аВСαβ	9,30	аΑВα	7,51	bBCβ	11,73	аАα	5,79	abBCα
II (>3,0 mm)	7,83	abΒα	7,63	аВα	10,28	аΑВα	7,83	abΒα	11,9	аΑα	9,63	аΑВα
III (2,5 a 2,99mm)	9,00	аΑα	6,93	аΑα	10,66	аАα	10,03	abAαβ	6,93	bAβ	9,76	аΑα
IV (2,0 a 2,49mm)	8,61	аΑВα	7,33	аВα	4,90	bΒβ	11,66	аΑα	6,65	bΒβ	7,65	abΒα
V (< 2,0 mm)	7,28	abBβ	7,09	аВα	11,66	aAα	6,71	bΒβ	5,16	bΒα	5,66	bΒβ
CV (%)						87	,38			_		

^{*}Médias seguidas pela mesma letra minúscula na coluna para tamanhos de peneira, mesma letra maiúscula na linha para o tamanho de peneira entre lotes, e mesma letra grega entre cultivares não diferem estatisticamente a Tukey com 5 % de probabilidade de erro.

Para o TBIO Sinuelo as plantas oriundas das sementes retidas na peneira III (2,5 a 2,99 mm) apresentaram o mesmo número de espiguetas, no entanto, a amostra original (AO) sem padronização e peneira V (< 2,0 mm) exibiram inferioridade em 66% dos lotes avaliados, assim como, as plantas oriundas da peneira II (> 3,0 mm) em 50% dos lotes.

Entre cultivares, as plantas oriundas das sementes retidas na peneira V (< 2,0 mm) no lote A das cultivares Ametista e TBIO-Sinuelo evidenciaram menor número

^{**}TP Tamanho de peneira.

^{***}AO Amostra original do lote sem fracionamento de tamanho.

de espiguetas do afilho secundário (NEEAS). A cultivar TBIO Sinuelo nos lotes D e F foi inferior a cultivar Quartzo. O número de sementes por espigueta é definido na diferenciação das flores na espigueta, onde inicia o desenvolvimento dos órgãos masculinos e femininos (NAKAGAWA, 2014) e tem relação positiva com o potencial produtivo (VESOHOSKI et al., 2011; CARVALHO et al., 2017).

Quanto ao número de sementes na planta principal (Tabela 4), a padronização do tamanho de semente, para a cultivar Ametista os lotes B, C e D as plantas oriundas amostra original (AO) sem a padronização apresentaram igual ou menor número de sementes da planta principal quando comparado a padronização das sementes.

Para a cultivar Quartzo as plantas oriundas da amostra original, de sementes retidas na peneira III (2,5 a 2,99 mm) dos lotes A e B, e da peneira V (< 2,0 mm) do lote E apresentaram menor número de sementes na planta principal. Na cultivar TBIO Sinuelo a amostra original (AO) no lote B resultou em plantas com menor número de sementes na planta principal, assim como, as plantas formadas a partir de sementes retidas na peneira II (> 3,0 mm) do lote C e peneira IV (2,0 a 2,49 mm) do lote A. As sementes oriundas da planta principal contribuem para a massa das espigas e não interferem na massa de mil sementes (CARVALHO et al., 2017).

Entre lotes, para a cultivar Ametista, 66 % dos lotes apresentaram menor número de sementes na planta principal (NSPP) em plantas oriundas da amostra original (AO), assim como, da peneira II (> 3,0 mm) e III (2,5 a 2,99 mm) com 33% dos lotes avaliados (Tabela 4). Na cultivar Quartzo a peneira II (> 3,0 mm) resultou em plantas com menor número de sementes na planta principal em 66% dos lotes, assim como, em 50 % dos lotes das plantas oriundas da peneira III (2,5 a 2,99 mm), e em 16% dos lotes para as peneiras IV (2,0 a 2,49 mm) e V (< 2,0 mm).

No TBIO Sinuelo as plantas oriundas das sementes retidas na peneira IV (2,0 a 2,49 mm) não diferiram. No entanto, as plantas produzidas pelas sementes da amostra original (AO) e peneira III (2,5 a 2,99 mm) apresentaram menor número de sementes da planta principal em 16% dos lotes, assim como, àquelas de sementes retidas nas peneiras II (> 3,0 mm) e V (< 2,0 mm), que em 33% dos lotes, apresentaram menor número de sementes na planta principal.

Tabela 4: Médias para interação cultivar *x* tamanhos de sementes *x* lotes, para a variável número de sementes da planta principal.

variavei numer	o de s	semen	ies da	a pianta	a prin	сіраі.						
				Nú	ımero de	semente	es da pla	nta princi	pal			
TP**						Ame	etista					
	Lo	te A	Lo	ote B	Lo	te C	Lo	te D	Lo	te E	Lo	te F
I (AO)***	31,90	аВα	27,07	ьСβ	29,76	bBCβ	31,00	bΒCα	34,26	аΑВα	35,23	аΑα
II (>3,0 mm)	29,56	аСГ	33,67	аΑВСβ	34,36	аΑВα	33,10	abBCα	35,00	аΑВα	37,36	аΑα
III (2,5 a 2,99mm)	31,70	аВαβ	32,20	abABβ	31,36	abBβ	34,75	abABα	35,16	аΑВα	35,92	aAα
IV (2,0 a 2,49mm)	33,63	аΑα	32,96	аΑα	33,60	abAαβ	36,82	аΑα	35,06	аΑα	33,96	аΑα
V (< 2,0 mm)	32,47	аΑα	34,93	аΑα	35,23	аΑα	34,60	abAα	33,03	аΑα	36,38	аΑα
TD##	·		·			Qua	artzo				·	
TP**	Lo	te A	Lo	ote B	Lo	te C	Lo	te D	Lo	te E	Lo	te F
I (AO)***	32,90	abAα	34,24	bAα	35,00	аΑα	33,76	аΑα	35,70	abAα	31,74	bAα
II (>3,0 mm)	34,43	abBβ	38,93	аΑα	32,44	аВα	32,07	аВα	35,46	abABα	34,60	abΒα
III (2,5 a 2,99mm)	30,86	bBCβ	29,37	сСβ	31,73	аВСβ	33,60	аΑВα	37,03	Ααα	34,70	abABα
IV (2,0 a 2,49mm)	33,50	abABα	34,60	bABα	31,50	аВβ	35,53	аΑВα	34,75	abABα	36,90	аΑα
V (< 2,0 mm)	36,65	аΑВα	33,77	bABα	33,96	аΑВα	34,76	аΑВα	32,60	bΒα	37,63	аΑα
TP**						TBIO S	Sinuelo					
	Lo	te A	Lo	ote B	Lo	te C	Lo	te D	Lo	te E	Lo	te F
I (AO)***	35,23	abABα	31,41	bΒα	36,60	abAα	32,65	аΑВα	34,19	аΑВα	33,06	аΑВα
II (>3,0 mm)	38,86	аΑα	35,83	abAαβ	33,24	bΒα	33,40	аВα	35,93	аΑВα	35,50	аΑВα
III (2,5 a 2,99mm)	35,56	abABα	37,33	аΑα	35,56	abABα	35,36	аΑВα	33,03	аВα	35,26	аΑВα
IV (2,0 a 2,49mm)	32,59	bAα	34,63	abAα	35,90	abAα	35,83	аΑα	34,77	аΑα	36,16	аΑα
V (< 2,0 mm)	34,63	abABα	33,39	abΒα	37,80	аΑα	33,50	аВα	34,96	аΑВα	35,17	аΑВα
CV (%)						10	,56					

^{*}Médias seguidas pela mesma letra minúscula na coluna para tamanhos de peneira, mesma letra maiúscula na linha para o tamanho de peneira entre lotes, e mesma letra grega entre cultivares não diferem estatisticamente a Tukey com 5 % de probabilidade de erro.

Entre cultivares, observa-se que a cultivar TBIO Sinuelo apresentou igual ou maior número de sementes da planta principal (NSPP) que as demais cultivares (Tabela 4). O número de sementes da planta principal contribui significativamente para a produção, e cultivares que apresentam esta característica tendem a maior produtividade (CARVALHO et al., 2017).

O número de sementes do afilho primário (NSAP) (Tabela 5) para a cultivar Ametista, quando as plantas foram oriundas da amostra original (AO) apresentaram menor número de sementes nos lotes B, C e F, assim como, as plantas originadas das sementes retidas na peneira II (> 3,0 mm) do lote A e na peneira V (< 2,0 mm) do lote E. Na cultivar Quartzo, a amostra original (AO) do lote F apresentou menor número de sementes, assim como, as plantas provenientes das sementes retidas na peneira III (2,5 a 2,99 mm) do lote A, e peneira V (< 2,0 mm) dos lotes B e E.

^{**}TP Tamanho de peneira.

^{***}AO Amostra original do lote sem fracionamento de tamanho.

Tabela 5: Médias para interação cultivar *x* tamanhos de sementes *x* lotes, para a variável número de sementes do afilho primário.

vanavei nume	io ue	3611161	ites u	o aiiii	ю ріп	nano.						
			Núr	mero de	semente	s do Afilh	o primár	io				
TP**						Am	etista					
11	Lo	te A	Lot	e B	Lo	te C	Lot	e D	Lo	te E	L	ote F
I (AO)***	27,70	аΑВα	19,71	bCβ	20,10	bΒCα	27,00	аΑВα	28,4	abAα	21,22	bΒCα
II (>3,0 mm)	20,60	bΒα	26,74	аΑВα	27,03	аΑВα	23,63	аΑВα	30,29	abAα	28,46	аΑα
III (2,5 a 2,99mm)	23,91	abΒαβ	28,06	аΑВα	25,13	abABα	25,83	аΑВα	31,23	аΑα	29,30	aAbα
IV (2,0 a 2,49mm)	25,20	abAα	26,86	аΑα	23,99	abABβ	28,06	aΑαβ	25,70	abΑαβ	27,13	abAα
V (< 2,0 mm)	26,13	abAβ	26,92	аΑα	27,93	аΑα	26,83	αΑαβ	23,66	bAα	29,50	aAα
TP**						Qı	artzo					
IF	Lo	te A	Lot	e B	Lo	te C	Lot	e D	Lo	te E	L	ote F
I (AO)***	25,50	bABα	27,77	abAα	26,53	аΑα	27,93	аΑα	28,03	abAα	19,39	bΒα
II (>3,0 mm)	23,53	bcABα	30,06	аΑα	27,03	аΑВα	23,01	аВα	27,56	abABα	26,36	abAα
III (2,5 a 2,99mm)	17,74	сВβ	24,94	abAα	24,70	аΑα	26,23	аΑα	30,73	аΑα	25,33	abAα
IV (2,0 a 2,49mm)	28,16	bΑα	30,86	аΑα	31,20	аΑα	26,83	аАβ	30,41	аΑα	29,20	аΑα
V (< 2,0 mm)	35,68	аΑα	21,97	аΑα	25,12	аВСα	24,76	аВСβ	23,36	bCα	30,26	аΑВα
TP**						ТВІО	Sinuelo					
11	Lo	te A	Lot	e B	Lo	te C	Lot	e D	Lo	te E	L	ote F
I (AO)***	22,70	аΑВα	21,01	аВαβ	25,23	аΑВα	21,51	сВα	28,73	аΑα	21,74	bΒα
II (>3,0 mm)	25,60	аΑα	25,80	аΑα	28,29	аΑα	26,86	bcΑα	27,86	аΑα	31,23	аΑα
III (2,5 a 2,99mm)	28,96	аΑВα	23,96	аВα	27,66	аΑВα	31,90	abAα	22,80	abΒα	28,46	abABα
IV (2,0 a 2,49mm)	23,91	аВα	24,93	аВα	22,03	аВβ	34,06	аΑα	21,16	bΒβ	27,60	abABα
V (< 2,0 mm)	23,91	аВСβ	23,00	аВСα	28,80	аΑВα	32,05	аΑα	18,50	bCα	25,03	abABCα
CV (%)						5	1,36					

^{*}Médias seguidas pela mesma letra minúscula na coluna para tamanhos de peneira, mesma letra maiúscula na linha para o tamanho de peneira entre lotes, e mesma letra grega entre cultivares não diferem estatisticamente a Tukey com 5 % de probabilidade de erro.

Para a cultivar TBIO Sinuelo a amostra original (AO) dos lotes D e F apresentaram menor número de sementes no afilho, assim como, aquelas das peneiras IV (2,0 a 2,49 mm) e V (< 2,0 mm) do lote E. O número de sementes dos afilhos possui efeito direto com correlação baixa a produtividade do trigo (CARVALHO et al., 2017).

Entre lotes (Tabela 5), para a cultivar Ametista, as plantas oriundas da amostra original (AO) atingiram 50% dos lotes com menor número de sementes do afilho secundário (NEAS), assim como em 16% dos lotes avaliados, para as plantas oriundas das sementes das peneiras II (> 3,0 mm), III (2,5 a 2,99 mm) e IV (2,0 a 2,49 mm).

^{**}TP Tamanho de peneira.

^{***}AO Amostra original do lote sem fracionamento de tamanho.

Tabela 6: Médias para interação cultivar *x* tamanhos de sementes *x* lotes, para a variável número de sementes do afilho secundário.

				Nú	mero de	e semente	s do Afil	ho secun	dário			
TP**						Am	etista					
IF	Lot	te A	Lo	te B	Lo	ote C	Lo	te D	Lo	te E	Lo	ote F
I (AO)***	11,73	abCα	12,26	bΒCα	16,60	bABCα	20,09	αΑΒαβ	21	abcAα	17,49	аΑВСα
II (>3,0 mm)	8,90	bCα	14,76	abBCα	19,94	abABα	19,73	аΑВα	25,73	аΑα	21,09	аΑВα
III (2,5 a 2,99mm)	14,47	abΒα	18,80	abABα	17,76	abABα	20,13	аΑВα	23,33	abAα	20,56	аΑВα
IV (2,0 a 2,49mm)	16,83	abAα	20,23	аΑα	16,08	bΑαβ	16,88	αΑαβ	17,30	bcΑαβ	19,4	аΑα
V (< 2,0 mm)	17,33	аВβ	21,23	аΑВα	25,56	аΑα	22,76	аΑВα	15,61	сВα	20,98	аΑВα
TP**		Quartzo										
I F	Lot	Lote A Lote B Lote C Lote D Lote E Lote F									ote F	
I (AO)***	16,23	bABα	20,09	аΑα	21,83	аΑα	22,16	аΑα	19,43	abAα	10,84	аВα
II (>3,0 mm)	14,30	bAα	19,08	аΑα	14,08	аΑα	14,79	abAα	21,80	аΑα	17,33	аΑα
III (2,5 a 2,99mm)	11,73	bΒα	13,95	аΑВα	16,83	аΑВα	16,80	abABα	21,90	аΑα	14,70	аΑВα
IV (2,0 a 2,49mm)	16,93	bABα	20,86	аΑα	21,60	аΑα	10,76	bΒβ	22,30	аΑα	16,16	аΑВα
V (< 2,0 mm)	28,87	аΑα	15,62	аВСα	16,94	аВСβ	11,29	bCβ	13,83	bΒCα	20,10	аВα
TP**						TBIO	Sinuelo					
IF	Lot	te A	Lo	te B	Lo	ote C	Lo	te D	Lo	te E	Lo	ote F
I (AO)***	10,00	аВα	12,92	аΑВα	17,73	аΑВα	14,06	abABβ	20,54	abΑα	10,12	bΒα
II (>3,0 mm)	15,70	аΑВα	14,36	аВα	19,30	аΑВα	15,43	abABα	22,77	аΑα	19,98	аΑВα
III (2,5 a 2,99mm)	17,63	аΑα	13,26	аΑα	21,16	аΑα	19,53	abAα	13,50	bcAβ	20,30	аΑα
IV (2,0 a 2,49mm)	16,04	аΑВα	14,46	аΑВα	8,92	bΒβ	22,00	аΑα	9,52	сВβ	14,70	abABα
V (< 2,0 mm)	14,93	аΑВβ	14,6	аΑВα	22,00	aΑαβ	12,26	bΒβ	8,56	сВα	11,13	bΒβ
CV (%)		91,51										

^{*}Médias seguidas pela mesma letra minúscula na coluna para tamanhos de peneira, mesma letra maiúscula na linha para o tamanho de peneira entre lotes, e mesma letra grega entre cultivar não diferem estatisticamente a Tukey com 5 % de probabilidade de erro.

Na cultivar Quartzo as plantas originárias da amostra original (AO), peneiras II (> 3,0 mm) e III (2,5 a 2,99 mm) apresentaram em 16% dos lotes avaliados, menor número de sementes do afilho secundário, bem como, as plantas provenientes da peneira V (< 2,0 mm) em 50% dos lotes avaliados.

O TBIO Sinuelo a amostra original (AO) sem a padronização, e as plantas oriundas de sementes das peneiras IV (2,0 a 2,49 mm) e V (< 2,0 mm) apresentaram redução no número de sementes do afilho secundário em 50% dos lotes, bem como em 33% dos lotes, para as plantas provenientes das sementes retidas na peneira III (2,5 a 2,99 mm). De maneira geral, ocorreu resposta diferente entre os lotes avaliados, isso porque, o número de sementes é influenciado pelo afilhamento, nutrientes e característica de cada genótipo (CARVALHO et al., 2017).

^{**}TP Tamanho de peneira.

^{***}AO Amostra original do lote sem fracionamento de tamanho.

Ao comparar as cultivares (Tabela 5), apesar da variação entre a padronização e os lotes avaliados, observa-se pouca diferença no número de sementes do afilho primário (NSAP) entre as cultivares avaliadas.

Para o número de sementes do afilho secundário na cultivar Ametista (Tabela 6), as plantas originárias da amostra original (AO) dos lotes B e C apresentaram menor número de sementes, assim como, aquelas originadas de sementes retidas nas peneira III (2,5 a 2,99 mm) do lote A, peneira IV (2,0 a 2,49 mm) do lote C e peneira V (< 2,0 mm) do lote E (Tabela 6). Na cultivar Quartzo as sementes provenientes da peneira V (< 2,0 mm) produziram plantas com maior número de sementes do afilho secundário no lote A. No entanto, no lote D e E proporcionaram menor número de sementes. O TBIO Sinuelo a amostra original (AO) não padronizada apresentou menor número de sementes no lote F, assim como, as peneiras IV (2,0 a 2,49 mm) dos lotes C e E, e peneira V (< 2,0 mm) dos lotes D, E, F. O número de sementes é influenciado pelo afilhamento, nutrientes e característica de cada genótipo (CARVALHO et al., 2017).

Entre lotes, para a cultivar Ametista na amostra original (AO) as plantas originadas de sementes das peneiras II (> 3,0 mm) e V (< 2,0 mm) proporcionaram menor número de sementes do afilho secundário (NSAS) em 33% dos lotes avaliadas, assim como, a peneira III (2,5 a 2,99 mm) em 16% dos lotes avaliados, no entanto, observa-se que a peneira IV (2,0 a 2,49 mm) exibiu similaridade em todos os lotes avaliados não diferindo estatisticamente no número de sementes (Tabela 6). Na cultivar Quartzo, a peneira II (> 3,0 mm) apresentou o mesmo número de sementes do afilho secundário, no entanto, as demais peneiras e a amostra original (AO) proporcionaram menor número de sementes em 16% dos lotes avaliados. Para o TBIO Sinuelo, a peneira III (2,5 a 2,99 mm) foi a que não diferiu entre os lotes avaliados, no entanto, a amostra original (AO) e a peneira IV (2,0 a 2,49 mm) proporcionou menor número de sementes do afilho secundário em 33% dos lotes, assim como, a peneira II (> 3,0 mm) em 16%, e peneira V (< 2,0 mm) em 50% dos lotes. Plantas de trigo com elevado número de afilhos tendem a aumentar a massa e número de grãos, e possuem efeito indireto no aumento da produtividade (CARVALHO et al., 2017). Entre cultivares, a Ametista demonstrou maior ou igual número de sementes do afilho secundário.

A padronização de semente influenciou na contribuição da produtividade da planta principal (CPPP) e contribuição dos afilhos na produtividade (CAP). A média de peso da planta principal não diferiu entre os lotes avaliados, no entanto, a contribuição da planta principal, as plantas procedentes da amostra original (AO) não padronizada demonstraram menor peso da planta principal e dos afilhos, bem com os afilhos tiveram maior contribuição na produtividade quando comparado a planta principal (Tabela 7, Figura 1ª). A massa dos afilhos tem efeito indireto baixo e positivo na produtividade de grãos de trigo, assim como, a massa de espigas da planta principal tem efeitos positivos diretos (CARVALHO et al., 2017). Entre cultivares, a cultivar Ametista obteve a maior peso da planta principal e maior contribuição dos afilhos na produtividade quando comparado as demais cultivares (Tabela 8, Figura 1 a).

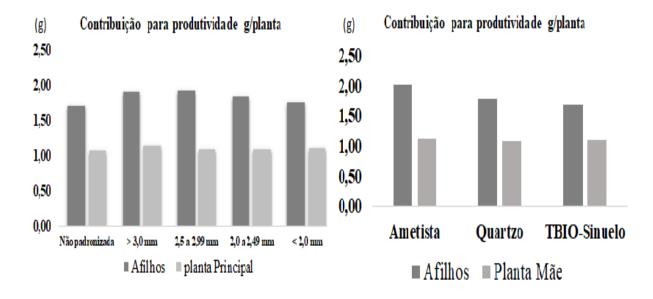


Figura 1 (a)Média entre tamanhos de peneira e cultivares na contribuição dos afilhos e da planta principal na produtividade.

Tabela 7: Médias para tamanhos de semente, cultivar e lotes, para a variável peso da planta principal.

TP**	Peso da Planta Principal (g)
I (AO)***	1,07 b
II (>3,0 mm)	1,13 a
III (2,5 a 2,99mm)	1,09 ab
IV (2,0 a 2,49mm)	1,09 ab
V (< 2,0 mm)	1,10 ab
Genótipo	Peso da Planta Principal (g)
Ametista	1,12 a
Quartzo	1,07 b
TBIO Sinuelo	1,10 ab
Lotes	Peso da Planta Principal (g)
A	1,08 a
В	1,09 a
С	1,09 a
D	1,11 a
E F	1,09 a
F	1,12 a
CV (%)	32,41

^{*}Médias seguidas pela mesma letra minúscula na coluna, não diferem estatisticamente a Tukey com 5 % de probabilidade de erro.

A resposta da padronização das sementes na contribuição média do peso dos afilhos nos lotes B e F, as plantas procedentes da amostra original (AO) sem a padronização, produziram menor peso dos afilhos quando comparada a padronização (Tabela 8).

A produtividade média das plantas obtidas na peneira III (2,5 a 2,99 mm) produziu 163,20 kg a mais do que a amostra original (AO) não padronizada, apresentando uma diferença de lucro por hectare de R\$ 103,36, bem como, os 427,50 kg a menos que as plantas oriundas da peneira V (< 2,0 mm) proporcionado uma diferença de R\$ 270,75 em relação a não padronização das sementes (Tabela 9, Figura 2). A cultura do trigo consegue manter a produção numa faixa grande de densidade de semeadura, pois tem plasticidade fenotípica, determinada pelo número de plantas por área, número de afilhos férteis, número de grãos por espiga e a massa de grãos (LOPES & LIMA, 2015).

^{**}TP Tamanho de peneira.

^{***}AO Amostra original do lote sem fracionamento de tamanho.

Entre lotes ocorreu diferença de produtividade nos lotes B e F de 991.70 kg/há, e para cultivares a TBIO Sinuelo foi superior (Tabela 9, Figura 2).

A massa de mil sementes (MMS) variou conforme a padronização das sementes. Para a cultivar Ametista, os lotes C e D não diferiram na padronização das sementes, no entanto, as plantas originadas da amostra original (AO) apresentaram menor ou igual massa de mil sementes às do lote E, bem como, àquelas de sementes provenientes das peneiras III (2,5 a 2,99 mm) dos lotes A e E; IV (2,0 a 2,49 mm) dos lotes A e B; e, peneira V (< 2,0 mm) dos lotes E e F (Tabela 10).

Tabela 8: Médias para interação tamanhos de sementes *x* lotes, cultivar *x* lotes, para a variável peso de afilhos.

TP**	Peso de Afilhos											
	Lote	e A	Lo	te B	Lot	e C	Lot	e D	Lote	Ε	Lot	te F
I (AO)***	1,42	аВ	1,53	bB	1,79	aAB	1,92	аА	2,11	аА	1,41	bB
II (>3,0 mm)	1,53	аВ	1,80	abB	1,80	аВ	1,68	аВ	2,45	аА	2,16	аА
III (2,5 a 2,99mm)	1,47	аВ	1,75	abB	1,94	аА	1,83	аВ	2,4	аА	2,15	аА
IV (2,0 a 2,49mm)	1,82	аА	2,07	аА	1,67	аА	1,90	аА	1,74	bΑ	1,85	abA
V (< 2,0 mm)	1,75	aAB	1,73	abAB	2,04	аА	1,66	аАВ	1,51	bB	1,78	abAB
Conftino	Peso de Afilhos											
Genótipo 	Lote	e A	Lo	te B	Lot	e C	Lot	e D	Lote	Ε	1,85 a 1,78 a Lote 2,26 a	te F
Ametista	1,70	аC	1,78	аC	1,98	аВС	1,96	аВС	2,36	аА	2,26	aAB
Quartzo	1,66	аВ	1,99	аА	1,71	аВ	1,54	bB	2,15	аА	1,64	bB
TBIO Sinuelo	1,44	аВ	1,56	аА	1,86	аА	1,90	аА	1,62	bA	1,72	bA
CV (%)						84,	82					

^{*}Médias seguidas pela mesma letra minúscula na coluna e maiúscula na linha, não diferem estatisticamente a Tukey com 5 % de probabilidade de erro.

Na cultivar Quartzo, as plantas oriundas de sementes das peneiras II (> 3,0 mm) dos lotes A e E, III (2,5 a 2,99 mm) dos lotes C, D e F; e, IV (2,0 a 2,49 mm) do lote B apresentaram maior massa de mil sementes. Na TBIO Sinuelo a amostra original (AO), as plantas originadas das sementes dos lotes B e C apresentaram menor massa de mil sementes, assim como, as das peneiras II (> 3,0 mm) do lote E; e, V (< 2,0 mm) dos lotes D e F.

Entre lotes, na cultivar Ametista e para a amostra original (AO), 66% dos lotes apresentaram redução na massa de mil sementes, assim como, a peneira II (> 3,0 mm), IV (2,0 a 2,49 mm) e V (< 2,0 mm) em 16% dos lotes (Tabela 10). Na cultivar

^{**}TP Tamanho de peneira.

^{***}AO Amostra original do lote sem fracionamento de tamanho.

Quartzo, a amostra original (AO) apresentou redução na massa de mil para 16% dos lotes, bem como, a peneira II (> 3,0 mm) e IV (2,0 a 2,49 mm) em 33% dos lotes, e a peneira III (2,5 a 2,99 mm) em 66% dos lotes avaliados. Na cultivar TBIO Sinuelo, a amostra original (AO), peneira IV (2,0 a 2,49 mm) e V (< 2,0 mm) apresentaram redução em 16% dos lotes avaliados, bem como, a peneira II (> 3,0 mm) em 33% dos lotes avaliados. Entre cultivares, de maneira geral a TBIO Sinuelo apresentou massa de mil sementes menor ou igual as demais cultivares.

Tabela 9: Médias para tamanhos de semente, cultivar e lotes, para a variável produtividade de grãos

produtividade de graos.	
TP**	Produtividade kg/há
I (AO)***	6972,40 a
II (>3,0 mm)	6998,40 a
III (2,5 a 2,99mm)	7135,90 a
IV (2,0 a 2,49mm)	6942,50 a
V (< 2,0 mm)	6708,40 a
Lote	Produtividade kg/há
A	7217,70 ab
В	7520,70 a
С	6867,30 ab
D	6864,10 ab
E	6706,30 ab
F	6529,50 b
Genótipo	Produtividade kg/há
Ametista	6976,90 ab
Quartzo	6606,90 b
TBIO Sinuelo	7269,00 a
CV (%)	19,48

^{*}Médias seguidas pela mesma letra minúscula na coluna, não diferem estatisticamente a Tukey com 5 % de probabilidade de erro.

No peso hectolitro (PH), a diferença ocorreu em apenas para alguns lotes. Para a cultivar Ametista, as plantas oriundas de sementes da peneira III (2,5 a 2,99 mm) proporcionaram superioridade no lote C (Tabela 11). Na cultivar Quartzo, as plantas de sementes da peneira IV (2,0 a 2,49 mm) obtiveram peso hectolitro inferior no lote E. Para a cultivar TBIO Sinuelo, as plantas provenientes da peneira II (> 3,0 mm) do

^{**}TP Tamanho de peneira.

^{***}AO Amostra original do lote sem fracionamento de tamanho.

lote E, e de sementes da peneira V (< 2,0 mm) do lote D demonstraram menor peso hectolitro.

Sementes com maior peso hectolitro tendem ao maior rendimento de grãos (SILVA et al., 2006) e qualidade fisiológica (BATTISTI et al., 2011).

Entre lotes, na cultivar Ametista as plantas originadas por sementes da peneira II (> 3,0 mm) evidenciaram redução do peso hectolitro em 16 % dos lotes, bem como em 66% dos lotes para sementes da peneira III (2,5 a 2,99 mm); e, peneira V (< 2,0 mm) em 50% dos lotes avaliados (Tabela 11). Na cultivar Quartzo as sementes da peneira II (> 3,0 mm), peneira IV (2,0 a 2,49 mm) e V (< 2,0 mm) também apresentaram redução em 16% dos lotes avaliados, semelhante ao ocorrido na cultivar TBIO Sinuelo onde a amostra original e peneiras II (> 3,0 mm) e peneira V (< 2,0 mm) com 16% dos lotes confirmaram menor peso hectolitro.

Tabela 10: Médias para interação cultivar *x* tamanhos de sementes *x* lotes, para a variável massa de mil sementes.

variavei massa	ae m	ııı seme	ntes.										
TP**	Ametista												
11	Lote A		Lote B		L	Lote C		Lote D		Lote E		Lote F	
I (AO)***	39,9	аΑα	38,1	аВα	38,1	аВα	37,7	аВα	37,3	bΒα	38,9	аΑВα	
II (>3,0 mm)	39,3	abAβ	39,3	аΑα	38,8	αΑΒαβ	37,5	аВαβ	38,2	abABβ	39,5	аΑα	
III (2,5 a 2,99mm)	37,4	сВα	39,0	аΑα	38,8	αΑαβ	38,3	аΑα	37,7	bΑαβ	38,8	abAβ	
IV (2,0 a 2,49mm)	37,3	сВСα	36,1	bCβ	39,3	аΑα	37,9	аΑВα	39,5	аΑα	37,2	bcBCαβ	
V (< 2,0 mm)	38,0	bcΑΒαβ	38,9	аΑα	38,0	аΑВα	38,3	аΑВα	37,3	bABα	37,0	сΒαβ	
TP**						Quartzo							
	Lote A		Lote B		Lote C		Lote D		Lote E		Lote F		
I (AO)***	38,4	bΑαβ	38,2	abABα	38	bABα	36,5	bΒCα	37,6	bABα	35,4	сСβ	
II (>3,0 mm)	42,2	аΑα	38,9	abΒα	39,1	bΒα	35,9	bCβ	40,5	аВα	37,2	bCβ	
III (2,5 a 2,99mm)	38,0	bΒα	37,6	bΒαβ	42,3	аΑα	38,3	аВα	38,1	bΒα	40,8	aAα	
IV (2,0 a 2,49mm)	33,6	сСβ	39,5	аΑα	38,9	bΑΒαβ	37,0	abΒα	37,2	bΒβ	38,0	bABα	
V (< 2,0 mm)	38,6	bAα	37,9	abAα	38,5	bAα	37,0	abAα	38,0	bAα	37,5	bAα	
TP**						TBIO	Sinuelo	ı					
	L	₋ote A	L	ote B	Lote C		Lote D		Lote E		Lote F		
I (AO)***	37,1	аАβ	34,5	сСβ	35,1	bBCβ	36,4	abABα	37,3	abAα	37,1	аΑα	
II (>3,0 mm)	35,6	аВГ	38,5	аΑα	37,5	аАβ	37,8	аΑα	34,7	сВГ	37,3	аΑВβ	
III (2,5 a 2,99mm)	37,0	аΑα	36,7	bAβ	37,7	аАβ	37,4	аΑα	36,1	bcAβ	36,2	abΑΓ	
IV (2,0 a 2,49mm)	36,7	аΑВα	37,0	abABβ	37,5	аАβ	37,4	аΑα	37,1	abABβ	35,6	abBβ	
V (< 2,0 mm)	36,3	аВСβ	36,2	ьвсβ	36,9	аΑВα	35,1	bCβ	38,4	аΑα	35,5	bBCβ	
CV (%)						5	.63						

^{*}Médias seguidas pela mesma letra minúscula na coluna para tamanhos de peneira, mesma letra maiúscula na linha para o tamanho de peneira entre lotes, e mesma letra grega entre cultivares não diferem estatisticamente a Tukey com 5 % de probabilidade de erro.

^{**}TP Tamanho de peneira.

^{***}AO Amostra original do lote sem fracionamento de tamanho.

Evidencia-se a importância da padronização de sementes de trigo, pois cada semente que compõem um lote pode apresentar diferentes níveis de peso hectolitro (BATTISTI et al., 2011), influenciado pela densidade, uniformidade, forma e tamanho da semente (ORMOND et al., 2013).

Tabela 11: Médias para interação cultivar *x* tamanhos de sementes *x* lotes, para a variável peso hectolitro.

TP**	Ametista											
	Lo	te A	Lot	te B	Lot	e C	Lot	e D	Lo	te E	Lot	te F
I (AO)***	80,40	аΑα	80,35	аΑα	79,73	bAα	80,10	аΑα	79,78	аΑα	79,99	аΑα
II (>3,0 mm)	79,50	аВβ	81,00	аΑα	80,28	bABα	80,19	аΑВα	80,88	аΑВα	80,07	аΑВα
III (2,5 a 2,99mm)	80,86	аΑВα	80,17	аВα	81,90	аΑα	79,95	аВα	79,86	аВα	80,50	аВα
IV (2,0 a 2,49mm)	80,45	аΑα	80,47	аΑα	79,83	bAβ	80,02	аΑα	80,17	аΑα	79,55	аΑα
V (< 2,0 mm)	80,70	аΑВα	81,30	аΑα	79,86	bΒα	80,49	aAB	79,87	аВα	79,61	аВα
TP**	Quartzo											
11	Lote A		Lote B		Lote C		Lote D		Lote E		Lote F	
I (AO)***	78,92	аАβ	79,18	аΑα	78,65	аΑα	78,01	аАβ	78,20	abAβ	78,00	аАβ
II (>3,0 mm)	78,43	аΑВβ	78,52	аΑВβ	78,50	аΑВβ	77,98	аΑВβ	79,30	abAβ	77,68	аВβ
III (2,5 a 2,99mm)	78,30	аАβ	78,95	аΑα	78,09	аАГ	77,91	аАβ	77,93	abcAβ	78,53	аАβ
IV (2,0 a 2,49mm)	78,99	аАβ	78,46	аАβ	78,51	аАβ	78,58	аАβ	76,80	сВβ	78,74	аΑα
V (< 2,0 mm)	78,84	аАβ	78,36	аΑВβ	78,8	аΑα	77,86	аΑВβ	77,37	bcBβ	78,03	аΑВβ
TP**					Т	BIO Sinu	ielo					
IP	Lo	te A	Lot	te B	Lot	e C	Lot	e D	Lo	te E	Lote F	
I (AO)***	81,31	аΑα	80,33	аΑВα	79,90	аВα	77,49	ьСβ	80,74	aAα	80,17	аΑα
II (>3,0 mm)	81,03	аΑα	80,43	аΑα	80,88	аΑα	80,79	аΑα	78,75	bΒβ	80,84	аАα
III (2,5 a 2,99mm)	80,29	аΑα	80,29	аΑα	79,50	аАβ	80,02	аΑα	79,69	abAα	79,94	аАα
IV (2,0 a 2,49mm)	80,11	αΑαβ	79,85	αΑαβ	80,33	аΑα	80,05	аΑα	80,40	aAα	79,69	аΑα
V (< 2,0 mm)	79,95	aΑαβ	80,2	aAα	79,86	аΑВα	78,54	bΒβ	80,20	аАα	80,80	аΑα
CV (%)						1	,09			_		

^{*}Médias seguidas pela mesma letra minúscula na coluna para tamanhos de peneira, mesma letra maiúscula na linha para o tamanho de peneira entre lotes, e mesma letra grega entre cultivar não diferem estatisticamente a Tukey com 5 % de probabilidade de erro.

^{**}TP Tamanho de peneira.

^{***}AO Amostra original do lote sem fracionamento de tamanho.

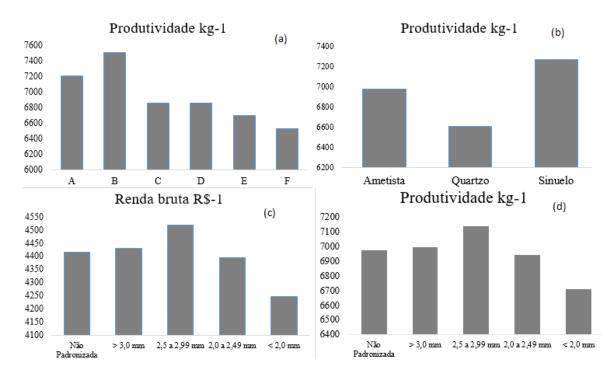


Figura 2: Médias de produtividade entre lotas (a), produtividade média entre cultivares (b), renda bruta entre tamanhos de peneira (c), e produtividade entre tamanhos de peneira (d).

De maneira geral, o número de espiguetas por espiga do afilho principal varia entre cultivares e lotes, porém, existe a tendência da amostra original (AO), sementes das peneiras II (> 3,0 mm) e peneira V (< 2,0 mm) proporcionarem menor número de espiguetas. O número de sementes da planta principal, número de sementes do afilho principal e secundário variam entre cultivares e lotes, no entanto, existe a tendência na amostra original, as sementes de menor e maior tamanho exibirem menor número de sementes na planta originada.

Os resultados também apontam que a amostra original e as plantas originadas das sementes da peneira V (< 2,0 mm) tendem a oferecer menor peso da planta principal e menor produtividade. Em relação a contribuição da produtividade, os afilhos tem maior contribuição quando comparado à planta principal.

As sementes retidas na peneira V (< 2,00 mm) resultam em plantas de menor produtividade; da peneira III (2,5 a 2,99 mm) formaram plantas com produtividade superior, sendo 2,3% maior à amostra original, bem como, 2% a mais que a peneira II (>3,0 mm), 2,7% em relação a peneira IV (2,0 a 2,49 mm), e 6% da peneira V (< 2,0 mm).

4.4 Conclusão

O tamanho de sementes de trigo influencia no número de espiguetas da planta principal, números de sementes do afilho primário e afilho secundário, número de sementes da planta principal, afilho primário e secundário, produtividade, massa de mil sementes e peso hectolitro.

A padronização de sementes de trigo proporciona benefícios ao rendimento produtivo de plantas de trigo.

Não houve diferença estatística na produtividade, porém, ocorreu diferença absoluta entre os tamanhos de peneira.

5 Considerações finais

A produtividade de cultivos agrícolas mantém relação a qualidade da semente utilizada na implantação de campos de produção, tendo práticas de pós-colheita importância no aperfeiçoamento de atributos físicos e na padronização de sementes com maior potencial de desempenho. A padronização é prática amplamente adotada para cultivos a exemplo da soja, contudo, embora o trigo possua diferentes tamanhos de sementes dentro do mesmo lote, o procedimento padronização não é empregado no fluxograma de beneficiamento.

Neste estudo, foi possível verificar que os tamanhos das sementes de trigo interferem na qualidade fisiológica e nos atributos físicos de forma específica para lotes e cultivar.

O número de afilhos, altura de plantas e inserção das espigas possuem relação ao tamanho das sementes e a cultivar. Existe a tendência de sementes menores resultarem em plantas de menor de inserção da espiga da planta principal, inferior altura da planta principal, da altura do afilho principal e altura de inserção da espiga do afilho secundário.

A padronização de sementes permite identificar que a peneira de orifício oblongo <2,00 mm proporciona desempenho a campo inferior para os caracteres avaliados.

A padronização proporciona benefícios ao rendimento produtivo de plantas de trigo, com a tendência da amostra original (AO), e sementes com espessura >3,0 mm e <2,0 mm proporcionarem menor número de espiguetas, e exibirem menor número de sementes na planta principal. Permite ainda apontar que a amostra original (AO) e as plantas originadas das sementes das sementes <2,0 mm tendem a oferecer menor peso da planta principal e menor produtividade de grãos.

As sementes de tamanho < 2,00 mm resultaram em plantas de menor produtividade, as oriundas da peneira 2,5 a 2,99 mm formaram plantas com produtividade superior.

Lotes padronizados melhoram a aparência do lote, o que pode ser atrativo para utilização de sementes certificadas.

Neste sentido, a padronização de sementes de trigo pode favorecer a obtenção de sementes com melhor formação, proporcionar o superior desempenho das plantas e a maior produtividade de grãos.

Referências

AISENBERG, G.R.; ZIMMER, G.; KOCH, F.; DELLAGOSTIN, S.M.; SZARESKI, V.J.; CARVALHO, I.R.; NARDINO, M.; SOUZA, V.Q.; PEDO, T.; MARTINAZZO, E.G.; VILLELA, F.A.; AUMONDE, T.Z. Biochemical performance, vigor and characteristics of initial growth of wheat plants under different sowing depths. **International Journal of Current Research**, v. 8, p. 36704-36709, 2016.

ALVES, F.V.; JÚNIOR, A.S.; SANTANA, D.G.; SANTOS, C.M. Composição química e qualidade fisiológica de sementes de girassol de plantas submetidas à competição intraespecífica. **Revista Brasileira de Sementes**, v. 34, n. 3, p. 457 - 465, 2012.

ASSOCIATION OF OFFICIAL SEED ANALYSTS (AOSA). **Seed vigor testing handbook**. New York; p.341. 1983.

AUMONDE, T.Z.; MARTINAZZO, E.G.; VILLELA, F.A. Estresses Ambientais e a **Produção de Sementes**: Ciência e Aplicação. Cópias Santa Cruz, Pelotas. 2017.

BATTISTI, R.; SOMAVILLA, L.; BUSANELLO, C.; SCHWERZ, L. Eficiência do uso da massa hectolitro como teste rápido de vigor de semente de trigo (*Triticum aestivum*). **Revista da Faculdade de Zootecnia, Veterinária e Agronomia (FZVA)**. Uruguaiana, v.18, n. 1, p. 125-135, 2011.

BARBOSA, C.Z.R.; SMIDERLE, O.J.; ALVES, J.M.A.; VILARINHO, A.A.; SEDIYAMA, T. Qualidade de sementes de soja BRS Tracajá, colhidas em Roraima em função do tamanho no armazenamento. **Revista de Ciência Agronômica**, v. 41, n. 1, p. 73-80, 2010.

BERTAN, I.; CARVALHO, F.I.; OLIVEIRA, A.C.; VIEIRA, E.A.; HARTWIG, I.; SILVA, J.A.G.; SCHIMIDT, D.A.M.; VALÉRIO, I.P.; BUSATO, C.C.; RIBEIRO, G. Comparação de métodos de agrupamento na representação da distância morfológica entre cultivares de trigo. R. Bras. Agrociência, Pelotas, v. 12, n. 3, p. 279-286, 2006.

BRAMMER, S.P.; **A técnica de eletroforese: Importância e aplicações em análises genéticas.** Documento online, Embrapa, n. 6, dezembro. 2001.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. **Instrução Normativa SARC nº 7, de 15 de agosto de 2001**. Aprova o regulamento técnico de identidade e qualidade do trigo. Diário Oficial da República Federativa do Brasil, Brasília. 2001.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. **Regras para análise de sementes.** Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Brasília: Mapa/ACS, 399 p. 2009.

BREDEMEIER, C.; MUNDSTOCK, C.M.; BUTTENBENDER, D. Efeito do tamanho das sementes de trigo no desenvolvimento inicial das plantas e no rendimento de grãos. **Pesquisa agropecuária brasileira**, Brasília, v. 36, n. 8, p. 1061-1068, 2001.

BRZEZINSKI, C.R.; ZUCARELI, C.; HENNING, F.A.; ABATI, J.; PRANDO, A.M.; HENNING, A.A. Nitrogênio e inoculação com *Azospirillum* na qualidade fisiológica e sanitária de sementes de trigo. Revista de Ciências Agrárias **Amazonian Joutnal og Agricultural and Environmental Sciences**. V. 57, n. 3, p.257-265, 2014.

CARGNIN, A.; SOUZA, M.A.; CARNENIRO, P.C.S.; SOFIATTI, V. Interação entre cultivar e ambientes e implicações em ganhos com seleção em trigo. **Pesquisa agropecuária brasileira**, Brasília, v.41, n.6, p.987-993. 2006.

CARNEIRO, L.M.T.A.; Antecipação da colheita, secagem e armazenagem na manutenção da qualidade de grãos e sementes de trigo comum e duro. Tese de Doutorado. Universidade estadual de campinas faculdade de engenharia agrícola. 2003.

CARNEIRO, L.M.A.; BIAGI, J.D.; FREITAS, J.G.; CARNEIRO, M.C. Diferentes épocas de colheita, secagem e armazenamento na qualidade de grãos de trigo comum e duro. **Bragantia**, Campinas, v. 64, n. 1, p.127-137, 2005.

CARVALHO, I.R.; NARDINO, M.; DEMARI, G.H.; PELEGRIN, A.J.; FERRARI, M.; SZARESKI, V.J.; BREZOLIN, P.; WARTHS, C.A.; OLIVEIRA, A.C.; MAIA, L.C.; SOUZA, V.Q. Sowing date and multivariate analisys of yield and physiological components in elite wheat genotypes. **International Journal of Current Research**, v. 8, p.40828-408332016.

CARVALHO, I.R.; NARDINO, M.; FOLLMANN, D.N.; DEMARI, GH.; OLIVOTO,T.; PELEGRIN, A.J.; SZARESKI, V.J.; FERRARI, M.; ROSA, T.C.; KOCH, F.; AISENBERG, G.R.; PEDO, T.; AUMONDE, T.Z.; SOUZA, V.Q. Path analysis of grain yield associated characters in wheat (*Triticum aestivum* L.) Brasilians. **Australian Journal of Crop Science**. v. 11, p. 1406-1410, 2017.

CHASTAIN, T.G.; WARD, K.J.; WYSOCKI, D.J. Stand Establishment Response of Soft White Winter Wheat to Seedbed Residue and Seed Size. **Crop Sciencie Society of America**. v. 35, n. 1, p. 213-218, 1994.

COLLARES, G.L.; REINERT, D.J.; REICHERT, J.M.; KAISER, D.R. Compactação de um latossolo induzida pelo tráfego de máquinas e sua relação com o crescimento e produtividade de feijão e trigo. **Revista Brasileira de Ciência do Solo**, v. 32, 933-942, 2008.

CONAB, Companhia Nacional de Abastecimento. **Acompanhamento da Safra Brasileira de Grãos**, V.2 - Safra 2014/15 N.9 - Nono Levantamento Brasília, p. 1-104, junho 2015, disponível em http://www.conab.gov.br/index.php/info-agro/safras/graos/boletim-da-safra-de-graos/item/download/1290 0c593ee0b2d2259f8e84778987f08a51/

CONAB, Companhia Nacional de Abastecinto. **Acompanhamento da safra brasileira de grãos**. V.5, safra 2017/2018, n.5, quinto levantamento, fevereiro de 2018, disponível em http://www.conab.gov.br/index.php/info-agro/safras/graos/

boletim-da-safra-de-graos/item/download/12569_5b3e0e675171f49a5b1e9215e dc1064a/.

CQFS-RS/SC 2004. COMISSÃO DE QUÍMICA E FERTILIDADE DO SOLO (CQFS RS/SC). **Manual de adubação e calagem para os estados do Rio Grande do Sul e Santa Catarina.** 10ed. Porto Alegre: Sociedade Brasileira de Ciência do Solo/Núcleo Regional Sul, 2004. 400p.

DEMARI, GH.; CARVALHO, I.R.; NARDINO, M.; SZARESKI, V.J.; DATSCH, A.C.; PELEGRIN, A.J.; MARTINS, T.; SANTOS, N.L.; LAUTENCHLEGER, F.; PEDO, T.; SOUZA, V.Q.; AUMONDE, T.Z.; BASSO, C.J.; ZIMMER, P.D. Poultry litter as an alternative source for nitrogen in wheat. **International Journal of Current Research**, v. 8, p. 39733-39737, 2016.

DEMARI, G.H.; CARVALHO, I.R.; NARDINO, M.; FOLLMANN, D.N.; SOUZA, V.Q.; SOMAVILLA, L.; BOSSO, C.J. Cama de aves como alternativa para adubação nitrogenada em trigo. **Revista Cultivando o Saber**. V. 9, n. 2, p. 224- 242, 2016.

DINIZ, K.A.; OLIVEIRA, J.A.; SILVA, P.A.; GUIMARÃES, R.M.; CARVALHO, M.L.M. Qualidade de sementes de alface enriquecidas com micronutrientes e reguladores de crescimento durante o armazenamento. **Revista Brasileira de Sementes**, v. 31, n. 1, p.228-238, 2009.

ESPINDULA, M.C.; ROCHA, V.S.; SOUZA, M.Z.; GORSSI, J.A.S.; SOUZA, L.T. doses e formas de aplicação de nitrogênio no desenvolvimento e produção da cultura do trigo. **Ciência agrotecnologia**, Lavras, v. 34, n. 6, p. 1404-1411, 2010.

FAO. Food and Agriculture Organization of the United Nations. **World Food Situation**: Cereal Supply and Demand Brief, 2017.

FAVARATO, L.F.; ROCHA, V.S.; ESPINDULA, M.C.; SOUZA, M.A.; PAULA, G.S. Adubação nitrogenada e qualidade fisiológica de sementes de trigo. **Bragantia**, Campinas, 2012.

FERREIRA, E.A.; CONCENÇO, G.; SILVA, A.A.; REIS, M.R.; VARGAS, L.; VIANA, R.G.; GUIMARÃES, A.A.; GALON, L. POTENCIAL COMPETITIVO DE BIÓTIPOS DE AZEVÉM (*Lolium multiflorum*). **Planta Daninha**, Viçosa-MG, v. 26, n. 2, p. 261-269, 2008.

GRIEVE, C. M.; FRANCOIS, L. E. The importance of initial seed size in wheat response to salinity. **Plant and Soil, Dordrecht**, v. 147, p. 197-205, 1992.

GUILHERME, M.F.S.; CAMPOS, L.N.; OLIVEIRA, H.M.; SILVA, E.; SANTOS, P.S. Avaliação biométrica de sementes de dois cultivares de *Triticum aestivum*. **Anais do Congresso Nordestino de Biólogos**. v 4, Congrebio, 2014.

GUTKOSKI, L. C.; DURIGON, A.; MAZZUTTI, S. A.; SILVA, A. C. T.; ELIAS, M. C. Efeito do período de maturação de grãos nas propriedades físicas e reológicas de trigo. **Ciência Tecnologia de Alimentos**, Campinas, v. 28, p 888-894, 2008.

HENNING, F.A.; MERTZ, L.M.; JACOB, E.A.J.; MACHADO, R.D.; FISS, G.; ZIMMER, P.D. Composição química e mobilização de reservas em sementes de soja de alto e baixo vigor. Bragantia, Campinas, v. 69, n. 3, p727-734, 2010.

HOSSEN, D.C.; JÚNIOR, E.S.C.; GUIMARÃES, S.; NUNES, U.R.; GALON, L. Tratamento químico de sementes de trigo. **Pesquisa Agropecuária Tropical**, v. 44 n.1, 2014.

KAVALCO, S.A.F.; CARVALHO, I.R.; NARDINO, M.; FOLLMANN, D.N.; BARBOSA, M.H.; SZARESKI, V.J.; ROSA, T.C.; DEMARI, GH.; KOCH, F.; AISENBERG, G.R.; GONZATTO, T.; PEDO, T.; AUMONDE, T.Z.; SOUZA, V.Q. Dual-Purpose wheat subjected to different seed treatments. **Australian Journal of Basic and Applied Sciences**, v. 11, p. 45-51, 2017.

KEHL, K.; KEHL, K.; SZARESKI, V.J.; CARVALHO, I.R.; NARDINO, M.; DEMARI, GH.; ROSA, T.C.; GUTKOSKI, L.C.; PEDO, T.; AUMONDE, T.Z.; SOUZA, V.Q.; ZIMMER, P.D.; MENEGHELLO, G.E. Genotype environment interaction under industrial and physiological quality of wheat seeds. **International Journal of Current Research**, v. 8, p. 38461-38468, 2016.

KOCH, F.; AISENBERG, G.R.; SZARESKI, V.J.; DEMARI, G.H.; CARVALHO, I.R.; NARDINO, M.; LAUTENCHLEGER, F.; WEBBER, T.A.; SOUZA, V.Q.; CARON, B.O.; VILLELA, F.A.; AUMONDE, T.Z.; PEDO, T. Yield and physiological quality of seeds of different bean genotypes produced in the off-season period in subtropical climate. **Australian Journal of Crop Science**, v. 12, p. 669-675, 2018.

LOPES, N.F.; LIMA, M.G.S. **Fisiologia da produção**. Universidade Federal de Viçosa. 2015.

LUDWIG, M.P.; **Princípios da Pós-Colheita de grãos e sementes.** Instituto Federal de Educação, Ciência e Tecnologia do tio Grande do Sul, Ibirubá. 2017.

MAGUIRE, J. D. Speed of germination aid in selection and evaluation for seedling emergence and vigor. **Crop Science**, Madison, v. 2, n. 2, p.176-77, 1962.

MANTELLI, J. O setor agrário da região noroeste do Rio Grande do Sul. **Geosul**, Florianópolis, v. 21, n. 41, p 87-105, 2006.

MARTINS, C.C.; TREVISOLI, S.H.U.; MÔRO, G.V.; VIEIRA, R.D. Metodologia para seleção de linhagens de soja visando germinação, vigor e emergência em campo. **Revista Ciência Agronômica**, v. 47, n. 3, p. 455-461, 2016.

MATTIONI, N.M.; SCHUCH, L.O.; VILLELA, F.A. Variabilidade espacial da produtividade e da qualidade das sementes de soja em um campo de produção. **Revista Brasileira de Sementes**, v. 33, n. 4 p., 2011.

MOTZO, R. et al. Expression of a tiller inhibitor gene in the progenies of interspecific crosses *Triticum aestivum* L. x T. *turgidum subsp. durum*. **Field Crop Research**, v. 85, n. 1, p. 15-20, 2004.

- MULLER, L.; MANFRON, P.A.; MEDEIROS, S.L.P.; RIGÃO, M.H.; BANDEIRA, A.H.; TONETTO, C.J.; NETO, D.D. Correlações de Pearson e canônica entre componentes da matéria seca da forragem e sementes de azevém. **Revista Brasileira de Sementes**, v. 34, n. 1 p. 86-93, 2012.
- NAKADA, P.G.; OLIVEIRA, J.A.; MELO, L.C.; GOMES, L.A.A.; PINHO, E.V.R.V. Desempenho fisiológico e bioquímico de sementes de pepino nos diferentes estádios de maturação. **Revista Brasileira de Sementes**, v. 33, n. 1 p. 22 30, 2011.
- NAKAGAWA, J. Testes de vigor baseados no desempenho das plântulas. **Vigor de sementes: conceitos e testes**. Londrina: ABRATES, v. 1, p. 1-24, 1999.
- NAKAGAWA, J. Os componentes da produtividade de sementes. **Informativo ABRATES**, v. 24, n. 1, 2014.
- NETO, A.C.A.; NUNES, R.T.; ROCHA, P.A.; ÁVILA, J.S.; MORAIS, M. Germinação e vigor de sementes de feijão-caupi (*Vigna unguiculata* (L.) Walp.) de diferentes tamanhos. **Revista Verde de Agroecologia e Desenvolvimento Sustentável,** v 9., n. 2, p.71 75, 2014.
- NETO, A.C.A.; MEDEIROS, J.G.F.; ARAÚJO, P.C.; BRUNO, R.L.A.; SILVA, K.R.G. Qualidade física e composição química de sementes de *Foeniculum vulgare*. **Revista de Ciências Agrárias**, v. 38 n.1, 2015.
- OHLSON, O.D.C.; KRZYZANOWSKI, F.C.; CAIEIRO, J.T.; PANOBIANCO, M. Teste de envelhecimento acelerado em sementes de trigo. **Revista Brasileira de Sementes**, v. 32, n. 4, p. 118-124, 2010.
- OLIVEIRA, G.R.F.; SILVA, M.S.; MARCIANO, T.Y.F.; PROENÇA, M.S.L.; SÁ, M.E. Crescimento inicial do feijoeiro em função do vigor de sementes e inoculação com *Bacillus subtilis*. **Brazilian Journal of Biosystems Engineering** v. 10, p. 439-448, 2016.
- ORMOND, A.T.S.; NUNES, J.A.S.; CANEPPELE, C.; SILVA, S.L.S.; PEREIRA, M.T.J. analise das caracteristicas físicas de sementes de trigo. **Enciclopédia biosfera**, Centro Científico Conhecer Goiânia, v. 9, n. 17, p. 108-114, 2013.
- PÁDUA, G.P.; ZITO, R.K.; ARANTES, N.E.; NETO, J.D.B.F. Influência do tamanho da semente na qualidade fisiológica e na produtividade da cultura da soja. **Revista Brasileira de Sementes**, v. 32, n. 3 p. 09-16, 2010.
- PEDÓ, T.; DELIAS, D.S.; AISENBERG, G.R.; SZARESKI, V.J.; CARVALHO, I.R.; NARDINO, M.; SOUZA, V.Q.; AMARANTE, L.; VILLELA, F.A.; AUMONDE, T.Z. Antioxidante enzyme activity and initial growth of wheat, rye and bean under soil flooding. **International Journal of Current Research**, v. 8, p. 36635-36642, 2016.
- PESKE, S.T.; VILLELA, F.A.; MENEGHELLO, G.E. **Sementes: Fundamentos Científicos e Tecnológicos**, 3ª edição. In: Produção de sementes, p. 13-100. Editora e Gráfica Universitária, Pelotas, RS. 2012.

- PRANDO, A.M.; ZUCARELI, C.; FRONZA, V.; OLIVEIRA, E.A.P.; PANOFF, B. Formas de uréia e doses de nitrogênio em cobertura na qualidade fisiológica de sementes de trigo. **Revista Brasileira de Sementes**, v. 34, n. 2 p. 272-279, 2012.
- PICCININ, G.G.; DAN, L.G.M.; RICCI, T.T.; BRACCINI, A.L.; BARBOSA, M.C.; MOREANO, T.B.; NETO, A.H.; BAZO, G.L. Relação entre o tamanho e a qualidade fisiológica e sanitária de sementes de soja. **Revista Agrarian**. Dourados, v. 5, n. 15, p.20-28, 2012.
- PIRES, J.L.F.; VARGAS, L.; CUNHA, G.R. **Trigo no Brasil**. Bases para produção competitiva e sustentável. Embrapa Trigo, Passo Fundo, RS. 2011.
- PRANDO, A.M.; ZUCARELI, C.; FRONZA, V.; OLIVEIRA, E.A.P.; PANOFF, B. Formas de ureia e doses de nitrogênio em cobertura na qualidade fisiológica de sementes de trigo. **Revista Brasileira de Sementes**, v. 34, n. 2 p., 2012.
- RAMALHO M.A.P, ABREU A.F.B, SANTOS J.B, NUNES J.A.R. **Aplicações da genética quantitativa no melhoramento de plantas autógamas**. Lavras, UFLA, 350 p. 2012.
- RIGOLI, R.P.; AGOSTINETTO, D.; VAZ DA SILVA, J.M.B.; FONTABA, L.C.; VARGAS, L. potencial competitivo de cultivares de trigo em função do tempo de emergência. **Planta Daninha**, Viçosa-MG, v. 27, n. 1, p. 41-47, 2009.
- SAINIO, P.P.; RAJALA, A.; JAUHIAINEN, L. Hidden viability risks in the use of farm-saved small-grain seed. **Journal of Agricultural Science**. 149, 713–724, 2011.
- SANGOI, L.; ALMEIDA, M.L.; HORN, D.; BIANCHET, P.; GRACIETTI, M.A.; SCHMITT, A.; SCHWEITZER, C. Tamanho de semente, profundidade de semeadura e crescimento inicial do milho em duas épocas de semeadura. **Revista Brasileira de Milho e Sorgo**, v.3, n.3, p. 370-380, 2004.
- SANTOS, P.M.; REIS, M.S.; ARAÚJO, E.F.; CECON, P.R.; SANTOS, M.R. Efeito da classificação por tamanho da semente de soja na sua qualidade fisiológica durante o armazenamento. **Acta Scientiarum Agronomy**. Maringá, v. 27, n. 3, p. 395-402, 2005.
- SANTOS, P.C.G.; ALVES, E.U.; GUEDES, R.S.; SILVA, K.B.; CARDOSO, E.A.; LIMA, C.R. Qualidade de sementes de Hancornia speciosa Gomes em função do tempo de secagem. **Semina: Ciências Agrárias**, Londrina, v. 31, n. 2, p. 343-352, 2010.
- SANTOS, D.; GUIMARÃES, V.F.; KLEIN, J.; FIOREZE, S.L.; MACEDO, J.E.K. Cultivares de trigo submetidas a déficit hídrico no início do florescimento, em casa de vegetação. **Revista Brasileira de Engenharia Agrícola e Ambiental**. v. 16, n. 8, p. 836–842, 2012.
- SILVA, J.A.G.; CARVALHO, F.I.F.; OLIVEIRA, A.C.; VIEIRA, E.A.; BENIN, G.; VALÉRIO, I.P.; CARVALHO, M.F.; FINATTO, T.; BUSATO, C.C.; RIBEIRO, G. Correlação de acamamento com rendimento de grãos e outros caracteres de interesse

agronômico em plantas de trigo. **Ciência Rural**, Santa Maria, v. 36, n. 3, p.756-764, 2006.

SOTÉRIO, P.W.; PEDROLLO, M.C.; ANDRIOTTI, J.L. Mapa de isoietas do Rio Grande do Sul. Porto Alegre. 2005.

SZARESKI, V.J.; CARVALHO, I.R.; NARDINO, M.; DEMARI, GH.; PELEGRIN, A.J.; FERRARI, M.; FOLLMANN, D.N.; ROSA, T.C.; QUADROS, E.S.; PEDO, T.; ZIMMER, P.D.; SOUZA, V.Q.; AUMONDE, T.Z. Seeding rate and physiological quality of dual purpose wheat seeds. **African Journal of Agricultural Research**, v. 11, p. 4367-4374, 2016.

SZARESKI, V.J.; CARVALHO, I.R.; KEHL, K.; LEVIEN, A.M.; NARDINO, M.; DEMARI, GH.; LAUTENCHLEGER, F.; SOUZA, V.Q.; PEDO, T.; AUMONDE, T.Z. Univariate, multivariate techniques and mixed models applied to the adaptability and stability of wheat in the Rio Grande do Sul State. **Genetics and Molecular Research**, v. 16, p. 1-13, 2017.

SZARESKI, V.J.; CARVALHO, I.R.; KEHL, K.; LEVIEN, A.M.; NARDINO, M.; DELLAGOSTIN, S.M.; DEMARI, GH.; LAUTENCHLEGER, F.; VILLELA, F.A.; PEDO, T.; SOUZA, V.Q.; AUMONDE, T. Z. Evaluation of the adaptability and stability of wheat genotypes using a phenotypic index of seed vigor. **Pesquisa Agropecuária Brasileira**, v. 53, p. 727-735, 2018.

SZARESKI, V.J.; CARVALHO, I.R.; KEHL, K.; LEVIEN, A.M.; ROSA, T.C.; BARBOSA, M.H.; DEMARI, G.H.; PIMENTEL, J.R.; TROYACK, C.; SOUZA, V.Q.; MARTINAZZO, E.G.; VILLELA, F.A.; AUMONDE, T.Z. Phenotypic and predicted genetic approaches for genotype ranking of wheat seed yield in Brazil. **Genetics and Molecular Research**. p. 1-13, 2018.

USDA, Departamento de Agricultura dos Estados Unidos. **Produção Mundial:** Oferta e Demanda, 2018.

VALÉRIO, I.P.; CARVALHO, F.I.F.; OLIVEIRA, A.C.; MACHADO, A.A.; SCHEEREN, P.L.; SOUZA, V.Q.; HARTWIG, I. Desenvolvimento de afilhos e componentes do rendimento em cultivares de trigo sob diferentes densidades de semeadura. **Pesquisa agropecuária brasileira**. Brasília, v. 43, n. 3, p. 319-326, mar. 2008.

VALÉRIO, I.P.; CARVALHO, F.I.F.; OLIVEIRA, A.C.; MAIA, L.C.; SILVA, J.A.G.; SCHMIDT, D.M.; SILVEIRA, G. Fatores relacionados à produção e desenvolvimento de afilhos em trigo. **Semina: Ciências Agrárias.** Londrina, v. 30, p. 1207-1218, 2009.

VAZQUEZ, G.H.; ARF, O., SARGI, B.A.; PESSOA, A.C.O. influência do tamanho e da forma da semente de milho sobre o desenvolvimento da planta e a produtividade de grãos. **Bioscience Journal**. Uberlândia, v. 28, n. 1, p. 16-24, 2012.

VESOHOSKI, F.; MARCHIORO, V.S.; FRANCO, F.A.; CANTELLE, A. Componentes do rendimento de grãos em trigo e seus efeitos diretos e indiretos na produtividade. **Ceres**. v. 58, n.3, p. 337-341, 2011.