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Abstract

Data assimilation is an important and time-consuming process in petroleum reservoir numerical simu-
lation. It produces a set of calibrated models used to forecast and optimize oil and gas production. The
process focuses on reducing uncertainties related to reservoir properties, yielding numerical reservoir
models that plausibly reproduce measured data from the field, such as well rates and pressure.

Besides the traditional well-production data, 4D seismic data are increasingly being used to reduce
the uncertainty of numerical reservoir models, by providing dynamic spatial data to be matched.
Although 4D seismic data reveal essential information about the dynamic behavior of the reservoir,
its integration in data assimilation procedures is challenging, especially in a quantitative way, because
of their noisy and uncertain nature and their larger resolution when compared to the resolution of
simulated data from numerical reservoir models.

The development of metrics able to efficiently estimate the discrepancies between 4D seismic data
and numerical reservoir model outputs is a current research interest for data assimilation, given the
challenges of integrating these different types of data.

We introduce the Momenta Tree. It uses orthogonal moments supporting a multi-level data repre-
sentation, where features are organized in nodes related to different levels of region detail. It supports
the comparison of simulated data from numerical reservoir models and observed 4D images of seismic

data, images, using different resolutions and considering various domains. The similarity between
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data is calculated with the extended Jaccard distance and is represented by a phylogenetic tree; the
simulated models are represented as circles in branches, and their similarity is captured by connec-
tions. We apply the Momenta Tree to a controlled case, introduced in this paper, to validate and
compare the new metric with traditional metrics, and a more complex representative case based on
real oil industry data.

Our results show that the Momenta Tree metric retains the same sequential similarity in envi-
ronments affected by noise. The highest-ranked models using the Momenta Tree relate to forecast
behavior closer to the reference data than the highest-ranked models obtained with traditional meth-
ods. An additional advantage of the Momenta Tree is its ability to enable data comparison in various
domains (P-impedance and Water Saturation) at different resolutions of seismic and simulation data.
Keywords: Similarity, 4D Seismic Assimilation, Data Assimilation, Visual Data Analysis,

Numerical Reservoir Simulation

1. Introduction

Lack of information complicates the generation of reliable numerical reservoir models of oil and
gas fields [1, 2]. Usually, initial scenarios exhibit results far from those observed in the production
unit (measured data). Data assimilation improves the predictive capabilities of reservoir models by
updating rock and fluid properties constrained by field data.

Traditional data assimilation procedures use well production data, i.e., fluid rates and pressure.
While these data are highly frequent, they are spatially sparse for a petroleum field. Time-lapse or
4DS is employed as an additional source of data to be assimilated [3, 4, 5, 6]. 4DS data complement
well data with the potential to provide rich spatial information but at years apart during production.
Under adequate conditions, 4DS data provide information about dynamic reservoir changes, such as
fluid saturation, pressure, and other data relevant to field management and production optimization.

Although the use of 4DS data to manage petroleum reservoirs increased in the last decade, as-
similation with other data remains challenging [2, 7] and its use remains mostly qualitative. Its
quantitative use requires robust metrics to measure the discrepancy with the reservoir simulation
model predictions.

Some methods define the difference between the pixel values of the simulation models and corre-
sponding seismic data with the mean-squared error (MSE) [8, 9], defined by Equation 1.

MSE(A,B) = % i(Ay: - By)*, (1)

i=1
where A and B are matrices, n is the number of elements in each matrix, and A; and B; are the values

in position i.
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However, these methods may be insufficient to deal with some important problems: (i) the compar-
ison between models is simplified to the sum of differences between pixels; (ii) the horizontal resolution
of simulation model output is smaller than the set of seismic attributes, and; (iii) comparing data from
various domains in a traditional approach requires the data to be converted to a common domain.

In this context, we introduce the Momenta Tree to compare simulated data from numerical reser-
voir models to observed 4DS data. This metric uses seismic and reservoir simulation models as
bidimensional images and can compare data at different resolutions and in various domains, in envi-
ronments affected by noise. The key concept is the representation of the model/seismic images as trees
of relevant characteristics related to image regions. A distance matrix is obtained by evaluating pairs
of trees. Finally, a phylogenetic tree! is obtained, representing the similarity between images, where
each image is represented as a circle and the similarity as the ancestry relationships. Our strategy
outperforms pixel-wise comparison methods in different scenarios such as when considering different
domains, dynamic environments with changes in the analyzed maps and when noise is present.

Prior work lacks a coherent set of standard synthetic data to evaluate similarity. Most authors
employ binary shapes representing isolated anomalies to evaluate results [10, 11], but these figures do
not represent characteristics of the real reservoirs. When a map is binarized, subjective choices must
be made, e.g., one must choose the appropriate break threshold. In addition, and as a consequence,
one loses the more gradual changes in values across the map, affecting the similarity between models.
For that reason, we introduce a benchmark to evaluate similarity, defined as incremental, controlled
synthetic perturbations from seismic data. We aim to generate new images (model/seismic) with a
known incremental variation so that each image has a sequential similarity to the first image.

The paper is organized as follows. In the next section, we discuss related work. Section 3 provides
an overview and description of the methodology for the Momenta Tree. Section 4 describes the
benchmark used. Section 5 presents the application of the methodology to two cases: a synthetic
controlled case and a realistic case for comparison of simulated data from numerical reservoir models
to observed 4DS data inspired by the hypothesis of a satisfactory match would increase our confidence
in a correct understanding of the reservoir behavior. We conclude the paper and discuss future work

in Section 6.

2. Related Work

Most approaches for integrating 4DS data into assimilation problems are typically performed in

the elastic attributes domain, usually acoustic impedance [12]. Other possibilities are the seismic

LA diagram that represents evolutionary relationships among elements.
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amplitude domain and the pressure and saturation domains (engineering domains) [13, 14]. Forward-
modeling or seismic inversions are necessary, which makes data integration challenging. Running seis-
mic inversions to estimate elastic changes (or even pressure and saturation changes) is time-consuming
and leads to issues to be handled, such as multiple solution and model uncertainties. Forward-modeling
to generate seismic amplitude is also time-consuming even if we use the 1D convolution approach. For
instance, a demanding step is the grid transference (for the stratigrafic reservoir model grid to a reg-
ular seismic volume) needed for every simulation model run in a data assimilation procedure (usually
thousands of models). Recent efforts propose to compare data in different domains to avoid such
procedures and simplify data comparison [15, 16].

Even with images in the same domain, comparing distinct data is not trivial [8, 9]. This issue was
also explored in other contexts, for example, to reduce the number of models and/or select the most
reliable ones [17, 18, 19].

Some approaches convert seismic images into a binary representation to capture main characteris-
tics of the images and apply a pixel-wise comparison [20], with particular focus on Hamming distance
[21], Hausdorff distance [22, 23], or a Hausdorff distance modification, called a local dissimilarity map
[8, 9, 15], which is still a pixel-wise approach but considers a local neighborhood.

Some authors use metric-space approaches to convey the similarity between data using a distance
function. Both types of data (4DS data and numerical reservoir models) are represented as points
in the metric spaces, where the distance between two points indicates how similar they are. Suzuki
and Caers [17] proposed the use of Hausdorff distance, as a static metric to measure the similarity
between reservoir models. The similarity space is explored by a stochastic search in a neighborhood-
based algorithm. Scheidt and Caers [18] also used Hausdorff distance to create a dissimilarity matrix,
comparing all reservoir models. The resulting matrix is designed using multidimensional scaling with
a kernel method. Rahim and Li [24] explored methods based on probability distance, where an
optimization problem is solved to find an optimal subset with similar distribution characteristics to
the entire model set. However, this potentially time-consuming approach may not converge in the
presence of outliers.

Other authors proposed the use of clustering strategies on metric spaces. Scheidt and Caers
[25] applied a distance-based kernel clustering technique (DKM). DKM defines a dissimilarity matrix
by using a dissimilarity function, such as Hausdorff distance, to obtain a 2D map of the models
using multidimensional scaling. Kernel methods are applied to the new space to overcome non-linear
variation of the points. Finally, a clustering method is applied to classify models and select a subset.
Using a similar strategy, Sahaf et al. [11] evaluated the similarity between models using a new

measure based on mutual information. The dissimilarity matrix is projected onto a 2D space with
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multidimensional scaling techniques. The resulting 2D map is clustered, and centroids are selected as
representatives for each cluster.

Although some research is based on the comparison between pixels, recent efforts [26, 27] have used
wavelet coefficients to sparsely represent seismic attributes from the perspective of imaging processing.

Following a different strategy, Rojas et al. [19] proposed the use of machine-learning techniques,
by designing a Multilayer Perceptron network, to minimize the loss of realistic geological representa-
tions. Realistic relationships between geometric variables are modeled, ensuring that only geologically-
realistic models are history matched.

These approaches are insufficient to compare simulated data from numerical reservoir models to
observed 4DS data because of: (i) reliance on global techniques for comparison; (ii) difficult compar-
isons when using different resolutions or domains; and (iii) oversimplification, such as conversion of

models to binary images, causing severe information loss.

3. Comparing 4D Seismic Data and Simulated Data from Numerical Reservoir Simula-

tion Models through Momenta Trees

The rationale for 4DS data integration is that integrating complementary data constrains better the
reservoir simulation model [20]. Three important requirements for 4DS assimilation are: (i) efficiency
of image comparison of simulated data from numerical reservoir models to observed 4DS data, even
at different resolutions and in various domains; (ii) a metric to capture the similarity of decreasing
anomalies; and (iii) a comparison focusing on global and local behavior properties.

Based on these requirements, we propose to use image comparison methods, widely used in the field
of computer vision, to analyze the similarity of 4DS data and numerical reservoir models as images,
which can be used in conjunction with existing optimization techniques in the data assimilation
process. Figure 1 depicts the proposed methodology. For a given set of models and/or seismic
images (Figure 1.a), complete quadtrees of Orthogonal Variant Moments (OVMs) (Figure 1.b) are
built capturing the main characteristics of multi-level regions by recursively subdividing the original
image into four quadrants. We consider the characteristics of the whole image, but also emphasize the
characteristics of each sub-region in the tree structure. A dissimilarity matrix (Figure 1.c) is obtained
by calculating for each position as the sum of the distances of equivalent nodes of the corresponding
quadtrees, using the extended Jaccard distance [28]. Finally, the dissimilarity matrix serves as an input
to a Neighbor-Joining algorithm [29] for phylogenetic reconstruction. The resulting phylogenetic trees
(Figure 1.d) reflect each model/seismic tree as a point and the similarity as the ancestry relationships

of trees.
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Figure 1: Workflow for the similarity of images from 4DS data and numerical reservoir simulation models. The images
(a) are represented as trees of relevant characteristics (b). A dissimilarity matrix is obtained by evaluating pairs of trees
(c). Finally, a phylogenetic tree is generated (d) that reflects each model/seismic tree as a circle and similarity as the

ancestry relationships of trees.

us  3.1. Model Representation

The main characteristics are captured to represent the local descriptive view of each reservoir
simulation model or 4DS data (8], further simplifying the analysis. For achieving this, each image is

represented as a complete quadtree (also known as tree-pyramid) [30] of main features, as illustrated

e

Figure 2: Image quadrants. An image is divided into four quadrants in each iteration. OVMs are calculated for each

in Figure 2.

quadrant in each iteration to characterize each one; they are stored in the Momenta Tree nodes.

120 This representation allows recursively decomposing an input image into four quadrants and storing

features of each quadrant as nodes of the tree. The vector of features of larger quadrants are stored
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in nodes at a higher level of the tree hierarchy, and features of smaller quadrants are at lower levels.
We rely on Orthogonal Variant Moments (OVM) [31] to obtain relevant information about a certain
quadrant.

The OVM features consider the images as a surface, as shown in Figure 3. With this strategy, the

comparison is based on the shapes, sizes, and positions of the anomalies.

(a) Original image (b) Surface

Figure 3: OVM features represent the images as surfaces.

The resulting feature vector consists of seven moments, considering a normalization factor

1

hxw’

n (2)

where h and w are image height and width, i.e., the numbers of image rows and columns, respectively.

The first moment is the area, which is the sum of the intensities of all pixels, also known as the

A=n / / flx,y)dxdy. (3)

The second and third moments are defined as the orthogonal components L, and L, defined as

zeroth order moment Myq:

—

- TR
1 / / \f 1+ (%) dxdy,

——— (4)

L,=mn / / \II.":I'I + (%)Qra"rﬂf.r.

The fourth and fifth moments define a unique position, similar to the center of mass concept, i.e.,

-L.r

D,=n7 / /[{ +dx) f(x,y)dxdy,

Dy =n / / (y + dy) f(z,y)dyda.
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The sixth and seventh moments are related to time derivatives, i.e., velocity and acceleration,

7 _ oD, dD,
S\ at oot )

y il 9°D, 9°D,
oo\ o0 o2t )

For instance, the OVM vector for the matrix in Figure 4 is: [16,0.98,0.98, 25.56, 43.64, 8.33, 8.33].

defined as

(a) Matrix (b) Image

Figure 4: FEach matrix is represented as a bidimensional image. The OVM vector for this image is:

[16,0.98,0.98, 25.56, 43.64, 8.33, 8.33].

Invariant moments are statistical measures commonly used to extract texture information from
images [32]. Traditional invariant moments extracted from similar shapes remain the same, even
when applying geometric transformations. In the 4DS data context, it is necessary to capture small
perturbations and changes such as rotation, scaling, translation, and/or contrast, i.e., to measure
small transformations in an image. We selected the OVMs to represent each image region; these
moments measure a transformation; they are not invariant to it. If a specific perturbation occurs,
it is measured. This strategy, using complete quadtrees combined with OVMs, allows images to be

compared at different resolutions through the evaluation of corresponding levels in the tree.

3.2. Measuring the Dissimilarity between Reservoir Models and 4D Seismic Data

For creating the dissimilarity matrix, pairs of quadtrees are compared by computing the sum of the
dissimilarity of equivalent nodes (same positions in the same tree level) using the extended Jaccard

coefficient [33], see Equation 7.
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As data may have different resolutions, i.e., 234 x 326 blocks for seismic data and 58 x 81 blocks for
simulation data, the images may have different sizes (height and width). In this case, their respective
quadtrees will have different depth levels.

For comparison, we calculate the sum of the results of the extended Jaccard coefficient applied to
equivalent nodes of both trees. In the example shown in Figure 5, a comparison is made up to the
third level in yellow, since there are no nodes on the left equivalent to the nodes in green. We define

the distance of quadtrees as

min(La,Lg)

d(A,B) = Z jaccard(a,b),
acAbeB (7)

a-b
jaccard(a,b) = - : 5
jaccard(a,b) NaZ+o[E=a-b

where A, B are complete quadtrees, a and b are nodes in A and B, respectively, and L, and Lp are

the maximum depths of A and B.

Figure 5: Quadtrees of orthogonal Variant moments are compared by computing the sum of extended Jaccard coefficients

of equivalent nodes. Here, comparisons are performed until the third level (yellow).

3.3. Phylogenetic Trees of Reservoir Models and 4D Seismic Data

Phylogenetic trees are diagrams to represent the connections of biological species linked in the past
by common ancestors [34]. We use phylogenetic tree representation to obtain a visual similarity map
from the dissimilarity matrix. One main advantage of the phylogenetic tree is its simplicity for visual
understanding [35].

To generate phylogenetic trees from a dissimilarity matrix, we use the Neighbor-Joining (NJ)
technique proposed by Cuadros et al. (2007) [29], which has been applied to biological and non-
biological datasets, including text and images. This technique relies on a tree hierarchy, where elements
of the dissimilarity matrix are shown as leaf nodes, and virtual nodes (internal) are created to join
similar points, considered hypothetical ancestors for these nodes. In our application, each leaf node
represents a reservoir model or a 4DS data set. Edges (connections) between nodes represent the
similarity, while path distances represent the dissimilarity proportionally. Nodes may contain up to

three branches, one node connected to the ancestor node and the other two nodes connected to the
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two most similar nodes. Rotating the similar nodes does not change their relationship, as Figure 6
illustrates.

The technique begins with a star tree because pairs of elements have not been grouped yet. The first
pair of elements to be grouped is chosen, applying the minimum evolution criterion, which attempts
to minimize the sum of the sizes of all nodes in the tree. The selected elements have the lowest value
in the calculation of the sum of the distances between branches, considered as neighbors. We use the

equation
Sii = ! i:(D- +D-J+1D--+ ! .
9T o(n - 2) k)T

Dy,
- n—2 = M ®)
k#i,j (kJ#£i,5)n (k<)

where D;; is the value in the distance matrix, and n is the number of elements.
Once the pair of neighboring elements to be grouped in a new virtual node X has been chosen,

the sizes of new branches are calculated by the Fitch-Margoliash method using the equations

Lix = Dij+ D;.Dj. )

1./ 2 (9}
I o Dr'j‘i‘DJzD;i.:

AN T T

where z is the group of elements, except objects i and j. D;. and D;. are the distances of elements i

and j to all other elements, i.e.,

D?_z:z#ij";f*’_
n —

10
Sk )
= op -2

The new virtual node X replaces the elements i and j in the matrix. Consequently, elements i and
j are removed from the matrix, and the distances from the virtual node and the other nodes are
calculated as

D+ Dj
Di_ji = — (11)

wo  where k < n, not including 7 and j.

At each iteration, the number of elements is reduced by one unit up to three elements.

Figure 6: Rotating similar nodes does not change their relationship.

The resulting phylogenetic tree can be interpreted as follows:

10
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1. Each simulation model is placed on the visualization as a colorful circle and the seismic as a
black circle.
2. The color of each model represents the quality related to the selected objective functions.
3. The distance denotes the level of similarity in relation to the comparison used.
e Models that are more similar to each other are placed closer, even on the same branch.
e Models that are more different are placed in distant places (different branches).
4. The models most similar to seismic will be found in the same branch of seismic.
5. The model that is closest to seismic on the same branch will be the most similar model.

6. If we find well-formed branches containing circles with similar colors, they will represent a set

of similar scenarios in terms of well matching and spatial fluid similarity.

We wish to emphasize the novel components of our approach: (i) a consistent representation of
the main characteristics of different regions, capable of identifying any variation; (ii) a simplified
dissimilarity comparison that allows the comparison of images of different sizes; and (iii) a general
dissimilarity visualization that allows the efficient evaluation of similarity between reservoir simulation

models and 4DS data.

4. Benchmark

We use a benchmark case, UNISIM-I2, as our base dataset to evaluate our methodology. The
benchmark is a synthetic black-oil reservoir based on a real field [36]. The synthetic seismic data
was obtained through the high-resolution simulation model UNISIM-I-R (234 x 326 blocks), which
represents the reference case (true answer). First, a petro-elastic model (PEM) was applied to obtain
the elastic attributes from the UNISIM-I-R reservoir model parameters. A seismic forward model (1D
convolution) generated seismic traces. Finally, a colored inversion was executed to estimate “observed”
impedance changes.

A petro-elastic model can be defined by forward rules used to compute the elastic properties
from studied reservoir properties [37]. Colored inversion is a fast method proposed by Lancaster
and Whitcombe (2000) [38] for band-limited inversion of seismic data. Based on the fact that the
sparse-spike inversion process can be approximated by a single operator, yielding relative impedance
via simple convolution with the reflectivity data, the authors showed that this operator can be derived

from well logs.

2(available on https://www.unisim.cepetro.unicamp.br/benchmarks/en/unisim-i/overview)

11
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In our experiments, we used 4DS data maps of P-impedance changes (AIP), estimated from
inversions. For more details about the seismic data generation, refer to Davolio and Schiozer (2019)
[39], and Souza (2017) [40].

We also used a set of 500 maps ofAS,, generated from numerical reservoir models, defined on a
relatively coarse grid (58 x 81 blocks) compared to the reference case, by applying the PEM. All data
were made available at four-time production instants: (T1) 7Y2M (2618 days), (T2) 9YOM (3287
days), (T3) 10YOM (3652 days), and (T4) 11YOM (4018 days), where Y means years and M months,
considering as baseline Tj at time zero. Thus, data have two different resolutions: 234 x 326 blocks

for seismic data and 58 x 81 blocks for simulation data, as observed in Figure 7.

100
1 0z
o
00
-50
=100 0.2
-150
0.4
=200
(a) 4DS data map of P-impedance (b) AS. of a numerical reservoir model (di-
changes(m/s x g/cm?®) mensionless)

Figure 7: Example of 4DS and numerical reservoir model from T4 (11Y0M - 4018 days).

As there is no absolute response to rank the 500 models or select the best match based on 4DS data,
we created controlled perturbations, for which we know the similarity of the samples. To evaluate
the workflow, we defined incremental perturbations starting from an ‘observed” AIP map, normalized
using standardization (Z-score normalization). This process generates new reservoir model and/or
seismic matrices with an incremental variation from normalized ‘observed’ values so that each image
had a sequential similarity with respect to the first image. The synthetic perturbations are intended to
be consistent with differences that occur between the 500 simulation models and the observed values.
These perturbations are related to differences in (i) decreasing size of anomalies regions, (ii) contrast,
and (iii) resolution.

For the decreasing the perturbation size, we identified the anomalies by separating the image
background (green) and foreground (anomalies in yellow/red), using a probability-based approach,
assuming that anomalies have lower probabilities than the image background. The fundamental
approach calculates the probability of each pixel value, and creates a histogram with 10 bins. The
match with the lowest probability is reported as background. Other probabilities are considered

foreground. Finally, 20 images are created by decreasing the region values of a parameter «, see

12
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Equation 12. The anomalies are faded out in each iteration.

Mi(z,y) = M;_1(z,y) — a, (12)
where 7 is between 1 and 20, M; is the matrix in the range 7 based on the normalized observed AIP
map, and o = 0.025.

For the contrast perturbation, 20 images were created by decreasing each matrix value by means
of parameter a, see Equation 12.

For the resolution perturbation, 20 images were created by decreasing the resolution by 10% of the
original grid size, see Equation 13. The resolution was modified but not the image size. The images

in Figure 8 present the differences in resolution of 5 of the 20 images,

M, =M,y —10% = M. (13)

Figure 8 Resolution perturbation for images 1, 5, 10, 15, and 20 based on 4DS data map of P-impedance changes(m /s x

g/em®).

For evaluation purposes, we used the matrices ‘observed’ at four time production instants ((T1)
7Y2M (2618 days), (T2) 9YOM (3287 days), (T3) 10YOM (3652 days), and (T4) 11YOM (4018
days) as anchors to identify behavior of the ‘observed’ data through time, exploring typical char-

acteristics such as shape, size and position variations. A function f. is created per cell ¢ € C,

13



where C' is the number of cells, considering the cell values My, (x,y) as data points, where T; €
{T:7TY2M, T5:9Y0M, T5:10YOM, T4;:11YOM}, see Figure 9. Different functions were evaluated using

the observed data for the four time instants, such as polynomial functions from degrees two to eight,
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Lagrange interpolation, cubic spline interpolation, piecewise linear interpolation, and nearest-neighbor

interpolation.

Figure 9: A function f. is created per cell ¢ € C, where C' is the number of cells, considering the data points as pairs
of time instant T; € {T7:7Y2M, T5:9YOM, T3:10YOM, T4:11YOM} and cell value My, (x,y).

For testing, we created the functions using three of the four time instants 7; € {7:7Y2M, T5:9Y0M,
Ty:11Y0OM}, and estimated the values of Mr,.10vom(,y), which were compared with the real values
of T3:10YOM. We used the average mean-squared error (MSE) to identify the function that best fits

the data, by applying it to the corresponding values between the real and the estimated values. Table

1 shows the results.

Interpolation MSE
Polynomial-2 0.0002094
Polynomial-3 0.0002252
Polynomial-4 0.0002439
Polynomial-5 0.0002661
Polynomial-6 0.0002921
Polynomial-7 0.0003225
Polynomial-8 0.0003580

Lagrange 0.0002094
Cubic Spline 0.0002094
Piecewise Linear 0.0001674
Nearest Neighbor  0.0005661

Table 1: Interpolation functions using three of the four time instants T; € {T7:7Y2M, T%:9YO0M, T4:11YOM]}, to estimate
the values of M,:10vom(%,y) based on 4DS data map of P-impedance changes(m/s x g/em®). The obtained and the

real values of T5:10Y0M were compared using the average mean-squared error (MSE) to identify the function that best

fits the data.

14
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We found that the piecewise linear function, which uses simple linear interpolation between data
points, results in the lowest average mean-squared error (0.00016). A total of 20 time-lapse synthetic

images were created using this strategy at different times between T7 and Tj.

5. Experiments and Results

We explore two case-studies that consider these scenarios: (a) the controlled synthetic pertur-
bations from the provided 4D seismic map, namely a time-lapse difference of seismic impedance
(AIP_seis_obs_234x326), related to differences in contrast (20), decreasing anomalies (20), resolution
(20), and time-lapse synthetic data (20) obtained by a Piecewise Linear Interpolation and (b) a real-
istic case: a comparison of 500 AS,, maps of distinguished numerical reservoir models obtained after
well-production data assimilation. We also apply the MSE metric to analyze the similarity of the

different datasets, whose results are compared to our strategy results.

5.1. Evaluating the Momenta Tree with Synthetic Perturbations

Synthetic perturbations are used to evaluate the ability of the Momenta Tree to characterize
variations present in the reservoir models and to test the quality of the method to identify each
variation individually. The images generated from the perturbations are considered as the models to
be ranked, i.e., arranged in order by similarity, and the images are classified using the initial image as
a reference. The different perturbations emulate the differences between the models and the observed
data. The Momenta Tree method must be able to correctly rank the perturbed images and place them
in order as they were generated considering different sequential perturbation levels when applied. This
ability is validated when the phylogenetic tree shows nodes in the same order as used to generate the
corresponding images.

The Momenta Tree methodology was applied to the 20 images related to the perturbation of
decreasing anomalies size. The resulting phylogenetic tree (Figure 10) correctly characterizes the
perturbation of decreasing anomalies.

The 20 synthetic images related to the variation of contrast were also explored. The resulting
phylogenetic tree placed the nodes in the correct sequential order, i.e., the images were placed according
to their contrast variations, as shown in Figure 11.

For the 20 images related to incremental variations in resolution, the resulting phylogenetic tree
(Figure 12) is not perfectly represented, because the resolution change, which modified the variety of
values, affected the shape and size of the regions.

The 20 time-lapse images, obtained by piecewise linear interpolation, were correctly organized in

chronological order, as Figure 13 depicts.

15
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Figure 10: Resulting phylogenetic tree and the 20 images with perturbation of decreasing anomalies based on 4DS data
map of P-impedance changes(m/s x g/em?). Green circles indicate correct positions and red circles indicate incorrect
positions. All positions are correct, therefore no node is marked in red. The results confirm that the strategy perfectly

characterized the perturbation of decreasing anomalies.
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Figure 11: Resulting phylogenetic tree and the 20 images with incremental contrast variation based on 4DS data map of
P-impedance changes(m/s x g/em?®). Edges between nodes represent the similarity, while path distances represent the
dissimilarity proportionally. For instance, the phylogenetic tree shows that image 2 is the most similar one to image 1.
Green circles indicate correct positions and red circles indicate incorrect positions. All positions are correct, therefore

no node is marked in red. These results confirm the correct characterization of contrast using the Momenta Tree.
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Figure 12: Resulting phylogenetic tree and the 20 images with variation of resolution based on 4DS data map of P-
impedance changes(m/s x g/em®). Green circles indicate correct positions and red circles indicate incorrect positions.

The results show that the variations of resolution were nearly perfectly represented.
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Figure 13: Resulting phylogenetic tree and the 20 time-lapse images using piece-wise linear interpolation based on
4DS data map of P-impedance changes(m/s x g/em™). Green circles indicate correct positions and red circles indicate
incorrect positions. All positions are correct, therefore no node is marked in red. These results confirm the correct

characterization of the linear behavior using the Momenta Tree.
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5.1.1. Analysis of Noisy Data
We also have investigated the impact of noise in the experiments. We added random noise to the
20 images generated for the contrast perturbation and for the perturbation of decreasing anomalies,

using Equation 14.

M(z,y) = Mo—1(z,y) + rand(0, 1) * [max(Mc_1(z,y)) — min(M._1(z,y))], (14)

where M. is the contrast perturbation matrix, rand(0,1) returns a random floating-point number
between 0 and 1, max(M,.(z,y)) returns the maximum value, and min(M.(z,y)) is the minimum
value.

The 20 images, obtained by adding noise to both types of perturbation images, were correctly

organized in the same sequential similarity arrangement, as Figures 14 and 15 depict.
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Figure 14: Resulting phylogenetic tree, using MT strategy, and the 20 images obtained by adding noise to the contrast
perturbation images. Green circles indicate correct positions and red circles indicate incorrect positions. All positions
are correct, therefore no node was marked in red. These results confirm the correct characterization of contrast even in

the presence of noise.

We also applied the MSE approach to the images with noise, as shown in Figures 16 and 17. The
MT strategy retains the same sequence similarity in environments affected by noise; on the other
hand, MSE approach is severely affected showing the importance of considering a more robust way of

comparing images as we propose in this work.
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Figure 15: Resulting phylogenetic tree, using MT strategy, and the 20 images obtained ( based on 4DS data map of

P-impedance changes(m/s x g/em®)) by adding noise to the perturbation images of decreasing anomalies. Green circles

indicate correct positions and red circles indicate incorrect positions. All positions are correct, therefore no node is

marked in red. These results confirm the correct characterization of decreasing anomalies even in the presence of noise.
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Figure 16: Resulting phylogenetic tree, using the MSE approach, and the 20 images obtained (based on 4DS data map

of P-impedance changes(m/s x g/em?)) by adding noise to the contrast perturbation images. Green circles indicate

correct positions and red circles indicate incorrect positions. These results show how the MSE approach is severely

affected by noise.
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Figure 17: Resulting phylogenetic tree, using the MSE approach, and the 20 images obtained (based on 4DS data map
of P-impedance changes(m/s x g/cm?®)) by adding noise to the perturbation images of decreasing anomalies. Green
circles indicate correct positions and red circles indicate incorrect positions. These results show how the MSE approach

is severely affected by noise.

5.1.2. Diseriminatory Power of the Momenta Tree Attributes

With the objective of exploring the discriminatory power of the Momenta Tree attributes, we built
a Linear Regression model using the concatenated feature vectors of the Momenta Tree as input and
its sequential position as the target variable. For avoiding model evaluation bias, not all the training
data were used. We divided the data into two sets: 60% used for training data and 40% used for
testing data. We provide an evaluation of our model performance by using the standard error of
the estimate, see Equation 15, in the testing data. The standard error of the regression numerically
assesses how well a model fits the sample data, i.e., it is an absolute measure of the distances of data

points from the regression line.

Y -Y')2
Oost = v Z(% (15)

Here, Y is the target variable, Y’ the prediction, and N the number of data points.
We evaluate the Linear Regression models from synthetic perturbation datasets, whose results are

shown in Table 2. For instance, a result of 1.87 means a low error of almost two days in a prediction.
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Table 2: Standard Error of the Estimation of Synthetic Perturbations

Synthetic Standard Error of
Perturbation the Estimation
Contrast 0.9
Decreasing Anomalies 1.77
Resolution 2.09
Piece-wise Linear 1.87

5.1.8. Comparing MSE Results in Synthetic Perturbations

We also use the MSE metric, well-used in the related work, for the synthetic perturbations to com-
pare the characterization power of variations. Because of the limitation of pixel-wise comparison, all
image sizes must be the same. The similarity results are also shown in phylogenetic trees (Figure 18).
MSE captures the sequential variations in contrast, decreasing anomalies, and time-lapse piecewise
linear interpolation. Different resolutions affect the MSE-based comparison of simulated data from

numerical reservoir models to observed 4DS data.

5.2. Seismic AIP Data versus AS,, Maps from Simulation Models

The proposed methodology makes possible the comparison between domains without the need to
transform data. Thus, we used the methodology to compare AIP map (from 4DS data) and 500 AS,,
maps extracted from the numerical simulation models. To better analyze the results, we focused on
the data comparison in a region around the injector 22 of the case study, see Figure 19. In this case,
the 4D anomalies are related to water saturation changes caused by injection. This interpretation has
low uncertainty due to the existence of hardening effects, in agreement with the production strategy
(surrounding injectors wells). Therefore, this type of comparison is viable. For more complex cases
where competing effects exist and a 4D interpretation is ideally performed with a high degree of
reliability, this approach cannot be recommended.

The simulation models used are the results of well-production data assimilation. We measured
the quality of the well data matching using the Normalized Quadratic Deviation with Sign (NQDS)
netric [36], defined as

(>, (Sim; — Obs;)) . (>, (Sim; — Obs;)?)

NODS = |55 (Sim, — Obs)| * (31, (Obsi + Tol + C)2)

(16)

where 7 corresponds to a time instant, Sim; and Obs; are the simulated and observed data measured
at time 4, Tol is the percentage of tolerance defined by the observed data, and C' is a constant used

to prevent division by zero, in case the production rate is zero.
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Figure 18: Resulting phylogenetic tree comparing different synthetic perturbations with the MSE technique. Green
circles indicate correct positions and red circles indicate incorrect positions. The MSE sequentially captures the varia-

tions of contrast, decreasing anomalies and piecewise linear interpolation. The results show the limitations of the MSE
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approach, not only comparing images of the same size but at the same resolution.
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Figure 19: Seismic AIP map (m/s x g/em®) highlighting data belonging to the region around injector 22.

As we focus on the region around injector 22 (see Figure 19), we computed the NQDS for Bottom
Hole Pressure (BHP) and Water Injection Rate (Qu ) of this well. The closer to zero the NQDS
value, the higher the similarity between the simulated numerical model data and the historical data.
The well-matching quality of each of the 500 models is defined as the maximum absolute value from

both NQDS (see Equation 17).

color_index = max(NQDS_BHP,NQDS Qwr). (17)

The comparison was performed by generating a phylogenetic tree. As defined in Section 3.3, each
model is represented by a colored circle and the 4D seismic data by a black circle. The colors of the
circles represent the matching quality of well data based on Equation 17.

The distance between circles indicates the similarity of the maps, which can be related to the
distance between the AS,, maps from two models, or the distance between a model and 4DS data.

We generated one phylogenetic tree with the Momenta Tree strategy and another using the MSE,
considering the 500 AS,, maps extracted from simulated data of numerical reservoir models, compared
to the 4DS data, see Figure 20. These representations show the maps’ similarity and also the quality
of well history matching for injector 22.

The branches of models are conformed by those that have similar distribution of water-related
anomalies according to the two different metrics used. Branches in models with similar colors indicate
similar models, in terms of water movement and well-data-matching quality. For instance, the models
most similar to 4D seismic data, based on MSE, see Figure 20, present poor well matching quality;
the Momenta tree metric has identified as most similar models the ones with better well matching.

We also chose eight samples of the most similar models (bottom) and least similar models (top)
for each strategy. The images were used based on their original resolutions.

To obtain the desired MSE comparison, we used the small transformed resolution of the 4DS
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data and normalized the matrices. The Momenta Tree comparison was applied to data of different

resolutions and in different domains.
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(a) Mean Squared Error (b) Momenta Tree

Figure 20: 500 AS,, maps of simulated data (dimensionless) from 500 numerical reservoir models compared with seismic
AIP data (m/s % g/em?) using the Momenta Tree and MSE strategies. Blue circles indicate good models, green circles
indicate fair models, and red circles imply bad choices related to BHP and Qyy properties. We also chose eight samples

of the most similar models (bottom) and least similar models (top) for each strategy.

Note that MT is not based on the mere color difference, but on the comparison of the reservoirs
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as surfaces, observing both general details and specific regions. For this reason, the models found in
the top ranking may be a little different.

The results did not indicate which strategy is better for identifying the best fit to seismic data. For
that reason, we investigated the 10 (of 500) numerical reservoir models that are closer to the seismic
data for both chosen strategies. These models refer to the output of the well data assimilation, using
history matching. To rank the best 10 models selected based on their ability to fit 4DS data, using
different metrics, we can evaluate the quality of their production forecast.

We explored the local cumulative curves for injector 22 (INJ022), see Figure 21. Evaluating the
forecast behavior of water injection from INJ022, the 10 best scenarios selected by the Momenta Tree
are closer to the reference behavior than the best 10 scenarios selected by the MSE metric, with
the additional advantage of allowing the comparison of data between various domains and at various
resolutions. Certainly, reliable forecasts do not depend solely on the metric used to select the 10
models according to 4DS. It is important to consider how the models must be adjusted and how
complex the data are. The primary objective is to determine whether the dynamic behavior of the

models changes greatly using the MSE metric or the Momenta Tree.

‘Water Cumulative Injection - INJO22 ‘Water Cumulative Injection - INJO22

Tierm iclays) T {days]

(a) Mean Squared Error (b) Momenta Tree

Figure 21: Local cumulative curves of forecast injections for injector 22 (INJ022). The reference is shown in black, the
490 scenarios of the final iteration in gray, the 10 best MSE-based scenarios in pink, the 10 best Momenta-Tree-based
scenarios in green, and the transition between the historical and forecast period in red. When evaluating forecast
behavior, the best 10 scenarios selected by the Momenta Tree metric are closer to the reference behavior than the
best 10 scenarios selected by the MSE metric, with the additional advantage of permitting a comparison of data from

different domains and at varying resolutions.

By observing the NQDS behavior of the wells near to the region, we see an improvement of the
10 Momenta-Tree-selected scenarios in the BHP and of producers 05 and 14. The other values do not

present differences, see Figure 22.
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(b) Momenta Tree

Figure 22: NQDS behavior of the wells near to the region of injector 22. The 500 models are shown in gray, the 10
MSE-selected scenarios in pink, the 10 Momenta-Tree-selected scenarios in green, and the acceptance range in red. By
observing the NQDS behavior of the wells near to the region, we see an improvement of the 10 Momenta-Tree-selected

scenarios in the BHP and of producers 05 and 14. The other values do not present differences.

6. Conclusions and Future Work

We have presented a new method, Momenta Tree, to explore the similarity between 4DS data and
reservoir models using an image-based approach, which includes comparisons at different resolutions
and in various domains. This method relies on a precise definition and representation of the similarity.
The highest-ranked scenarios selected by the Momenta Tree exhibit closer behavior to the reference
case than those selected by a traditional metric, i.e., the MSE metric.

We generated a benchmark that considers the common perturbations observed in 4DS images. This
benchmark and a more representative case were used to analyze and evaluate the proposed method.
A potential for exploring the similarity between 4DS data and reservoir models through Momenta
Tree has been shown through these cases.

The analysis with noisy setups showed that MT strategy is much more robust than pixel-wise
comparison maps correctly sorting the images in most of the cases. On the other hand, MSE-based
methods are severely affected when noise is present and also when dynamic changes can happen with

the images (e.g., regions appear/disappear).
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The main contributions of this paper are:

e A novel strategy to compare simulated data from numerical reservoir models to observed 4DS

data at different resolutions and in various domains.

e A more robust strategy of comparing images that outperforms pixel-wise comparison methods
in different scenarios such as when considering different domains, dynamic environments with

changes in the analyzed maps and when noise is present.
e A coherent benchmark to assess the similarity between simulated data and seismic images.

Momenta Tree’s strategy is being very helpful, when we have the objective of comparing data that
are in different resolutions and in different orders of magnitude, which is common to find in seismic
data and data from simulation models, and mainly when we have some confidence in the interpretation
of the 4D signal being able to identify the dominant effect of the domain (fluid or pressure changes).
In the examples we considered hardening anomalies related to the water saturation change, due
to water injection, in which the Momenta Tree is able to compare in different domains. However,
different reservoirs can present anomalies due to a combination of dynamic effects (pressure variation,
gas saturation variation, and other effects) which reduces the viability of employing a procedure to
compare data in different domains.

In this work, we have used 3D data, 3D reservoir models and 3D volumes of seismic data. However,
we have performed data comparison in 2D. This is a common practice followed in 4D data assimilation
because seismic data usually has a lower vertical resolution than simulation models. Therefore, we
have generated maps, by doing a vertical average, of 4D signals to compare with the corresponding
vertical average of reservoir layers. For other types of reservoirs, thicker reservoirs, for instance, and
4D seismic data with higher quality, one might want to compare the whole 3D volume. In this case, our
approach can be adapted to consider properties for voxels and this would represent a very promising
future work.

Other future work might include, with the aid of domain experts, enhancements, such as providing
more information to the users about the best paths of numerical models in the phylogenetic tree. One
can also further evaluate the application using other studies, such as considering additional reservoir

anomalies, that could help identify weaknesses and strengths of the current methodology.

Acknowledgments

This work was carried out in association with the ongoing Project registered under number 20372-9
ANP the "Development of Integration between Reservoir Simulation and Seismic 4D - Phase 2 (Uni-

versity of Campinas [UNICAMP]/Shell Brazil/ANP), funded by Shell Brasil Petréleo Ltda. under the

27



O J oy Ul WN

OO OO OO U U OO OO DD DDDDDDDOLWWWWWLWWWLWWWWLWNDDDDNDNDDNDNDNDSNDSNNMSNNRERPRPRPRRRRRRE
Gad WNRPFPOWOJONUPDd WNEFEPFOWOJIJOHUDd WNEFPOWOOJOHUd WNEPEOWOWJOU D WNE O WOOJoUu bW O v

405

410

415

420

425

430

R&D ANP levy ”Investment Commitment to Research and Development. The authors are grateful for
the support of the Center of Petroleum Studies (CEPETRO-UNICAMP /Brazil), the Department of
Energy (DE-FEM-UNICAMP /Brazil), the Research Group in Reservoir Simulation and Management
(UNISIM-UNICAMP /Brazil), and the Energy Simulation. In addition, the authors thank Schlum-

berger and CMG for software licenses.

References

1]

K. D. Stephen, C. Macbeth, et al., Reducing reservoir prediction uncertainty using seismic history

matching, in: SPE Europec/EAGE Annual Conference, Society of Petroleum Engineers, 2006,
pp- 1-9.

A. Davolio, C. Maschio, D. J. Schiozer, et al., Local history matching using 4d seismic data and
multiple models combination, in: SPE Europec/EAGE Annual Conference, Society of Petroleum

Engineers, 2013, pp. 1-10.

O. Gosselin, S. Aanonsen, I. Aavatsmark, A. Cominelli, R. Gonard, M. Kolasinski, F. Ferdinandi,
L. Kovacic, K. Neylon, et al., History matching using time-lapse seismic (huts), in: SPE Annual

Technical Conference and Exhibition, Society of Petroleum Engineers, 2003, pp. 1-15.

P. Berthet, L. Barens, P. Prat, History matching of production data and 4d seismic data on
girassol field, in: SPE Europec/EAGE Annual Conference, 2008, pp. 1-5.

E. Tolstukhin, B. Lyngnes, H. H. Sudan, et al., Ekofisk 4d seismic-seismic history matching
workflow, in: SPE Europec/EAGE Annual Conference, Society of Petroleum Engineers, 2012,
pp. 1-14.

A. A. Emerick, Analysis of the performance of ensemble-based assimilation of production and

seismic data, Journal of Petroleum Science and Engineering 139 (2016) 219-239.

J.-A. Skjervheim, G. Evensen, S. I. Aanonsen, B. O. Ruud, T.-A. Johansen, et al., Incorporating
4d seismic data in reservoir simulation models using ensemble kalman filter, in: SPE Annual

Technical Conference and Exhibition, Society of Petroleum Engineers, 2005, pp. 1-10.

E. Tillier, S. Da Veiga, R. Derfoul, Appropriate formulation of the objective function for the
history matching of seismic attributes, Computers & Geosciences 51 (2013) 64-73.

R. Derfoul, S. Da Veiga, C. Gout, C. Le Guyader, E. Tillier, Image processing tools for better
incorporation of 4d seismic data into reservoir models, Journal of Computational and Applied

Mathematics 240 (2013) 111-122.

28



O J oy Ul WN

OO OO OO U U OO OO DD DDDDDDDOLWWWWWLWWWLWWWWLWNDDDDNDNDDNDNDNDSNDSNNMSNNRERPRPRPRRRRRRE
Gad WNRPFPOWOJONUPDd WNEFEPFOWOJIJOHUDd WNEFPOWOOJOHUd WNEPEOWOWJOU D WNE O WOOJoUu bW O v

435

440

445

450

455

460

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

R. Chassagne, D. Obidegwu, J. Dambrine, C. MacBeth, Binary 4d seismic history matching, a
metric study, Computers & Geosciences 96 (2016) 159-172.

S. Zahra, H. Hamdi, R. C. R. Mota, M. C. Sousa, F. Maurer, A visual analytics framework
for exploring uncertainties in reservoir models, in: International Joint Conference on Computer

Vision, Imaging and Computer Graphics Theory and Applications, SciTePress, 2018, pp. 74-84.

D. S. Oliver, Y. Chen, Recent progress on reservoir history matching: a review, Computational

Geosciences 15 (1) (2011) 185-221.

S. Danaei, G. M. S. Neto, D. J. Schiozer, A. Davolio, Using petro-elastic proxy model to integrate
4d seismic in ensemble based data assimilation, Journal of Petroleum Science and Engineering

(2020) 107457.

Z.Yin, T. Feng, C. MacBeth, Fast assimilation of frequently acquired 4d seismic data for reservoir

history matching, Computers & Geosciences 128 (2019) 30-40.

Y. Zhang, O. Leeuwenburgh, Image-oriented distance parameterization for ensemble-based seis-

mic history matching, Computational Geosciences 21 (4) (2017) 713-731.

A. Davolio, D. J. Schiozer, Probabilistic seismic history matching using binary images, Journal

of Geophysics and Engineering 15 (1) (2018) 261.

S. Suzuki, J. Caers, A distance-based prior model parameterization for constraining solutions of

spatial inverse problems, Mathematical geosciences 40 (4) (2008) 445-469.

C. Scheidt, J. Caers, Representing spatial uncertainty using distances and kernels, Mathematical

Geosciences 41 (4) (2009) 397.

S. Rojas, V. Demyanov, M. Christie, D. Arnold, Controlling the sedimentological realism of
deltaic reservoir models by the use of intelligent sedimentological prior information, First Break

32 (10) (2014) 69-72.

L. Jin, D. Weber, P. van den Hoek, F. O. Alpak, C. Pirmez, 4d seismic history matching using
information from the flooded zone, First Break 30 (7) (2012) 55-60.

D. Obidegwu, R. Chassagne, C. MacBeth, et al., Seismic assisted history matching using binary
image matching, in: SPE Europec, Society of Petroleum Engineers, 2015, pp. 1-22.

C. Zhu, G. Zhang, P. Lu, L. Meng, X. Ji, Benchmark modeling of the sleipner co 2 plume:
Calibration to seismic data for the uppermost layer and model sensitivity analysis, International

Journal of Greenhouse Gas Control 43 (2015) 233-246.

29



O J oy Ul WN

OO OO OO U U OO OO DD DDDDDDDOLWWWWWLWWWLWWWWLWNDDDDNDNDDNDNDNDSNDSNNMSNNRERPRPRPRRRRRRE
Gad WNRPFPOWOJONUPDd WNEFEPFOWOJIJOHUDd WNEFPOWOOJOHUd WNEPEOWOWJOU D WNE O WOOJoUu bW O v

465

470

475

480

485

490

[23]

[24]

[25]

H. Jeong, S. Srinivasan, Fast selection of geologic models honoring co 2 plume monitoring data
using hausdorff distance and scaled connectivity analysis, International Journal of Greenhouse

Gas Control 59 (2017) 40-57.

S. Rahim, Z. Li, Reservoir geological uncertainty reduction: an optimization-based method using

multiple static measures, Mathematical Geosciences 47 (4) (2015) 373-396.

C. Scheidt, J. Caers, Bootstrap confidence intervals for reservoir model selection techniques,

Computational Geosciences 14 (2) (2010) 369-382.

X. Luo, A. S. Stordal, R. J. Lorentzen, G. Naevdal, et al., Iterative ensemble smoother as an
approximate solution to a regularized minimum-average-cost problem: Theory and applications,

SPE Journal 20 (05) (2015) 962-982.

X. Luo, T. Bhakta, M. Jakobsen, G. Naevdal, Efficient big data assimilation through sparse
representation: A 3d benchmark case study in petroleum engineering, PLOS ONE 13 (7) (2018)
1-32.

J. Ghosh, A. Strehl, Similarity-based text clustering: a comparative study, in: Grouping Multi-
dimensional Data, Springer, 2006, pp. 73-97.

A. M. Cuadros, F. V. Paulovich, R. Minghim, G. P. Telles, Point placement by phylogenetic trees
and its application to visual analysis of document collections, in: IEEE Symposium on Visual

Analytics Science and Technology, 2007, pp. 99-106.

D. Knuth, The Art of Computer Programming: Fundamental algorithms, Addison-Wesley series
in computer science and information processing, Addison-Wesley, 1968.

URL https://books.google.com.br/books?id=9W2HtQEACAAJ

M. Santos, J. de Lope, et al., Orthogonal variant moments features in image analysis, Information

Sciences 180 (6) (2010) 846-860.

R. C. Gonzalez, R. E. Woods, S. L. Eddins, et al., Digital image processing using MATLAB.,
Vol. 624, Pearson-Prentice-Hall Upper Saddle River, New Jersey, 2004.

D. C. Anastasiu, G. Karypis, Efficient identification of tanimoto nearest neighbors, in: 2016
IEEE International Conference on Data Science and Advanced Analytics (DSAA), IEEE, 2016,
pp. 156-165.

N. Saitou, M. Nei, The neighbor-joining method: a new method for reconstructing phylogenetic

trees., Molecular Biology and Evolution 4 (4) (1987) 406-425.

30



O J oy Ul WN

OO OO OO U U OO OO DD DDDDDDDOLWWWWWLWWWLWWWWLWNDDDDNDNDDNDNDNDSNDSNNMSNNRERPRPRPRRRRRRE
Gad WNRPFPOWOJONUPDd WNEFEPFOWOJIJOHUDd WNEFPOWOOJOHUd WNEPEOWOWJOU D WNE O WOOJoUu bW O v

495

500

505

510

[35]

M. Lungu, K. Xu, Biomedical information visualization, in: Human-centered visualization envi-

ronments, Springer, 2007, pp. 311-342.

G. D. Avansi, D. J. Schiozer, Unisim-i: synthetic model for reservoir development and manage-
ment applications, International Journal of Modeling and Simulation for the Petroleum Industry

9 (1).

D. Alfred, S. Atan, J. G. Hamman, D. H. Caldwell, et al., Petro-elastic models-how many and
at what scale?, in: Europec/EAGE Conference and Exhibition, Society of Petroleum Engineers,

2008, pp. 1-9.

S. Lancaster, D. Whitcombe, Fast-track colouredinversion: 70th annual international meeting,

seg, expanded abstracts, 1572-1575 (2000).

A. Davolio, D. Schiozer, A proper data comparison for seismic history matching processes, in:

SPE Europec featured at 81st EAGE Conference and Exhibition, 2019, pp. 1-11.

R. M. Souza, Quantitative integration of 4d seismic and production data for saturation estimation

and fluid-flow model assessment, Ph.D. thesis, University of Western Australia (2017).

Computer Code Availability

The code of the Momenta Tree methodology is contained in the following link: https://github.

com/aurea-soriano/MomentaTreeSimilarity.git. The code was developed in Python using 64-bit

Python 2.7.6 and developed in PyDev 4.11 IDE, making use of the NumPy 1.15.2, and Scikit 0.17.

31



Highlights

Novel strategy to compare simulated data from observed 4DS data.
A robust image comparison strategy that outperforms pixel-wise comparison methods.

1

)

2)

3) Even at different scales, in various domains, and in noisy setups.
)
)

4) A coherent benchmark including a controlled case.
5) A local application to a more complicated synthetic reservoir case.
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