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ARTICLE INFO ABSTRACT

Keywords: History matching (HM) is an inverse problem where uncertainties in attributes are reduced by comparison with
History matching observed dynamic data. Typically, normalized misfit summarizes dissimilarities between observed and simula-
Iterative discrete Latin hypercube methodology tion data. Especially for long-time series, objective functions (OFs) aggregate multiple events and tendencies
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relevant to field performance in a single indicator (e.g. water rate and breakthrough time). To capture the
attributes influencing the reservoir behavior, we evaluate the assimilation of data series through additional OFs,
obtained from splitting time-series data. In this study, two additional OF groups supplement the time-series
misfits: Breakthrough Deviation (BD) indicating dissimilarities in water breakthrough time; Productivity
Deviation (PD), representing mismatches of the well potential, mainly impacting the transition from history to
forecast conditions. The Productivity Deviation (PD) is adapted from previous studies. Instead of simulating the
last time of the historical period under forecast conditions, we propose keeping it under historical data. The
change is the historical data used as target condition to the simulator: Bottom Hole Pressure (BHP) in place of
liquid production and water injection rates; with this, we estimate a mismatch in well productivity, while
avoiding the influence of other boundary conditions in the evaluation. Two applications (1 & 2), assimilating
different OF quantities, highlight the influence of the additional groups. Application 1 only computes time-series
misfit (64 OFs) whereas Application 2 includes the BD and PD (counting 128 OFs). The iterative HM method
presents flexibility regarding OFs assimilated and incorporation of uncertain attributes. UNISIM-I-H case allows
us to evaluate the HM considering history and forecast data. We examine differences between the 450 scenarios
resulting of data assimilation for each application through four perspectives. Application 2 resulted in scenarios
with better predictability of the field behavior and smoother transitions between field history and forecast
periods. Field cumulative oil production of Application 2 is also forecasted closer to the reference data when
compared to Application 1; all forecast periods (1, 5 and 19 years) emphasize this impact. Some wells presented
breakthrough time closer to the reference for Application 2. The challenging achievement of exact BD matches
leads to the third advantage of the additional indicators. These OFs supply supplementary information to the
diagnosis of scenarios, identifying unnoticed problems in the traditional approach. Finally, even with an overall
better performance, some of the well OFs presented poorer matches for Application 2. To explain this, we
analyzed the relationship between attributes and the OFs used to update the attributes. In conclusion, the im-
proved forecast of the simulation scenarios indicates that superior performance of the HM process is possible by
splitting the available dynamic data in relevant additional OFs. This study presents a case application with 11
years of field history, in which additional OFs, derived from dynamic data, add value to the reservoir char-
acterization. They allow the influence of uncertain attributes to be captured for relevant events in reservoir
performance. We also show how the increased quantity of OFs assimilated makes the HM harder for some OFs.
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1. Introduction

Reservoir simulation models are representations of real petroleum
fields used in production forecast and decision-making process. Closed-
Loop Reservoir Development and Management (CLRDM) endorses the
application of simulation techniques in all stages of the field lifetime.
CLRDM methodologies (Jansen et al., 2009; Wang et al., 2009; Schiozer
et al., 2015) integrate model-based optimization and data assimilation
to support decisions about the physical problem with uncertainties.
Silva et al. (2017) propose a closed-loop workflow, constructed with
ensemble-based method. They demonstrate the effectiveness of CLRM
to improve the predictability of the models, in contrast to ensemble-
based separated applications.

Data assimilation is a stage in the CLRDM known as History
Matching (HM) in the petroleum industry. It uses the observed dynamic
data to afford a better representation and predictability of the physical
model through simulation models. The HM is an inverse problem with
multiple possible solutions. The complexity to solve the problem in-
creases with dimensionality in terms of number of inputs and outputs.

A wide understanding on the inverse theory and history matching,
including explanatory examples, is available in the book of Oliver et al.
(2008). Oliver and Chen (2011) discuss the progress of diverse HM
processes in their paper, detailing advantages and disadvantages of
manual, evolutionary, Ensemble Kalman Filter based and Adjoint
methods. Rwechungura et al. (2011) summarizes the evolution of HM
techniques through the time and highlights aspects to the integration of
4D seismic. Maschio and Schiozer (2016) offer a more recent overview
about HM methods, classifying optimization, probabilitic and mixed
methods.

In the HM process, parameters of the reservoir characterization,
which are inputs into the reservoir numerical model, are uncertain and
represent undetermined reservoir features (fault transmissibility, for
instance). These uncertainties in the attributes influence dynamic pro-
duction estimated by the simulator and the asset team used this data to
understand flow and transport in the real petroleum field. The closer
the simulator output is to the dynamic data measured in the field
(production rate in specific period, for example), the better we expect
that the model represents the physical field. In this context, objective
functions (OFs) computes the difference between observed and simu-
lation data.

A reservoir analysis based on a deterministic approach considers
one or more scenarios that represent a partial set of the possible pro-
duction scenarios. Nevertheless, this approach can present biased re-
sults since it generates production forecasts without adequately ex-
ploring the range of production scenarios (Goodwin, 2015). In contrast,
the probabilistic approach represents the uncertainty toward the re-
servoir behavior. It supports reliable forecast by addressing questions of
risk and uncertainty in reservoir management. This approach in-
corporates the consideration of several sources of uncertainties in-
volved in the reservoir characterization process and measurement er-
rors in observed data (Maschio and Schiozer, 2017).

Some probabilistic methods allow the redefinition of the probability
distribution based on the OFs misfit, improving the reservoir knowledge
in terms of reservoir characterization. An example of a methodology
with this characteristic is the Iterative Discrete Latin Hypercube
(IDLHC), method developed by Maschio and Schiozer (2016). The
IDLHC is an automated probabilistic method to reduce uncertainty and
update probability of the uncertain attributes with nonparametric
density estimation. The process consists of applying a correlation ma-
trix to automatically identify relationships between uncertain attributes
and OFs. Due to its flexibility in terms of quantity of uncertain attri-
butes and OFs assimilated, it can be adapted to several scenarios of
reservoir characterization and information available.

In order to offer a broader understanding and representation of the
reservoir model, multi-objective and probabilistic HM processes have
been employed. These processes simultaneously evaluate the reservoir
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behavior through multiple quality indicators associated to observed
data in the production and injection wells (Almeida et al., 2014; Kam
et al., 2017). Hutahaean et al. (2015) showed that an ensemble of
matched scenarios from multi-objective HM provides a more diverse set
of matched-scenarios, which leads to a better comprehension on the
forecast behavior.

Nevertheless, since multi-objective-HM performance (convergence
speed and match quality) can deteriorate under an increasing number
of objective functions, Hutahaean et al. (2017) investigates the selec-
tion of objective grouping for multi-objective HM. Min et al. (2014)
developed an evolutionary algorithm to overcome inefficiencies of
multiple-objective constraints by introducing preference-ordering and
successive objective reduction to the conventional multi-objective op-
timization module.

Several studies evaluate the influence of the OF definition in the HM
process. For example, Tillier et al. (2013) focused in defining a for-
mulation for incorporating seismic data in the process; Bertolini and
Schiozer (2011) compared eight global OFs in the history matching
process by assessing the matching quality of synthetic reservoir model.

A normalized misfit called Normalized Quadratic Deviation with
Sign computes the difference between simulated and observed data
(Avansi et al., 2016). This OF summarizes time-series curves for a
scenario (Fig. 1-a) in a single indicator (Fig. 1-b) and is useful in
probabilistic and multi-objective HM approaches (more details in the
NQDS section). An acceptance range [-y, + y] supports the classifica-
tion of the scenarios taking into account the sources of errors con-
sidered (e.g. noise in the history data, measurement errors, level of fi-
delity of the reservoir simulation model).

Due to the high quantity of observed data, especially for long time
series, these OFs aggregate into a single indicator, events and tem-
porary trends relevant to reservoir performance. For example, water
breakthrough time and changes in the Gas-Oil Rate (GOR) are relevant
for the field management; well production trends evolve over time
under distinct reservoir conditions (e.g. recovery mechanism from
natural flow to water/gas injection to pressure maintenance). Different
uncertain attributes can influence these events and temporary trends.
Once aggregated in a single OF, the relationship between uncertain
attributes and OFs may be difficult to capture with mathematical
structures as correlation matrix.

Splitting the conventional NQDS into more objective functions is an
alternative approach to better understand the reservoir from the dy-
namic data available. Almeida et al. (2018) presented an introductory
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Fig. 1. Typical NQDS graphic summarizing data from several scenarios: (a)
Curves of oil production rate plotted against time, adapted from Avansi et al.,
(2016): History data (blue points), selected scenarios that are within an ac-
ceptance range * vy (in gray lines), scenarios with production rates higher and
lower than the acceptance range (in brown and red lines respectively); (b)
NQDS plot applying the same legend colors, where each dot corresponds to a
production rate curve. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)
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study with the application of unconventional OFs to measure the de-
viation of specific events (Breakthrough Deviation and Productivity
Deviation). Each additional OF captures specific well behaviors (not
mapped by the conventional OFs) that are influenced by distinct un-
certain attributes. Then, the uncertain attributes update process con-
siders the constraints established by both conventional and unconven-
tional OFs. Because of this, the relationships identified between the
unconventional OFs and uncertain attributes improved the reservoir
calibration and uncertainty reduction process.

1.1. Objectives

This paper aims to evaluate the assimilation of dynamic data series
in a way to capture deviations in the breakthrough time and in the well
productivity. With that, we aim to assess the possibility of gathering
more information from available dynamic data series in the HM pro-
cess, which improves the reservoir behavior predictability.

When compared to the definitions of Almeida et al., (2018), we
propose a distinct way to simulate the scenarios to better capture the
physics that surround the well productivity. The proposed computation
of Productivity Deviation avoids the influence of other sources of in-
formation, such as platform and well capacities, required in the pre-
vious work of Almeida et al., (2018). Moreover, this study assesses the
additional OFs as a source of information to reveal reservoir behavior,
not explored in previous works.

We adapt a history matching methodology (IDLHC from Maschio
and Schiozer, 2016) to consider the additional groups of Objective
Functions for updating the uncertain attributes and use the same
parameterization presented in that paper. Maschio and Schiozer 2016,
2018 tested the IDLHC methodology and compared it to other meth-
odologies, assuring the quality of the history matching procedure.

2. Theoretical background

After describing the main aspects of the probabilistic HM metho-
dology, this section details the objective functions applied to this pro-
posed work.

2.1. Iterative Discrete Latin Hypercube (IDLHC)

The main advantage of the probabilistic IDLHC methodology pro-
posed by Maschio and Schiozer (2016) is to simultaneously assimilate a
large number of OFs to update probability distributions of uncertain
attributes. Additionally, the process is flexible in terms of quantity of
uncertain attributes and OFs assimilated, being adapted to several
scenarios of reservoir characterization and information available. This
HM process generates multiple history-matched scenarios per iteration
and the last set of scenarios is useful for prediction and optimization
studies. In the IDLHC general workflow (Fig. 2), the uncertain attributes
parameterized in the beginning of the process (Step 2) are the same
until the last pre-defined iteration (Iter.,). In each iteration, a set of
scenarios representing the distribution of uncertain attributes is gen-
erated with Discrete Latin Hypercube (DLHC) sampling (Step 3) con-
ceived by Schiozer et al. (2017).

After running these scenarios in the flow simulator (Step 4), NQDS
computation quantifies the misfit between scenarios and observed data
for each scenario and objective function (Step 5). In Step 6, selected
scenarios are used for the generation of posterior distribution for each
uncertain attribute. Maschio and Schiozer (2016) proposed three ap-
proaches to update the probability density function (pdf) of the un-
certain attributes. Fig. 3 details method 3, chosen for this study.

A cut-off (R.) applied to the coefficients of the correlation matrix
(Step 6.1) indicates the existence of relationship between uncertain
attributes and objective functions. The AI attributes considered corre-
lated to at least one OF are updated. The updating routine starts in Step
6.2 with the first attribute to update, continuing until the last attribute
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Fig. 2. General workflow for probabilistic history matching (Maschio and
Schiozer, 2016).
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Fig. 3. Flow chart from scenario selection, method 3 (Maschio and Schiozer,
2016).

(AD. The iterative process around Steps 6.4 to 6.5 guarantees two re-
quirements: (a) a quantity of scenarios between a minimum (P1) and a
maximum (P2) percentage of the scenarios sampled to avoid the col-
lapse of the pdf, and (b) the selection of scenarios with smallest com-
puted misfit.

Then, a nonparametric density estimation technique (Step 6.6) leads
to updating of uncertain attributes generating histograms representing
the posterior distribution of each attribute. These posterior distribu-
tions are the prior distributions for the next iteration. The iterative
process of Fig. 2 continues for the number of iterations predefined
(Itermax)-

2.2. Normalized misfit as indicators of HM quality

In history-matching processes, indicators of quality for a scenario
quantify the misfit between the simulation scenario and observed data.
Four possible applications are to:

a) conduct the HM process, as objective functions to be minimized;

b) provide data to update the uncertain attributes;

c) diagnose scenarios revealing and guiding the review of reservoir
characterization;

d) support the evaluation of performance when comparing different
methodologies.
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We detail the two out of three normalized misfit groups applied in
Step 5 of the HM methodology (Fig. 2): NQDS and NQDSgp (NQDS of
Breakthrough Deviation). In the methodology section we present the
third normalized misfit group NQDSpp (NQDS of Productivity Devia-
tion), because it is subject of modification from previous work.

2.2.1. NQDS

NQDS (Avansi et al., 2016, modified) consolidates the misfit be-
tween history and temporal data series of production and injection
wells. For example, NQDS,,,-Well 1 represents the misfit of water rate
production for the Well 1 considering a time interval simulated for a
given scenario. Similar notation applied to other data series, for ex-
ample, oil production rate (NQDSy,), production BHP (NQDS,p),
water injection rate (NQDS;,) and injector BHP (NQDS,p).

Equation (1) computes the NQDS:

(Z":I Simy = Oby ) Zjoa (Sim; — by’

|3, Sim; — Obs;| 3 (Tol:Obs; + C)°

NQDS =
@

where Sim; and Obs; are the simulated and observed (historical) data
measured at the time j. Tol is the tolerance value (%) defined by the
user for each data series; C is a constant used to avoid null or ex-
cessively small divisor, in case the production rate is close to zero (for
example, water production rate in a recently opened well). Physically,
the constant C represents the minimal tolerance for a given data series.

2.2.2. Water breakthrough deviation (NQDSgp)

Water breakthrough is the time when water first reaches the pro-
duction well. In the field management, this measured time and sub-
sequent Water-Oil Ratio (WOR) trends are usually key performance
indicators that also can be indicative of channeling and bypassing
problems in the field (Baker, 1998).

The historical data of water production in wells is source of two-
combined information: (a) water production rate through time, and (b)
breakthrough time. In this sense, Almeida et al. (2018) adapted the
NQDS as a punctual normalized misfit for breakthrough time (Equation
(2)), the NQDSBD:

(BTsim - Bnb:) *(BTsim - B’E)bs)z

NQDSpp =
T T (AE)?

(2

where BT is the Breakthrough Time and AE is the Acceptable Tolerance,
for example, the maximal time between two consecutive measures of
water production. A water rate cut-off to consider water breakthrough
time avoids erroneous capture of breakthrough time: smaller water
production rates when compared to this cut-off value are treated as
residual water production. Even if the water breakthrough has not yet
occurred in a given well at the historical period, it may add information
to the HM process if some simulation scenarios have earlier break-
through time.

Fig. 4-a exemplifies water production against time for history data
and some scenarios. The gray lines represent scenarios with production
rate and breakthrough time within the acceptance range [-y, + y].
Scenarios 1 and 2 (brown and red lines) have early and late break-
through time, respectively. Dashed and solid lines correspond to sce-
narios with matched and non-matched water production rates. The
diagnostic of the NQDS,, plot (Fig. 4-b) only identifies mismatches in
the water production rate, keeping the two dashed scenarios within the
acceptance range. On the other hand, the NQDSgp plot (Fig. 4-c)
identifies the difference of water breakthrough time for Scenarios 1 and
2. In this graph, two scenarios superpose in the extreme values of
NQDSgp because the breakthrough time is identical for dashed and solid
lines.
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3. Methodology: productivity deviation, case study, applications
and assumptions

3.1. Productivity deviation (NQDSpp)

The transition between history and forecast period can cause fluid
rate and bottom-hole-pressure fluctuations (Ranjan et al., 2014). In fact,
at this point, the controls of the simulation scenario (boundary condi-
tions) changes: in the history period, liquid or oil production rates are
treated as targets; during the forecast period, production restrictions are
established (for example, minimal and maximal bottom-hole-pressure
for producers and injectors and platform capacity). A possible cause of
unconditioned reservoir scenarios is uncertain parameters, which can
be wrongly defined or missing during the parameterization.

As large fluctuations in the transition indicate non-realistic fore-
casted production rates, Almeida et al. (2018) defined an indicator
related to the productivity of the well. The normalized misfit of Pro-
ductivity Deviation (NQDSpp) splits the historical dynamic data from
wells into two parts simulated differently: (a) history controls, (b)
forecast controls. This original implementation of the NQDSpp, follows
the simulation scenario by changing the control of the last history date
from history control to forecast control.

In practical terms, history conditions usually include a target for
liquid or oil production rate for the producer wells and forecast con-
ditions apply operational conditions as minimal pressure for producers.
Additionally, the simulation of the scenarios in the history period is not
conditioned by platform and well restrictions, which is indispensable to
perform the forecast simulation.

Two possible limitations may arise from the use of operational
conditions to simulate the history period (as presented by Almeida
et al., 2018). Firstly, coupling operational conditions in the reservoir
simulation requires information that may be uncertain, for example,
description of the multiphase flow in wells. Secondly, applying multiple
restrictions simultaneously (e.g. well and platform capacities) poten-
tially limit the identification of productivity mismatch.

Therefore, we propose an adaptation to the condition given to the
last time step of the history from the one presented by Almeida et al.
(2018). The measured BHP in the wells are the targets for production
and injection wells, meaning that we change the data informed to the
simulator. In this way, we limit the informed boundary condition to
measured history data. This implementation of the PD indicator is
generalizable and independent of other sources of data.

The modifications, in the last time step, of the simulation file are: (a)
to reset non-restrictive maximal liquid production and injection for the
wells (instead of non-restrictive maximal and minimal pressure applied
to previous time steps, i.e. all-time steps except the last one); and (b) to
inform the registered pressure for each well as new target condition
(instead of informing well rates applied to the previous time steps).

Fig. 5-a exemplifies, for a given producer well, the deviation for
BHP informing the history pressure in the last time t of history. It il-
lustrates most of the scenarios converging the target BHP condition
because (1) liquid rate (Fig. 5-b) has no production limit (qjmi, = 0) and
(2) a virtual maximal liquid rate is used to avoid simulation errors
(qlmax > (11)

The calculation of the productivity deviation applies to both pro-
duction wells (e.g. for liquid rate - NQDSppg; - and BHP - NQDSppypsn)
and injection wells (e.g. water rate - NQDSpp;, - and BHP - NQDSppyin).
Equation (3) computes the NQDSpp:

_ (Sim; — Obs;) _ (Sim; — Obs;)?

NQDSpp = *
QDSrp ISim; — Obs;| (tolObs, + C)?

3)

where Obs; and Sim, indicate the observed and simulation value in the
last time (t) of the history data.

The NQDSppy; plot (Fig. 5-c¢) indicates the deviation of simulated
scenarios compared to the reference data. We consider that the
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scenarios in gray better present well productivity. Therefore, we expect
that scenarios with smaller PD will provide better production predic-
tions.

3.2. Case study

We applied the IDLHC methodology (Fig. 2) in the UNISIM-I-H re-
servoir model (Avansi and Schiozer, 2015). This benchmark case is
based on real data from the Namorado Field, a marine offshore turbidite
reservoir in the Campos Basin — Brazil.

The model UNISIM-I- H (Fig. 6) has a production strategy with 14
producer wells and 11 injection wells and a production history of 11
years (4018 days) available. The production forecast data for 19 years
allows for the evaluation of methodologies in terms of predictability of
the scenarios.

3.2.1. Initial parameterization

The parameterization defined in Step 2 (Fig. 2) has 39 uncertain
parameters as defined by Maschio and Schiozer (2016). Fig. 6 retakes
the 13 regions defined according to producer/injector pairs, attempting
to capture the main drainage areas. Each region has multipliers of
porosity (mpor), horizontal permeability (mkx) and vertical perme-
ability (mkz). Isotropic permeability is taken for x and y direction; in-
itial pdf has uniform distribution for all levels. Table 1 summarizes
these uncertainties.

3.3. Applications

Two applications performed in this study compute different groups
of OFs:

e Application 1: 64 OFs, groups of NQDS,,, NQDS,, NQDS,, for
producer wells and NQDS;,, NQDS,,, for injector wells;
e Application 2: 128 OFs resulting from adding the 64 OFs of

Liguid Rate
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5 Fig. 4. Breakthrough Deviation illustration - (a) Water
production rate series for history data and several sce-
narios exemplifying differences between the information
relative to water production rate and breakthrough time;

B (b) NQDSg,, plot summarizing the production curves for
U%j ! the scenarios; (c) NQDSgp, highlighting the mismatch in
= _e.| water breakthrough time for the scenarios.
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Fig. 6. Bi-dimensional x-y view of the UNISIM-I-H with the position of the 13
regions defined by Maschio and Schiozer (2016). The production strategy
contains 14 production wells (in red) and 11 injection wells (in green). Wells
analyzed in detail in the Results and Discussion section are identified: INJO15,
NA3D, PROD025A, PROD023A and PROD024A. (For interpretation of the re-
ferences to color in this figure legend, the reader is referred to the Web version
of this article.)

Table 1
Uncertain attributes presented by Maschio and Schiozer (2016).

Time

Uncertain attributes (for Minimum Maximum Number of Initial pdf
each region) levels
mpor 0.8 1.2 30 Uniform
mkx 0.1 5.0 30 Uniform
mkz 0.1 5.0 30 Uniform
Well
a _rk
5 =S i
® History h Z ]
Selection % *
—scenarios 1
—Scenarios 2 o
: e
Time t &
(b) (c)

Fig. 5. Productivity Deviation illustration - (a) BHP being informed only in the last time step of the history period; (b) Liquid production rate informed for all time
steps except the last time steps, where non-restrictive conditions are reset; (c) Indicator of Productivity Deviation for liquid production.
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Application 1, plus the additional OF groups (NQDSgp, NQDSppg,
NQDSPDppbh’ NQDSpp;, and NQDSPDpibh)-

In the Results and Discussion section, we compare their results for the
field and wells in the history and forecast period.

3.4. Assumptions

Table 2 summarizes the constants and tolerances for each OF ap-
plied in the calculation of the normalized misfit. Like Avansi et al.
(2016), we defined 5% for controlled-data series (NQDS;,); 10% for
data series that are dependent on other series (NQDSy, and NQDS,,
which are related to liquid rate, a target in the history period). Pressure
related NQDS considers a tolerance of 5%. We applied a constant of
10 m*/day for NQDS,,, to moderate its impact on wells with low water
rate production through a representative part of the history period. For
example, the well NA3D production (Fig. 7) reaches a maximum of
150 m3/day and for this production, the tolerance adds up to
10 + 0.10*150 = 25 m®/day. Higher constant would imply in smaller
influence of the variations in g, of this well in the updating process.

NQDSpp has an AE of 31 days, the maximum interval between
measurements. Productivity deviation are under forecast controls and
under uncontrolled conditions. Therefore, we chose a tolerance of 10%
for NQDSppg; and NQDSppy,, defining a minimal tolerance of 10 m>/day
for liquid production.

The cut-off applied to consider water breakthrough is 1 m*/day for
all the producers, except for NA3D with 6 m®/day. Fig. 7 shows the
observed water production rate for this well, highlighting the portion of
water rate considered residual. Applying 1 m®/day cut-off for this well
would mean to consider the breakthrough time of 669 days, which does
not correspond to the effective breakthrough time of 3226 days.

Considering the recommendations proposed by Maschio and
Schiozer (2016), the applications consider:

® 450 simulation scenarios per iteration in Steps 3 and 4;

e A cut-off R, = 0.3 to the coefficients of the correlation matrix in Step
6.1;

e An increment of the normalized misfit § = 1 in Step 6.5;

e A minimum PI = 5% and a maximum P2 = 15% of scenarios sam-
pled to update the attributes;

e A maximal number of iterations Iter,,, = 8, set in the beginning of
the process.

Moreover, to guarantee the reproducibility of the applications, the
first run of the applications uses the same seed, following the random
numeric generation twister.

4. Results and discussions

To evaluate the assimilation of dynamic data series breaking down
the conventional NQDS into more objective functions, we firstly ex-
posed their impact with an overview of the indicators for the wells
together with the field behavior. Then, examples of additional OFs of
some wells were used to complement the discussion. We decided on
that approach because details for each of the 128 OFs individually were
not feasible, with multiple relationships between OF and uncertain at-
tributes.

The plots presented in this section consider the 450 scenarios of the
8th iteration in the HM process. In order to promote a clean visuali-
zation of the impact in the forecast period and avoid fluctuations from
changing boundary conditions, these final scenarios were simulated
again with liquid production and water injection rate as target during
all the history period and the same operation conditions of the re-
ference case in the forecast period.
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Table 2
Constants used to calculate normalized misfit.
OF C (unit of the variable) Tol (%)
NQDS, 0 10
NQDS,,, 10 10
NQDS,pon 0 5
NQDS;, 0 5
NQDS,ipi 0 5
NQDSgp AE = 31 0
NQDSppg: 10 10
NQDSppppbh 0 5
NQDSppiw 0 10
NQDSpppibh 0 5
200
= History

- Water

3 breakthrough, of
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Fig. 7. Water production rate for well NA3D in the history period.

4.1. History period

The compilation of the results for the OFs allows for a broader
evaluation on the general behavior of the wells resulting from the im-
plementation of the additional OFs. Fig. 8 presents graphics for several
OFs groups plotting the number of scenarios against the NQD' interval,
from zero to the x-axis value. The higher the proportion of scenarios for
a given NQD interval, the better. The x-axis is in logarithmic scale.

The assimilation of additional OFs (Application 2) reduces the
mismatch of the OFs groups that have higher NQD values in Application
1 (NQDSppg; and NQDSppy, Fig. 8-a and -b). In contrast, the increased
complexity of the HM through the assimilation of additional OFs leads
to increasing the NQD values of traditional OF groups, exemplified by
NQDS,, (Fig. 8-c).

This analysis indicated that a comparison based only on the history
period is insufficient. Therefore, in the next sections, we explore fore-
cast data available for the benchmarking case.

4.2. Transition from history to forecast period

During the history period, the water injection rate is a target for the
injection wells in the simulation. We expect scenarios very close to the
reference data in this period. Nevertheless, the transition to the forecast
period (Fig. 9-a) shows fluctuations in the field rate when compared to
the reference data. Application 2, including the additional OFs (in
brown), provides less fluctuations and smother transition than Appli-
cation 1.

The average reservoir pressure (Fig. 9-b) presents a bias for both
applications in most of the history period: all the scenarios have re-
servoir pressure below the reference, and limited variability is ob-
served. This is related to the fact that the initial liquid volume in place
(oil and water) of the scenarios are smaller than the reference model
(between 87-92% and 88-97% for Applications 1 and 2, respectively).
Some scenarios of Application 2 are closer to the reference pressure in

1 NQD (Normalized Quadratic Deviation) is the absolute value of the NQDS.
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Fig. 9. Distinct field behavior observed for the final scenarios of the Application
1 (in green) and the Application 2 (in brown) including the history period (4018
days) added to 5 years of production forecast: (a) Field water injection rate with
smaller fluctuation in the transition for the final scenarios of the application
that considers additional OFs; (b) Reservoir average pressure with a bias for
both application in most of the history period, but Application 2 scenarios with
better forecast and larger variability. Note: Application 1 assimilates 64
Objective Functions traditionally applied in the IDLHC methodology, and
Application 2 considers 128 Objective Functions consisting in the traditional
and proposed ones. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)

graphs support that the inclusion of the new OFs has the potential to
positively influence the predictability of field behavior.

In the next sections, some OFs illustrate the results in terms of well
behavior, individually.

4.4. Break through deviation

The assimilation of NQDSgp, in Application 2 leads to the improve-
ment of the breakthrough time of the scenarios for most wells. From the
analysis of importance of the OFs groups assimilated in the application
(Appendix A), Breakthrough Deviation was the additional OF group
that contributed the most in the Application 2. Fig. 11 shows the water
production rate, NQDS,,, and NQDSgy, for the well PROD024A. Appli-
cation 2 presents smaller breakthrough deviation than Application 1. In
addition, the water rate of Application 2 is closer to the reference when
compared to Application 1.

Water production of the well NA3D (Fig. 12-a) indicates that neither
water rate nor breakthrough time match the history data for both ap-
plications. The inclusion of the NQDSgp, in the process was not sufficient
to adjust the water breakthrough time (Fig. 12-b) and, for some sce-
narios, lead to a worse water rate production (Fig. 12-c). In fact, the
parameterization is limited to the regional multipliers and this result
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Fig. 10. Forecast period, risk curves for the scenarios

Forecast period, 5 years

iter 1 I 1

. Applic. 1, iter 8 : | 1
o 08f . Applic.z.i:ersl -g 0.8 1
e = = History I =
Ro6t 1 206 1
T 1 g 1
= 04 I o 04 1 i
g E 1 iter 1

| | Applic. 1, iter 8
O o2 O o2 1 «  Applic. 2, iter 8
= = Hislory
0 i aseet 7 " L 0 - :
25 20 35 35 40 45 50
. L 3
Np, million m* Np, million m
(@) (b)
Forecast period, 19 years
i_' ter1 |1
" Applic. 1, iter 8| |
o 0.8 «  Applic. 2, iter 8
E — = History I
206 1
®
£
E‘ 0.4
=
Oo2
0 ! i
30 40 50 60 70
Np, million m*
(c)
PROD0Z 3]
800 RO 3 30[_! 1000 £
] | E
ER 20} oo h 2
600 ot - . . . 2

7 Minimal difference in the . s;-] s m!l h H [l
o = " | (o] ic.
gl breakthrough time for Applic. 2 E; T g of- 8- 0 aiﬁ&iﬁz
3 ' o % o0
& 201

_3{;!, 1000
(3] >
A a¥
0 1000 2000 3000 4000 & &
Time, days o Qq-o
* History — Applic. 1 - - = Applic. 2‘ < (c)
@ (b)
NA3D T | o1
800 150
5000 100

5, 600 | ” .

g Difference in the breakthrough = ¢ 50 _
= time for both applications = 8 oApplic. 1
g 400 i > 8: T a4 1 [ 2Awplic. 2

{ i > Z -0 —

T 200 ! -100

! -5000
o _J.h . 150
0 1000 2000 3000 4000 L2 F
Time, days ‘bo b o
é‘” <
[ + History — Applic. 1- - -Applic. 2 (c)
(a) (b)

indicates the need of adding different uncertain parameters, for ex-

ample, flow barriers with uncertain transmissibility.

Therefore, a benefit of the additional OFs is to assist the identifi-
cation of limitations in the reservoir parameterization defined. The
analysis of these extra indicators of reservoir quality can be useful when
reviewing the reservoir parameterization by supplying supplementary
information to the scenarios’ diagnostics, identifying unnoticed pro-

blems in the traditional approach.

4.5. Productivity deviation

of iteration 1 and iteration 8 for the two Applications
for: (a) 1 year; (b) 5 years and (c) 19 years. Note:
Application 1 assimilates 64 Objective Functions
traditionally applied in the IDLHC methodology, and
Application 2 considers 128 Objective Functions
consisting in the traditional and proposed ones.

Fig. 11. Well PROD024A: (a) Water pro-
duction rate for the 450 scenarios of both
applications in the history period; (b)
Indicative of better NQDS,,, for Application
2; (c¢) NQDSgp of the well PROD024A re-
vealing improvement in the BD, but still
with a significant mismatch. Note:
Application 1 assimilates 64 Objective
Functions traditionally applied in the
IDLHC methodology, and Application 2
considers 128 Objective Functions con-
sisting in the traditional and proposed ones.

Fig. 12. Well NA3D: (a) Water production
rate for 450 scenarios of each application;
(b) NQDSg, revealing large mismatch for all
scenarios of both applications; (c) NQDS,
with some scenarios in the same range for
both applications. Note: Application 1 as-
similates 64 Objective Functions tradition-
ally applied in the IDLHC methodology, and
Application 2 considers 128 Objective
Functions consisting in the traditional and
proposed ones.

With the implementation of NQDSpp, we observe an improvement
in the transition from history to forecast periods for several wells as
expected from the field results (Fig. 9). The objective functions related
to water injection rate and liquid production rate have higher impact in
the history matching process. In Appendix A, we show that this OFs

groups are used to update a higher number of uncertain attributes when
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Fig. 13. Well NA3D: (a) Bottom hole pres-
sure of well NA3D with history data and 5
years of forecast (total 5844 days), (b)
NQDS,5, and (c) NQDSpppsn highlighting

oApplic. 1 | the differences between the applications.
a Appl!c' 2 Note: Application 1 assimilates 64 Objective
PPIIC. 2 | Eynctions traditionally applied in the

IDLHC methodology, and Application 2
considers 128 Objective Functions con-
sisting in the traditional and proposed ones.

(c)
Fig. 14. Well INJO15: (a) Water injection rate of well
with history data and 5 years of forecast (total 5844
days), (b) NQDSpp;, highlighting the fluctuations in the
last point of the history data simulated with forecast
~ conditions. NQDS;, omitted because all scenarios mat-
[e] Applic_ 1 ched the history data. Note: Application 1 assimilates 64
AApplic. 2 Objective Functions traditionally applied in the IDLHC
——  methodology, and Application 2 considers 128 Objective
Functions consisting in the traditional and proposed ones.

(b)

10— Fig. 15. Well PROD023A - (a) Bottom hole
§ pressure of well with history data and 5
5}-a years of forecast (total of 5844 days); (b)
:—_ 2 NQDS,,;,  showing the scenarios of
E 3 _ Application 2 (in brown) limited to models
n g gﬁgﬂgé with higher-pressure levels than the re-
g, — - ference, meanwhile, Application 1 (in
Z, green) has more scenarios in the range [-10,
-5 +10]; (c) NQDSpp,psn showing that the as-
similation of additional OFs is not beneficial
10— for some OFs. Note: Application 1 assim-
"'a‘b? ilates 64 Objective Functions traditionally
QQ applied in the IDLHC methodology, and
Qvo Application 2 considers 128 Objective
3 © Functions consisting in the traditional and

proposed ones. (For interpretation of the

references to color in this figure legend, the reader is referred to the Web version of this article.)

compared to NQDSpp,psn 0r NQDSpppin. The justification for this be-
havior refers to the definition of Productivity Deviation setup, which
has BHP define as boundary condition to the last time step (target in-
formed to the simulator). We select as example production well (NA3D)
and injection well (INJO15) to exemplify the positive impact of the
assimilation of the additional OFs.

Fig. 13-a presents BHP for the well NA3D during history and fore-
cast periods with a total of 5844 days (5 years of forecast). The plots
NQDSp,5n and NQDSpppsn (Fig. 13-b and -c) highlight pressure of the
well closer to the reference (Application 2) data and with more varia-
bility around the history pressure than Application 1. In this sense, the
scenarios of Application 2 are considered better conditioned than those
in Application 1 for the OFs analyzed. Jointly, these graphs provide
evidence that scenarios with smaller indicators of Productivity Devia-
tion provide better forecast behavior.

The transition of water injection between history and forecast
period improved for several wells. The injection rate for well INJO15
(Fig. 14-a) and its corresponding NQDSpp;,, (Fig. 14-b) is an example of
better conditioning of scenarios in the transition.

4.6. Detailing some OFs with poorer match

We also observe some objective functions with higher misfit for
Application 2 than for Application 1. For these OFs, the addition of the
unconventional OFs is not beneficial.

In our example, we explore the OFs of the well PROD023A. We
detail this analysis from the bottom hole pressure for the history and 5-
years forecast period (Fig. 15-a). Highlighted by the NQDS plots
(Fig. 15-b and -c), the scenarios of Application 2 are limited to scenarios
with higher-pressure levels than the reference. At the same time,
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Fig. 16. Matrix identifying the correlations captured in the 8 iterations for the
group of 64 conventional OFs, Application 1. Black color means that the cor-
relation was of higher value than the cut-off R, in all the 8 iterations. White
color means that the correlation coefficient is lower than the cut-off R, in any
iteration. The transitional colors correspond to intermediate values between 0
and 8 iterations, as presented by the legend. The orange lines highlight the
intersection between attributes and OFs mentioned in the text. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.)

Application 1 presents scenarios with higher variability, including
scenarios with lower pressure values and closer to the reference.

The mkz of the region 12 influences only the NQDS,,, well
PRODO023A in the Application 1 (Fig. 16) but 6 OFS in the Application 2
(NQDSp5n, NQDSppppp, of the well PRDO23A and NQDSpp; of the wells
PRODO023A, PROD024A and PRODO025A, Fig. 17). For the second ap-
plication, in order to provide a better match for NQDSpp,; PROD025A,
this uncertain attribute is updated in a detrimental manner from the
perspective of the other OFs.

We investigate this effect through the correlation matrix, identifying
the relationship between uncertain attributes and OFs. In the IDLHC
methodology (Fig. 3, step 6.1), the correlation matrix with the cut-off R,
captures this relationship for each of the 8 iterations. The number of
iterations that a given OF is correlated to an uncertain attribute is
added up and presented in two plots: Figs. 16 and 17 consider tradi-
tional and additional OFs, respectively. Each line corresponds to an
uncertain attribute. In Fig. 16, the R12 line corresponds to the region
12. White color means that the correlation coefficient is lower than the
cut-off Rc in any iteration. Black color means that the correlation is
higher than the cut-off Rc in all the 8 iterations. The transitional colors
correspond to intermediate values between 0 and 8 iterations.

The groups of the 64 conventional (Fig. 16) and additional OFs
(NQDSgp and NQDSpp — Fig. 17) are plotted in the matrix with the
uncertain attributes. Our focus is on the behavior of the objective
functions influenced by mkz (R12), marked with vertical lines in the
plots. The analysis of the attribute mkz (R12) is direct because the only
conventional OF correlated to it is the NQDS,,,,-PROD023A. Fig. 16 is
built with data from Application 1. The attributes for vertical perme-
ability multiplier (mkz) of region 12 are marked with a horizontal line
because it influences the NQDS,,;,-PROD023A. Because Application 2
has this same relationship, we do not present correlation matrix com-
puted for the additional OFs.

For Application 2, the NQDSppppn of the well PROD023A (Fig. 15) is
highlighted together with the other OFs influenced by this attribute
(vertical lines).

We observe that the NQDSpp; of the well PROD025A (Fig. 18-a and
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Fig. 17. Matrix identifying the correlations captured in the 8 iterations for the
NQDSPD and NQDSBD objective functions, Application 2. Black color means
that the correlation was of higher value than the cut-off Rc in all the 8 itera-
tions. White color means that the correlation coefficient is lower than the cut-
off Rc in any iteration. The transitional colors correspond to intermediate va-
lues between 0 and 8 iterations, as presented by the legend. The orange lines
highlight the intersection between attributes and OFs mentioned in the text.
(For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)

-b) is closer to the reference in Application 2.

We also present the final distribution of the attribute mkz of region
12 (Fig. 19). On one hand, Application 1 (in green) presents a higher
number of levels (variability) as well as higher multiplier values. On the
other hand, Application 2 distribution (in brown) is concentrated to less
levels and smaller multipliers (to the left of the x-axis).

This attribute contributed to the behavior described for this OF:
smaller kz leads to a BHP closer to the reference for PROD025A (the
scenarios in Application 1 have lower pressure when compared to
Application 2 and the history data). Therefore, NQDS; for this well is
smaller (Fig. 18) because the liquid production rate of several scenarios
does not diminish as much as in Application 1 to honor the informed
pressure.

To summarize this example explaining why some OFs presented
poorer match in the Application 2, this uncertain attribute (mkz R12)
influences traditional and additional OFs (NQDSp,,n, NQDSppp,p, and
NQDSppg). In order to provide a better match for the NQDSppg-
PRODO025A, the pdf concentrates in some levels but is detrimental to
other OFs (NQDS,,, and NQDSpp,pn of PROD023A).

This result indicates that with a large number of OFs assimilated,
and a large quantity of uncertain attributes to update, the relationships
between OFs and attributes increases the challenge to match the dy-
namic behavior and all OFs assimilated.

5. Conclusions

We evaluated the impact of gathering and considering additional
information from the dynamic data series in the History Matching (HM)
performance. We presented a deep analysis of the assimilation of dy-
namic data series in an unconventional way, which is based on splitting
the available historic time-series into more Objective Functions (OFs),
detaching relevant events observed in the historical data. The OFs in-
cluded measuring the Breakthrough Deviation (BD) and Productivity
Deviation (PD).

We proposed an adaptation for the calculation of the additional
objective function called Productivity Deviation (PD), which only uses
information from the history data. It changes the information provided
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Fig. 19. mkz of Region 12, an attribute correlated to the well PROD023A. Note:
Application 1 assimilates 64 Objective Functions traditionally applied in the
IDLHC methodology, and Application 2 considers 128 Objective Functions
consisting in the traditional and proposed ones.

to the simulator from liquid production or water injection rate to
bottom hole pressure.

Two applications show different field and well behavior in the
scenarios of the last iteration of the history matching process. The main
identified advantages of the unconventional OFs in the HM matching
process for this study case were:

e Smoother transition between history and forecast periods for field
data;

e Water breakthrough time closer to the reference data for several
wells and scenarios;

e Additional indicators of quality of the reservoir model to support the
review of parameterization: revealing problems in scenarios

Nomenclature

BD Breakthrough Deviation

BHP Bottom Hole Pressure

DLHC Discrete Latin Hypercube

HM History Matching

IDLHC TIterative Discrete Latin Hypercube
Iter,.x ~ Maximal number of iterations in IDLHC
iw water injection rate

NQD Normalized Quadratic Deviation

NQDS Normalized Quadratic Deviation with Sign
OF Objective Function

PD Productivity Deviation

pdf probability density function

Pibh Bottom hole pressure of injection wells
Ppbh Bottom hole pressure of production wells
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available dynamic data. At the same time, the evidences shown in this
paper encourage the continuous improvement of HM methodologies
and new approaches of data assimilation, which are able to accom-
modate a higher number of uncertain attributes and OFs.
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Qo 0Oil production rate
Qw Water production rate
R, Cut-off to the coefficients of the correlation matrix

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.petrol.2018.10.045.

Appendix A. Analysis of importance of OF groups

The graphics below present all the objective functions disposed in groups according to the respective type of production data and application
(Application 1 in green, Application 2 in brown). The bar's height represents the number of attributes that a given OF was selected to update
uncertain attributes during all iterations. A horizontal line with the mean of all wells supports the differentiation between the two applications. Note
that OFs from Figs. 2, 20 and 212-a are assimilated in both Applications, but from Fig. 22-b, 23 and 24, only in the Application 2. Also, the plots are
in the same scale in y-axis.

NQDS for oil and water rate (Fig. 20-a and -b) have similar importance along the wells, with slight difference in the mean values. These plots
evidence the complementarity between water and oil production when a simulation model is close to or meets the target values of liquid production

informed to the simulator.
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Fig. 20. Number of attributes that a given OF was selected to update uncertain attributes by well: (a) NQDSqo; (b) NQDSqw. Note: Application 1 assimilates 64
Objective Functions traditionally applied in the IDLHC methodology, and Application 2 considers 128 Objective Functions consisting in the traditional and proposed

ones.
Water injection rate is the boundary condition informed to the simulator in the history period, with exception to the last time which the target is

set to be BHP. In Fig. 21-a, the mean number of attributes of NQDS;, is higher for Application 2 than for Application 1. Nevertheless, NQDS;,, does
not update more than two uncertain attributes for any well.
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Fig. 21. Number of attributes that a given OF was selected to update uncertain attributes by well: (a) NQDS;,; (b) NQDS,;,. Note: Application 1 assimilates 64
Objective Functions traditionally applied in the IDLHC methodology, and Application 2 considers 128 Objective Functions consisting in the traditional and proposed

ones.

The mean number of attributes of NQDS,;, is close to 4 for both applications (Fig. 22-a), which indicates similar importance. Fig. 22-b presents

the NQDS of Breakthrough Deviation, which has the higher mean of uncertain attributes updated among the additional objective functions.
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Fig. 22. Number of attributes that a given OF was selected to update uncertain attributes by well: (a) NQDSppbh; (b) NQDSBD. Note: Application 1 assimilates 64
Objective Functions traditionally applied in the IDLHC methodology, and Application 2 considers 128 Objective Functions consisting in the traditional and proposed

ones.
Because in the last time step the BHP is a target for the simulator, NQDSppy group updates more uncertain attributes than NQDSppypsn, 0N

average. Mismatches related to NQDSppp,»n, have too small variability for some wells (for example, PROD024A, RJS019) or are uncorrelated with
uncertain attributes (for example PROD010).
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Fig. 23. Number of attributes that a given OF was selected to update uncertain attributes by well: (a) NQDSppgs; (b) NQDSppypsn. Note: Application 1 assimilates 64
Objective Functions traditionally applied in the IDLHC methodology, and Application 2 considers 128 Objective Functions consisting in the traditional and proposed

ones.
The same reasoning is applicable for PD of water injection and BHP of injectors. NQDSppy, groups updates more attributes than NQDSppyip,, 0n

average.
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Fig. 24. Number of attributes that a given OF was selected to update uncertain attributes by well: (a) NQDSPDiw; (b) NQDSPDpibh. Note: Application 1 assimilates
64 Objective Functions traditionally applied in the IDLHC methodology, and Application 2 considers 128 Objective Functions consisting in the traditional and

proposed ones.

This analysis indicates that among the OFs groups added in the history matching process, the Breakthrough Deviation was more relevant in the
process of updating uncertain attributes for the study case applied in this paper.
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