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1. INTRODUÇÃO  

A curva Intensidade-Duração-Frequência (IDF) é uma das ferramentas mais  
utilizadas e de grande relevância para a gestão dos recursos hídricos, visto que o  
estudo de precipitações extremas permite a estimativa das vazões de projeto para  
dimensionamento de obras de engenharia. As informações necessárias para a  
determinação das relações IDF são dados provenientes de monitoramento  
hidrológico (ALEMAW; CHAOKA, 2016). No entanto, as informações provenientes  
do monitoramento existente são na grande maioria das vezes disponibilizadas em  
escala temporal diária, tornando-se necessário lançar mão de métodos para  
discretizar essas precipitações em intervalos de tempo subdiários.  

Um dos métodos tradicionalmente utilizado para a obtenção da precipitação 
em intervalos de tempo subdiários é o método da desagregação proposto por  
CETESB (1979). Este método traz relações para conversão das precipitações 
máximas diárias observadas em intervalos de diferentes durações, sendo 
necessário o ajuste de funções de distribuições de probabilidades (FDP) para  
representar a frequência dos valores observados de forma satisfatória.  

Após uma FDP ser ajustada à série histórica de precipitação máxima diária  
anual (PMDA), a acurácia dos parâmetros da IDF é dependente do método de  
otimização utilizado. O método comumente aplicado é o de regressão múltipla não 
linear associada ao método de mínimos quadrados, o qual apresenta bons  
resultados, no entanto, apresenta dificuldades associadas à inicialização dos  
parâmetros da IDF e à experiência necessária por parte do usuário. Neste sentido,  
a utilização de algoritmos de otimização que busquem ótimos globais minimiza as  
desvantagens supracitadas acerca do método tradicional supracitado. Dentre os  
algoritmos disponíveis na literatura, o Non-dominated Sorting Genetic Algorithm II  
(NSGA-II) é o comumente utilizado para otimização multiobjetivo (AUGER et al.,  
2016), enquanto que, o Nelder-Mead (NM) é frequentemente utilizado para 
resolver  problemas de otimização irrestrita (NELDER; MEAD, 1965), e o Shuffled 
Complex  Evolution (SCE-UA) é mais utilizado para abordagens determinísticas e  
probabilísticas (DUAN et al., 1994).  

Frente ao exposto, este estudo propõe uma abordagem inicial para a  
elaboração de uma ferramenta computacional que objetiva otimizar de forma  
automática os parâmetros da curva IDF, descartando a dependência de  
conhecimento acerca dos limites dos parâmetros por parte do usuário.  

2. METODOLOGIA  



Foram utilizadas séries de precipitação de 112 postos pluviométricos de  
responsabilidade da Agência Nacional de Águas (ANA), selecionados de maneira  
a representar a heterogeneidade da precipitação das cinco regiões brasileiras e  
que atendessem aos critérios de falhas pré-estabelecidos, e.g. 31 dias de falhas e  
um mínimo de 10 anos de dados. As séries de PMDA foram constituídas com o  
auxílio do software System of Hydrological Data Acquisition and Analysis (SYHDA)  
(VARGAS et al., 2019).  

O procedimento de ajuste dos parâmetros para as curvas IDF consistiu em  
três etapas (KOUTSOYIANNIS et al., 1998): i) ajuste de uma FDP; ii) cálculo das  
intensidades de precipitação para um conjunto de tempo de retorno (TR), 
utilizando  as FDPs da etapa i; e iii) obtenção das curvas IDF.  

AS FDPs Log Normal de 2 parâmetros (LN-2P), Gumbel para Máximos e  
Generalizada de Valores Extremos (GEV) foram empregadas neste estudo e  
avaliadas de acordo com o teste de aderência de Anderson-Darling (AD)  
(ANDERSON; DARLING, 1954) ao nível de 5% de significância. Para estimar os  
parâmetros das FDPs foi utilizado o Método da Máxima Verossimilhança (MMV). O  
processamento das metodologias foi realizado em ambiente MATLAB (MATRIX  
LABORATORY, 2018), utilizando funções nativas.  

Os TRs utilizados foram de 2, 5, 10, 20, 50 e 100 anos e durações (D) de 5,  
10, 15, 20, 30, 60, 360 e 1440 minutos. A desagregação da precipitação diária  
tomou como base as constantes de desagregação propostas por CETESB (1979).  
Os parâmetros da IDF foram otimizados tendo como base a Equação 1.  

i =a ∙ TRb  

(c + D)
d

(01)  

Sendo: i a intensidade média (mm.h-1), TR o tempo de retorno (anos), D a duração  
(min) e a, b, c e d os parâmetros da IDF.  

Para a otimização dos parâmetros da IDF foi utilizado como função objetivo  
o coeficiente de Nash-Sutcliffe (CNS) (NASH; SUTCLIFFE, 1970), seguindo  
classificação de Motovilov et al. (1999). O desempenho foi computado a partir da  
estatística raiz quadrada do erro quadrático médio (RMSE). A otimização da 
função  objetivo CNS foi realizada de acordo com ilustrado na Figura 1, por meio da  
utilização no ambiente do MATLAB de: i) regressão não-linear de Levenberg 
Marquardt em sua função nativa lsqnonlin; ii) algoritmo NSGA-II, em sua versão na  
função nativa gamultiobj; iii) algoritmo NM (NELDER; MEAD, 1965); e iv) algoritmo 
SCE-UA (DUAN et al., 1994).  



Figura 1 – Fluxograma compreendendo todas as etapas realizadas para a calibração dos  
parâmetros da IDF.  

Foi necessário estipular os limites inferior e superior dos parâmetros da IDF  
para a otimização com o NSGA-II e o SCE-UA, e os valores iniciais para o 
LM-MMQ  
e NM. Os valores limites foram obtidos na literatura, tomando como base trabalhos  
que obtiveram parâmetros da IDF para diferentes locais do Brasil. Dada a 
flutuação  dos valores dos parâmetros ao longo do território brasileiro, a otimização 
dos  mesmos foi realizada sob dois cenários: Cenário I, onde foram considerados 
os  mesmos limites para todas as regiões do Brasil; e o Cenário II, onde os limites 
foram  os encontrados para cada região.  

3. RESULTADOS E DISCUSSÃO  

Ao analisar o ajuste das séries hidrológicas às distribuições de probabilidade,  
de acordo com o teste AD, verificou-se que 85 séries de PMDA (79%) se ajustaram  
à FDP GEV, 26 séries (23,2%) se ajustaram à LN-2P e apenas 1 série (0,9%) à  
Gumbel. Na Tabela 1, é possível observar as estatísticas de ajuste dos parâmetros  
médios obtidos para a IDF, por região, nos cenários I e II para cada método de  
otimização.   

Tabela 1 – Estatísticas médias para os Cenários I e II de otimização dos parâmetros da IDF  

Região/ Método  
Cenário I Cenário II Região/ 
Método  

Cenário I Cenário II  

CNS RMSE CNS RMSE CNS RMSE CNS RMSE   
NDGA-II 0,98 13,25 0,94 34,76  

SudesteNDGA-II 0,98 7,85 0,93 11,53  

Norte  
SCE-UA 1,00 7,65 0,95 33,11 SCE-UA 1,00 2,83 0,96 7,40 NM 0,94 21,03 0,90 27,18 NM 0,95 

13,68 0,95 12,44 LM-MMQ 0,00 107,93 0,00 107,89 LM-MMQ 0,00 58,27 0,00 58,22  

NordesteNDGA-II 0,98 7,77 -0,04 34,80 Sul  NDGA-II 0,97 8,18 1,00 3,63  

SCE-UA 1,00 3,15 0,03 33,68 SCE-UA 1,00 2,61 1,00 2,62 NM 0,94 15,46 0,97 9,28 NM 0,94 
13,31 0,95 11,18  

LM-MMQ 0,00 67,42 0,00 67,33 LM-MMQ 0,00 57,02 0,00 56,99 Centro-Oest
eNDGA-II 0,97 

8,85 0,98 4,89  



SCE-UA 1,00 2,47 0,98 4,54  
NM 0,95 11,89 0,99 5,60  

LM-MMQ 0,00 53,05 0,00 53,02  

Com base nos resultados obtidos para o Cenário I, pode-se observar que o  
algoritmo SCE-UA resultou nas melhores estatísticas, visto que todos os valores 
de  CNS foram enquadrados como “bom” e o valor de RMSE médio entre as regiões 
foi  igual a 3,7mm∙h-1. Para o NSGA-II e o NM, os valores das estatísticas também  
mostraram resultados satisfatórios, sendo os valores de CNS enquadrados como  
“bom” e os valores médios de RMSE entre as regiões de 7,3mm∙h-1 e 9,2mm∙h-1,  
respectivamente. Contudo, o LM-MMQ resultou nas piores estatísticas, tendo 
todos  os valores de CNS enquadrados como “insatisfatórios” e um valor alto de 
RMSE  médio entre as regiões, igual a 68,7mm∙h-1.   

Para o Cenário II, o comportamento das estatísticas variou de acordo com os  
algoritmos, no entanto, o LM-MMQ continuou apresentando desempenho  
insatisfatório para todas as regiões. De acordo com Campos et al. (2014), os  
resultados obtidos pelo LM-MMQ se devem ao fato de que, geralmente, a  
calibração com regressão não-linear necessita conhecimento do usuário acerca  
dos valores inicias adequados para cada parâmetro, ao passo que, para outros  
algoritmos, como o SCE-UA, basta inserir um limite amplo para os parâmetros que  
o método encontrará uma solução representativa. Foram verificados os maiores  
valores médios de RMSE para as regiões Norte e Nordeste com a utilização dos  
algoritmos NSGA-II e SCE-UA. Para as demais regiões, os valores de RMSE 
foram  menores, destacando melhor desempenho do algoritmo SCE-UA.  

4. CONCLUSÕES  

Algoritmos de otimização que não são dependentes dos valores iniciais, e.  
g. NSGA-II e SCE-UA, são uma alternativa metodológica para a estimativa dos  
parâmetros da IDF. O algoritmo SCE-UA permitiu melhor otimização dos  
parâmetros para ambos os cenários analisados, enquanto que, o LM-MMQ não foi  
satisfatório. O algoritmo LM-MMQ pode ser utilizado com sucesso na otimização  
dos parâmetros da IDF, entretanto, os valores iniciais devem ser bem  
estabelecidos.  

Visando à elaboração de uma ferramenta automática para otimização dos  
parâmetros da IDF, sem a necessidade do conhecimento dos valores iniciais por  
parte dos usuários, a utilização dos algoritmos LM-MMQ e NM não se mostram  
adequadas. Todavia, a utilização de algoritmos como o NSGA-II e o SCE-UA pode  
ser uma boa alternativa metodológica.  
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