ESTUDO NUMÉRICO DE DERRAME DE ÓLEO NA REGIÃO DA PONTE DOS FRANCESES, RIO GRANDE (RS)

THALITA FAGUNDES LEAL¹; BRUNO VASCONCELLOS LOPES ²; CAROLINE BARBOSA MONTEIRO ³; EDUARDO DE PAULA KIRINUS ⁴; MAUREN COSTA DA SILVA ⁵; OSMAR OLINTO MÖLLER⁶; PHELYPE HARON OLEINIK ⁷ e WILIAM CORREA MARQUES⁸

¹ Universidade Federal do Rio Grande— thalitaeinstein-fisica @hotmail.com
² Universidade Federal do Rio Grande — lopesbruno13 @gmail.com
³ Universidade Federal do Rio Grande — monteirocbm @gmail.com
⁴ Universidade Federal do Rio Grande — ekirinus @gmail.com
⁵ Universidade Federal do Rio Grande — mauren_costa @hotmail.com
⁶ Universidade Federal do Rio Grande — dfsomj @furg.com
⁷ Universidade Federal do Rio Grande — phe.h.o1 @gmail.com
⁸ Universidade Federal do Rio Grande — wilianmarques47 @gmail.com

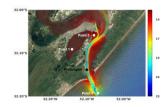
1. INTRODUÇÃO

O padrão de consumo da população mundial apoia-se no petróleo e seus derivados, embora contribua para a melhoria da qualidade de vida, tem aspectos negativos, principalmente no âmbito ambiental. O número de derrames de óleo em oceanos, devido a acidentes relacionados à exploração e transporte, aumentou significativamente nos últimos anos. Considerando a complexidade do ambiente marinho, o presente trabalho tem como objetivo aplicar um sistema de identificação da dinâmica e dispersão de óleo, utilizando a modelagem numérica na região da Ponte dos Franceses Fig.1 próximo ao estuário da Lagoa dos Patos RS.

Figura 9. Localização global da região de estudo (A), representação batimétrica da área costeira e da Lagoa dos Patos, com cores representando a profundidade em metros (B), sobreposta da Google maps, lansdsat/Copernicus, data 2018. A zona destacada é o estreito que liga o Saco da Mangueira ao médio estuário da Lagoa dos Patos (C), localização exata da região de estudo. A figura C está sobreposta da Google Maps, Digital GLOBE CNES/Airbus, data 2018.

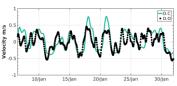
O estudo de eventos hipotéticos de vazamento de óleo na região é de fundamental importância, pois a RPM (Refinaria de Petróleo Riograndense) encontra-se no interior do estuário da Lagoa dos Patos. A matéria-prima da RPM, o petróleo cru, é recebida através de navios no píer petroleiro e são conduzidos até o interior da refinaria por meio de oleodutos de 10 e 16 polegadas, com aproximadamente 4 km de comprimento. Estes oleodutos recebem o petróleo no píer petroleiro passam sob a Ponte dos Franceses e descarregam na RPR.

2. METODOLOGIA


O sistema de modelagem numérica utilizado é o open TELEMAC-MASCARET, através do módulo hidrodinâmico TELEMAC-3D. O módulo TELEMAC-3D é utilizado para estudos hidrodinâmicos tridimensionais de fluxos de águas rasas e resolve as equações de superfície livre do fluido operando em malhas de elementos finitos, neste caso a malha possui 93.050 nós, usando o

sistema de coordenadas sigma na discretização vertical, que acompanham os limites superficiais e de fundo.

A dispersão do óleo foi analisado utilizado o modelo ECOS (*Easy Coupling Oil System*) que é acoplado ao TELEMAC-3D. O ECOS é um modelo matemático, no qual descreve o comportamento das partículas de óleo em lâmina de água. A elaboração da condições iniciais e de contorno, provém de três bancos de dados distintos: Dados globais de circulação oceânica, o HYCOM (*HYbrid Cooedinate Ocean Model*), dados globais atmosféricos, o Reanalysis ERA-Interim e dados de batimetria e vazão dos rios provenientes da DNH (Diretoria de Hidrografia e Navegação) e ANA (Agência Nacional de Águas), respectivamente.


3. VALIDAÇÃO DOS RESULTADOS HIDRODINÂMICOS

O modelo TELEMAC-3D foi validado para a investigação dos processos hidrodinâmicos como realizado nos estudos de Marques *et al.* (2017). A simulação hidrodinâmica utilizada para a verificação da qualidade dos resultados foi conduzida para o período de 2 anos, entre o período de 01/01/2010 e 31/12/2011. A analise da validação foi realizada comparando as velocidades calculadas pelo modelo com as velocidades de corrente medidas no canal de acesso a Lagoa dos Patos, na Estação da Praticagem Fig.2, para o período de 06/01/2011 a 30/01/2011.

Figura 2. Posição do Equipamento: Ponto preto indica a posição do ADCP no canal de acesso a Lagoa dos Patos, nas coordenadas 32°8'12"S e 52°6'9" W. Os pontos 1, 2 e 3 em branco indicam o local onde foram extraídas as séries temporais de elevação.

A Fig.3 apresenta a comparação entre a série temporal com dados observados (DO) e os dados calculados (DC), obtidos através da simulação numérica. A comparação entre as séries temporais de velocidade de corrente calculada indicam que o modelo pode reproduzir as tendências do sinal de velocidade no canal da Lagoa de Patos.

Figura 3. Velocidade Meridional. Em preto são representados os dados observados (D.O) e em verde são apresentados os dados calculados pelo modelo (D.C).

Para avaliar as comparações apresentadas foram utilizados indicadores de performance como em Marques *et al.* (2017). O RMSE (raiz do erro quadratico médio) associado a velocidade de corrente é de 0.210 m/s e o MAE (erro médio absoluto) para o componente da superfície é 0.173 m/s.

4. RESULTADOS E DISCUSSÃO

Para entender a dinâmica da região foi elaborada uma série temporal de elevação calculada pelo modelo, com a finalidade de indicar os períodos de enchente e vazante. A série temporal, Fig.4, foi extraída de três pontos distintos. O Ponto 1 (linha verde) está localizado no interior do Saco da Mangueira, o Ponto

2 (linha azul) está localizado no canal de acesso do estuário, nas proximidades da cidade de Rio Grande e o Ponto 3 (linha vermelha) está localizado na saída dos Molhes. Estes pontos estão representados na Fig.2.

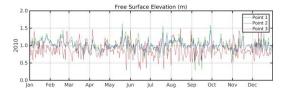
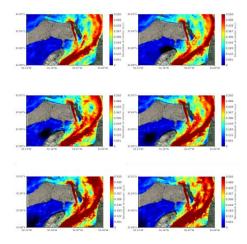



Figura 4. Série Temporal de Elevação calculada pelo modelo Telemac-3D.

4.1DESLOCAMENTO DAS PARTICULAS DE ÓLEO

Para o cenário vazamento de óleo foi liberado um volume de 13 m³ sob a Ponte dos Franceses (na superfície da água), onde está localizado o oleoduto que transporta o óleo do píer petroleiro até a RPR. A pluma de óleo foi rastreada até sua chegada nos limites costeiros, durante 24 h, após o acidente. O volume de óleo é despejado instantaneamente começando em 1° de março de 2010 as 12 h. As partículas de óleo são representadas em preto e a variação intensidade da corrente pode ser observada na Fig.6.

Figura 6. Painel apresenta as principais regiões afetadas pelo óleo. As partículas de óleo são representadas como círculos pretos.

Após 6 h a pluma de óleo atinge o interior do Saco da Mangueira e os limites costeiros da região industrial de Rio Grande, impulsionada pelos ventos moderados de Nordeste de aproximadamente 6 m/s (Fig.7, Esquerda) e velocidade de correntes de Sudoeste a Noroeste de aproximadamente 0.1 m/s (Fig.7, Direita).

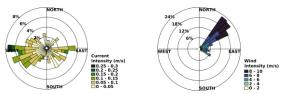


Figura 7. Histogramas de intensidade de corrente (Esquerda) e vento (Direita).

4.2 INTEMPERISMO DO ÓLEO

A Fig.8 mostra o comportamento temporal da evaporação Fig.8 (Esquerda) e emulsificação (Direita) do óleo.

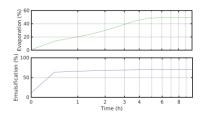


Figura 8. Evaporação (Esquerda) e Emulsificação (Direita) do Óleo calculado pelo modelo ECOS.

A evaporação máxima de é de 42% após 5 h. A emulsificação é altamente dependente das condições hidrodinâmicas da água e do vento. A emulsão tem um teor máximo de água de 60%.

5. CONCLUSÕES

As principais conclusões deste trabalho são:

- Os resultados do deslocamento das partículas de óleo indicam que após 6 h, a pluma de óleo atinge o interior do Saco da Mangueira e os limites costeiros da região industrial de Rio Grande.
- As propriedades de intemperismo do óleo indicam uma evaporação de 42%, a formação de uma emulsão com um teor de água de 60%.
- Será necessário simular outras condições de vazante e também algumas condições de enchente, para avaliar quais outras regiões serão afetadas pelo óleo.

6. AGRADECIMENTOS

Os autores agradecem à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela concessão das bolsas de estudo, ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pelo contrato 304227/2016-1, à Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) pelo contrato 17/2551-0001159-7 e ao Centro Nacional de Supercomputação (CESUP), da Universidade Federal do Rio Grande do Sul (UFRGS), que auxiliaram o desenvolvimento deste trabalho. Agradecem também ao ECMWF pelos dados oceanográficos e meteorológicos utilizados nas condições de contorno do modelo, ao consórcio Open TELEMAC-MASCARET por disponibilizar o sistema TELEMAC gratuitamente e ao Laboratório Nacional de Computação Científica (LNCC) pela disponibilização de uso do Supercomputador Santos Dumont.

7. REFERÊNCIAS BIBLIOGRÁFICAS

Marques, W. C., Stringari, C. E., Kirinus, E. P., Möller Jr, O. O., & Toldo Jr, E. E. (2017). Numerical modeling of the tramandaí beach oil spill, brazil-case study for january 2012 event. **Applied Ocean Research**, v.65, p.178-191, 2017.

Möller, O. O. **Hydridynamique de la Lagune dos Patos (30°S, Brésil) (Mesures et modélisation)**. 1996.150f. Tese (Doutorado em Oceanografia)- Universidade de Bordeaux, França.