

MODELAGEM COMPUTACIONAL DO TRANSPORTE ELETRÔNICO EM ÓXIDOS CERÂMICOS POTENCIALMENTE APLICADOS EM CÉLULAS SOLARES

CRISTIANE SCHWARTZ VENZKE¹;
MÁRIO LÚCIO MOREIRA²; SERGIO DA SILVA CAVA³;
CRISTIANE WIENKE RAUBACH RATMANN⁴;
PEDRO LOVATO GOMES JARDIM⁵

¹Universidade Federal de Pelotas – crisvenzke@hotmail.com ²Universidade Federal de Pelotas – mlucio3001@gmail.com ³Universidade Federal de Pelotas – sergiocava@gmail.com ⁴Universidade Federal de Pelotas – cricawr@gmail.com ⁵Universidade Federal de Pelotas – pedro.lovato@ufpel.edu.br

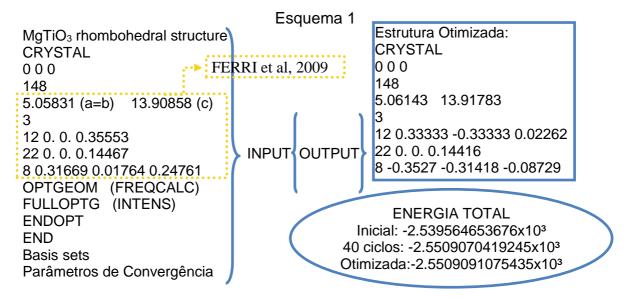
1. INTRODUÇÃO

Várias formas para se obter energia renovável estão em constante estudo e evolução tecnológica. Dentre as fontes de energias alternativas, merece ressaltar a energia solar que, através de uma célula solar, pode ser convertida em energia elétrica e que pode ser encontrada em praticamente todas regiões do planeta (CUNHA, 2013). Existem atualmente três gerações de células solares, na terceira geração, a mais recente, encontram-se células solares que são financeiramente mais econômicas e ricas fontes de energia renováveis; elas são do tipo Grätzel, sensibilizadas por corante (DSSCs - *Dye Sensitized Solar Cells*) (LONGO et al, 2003). Para sua elaboração, faz-se uso de semicondutores com grande band gap, possibilitando a conversão de fótons mais energéticos (O'REGAN et al, 1991).

Dentre os compostos semicondutores, optamos por estudar o titanato de magnésio, MgTiO₃, com o objetivo de expandir o conhecimento sobre suas propriedades estruturais e eletrônicas, de modo a viabilizar sua aplicação como cerâmica eletrônica. O material MgTiO₃ é um óxido cerâmico do tipo perovskita composto por um alcalino terroso e um metal de transição; cuja a célula unitária romboédrica contém 6 ânions de oxigênio e 4 cátions (OKADA et al. 2008).

Portanto, a fim de obter informações sobre o comportamento fotovoltaico e a possível aplicação do composto MgTiO₃ em células solares, pretende-se realizar inicialmente um estudo via Density Functional Theory (DFT) (KOHN et al, 1965) sobre as estruturas eletrônicas do *bulk* do MgTiO₃, com testes de convergência e estabilidade. A partir deste trabalho inicial, deseja-se realizar futuramente a simulação de camadas (*slabs*) testando uma segunda camada sobre o MgTiO₃ de TiO₂ (dióxido de titânio), trabalhando com interfaces que promovam a transferência de cargas de um composto ao outro; além de testar adsorção de corantes na superfície. Mas para isso, torna-se fundamental realizar um rico mapeamento e estudo sobre a estrutura do *bulk* de MgTiO₃, obtendo a melhor configuração estrutural (relaxada) através da otimização de geometria que seja capaz de minimizar a energia do sistema no estado fundamental, conforme será visto neste trabalho.

2. METODOLOGIA


Neste estudo, trabalhou-se com DFT+B3LYP. O B3LYP é um funcional híbrido que possui três parâmetros determinados por Becke (1988), dois referentes aos termos de troca e um que utiliza termos de correlação de Lee-Yang-Parr, este funcional é usado para colaborar com a estabilização dos orbitais

mais externos. As simulações e os cálculos foram executados através do pacote computacional CRYSTAL 09.

Optou-se por utilizar conjuntos de bases que possuem todos os elétrons, Gaussianas e pseudopotenciais, que permitem uma resolução melhor para a descrição de todo o processo. Quanto aos parâmetros referentes às tolerâncias usados para a resolução do cálculo, tem-se TOLINTEG que nos diz o grau de precisão utilizado nos cálculos, SHRINK que especifica os parâmetros de integração do espaço recíproco, além do LEVSHIFT que é usado para melhorar a convergência do cálculo, MAXCYCLE que expressa o número máximo de ciclos do cálculo e FMIXING, que mostra o quanto a interação das integrais de troca e correlação é intensa. Vale mencionar que os parâmetros de convergência adotados foram elevados para aumentar a máxima acurácia do resultado.

3. RESULTADOS E DISCUSSÃO

Até o momento, foram realizados cálculos de otimização da estrutura e de frequência para o *bulk* de MgTiO₃ via DFT através do pacote computacional CRYSTAL 09. No Esquema 1, tem-se a representação do INPUT e resultados de OUTPUT gerados com o programa. A partir dos dados implementados, os resultados foram adquiridos com o auxílio do funcional híbrido B3LYP e de alguns outros parâmetros que também contribuíram para a obtenção da convergência.

Neste estudo teórico e computacional da estrutura romboédrica de MgTiO₃, grupo espacial número 148, foram utilizados inicialmente, como "pontos de partida", parâmetros de rede e coordenadas de átomos retiradas da literatura, encontradas em Ferri et al (2009). Posteriormente, fez-se a otimização da estrutura, permitindo-se a relaxação da estrutura cristalina e pode-se comparar os dados obtidos com os utilizados como partida, propostos por Ferri et al (2009), conforme Esquema 1. Vale destacar que após a otimização, a estrutura permaneceu sendo romboédrica, como era esperado, inclusive apresentando na descrição da célula unitária, os mesmos ângulos de 90°, 90° e 120°; os quais fazem parte dos parâmetros de rede junto com os comprimentos a, b e c (modificados com a otimização). O volume inicial da célula cristalográfica era 308.19409113 A³ e passou a ser 308.77925015 A³, após otimização. Portanto, observa-se que o volume final é ligeiramente maior que o inicial, isso se deve a acomodação dos átomos na nova geometria otimizada, caracterizando que esta estrutura se encontra mais relaxada do que a não otimizada.

Ainda, com os dados obtidos referentes a energia total do sistema, mostrados no Esquema 1, percebe-se que com a otimização, o valor de energia foi minimizado; o que condiz com o esperado de que se houver uma otimização, esta irá expressar a melhor energia mínima para o estado fundamental do sistema. Portanto, com este procedimento de otimização tem-se a garantia de uma excelente descrição estrutural do MgTiO₃, ao efetuar-se pequenos ajustes na estrutura, realizando um refinamento da mesma, o que possibilitou a obtenção de uma estrutura com configuração mais estável, com uma melhor representação do estado de menor energia.

Tabela 1. Cálculo de frequências da estrutura sem otimização.

MODES	EIGV	FREQUENCIES	IRREP	IR	INTENS	RAMAN
	(HARTREE**2)	(CM**-1)	(THZ)		(KM/MOL)	
1- 2	-0.9205E-10	-2.1057	-0.0631 (EU)	Α	(0.37)	I
3- 3	-0.1615E-10	-0.8821	-0.0264 (AU)	Α	(0.01)	I
4- 4	0.1248E-05	245.1692	7.3500 (AG)		(0.00)	Α
5- 6	0.1694E-05	285.6250	8.5628 (EU)	Α	(1930.20)	1
7- 8	0.1934E-05	305.2587	9.1514 (EG)		(0.00)	Α
9- 9	0.2216E-05	326.7215	9.7949 (AU)	Α	(1210.98)	I
10- 11	0.2483E-05	345.8459	10.3682 (EG)	I	(0.00)	Α
12- 12	0.2683E-05	359.5086	10.7778 (AG)	ı	(0.00)	Α
13- 14	0.2831E-05	369.2640	11.0703 (EU)	Α	(2531.18)	I
15- 16	0.3230E-05	394.4296	11.8247 (EG)	ı	(0.00)	Α
17- 17	0.4186E-05	449.0382	13.4618 (AG)	ı	(0.00)	Α
18- 18	0.4191E-05	449.3243	13.4704 (AU)	Α	(61.89)	I
19- 20	0.4744E-05	478.0496	14.3316 (EU)	Α	(1502.24)	I
21- 22	0.5427E-05	511.2965	15.3283 (EG)		(0.00)	Α
23- 23	0.5507E-05	515.0585	15.4411 (AG)		(0.00)	Α
24- 24	0.5618E-05	520.2010	15.5952 (AU)	Α	(767.87)	I
25- 26	0.6962E-05	579.1057	17.3612 (EU)	Α	(2333.82)	I
27- 28	0.9349E-05	671.0713	20.1182 (EG)		(0.00)	Α
29- 29	0.1099E-04	727.6575	21.8146 (AU)	Α	(261.01)	I
30- 30	0.1145E-04	742.6777	22.2649 (AG´)		`(0.00)	Α

Tabela 2. Cálculo de frequências da estrutura otimizada.

MODES	EIGV	FREQUENCIES	IRREP	IR	INTENS	RAMAN
	(HARTREE**2)	(CM**-1)	(THZ)		(KM/MOL)	
1- 1	-0.1496E-09	-2.6848	-0.0805 (AU)	Α	(0.05)	I
2- 3	-0.1875E-10	-0.9502	-0.0285 (EU)	Α	(0.04)	1
4- 4	0.1402E-05	259.8590	7.7904 (AG)	- 1	(0.00)	Α
5- 6	0.1829E-05	296.8261	8.8986 (EU)	Α	(1343.22)	I
7- 8	0.1881E-05	301.0407	9.0250 (EG)		(0.00)	A
9- 9	0.2195E-05	325.1870	9.7489 (AU)	Α	(1168.59)	I
10- 10	0.2592E-05	353.3631	10.5936 (AG)	I	(0.00)	Α
11- 12	0.2662E-05	358.0605	10.7344 (EG)		(0.00)	Α
13- 14	0.2680E-05	359.3119	10.7719 (EU)	Α	(2933.78)	I
15- 16	0.3103E-05	386.6096	11.5903 (EG)		(0.00)	A
17- 17	0.3871E-05	431.8144	12.9455 (AU)	Α	(117.29)	I
18- 18	0.4013E-05	439.6704	13.1810 (AG)		(0.00)	Α
19- 20	0.4821E-05	481.8713	14.4461 (EU)	Α	(1355.32)	I
21- 22	0.5384E-05	509.2779	15.2678 (EG)	I	(0.00)	Α
23- 23	0.5805E-05	528.7731	15.8522 (AG)		(0.00)	Α
24- 24	0.5866E-05	531.5484	15.9354 (AU)	Α	(796.82)	I
25- 26	0.7020E-05	581.5215	17.4336 (EU)	Α	(2740.68)	I
27- 28	0.9629E-05	681.0531	20.4175 (EG)		(0.00)	Α
29- 29	0.1144E-04	742.4865	22.2592 (AU)	Α	(222.06)	I
30- 30	0.1163E-04	748.4119	22.4368 (AG)		(0.00)	A

Nas Tabelas 1 e 2 são apresentadas as frequências da estrutura não otimizada e da otimizada, respectivamente. As frequências vibracionais observadas na estrutura original e na otimizada não são significativamente diferentes. Porém, destaca-se que as frequências ativas foram marcadas de azul e, ao comparar tais resultados em ambas tabelas, percebe-se que algumas

frequências ativas passaram a ter valores que mudaram mais significativamente sendo atingidas com a otimização da estrutura. Este fato acontece, por exemplo, ao se comparar a frequência ativa marcada pela primeira linha azul da Tabela 1 com a frequência ativa da primeira linha azul da Tabela 2, percebendo-se que a frequência de 245.1692 cm⁻¹ sofreu um considerável aumento devido a otimização, passando para 259.8590 cm⁻¹. Nota-se ainda que não há frequências negativas, o que caracteriza que o cálculo realmente faz sentido, por conta das frequências serem obtidas através do cálculo da matriz Hessiana, a qual é descrita com derivadas segundas da energia total, que precisam necessariamente apresentarem-se positivas para representarem uma verdadeira configuração de valor mínimo. Portanto, os cálculos de frequências também justificam que os resultados obtidos se encontram adequados e em concordância com o desejado.

4. CONCLUSÕES

Com este trabalho, conseguiu-se dar início a avaliação das propriedades estruturais, eletrônicas e vibracionais do *bulk* de titanato de magnésio. Conclui-se que a otimização realizada na estrutura foi importante porque permitiu minimizar a energia total do sistema fazendo com que ela convergisse ao estado de menor energia; ou seja, ao estado fundamental da estrutura em questão. Logo, os resultados obtidos foram satisfatórios, auxiliando e permitindo a continuidade do trabalho. Deseja-se dar sequência com a realização de uma pesquisa acerca de dados experimentais existentes sobre o material MgTiO₃ para que seja possível a comparação dos resultados obtidos até aqui com estes experimentais retirados da literatura; para posteriormente, continuar com os estudos teóricos, desenvolvendo resultados para as interfaces que serão analisadas e, além disso, produzir testes de adsorção de corantes na superfície, visando a ampla aplicação do composto estudado em células solares.

5. REFERÊNCIAS BIBLIOGRÁFICAS

BECKE, A.D. Density-functional exchange-energy approximation with correct asymptotic-behavior. **Physical Review** A 38(6), p. 3098-3100, 1988.

CUNHA, G. H. B. Modelagem matemática e implementação computacional no ATP de um sistema solar fotovoltaico conectado a rede de baixa tensão. 2013. Dissertação (Mestrado) Programa de Pós-Graduação em Engenharia Elétrica da Universidade Federal de Uberlândia, Brasil.

FERRI, E.A.V.; SCZANCOSKI, J.C.; CAVALCANTE, L.S.; PARIS, E.C.; ESPINOSA, J.W.M.; DE FIGUEIREDO, A.T.; PIZANI, P.S.; MASTELARO, V.R.; VARELA, J.A. e LONGO, E. Photoluminescence behavior im MgTiO3 powders with vacancy/dsitorced clusters and octahedral tilting. **Materials Chemistry and Physics**, Lausanne, v. 117, n. 1, p. 192-198, 2009.

KOHN, W.; SHAM, L.J. Self-consistent equations including exchange and correlation effects. **Physical Review** 140.4A: p. A1133-A1138, 1965.

LONGO, C.; PAOLI, M.-A. D. Dye-sensitized solar cells: a successful combination of materials. **Journal of the Brazilian Chemical Society**, SciELO Brasil, v. 14, n. 6, p. 898–90, 2003.

OKADA, T.; NARITA, T.; NAGAI, T.; YAMANAKA, T. Comparative Raman spectroscopic study on ilmenite-type MgSiO₃ (akimotoite), MgGeO₃, and MgTiO₃ (geikielite) at high temperatures and high pressures. **Amer. Mineral.** 93: 39, 2008. O'REGAN, B.; GRATZEL, M. A low-cost, high-efficiency solar cell based on dyesensitized colloidal TiO₂ films. **Nature**, v. 353, n. 6346, p. 737–740, 1991.