

ANÁLISE DE ADSORÇÃO DE ÓLEO E GRAXAS EM CASCA DE ARROZ

GUILHERME CAETANO SCHUMANN¹; ALINE KRUMREICH BLANK²; ROMULO HENRIQUE BATISTA DE FARIAS³; MAURIZIO SILVEIRA QUADRO⁴;

¹Universidade Federal de Pelotas-Engenharia Agrícola – <u>gui_schumann@hotmail.com</u>

²Universidade Federal de Pelotas-Engenharia Agrícola
³Universidade Federal de Pelotas-PPGCAmb- rfhostos@hotmail.com

³Universidade Federal de Pelotas- PPGCAmb – Orientador- mausg@hotmail.com

1. INTRODUÇÃO

O processo de adsorção é considerado um método simples para, recuperação ou incorporação, o qual geralmente apresenta baixo custo quando comparado às demais técnicas, porém, o processo é atrelado a condições que incluem temperatura, velocidade de agitação, concentração inicial do adsorvato e características do adsorvente, e a escolha do material adequado é essencial para a obtenção de maiores eficiências (JIA et al., 2016; SOTO et al., 2011).

Fontes alternativas de materiais adsorventes têm sido estudadas com o intuito de atenuação de custos do método de tratamento, e a aplicação de resíduos advindos de atividades agrícolas e agroindustriais têm se destacado, assim como a aplicação da casca de arroz para este fim, que devido a características de composição se tornou atraente como possível material adsorvente (SOLTANI et al., 2015; ZHU et al., 2012).

Considerando a alta produtividade de arroz na região sul do Brasil, a casca de arroz é uma biomassa abundante no estado, pois representa cerca de 22% do peso total da colheita. Seu principal uso, atualmente, é a queima na geração de calor na própria indústria nas etapas de beneficiamento do arroz, que tem como subproduto a cinza de casca de arroz.

O objetivo deste trabalho é avaliar a capacidade e eficiência de adsorção de óleos e graxas na casca de arroz como alternativa no tratamento de efluentes contaminados por óleos lubrificantes de origem mineral.

2. METODOLOGIA

Os experimentos foram conduzidos no campus Cotada da Universidade Federal de Pelotas (UFPel) no laboratório de Análise de Águas e Efluentes, no primeiro semestre do ano de 2018.

Foi utilizada uma amostra de 50mL de óleo lubrificante, a qual foi colocada em um Becker depositado em um agitador magnético, e em seguida adicionou-se 2 g de casca de arroz à cada batelada. Após o processo foram avaliadas os teores de óleos adsorvidos no tempo de 4h.

COCIC XXVII CONGRESSO DE INICIAÇÃO CIENTÍFICA

Após o período de 4h que a solução ficou em agitação, retirou-se a casca de arroz com auxílio de funil com papel filtro. Para extração do adsorvente, o mesmo foi separado e imediatamente colocado em um cartucho celulósico para que pudesse passar por processo de extração do óleo adsorvido no aparelho Soxhlet, em processo adaptado do *Standard Methods*, seção 5520 D. Para extração do óleo foi utilizado o reagente n-hexano PA, em uma operação de 20 ciclos por hora durante 4 horas.

Por fim, para a retirada do solvente n-hexano PA da amostra foi realizado o processo de recuperação utilizando um rotavapor.

3. RESULTADOS E DISCUSSÃO

A partir da metodologia empregada, os resultados encontrados no tratamento, quando utilizados 2g de casca de arroz em uma solução de 50 mL de óleo lubrificante são mostrados na tabela a seguir para construção dos dados obtidos nesse trabalho.

 Quantidade (g)
 Peso de casca óleo Lubrificante adsorção (g)
 Peso após a adsorção (g)
 Adsorção (g)

 2
 135,2468
 129,0884
 6,1584

 2
 158,0085
 152,3573
 5,6512

Tabela 1: Adsorção de óleo lubrificante mineral

Conforme a tabela, podemos observar que a casca de arroz adsorveu em média 2,9524 mL de óleo lubrificante para cada grama de casca de arroz nesta amostragem. A casca de arroz possui em sua estrutura o composto dióxido de silício (SiO₂), assim como o identificado em estudo realizado Della e Hotza, (2006), onde os autores mencionam uma porcentagem de 13,55 do composto na casca analisada. De acordo com Saha et al. (2012) a casca de arroz possui em sua superfície alguns grupos funcionais, tais como carboxilas, hidroxilas e grupamentos amina. A presença destes grupos funcionais, juntamente com os grupos silanóis (Si-OH) podem favorecer o processo de adsorção (HAN et al., 2008).

Os resultados encontrados para as quantidades de óleo lubrificante mineral adsorvidas na casca de arroz são relativamente baixos quando comparados a estudos encontrados na literatura. A Tabela 2 faz um comparativo com entre alguns dos resultados encontrados por dos Santos et al. (2007) trabalhando com a adsorção de gasolina à diferentes tipos de biomassa.

Tabela 2: Comparativo bibliográfico

<u>'</u>	3	
Adsorvente	Adsorbato	Capacidade de
		adsorção (g/mL)
Casca de arroz	Óleo Lubrificante mineral	2,9524
Bagaço de cana	Gasolina comercial Tipo C	11,8 até 12,3
Mesocarpo de coco	Gasolina comercial Tipo C	12,4 até 13,0
Sabugo de milho	Gasolina comercial Tipo C	8,4 até 9,0

Quando comparado a estudos de sorção de óleos em biomassa, percebe-se que a maioria dos trabalhos representam resultados que expressam quantidades de sorvato como água mais óleo, e não apenas o óleo em si. Ou ainda, realizam testes a seco, sendo a amostra colocada em óleo puro, sem a presença de água. Muitos destes trabalhos podem servir como comparativo das capacidades de adsorção das biomassas em diferentes condições de tratamento e à exposição de diferentes adsorbatos.

Dentre outras variáveis, a capacidade de adsorção baixa encontrada para a casca de arroz pode ser explicada pelos baixos valores de área superficial deste material, já que não houve moagem para o presente estudo, e a alta parafinização do óleo lubrificante mineral que dificulta sua entrada nos poros do adsorvente.

4. CONCLUSÕES

A casca de arroz mostrou-se com grande potencial para o processo de adsorção de óleos e graxas por ser um material de fácil obtenção, haja visto que a região sul, é uma grande produtora de arroz, sendo a casca um substrato da industria.

A pesquisa continuará com outros experimentos pois o escopo do trabalho é fazer recuperação de óleos e graxas em água para recuperação de áreas degradadas.

Para trabalhos futuros, realizaremos tratamentos na casca de arroz visando uma melhor adsorção e por fim realizar um filtro no qual seja comercialmente viavel

5. REFERÊNCIAS BIBLIOGRÁFICAS

- DELLA, V. P.; HOTZA, D.; JUNKES, J. A.; OLIVEIRA, A. P. N. Estudo comparativo entre sílica obtida por lixívia ácida da casca de arroz e sílica obtida por tratamento térmico da cinza de casca de arroz. **Química Nova**, v.. 29, n. 6, p. 1175-1179, 2006.
- HAN, R.; DING, D.; XU, Y.; ZOU, W.; WANG, Y.; LI, Y.; ZOU, L. Use of rice husk for the adsorption of congo red from aqueous solution in column mode. **Bioresource Technology**, v. 99, p. 2938–2946, 2008.
- JIA, Z.; LI, S.; LI, Y.; ZHU, R. Adsorption performance and mechanism of methylene blue on chemically activated carbon spheres derived from hydrothermally- prepared poly(vinyl alcohol) microspheres. **Journal of Molecular Liquids**, v. 220, p. 56–62, 2016.
- SAHA, P. D.; CHAKRABORTY, S.; DAS, S. Optimization of hazardous crystal violet by chemically treated rice husk: Using central composite response surface methodology. **Archives of Environmental Science**, v. 6, p. 57-61, 2012.
- SANTOS, E. G.; ALSINA, O. L. S.; SILVA, F. L. H. Desempenho de biomassas na adsorção de hidrocarbonetos leves em efluentes aquosos. **Quimica Nova**, 2007. v. 30, n. 2, p. 327–331.
- SOLTANI, N.; BAHRAMI, A.; PECH-CANUL, M. I.; GONZÁLEZ, L. A. Review on the physicochemical treatments of rice husk for production of advanced materials. **Chemical Engineering Journal**, v. 264, p. 899–935, 2015.
- SOTO, M. L; MOURE, A.; DOMÍNGUEZ, H.; PARAIÓ, J.C.; Recovery, concentration and purification of phenolic componds by adsorption: A review. **Journal of food engineering**. v. 105, p. 1-27, 2011.
- ZHU, Q.; MOGGRIDGE, G. D.; D'AGOSTINO, C. Adsorption of pyridine from aqueous solutions by polymeric adsorbents MN 200 and MN 500. Part 2: Kinetics and diffusion analysis. **Chemical Engineering Journal**, v. 306, p. 1223–1233, 2016.