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Resumo 

Ferreira, Leonardo Z. Geospatial analyses of health indicators using national health surveys 

from low- and middle-income countries: Analyses of reproductive, maternal, newborn and 

child health. Tese de doutorado. Programa de Pós-graduação em Epidemiologia. 

Universidade Federal de Pelotas; 2022 

 

Entre os diversos desafios para melhorar a qualidade de vida de mulheres e crianças em países de 

baixa e média renda, aumentar a qualidade e a disponibilidade de dados é crucial para monitorar o 

progresso e garantir que os países estejam comprometidos com uma agenda equitativa. De acordo 

com a meta 17.18 dos Objetivos de Desenvolvimento Sustentável, os países devem fornecer dados 

confiáveis desagregados por dimensões de desigualdade fundamentais, como localização geográfica. 

Nesta tese, buscamos investigar o potencial uso de técnicas de modelagem geoespacial como 

ferramenta para a produção de dados desagregados geograficamente além do que está disponível no 

desenho amostral de inquéritos domiciliares nacionais. No primeiro artigo, foi realizada uma revisão 

sistemática para descrever os principais aspectos metodológicos das abordagens geoespaciais em 

estudos com foco especial em desfechos de saúde reprodutiva, materna, neonatal e infantil (RMNCH). 

Esse artigo também buscou emponderar leitores não especialistas para que melhor interpretassem os 

resultados de tais estudos. Identificamos 82 estudos que geraram estimativas para indicadores de 

RMNCH em resoluções superiores às obtidas diretamente nos inquéritos. A validação do modelo e a 

incerteza foram significativamente subnotificadas na literatura e a apresentação da incerteza continua 

sendo um desafio. O segundo artigo implementou as técnicas de modelagem geoespacial para 

produzir estimativas para o índice de composto cobertura (CCI) no Peru. Estas estimativas foram 

apresentadas a nível provincial, a segunda divisão administrativa do país, e em malhas de 5 x 5 km 

ilustrando como as desigualdades geográficas podem ser mascaradas quando se avalia apenas 

grandes áreas agregadas. O uso do CCI permite uma perspectiva integrada de como está o progresso 

em direção à cobertura universal de saúde em todo o país. Nós observamos um padrão claro de maior 

cobertura nas áreas da costa e baixa cobertura no norte e leste do país. As estimativas para as 

províncias parecem ser suficientes para descrever os padrões de cobertura na maior parte do Peru, 

mas grandes províncias em áreas de selva podem se beneficiar de estimativas de alta resolução. O 

último artigo aborda um fenômeno conhecido chamado de problema da unidade de área modificável. 

Essa questão implica que a interpretação das análises com dados geográficos pode mudar de acordo 

com a escala ou delimitação das unidades geográficas. Nós realizamos um estudo empírico para 

quantificar o impacto desse efeito na avaliação das desigualdades geográficas ao longo do tempo. 

Para isso, geramos quatro medidas complexas de desigualdade em múltiplas resoluções usando 



 
 

modelos geoespaciais em duas pesquisas peruanas como estudo de caso. Descobrimos que a 

magnitude das desigualdades ao longo do tempo não foi afetada ao comparar anos na mesma 

resolução, independente da medida de desigualdade utilizada. Além disso, as medidas de 

desigualdade ponderadas pela população foram menos suscetíveis ao efeito de agregação e 

apresentaram resultados consistentemente mais estáveis em todas as resoluções avaliadas. No geral, 

nossas descobertas sugerem que os modelos geoespaciais são recursos úteis para monitorar e rastrear 

o progresso dos desfechos de RMNCH e de desigualdades a partir de uma perspectiva geográfica e 

podem ser de grande ajuda para gestores locais e planejadores de políticas para identificar e agir nas 

áreas mais desfavorecidas de seus países. 

Palavras-chave: Saúde da criança; Saúde da mulher, Pesquisas domiciliares, Análise geoespacial, 

Desigualdades geográficas, Medidas de desigualdade  



 
 

Abstract 

Ferreira, Leonardo Z. Geospatial analyses of health indicators using national health surveys 

from low- and middle-income countries: Analyses of reproductive, maternal, newborn and 

child health. PhD Thesis. Postgraduate Program in Epidemiology. Universidade Federal de 

Pelotas; 2022 

 

Among the many challenges for improving the quality of life of women and children in low- and 

middle-income countries, increasing data quality and availability is crucial to monitor the progress and 

ensure countries are committed to an equitable agenda. As stated in the target 17.18 of the 

Sustainable Development Goals, countries must supply reliable data disaggregated by key inequality 

dimensions such as geographic location. In this thesis, we aimed to investigate the potential use of 

geospatial modeling techniques as a tool for producing geographically disaggregated data beyond 

what is available in the sample design of national household surveys. In the first article, a systematic 

review was carried out to describe key methodological aspects of the geospatial approaches in studies 

with a special focus on reproductive, maternal, newborn and child health (RMNCH) outcomes. This 

study also sought to empower non-specialist readers to better interpret the results of such studies. 

We identified 82 studies that generated estimates for RMNCH indicators at resolutions higher than 

obtainable directly from the surveys. Model validation and uncertainty were significantly 

underreported in the literature and the presentation of uncertainty remains a challenge. The second 

article implemented the geospatial modeling techniques to produce estimates for the composite 

coverage index (CCI) in Peru. These estimates were presented at provincial level, the second 

administrative division of the country, and in 5 x 5 km grid-cells describing how geographical 

inequalities can be masked when looking only at large, aggregated areas. The use of the CCI allows for 

an integrated perspective on how the progress towards universal health coverage stands throughout 

the country. We observed a clear pattern of higher coverage in the coastal areas and low coverage in 

the north and east of the country. Estimates for the provinces seems to be sufficient to describe 

coverage patterns in the majority of Peru but large provinces in jungle areas can benefit from high 

resolution estimates. The last article addresses a well-known phenomenon called the modifiable areal 

unit problem. This issue implies that the interpretation of analyses using geographical data may 

change according to the scale or delimitation of the geographical units. We carried out an empirical 

study to quantify the impact of this effect on the assessment of geographic inequalities over time. To 

do so, we generated four complex measures of inequality at multiple resolutions using geospatial 

models in two Peruvian surveys as a case study. We found that the magnitude of inequalities over 

time was not affected when comparing years at the same resolution, regardless of the inequality 



 
 

measure. Furthermore, the population-weighted inequality measures were less susceptible to the 

aggregation effect and presented consistently more stable results at all estimated resolutions. Overall, 

our findings suggest that geospatial models are useful resources to monitor and track progress on 

RMNCH outcomes from a geographical perspective and can be of great assistance to local managers 

and policy planners to identify and act on the most disadvantaged areas of their countries. 

Keywords: Child health; Woman’s health, Household surveys, Geospatial analysis, Geographic 

inequalities, Inequality measures  



 
 

Table of contents 

Presentation .......................................................................................................................................... 12 

PhD research project ............................................................................................................................ 13 

Project adjustments along the course of the work............................................................................... 49 

Activities report .................................................................................................................................... 51 

Article 1 ................................................................................................................................................. 56 

Article 2 ................................................................................................................................................. 79 

Article 3 ............................................................................................................................................... 110 

Press release [English]......................................................................................................................... 128 

Press release [Portuguese] ................................................................................................................. 130 

 



12 
 

Presentation 

This PhD thesis is one of the requirements to obtain a PhD degree in Epidemiology from the 

Postgraduate Program in Epidemiology from the Universidade Federal de Pelotas. It was developed 

under the supervision of Professor Aluísio JD Barros and the co-supervision of Fernando Pires 

Hartwig, in collaboration with the University of Southampton. Due to the COVID-19 pandemic, the 

planned period of study abroad was cancelled, and the collaboration was maintained virtually. 

The document is structured following the Postgraduate Program in Epidemiology guidelines and is 

divided in: 

1. Research project presented and approved on September 16th of 2019 which includes the 

suggestions proposed by the examiners Fernando César Wehrmeister and Cesar Gomes 

Victora. 

2. Adjustments that were necessary to the original project during the development of the 

proposed articles. 

3. Report of activities performed during the PhD including the experience in the 

International Center for Equity in Health, capacity building events, complementary 

courses and scientific collaborations. 

4. Proposed article entitled “Geospatial estimation of reproductive, maternal, newborn and 

child health indicators: a systematic review of methodological aspects of studies based 

on household surveys”, published at International Journal of Health Geographics. 

5. Proposed article entitled “Geospatial modeling of the composite coverage index in 

Peru”, to be submitted to International Journal of Epidemiology. 

6. Proposed article entitled “Measuring time trends in geographic health inequalities at 

different resolutions: the scale effect”, to be submitted to International Journal of Equity 

in Health. 

7. Press release in English and Portuguese. 

 

 

 

 

 



13 
 

 

 

 

 

 

 

 

 

 

PhD research project



 
 

 

UNIVERSIDADE FEDERAL DE PELOTAS 

POSTGRADUATE PROGRAM IN EPIDEMIOLOGY 

 

  

 

 

GEOSPATIAL ANALYSES OF HEALTH INDICATORS 

USING NATIONAL HEALTH SURVEYS FROM LOW- AND 

MIDDLE-INCOME COUNTRIES: 

Analyses of reproductive, maternal, newborn and child health 

 

 

PhD Research Project 

 

 

LEONARDO ZANINI FERREIRA 

Supervisor: Aluísio J D Barros 

Co-supervisor: Fernando Hartwig 

 

August 2019. 



 
 

UNIVERSIDADE FEDERAL DE PELOTAS 

POSTGRADUATE PROGRAM IN EPIDEMIOLOGY 

 

 

 

GEOSPATIAL ANALYSES OF HEALTH INDICATORS 

USING NATIONAL HEALTH SURVEYS FROM LOW- AND 

MIDDLE-INCOME COUNTRIES: 

Analyses of reproductive, maternal, newborn and child health 

 

 

LEONARDO ZANINI FERREIRA 

Supervisor: Aluísio J D Barros 

Co-supervisor: Fernando Hartwig 

 

 

The presentation of this PhD research project is 

a partial requirement for obtaining a doctoral 

degree from the Postgraduate Program in 

Epidemiology, Federal University of Pelotas, 

Brazil. 

 

 

August 2019. 



 
 

Table of Contents 

 

1 Planned articles ................................................................................................................ 20 

2 Background ....................................................................................................................... 21 

2.1 Spatial analysis .......................................................................................................... 22 

2.2 Spatial autocorrelation .............................................................................................. 22 

2.3 Spatial interpolation .................................................................................................. 23 

2.4 Data availability for spatial analyses of health attributes ......................................... 23 

3 Rationale ........................................................................................................................... 24 

4 Literature review .............................................................................................................. 25 

4.1 Thematic mapping ..................................................................................................... 26 

4.2 Spatial analysis .......................................................................................................... 26 

4.3 Spatial modeling ........................................................................................................ 27 

5 Objectives ......................................................................................................................... 36 

5.1 General objective ...................................................................................................... 36 

5.2 Specific objectives ..................................................................................................... 36 

6 Hypotheses ....................................................................................................................... 36 

7 Methods ............................................................................................................................ 37 

7.1 Paper 1: systematic review ....................................................................................... 37 

7.2 Paper 2: high resolution mapping of the CCI ............................................................ 37 

7.3 Paper 3: spatio-temporal vaccination patterns ........................................................ 39 

8 Ethical considerations ....................................................................................................... 40 

9 Relevant and impact ......................................................................................................... 40 

10 Timeline of activities ......................................................................................................... 41 

11 Dissemination of results ................................................................................................... 41 

12 Funding ............................................................................................................................. 42 

13 References ........................................................................................................................ 42 

 



 
 

List of Tables 

Table 1. Results of the literature review ................................................................................. 29 

Table 2. The composite coverage index and their components definitions ........................... 38 

Table 3. Timeline of activities .................................................................................................. 41 

 

  



 
 

Glossary of terms and abbreviations 

 

AIC  Akaike Information Criterion 

ANN  Artificial Neural Network 

CCI  Composite Coverage Index 

DHS  Demographic and Health Surveys 

GIS  Geographic Information Systems 

GPS  Global Positioning System 

HIB  Haemophilus Influenzae type B 

INLA  Integrated Nested Laplace Approximation 

LISA  Local Indicators of Spatial Autocorrelation 

LMIC  Low- and Middle-Income Country 

MeSH  Medical Subject Headings 

MICS  Multiple Indicator Cluster Survey 

RMNCH Reproductive, Maternal, Newborn and Child Health 

SDG  Sustainable Development Goals 

UHC  Universal Health Coverage 

WHO  World Health Organization 

 

 

  



 
 

Abstract 

In light of the agenda defined by the Sustainable Development Goals, improving data quality and 

availability is crucial to ensure countries are in the right direction towards reducing preventable 

maternal and newborn deaths. Assessing geographic inequalities is challenging since the main sources 

of information on low- and middle-income countries are not designed to be analyzed spatially. Recent 

improvements in computer processing power and the increased availability of ancillary data sources 

have contributed to the development of modeling approaches that aim to provide estimates at finer 

resolutions than provided by the administrative divisions commonly used in surveys. This project 

involves using these techniques of geospatial modeling to investigate geographic inequalities by 

generating high resolution estimates of health indicators. The estimates will be evaluated in two 

different scenarios: i) aligned with the most recent surveys, map the composite coverage index, a 

measure of universal health coverage based on essential reproductive, maternal and child health 

interventions, at second administrative level (e.g the equivalent to district or counties in different 

countries) and at pixel level (e.g 5 x 5 km or 10 x 10km); and ii) assess time trends using a geographic 

perspective to identify spatial patterns of increase in coverage of two vaccines since their introduction 

in Peru, in the early 2000s.
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1 Planned articles 

 

1. Spatial modeling on RMNCH in low- and middle-income countries: a systematic review 

This review paper will focus on presenting an overview of the existing applications of spatial modeling 

on reproductive, maternal, newborn and child health (RMNCH) in low- and middle-income countries 

(LMICs). Also, we aim to understand and discuss the suitability of these methodologies in RMNCH by 

evaluating implementations and pointing out limitations. This review will also attempt to identify gaps 

and opportunities in the areas where spatial modeling is promising and unexplored. 

 

2. High resolution mapping of the Composite Coverage Index in West and Central Africa 

Spatial modelling of standardized RMNCH indicators is a novel and promising approach for producing 

more granular data, which will enhance locating vulnerable geographies and guiding interventions. 

This article will use these techniques to model the Composite Coverage Index (CCI) in selected 

countries from West and Central Africa with Demographic and Health Surveys (DHS) and ancillary data 

sources. 

 

3. Spatio-temporal changes of Haemophilus Influenzae type B and Rotavirus vaccines 

Whenever a new vaccine is introduced to the calendar, increasing the coverage rapidly and equitably 

is a challenge and concern to the health system. This paper seeks to understand the spatial patterns 

behind the expansion of vaccination coverage in newly introduced vaccines such as Haemophilus 

Influenzae type B (Hib) and Rotavirus in Peru and an additional country. 
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2 Background 

As we move towards a more sustainable and equitable world, as recently praised by world leaders 

when establishing goals for the next 15 years, preventable deaths remain a massive public health 

concern in low and-middle income countries due to basic health interventions being inaccessible for 

far too many (Boerma et al., 2018). It is estimated that 800 women and 7700 newborns die daily during 

or shortly after pregnancy and childbirth (Chou et al., 2015), in which most of these deaths are 

preventable or treatable. Those unfair maternal and under-five deaths must be addressed while also 

taking into account that vulnerable and neglected subgroups of the population are usually much worse 

(Barros and Victora, 2013). The Sustainable Development Goals (SDGs) have emphasized the 

importance of reducing within-country inequalities, so no one is left behind. For that, health estimates 

that are more granular, at subgroup level, are essential, as national estimates often mask 

heterogeneities at finer resolutions (United Nations, 2015). 

Epidemiology, in its essence, focus on studying subgroups of the population that have at least one 

characteristic in common. Other than blood ties, place of residence is a useful way of grouping people 

based on their similarities. At national level, residents of a given country share several cultural, 

political and environmental aspects, as well as specific beliefs and exposure to propaganda when 

compared to different nations. Yet, there is tremendous within-country heterogeneity - across 

regions, districts and municipalities. Each geographic division carries a great deal of social reflexes, 

and as we descend to finer resolutions, we are able to look at more specific contexts and their 

influences (Cummins et al., 2007). 

LMICs heavily rely on survey data to monitor and report maternal and child health progress due to 

weak or lacking health information and vital registration systems. Capturing geographic inequalities, 

though, is challenging as these surveys usually provide representativeness for large geographic areas. 

Since these surveys are not designed to be analyzed on a geographic perspective, information 

obtained through geospatial analysis, particularly spatial modeling, can be helpful to fill existing gaps 

of estimates on lower levels of disaggregation. As many countries are structured with decentralized 

health systems, health managers greatly benefit from local estimates as their autonomy in terms of 

financing and organization is endorsed by data. 

Geospatial information has proven to be effective in supporting governments and organizations to 

plan and allocate policies and resources (Greene, 2000; Folger, 2010). Maps of high granularity can 

play an important role in advocacy as they are easy to interpret and are able to provide detailed 

information on where the need for interventions is greater. The use of Geographic Information 

Systems (GIS) is not limited to painting maps and pinpointing areas to intervene, though. It can 
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contribute by creating or extracting knowledge when suitable data is available, and location influences 

the relationships under investigation. Summarizing information for a large number of settings and 

managing information from different data sources and types are also among the differentials of a 

geospatial application. 

2.1 Spatial analysis 

Spatial analysis may be relevant whenever the geographical space is believed to be associated with 

the subject under study. Within the health geography field of application, spatial analysis can be 

divided into descriptive or analytic (Litva and Eyles, 1995). The most widely known and possibly one 

of the first documented uses of spatial epidemiology was John Snow’s map of cholera in London 

(Snow, 1855). Snow used the spatial distribution of the disease to test his hypothesis that the cases 

were clustered around one of the water pumps. Describing patterns in space is a key strategy to 

identify priority areas and guide the investigation of factors associated with high prevalence of a 

disease or low coverage of an intervention. On the other hand, analytical approaches begin when the 

focus becomes creating or extracting new information. Whether the objective is understanding the 

relationship of the phenomena with its determinants, or predicting estimates for unmeasured areas, 

spatial approaches are often applied when: a) territory can function as a proxy for unmeasured 

contextual, political or environmental influences, and b) data integration is required, especially when 

the information is available in pixels, satellite images or buffers. 

2.2 Spatial autocorrelation 

Tobler’s first law of geography states that "everything is related to everything else, but near things are 

more related than distant things." (Tobler, 1970). This concept is the base of spatial autocorrelation, 

which aims to measure the inter-dependency of observations in a geographic space. Spatial 

correlation exists when the distribution of settings in the study area is not random. Several statistics, 

such as Moran, Geary and Getis-Ord, try to quantify the degree of correlation by analyzing the 

estimates according to the distance between its neighbors and the length of the borders they share 

(De Smith, Goodchild and Longley, 2018). Positive values indicate higher or lower estimates are more 

clustered than it would be expected if the distribution was random. Negative values indicate the 

estimates are more dispersed, similar to what can be observed with the black and white squares in a 

chess board. The null hypothesis is that the estimates are randomly distributed across the space, thus 

resulting in a value close to zero.  



23 

2.3 Spatial interpolation 

In general, data points are observed and collected in order to describe a given phenomenon in a 

particular area. Most of the times, measured data is incomplete or inaccurate, and insufficient to 

provide values for the entire area under study. There is a variety of methods to impute missing data 

based on similar characteristics and patterns found in observed data. In spatial statistics, the act of 

impute values based on the distance to observed points is defined as spatial interpolation (De Smith, 

Goodchild and Longley, 2018). Basic methods, such as inverse distance weighting, defines a smooth 

gradient of values based on distance to closest neighbors alone.  

2.4 Data availability for spatial analyses of health attributes 

International surveys such as the DHS and the Multiple Indicator Cluster Survey (MICS) are carried out 

every three to five years, providing accurate and reliable data on maternal and child health indicators. 

The DHS program is carried out by the United States Agency for International Development (USAID) 

since 1984, designed as a continuation for the World Fertility Survey in monitoring the progress of 

women in reproductive age and children up to five years old (Corsi et al., 2012). In the last decades, 

DHS have also started collecting Global Positioning System (GPS) coordinates for their surveys. Each 

cluster, a grouping of 20 to 30 households similar to census tracts, has its center georeferenced, 

allowing them to be linked with different sources of information, such as health facility or 

environmental data. Due to confidentiality concerns, each cluster is randomly displaced for up to 2km 

in urban areas and up to 5 km in rural areas, while 1% of them are displaced for up to 10km. 

National health surveys are key data sources for LMICs and provide extensive and comparable 

information on health outcomes and sociodemographic characteristics that can be applied to a variety 

of research and policy questions at national and subnational levels (Carvajal-Aguirre et al., 2017). Still, 

determining the mechanisms that lead to coverage or prevalence changes is often a complex task, of 

which may require combining different domains such as cultural, environmental and political to the 

available health information. Integrating and standardizing these data, though, is a time-consuming 

and complex task. Publicly available data sources come in different formats, resolutions and quality, 

of which many of them are uncleaned. Detailed information at high resolution is generally owned by 

governments or private institutions and obtaining it, when possible, is costly or depends on 

collaborating with the holders. 

If access is the first barrier to data integration, putting everything together may be an even bigger 

challenge. Linking georeferenced datasets through GPS coordinates is the simplest approach when 

working with health facilities or specific events. Yet, individual level data, for ethical reasons, is not 

released with their precise coordinates (Gething et al., 2015). Noise is added by scrambling the 
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coordinates to ensure residents remain untraceable. Attaching this information to the closest territory 

it is contained, like the neighborhood, municipality or district is frequently the only possible option, 

yet precision is lost in the process. The amount of detail and precision that can be lost without 

jeopardizing a given study will be determined by the scope of the research question. 

Assuming all necessary information on point coordinates and territorial areas is available, layers will 

often need to interact among themselves. Doing so requires human resources with the appropriate 

skillset, which may be yet another obstacle to overcome. As complexity increases, and many projects 

aim to go beyond developing enhanced thematic maps, the need for capacity building and 

collaboration networks with experienced analysts rises.  

3 Rationale 

To achieve the desired progress proposed by the 2030 agenda, information on the current situation 

of the countries and on how they are changing over time is key to ensure policies and investments are 

being aimed properly. Monitoring is best when data on effective and simple indicators are available. 

Most LMICs lack adequate health information systems and rely on survey data as their primary data 

source. 

Universal health coverage (UHC) is a broad definition covering equitable, efficient and financially 

secure access to health services, comprising the World Health Organization (WHO) vision for health as 

a human right (World Health Organization, 2014). In RMNCH studies, UHC is often employed as a 

collection of preventive, curative and cost-effective essential interventions delivered throughout the 

entire continuum of care (Kerber et al., 2007). 

Monitoring UHC in LMICs is frequently based on survey data collected by international organizations 

such as the DHS and MICS programs. They conduct interviews with a standardized questionnaire which 

allows for comparability of internationally accepted health indicators. Estimates for these indicators 

are provided at national and subnational level. The subnational units are generally representative of 

the first administrative level of the country. Though relevant patterns can be derived from these units, 

finer and more specific estimates allow for more focused interventions and better discrimination of 

geographic inequalities. 

Current computer processing power and the continued improvement of geospatial techniques allied 

to the increase in reliable, updated and accurate data open up opportunities to study maternal, 

newborn and child health outcomes from different angles. As survey data is still the leading source of 

information, it is the academic community’s duty to extract and report the maximum amount of 

knowledge available on these data sources to assist governments and stakeholders. The application 
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of geospatial analyses can contribute to better understanding of the spatial patterns while also 

producing highly granular data for more focused interventions. 

This project aims to explore the potential benefits of geospatial analysis in RMNCH through three 

different approaches: 

a) Compiling knowledge from applications of geospatial analysis in the literature to uncover gaps 

and opportunities for better intervention planning and reduction of inequalities. 

b) Generating more granular data on UHC to improve detection, visualization and action on 

geographic disparities. 

c) Examining how vaccination coverage changes over time by studying the spatial patterns to 

identify possible delays and geographic barriers leading to unequal coverage. 

4 Literature review 

To summarize the existing literature, we carried out a systematic review by searching the PubMed 

(https://www.ncbi.nlm.nih.gov/pubmed) database for studies that used GIS and their primary data 

source was national health surveys in LMICs. The search strategy considered MeSH (Medical Subject 

Headings) terms and important keywords related to the scope of the study, which were also present 

in previously identified relevant articles. 

("Health Surveys"[Mesh] OR "Demographic and Health Surveys" OR DHS OR MICS OR "Multiple 

Indicator Cluster Survey" OR "Health Survey") AND ("Geographic Information Systems"[Mesh] OR 

GIS OR Spatial Analysis[Mesh]) 

Most of the articles relevant to the composition of this project were open source. The university proxy 

access through Periódicos CAPES (http://www.periodicos.capes.gov.br) allowed us to obtain the 

remainder. The few exceptions were retrieved from collaborators or directly from the authors. 

The initial search, on 18 May 2019, resulted in 1060 articles, of which 121 were pre-selected after 

screening through titles and abstracts. After full reading, another 67 were removed due to not meeting 

our eligibility criteria, yielding 54 selected studies. 

From the 56 selected studies, 46 included African countries. Asia and Latin America and the Caribbean 

were included in only 10 and 6 studies, respectively. 80% of the studies were carried out after 2013, 

corroborating the field has grown in the most recent years. All selected studies were cross-sectional. 

The studies are described in Table 1. 

The nutritional status of children was the most commonly studied outcome, being part of 13 studies. 

Sociodemographic characteristics were assessed as determinants of the given outcome in most of the 
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studies. Based on Ebener et. Al (Ebener et al., 2015), the selected studies were classified into three 

categories: thematic mapping, spatial analysis and spatial modelling. 

4.1 Thematic mapping 

Timely and targeted interventions require geographic patterns in countries, subnational regions or 

smaller territorial units to be properly described and documented. As defined by Ebener et. Al (2015), 

thematic mapping studies are those whose objective lays on the “creation of maps to convey 

information about a topic or theme”, thus providing augmented visualization details to help 

surveillance, policy and investments planning. 

The spatial patterns are often presented as choropleth or heat maps. While choropleth maps respect 

the geographic boundaries and illustrate each unit of analysis (e.g., regions or districts of a country) 

with a single color, heat maps use the density of the available points to interpolate values for the 

entire surface, presenting a smoothed gradient. Regardless of the mapping strategy, most studies 

identified in our literature review have focused on identifying statistically clustered areas of low or 

high coverage. For this purpose, we identified two similar, but slightly different, approaches. The first 

is scanning the study space to identify areas where the outcome is spatially concentrated (Cuadros, 

Awad and Abu-Raddad, 2013; Cuadros and Abu-Raddad, 2014; Alemu et al., 2016; Wong et al., 2018). 

Kulldorff was the most known and used implementation in the studies following this approach 

(Kulldorff, 1997). The second approach uses measures of spatial autocorrelation or Local Indicators of 

Spatial Autocorrelation (LISA) to evaluate the existence of spatial patterns (Anselin, 1995). Although 

LISA detect clustered areas, their primary goal is to quantify the spatial dependence (or 

autocorrelation), highlighting where it is greater (Adekanmbi, Uthman and Mudasiru, 2013; Lopez-

Cevallos, Chi and Ortega, 2014; Bogale et al., 2017; Brownwright, Dodson and van Panhuis, 2017; 

Hasan et al., 2018; Khan and Mohanty, 2018; Tewara et al., 2018; Yourkavitch et al., 2018). 

Additionally, a few studies attempted to describe geographic changes in coverage over time (Cuadros 

and Abu-Raddad, 2014; Barankanira et al., 2017; Hasan et al., 2018). 

4.2 Spatial analysis 

Spatial analysis covers a wide range of concepts and techniques where space is a central element. In 

our literature review, we have defined spatial analysis as the collection of methods aimed at extracting 

or creating new information from spatial data (Ebener et al., 2015). Studies classified as spatial 

modeling are presented in the next section.  

Among the studies identified in our literature review, investigating determinants of maternal and child 

health outcomes was the most frequent goal of spatial analysis. In addition to estimating the effects 
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social and demographic health determinants, several studies considered a spatial correlation 

component by applying spatial models (Thuilliez, 2010; Owoo and Lambon-Quayefio, 2013; Chirwa et 

al., 2014; Gayawan, 2014; Gayawan, Adebayo and Chitekwe, 2014; Gayawan, Arogundade and 

Adebayo, 2014; Kandala et al., 2015; Mtambo, Masangwi and Kazembe, 2015; Ngwira and Stanley, 

2015; Barankanira et al., 2016; Chitunhu and Musenge, 2016; Haile et al., 2016; Helova, Hearld and 

Budhwani, 2017; Ejigu, Wencheko and Berhane, 2018; Habyarimana and Ramroop, 2018). Both 

frequentist and Bayesian models were used in similar fashion for estimating the spatial effects 

throughout the studies. In a slightly different approach, a few studies attempted to estimate the 

independent effect of environmental factors on health outcomes. We identified studies assessing the 

influence of air pollution on neonatal and infant mortality (Goyal, Karra and Canning, 2019) and 

stunting (Goyal and Canning, 2017), proximity to vegetation areas and forest loss cover on child diet 

and nutrition (Johnson, Jacob and Brown, 2013; Galway, Acharya and Jones, 2018), proximity to 

conflict (Ostby et al., 2018), vegetation and temperature on schistosomiasis (Yang et al., 2005) and 

how earthquakes can affect child growth (Rydberg et al., 2015). Giardina et. al (2014) examined the 

effect of interventions and environmental variables in malaria risk changes over times in a few sub-

Saharan countries. 

Geographic access to health is one of the most common and promising applications of GIS capabilities 

as mobility is associated with several environmental factors and trajectories could be observed or 

estimated. Six studies assessed how health care utilization is affected by distance and quality provided 

by the service (Heard, Larsen and Hozumi, 2004; Hong, Montana and Mishra, 2006; Choi et al., 2010; 

Gabrysch et al., 2011; McKinnon et al., 2014; Skiles et al., 2015; Tansley et al., 2015; Gao and Kelley, 

2019). Studies in which modeling of travel times or distance is estimated while considering associated 

covariates were classified as spatial modeling and are described in the next section. 

4.3 Spatial modeling 

A subtle but important difference distinguishes spatial modeling as a separate class of studies: 

incorporation of ancillary data in mathematical models to provide more precise and reliable estimates. 

Small area estimation and travel time calculation stand out in the literature as the most popular, yet 

promising line of works. To concentrate efforts and resources on the most needed, along with 

characterizing the vulnerable shares of the population, the location of these groups must be 

uncovered and described using solid and detailed data. National health surveys offer a vast amount 

of information for policy planners at subnational geographic units – commonly the first administrative 

level of the country. These units are often extensive and heterogeneous. In our literature review, 

spatial modeling studies are presented below according to their modeling purposes: a) small area 

estimation and b) calculation of travel times. 
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Small area estimation studies vary from descending to finer geographic division (e.g. from regions to 

districts or counties) to estimation of high-resolution units such as grids of 5km² or 10km². District-

level estimates were generated for anthropometric indicators (Akseer et al., 2018), under-5 mortality 

(Dwyer-Lindgren et al., 2014), maternal and health care service utilization (Ruktanonchai et al., 2016) 

and adolescence births (Neal et al., 2016). Three studies provided maternal and child health estimates 

for smaller areas of up to 10km² using associated covariates to improve precision (Acheson, Plowright 

and Kerr, 2015; Burke, Heft-Neal and Bendavid, 2016; Ruktanonchai et al., 2016). Jia et. al (2016) 

generated spatially-smoothed coverage estimates disaggregated by socioeconomic position but no 

covariates were considered. Although Bayesian spatial models were the prevailing methodology for 

small area estimation in the studies identified in our review, Bosco et al (2017) compared them to 

machine learning and generalized linear models using a few outcomes in four different countries and 

found no strong evidence for preferring one method over the others. 

Travel time models attempt to provide more accurate measures of access to healthcare. Geographic 

obstacles are known to affect the access to health facilities (Khan and Bhardwaj, 1994), especially in 

poorer and less structured areas (Gething et al., 2012). Euclidean distances tend to underestimate 

travel times where terrain conditions reduce mobility. Among the studies identified in this literature 

review, different approaches were observed including the comparison of Euclidean distances to 

modelled travel times (Noor et al., 2006) and examining the impact of sociodemographic and 

economic characteristics to enhance travel times models (Ouma et al., 2017). Masters et al (2013) 

attempted to estimate the effect of travel times in health facility delivery in Ghana. 

We recognize that a few relevant studies were not comprised in this literature review. This is due to 

the restriction of the search strategy to studies that were explicitly based on health surveys. Those 

missed studies, despites using survey data, lacked clarification on data sources in their MeSH terms, 

title or abstract. The search strategy will be expanded and improved for the proposed review paper. 

 

 



29 

Table 1. Results of the literature review 

Author/Year Study characteristics Statistical methods GIS coverage Study objective 

Goyal et al 

2019 

Outcomes: Neonatal and infant mortality 

Exposures: Air pollution (PM2.5)  

43 low and-middle income countries 

Generalized linear models Spatial analysis To estimate the association of air pollution 

on neonatal and infant mortality. 

Johnson et al 

2013 

Outcomes: Stunting, vitamin A, dietary 

diversity, episodes of diarrhea 

Exposures: Vegetation indexes 

Malawi 

Generalized linear models Spatial analysis To estimate the association of proximity to 

vegetation areas with child nutrition 

indicators 

Rydberg et al 

2015 

Outcomes: Stunting 

Exposures: Seismic activity intensity 

Peru 

Multilevel models Spatial analysis To estimate the impact of an earthquake in 

public health outcomes using stunting as a 

proxy 

Akseer et al 

2018 

Outcomes: Anthropometric indicators 

Exposures: Sociodemographic characteristics 

Afghanistan 

Bayesian spatial models Spatial modelling To assess the geographical differences at 

district-level in anthropometric indicators 

Ouma et al 

2017 

Outcomes: Health facility utilization 

Exposures: Travel time to health facility 

Three Kenya’s counties 

Bayesian spatial models Spatial modelling To compare the accuracy of travel time 

estimation models 

Alemu et al 

2016 

Outcomes: Child malnutrition 

Ethiopia 

Cluster analysis Thematic mapping To identify clusters of concentration of 

malnutrition in Ethiopia 

Bosco et al 

2017 

Outcomes: Modern contraceptives, literacy 

and stunting 

Exposures: Travel time, distance, climate, 

demographic, environmental, among others 

Nigeria, Kenya, Tanzania and Bangladesh 

Bayesian spatial models and 

machine learning 

Spatial modelling To test the accuracy of spatial predictive 

methods on modern contraceptives use, 

literacy and child stunting 
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Author/Year Study characteristics Statistical methods GIS coverage Study objective 

Neal et al 

2016 

Outcomes: Adolescent first birth 

Tanzania, Kenya and Uganda 

Bayesian spatial models Spatial modelling To assess the geographical distribution of 

adolescent first births in three countries 

Jia et al 

2017 

Outcomes: Improved sanitation 

Kenya 

Bayesian spatial models, 

cluster analysis 

Spatial modelling  To estimate the coverage of access to 

sanitation in small areas and identify spatial 

clusters 

Ruktanonchai et al 

2017 

Outcomes: Antenatal care, Skilled birth 

attendance and postnatal care 

Burundi, Kenya, Tanzania, Rwanda and 

Uganda 

Bayesian spatial models Spatial modelling To produce a high-resolution inaccessibility 

score and district-level estimates to assess 

how spatial inequalities changed over time 

Hong et al 

2006 

Outcomes: Contraceptives (IUD) 

Exposures: Health facility quality 

Egypt 

Multilevel models Spatial analysis To estimate the effect of health facility 

quality on IUD coverage 

Gabrysch et al 

2011 

Outcomes: Skilled birth attendance 

Exposures: Distance to facility and level of 

care provided 

Zambia 

Multilevel models Spatial analysis To estimate the effects of distance and level 

of care on health facility delivery 

Chirwa et al 

2014 

Outcomes: birth intervals 

Exposures: Sociodemographic characteristics 

DR Congo 

Bayesian spatial models Spatial analysis To investigate the spatial heterogeneity of 

birth intervals in young Congolese women 

Gayawan 

2014 

Outcomes: Institutional delivery 

Exposures: Sociodemographic characteristics 

Nigeria 

Generalized linear models, 

Bayesian spatial models 

Spatial analysis To identify the determinants of place of 

delivery and the geographical location 

variation 

Ngwira et al 

2015 

Outcomes: Birth weight 

Exposures: sociodemographic characteristics 

Malawi 

Bayesian spatial models Spatial analysis To identify the determinants of birth weight 

and the spatial patterns 
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Author/Year Study characteristics Statistical methods GIS coverage Study objective 

Tansley et al 

2015 

Outcomes: Access to emergency health 

facilities 

Exposures: Population, roads,  

Namibia and Haiti 

Network analysis Spatial analysis To estimate the share of the population 

within 50km of health facilities with 

different levels of care 

Wong et al 

2018 

Outcomes: Private facility birth delivery 

Nigeria 

Cluster analysis, generalized 

linear models 

Thematic mapping To identify cluster of low and high private 

facility birth delivery 

Acheson et al 

2015 

Outcomes: Insecticide treated nets 

Exposures: Population, land cover, elevation, 

vegetation and temperature 

Tanzania 

Generalized linear models, 

Species distribution model 

Spatial modelling To compare the distribution of insecticide 

treated nets with concentration of malaria 

and estimate the areas at risk 

Yourkavitch et al 

2018 

Outcomes: Exclusive breastfeeding, 

vaccination, care seeking, stunting and 

under-5 mortality 

27 African countries 

Cluster analysis Thematic mapping To identify areas of low coverage or high 

need for intervention 

Gao and Kelley 

2019 

Outcomes: Health facility utilization 

Exposures: Distance to facility and quality of 

care 

Haiti and Kenya 

Interpolation methods Spatial analysis To determine the effects of distance and 

quality of care on maternal health services 

Masters et al 

2013 

Outcomes: Antenatal care and institutional 

delivery 

Exposures: Distance to health facility 

Ghana 

Multilevel models Spatial modelling To estimate and map the travel time to 

health facilities and the effect on antenatal 

care and in-facility deliveries 

Skiles et al 

2015 

Outcomes: Use of injectables and unmet 

need for contraceptives 

Exposures: Distance to health facility 

Interpolation methods Spatial analysis To test the association between use of 

contraceptives and distance to health 

facilities 
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Author/Year Study characteristics Statistical methods GIS coverage Study objective 

Malawi 

Barankanira et al 

2017 

Outcomes: Stunting 

Côte d’Ivoire 

Multilevel models Thematic mapping To investigate the spatial heterogeneity of 

stunting over time and the civil war effect 

Hasan et al 

2018 

Outcomes: Malnutrition 

Bangladesh 

Cluster analysis Thematic mapping To examine changes over time in spatial 

clustering of malnutrition 

Cuadros et al 

2014 

Outcomes: HIV 

Tanzania, Malawi, Kenya and Zimbabwe 

Cluster analysis Thematic mapping To identify how changes over time affected 

the clusters of high prevalence of HIV 

Mtambo et al 

2015 

Outcomes: Overweight 

Exposures: Sociodemographic characteristics 

Malawi 

Bayesian spatial models Spatial analysis To identify overweight determinants based 

on a quantile-based Bayesian regression 

Bogale et al 

2017 

Outcomes: Diarrhea 

Ethiopia 

Interpolation methods Thematic mapping To explore the spatial patterns of diarrhea 

in Ethiopia 

Ejigu et al 

2018 

Outcomes: Anemia 

Exposures: Sociodemographic characteristics 

and malaria 

Ethiopia 

Multilevel models Spatial analysis To identify the determinants of anemia and 

its spatial pattern 

Khan and Mohanty 

2018 

Outcomes: Malnutrition 

India 

Generalized linear models Thematic mapping To examine the spatial heterogeneity 

among districts and meso-scale correlates 

Brownwright et al 

2017 

Outcomes: Measles 

10 Sub-Saharan countries 

Generalized linear models Thematic mapping To examine the spatial heterogeneity of 

measles coverage 

Chitunhu and 

Musenge  

2016 

Outcomes: Malaria 

Exposures: Sociodemographic characteristics, 

vegetation, precipitation 

Malawi 

Bayesian spatial models,  

Generalized linear models 

Spatial analysis To compare different methods for 

predicting malaria in Malawi 
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Author/Year Study characteristics Statistical methods GIS coverage Study objective 

Habyarimana and 

Ramroop 

2018 

Outcomes: Contraceptives use 

Exposures: Sociodemographic characteristics 

Rwanda 

Bayesian spatial models Spatial analysis To identify the determinants of 

contraceptive use in Rwanda 

Barankanira et al 

2016 

Outcomes: HIV 

Exposures: Sociodemographic characteristics 

Burundi 

Generalized linear models Spatial analysis To examine the spatial heterogeneity and 

the determinants of HIV 

Burke et al 

2016 

Outcomes: Under-5 mortality 

Exposures: Malaria, conflict, temperature 

28 Sub-Saharan countries 

Interpolation methods,  

Generalized linear models 

Spatial modelling To provide high resolution estimates of 

under-5 mortality, assess the changes over 

time and compare differences between 

countries’ borders 

Tewara et al 

2018 

Outcomes: Malaria 

Cameroon 

Interpolation methods Thematic mapping To provide hot-spot maps of malaria 

clustering in Cameroon 

Gayawan et al 

2014a 

Outcomes: Anemia 

Exposures: Sociodemographic characteristics 

Nigeria 

Bayesian spatial models Spatial analysis To identify the determinants of anemia in 

Nigeria 

Otsby et al 

2018 

Outcomes: Institutional delivery 

Exposures: Organized violence 

31 Sub-Saharan countries 

Generalized linear models Spatial analysis To examine the relationship between 

proximity to conflict and institutional 

delivery 

Owoo and Lambon-

Quayefio 

2013 

Outcomes: Antenatal care 

Exposures: Sociodemographic characteristics 

Ghana 

Generalized linear models Spatial analysis To investigate the effects of social influence 

and health insurance in antenatal care 

utilization 

Noor et al 

2006 

Outcomes: Access to health facilities 

Exposures: Travel time 

Kenya 

Naismith–Langmuir rule Spatial modelling To compare travel time models of access to 

health facilities 
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Author/Year Study characteristics Statistical methods GIS coverage Study objective 

Cuadros et al 

2013 

Outcomes: HIV 

20 Sub-Saharan countries 

Cluster analysis Thematic mapping To identify clusters of high and low 

prevalence of HIV 

Heard et al 

2004 

Outcomes: Modern contraception 

Malawi 

Generalized linear models Spatial analysis To determine the effect of distance to 

health facilities on use of modern 

contraceptives 

Thuilliez et al 

2010 

Outcomes: Fever and school failure 

Exposures: Sociodemographic characteristics 

and malaria 

Mali 

Generalized linear models Spatial analysis To assess the impact of fever and malaria on 

school performance and discuss using fever 

as a proxy for malaria 

Goyal and Canning 

2017 

Outcomes: stunting 

Exposures: Air pollution 

Bangladesh 

Generalized linear models Spatial analysis To estimate the effect of air pollution on 

stunting 

Adekanmbi et al 

2013 

Outcomes: Stunting 

Nigeria 

Cluster analysis Thematic mapping To examine the spatial heterogeneity of 

stunting in Nigeria 

Haile et al 

2016 

Outcomes: Stunting 

Exposures: Sociodemographic characteristics 

Ethiopia 

Mutilevel models Spatial analysis To investigate spatial variation and factors 

associated with stunting 

Gayawan et al 

2014b 

Outcomes: Exclusive breastfeeding 

Exposures: Sociodemographic characteristics 

Nigeria 

Bayesian spatial models Spatial analysis To investigate the determinants and spatial 

heterogeneity in exclusive breastfeeding 

Dwyer-Lindgren et 

al 

2014 

Outcomes: Under-5 mortality 

Zambia 

Generalized linear models,  

Non-linear models 

Spatial modelling To compare methods of mortality 

estimation at district-level and evaluate 

spatio-temporal changes 

Giardina et al 

2014 

Outcomes: Malaria 

6 Sub-Saharan countries 

Bayesian spatial models Spatial analysis To estimate the changes in risk of malaria 

and the effect of intervention over time 
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Author/Year Study characteristics Statistical methods GIS coverage Study objective 

McKinnon et al 

2014 

Outcomes: Neonatal mortality 

Exposures: Distance to health facility 

Ethiopia 

Generalized linear models Spatial analysis To examine the effect of distance to health 

facility on neonatal mortality 

Kandala et al 

2015 

Outcomes: Modern contraceptives 

Exposures: Sociodemographic characteristics 

DR Congo 

Bayesian spatial models,  

Generalized linear models 

Spatial analysis To investigate inequalities in modern 

contraceptive use in DR Congo 

Galway et al 

2018 

Outcomes: Child diet diversity 

Exposures: Forest cover, aridity, 

sociodemographic characteristics 

15 Sub-Saharan countries 

Bayesian spatial models Spatial analysis To examine the association between diet 

diversity and deforestation 

Helova et al 

2017 

Outcomes: Child mortality 

Exposures: Sociodemographic characteristics 

Pakistan 

Multilevel models Spatial analysis To identify the determinants of child 

mortality at individual and community level 

López-Cevallos et al 

2014 

Outcomes: Health service utilization 

Exposures: Sociodemographic characteristics 

Ecuador  

Multilevel models Thematic mapping To examine the spatial distribution and 

inequalities in health service utilization 

Yang et al 

2005 

Outcomes: Schistosomiasis 

Exposures: Vegetation, temperature 

China 

Bayesian spatial models Spatial analysis To examine the relationship between 

schistosomiasis and environmental factors 
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5 Objectives 

5.1 General objective 

Investigate how geographic inequalities can be assessed through geospatial methodology 

5.2 Specific objectives 

1. Based on findings of the literature review, we aim to: 

a) Compare the spatial modelling methodologies utilized for small area estimation. 

b) Discuss spatial modeling suitability for given outcomes.  

c) Identify gaps and opportunities for further studies in RMNCH. 

d) Discuss how health policy makers can benefit from spatial modeling. 

2. Model universal health coverage through the composite coverage index using DHS and 

ancillary data sources: 

a) Determine the best available analytical approach for the task. 

b) Generate gridded surface maps for environmental associated factors. 

c) Explore the possibilities for data imputation on missing CCI interventions to improve 

data availability. 

3. Understand the spatial patterns of vaccination coverage and how they change over time: 

a) Explore how coverage of Hib and rotavirus vaccines increased geographically over the 

years in both countries given different implementation strategies. 

b) Identify geographical barriers delaying expansion of vaccination coverage. 

6 Hypotheses 

Since approaches introduced by this proposal point out to more descriptive rather than analytical 

scenarios, there are no clear hypotheses to be tested. Nonetheless, several challenges and patterns 

are expected. 

1. We expect uncertainty to be inversely proportional to population density when modelling CCI 

interventions. In Africa, we expect CCI coverage to be higher in urban and capital city areas, 

and where richer populations live. We also expect to find higher coverage in areas with more 

convenient environmental situations, like proximity to permanent water sources, nighttime 

lights and remoteness. 
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a. We expect INLA to be the most appropriate modeling approach given several studies 

are using it to model RMNCH outcomes 

2. After the implementation of Hib and rotavirus vaccines, we expect more urbanized and richer 

areas to receive and achieve higher coverage first when compared to more rural and poorer 

areas. We also expect lesser and late coverage to be found in remote areas with more difficult 

levels of accessibility. 

7 Methods 

7.1 Paper 1: systematic review 

The review aims at summarizing the current applications of spatial modeling on maternal and child 

health in LMICs while discussing consolidated lines of work, challenges and unexplored paths. A 

systematic search strategy will be used, in conjunction with searching references from the selected 

papers. Also, the search strategy presented in Section 4, will be broadened so that papers not directly 

referring to surveys are not left out and to include new databases. 

Spatial modeling is becoming increasingly popular in the field of epidemiology in recent years, 

including RMNCH, as observed in our literature review. Not only processing power enables more 

complex analyses, but methodologies have evolved considerably in a short time span. The review will 

attempt to summarize the growth of spatial modeling in the literature, pointing out to possible 

reasons for such gain in popularity. This has also raised concerns regarding inadequate use of these 

methodologies – e.g., for outcomes where the geographic correlation is not evident, therefore making 

use of inappropriate predictive modeling approaches. 

7.2 Paper 2: high resolution mapping of the CCI 

The CCI utilizes eight essential interventions from four phases of the RMNCH continuum of care and 

can be interpreted as a proxy measure of UHC for mothers and children (Wehrmeister et al., 2016). 

Each of its components, their definitions and the CCI formulation are presented in Table 2. Estimates 

for the CCI and its components at national and subnational level are provided by the International 

Center for Equity in Health (International Center for Equity in Health, 2019), which reanalyzes DHS and 

MICS surveys to ensure comparability between and within the countries. For this analysis we will 

recalculate the CCI at the primary sampling unit level. 

We anticipate a few challenges for generating CCI estimates for each cluster. Sample sizes for some of 

its components may be very low to provide reliable – or even any – estimates for some locations. Also, 

the standard error of the index is calculated using resampling strategies and the low level of 
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disaggregation may invalidate this procedure. Alternatives for assessing variability and filling data gaps 

are likely to be necessary. 

Given the CCI is a composite of several interventions, in light of varied performances observed in the 

literature (Bosco et al., 2017), there is no consensus on what is the best modelling approach for the 

task. Regarding the vaccination component of the index, Bayesian spatial models have been tested in 

one West African country and results were promising (Utazi et al., 2018). Bayesian models, through 

Integrated Nested Laplace Approximations (INLA), slightly outperformed machine learning techniques 

in modern contraceptives use estimation (Bosco et al., 2017). However, they highlight, that Artificial 

Neural Networks (ANN) generally perform better on non-Gaussian distributions.  

Two modeling exercises will assist in the selection of the best analytical approach. The first consist of 

comparing the predictive power of different techniques. Ensemble models (i.e combining different 

models to increase performance on the output) are also an option. The second lies on determining 

whether fitting several country-specific models will outperform a single generic model for all 

countries. Model’s performance will be internally assessed based on statistics such as Akaike 

Information Criterion (AIC) and through n-fold cross-validation. A portion of the data will be left-out 

for final assessment of external validity, though properly selecting geographically representative 

training and validation sets is a challenge. 

Ancillary data will be obtained from varied data sources to generate gridded surface estimates of 

associated contextual variables. Those may include population (Tatem et al., 2015), poverty (Steele et 

al., 2017), satellite imagery data (Tucker, Grant and Dykstra, 2004), among others. The selection of 

ancillary data and the choice of a specific analytic tool will be part of the activities to be developed 

during the sandwich PhD period. 

 

Table 2. The composite coverage index and their components definitions 

Indicator Acronym Numerator Denominator 

Demand for family 

planning satisfied by 

modern methods 

DFPSm 

Who is using (or whose partner is 

using) a modern contraceptive 

method 

Women aged 15-49 years 

either married or in union in 

need of contraception 

Antenatal care 4 or 

more visits 
ANC4 

Attended at least four antenatal 

care (ANC) visits with any provider 

Women aged 15-49 years who 

had a birth in the last 2/3 years 

Skilled attendant at 

delivery 
SBA 

Delivered by a skilled attendant 

(based on each country’s definition 

of skilled attendant) 

Women aged 15-49 years who 

had a birth in the last 2/3 years 

BCG vaccination BCG 
Received Bacillus Calmette-Guérin 

(BCG) vaccine 

All live-children, 12-23/18-

29/15-26 months (according to 

country’s calendar) 
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DPT3 vaccination DPT3 
Received 3 doses of Diphteria, 

Pertussis, Tetanus (DPT) vaccine 

All live-children, 12-23/18-

29/15-26 months (according to 

country’s calendar) 

Measles vaccination MSL Received measles vaccine 

All live-children, 12-23/18-

29/15-26 months (according to 

country’s calendar) 

Treatment for 

diarrhea 
ORS 

Received oral rehydration salts 

(ORS) 

All live children aged 0-59 

months with diarrhea in the 

last 2 weeks 

Care-seeking for 

pneumonia 
CAREP 

Sought treatment from an 

appropriate health facility or 

provider.  

Live children, 0-59 months, 

suspected pneumonia in the 

last 2 weeks 

Composite coverage 

index 
𝐶𝐶𝐼 =

1

4
(𝐷𝐹𝑃𝑆𝑚 +

𝑆𝐵𝐴 + 𝐴𝑁𝐶4

2
+

2(𝐷𝑃𝑇3) + 𝐵𝐶𝐺 + 𝑀𝑆𝐿

4
+

𝑂𝑅𝑆 + 𝐶𝐴𝑅𝐸𝑃

2
) 

 

7.3 Paper 3: spatio-temporal vaccination patterns 

Identifying determinants of immunization coverage is essential to implement successfully new 

vaccines into the routine immunization calendar. Equity-oriented implementation of new vaccines can 

dramatically shift the traditional patterns of coverage increase, as it is commonly observed in the 

inverse equity hypothesis (Victora et al., 2018). One way to assess spatial differences associated with 

equity-oriented implementation is by evaluating coverage expansion in two opposite scenarios. In this 

paper, we will study Peru and an additional country as examples of implementation with and without 

equity-oriented approaches.  

Peru holds a unique geography by having highlands, coast and forest areas within its territory. 

Additionally, Peru is located at the boundary of two tectonic plates, which causes the country to suffer 

with occasional earthquakes. In 2004, the country was the pioneer of a series of continuous surveys 

conducted by DHS yearly until 2012. Then, they decided to carry on through their own national 

statistics institute, with 2018 being the most recent survey to this date. With the introduction of new 

vaccines in the early 2000s, all this makes Peru a great case for evaluating how vaccination coverage 

expanded spatially over time and how environmental factors can interfere with it. 

As part of the pentavalent vaccine, Hib was firstly introduced to Peru in 1998 in areas of extreme 

poverty (Padilla et al., 2017). The pentavalent vaccine was adopted as part of the national 

immunization calendar only in 2004. Currently, as of 2016, 83.2% of children 18-29 months received 

Hib immunization in Peru. The rotavirus vaccine was first introduced in Peru in 2009. In the first year, 

the coverage was estimated in 41% and rapidly increased to 75% in 2010 (de Oliveira et al., 2013). 

Information on both indicators is collected in DHS surveys from vaccinations cards and reports from 

the mother. The standard indicator for tracking vaccine coverage considers both sources and is 
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defined as the number of children aged 18-29 that received the vaccines (3 doses of Hib or 2 doses of 

rotavirus vaccines) divided by the total number of children 18-29 months. 

Senegal rose as a potential candidate for the secondary country as it is also part of a continuous DHS 

series and it includes both Hib and Rotavirus in their routine immunization calendar. Unfortunately, 

they only collected information on those vaccines in the 2017’s survey, which prevents us from 

studying changes over. Yet to be decided,  the additional country should ideally have at least three 

data points in a span of at least 10 years between extremes, have considerably improved coverage in 

the period and have introduced these vaccines in the routine immunization without equity-oriented 

approaches. 

High-resolution estimates will be modeled yearly from 2004 to 2017 using DHS surveys and ancillary 

data sources. Absolute and relative changes will be examined overlaying maps from earlier years 

compared to most recent years. Coverage thresholds will be established to determine which areas 

have reached a desired coverage, which areas have not and how fast these changes took place in 

different locations.  

8 Ethical considerations 

The primary data sources for RMNCH information is DHS surveys and ethical approval was already 

obtained when the surveys were carried out. To preserve the confidentiality of the participants, the 

georeferenced coordinates of DHS clusters are jittered in up to 5km. Ancillary data sources, if required, 

will guarantee anonymity of the population under study. 

9 Relevant and impact 

Extending the application of geospatial analyses for monitoring RMNCH indicators has implications in 

both the academy and at decision making. A common question asked by local health managers is 

where and who is the population in need for intervention. These granular estimates allow for a closer 

look into the specificities of country’s subnational divisions, which is particularly valuable in settings 

where decentralized health systems prevail. Optimally, they can assist targeting policies and 

investments to the most vulnerable areas. 

Aside from the direct impact of these estimates for governments and policy makers, the academy 

builds knowledge upon small steps towards an asserted direction. Demonstrating a set of techniques 

is useful instigates further studies to push the field of study forward. Geospatial analysis has already 

proven itself as a promising method for monitoring UHC and unveiling geographic inequalities, 

despites several challenges such as dealing with uncertainty. Any step towards improving quality and 
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availability of data must be addressed and spatial modeling is a strong candidate for succeeding in 

such necessary goal. 

10 Timeline of activities 

The activities will follow the timeline presented in Table 3, below. We have established a collaboration 

with University of Southampton and a sandwich period is planned for the second half of 2020. The 

PhD sandwich supervisor is yet to be decided. We expect the thesis defense to be held in the second 

half of 2021, achieving all the objectives in approximately 42 to 46 months. 

 

Table 3. Timeline of activities 

Year 2018 2019 2020 2021 

Activities   Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

ICEH activities                 

Literature Review                 

PhD Work Planning                 

Literature review                 

Paper 1 writing                 

Data analysis – paper 2                 

Paper 2 writing                 

PhD sandwich period                 

Data analysis – paper 3                 

Paper 3 writing                 

Thesis defense                 

 

11 Dissemination of results 

The main results of the thesis will be presented in scientific events and published in indexed academic 

journals that we consider appropriate for the papers. In addition, these results will be sent to the press 

to communicate the community about the findings.    
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Project adjustments 

The initial project proposed an article to analyze the spatio-temporal vaccination patterns and 

compare the progress on geographical inequalities over time using Peru, a country that adopted 

equity-oriented policies, and an additional country that introduced new vaccines to the immunization 

routine in a regular fashion. This article was replaced due to data availability issues including the lack 

of information on the vaccines of interest and the absence of surveys with collected cluster 

coordinates. As an alternative, we developed an article that evaluated the empirical impact of an 

aggregation issue known as the modifiable areal unit problem in complex measures of inequality, and 

how different resolutions may hinder the assessment of time trends from a geographic perspective. 

As a result of the review article, using a Bayesian framework with the integrated nested Laplace 

approximation was chosen as the most appropriate technique for modeling the composite coverage 

index (CCI). This approach was the most extensively used modeling strategy in the literature for 

modeling reproductive, maternal, newborn and child health indicators.  We also opted for a policy-

oriented article that focused on describing the geographic disparities of the CCI coverage at different 

levels of aggregation rather than highlighting the importance of the geospatial modeling methodology 

as a study that was a pioneer at modeling a composite index. The setting changed from West and 

Central African countries to Peru mainly for two reasons: the lack of geospatial modeling studies in 

Latin America, and the possibility of collaborating with a local researcher with expertise on health 

inequalities in Peru. 
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Activities report 

This section describes a series of activities that the student was involved during the PhD that directly 

or indirectly contributed to the development as a researcher. This thesis was produced within the 

International Center for Equity in Health (ICEH), one of the many research projects conducted at the 

Postgraduate Program in Epidemiology of the Universidade Federal de Pelotas. The ICEH mission is to 

monitor inequalities in health and nutrition, with a special focus on women at childbearing age and 

children under-five years old, in low- and middle-income countries using data from national health 

surveys. 

International Center for Equity in Health 

Founded in 2009 under the leadership of professors Cesar Victora and Aluísio Barros, the initial goal 

of the center was to analyze a series of health indicators disaggregated by a few inequality dimensions 

at large scale. At the time guided by the Millennium Development Goals, this process has allowed the 

group to contribute to the study of health equity as much as the monitoring and accountability of 

inequalities at global scale. 

The ICEH started building a database that as of January 2022 includes 433 surveys from 118 countries 

providing information on over 375 indicators disaggregated by eight inequality dimensions. The main 

source of information are two series of surveys known as Demographic and Health Surveys and 

Multiple Indicator Cluster Survey, but more recently the group has started analyzing country-specific 

surveys such as the ones carried out in Brazil, Ecuador, and Mexico. From these surveys, we are able 

to analyze indicators related to reproductive health, antenatal care and birth, vaccines, breastfeeding, 

nutritional status, mortality, fertility, gender, and many others. All estimates are prepared at national 

level and disaggregated by place of residence, subnational region, sex of the child, wealth quintiles 

and deciles, woman’s education, and woman’s age. 

The main activity of the researchers that work at the ICEH is to maintain and update this massive 

database that is the core of most studies produced by the group and is shared with several 

international partners including the Health Equity Monitor of the World Health Organization (WHO), 

the Lives Saved Tool, and the Countdown to 2030 initiative. Despite the evident relevance of the 

database itself, the most valuable asset may be considered the ability to analyze hundreds of surveys 

in a short period of time with the flexibility to modify any indicator or inequality dimension. 
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Capacity building 

Starting in 2017, the WHO officialized the partnership with the ICEH by designing it as a collaborating 

center for health equity monitoring. One of the main activities of this collaboration is to provide 

training and education on health equity monitoring to strengthen the capacity of the countries to 

analyze their own data and use them to guide decisions and public health policies. In partnership with 

the Countdown to 2030 initiative, the ICEH has offered and has been part of several workshops and 

country case studies to enhance the analytical capacity of researchers and representatives of 

ministries and institutes of health. 

In July of 2018, I was part of the team that organized the workshop entitled “Leaving no women and 

no child behind: levels and trends in inequalities for RMNCH by wealth, urban-rural residence, and 

administrative area” in Nairobi, Kenya. The main objectives of the workshop were to 1) develop 

comprehensive country and regional analyses on inequalities in reproductive, maternal, newborn and 

child health (RMNCH), and 2) strengthen the analytical skills of the participants in survey and other 

types of analyses, as well as interpretation and communication of the results. Participants from 15 

African countries attended the 5-day event that consisted of lectures, group discussion and hands-on 

practical sessions. 

In November of 2019, the ICEH, through the Countdown to 2030 initiative and affiliated organizations, 

held a workshop entitled “Female Headed-Households: intersectional analyses of gender and health 

in low- and middle-income countries”. The event took place in Dakar, Senegal with 23 participants 

from 15 countries and a team of facilitators from Universidade Federal de Pelotas, African Population 

Health Research Center, WHO, University of Manitoba, University of Pretoria, and the American 

University of Beirut. The overall goal of the workshop was to enhance capacity on statistical and 

epidemiological data analyses of national surveys, with particular emphasis on gender equity analyses 

focused on female-headed households in sub-Saharan Africa. 

In August of 2019, I was invited as a representative of the ICEH for a technical meeting on Geospatial 

Modeling for Immunization Equity in Washington, DC, USA. The meeting was organized by UNICEF and 

the Bill and Melinda Gates Foundation which brought together 30 modelers and technical partners to 

review the global efforts on geospatial immunization modeling and begin defining priorities to support 

the global immunization equity agenda through geospatial modelling. 

Additional training 

In July of 2019, the Fundação Oswaldo Cruz held a two-week course entitled “Análise Espacial e 

Geoprocessamento em Saúde” in Rio de Janeiro, Brazil, coordinated by professors Christovam 
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Barcellos and Monica Magalhães. The course focused on introducing key concepts of spatial analysis, 

geoprocessing and cartography, as well as enabling students to use geographic information systems 

to better understand, organize and plan health strategies and draw information from a geographical 

perspective. 

In March of 2019, the University of Bristol held a short course on statistical methods for mediation 

analysis and repeated measures at the Postgraduate Program in Epidemiology. The course lasted a 

week and covered topics such as traditional mediation analyses, structural equation models, G-

computation and methods for repeated measures. 

Scientific collaborations 

Beyond the articles that are part of the thesis, I got involved in several collaborations with other 

researchers that resulted in scientific products. These products are not necessarily related to the main 

theme of the thesis but were important in my training as a researcher. 

 

Exploring the Potential for a New Measure of Socioeconomic Deprivation Status to Monitor Health 

Inequality 

Submitted to International Journal of Equity in Health. 

 

cixr, siilogit, siilin and equiplot: A set of programs to estimate and visualize inequalities 

Submitted to Stata Journal. 

 

Modern contraceptive use among women in need of family planning in India: an analysis of the 

inequalities related to the mix of methods used 

Published at Reproductive Health. 2021. DOI:10.1186/s12978-021-01220-w 

 

Association of the length of time using computers and mobile devices with low back, neck and 

mid-back pains: findings from a birth cohort 

Published at Public Health. 2021. DOI:10.1016/j.puhe.2021.04.003 

 

Are the poorest poor being left behind? Estimating global inequalities in reproductive, maternal, 

newborn and child health 

Published at BMJ Global Health. 2020. DOI:10.1136/bmjgh-2019-002229 
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Early childhood suspected developmental delay in 63 low- and middle-income countries: Large 

within- and between-country inequalities documented using national health surveys 

Published at Journal of Global Health. 2020. DOI:10.7189/jogh.10.010427 

 

Wealth-related inequalities in the coverage of reproductive, maternal, newborn and child health 

interventions in 36 countries in the African Region 

Published at Bulletin of the World Health Organization. 2020. DOI:10.2471/BLT.19.249078 

 

Large and persistent subnational inequalities in reproductive, maternal, newborn and child health 

intervention coverage in sub-Saharan Africa 

Published at BMJ Global Health. 2020. DOI:10.1136/bmjgh-2019-002232 

 

Analyses of inequalities in RMNCH: rising to the challenge of the SDGs 

Published at BMJ Global Health. 2019. DOI:10.1136/bmjgh-2018-001295 

Trends in socioeconomic inequalities in stunting prevalence in Latin America and the Caribbean 

countries: differences between quintiles and deciles 

Published at International Journal of Equity in Health. 2019. DOI:10.1186/s12939-019-1046-7 

 

Measurement of social inequalities in health: concepts and methodological approaches in the 

Brazilian context 

Published at Epidemiologia e Serviços de Saude. 2018. DOI:10.5123/s1679-49742018000100017 
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Geospatial estimation of reproductive, 
maternal, newborn and child health indicators: 
a systematic review of methodological aspects 
of studies based on household surveys
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Abstract 

Background:  Geospatial approaches are increasingly used to produce fine spatial scale estimates of reproductive, 
maternal, newborn and child health (RMNCH) indicators in low- and middle-income countries (LMICs). This study aims 
to describe important methodological aspects and specificities of geospatial approaches applied to RMNCH coverage 
and impact outcomes and enable non-specialist readers to critically evaluate and interpret these studies.

Methods:  Two independent searches were carried out using Medline, Web of Science, Scopus, SCIELO and LILACS 
electronic databases. Studies based on survey data using geospatial approaches on RMNCH in LMICs were considered 
eligible. Studies whose outcomes were not measures of occurrence were excluded.

Results:  We identified 82 studies focused on over 30 different RMNCH outcomes. Bayesian hierarchical models were 
the predominant modeling approach found in 62 studies. 5 × 5 km estimates were the most common resolution and 
the main source of information was Demographic and Health Surveys. Model validation was under reported, with the 
out-of-sample method being reported in only 56% of the studies and 13% of the studies did not present a single vali-
dation metric. Uncertainty assessment and reporting lacked standardization, and more than a quarter of the studies 
failed to report any uncertainty measure.

Conclusions:  The field of geospatial estimation focused on RMNCH outcomes is clearly expanding. However, despite 
the adoption of a standardized conceptual modeling framework for generating finer spatial scale estimates, meth-
odological aspects such as model validation and uncertainty demand further attention as they are both essential in 
assisting the reader to evaluate the estimates that are being presented.

Keywords:  Geospatial modeling, Small area estimation, Reproductive health, Maternal health, Newborn health, Child 
health, Low- and middle-income countries, Household surveys

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Reproductive, maternal, newborn and child health 
(RMNCH) is central to the Sustainable Development 
Goals (SDG) agenda for 2030 given its potential for 
improving health and quality of life of current and future 
generations as summarized by the motto “survive, thrive, 
transform” adopted by the Every Woman Every Child ini-
tiative [1]. Despite progress in the area, with the increase 
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in coverage of several indicators, there is yet much to be 
achieved [2]. Planning and implementation of essential 
health interventions, delivered by supporting organiza-
tions and governments, is mainly done at small admin-
istrative divisions such as districts, states, provinces, 
regions or counties [3]. This requires geographically 
disaggregated information, which enables more precise 
adjustment of policies and targeting of resources [4].

Information on RMNCH indicators is predominantly 
obtained from national health surveys in low- and mid-
dle-income countries (LMIC), which offer standard-
ized and reliable estimates [5]. Still, most surveys are 
usually designed to provide representative estimates at 
the largest administrative divisions as further disaggre-
gation would require larger sample sizes [6]. Different 
estimation methods are required since direct estimation 
of lower administrative units in these surveys is highly 
imprecise. Geospatial approaches have been widely used 
for estimating RMNCH outcomes for small areas using 
georeferenced survey data. These methods derive indirect 
estimates from statistical models by ‘borrowing strength’ 
across space or from supplementary data, such as geo-
spatial variables, censuses and administrative records [7]. 
However, censuses are carried out every 10 years or more 
in LMICs and administrative records are often incom-
plete, of poor quality or unavailable. Therefore, geospatial 
variables (information that is continuous across space, 
often retrieved from satellites or spatial interpolation), 
have been frequently used as supplementary data given 
their availability, timeliness, and reliance. The literature 
often uses the terms model-based geostatistics, small 
area estimation and (geo)spatial modeling interchange-
ably as model-based approaches to derive estimates for 
small geographies assisted by supplementary data.

Despite the rapid increase in the use of geographic 
information systems in RMNCH over the past dec-
ades, only a few studies have attempted to summarize 
these efforts. Two of them presented a broad review 
of spatial analyses in RMNCH [8] and health surveys 
in Sub-Saharan Africa [9], while one study focused 
on malaria transmission modeling [10]. Lastly, Rah-
man [11] carried out a review focusing on the meth-
ods used for estimation. To our knowledge, no study 
has comprehensively evaluated the most important 
methodological aspects for geospatial estimation of 
RMNCH indicators in LMICs. This assessment is nec-
essary to identify approaches currently being used, 
their strengths and limitations and to help inform 
and improve future studies. Also, since these meth-
odologies are relatively complex, non-specialists may 
struggle to evaluate and correctly interpret such stud-
ies. Therefore, this study aims to discuss the core 

methodological aspects of geospatial estimation, 
including any specificities employed for each RMNCH 
outcome, in studies focused on producing fine spatial 
scale estimates. In addition, we aim to enable non-spe-
cialist readers to critically evaluate and interpret these 
studies.

Methods
Conceptual framework
The structure and methodological aspects discussed in 
the review are guided by a standard modeling framework, 
adapted from Mayala et al. [12] and presented in Fig. 1. 
This conceptual framework is widely adopted in the lit-
erature and geospatial estimation studies, as it defines the 
flow of the modeling process. The use of the conceptual 
framework is not part of the eligibility criteria and has no 
effect on the selection of the studies.

Search strategy
Two independent reviewers carried out the same search 
strategy on August 28th 2020, screened and extracted the 
characteristics of the studies. Medline, Web of Science, 
Scopus, SCIELO and LILACS electronic databases were 
searched for studies based on survey data which applied 
geospatial approaches to estimate RMNCH outcomes in 
LMICs.

The search strategy consisted of a combination of 
health and geospatial keywords. The keywords “health” 
and “epidemiology” were used to define a broad health 
construct, rather than focusing on RMNCH outcomes, 
to increase the sensitivity of the search. For geospatial 
approaches, keywords were: “geostatistical”, “geo-statis-
tical”, “spatial modeling”, “spatial modelling”, “high-res-
olution mapping”, “geospatial”, “small area estimation”, 
“small area estimates” and “spatial interpolation”. The 
complete keywords combination using logical operators 
is provided in Additional file  1. No restrictions on lan-
guage or publication date were applied. In addition to 
the electronic databases, reference lists of the selected 
articles were searched for additional eligible studies not 
detected by the initial search strategy.

Articles retrieved from the search strategy were com-
bined using Mendeley and exported to Rayyan, a web 
application for systematic reviews, for screening [13]. Ini-
tial duplicates were automatically removed in Mendeley, 
and the remainder were manually removed using Rayyan. 
The protocol for the systematic review was registered on 
PROSPERO (ID: 206323). This review follows the guide-
lines from PRISMA, and the checklist is provided in 
Additional file 2.
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Eligibility criteria
To be eligible, studies must have fulfilled all the following 
criteria:

1.	 Carried out model-based geospatial approaches to 
obtain more geographically precise estimates than 
allowed by direct estimation due to insufficient sam-
ple size or to lack of representativeness;

Fig. 1  Overview of a geospatial estimation process (adapted from Mayala et al. [12])
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2.	 Focused on RMNCH outcomes: coverage or impact 
indicators relevant to public health policies for 
women in reproductive age (15 to 49 years) or chil-
dren aged < 5  years. Studies covering a broader age 
range for children but including the desired ages 
were also eligible;

3.	 Outcomes had to be measured in LMICs as defined 
by the 2020 World Bank country-income classifica-
tion [14];

4.	 The main source of information were survey data and 
the minimum geographical coverage was an entire 
country.

The eligibility criteria were applied to all retrieved 
studies. Records were independently screened by both 
reviewers, first assessing titles and abstracts, then by 
reading the full text of the selected studies.

Exclusion criteria
Studies that did not estimate measures of occurrence of 
the coverage or impact outcomes were excluded.

Data extraction and quality assessment
We developed a Microsoft Excel spreadsheet to extract 
relevant characteristics of the selected studies based on 
ten pre-selected studies and on expert opinion. Then, 
each reviewer manually extracted the information from 
all the selected studies separately and the spreadsheets 
were compared later with disagreements dealt by con-
sensus. The extracted characteristics, details, and guid-
ance on how the spreadsheet was filled can be found 
in Additional file 3. Quality of the studies was assessed 
using Joanna Briggs Institute checklist for prevalence 
studies [15] and presented in Additional file 3.

Results of the literature search
After removing duplicates, 5567 records were identi-
fied for title and abstract screening, resulting in 126 
selected articles. After full-text assessment, another 
44 studies were removed yielding a total of 82 studies 
included in this review (Fig.  2). Several studies using 
the methods of interest, but estimating outcomes not 
considered to be RMNCH or covering age ranges out-
side our focus were not included in the review. The ear-
liest studies identified were carried out in 2000, but the 
field grew steadily since 2016, comprising over 50% of 
the included studies (Additional file  1). The following 
sections discuss methodological aspects and outcomes. 
Due to the large number of studies reviewed, the fol-
lowing sections do not cite all studies in their respec-
tive categories. Details from each study are provided in 
Additional file 3.

Methodological aspects
Ideally, models built to predict unobserved data aim to 
minimize prediction errors, bias and overfitting of the 
data. Certain decisions are taken in each step of the pro-
cess and presenting them in an organized and clear fash-
ion is essential to allow readers to assess how reliable the 
estimates are. Based on the conceptual modeling frame-
work presented above, we discuss the most important 
steps of geospatial estimation and details on how studies 
are reporting crucial information for their interpretation. 
These steps include data sources, covariates, modeling 
techniques, resolution, model validation and uncertainty.

Data sources
RMNCH outcomes in LMICs are often estimated using 
data from national health surveys. The Demographic and 
Health Surveys (DHS), a series of nationally representa-
tive household surveys conducted in over 85 countries 
[18], was the leading source of RMNCH information 
used in 59 of the 82 selected studies (72%). Further data 
sources include the Multiple Indicator Cluster Surveys 
[16], Performance Monitoring for Action [17], country-
specific health surveys, censuses, and community surveys 
(main source of information for malaria).

DHS data are available at both administrative (or areal) 
level (e.g. regions, districts, provinces) and point level, i.e. 
the centroids of each primary sampling units (or survey 
clusters). The main difference between areal and point 
data is the aggregation of the data. While areal data are 
always summaries of individual level data, points can 
have both individual and aggregated information. For 
privacy reasons, DHS adds noise to their GPS coordi-
nates, displacing them in a radius of up to 2 km for urban 
areas, up to 5 km for rural areas, and up to 10 km in 1% 
of the rural points. To account for this variation, DHS 
recommends drawing a buffer around each coordinate 
and averaging the neighboring values instead of using a 
precise match [19]. Despite that, only 16 of the 36 stud-
ies that used point-level DHS data reported taking steps 
regarding the displaced coordinates. Gething et  al. [20] 
described the impact of the displacement as modest, 
overall, but varying between outcomes and locations.

Geospatial covariates
Geospatial variables or covariates are sources of infor-
mation from determinants or proxies of determinants 
that are used as predictors in geospatial estimation for 
any given outcome. Obtaining and processing covari-
ates is the most challenging and time-consuming step of 
the geospatial estimation process since the availability of 
this information is often limited to raw satellite indices, 
previous work, and a few initiatives. Covariates are used 
in the model for estimation and prediction and must be 

60



Page 5 of 15Ferreira et al. Int J Health Geogr           (2020) 19:41 	

prepared accordingly. For estimation, each covariate 
information is extracted to the survey cluster location 
(or the available administrative level for areal models) 
and provided to the model along with the outcome. After 
model fitting, for prediction, a surface layer for each 
covariate is required at the desired resolution. Since these 
covariates often come from different data sources, aggre-
gation is required when resolution is too high (e.g. sat-
ellite information) and interpolation when resolution is 
too low (e.g. creating surface layers from survey cluster 
coordinates).

The average number of covariates used across all 
studies was 9, ranging from 0 to 40. A total of 15 stud-
ies did not include any information on covariates into 
their models. We classified the covariates into seven 

groups: agriculture and livestock, climate, health-related 
interventions and outcomes, remoteness, satellite indi-
ces, sociodemographic, and topography and land cover. 
Covariates related to topography  and land  cover were 
the most common predictors found in 59 studies, fol-
lowed by sociodemographic characteristics (53 studies), 
climate (43 studies) and remoteness (43 studies), as pre-
sented in Table  1. Additional file  3 provides the com-
plete list of covariates for each study and their respective 
classifications.

The optimal number of covariates chosen as predic-
tors, in order to optimize the refined estimation of the 
outcomes of interest, is a frequent topic of discussion. 
The principle of parsimony endorses the use of few and 
strong explanatory covariates to prevent overfitting the 

Fig. 2  Flow diagram of study selection
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Table 1  Summary of the characteristics for the selected studies

All studies Study outcomesa

Malaria Child mortality Malnutrition Vaccination Other 
outcomes

Number of studies 82 34 14 11 8 19

Covariatesa

 Agriculture and livestock 17 3 3 5 4 5

 Climate 43 28 5 5 4 5

 Health-related interventions/
outcomes

24 9 5 5 1 7

 Remoteness 43 19 7 5 5 11

 Satellite indices 19 4 5 3 4 7

 Sociodemographic 53 17 6 11 6 17

 Topography/land cover 59 30 7 10 4 12

 No covariates 15 4 7 1 2 2

Geographic coverage

 Single country 50 26 6 7 2 9

 Multi-country 32 8 8 5 6 10

Temporal component

 No 46 19 2 8 7 11

 Yes 36 15 12 4 1 8

Spatial resolutiona

 Less than 5x5km 23 18 0 1 3 2

 5x5 to 10x10km 20 6 5 5 3 4

 Lower admin. level 30 2 8 6 1 14

 Not reported 12 10 1 1 0 0

Uncertaintya

 Standard deviation map 14 6 1 1 5 2

 Interval map/table 28 12 8 2 0 10

 Relative map 7 0 2 3 0 2

 Other metrics 13 9 2 0 1 1

 Not reported 22 7 3 6 2 4

Modeling techniquea

 Bayesian–MCMC 35 24 3 3 3 2

 Bayesian–INLA 28 4 7 6 3 12

 Classical GLM 17 5 2 2 2 6

 Spatial interpolation 2 0 1 1 0 0

 Ensemble models 12 1 5 4 1 5

Out-of-sample pred.

 Cross-validation 22 3 7 5 4 6

 Hold-out 24 18 2 1 0 4

 Not reported 36 13 5 6 4 9

Model fit metricsa

 Bias 34 12 7 6 4 9

 RMSE/MSE 30 3 7 6 6 12

 Coverage 24 8 6 4 4 5

 DIC/AIC 19 6 3 3 1 6

 MAE 16 7 2 3 2 3

 Correlation 15 11 0 2 1 2

 Other metrics 31 15 4 3 1 9

 None reported 11 5 2 3 1 1

a  These characteristics allow studies to be classified in more than one subgroup

MCMC Markov Chain Monte Carlo, INLA Integrated Nested Laplace Approximation, GLM Generalized Linear Models, RMSE Root Mean Squared Error, MSE Mean 
Squared Error, DIC Deviance Information Criterion, AIC Akaike Information Criterion, MAE Mean Absolute Error

62



Page 7 of 15Ferreira et al. Int J Health Geogr           (2020) 19:41 	

data. However, strong predictors are rarely available and 
insufficient covariate information may lead to model mis-
specification. This effort in finding the balance reinforces 
the importance of model validation (discussed later in the 
paper).

Modeling techniques
Once outcome and covariate information are prepared, 
they are passed to the chosen modeling technique, 
including random coefficients to account for spatial 
correlation and, sometimes, temporal correlation. The 
Bayesian approach was predominant in the selected 
studies, as 62 of the 82 studies were based on Bayesian 
hierarchical models (Table  1). The main conceptual dif-
ference, in comparison to the frequentist approach, lies 
on how the Bayesian framework interpret probabilities. 
In a frequentist framework, only repeatable events have 
probabilities, while Bayesian frameworks can assign 
probabilities to any event [21]. Since Bayesian frame-
works also consider the distribution of its parameters, 
they generate complex posterior distributions, in which 
exact solutions are often not possible and numerical 
approximation techniques are required to fit the mod-
els. Markov Chain Monte Carlo (MCMC) methods 
approximate the true posterior distribution by generating 
dependent samples from it [22]. MCMC can be consid-
ered a turning point for Bayesian inference, having been 
used for model-fitting in 35 of the 62 studies that relied 
on Bayesian hierarchical models. More recently, Rue and 
colleagues [23] developed an alternative method called 
Integrated Nested Laplace Approximation (INLA), which 
quickly became popular given that it is much faster and 
yields very similar results compared to MCMC. Despite 
the first identified studies using INLA being carried out 
only in 2014, the method has already replaced MCMC in 
28 studies. Frequentist estimation was applied in 17 stud-
ies through classical generalized linear models. Only two 
studies used spatial interpolation methods such as krig-
ing [24] and kernel density estimation [25].

Recent studies have started using an ensemble 
approach, known as stacked generalization, to improve 
model performance [26]. Briefly, this strategy consists of 
fitting several models (usually each model uses a differ-
ent modeling technique), generating intermediate pre-
dictions. These predictions are then used as input to a 
second model. The use of multiple modeling techniques 
allows any complex non-linear effects of the covariates 
to be captured, while the final predictions are estimated 
using a robust, consolidated modeling technique. All 11 
studies following this approach [27–37] used a Bayesian 
hierarchical model fitted using INLA for the final predic-
tions. Only one study relied on ensemble models and did 
not perform stacked generalization [38].

In addition to borrowing strength from covariance 
structures through space, spatio-temporal models can 
also benefit from these structures through time. The 
inclusion of a temporal component was identified in 36 
studies as observed in Table 1. In 34 out of the 36 studies, 
this approach attempted to evaluate changes over time. 
These effects were primarily modelled using conditional 
autoregressive models and stochastic partial differentia-
tion equation as described by Blangiardo et al. [39].

Resolution
Estimates are typically generated at two different levels 
of aggregation: grid cells or country’s administrative divi-
sions. At grid cell-level, the entire country is divided into 
an equally sized grid and predictions are made for each 
cell individually. A total of 55 out of the 82 studies opted 
for gridded-estimates (Table 1). Apart from three studies 
[40–42], the approximate cell size (grid) for all reported 
resolutions ranged from 1 × 1 km to 10 × 10 km, with 5 x 
5 km being the most common one. Smoothed maps were 
presented by 12 studies without specifying the originally 
estimated resolution. Estimates for districts, counties, 
provinces and other low administrative divisions were 
produced by 30 studies (37%). These administrative level 
estimates are often produced from the grid level esti-
mates through population-weighted aggregation using 
gridded population data from, e.g., WorldPop [43]. Only 
five of the 82 studies presented estimates at both grid 
cell and administrative levels. There is much discussion 
regarding the ideal level of aggregation, as it depends on 
multiple factors including the outcome, the objective of 
the analysis, how decentralized decision-making is within 
the country and the trade-off between precision and res-
olution [41, 44].

Model validation
A good predictive model is a model capable of repro-
ducing the process that generates the outcome. How-
ever, depending on the outcome, available covariates and 
model specification, its performance can vary substan-
tially [45]. Models should be validated against data that 
was not used in its construction. Otherwise, the model 
can learn the data instead of their underlying structure, a 
phenomenon known as overfitting the data. The simplest 
choice for out-of-sample predictions is known as the 
hold-out method, which splits the data into two subsets—
a training subset used for model fitting and a test subset 
used for validation. This approach was found in 29% of 
the studies (Table  1). However, splitting the data and 
ensuring geographical representativity in both samples is 
an overlooked challenge. Seven studies [47–53], though, 
attempted to overcome this limitation using a declus-
tering method, which gives less weight to observations 
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geographically clustered when drawing the samples [54]. 
An alternative method for out-of-sample prediction is 
the n-fold cross-validation, found in 22 studies. The algo-
rithm divides the data in “n” parts of equal size (which 
can be done in a spatially structured or random manner), 
leaving one for validation and using the remaining to 
build the model. This process is repeated until each fold 
is used for validation and the average of the combined 
measures is taken. Cross-validation is particularly useful 
when data is limited and holding out data could compro-
mise the model performance, while the drawback is that 
it must fit one model for each fold, drastically increasing 
the processing time. Nearly half of the studies (44%) did 
not report on any validation method.

Within the out-of-sample data, there are several met-
rics that can be calculated and reported to assess the 
validity of the model predictions. As shown in Table  1, 
bias was the most reported validation measure, present 
in 34 studies (41%). Bias is the average of the difference 
between the observed and the predicted value. The mag-
nitude of the prediction errors was often reported using 
the root mean squared error (RMSE) or the mean abso-
lute error (MAE), found in 30 and 15 studies, respec-
tively. RMSE and MAE are both positive values indicating 
how much, on average, the model predictions differ from 
the observed results.  They differ on how deviations are 
handled: RMSE takes deviations squared while MAE 
ignores the signal. This makes RMSE more susceptible 
to the impact of high magnitude prediction errors (such 
data points are often referred to as outliers) [46]. A total 
of 19 studies presented Deviance Information Criterion 
(DIC) or similar metrics during model selection or vali-
dation. While DIC is useful for model selection, it has no 
direct interpretation and cannot be used to compare dif-
ferent studies. Additionally, several studies reported the 
achieved coverage within credible intervals [24] and the 
correlation between predicted and observed values [16].

Presentation of uncertainty
As much as the most precise estimates are desirable, 
there is always a degree of uncertainty in predictions 
made. While geographically disaggregated point esti-
mates are easily interpretable when presented in a map, 
the related uncertainty is much harder to present in an 
intuitive way. Uncertainty is a complex multi-layer con-
cept and it exists in every step from data collection to the 
modeled estimates. For the sake of this study, we consid-
ered uncertainty as the measures of variability associated 
to the estimates, since a complete definition includes 
measurable and unmeasurable components, sampling, 
modeling strategies, and is out of the scope of this study.

Visualization approaches to present uncertainty in a 
clear, comprehensive, and interpretable manner are still 

to be proposed. Bayesian models, for instance, produce 
full posterior estimates that can be summarized in mul-
tiple ways. However, there is no visualization approach 
that can fully address the challenges of communicat-
ing and using uncertainty and, as a result, the literature 
clearly lacks standardization.

Options for presenting uncertainty are tied to the cho-
sen resolution. At the administrative level, where there 
is a smaller number of divisions, uncertainty can be 
described using maps or tables. On the other hand, grids 
of high resolution can only be represented in maps due to 
the large quantity of estimates. Uncertainty intervals and 
standard deviation maps and tables were the most com-
mon approaches, found in 28 and 15 studies, respectively. 
There were also seven studies presenting qualitative 
measures of uncertainty (e.g., low or high uncertainty). 
Further approaches include: coefficient of variation [55, 
56], exceedance thresholds [57, 58], probability of being 
correctly classified [48, 50, 52] and Coffey-Feingold 
Bromberg metric [31]. A total of 22 studies (27%) did not 
present any measure of uncertainty (Table 1). Aside from 
the numerous ways of expressing uncertainty, it has been 
exclusively reported in supplementary files of 23 out of 
the 60 studies (38%) that presented uncertainty, putting 
its relevance in check.

Maps with the limits of the uncertainty intervals are 
often presented in two separate figures, demanding more 
space, and only covering a best–worst case scenario. 
Some studies use the width of the interval as an alterna-
tive, which is limited when the probabilities are close to 
zero or 1. Standard deviation maps are harder to inter-
pret, especially for non-specialist readers. Lastly, quali-
tative measures of uncertainty are likely the easiest to 
interpret, although defining what is low or high uncer-
tainty is arbitrary.

Key aspects for interpreting geospatial studies
Maps are long used for presenting geographically dis-
aggregated estimates and are often easily interpretable. 
However, legend scales may be misleading, especially 
when intervals of different widths are grouped and 
presented together, or the amplitude is too narrow 
or too wide. These caveats are particularly important 
when several maps are presented in sequence and the 
reader may assume the legend scales are the same.

Every modeled estimate carry assumptions and 
uncertainties, and several aspects can be observed to 
assess their reliability. For instance, data sources must 
provide sufficient information for models to reproduce 
the occurrence of the outcome. The data must also 
come from reliable sources and be temporally close 
to the objective of the study and the covariates used 
in the process. In the case of multiple data sources 
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and temporal assessment, constant change over time 
is often an assumption that needs to be taken into 
consideration.

Models tend to assume the input data are correct, so 
any estimates from a good predictive model can only 
be as accurate as the quality of the data sources. As 
discussed in previous sections, several metrics can be 
reported and interpreted to evaluate the validity of the 
predictive model. Bias, the most reported validation 
measure, indicates whether prediction errors are sys-
tematically leaning towards any direction. Therefore, 
an unbiased estimator should present bias close to 
zero. However, the scale of the outcome must always 
be considered when interpreting these measures. For 
instance, a bias of 1.5 in settings where the average 
mortality rates are around 3 is huge (50% of the point 
estimate), but for mortality rates close to 150, the rela-
tive importance of the same bias is much smaller (1% 
of the point estimate). The same applies for inter-
preting measures of the magnitude of the prediction 
errors, such as RMSE and MAE. For coverage indica-
tors (bound between 0% and 100%), RMSE or MAE 
values of 2 indicate the model deviates from the true 
value, on average, by 2 percentage points.

Incorporating uncertainty in decision-making is 
often a major challenge. The interpretation of the 
estimates requires changes in the thought process to 
consider probabilities rather than an absolute, fixed 
value. Non-experts tend to depend on heuristics rather 
than formal statistics when taking decisions [59]. This 
raises a question on whether considering uncertainty 
leads to better decisions or simply discredits infor-
mation in which uncertainty estimates are high [60]. 
Associated credible intervals can be interpreted as 
that we are confident (usually 95% confident) that the 
true estimate is within the interval. Therefore, smaller 
intervals reduce the probability of our estimate devi-
ating from the true value. The standard error can be 
roughly interpreted as how precise the sample mean 
estimate is in relation to the population mean.

Outcomes
Around 30 different outcomes were estimated using geo-
spatial approaches among the selected studies. We classi-
fied them into five groups based on their frequency and 
similarity: malaria, child mortality, malnutrition, vacci-
nation, and other health-related outcomes. Within each 
family of outcomes, their specificities are highlighted and 
the summary of characteristics for all studies and by out-
come is presented in Table 1.

Malaria
Malaria-related studies could be considered the pioneers 
in RMNCH geospatial modeling with a large contribution 
to this field. It took nearly a decade for studies of other 
RMNCH outcomes to start using geospatial estimation 
to increase the granularity of their available data. The 
first identified studies are dated to the early 2000’s [61, 
62], despite other spatial statistics in the field of malaria 
having been used for several years before [63]. Malaria 
is strongly affected by environmental factors. The mos-
quitoes of the anopheles species require certain climatic 
conditions to develop themselves and act as transmission 
vectors for the disease [64]. This geographical depend-
ence along with the burden of the disease led malaria to 
be the most studied outcome with 34 out of the 82 stud-
ies [38, 42, 47–49, 51–53, 56–58, 61, 62, 65–83].

Most of the information for malaria in LMICs comes 
from combining multiple malariometric surveys con-
ducted at specific locations. Several projects, such as 
MARA [84] and the Malaria Atlas Project [85], have 
worked on putting together geo-referenced malaria sur-
vey data, allowing researchers to use the pre-processed 
databases. These surveys were used in 21 of the 34 studies 
that focused on malaria. Despite concerns over malario-
metric surveys being carried out only in endemic areas of 
high prevalence, evidence shows they are well geographi-
cally distributed in various settings [47]. A secondary 
source of information for malaria are nationally repre-
sentative surveys, either designed for several RMNCH 
indicators, such as the standard DHS surveys, or focused 
on malaria as in the Malaria Indicator Surveys, also car-
ried out by the DHS program. A total of 14 studies relied 
on these surveys.

Although the malaria burden is not limited to children, 
they are the most affected subset of the population due 
to the lack of post-infection immunity [86]. Malaria indi-
cators were reported as malaria prevalence, parasitemia 
risk or number of infected children. Both children under-
five and the standardized age range of 2 to 10 years were 
the most common age subgroups, as observed in 14 and 
12 studies, respectively. A few studies presented esti-
mates for other subgroups such as: 6–59  months [79], 
under-10 years [61], under-16 years [71], 1–10 years [66, 
87] and 1–14 years [65].

Different from other outcomes, malaria studies prior-
itized high-resolution estimates over small administrative 
units. The only two studies that presented county [58] 
and regional [72] level estimates also presented estimates 
at finer resolutions. Single country studies were predomi-
nant with 77% of the geographical coverage, while 82% 
opted for the Bayesian approach for modeling.
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Childhood mortality
Child survival is a central goal of maternal and child 
health interventions and it is considered both a health 
indicator and a measure of human development [88]. 
Reducing child mortality rates is a long-term priority 
defined by international organizations and highlighted 
in both the Millennium Development Goals and the 
SDGs [89]. Even in high mortality settings, the death of 
a child is a rare event, thus requiring larger samples sizes 
in comparison to other RMNCH indicators. Among the 
reviewed studies, 14 were focused on child mortality.

Within child mortality studies, we identified ten studies 
focusing on all-cause mortality and four studies present-
ing cause-specific deaths. All ten studies reporting on all-
cause childhood mortality estimated under-five mortality 
rate, while a few studies also presented estimates for neo-
natal [30, 90] and infant [90, 91] mortality rates. For 
cause-specific mortality, deaths by malaria [38], diarrhea 
[32, 35] and lower respiratory infection [33] were studied.

Most studies, 12 out of 14, assessed changes over 
time—a major focus for mortality—most likely relating 
to monitoring development goals. In terms of resolu-
tion, six studies aimed at reaching smaller administrative 
units such as districts or counties [35, 55, 92–96], six pre-
sented gridded estimates [25, 30, 32, 33, 38, 91] and one 
employed both approaches [90]. As with all outcomes, 
Bayesian models were predominant, used in 10 out of 14 
studies. Four studies attempted to develop or enhance 
methods to estimate under-five mortality.

Malnutrition
Each year, 3.1 million deaths of under-five children are 
directly attributable to undernutrition in the form of 
stunting, wasting and micronutrient deficiencies [97], 
and overweight in children is an increasing problem. A 
total of 12 studies focused on malnutrition.

The burden of stunting, wasting, underweight and 
overweight was estimated for the entire African conti-
nent [28] and in all LMICs [27, 37]. There were also sev-
eral single country studies that account for and focus on 
local specificities as done in Bangladesh [98], Afghani-
stan [99], Cambodia [100], India [36], Mexico [101] and 
Ethiopia [24, 102]. Five studies generated estimates at 
district or province level [98–100, 102], four studies at 
1x1km [45], 5x5km [27, 28] and 10x10km [103], and two 
studies at both 5x5km and administrative level [36, 37]. 
Six studies modeled their outcomes using Bayesian mod-
els through INLA.

Among all outcomes, uncertainty was least reported on 
studies focusing on malnutrition, available in only half of 
the studies.

Immunization
Vaccines save the lives of millions of children every year, 
and despite being one of the most cost-effective health 
interventions, many settings have seen coverage levels 
stall or even decline in recent years [104]. For measles, 
which is highlighted in six of the seven immunization 
studies, many outbreaks occurred globally in 2018 and 
2019, mainly due to lack of access and anti-vaccination 
movements [105–107].

Geospatial modeling of immunization started rela-
tively recently, since all identified studies were published 
from 2015 onwards. Possibly due to being very recent, 
most of them carried out very comprehensive modeling 
approaches. Six of the eight studies produced estimates 
for at least three countries and only two failed to report 
uncertainty measures. The granularity pursued was also 
very high, having three studies at 1x1km [108–110], 
three studies at 5x5km [31, 111, 112] and one at 10x10km 
[113]. Perhaps due to being the first, Pramanik et al. [114] 
was the only vaccination study which focused in a single 
country, aimed at lower administrative units rather than 
gridded estimates, and one of the two studies that did not 
report uncertainty measures.

Other RMNCH outcomes
The use of geospatial approaches to produce estimates 
for small areas has reached a variety of outcomes. Within 
reproductive health, we identified four studies focus-
ing on contraception [45, 115–117] and two studies on 
undesired adolescence pregnancies [118, 119]. From 
pregnancy to child birth, four studies focused on ante-
natal care, skilled birth attendance, c-section and post-
natal care [40, 41, 120, 121]. Diarrhea [32, 122, 123] and 
respiratory infections [33] were the focus of a total of 
seven studies, as they are still among the leading causes 
of death for children in the poorest countries. One study 
also attempted to map exclusive breastfeeding [34].

Conclusions
The field of geospatial estimation focused on RMNCH 
outcomes is expanding and the number of published 
studies has increased more rapidly since 2014. Bayesian 
hierarchical models have taken place as the preferred 
modeling technique, but this is a continuously evolving 
area. More recently, ensemble approaches using several 
different models that are put together with a Bayesian 
model have been increasingly used and have the potential 
to become the approach of choice. The main data sources 
are likely to remain the same, DHS with a special place 
among national health surveys, especially that they have 
been putting a lot of effort in providing geolocated covar-
iates available already harmonized with the surveys [125].
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Geospatial models are complex and tend to produce a 
large number of estimates. Therefore, a validity assess-
ment of how assumptions hold, the estimates precision 
and the model mean error should always be done and 
presented. These characteristics should be evaluated 
out-of-sample using one of the several approaches pro-
posed in the literature, with cross-validation being the 
most efficient in terms of data use. However, with such 
complex models, fitting a model repeatedly can demand 
considerable processing power. Nonetheless, this is a key 
step to show that the results presented are stable and 
represent the underlying process in study. Model valida-
tion needs to be clearly presented both in terms of how 
it was done and its results. In our review, a considerable 
number of studies failed to present clear and convincing 
model validation—36 out of 82 —what makes the results 
much harder to interpret.

Other important aspects of geospatial modeling are 
the resolution of the estimates and how these are pre-
sented in terms of both point estimates and their uncer-
tainty. The objective of the work is central to choosing 
the resolution or the type of aggregation to be used. A 
study describing the spatial distribution of an outcome or 
showing associations with geographical aspects can pre-
sent very high-resolution estimates. On the other hand, 
if the aim is to support health policy decisions, estimates 
matching health districts, or geographical units where 
policies and programs are decided and implemented, are 
likely to be much more useful. The presentation of esti-
mate uncertainty is also essential. However, we have not 
identified in the literature a clear and robust approach, 
as this represents a real challenge. Different measures 
of uncertainty have been used, as well as a variety of 
approaches of presentation – from simple to compli-
cated. Given its importance, it seems to us that simpler 
and more direct visualization approaches could be used 
in the main body of the paper, while full results could be 
reported in the supplementary material.

As a final comment, given the often-large number of 
maps and diagrams presented, special attention has to 
be devoted to comparability of the scales used, color 
schemes, and even the map projections. The results 
need to be presented in an intuitive and understand-
able fashion so that non-specialists can grasp and make 
use of such relevant estimates. Authors need to put as 
much effort in the clarity of their presentations as they 
invest in the complex process of geospatial estimation.

This study covers the main methodological aspects 
that are part of a standard conceptual modeling frame-
work adopted by the literature. However, many details 
that are lightly discussed here could be the focus of 
further studies such as a thorough evaluation and 
comparison of modeling techniques, covariates, and 

uncertainty. In addition, concern should be raised on 
how far these models can be extended, given the expan-
sion of the field to over 30 different outcomes. Since 
predictions are based on space and time correlation 
and explanatory variables, producing fine spatial scale 
estimates may not be feasible for all outcomes [45].

The authors encourage future studies focused 
on modeling RMNCH outcomes using geospatial 
approaches to make uncertainty presentation and 
model validation as an integral part of their studies. 
In light of the issues of handling uncertainty, incorpo-
rating it in the discussion of results could assist read-
ers in their interpretations and facilitate the practical 
application of geospatial approaches for policy making 
towards improving RMNCH in LMICs.
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Search strategy 
 

Search strategy for MEDLINE, LILACS, Web of Science and Scielo 
(health OR epidemiology) AND (geostatistical OR geo-statistical OR “spatial modeling” OR “spatial 
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estimates” OR “spatial interpolation”) 
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modeling"  OR  "high-resolution mapping"  OR  geospatial  OR  "small area estimation"  OR  "spatial 

interpolation" ) )  AND  ( LIMIT-TO ( DOCTYPE ,  "ar" )  OR  LIMIT-TO ( DOCTYPE ,  "re" ) )  AND  ( 

EXCLUDE ( SUBJAREA ,  "AGRI" )  OR  EXCLUDE ( SUBJAREA ,  "EART" )  OR  EXCLUDE ( SUBJAREA ,  

"MATH" )  OR  EXCLUDE ( SUBJAREA ,  "ENGI" )  OR  EXCLUDE ( SUBJAREA ,  "BUSI" )  OR  EXCLUDE ( 

SUBJAREA ,  "VETE" )  OR  EXCLUDE ( SUBJAREA ,  "CHEM" )  OR  EXCLUDE ( SUBJAREA ,  "ARTS" )  OR  

EXCLUDE ( SUBJAREA ,  "PHYS" )  OR  EXCLUDE ( SUBJAREA ,  "PSYC" )  OR  EXCLUDE ( SUBJAREA ,  

"NEUR" )  OR  EXCLUDE ( SUBJAREA ,  "ENER" )  OR  EXCLUDE ( SUBJAREA ,  "CENG" )  OR  EXCLUDE ( 

SUBJAREA ,  "MATE" )  OR  EXCLUDE ( SUBJAREA ,  "DENT" ) ) 

 

Decisions on quality assessment criteria 
 

Were study participants sampled in an appropriate way? Studies using several data sources in which 

most of the data come from structured national health surveys were classified as ‘yes’. 

Was the sample size adequate? All studies were classified as ‘Not applicable’ because the rationale 

behind small area estimation assumes insufficient sample sizes for direct estimation. 

Were the study subjects and the setting described in detail? Studies covering multiple countries were 

classified as ‘Not applicable’. 

Was data analysis conducted with sufficient coverage of the identified sample? All studies were 

classified as ‘Not applicable’ because most (if not all) of them are based on secondary data and this 

information is usually presented by the responsible for the data collection process. 

Was the condition measured in a standard, reliable way for all participants? All studies were 

classified as ‘Not applicable’ because most (if not all) of them are based on secondary data and it is 

uncommon for studies to discuss the validity of the data collection methods of the data sources. 

Was there appropriate statistical analysis? All studies not reporting uncertainty measures were 

classified as “no” based on the criteria definition. 
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Was the response rate adequate, and if not, was the low response rate managed appropriately? All 

studies were classified as ‘Not applicable’ because most (if not all) of them are based on secondary 

data and it is uncommon for studies report the response rate of their data sources, especially when 

multiple data sources are utilized. 

Distribution of reviewed studies over time 
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Additional file 2 – PRISMA checklist 

Section/topic  # Checklist item  
Reported 
on page #  

TITLE   

Title  1 Identify the report as a systematic review, meta-analysis, or both.  1 

ABSTRACT   

Structured summary  2 Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, 
participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and 
implications of key findings; systematic review registration number.  

1-2 

INTRODUCTION   

Rationale  3 Describe the rationale for the review in the context of what is already known.  3 

Objectives  4 Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, 
outcomes, and study design (PICOS).  

3-4 

METHODS   

Protocol and registration  5 Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide 
registration information including registration number.  

5 

Eligibility criteria  6 Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, 
language, publication status) used as criteria for eligibility, giving rationale.  

5 

Information sources  7 Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify 
additional studies) in the search and date last searched.  

4 

Search  8 Present full electronic search strategy for at least one database, including any limits used, such that it could be 
repeated.  

4 

Study selection  9 State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, 
included in the meta-analysis).  

5 

Data collection process  10 Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes 
for obtaining and confirming data from investigators.  

6 

Data items  11 List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and 
simplifications made.  

6 
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Risk of bias in individual 
studies  

12 Describe methods used for assessing risk of bias of individual studies (including specification of whether this was 
done at the study or outcome level), and how this information is to be used in any data synthesis.  

6 

Summary measures  13 State the principal summary measures (e.g., risk ratio, difference in means).  NA 

Synthesis of results  14 Describe the methods of handling data and combining results of studies, if done, including measures of consistency 
(e.g., I2) for each meta-analysis.  

NA 

 

  

Section/topic  # Checklist item  
Reported 
on page #  

Risk of bias across studies  15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective 
reporting within studies).  

NA 

Additional analyses  16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating 
which were pre-specified.  

NA 

RESULTS   

Study selection  17 Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at 
each stage, ideally with a flow diagram.  

6 

Study characteristics  18 For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and 
provide the citations.  

6-18 

Risk of bias within studies  19 Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).  AF1 

Results of individual studies  20 For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each 
intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.  

NA 

Synthesis of results  21 Present results of each meta-analysis done, including confidence intervals and measures of consistency.  NA 

Risk of bias across studies  22 Present results of any assessment of risk of bias across studies (see Item 15).  NA 

Additional analysis  23 Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).  NA 

DISCUSSION   

Summary of evidence  24 Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to 
key groups (e.g., healthcare providers, users, and policy makers).  

18-20 

Limitations  25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of 
identified research, reporting bias).  

20 

Conclusions  26 Provide a general interpretation of the results in the context of other evidence, and implications for future research.  18-20 
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FUNDING   

Funding  27 Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the 
systematic review.  

21 

 
From:  Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. 
doi:10.1371/journal.pmed1000097  

For more information, visit: www.prisma-statement.org.  
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Additional file 3 - Methodological aspects of the reviewed studies 

 

Available at: https://static-content.springer.com/esm/art%3A10.1186%2Fs12942-020-00239-

9/MediaObjects/12942_2020_239_MOESM3_ESM.xlsx  
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Additional file 4 - Decisions behind each screened study 

 

Available at: https://static-content.springer.com/esm/art%3A10.1186%2Fs12942-020-00239-

9/MediaObjects/12942_2020_239_MOESM4_ESM.xlsx 
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Abstract 

Background: The composite coverage index (CCI) provides an integrated perspective towards 

universal health coverage in the context of reproductive, maternal, newborn and child health. 

However, the sample design of the surveys is not sufficient for an in-depth analysis from a 
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geographical perspective. This study aims to describe and compare the CCI coverage at multiple 

resolutions in Peru to support decision-makers with actionable information at local scale. 

Methods: Using a model-based geostatistical approach, we generated estimates for all eight 

indicators of the CCI (which were further combined using the index formula) for the 

departments, provinces, and areas of 5 x 5 km of Peru using data from two national household 

surveys carried out in 2018 and 2019 and geospatial covariates. Models were fit following a 

Bayesian framework using INLA-SPDE and assessed using validation metrics and comparisons at 

the department-level. 

Results: Coverage in the provinces throughout the coast were consistently higher than the 

remainder of the country. Areas in the north and east of the country, especially within the 

Amazon jungle, were found to have the largest gaps between and within provinces. These gaps 

are otherwise masked when looking at department-level only. 

Conclusions: Our study highlights areas of low CCI coverage within departments and provinces 

of Peru, showcasing the importance of estimates at high-resolution to unveil inequalities within 

highly heterogeneous areas. Our results constitute a valuable guide for local policy makers and 

managers to focus efforts in disadvantaged areas. 

Keywords: geospatial modeling, child health, woman’s health, composite coverage index, Peru 

Key messages 

Geospatial modeling techniques allow the use of estimates for small areas in which direct 

estimation from national household surveys is not possible or yield imprecise results. 

Local managers and decision-makers benefit of information for smaller areas, such as 

provinces, since the planning and allocation of resources is often done at local scale. 



 

82 

Increasing the resolution reveals striking inequalities from a geographical perspective masked 

by aggregation, highlighting the most vulnerable areas and subgroups of the population. 

Introduction 

Peru has shown tremendous progress in improving the health and survival of women and 

children in the past few decades (1). Under-five mortality rates and undernutrition dropped by 

over 50% since 2000, mainly due to the equitable increase in the coverage of reproductive, 

maternal, newborn and child health (RMNCH) indicators, better water and sanitation conditions, 

along with improvements in the social determinants of health (2). These efforts elevated the 

country to a prime position in the pursuit of universal health coverage (UHC) in terms of access 

to the full range of quality health services without undue financial burden.  

Since the concept of UHC relies on a broad set of services and interventions, monitoring its 

progress requires data on multiple RMNCH indicators. And even overlooking the difficulty of 

reporting substantial amounts of data, visualizing and advocating for dozens of indicators 

hampers the prioritization of areas and subgroups that are farther from receiving a 

comprehensive assistance. In order to account for several indicators and present an integrated 

summary measure, the composite coverage index (CCI) was created and has been widely used 

as a proxy for tracking UHC in low- and middle-income countries in the context of RMNCH (3–

5). The CCI is a weighted average of eight essential preventive and curative interventions along 

the continuum of care, covering four stages including reproductive, pregnancy, newborn and 

child health. Its composition has proven to be robust as the inclusion of other important 

interventions have shown to have little impact in the estimates (6). Also, its strong associations 

with under-five mortality rate and stunting further support that the CCI can capture adequately 

the combined effect of health interventions (7). 
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Like the majority of low- and middle-income countries, Peru relies heavily on information from 

national health surveys to monitor the progress of many RMNCH interventions, allowing data-

driven actions to increase coverage and reduce inequalities (8–10). These actions are more 

effective when stakeholders and policy planners have available data disaggregated at local 

levels, where policy is ultimately implemented (11,12). However, the sampling design of the 

national surveys only provides reliable estimates for large subnational divisions, as further 

geographical disaggregation would require much larger (often prohibitively so) sample sizes. 

Alternatively, indirect estimates can be derived for smaller areas using geospatial modeling 

approaches, as previous studies have done for RMNCH outcomes in recent years (13–15). These 

strategies combine the georeferenced data from the surveys with relevant geospatial covariates, 

while also taking advantage of spatial correlation, to predict small area estimates. 

While a few studies have generated estimates for individual interventions or health outcomes 

at global scale in which Peru was included, such as malnutrition (16), mortality (17) and diarrhea 

management (18), no studies on RMNCH interventions were exclusively focused on Peru. Based 

on fine-scale estimates generated using geospatial modeling techniques, this study aims to 

describe the CCI coverage at province and grid-level in Peru, enabling local managers to identify 

and act on areas in need of prioritization. 

Methods 

The following sections describe each stage of the modelling process. Further details can be 

found in the supplementary materials. 

Study area 

Peru is an upper-middle income country located in the South American continent. Its lands cover 

around 1.28 million km² making it the 19th largest country in the world with a total population 

of nearly 31 million (19). It shares borders with Ecuador, Colombia, Brazil, Bolivia, Chile, and the 
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Pacific Ocean. The country is divided into 25 first administrative units (24 departments plus the 

Callao province) which are subdivided into 196 provinces, and further into districts. The 

geography of Peru is often divided into three main ecological zones known as a) coast, a semiarid 

margin bordered by the Pacific Ocean, b) highlands or the Andean mountains, a climatic diverse 

area separating the other two ecological zones from north to south, and c) jungle which is the 

most extensive zone mostly covered by the Amazon rainforest (20). 

Composite coverage index data 

Carried out annually since 2004, the Encuesta Demográfica y de Salud Familiar (ENDES) is a 

household survey designed to provide estimates at the national and departmental levels for 

several health and nutritional indicators for women and children in Peru. The 2018 ENDES survey 

carried out a multi-stage sampling process by selecting 3,254 enumeration areas (EAs), or 

primary sampling units (also known as clusters – the unit of analysis in this study), proportionally 

distributed in all departments, followed by 36,760 households in the second stage. Similarly, the 

2019 survey sampled 36,745 households in 3,254 EAs, totalizing 73,505 households within 6,508 

EAs (Figure 1). More details on the sampling methodology can be found in the surveys’ reports 

(21,22). 

To increase the sample sizes, we combined data from the 2018 and 2019 ENDES surveys and 

used them to calculate each of the indicators that are part of the CCI. The CCI is a weighted 

average of eight essential maternal and child health interventions and comprises the four stages 

of the continuum of care. Its formula is given by 

𝐶𝐶𝐼 =
1

4
(𝐷𝐹𝑃𝑆𝑚 +

𝑆𝐵𝐴 + 𝐴𝑁𝐶4

2
+

2(𝐷𝑃𝑇3) + 𝐵𝐶𝐺 + 𝑀𝑆𝐿

4
+

𝑂𝑅𝑆 + 𝐶𝐴𝑅𝐸𝑃

2
) 

where the interventions are: demand for family planning satisfied with modern methods 

(DFPSm), skilled birth attendant (SBA), at least four antenatal care visits (ANC4), one dose of 

bacille Calmette-Guérin vaccine (BCG), three doses of diphtheria-pertussis-tetanus vaccine 
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(DPT3), one dose of measles vaccine (MSL), oral rehydration salts for diarrhoea (ORS), and care-

seeking for suspected childhood pneumonia (CAREP) (6). The complete definition on the 

calculation of each indicator can be found in the supplementary table 1. 

 

Figure 1 - Geographical distribution of cluster locations for ENDES 2018 and 2019 surveys 

The coordinates for each cluster are displaced by up to 2km in urban areas and 5km in rural 

areas for protect the anonymity of the respondents. This displacement was considered in the 

covariate extraction process by drawing a buffer and taking its mean according to the place of 

residence (23). 

Geospatial covariates and covariate selection 

A suite of 14 covariate layers known to correlate directly or indirectly with RMNCH indicators 

were considered as predictors for each of the eight modelled indicators. These covariates 

include measures of accessibility, remoteness, urbanicity, and sociodemographic characteristics 

that were found to be associated with health interventions in previous studies (14,24–26). Some 
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of these covariates were surfaces obtained from satellite imagery and publicly available 

repositories while others were interpolated using survey and health facility data points. Further 

information for each of the covariates is found in the supplementary tables 2 and 3. 

We carried out a covariate selection strategy divided in two stages to achieve the best fit without 

overparameterizing the models: 1) testing the predictors seeking the best outcome-covariate 

relationship, followed by 2) backward elimination process within a stepwise logistic regression, 

where variables were dropped starting with the ones with the highest p values until none had a 

p value greater than 5%. Fractional polynomials of up to the second order were tested for all 

predictors, as well as the logarithmic transformation, to allow for model flexibility. We also 

assessed the association between all covariates using Pearson’s correlation and we checked any 

combination of predictors with a high correlation coefficient (> 0.8) to address the problem of 

(multi)collinearity. 

Geospatial model 

We followed a model-based geostatistical approach (27), similar to what was done previously 

(28,29), to predict estimates at areas of 5 x 5 km in Peru based on geospatial covariate 

information and spatial correlation. We fitted eight different models, one for each indicator, and 

combined their posterior distributions to obtain estimates for the CCI. Let 𝑌(𝑠𝑖) be the number 

of individuals with a given outcome at cluster location 𝑠𝑖  (i=1, ..., n), out of a total of 𝑁(𝑠𝑖) 

individuals sampled at the location. The model can be defined as: 

 

𝑌(𝑠𝑖) ~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑁(𝑠𝑖), 𝑝(𝑠𝑖)) 

𝑙𝑜𝑔𝑖𝑡(𝑝(𝑠𝑖)) = 𝑥(𝑠𝑖)𝑇 𝛽 +  𝜔(𝑠𝑖) + 𝜖(𝑠𝑖) 

where 𝑥(𝑠𝑖)  is a set of covariates values associated with cluster 𝑠𝑖, 𝛽 are the corresponding 

regression parameters, 𝜔(𝑠𝑖) is a Gaussian spatial random effect used to capture residual spatial 
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correlation in the model, and 𝜖(𝑠𝑖) is a Gaussian random effect used to model non-spatial 

residual variation. The geostatistical model described above followed a Bayesian framework 

using the integrated nested Laplace approximation with the stochastic partial differential 

equations (30). 

We drew 1000 samples from the posterior distribution generated from each model and 

combined them using the CCI formula. Then, we used the combined posterior to predict a grid 

of 5 x 5 km covering the entire study area. The estimates and uncertainty measures were further 

aggregated into the first and the second administrative divisions using population layers for 

weighting. 

Uncertainty estimates were drawn from the posterior distributions and are presented as the 

width of the credible intervals (difference between the 97.5 and the 2.5 percentiles). 

Model validation 

The validity of the estimated models was assessed using an out-of-sample cross validation 

strategy. Data from all indicators were divided into five folds to ensure a minimum sample size 

of 50 clusters within each fold. We calculated and presented the following metrics: bias (mean 

error), the magnitude of the error (mean absolute error - MAE) and the correlation between 

predicted and observed values. We also compared predicted estimates aggregated at the first 

administrative division to the observed estimates directly derived from the surveys. 

We used Stata 16 (31) for survey data analysis and the covariate selection process and R 4.0.2 

(32) for the processing of geospatial covariates, model fitting and validation. 

Results 

Overall, the national coverage of the CCI in the country is 71.6% (Table 1). Interventions like SBA 

and BCG vaccination are nearly universal in Peru with coverage above 95% (Table 1). On the 
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other hand, treatment of diarrhea using ORS is surprisingly low with only 33.6% (Table 1). 

Sample sizes are large for pregnancy and reproductive health indicators, moderate for vaccines 

and low for treatment of childhood illnesses. 

Table 1. Description of the CCI and its indicators in the sample. 

Indicator 
Number of 

clusters 

Number of 

individuals 

National 

coverage 

Skilled birth attendant 6,383 24,513 94.6% 

Antenatal care 4+ visits 6,383 24,141 96.3% 

Demand for family planning satisfied 

with modern methods 
5,296 12,059 65.5% 

DPT3 vaccine coverage 4,861 8,706 85.3% 

BCG vaccine coverage 4,861 8,706 95.3% 

Measles vaccine coverage 4,861 8,706 80.0% 

Oral rehydration salts for diarrhea 3,301 5,014 33.6% 

Care-seeking for suspected pneumonia 1,639 1,956 70.1% 

Composite coverage index - - 71.6% 

 

Out of the 14 geospatial covariates, improved sanitation coverage was the most stable predictor 

as it was selected in 7 out of the 8 indicators, followed by the mean number of years of education 

for women, used in six indicators. Conversely, improved water coverage failed to remain as a 

predictor in all models and was left out of analysis. Both travel time to health facilities and 

urbanicity were only eligible for one model each, putting them among the least relevant 

covariates. The median number of covariates used to fit the models was seven, with SBA using 

10 covariates and CAREP fitting the final model with a single predictor (Supplementary table 4). 

The geospatial estimates for CCI coverage at the first and second administrative divisions of Peru 

(departments and provinces, respectively) are presented in Figure 2. Coverage ranged from 
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59.6% in Puno, in the south-east of the country, to 79.1% in Tumbes, in the north-west (Figure 

2A). Figure 2B shows a clear pattern of higher coverage for the provinces along the coast while 

most of the provinces with the lowest coverages are in the jungle area. Also, substantial 

disparities in coverage are observed between the provinces within each department. The 

maximum difference between the CCI coverage in provinces of Madre de Dios, Tumbes and Ica 

range from 1 percentage point (p.p.) to 2.3 p.p. while these differences between the provinces 

of Amazonas and Ucayali go up to 20 p.p. The widest gaps between provinces are found in jungle 

departments but important gaps can also be seen in several departments along the coast, such 

as Piura, La Libertad, Ancash, and Lima. 
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Figure 2 – Geographical distribution of the CCI in Peru for a) the 26 departments (observed 

data); b) the 195 provinces (predicted data), and associated uncertainty measured as c) the 

width of the 95% confidence intervals for departmental estimates and, d) the width of the 95% 

credible intervals for provincial estimates. 

The same way estimates from sampled data present variability, the estimates generated by the 

geospatial models are sensitive to the amount of data available in each area, and the further we 

disaggregate, the more uncertainty we may observe. Figure 2C presents the width of the 

confidence intervals as a measure of uncertainty for the estimates at the first administrative 

division that were directly derived from the surveys. The width of the credible intervals for each 

of the provincial estimates generated by the geospatial models are shown in Figure 2D. The 

median width of the credible intervals for the provinces is 8.6 p.p., meaning that at least half of 

the estimates should vary no more than 4.3 p.p. around the point estimate (median coverage of 

71.7%). However, estimates for the provinces colored in orange should be interpreted with more 

caution since those estimates could lay within a 15 to 20 p.p. interval, with a maximum interval 

width of 23 p.p. 

Geospatial models can provide estimates for much smaller areas than the political 

administrative divisions of a country. Using grids of high resolution can shed light on pockets of 

low or high coverage otherwise masked by aggregation that may hide the most vulnerable 

subgroups of the population. Figure 3 presents high-resolution estimates in grids of 5 x 5 km 

along with uncertainty maps measured using the width of the credible intervals. Pockets of low 

coverage can be seen in several provinces across the jungle, while some smaller pockets exist 

along the highlands throughout the country. Although these estimates show a more detailed 

scenario, increasing the resolution also increases the uncertainty of these estimates, as 

presented in Figure 3B. Of note, Figures 2B and 2D are not directly comparable to Figure 3 

because scales differ. 
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Figure 3 – a) Geographical distribution of the CCI in Peru by 5 x 5 km, and b) associated 

uncertainty map measured as the width of the 95% credible intervals. 

The correlation of the predicted coverage against the observed cluster estimates was strong for 

SBA, weak for CAREP and moderate for the remainder. Bias was close to zero for all indicators 

and the magnitude of the errors was between 4 and 7 percentage points for BCG, SBA and ANC4, 

around 20 for DFPSm, MSL and DPT, and close to 30 for CAREP and ORS. We also generated 

estimates at the departmental-level and compared them to the published survey results, where 

the mean difference at the departmental-level for the CCI was 1.7% and the largest difference 

was 5.2% in Madre de Dios. All validation metrics and further details on the validations process 

are available in the supplementary tables 5 and 6.  

Discussion 

Geospatial models have become an important resource for assisting researchers and 

stakeholders in unveiling hidden areas and populations in need of prioritization in the context 

of RMNCH (13). Through them, it is possible to obtain information that is not available through 
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conventional methods and can be easily used in health policy planning and decision-making. 

When comparing department-level estimates to province-level estimates, it is evident that very 

different coverage levels exist throughout the country, and even more detailed patterns are 

observable when moving down to the grid-level.  

In general, the size of the provinces in Peru seems sufficient to accurately inform the local 

context in most of the country. However, this may not be true when looking at larger provinces 

predominantly located in the Amazon rainforest. Some of these provinces, especially in the 

north and east of Peru, do not stand out as low coverage in the province-level coverage map, 

mainly because the low coverage areas are less populated and, on average, province coverage 

is not particularly low. With the high-resolution map, it is possible to identify areas with very low 

coverage within such provinces, supporting the use of both maps as complementary resources 

since the provinces account for the size of the population affected and the grids focus on anyone 

that lives on a specific zone. By this means, local managers will have their attention drawn to 

these places with enough information to verify what type of action is most needed. 

The rationale behind choosing the CCI rather than one or several of the many essential RMNCH 

interventions is simple – one composite indicator gives a broad perspective of the status of 

health intervention coverage (6). Looking at antenatal care or treatment of childhood diseases 

instead, we found distinct levels of coverage without marked geographical variation. These 

patterns are completely different from indicators such as demand for family planning satisfied 

or skilled birth attendant – both presented huge spatial heterogeneity with pockets of low and 

high coverage. As a composite measure, the CCI is able to highlight areas and subgroups that are 

struggling in multiple fronts and are far away from UHC. Additionally, being a weighted average, 

it is less susceptible to imprecision of some specific indicator. 

Peru was able to improve substantially its RMNCH indicators and the availability and quality of 

the departmental level data through annual ENDES to monitor appropriately the progress of 
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coverage and impact indicators throughout the latest few decades (33,34). Now, it faces the 

challenge of sustaining such a progress by tracking reliably the evolution of interventions 

coverage at the provincial and more local levels. The use of granular information like the CCI 

based on geospatial methods and high-resolution mapping may allow an increased efficiency of 

policy makers in the design, implementation and impact evaluation of programs and 

interventions for further improvement of maternal and child health, with a special focus on the 

most disadvantaged communities, which are located mainly within the Amazon and the Andean 

provinces. In particular, it may facilitate the identification of success and limiting factors at those 

levels, thus contributing to an effective decentralization process.  

Some limitations should be considered when interpreting the estimates described in our study. 

All modeled estimates carry uncertainty, and it should be observed when interpreting the 

coverage estimates. Due to low sample sizes, indicators for remote and less populated areas as 

well as those related to treatment of childhood diseases can be unstable, as they are based on 

information from few clusters or depend on children presenting with pneumonia or diarrhea at 

the time of the survey. The most critical areas were concentrated in the Amazon jungle where 

population density is low, and many preservation areas exist. Also, increased granularity implies 

greater uncertainty. This phenomenon is evident when comparing the uncertainty produced in 

the different levels of aggregation. 

Conclusions 

In summary, our study presents CCI coverage at three disaggregation levels in Peru, pinpointing 

where are the population segments with the lowest coverage levels. It also showcases the 

importance of geospatial methods and high-resolution mapping in comparison to coverage 

estimates at administrative division level, especially where the divisions cover a large area and 

are highly heterogeneous. Our results constitute a valuable guide for local policy makers and 

managers to focus efforts in disadvantaged areas. 
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Supplementary table 1 - Complete definitions for the composite coverage index (CCI) and its 

indicators 

Indicator Acronym Numerator Denominator 

Demand for family planning 
satisfied by modern methods 

FPSm 
Who is using (or whose partner is 
using) a modern contraceptive 
method 

Women aged 15-49 years either 
married or in union in need of 
contraception 

Antenatal care 4 or more 
visits 

ANC4 
Attended at least four antenatal 
care (ANC) visits with any 
provider 

Women aged 15-49 years who 
had a birth in the last 2/3 years 

Skilled attendant at delivery SBA 
Delivered by a skilled attendant 
(based on each country’s 
definition of skilled attendant) 

Women aged 15-49 years who 
had a birth in the last 2/3 years 

BCG vaccination BCG 
Received Bacillus Calmette-
Guérin (BCG) vaccine 

All live-children, 12-23/18-
29/15-26 months (according to 
country’s calendar) 

DPT3 vaccination DPT3 
Received 3 doses of Diphteria, 
Pertussis, Tetanus (DPT) vaccine 

All live-children, 12-23/18-
29/15-26 months (according to 
country’s calendar) 

Measles vaccination MSL Received measles vaccine 
All live-children, 12-23/18-
29/15-26 months (according to 
country’s calendar) 

Treatment for diarrhea ORS 
Received oral rehydration salts 
(ORS) 

All live children aged 0-59 
months with diarrhea in the last 
2 weeks 

Care-seeking for pneumonia CAREP 
Sought treatment from an 
appropriate health facility or 
provider.  

Live children, 0-59 months, 
suspected pneumonia in the last 
2 weeks 

Composite coverage index CCI 
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Supplementary table 2 – Description of covariates included in the analysis  

Covariate Year Resolution Unit Source 

Altitude NA 1km meters SRTM (raster package) 

Travel time to cities 
>50,000 

2000 1km minutes 
ftp://ftp.worldpop.org.uk/GIS/Covariates/
Global_2000_2020/PER/ 

Distance to health 
facilities 

2017 1km meters 
https://www.datosabiertos.gob.pe/datas
et/minsa-ipress 

Enhanced vegetation 
index 

2017 1km 
0 to 10000 (least to 
most vegetation) 

https://ladsweb.modaps.eosdis.nasa.gov/
search/history 

Urbanicity 2014 1km 
0.00 to 1.00 
(extremely rural to 
urban) 

https://jeodpp.jrc.ec.europa.eu/ftp/jrc-
opendata/GHSL/GHS_BUILT_LDSMT_GLO
BE_R2018A/ 

Nighttime lights 2016 100m nW/cm2/sr 
ftp://ftp.worldpop.org.uk/GIS/Covariates/
Global_2000_2020/PER/ 

Improved water 
coverage 

2018 1km proportion Interpolated using kriging 

Improved sanitation 
coverage 

2018 1km proportion Interpolated using kriging 

Mean number of 
household members 

2018 1km number Interpolated using kriging 

% of households in 
Q1 or Q2 

2018 1km proportion Interpolated using kriging 

Mean women's years 
of education 

2018 1km proportion Interpolated using kriging 

% of indigenous 
population 

2018 1km proportion Interpolated using kriging 

Distance to 
protected areas 

2017 100m km 
ftp://ftp.worldpop.org.uk/GIS/Covariates/
Global_2000_2020/PER/ 

Distance to build 
settlements (BGSM) 

2017 100m km 
ftp://ftp.worldpop.org.uk/GIS/Covariates/
Global_2000_2020/PER/ 
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Supplementary Table 3 - Summary statistics for covariates included in the analysis 

Covariate Mean Median Min P1% P99% Max 

Altitude 1373.00 487.00 0.00 6.60 4350.00 4876.00 

Distance to health facilities 0.02 0.01 0.00 0.00 0.09 0.31 

Travel time to health 
facilities 14.67 2.21 0.00 0.00 219.00 888.00 

Travel time to cities 50k 172.50 44.49 0.51 0.51 1438.00 3269.00 

Enhanced vegetation index 2025.00 1771.00 -3000.00 -1666.00 5581.00 6378.00 

Urbanicity 15.65 0.36 0.00 0.00 92.99 96.95 

Nighttime lights 13.67 1.85 -0.07 -0.03 75.00 85.00 

Improved water 0.96 0.98 0.01 0.37 1.00 1.00 

Improved sanitation 0.63 0.75 0.00 0.00 0.98 0.99 

% of households in Q1 or Q2 0.49 0.45 0.00 0.00 0.99 0.99 

Mean number of household 
members 3.84 3.82 2.35 2.72 4.84 5.45 

Distance to built settlements 1.14 0.33 -2.17 -1.78 13.90 64.00 

Distance to protected areas 705.00 702.00 56.00 195.00 1240.00 1278.00 

Years of education (women) 10.00 10.40 4.10 5.30 13.60 14.00 

% of indigenous population 0.07 0.00 0.00 0.00 0.99 0.99 

Note: Zeros and negative values were replaced by a positive value close to 1 for some 

covariates 
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Supplementary Table 4 - Covariates selected for each modeled indicator 

Covariate BCG DPT MSL CAREP ORS SBA3 ANC4 FPSmo 

Altitude   X     X X     

Distance to health facilities     X   X   X X 

Travel time to health 
facilities         X       

Travel time to cities 50k   X X     X     

Enhanced vegetation index X   X   X X     

Urbanicity           X     

Nighttime lights   X     X X   X 

Improved water                 

Improved sanitation X X X   X X X X 

% of households in Q1 or Q2   X   X     X X 

Mean number of household 
members X   X     X X   

Distance to built settlements     X     X     

Distance to protected areas     X   X X X   

Years of education (women) X X     X X X X 

% of indigenous population   X         X X 

BCG Bacillus Calmette-Guérin vaccine; DPT3 3 doses of Diphteria, pertussis, tetanus vaccine; 

CAREP Care-seeking for pneumonia; SBA Skilled attendant at delivery; ANC4 Antenatal care 4 

or more visits; ORS Oral rehydration salts; FPSmo Demand for family planning satisfied by 

modern methods 

 

Supplementary Table 5 – Model validation metrics 

 Cross-validation In-sample 

Indicator Correlation Bias MAE Correlation Bias MAE 

BCG 0.31 0.00 0.07 0.61 0.00 0.06 

DPT 0.20 0.00 0.18 0.55 0.00 0.16 

Measles 0.20 0.00 0.22 0.59 0.00 0.20 

CAREP 0.03 0.00 0.30 0.80 0.00 0.25 

SBA 0.73 0.00 0.04 0.88 0.00 0.03 

ANC4 0.25 0.00 0.06 0.45 0.00 0.06 

ORS 0.26 0.00 0.27 0.60 0.00 0.24 

FPSmo 0.34 -0.01 0.24 0.54 -0.01 0.22 

MAE Mean absolute error; BCG Bacillus Calmette-Guérin vaccine; DPT3 3 doses of Diphteria, 

pertussis, tetanus vaccine; CAREP Care-seeking for pneumonia; SBA Skilled attendant at 

delivery; ANC4 Antenatal care 4 or more visits; ORS Oral rehydration salts; FPSmo Demand for 

family planning satisfied by modern methods 
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Supplementary Table 6 – Comparison of predicted vs observed estimates at department-level (adm1) for the composite coverage index (CCI) and its 8 

indicators 

Department 
BCG DPT3 MEASLES CARE-SEEKING ORS ANC4 SBA FPSmo CCI 

Pred Obs Diff Pred Obs Diff Pred Obs Diff Pred Obs Diff Pred Obs Diff Pred Obs Diff Pred Obs Diff Pred Obs Diff Pred Obs Diff 

Amazonas 94.6 93.6 1.0 84.5 83.4 1.1 85.9 81.1 4.7 66.9 65.9 1.0 27.7 24.2 3.5 94.7 92.4 2.3 85.7 81.3 4.4 66.0 61.2 4.7 72.7 69.6 3.1 

Ancash 97.6 98.0 -0.4 87.6 90.0 -2.4 83.3 89.0 -5.7 69.6 74.5 -4.8 26.6 19.1 7.5 97.7 98.2 -0.5 97.9 98.0 -0.2 64.7 63.0 1.8 74.9 74.9 0.0 

Apurímac 97.2 99.2 -2.0 89.0 90.3 -1.3 82.9 82.6 0.3 68.4 75.6 -7.2 23.7 22.9 0.9 96.8 97.7 -0.9 99.1 99.9 -0.7 59.8 61.5 -1.7 73.3 75.0 -1.7 

Arequipa 97.8 98.6 -0.8 91.9 93.9 -2.1 80.5 78.4 2.1 69.7 80.5 -10.8 30.3 30.8 -0.5 96.7 96.3 0.4 98.8 99.0 -0.1 71.0 67.3 3.7 77.3 77.9 -0.6 

Ayacucho 95.7 93.8 1.8 88.2 87.6 0.6 81.0 84.9 -3.9 68.6 59.4 9.2 22.9 22.0 1.0 95.6 95.2 0.4 97.5 98.3 -0.8 53.2 56.8 -3.6 71.0 70.7 0.3 

Cajamarca 94.8 95.3 -0.5 87.2 90.2 -3.0 85.4 91.3 -5.9 67.3 62.4 4.9 21.8 21.4 0.5 95.5 95.4 0.0 87.1 87.4 -0.3 56.2 57.4 -1.2 70.2 70.6 -0.4 

Callao 96.4 96.1 0.3 81.4 82.5 -1.1 81.5 78.0 3.5 73.7 74.6 -0.9 40.8 40.5 0.3 97.2 96.6 0.5 99.6 99.8 -0.2 73.4 72.4 1.0 78.5 78.2 0.3 

Cusco 96.5 96.1 0.4 88.4 85.9 2.5 83.2 74.7 8.5 66.5 74.8 -8.3 28.1 33.3 -5.2 97.1 97.9 -0.8 97.5 98.2 -0.7 55.1 58.2 -3.1 72.2 74.0 -1.8 

Huancavelica 95.6 97.8 -2.2 86.9 88.7 -1.8 84.7 89.0 -4.4 66.1 71.6 -5.5 18.3 19.5 -1.2 95.1 95.9 -0.7 92.9 93.1 -0.3 42.9 46.6 -3.7 66.9 69.4 -2.5 

Huánuco 95.6 96.4 -0.8 89.6 92.2 -2.6 84.2 86.5 -2.4 65.9 64.9 1.0 22.7 27.0 -4.3 96.4 96.4 0.0 94.2 96.1 -1.9 60.8 66.9 -6.1 72.5 75.2 -2.7 

Ica 97.1 97.3 -0.1 83.8 80.0 3.9 87.0 88.2 -1.2 73.0 85.8 -12.8 39.1 38.2 1.0 97.0 97.3 -0.3 99.2 99.4 -0.2 67.2 65.1 2.1 77.3 78.0 -0.6 

Junín 96.5 95.8 0.7 89.6 91.8 -2.2 80.6 81.0 -0.4 63.2 60.5 2.7 29.0 23.6 5.4 95.6 96.3 -0.7 89.7 91.7 -1.9 62.1 64.2 -2.1 72.5 72.6 -0.1 

La Libertad 97.1 96.7 0.4 82.6 80.6 2.0 82.9 80.7 2.2 68.0 64.3 3.7 32.1 34.9 -2.8 96.8 96.3 0.4 92.1 89.8 2.3 66.5 62.6 3.9 74.3 72.5 1.8 

Lambayeque 95.9 95.4 0.4 86.1 84.5 1.7 74.5 71.5 3.0 68.9 72.6 -3.6 36.6 37.4 -0.8 95.1 94.0 1.0 97.1 95.2 1.8 68.6 60.9 7.7 75.8 73.6 2.2 

Lima Province 95.2 94.9 0.3 83.6 82.8 0.8 80.3 79.0 1.3 73.1 75.5 -2.4 38.4 37.4 1.0 97.3 97.6 -0.2 99.6 99.5 0.0 72.6 70.2 2.4 78.1 77.5 0.6 

Loreto 83.8 85.6 -1.8 79.3 81.7 -2.5 70.4 75.8 -5.4 66.2 73.1 -6.9 32.5 40.0 -7.5 90.2 90.1 0.1 66.1 72.3 -6.2 59.2 61.3 -2.1 66.2 70.1 -3.8 

Madre de Dios 95.5 99.5 -4.0 81.0 82.2 -1.2 71.8 73.8 -1.9 61.7 52.2 9.5 31.2 45.7 -14.6 93.4 94.7 -1.2 88.6 97.9 -9.3 54.5 65.4 -10.9 68.6 73.8 -5.2 

Moquegua 98.0 98.3 -0.3 90.1 88.8 1.4 85.9 88.8 -2.9 70.1 77.0 -6.9 29.4 36.3 -6.8 97.4 97.9 -0.5 97.7 99.5 -1.8 69.2 72.2 -3.0 76.9 79.7 -2.8 

Pasco 96.3 95.3 1.0 85.6 83.9 1.7 82.3 81.0 1.3 65.6 71.9 -6.3 22.5 31.2 -8.7 96.2 96.7 -0.5 93.6 96.8 -3.3 65.4 69.9 -4.5 72.9 76.1 -3.1 

Piura 97.2 98.0 -0.8 85.7 87.5 -1.8 81.1 81.8 -0.7 67.4 69.3 -1.9 36.8 37.5 -0.7 96.6 96.8 -0.2 91.9 91.9 0.0 71.9 70.8 1.1 76.4 76.8 -0.4 

Puno 94.5 91.4 3.1 76.3 75.0 1.4 72.7 70.9 1.9 64.4 40.8 23.6 21.3 18.6 2.7 92.5 91.9 0.6 92.5 95.0 -2.5 41.2 43.4 -2.1 64.1 61.1 3.0 

San Martín 94.6 93.2 1.4 90.2 90.9 -0.7 82.7 78.5 4.1 64.0 50.0 14.0 39.4 42.1 -2.7 97.5 98.1 -0.6 93.5 92.0 1.5 66.2 66.5 -0.3 75.7 74.0 1.7 

Tacna 98.5 99.3 -0.8 90.2 90.2 0.0 81.7 78.9 2.9 70.9 64.8 6.0 32.1 21.2 10.9 97.5 97.7 -0.2 98.2 98.6 -0.4 63.6 60.0 3.6 75.8 72.7 3.1 

Tumbes 98.0 98.4 -0.4 92.9 93.9 -1.1 87.2 89.7 -2.4 63.9 67.9 -4.1 43.8 51.1 -7.3 96.5 96.7 -0.2 98.4 99.1 -0.6 85.2 83.2 2.0 82.3 83.6 -1.3 

Ucayali 92.7 94.5 -1.8 84.7 87.1 -2.4 70.2 69.1 1.0 61.4 60.8 0.6 41.5 42.0 -0.5 92.0 94.0 -2.1 82.5 88.6 -6.2 66.3 65.9 0.4 72.0 73.3 -1.3 
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BCG Bacillus Calmette-Guérin vaccine; DPT3 3 doses of Diphteria, pertussis, tetanus vaccine; CAREP Care-seeking for pneumonia; SBA Skilled attendant at 

delivery; ANC4 Antenatal care 4 or more visits; ORS Oral rehydration salts; FPSmo Demand for family planning satisfied by modern methods; CCI Composite 

coverage index
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Supplementary table 7 – Predicted estimates for the composite coverage index (CCI) for the 

provinces of Peru 

Provinces 
Point 

estimate 
Standard 

error 
2.5th 

percentile 
97.5th 

percentile 

Abancay 75.9 4.3 66.7 83.7 
Acobamba 66.9 2.2 62.4 71.0 
Acomayo 72.3 2.8 66.5 77.6 
Aija 70.2 2.5 65.0 74.8 
Alto Amazonas 61.9 1.7 58.6 65.1 
Ambo 72.4 1.7 69.0 75.6 
Andahuaylas 71.8 1.4 69.0 74.4 
Angaraes 67.1 2.0 62.9 70.7 
Anta 73.2 1.9 69.4 76.6 
Antabamba 71.7 2.0 67.8 75.6 
Antonio Raymondi 69.9 2.2 65.5 74.2 
Arequipa 77.5 2.1 73.3 81.3 
Ascope 76.8 1.9 73.0 80.3 
Asunción 71.9 2.4 66.9 76.7 
Atalaya 60.2 2.5 55.0 64.9 
Ayabaca 69.8 2.0 65.9 73.6 
Aymaraes 73.1 1.7 69.8 76.2 
Azángaro 61.6 2.0 57.5 65.4 
Bagua 73.6 2.0 69.5 77.2 
Barranca 79.4 2.5 74.2 84.0 
Bellavista 72.8 1.9 69.0 76.3 
Bolognesi 71.5 1.8 68.1 74.9 
Bolívar 63.3 2.4 58.5 68.0 
Bongará 73.5 2.7 67.8 78.5 
Cajabamba 66.9 2.0 63.1 70.8 
Cajamarca 69.8 2.0 65.8 73.4 
Cajatambo 71.4 2.2 67.1 75.4 
Calca 71.6 2.0 67.5 75.3 
Callao 78.5 2.8 72.1 83.8 
Camaná 79.5 2.3 74.9 83.9 
Canas 69.6 2.2 65.1 73.7 
Canchis 70.8 4.3 61.9 78.9 
Candarave 70.8 2.4 65.8 75.6 
Cangallo 67.5 1.8 63.9 70.8 
Canta 74.3 3.2 67.3 79.8 
Carabaya 66.5 2.2 62.3 70.9 
Caravelí 76.4 2.3 71.6 80.6 
Carhuaz 72.4 2.3 67.7 76.6 
Carlos Fermin 
Fitzcarrald 70.8 2.2 66.5 75.1 
Casma 76.0 2.2 71.6 80.1 
Castilla 76.1 2.4 71.1 80.3 
Castrovirreyna 63.6 2.5 58.7 68.4 
Caylloma 70.6 2.0 66.5 74.3 
Cañete 76.5 2.4 71.6 80.9 
Celendín 67.5 2.0 63.5 71.2 
Chachapoyas 77.3 4.6 68.2 85.3 
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Chanchamayo 74.3 4.7 64.0 82.3 
Chepén 77.6 4.0 69.4 84.4 
Chiclayo 77.0 2.7 71.4 81.8 
Chincha 77.3 4.0 68.9 84.2 
Chincheros 71.2 2.7 65.7 76.2 
Chota 69.1 1.5 65.9 72.0 
Chucuíto 59.9 2.5 55.0 64.8 
Chumbivilcas 69.9 1.8 66.4 73.3 
Chupaca 71.5 2.9 65.8 76.9 
Churcampa 66.1 1.7 62.6 69.3 
Concepción 71.0 3.0 65.0 76.5 
Condesuyos 74.3 2.3 69.7 78.6 
Condorcanqui 54.8 2.4 50.3 59.3 
Contralmirante Villar 80.7 1.7 77.1 83.8 
Contumazá 71.1 2.1 66.8 74.9 
Coronel Portillo 74.2 2.9 68.1 79.7 
Corongo 67.0 2.6 61.8 71.6 
Cotabambas 72.7 1.7 69.5 75.9 
Cusco 73.9 4.4 65.1 82.0 
Cutervo 71.2 2.3 66.4 75.8 
Daniel Alcides Carrión 71.9 1.6 68.7 74.9 
Dos de Mayo 69.4 1.9 65.8 73.2 
El Collao 62.9 2.8 57.0 68.3 
El Dorado 73.6 2.3 68.9 77.7 
Espinar 67.2 2.7 61.5 72.3 
Ferreñafe 71.2 2.1 67.1 75.3 
General Sánchez Cerro 72.3 2.2 67.9 76.4 
Gran Chimú 70.3 3.6 62.8 76.6 
Grau 72.7 2.3 68.1 76.9 
Huacaybamba 67.5 2.2 63.2 71.8 
Hualgayoc 69.8 4.1 61.4 77.1 
Huallaga 74.4 3.4 67.2 80.8 
Huamalíes 71.7 1.5 68.8 74.3 
Huamanga 72.0 4.1 64.1 79.6 
Huanca Sancos 68.2 2.2 64.0 72.6 
Huancabamba 64.4 2.0 60.2 68.2 
Huancane 61.8 2.2 57.3 66.1 
Huancavelica 67.1 2.0 63.0 70.9 
Huancayo 73.9 3.0 68.0 79.4 
Huanta 68.4 1.4 65.6 71.0 
Huaral 78.1 2.0 73.8 81.9 
Huaraz 74.8 4.3 65.7 82.2 
Huari 71.0 1.6 67.8 74.2 
Huarmey 75.7 2.0 71.5 79.3 
Huarochiri 74.1 1.8 70.4 77.5 
Huaura 77.5 2.0 73.5 81.2 
Huaylas 70.1 3.0 64.1 75.8 
Huaytara 66.3 2.1 62.3 70.2 
Huenuco 75.0 2.2 70.2 79.0 
Ica 77.3 3.5 70.0 83.7 
Ilo 80.4 3.4 73.3 86.8 
Islay 78.6 2.2 74.3 82.4 



 

106 

Jauja 72.3 1.9 68.6 76.0 
Jaén 72.5 1.6 69.1 75.5 
Jorge Basadre 77.0 2.3 72.2 81.2 
Julcan 62.8 2.8 56.9 68.2 
Junín 72.9 1.8 69.1 76.3 
La Convención 71.7 1.7 68.0 74.9 
La Mar 70.0 1.4 67.0 72.7 
La Unión 72.3 2.6 67.3 77.1 
Lago Titicaca 63.3 2.8 57.4 68.6 
Lamas 76.1 2.3 71.0 80.4 
Lambayeque 73.8 1.5 70.5 76.8 
Lampa 63.3 2.1 59.1 67.3 
Lauricocha 69.4 1.9 65.3 73.2 
Leoncio Prado 75.8 1.7 72.4 78.9 
Lima 78.1 1.3 75.6 80.6 
Loreto 61.7 2.1 57.8 66.1 
Lucanas 72.3 1.7 69.1 75.7 
Luya 72.8 1.5 69.8 75.6 
Manu 68.0 2.4 63.6 72.6 
Marañón 69.2 1.7 65.7 72.4 
Mariscal Cáceres 75.4 4.3 65.9 82.9 
Mariscal Luzuriaga 71.6 2.2 67.4 75.8 
Mariscal Nieto 76.9 2.1 72.5 80.8 
Mariscal Ramón Castilla 62.9 2.6 57.7 68.1 
Maynas 69.1 2.0 65.0 72.7 
Melgar 65.4 2.0 61.4 69.3 
Moho 63.9 2.8 58.2 69.0 
Morropón 73.4 1.9 69.7 77.0 
Moyobamba 76.3 3.2 69.8 81.9 
Nazca 78.7 3.0 72.2 83.9 
Ocros 73.7 2.2 69.5 77.9 
Otuzco 67.0 1.9 63.2 70.7 
Oxapampa 71.0 1.6 67.8 74.0 
Oyon 72.6 3.0 66.5 77.8 
Pacasmayo 76.8 2.3 71.8 81.0 
Pachitea 70.5 1.9 66.7 74.1 
Padre Abad 72.8 1.8 69.4 76.4 
Paita 77.8 2.8 71.9 82.8 
Pallasca 65.2 2.5 60.0 69.8 
Palpa 76.4 4.6 66.2 84.6 
Parinacochas 71.7 2.9 65.7 77.1 
Paruro 72.4 1.8 68.8 75.9 
Pasco 74.7 1.5 71.6 77.4 
Pataz 68.3 2.5 63.2 73.1 
Paucar del Sara Sara 73.1 2.4 68.3 77.7 
Paucartambo 69.0 1.8 65.1 72.7 
Picota 73.6 2.5 68.7 78.3 
Pisco 76.4 2.1 72.3 80.4 
Piura 78.3 2.2 73.7 82.3 
Pomabamba 70.6 2.3 66.0 75.0 
Puerto Inca 70.2 1.9 66.5 73.8 
Puno 64.2 3.9 56.2 71.5 
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Purús 55.2 3.5 48.3 62.0 
Quispicanchi 70.5 1.9 66.7 74.0 
Recuay 72.8 2.0 68.4 76.4 
Requena 65.1 2.2 60.7 69.3 
Rioja 73.7 1.9 69.8 77.1 
Rodríguez de Mendoza 75.9 1.9 72.0 79.6 
San Antonio de Putina 62.9 2.5 58.4 67.7 
San Ignacio 71.2 1.7 67.8 74.6 
San Marcos 69.0 3.2 62.4 74.7 
San Martín 78.7 4.4 69.5 86.2 
San Miguel 71.2 1.9 67.2 74.9 
San Pablo 71.0 3.6 63.6 77.5 
San Román 65.6 6.1 53.6 76.8 
Sandia 67.4 2.3 62.7 71.8 
Santa 78.2 3.0 71.9 83.7 
Santa Cruz 71.7 2.1 67.6 75.6 
Santiago de Chuco 65.3 2.3 60.8 69.8 
Satipo 68.2 2.4 63.3 72.7 
Sechura 75.4 2.4 70.6 79.9 
Sihuas 69.8 2.0 65.6 73.6 
Sucre 70.9 1.9 66.9 74.8 
Sullana 79.5 1.8 75.8 82.8 
Sánchez Carrión 68.6 2.1 64.3 72.5 
Tacna 76.2 2.8 70.2 81.2 
Tahuamanu 69.0 2.4 64.0 73.6 
Talara 78.8 4.1 69.7 86.5 
Tambopata 68.8 1.8 64.9 72.2 
Tarata 70.2 3.5 62.5 76.8 
Tarma 74.8 1.9 71.1 78.2 
Tayacaja 67.6 1.2 65.2 70.1 
Tocache 73.7 1.8 69.8 77.0 
Trujillo 77.2 3.7 69.4 83.6 
Tumbes 82.5 2.6 77.0 87.3 
Ucayali 64.1 2.5 59.6 69.4 
Urubamba 73.3 2.2 69.0 77.4 
Utcubamba 74.7 1.5 71.6 77.7 
Victor Fajardo 69.2 1.8 65.5 72.7 
Vilcas Huamán 68.2 1.9 64.6 71.8 
Viru 71.8 2.9 66.2 77.4 
Yarowilca 69.2 2.4 64.4 73.9 
Yauli 73.9 3.7 66.1 80.7 
Yauyos 67.0 2.0 62.9 70.6 
Yungay 70.9 2.1 66.6 75.0 
Yunguyo 67.9 4.2 59.2 75.5 
Zarumilla 82.2 2.9 75.7 87.2 
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Supplementary Figure 1 – Map of log of population density in Peru 
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Supplementary Figure 2 – Predicted coverage for all eight composite coverage index (CCI) 

indicators in Peru 
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Abstract 

Background: Monitoring health inequalities is an essential and continuous process to ensure 

equitable progress in the countries. However, studying the geographic inequality dimension 

presents many challenges including the modifiable areal unit problem (MAUP). This study aims 

to quantify the magnitude of the scale effect, one of MAUP’s issues, when assessing geographic 

inequalities over time in household surveys using complex measures of inequality. 

Methods: Using data from two national health surveys carried out in Peru in 2009 and 2019, we 

applied a model-based geostatistical approach to generate estimates for stunting in children 

under-5 at different resolutions. Then, we calculated four complex measures of inequality 

(weighted and unweighted mean absolute difference to the mean and index of disparity) and 

used them to compare inequalities between resolutions and over time. 

Results: The magnitude of the inequality measures increases as the number of geographical 

units increase, but it reached a plateau around 2000 geographical units for all measures. The 

absolute difference over the years remained stable for matching resolutions. Population-
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weighted measures of inequality varied substantially less between resolutions than their 

unweighted counterparts.  

Conclusions: Overall, weighted inequality measures presented more stability, especially for 

absolute measures, and the magnitude of the changes over time was not affected by the MAUP 

when comparing years at the same resolution.  

Introduction 

Monitoring and reducing inequalities is as crucial as ever as the world marches in the pursuit of 

the Sustainable Development Goals set for 2030 (1). Dimensions such as wealth, education and 

place of residence are long studied and have been monitored at global, regional, and local levels 

in most low- and middle-income countries (2). However, within-country subnational 

geographical units (districts, provinces, regions, etc.) are often overlooked especially in multi-

country comparisons and in the assessment of progress over time. Although central to the 

process of policy design and decision-making, monitoring inequalities for subnational units 

require accounting for the modifiable areal unit problem (MAUP) and facing the challenges of 

measuring inequalities among unordered groups (3,4), which could partly explain the reason 

other inequality dimensions are preferred. Estimates for subnational geographical units are 

obtained by aggregating data points (e.g., sample clusters in household surveys) based on a 

modifiable number of areas and shapes for the boundaries. Thus, the MAUP implies that 

changing these parameters may affect the interpretation of geographical analyses due to 

differences in scale (number of areas) or zoning (boundaries) alone, despite being originated 

from the same data points. This potential issue has been acknowledged by many studies in the 

field of geography and health inequalities (4–6), but a clearer picture of the amount of 

uncertainty inherent from the variation in the size and aggregation of these areas is desired. 
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Due to fragile and inefficient health information systems, most low- and middle-income 

countries rely on national household surveys as their primary source of information on 

reproductive, maternal, newborn and child health (RMNCH). These surveys are often carried out 

every 3 to 5 years collecting information on multiple health indicators whose estimates are 

representative nationally and for the first administrative division of the country - generally large 

areas such as macroregions (states, regions) or the aggregation of smaller subdivisions. As of 

late, studies have used geospatial models to obtain reliable estimates for smaller geographical 

units from the surveys based on spatial correlation and geospatial covariates (7). This strategy 

allows the use of subnational divisions whose estimates are more suitable for policy planners 

and expand the possibilities for monitoring geographical inequalities over time and between 

countries. Yet, empirical evidence on the impact of the MAUP is necessary to guide further 

studies that aim to use geospatial modeling to quantify inequalities from a geographical 

perspective.  

This study aims to test the effects of the MAUP in assessing geographic inequalities over time by 

using geospatial models and complex measures of inequality at different resolutions in two 

Peruvian surveys as a case study. We expect to show the variation in absolute and relative 

measures at different resolutions (the scale effect) and compare whether differences over time 

vary as the scale changes. 

Methods 

Data 

We used data from the Encuesta Demográfica y de Salud Familiar (ENDES), a population-based 

survey carried out in 2009 and 2019 in Peru (8,9). These surveys are designed to provide 

representative estimates at national and departmental level for several RMNCH indicators. They 

use a multi-stage sampling design accounting for age, sex and other characteristics of the 

population where the clusters are selected in the first stage, followed by the selection of 
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households in the second stage. Peru is administratively divided into 25 departments, 

subdivided into 195 provinces which are further disaggregated into 1761 districts. 

The outcome selected for the analysis was the prevalence of stunting defined as the percentage 

of under-five children with height-for-age below -2 standard deviations in comparison to the 

World Health Organization Child Growth Standard (10), based on anthropometric measures 

collected by trained interviewers. 

Geospatial modelling 

A total of 11 geospatial covariates were prepared and tested to be used as predictors in the 

geospatial model. The covariates relate to sociodemographic characteristics, urbanization, 

accessibility, vegetation, and topography which were previously used as potential predictors in 

other studies (11,12). The final set of covariates for each model were selected following a 

backwards stepwise logistic regression at 5% significance level. The list of candidate covariates 

is presented in the Supplementary Table 1.  

We followed a Bayesian framework to generate estimates at 5 x 5 km, 10 x 10 km and 25 x 25 

km resolutions using a model-based geostatistical approach (13) based on spatial correlation 

and geospatial variables (14,15). Given 𝑌(𝑠𝑖) is the number of households at cluster location 𝑠𝑖  

(i=1, ..., n), out of a total of 𝑁(𝑠𝑖) households sampled at the location, the model can be defined 

as follows: 

𝑌(𝑠𝑖) ~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑁(𝑠𝑖), 𝑝(𝑠𝑖)) 

𝑙𝑜𝑔𝑖𝑡(𝑝(𝑠𝑖)) = 𝑥(𝑠𝑖)𝑇 𝛽 +  𝜔(𝑠𝑖) + 𝜖(𝑠𝑖) 

where 𝑥(𝑠𝑖)  is a set of covariates for each cluster 𝑠𝑖, 𝛽 are the corresponding regression 

parameters, 𝜔(𝑠𝑖) is a Gaussian spatial random effect used to capture residual spatial 

correlation in the model, and 𝜖(𝑠𝑖) is a Gaussian random effect used to model non-spatial 

residual variation. We used the integrated nested Laplace approximation with the stochastic 
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partial differential equations to fit the geostatistical model (16). Estimates for the grid-level 

resolutions were obtained by drawing 1000 samples from the posterior distribution generated 

by the model and were further aggregated into the first, second and third administrative 

divisions using population estimates obtained from Worldpop (17) for weighting. 

We carried out an out-of-sample cross validation strategy with 5 folds to ensure model stability. 

Model performance was assessed using mean error (bias), the mean absolute error and the 

correlation between predicted and observed cluster values. 

Inequality measures 

We used four complex measures of inequality for unordered groups to quantify the magnitude 

of the inequalities in the prevalence of stunting estimated at different resolutions. The mean 

absolute difference to the mean (MADM) is an absolute measure that uses the national average 

as the reference and takes the mean of all the absolute differences of each subnational unit to 

the reference. As a relative measure, we opted for the index of disparity (IDISP), which can be 

interpreted as the relative counterpart of the MADM. It takes the mean of the absolute 

differences to the reference value (national average) and further divides it by the reference 

value and multiplies the quotient by 100. We calculated for both measures unweighted and 

population-weighted versions in each resolution. The inequality measures were calculated 

according to the following equations 

𝑀𝐴𝐷𝑀 =
∑ |𝑟𝑗 − 𝑟𝑟𝑒𝑓|𝑗

𝐽
 

𝐼𝐷𝐼𝑆𝑃 =
∑ |𝑟𝑗−𝑟𝑟𝑒𝑓|𝑗 /𝐽

𝑟𝑟𝑒𝑓 
 * 100 

𝑊𝑀𝐴𝐷𝑀 = ∑ |𝑟𝑗 − 𝑟𝑟𝑒𝑓| ∗  𝑤𝑗
𝑗

  

𝑊𝐼𝐷𝐼𝑆𝑃 =
∑ |𝑟𝑗−𝑟𝑟𝑒𝑓|𝑗  ∗ 𝑤𝑗

𝑟𝑟𝑒𝑓 
 * 100 
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where 𝑟𝑗 is the estimate for each subnational unit, 𝑟𝑟𝑒𝑓 represents the national average, 𝐽 is the 

total number of subnational units and 𝑤𝑗 is the proportion of the total population in each 

subnational unit. 

MAUP effects 

As mentioned above, MAUP has two main components: scale and zoning effects. The statistical 

analyses focused on scale effects, which were assessed by comparing results for the inequality 

measures calculated at the following resolutions: departments (25 units), provinces (195 units), 

districts (1761 units), 25 x 25km areas (2,657 units), 10 x 10 km areas (15,869 units) and 5 x 5 

km areas (62,388 units). We evaluated the potential impact of the scale effect in two scenarios: 

a) the behavior of each inequality measures at different resolutions in each time point and b) 

the gap between time points in each inequality measures at different resolutions. 

By comparing estimates between districts and areas of 25 x 25 km, where the number of 

geographical units is similar, the zoning effect can also be observed. However, this effect was 

not formally assessed in this study, and it is only briefly mentioned in the discussion section. 

Survey data analysis, the covariate selection process and the calculation of the inequality 

measures was done in Stata 16 (18) while R 4.0.2 (19) was used for the processing of geospatial 

covariates, model fitting and validation. 

Results 

Geospatial models for both years were fit using altitude, improved sanitation, and the mean 

number of household members as covariates. For 2009, they also included travel time to cities, 

improved water, percentage of households in the first two quintiles of wealth, distance to 

protected areas and percentage of indigenous population. For 2019, the additional covariates 

were enhanced vegetation index and the mean years of education for women (Supplementary 
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Table 2). Based on the cross-validated results, the correlation of predicted and observed 

estimates at cluster-level was 0.65 and 0.56 for 2009 and 2019, respectively. Bias was very close 

to zero for both years and the mean absolute error was 13 percentage points (p.p.) in 2009 and 

10p.p. in 2019 (Supplementary Table 3). We also compared published and predicted estimates 

at the first administrative level (ADM1) and found mean differences of 0.5p.p and -0.9p.p in 

2009 and 2019, respectively, while the largest differences were 7.1p.p. in 2009 and -4.2p.p. in 

2019 (Supplementary Table 4). 

The national prevalence of stunting decreased from 23.9% in 2009 to 12.2% in 2019. At the first 

administrative level (ADM1), the gap between the best and worst performing subnational units 

was 49.7p.p. in 2009, decreasing to 28.2p.p. in 2019 (Table 1). Absolute inequalities decreased 

from around 11p.p. to a little over 6p.p. from 2009 to 2019, but this pattern was not observed 

for relative measures in the same period (Table 1). 

When comparing subnational units disaggregated at the second administrative level (ADM2) to 

ADM1, the gaps are larger in both years but the reduction over time in percentage points is very 

similar (21p.p. for ADM1 vs 24p.p. for ADM2) for the absolute measures. The same pattern is 

observed in higher resolutions where the gap between regions continues to increase but the 

absolute difference over the years is stable. However, in relative terms, the inequality direction 

seems to reverse as the number of subnational units increase when comparing 2009 to 2019 

(Table 1). 

Both absolute measures of inequality increased as the resolution got higher, although the 

unweighted MADM varied substantially more than its weighted version (Figure 1). In the relative 

measures, a much steeper increase can be observed with the increase in the size of the 

subnational units, and a more stable pattern is seen in the weighted version of the IDISP (Figure 

2). For all measures, the increase tends to reach a plateau from the 25 x 25 km to higher 

resolutions.  
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Table 1 – Inequality measures calculated for stunting in children under-five at each of the 

predicted resolutions for Peru in 2009 and 2019 

Resolution 
Number 
of units 

Worst-best MADM WMADM IDISP WIDISP 

2009 2019 2009 2019 2009 2019 2009 2019 2009 2019 

ADM1 25 49.7 28.2 11.4 6.5 10.6 6.3 54.7 52.0 51.0 50.7 

ADM2 195 60.8 36.8 15.1 9.2 12.2 7.6 72.1 73.4 58.6 61.1 

ADM3 1,761 66.1 47.5 15.8 9.6 12.5 8.0 75.7 77.3 60.0 64.1 

25 x 25 km 2,657 70.9 48.8 18.6 13.4 12.7 7.9 93.0 105.9 63.6 62.6 

10 x 10 km 15,869 74.2 55.3 18.6 13.8 12.5 8.0 92.2 113.3 62.1 66.0 

5 x 5 km 62,388 76.8 56.7 18.7 13.8 12.5 8.1 91.5 113.8 61.5 66.5 

MADM: Mean absolute difference to the mean; WMADM: Weighted mean absolute difference 
to the mean; IDISP: Index of disparity; WIDISP: Weighted index of disparity 

 

 

Figure 1 – Absolute inequalities measures for each of the estimated resolutions in 2009 and 

2019.  
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Figure 2 – Relative inequalities measures for each of the estimated resolutions in 2009 and 

2019. 

Discussion 

Here, we assessed the behavior of four complex measures of inequality between six levels of 

aggregation and compared them in two points in time. The magnitude of the inequalities 

increased along the number of subnational units in all scenarios, but such increase stabilized in 

different resolutions for each inequality measure. This plateau is better observed when 

estimates are disaggregated after the grid-level, where very little variation is seen regardless of 

the grid size. From the third administrative level to the most aggregated grid-level estimates, a 

different effect of the MAUP is noticed. Also known as the zoning effect (20), estimates seem to 

change based on the shape of the geographical units rather than its number, since we move 

from administratively defined borders to equal-sized grid-cells. Weighted measures accounting 

for the population in each subnational unit have consistently shown to be less affected by the 

scale effect, suggesting they are more stable for monitoring inequalities in the dimension of 
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subnational geographic units. Lastly, the magnitude of changes over time seems to be consistent 

regardless of the resolution for absolute inequality measures, but such interpretation should be 

taken cautiously for relative inequality measures, especially in higher resolutions. 

The influence of the MAUP over geographically disaggregated estimates presented in this study 

seems to be consistent with the literature. The scale effect tends to be minimized when working 

with geographical units in higher resolutions (6), although this may not be available in many 

cases without indirect estimation such as geospatial modeling due to the sample design of the 

surveys. Also, comparing inequalities in one country over time using matching resolutions is 

unlikely to be impacted by the MAUP effects (5) for absolute inequality measures. However, the 

same may not be true when assessing inequalities through relative measures. 

The inequality measures evaluated in our study are a part of a large set of complex measures, 

all of which have strengths and limitations. Both the MADM and the IDISP use the national 

average as a benchmark in their calculations and changing the benchmark may lead to different 

interpretations of the results. We have also compared the use of weighted and unweighted 

measures of inequality, and they both tell different stories. While the weighted measures tend 

to be less affected by the scale effect, they are driven by estimates of areas with larger 

populations, capturing the density of the spatial outcome more than its spatial heterogeneity, 

in which the latter could be better assessed using unweighted measures. Opting to go with 

unweighted or weighted measures mostly depends on the nature of the research question and 

evaluating them as complementary results should always be considered. The same applies for 

absolute versus relative ones. Nonetheless, these measures were chosen to illustrate how 

inequalities may shift in the proposed scenarios and conclusions may not hold for different 

inequality measures. 

All in all, some limitations and caveats should be considered when interpreting our findings. 

First, the estimates produced at the studied resolutions are derived from geospatial models, 
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which also carry their share of uncertainty. Also, despite the large increase of the use of 

geospatial models in the past years and the likeliness that they will become an integral part of 

the data used for monitoring and accountability, there is still very scarce information of global 

health indicators at resolutions beyond what is offered by the household surveys. Moreover, if 

the quality of fit differs between surveys, it could also impact on the inequality measures. Lastly, 

the assessment of the scale effect using the inequality measures did not account for the 

uncertainty of each estimate. 

Conclusions 

This study attempted to quantify the magnitude of the scale effect of geographical units on 

empirical data and understand the impact on inequality measures and its variation over the 

years. We found that weighted inequality measures presented more stability in all scenarios 

especially for absolute measures, and the magnitude of the changes over time was not affected 

by the MAUP when comparing years at the same resolution. Further empirical studies are 

desired to validate the magnitude of the scale effect in other countries and to confirm that 

measuring geographic inequalities through time is viable and reliable. 
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Supplementary table 1 – Description of covariates considered for the analysis  

Covariate Year Resolution Unit Source 

Altitude NA 5km meters SRTM (raster package) 

Travel time to cities 
>50,000 

2000 5km minutes 
ftp://ftp.worldpop.org.uk/GIS/Covariates/
Global_2000_2020/PER/ 

Distance to health 
facilities 

2017 5km meters 
https://www.datosabiertos.gob.pe/datas
et/minsa-ipress 

Enhanced vegetation 
index 

2009, 
2019 

5km 
0 to 10000 (least to 
most vegetation) 

https://ladsweb.modaps.eosdis.nasa.gov/
search/history 

Nighttime lights 
2009, 
2016 

5km nW/cm2/sr 
ftp://ftp.worldpop.org.uk/GIS/Covariates/
Global_2000_2020/PER/ 

Improved water 
coverage 

2009, 
2019 

5km proportion Interpolated using kriging 

Improved sanitation 
coverage 

2009, 
2019 

5km proportion Interpolated using kriging 

Mean number of 
household members 

2009, 
2019 

5km number Interpolated using kriging 

% of households in 
Q1 or Q2 

2009, 
2019 

5km proportion Interpolated using kriging 

Mean women's years 
of education 

2009, 
2019 

5km proportion Interpolated using kriging 

% of indigenous 
population 

2009, 
2019 

5km proportion Interpolated using kriging 

Distance to 
protected areas 

2009, 
2017 

5km km 
ftp://ftp.worldpop.org.uk/GIS/Covariates/
Global_2000_2020/PER/ 

Distance to build 
settlements (BGSM) 

2009, 
2017 

5km km 
ftp://ftp.worldpop.org.uk/GIS/Covariates/
Global_2000_2020/PER/ 
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Supplementary Table 2 - Covariates selected for the models in each survey year 

Covariate 2009 2019 

Altitude X X 

Distance to health facilities   

Travel time to cities 50k X  

Enhanced vegetation index  X 

Nighttime lights   

Improved water X  

Improved sanitation X X 

% of households in Q1 or Q2 X  

Number of household members X X 

Distance to built settlements   

Distance to protected areas X  

Years of education (women)  X 

% of indigenous population X  

 

 

Supplementary Table 3 – Model validation metrics 

 Cross-validation In-sample 

Survey Correlation Bias MAE Correlation Bias MAE 

Peru 2009 0.65 0.01 0.13 0.87 0.01 0.09 

Peru 2019 0.56 0.00 0.10 0.75 0.00 0.08 



 

127 

Supplementary Table 4 – Comparison of predicted vs observed estimates at department-level 

(adm1) for stunting in 2009 and 2019 

Department 
2009 2019 

Pred Obs Diff Pred Obs Diff 

Amazonas 31.1 27.1 -4.0 17.4 17.9 0.5 

Ancash 32.6 28.2 -4.3 17.9 16.2 -1.7 

Apurímac 37.7 34.6 -3.1 19.1 16.2 -2.8 

Arequipa 9.9 12.2 2.3 5.6 6.1 0.4 

Ayacucho 41.0 41.4 0.4 21.4 17.3 -4.2 

Cajamarca 36.2 39.8 3.7 26.3 25.4 -0.9 

Callao 7.4 6.0 -1.5 4.5 3.8 -0.7 

Cusco 33.5 38.5 5.1 15.9 13.9 -2.1 

Huancavelica 52.8 53.7 0.9 31.2 30.4 -0.8 

Huánuco 37.9 39.9 2.0 22.5 19.3 -3.2 

Ica 10.3 10.2 -0.1 5.6 5.5 -0.1 

Junín 32.7 33.5 0.9 17.5 18.7 1.2 

La Libertad 20.1 27.2 7.1 13.5 12.7 -0.8 

Lambayeque 15.0 18.2 3.1 8.5 11.1 2.7 

Lima Province 8.3 9.0 0.7 5.0 5.5 0.5 

Loreto 32.6 28.9 -3.6 26.4 23.7 -2.8 

Madre de Dios 15.3 12.6 -2.7 8.6 8.3 -0.3 

Moquegua 8.4 5.3 -3.0 4.2 2.5 -1.8 

Pasco 37.0 38.5 1.4 17.2 15.8 -1.4 

Piura 21.5 22.9 1.3 13.1 13.0 -0.1 

Puno 26.5 27.3 0.9 15.6 12.6 -3.0 

San Martín 24.4 28.2 3.8 12.4 11.5 -0.9 

Tacna 3.1 2.1 -1.0 3.0 2.4 -0.6 

Tumbes 13.4 13.5 0.1 7.4 7.5 0.1 

Ucayali 28.5 29.9 1.4 17.4 17.4 0.0 
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Press release 

Geospatial modeling is a powerful tool to reveal geographic inequalities and target 

health interventions 

A study conducted at the International Center for Equity in Health from the Federal University 

of Pelotas evaluated the use of geospatial modeling methodologies as a tool to increase the 

quality and availability of data used to monitor inequalities in maternal and child health in low- 

and middle-income countries. These results were produced in the PhD research of the student 

Leonardo Zanini Ferreira under the supervision of professor Aluísio JD Barros. “Analyzing the 

estimates produced by these models, in comparison to those directly observed through the 

surveys, is almost like adding a magnifying glass to a huge map. Despite adding some degree of 

uncertainty, this allows us to assess specific areas in much more detail.”, comments Leonardo. 

The researchers also assessed how these methodologies are being applied in the area of 

maternal and child health and the challenges of comparing geographic inequalities at different 

levels of aggregation. “We are talking about methodologies that have grown exponentially in 

the literature in recent years and that have much to contribute to the study of inequalities”. 

According to the authors, high-resolution maps are extremely powerful resources due to their 

ease of interpretation, in addition to their ability to present large amounts of data 

simultaneously. In Peru, a clear pattern of high coverage in the coastal areas and low coverage 

in the north and east of country emerges when estimates for the provinces are observed. And, 

especially in the jungle areas, the high-resolution maps reveal huge differences even within the 

provinces.  “Managers often ask where the most vulnerable populations are and maps allow us 

to point directly at them. With these technologies, we continue to increase the chances of these 

marginalized groups to be identified and receive the care and attention that they are entitled 

to”, concludes the author.  
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Nota de imprensa 

Modelagem geoespacial é uma ferramenta poderosa para expor desigualdades 

geográficas e direcionar intervenções em saúde 

Um estudo conduzido no Centro Internacional de Equidade em Saúde da Universidade Federal 

de Pelotas analisou o uso de metodologias de modelagem geoespacial como uma ferramenta 

para aumentar a qualidade e disponibilidade dos dados utilizados para o monitoramento de 

desigualdades em saúde materno-infantil em países de baixa e média renda. Estes resultados 

foram obtidos através da pesquisa de doutorado do estudante Leonardo Zanini Ferreira sob 

orientação do professor Aluísio JD Barros. “Analisar as estimativas produzidas por esses 

modelos, em comparação com as observadas diretamente através dos inquéritos, é quase 

como adicionar uma lupa a um enorme mapa. Mesmo com algum ganho de incerteza, isso nos 

permite avaliar áreas específicas com muito mais detalhes.”, comenta Leonardo. 

Os pesquisadores também avaliaram como estas metodologias estão sendo aplicadas na área 

de saúde materno-infantil e os desafios de comparar desigualdades geográficas em diferentes 

níveis de agregação. “Estamos falando de metodologias que cresceram exponencialmente na 

literatura nos últimos anos e que tem muito a contribuir para o estudo das desigualdades”. 

Segundo os autores, mapas de alta resolução são recursos extremamente poderosos pela sua 

facilidade de interpretação, além de sua capacidade de apresentar grandes quantidades de 

dados simultaneamente. No Peru, um claro padrão de alta cobertura nas áreas de costa e 

baixa cobertura no norte e leste do país emerge quando estimativas para as províncias são 

observadas. E, especialmente para as áreas de selva, os mapas de alta resolução revelam 

enormes diferenças mesmo dentro das províncias. “Gestores costumam perguntar onde estão 

as populações mais vulneráveis e os mapas nos permitem apontar diretamente para eles. Com 

essas tecnologias, cada vez mais aumentamos as chances desses grupos marginalizados serem 

identificados e receberem o cuidado e atenção que lhes é de direito”, conclui o autor. 


