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Resumo

Ferreira, Leonardo Z. Geospatial analyses of health indicators using national health surveys
from low- and middle-income countries: Analyses of reproductive, maternal, newborn and
child health. Tese de doutorado. Programa de Pés-graduagao em Epidemiologia.
Universidade Federal de Pelotas; 2022

Entre os diversos desafios para melhorar a qualidade de vida de mulheres e criangas em paises de
baixa e média renda, aumentar a qualidade e a disponibilidade de dados é crucial para monitorar o
progresso e garantir que os paises estejam comprometidos com uma agenda equitativa. De acordo
com a meta 17.18 dos Obijetivos de Desenvolvimento Sustentdvel, os paises devem fornecer dados
confidveis desagregados por dimensoes de desigualdade fundamentais, como localizacdo geografica.
Nesta tese, buscamos investigar o potencial uso de técnicas de modelagem geoespacial como
ferramenta para a producdo de dados desagregados geograficamente além do que esta disponivel no
desenho amostral de inquéritos domiciliares nacionais. No primeiro artigo, foi realizada uma revisao
sistematica para descrever os principais aspectos metodoldgicos das abordagens geoespaciais em
estudos com foco especial em desfechos de satde reprodutiva, materna, neonatal e infantil (RMNCH).
Esse artigo também buscou emponderar leitores ndo especialistas para que melhor interpretassem os
resultados de tais estudos. Identificamos 82 estudos que geraram estimativas para indicadores de
RMNCH em resolugdes superiores as obtidas diretamente nos inquéritos. A validagdo do modelo e a
incerteza foram significativamente subnotificadas na literatura e a apresentacao da incerteza continua
sendo um desafio. O segundo artigo implementou as técnicas de modelagem geoespacial para
produzir estimativas para o indice de composto cobertura (CCl) no Peru. Estas estimativas foram
apresentadas a nivel provincial, a segunda divisdo administrativa do pais, e em malhas de 5 x 5 km
ilustrando como as desigualdades geograficas podem ser mascaradas quando se avalia apenas
grandes dreas agregadas. O uso do CCl permite uma perspectiva integrada de como esta o progresso
em diregao a cobertura universal de saide em todo o pais. Nés observamos um padrao claro de maior
cobertura nas areas da costa e baixa cobertura no norte e leste do pais. As estimativas para as
provincias parecem ser suficientes para descrever os padrdes de cobertura na maior parte do Peru,
mas grandes provincias em dareas de selva podem se beneficiar de estimativas de alta resolugdo. O
ultimo artigo aborda um fen6meno conhecido chamado de problema da unidade de drea modificavel.
Essa questdo implica que a interpretacdo das analises com dados geograficos pode mudar de acordo
com a escala ou delimitacdo das unidades geograficas. Nds realizamos um estudo empirico para
guantificar o impacto desse efeito na avaliacdo das desigualdades geograficas ao longo do tempo.

Para isso, geramos quatro medidas complexas de desigualdade em multiplas resolugdes usando



modelos geoespaciais em duas pesquisas peruanas como estudo de caso. Descobrimos que a
magnitude das desigualdades ao longo do tempo ndo foi afetada ao comparar anos na mesma
resolucdo, independente da medida de desigualdade utilizada. Além disso, as medidas de
desigualdade ponderadas pela populagdo foram menos suscetiveis ao efeito de agregacdo e
apresentaram resultados consistentemente mais estaveis em todas as resolucdes avaliadas. No geral,
nossas descobertas sugerem que os modelos geoespaciais sdo recursos Uteis para monitorar e rastrear
o progresso dos desfechos de RMNCH e de desigualdades a partir de uma perspectiva geografica e
podem ser de grande ajuda para gestores locais e planejadores de politicas para identificar e agir nas

areas mais desfavorecidas de seus paises.

Palavras-chave: Saude da crianca; Saude da mulher, Pesquisas domiciliares, Analise geoespacial,

Desigualdades geograficas, Medidas de desigualdade



Abstract

Ferreira, Leonardo Z. Geospatial analyses of health indicators using national health surveys
from low- and middle-income countries: Analyses of reproductive, maternal, newborn and
child health. PhD Thesis. Postgraduate Program in Epidemiology. Universidade Federal de
Pelotas; 2022

Among the many challenges for improving the quality of life of women and children in low- and
middle-income countries, increasing data quality and availability is crucial to monitor the progress and
ensure countries are committed to an equitable agenda. As stated in the target 17.18 of the
Sustainable Development Goals, countries must supply reliable data disaggregated by key inequality
dimensions such as geographic location. In this thesis, we aimed to investigate the potential use of
geospatial modeling techniques as a tool for producing geographically disaggregated data beyond
what is available in the sample design of national household surveys. In the first article, a systematic
review was carried out to describe key methodological aspects of the geospatial approaches in studies
with a special focus on reproductive, maternal, newborn and child health (RMNCH) outcomes. This
study also sought to empower non-specialist readers to better interpret the results of such studies.
We identified 82 studies that generated estimates for RMNCH indicators at resolutions higher than
obtainable directly from the surveys. Model validation and uncertainty were significantly
underreported in the literature and the presentation of uncertainty remains a challenge. The second
article implemented the geospatial modeling techniques to produce estimates for the composite
coverage index (CCl) in Peru. These estimates were presented at provincial level, the second
administrative division of the country, and in 5 x 5 km grid-cells describing how geographical
inequalities can be masked when looking only at large, aggregated areas. The use of the CCl allows for
an integrated perspective on how the progress towards universal health coverage stands throughout
the country. We observed a clear pattern of higher coverage in the coastal areas and low coverage in
the north and east of the country. Estimates for the provinces seems to be sufficient to describe
coverage patterns in the majority of Peru but large provinces in jungle areas can benefit from high
resolution estimates. The last article addresses a well-known phenomenon called the modifiable areal
unit problem. This issue implies that the interpretation of analyses using geographical data may
change according to the scale or delimitation of the geographical units. We carried out an empirical
study to quantify the impact of this effect on the assessment of geographic inequalities over time. To
do so, we generated four complex measures of inequality at multiple resolutions using geospatial
models in two Peruvian surveys as a case study. We found that the magnitude of inequalities over

time was not affected when comparing years at the same resolution, regardless of the inequality



measure. Furthermore, the population-weighted inequality measures were less susceptible to the
aggregation effect and presented consistently more stable results at all estimated resolutions. Overall,
our findings suggest that geospatial models are useful resources to monitor and track progress on
RMNCH outcomes from a geographical perspective and can be of great assistance to local managers

and policy planners to identify and act on the most disadvantaged areas of their countries.

Keywords: Child health; Woman’s health, Household surveys, Geospatial analysis, Geographic

inequalities, Inequality measures
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Abstract

In light of the agenda defined by the Sustainable Development Goals, improving data quality and
availability is crucial to ensure countries are in the right direction towards reducing preventable
maternal and newborn deaths. Assessing geographic inequalities is challenging since the main sources
of information on low- and middle-income countries are not designed to be analyzed spatially. Recent
improvements in computer processing power and the increased availability of ancillary data sources
have contributed to the development of modeling approaches that aim to provide estimates at finer
resolutions than provided by the administrative divisions commonly used in surveys. This project
involves using these techniques of geospatial modeling to investigate geographic inequalities by
generating high resolution estimates of health indicators. The estimates will be evaluated in two
different scenarios: i) aligned with the most recent surveys, map the composite coverage index, a
measure of universal health coverage based on essential reproductive, maternal and child health
interventions, at second administrative level (e.g the equivalent to district or counties in different
countries) and at pixel level (e.g 5 x 5 km or 10 x 10km); and ii) assess time trends using a geographic
perspective to identify spatial patterns of increase in coverage of two vaccines since their introduction

in Peru, in the early 2000s.



1 Planned articles

1. Spatial modeling on RMNCH in low- and middle-income countries: a systematic review

This review paper will focus on presenting an overview of the existing applications of spatial modeling
on reproductive, maternal, newborn and child health (RMNCH) in low- and middle-income countries
(LMICs). Also, we aim to understand and discuss the suitability of these methodologies in RMNCH by
evaluating implementations and pointing out limitations. This review will also attempt to identify gaps

and opportunities in the areas where spatial modeling is promising and unexplored.

2. High resolution mapping of the Composite Coverage Index in West and Central Africa

Spatial modelling of standardized RMNCH indicators is a novel and promising approach for producing
more granular data, which will enhance locating vulnerable geographies and guiding interventions.
This article will use these techniques to model the Composite Coverage Index (CCl) in selected
countries from West and Central Africa with Demographic and Health Surveys (DHS) and ancillary data

sources.

3. Spatio-temporal changes of Haemophilus Influenzae type B and Rotavirus vaccines

Whenever a new vaccine is introduced to the calendar, increasing the coverage rapidly and equitably
is a challenge and concern to the health system. This paper seeks to understand the spatial patterns
behind the expansion of vaccination coverage in newly introduced vaccines such as Haemophilus

Influenzae type B (Hib) and Rotavirus in Peru and an additional country.

20



2 Background

As we move towards a more sustainable and equitable world, as recently praised by world leaders
when establishing goals for the next 15 years, preventable deaths remain a massive public health
concern in low and-middle income countries due to basic health interventions being inaccessible for
far too many (Boerma et al., 2018). It is estimated that 800 women and 7700 newborns die daily during
or shortly after pregnancy and childbirth (Chou et al., 2015), in which most of these deaths are
preventable or treatable. Those unfair maternal and under-five deaths must be addressed while also
taking into account that vulnerable and neglected subgroups of the population are usually much worse
(Barros and Victora, 2013). The Sustainable Development Goals (SDGs) have emphasized the
importance of reducing within-country inequalities, so no one is left behind. For that, health estimates
that are more granular, at subgroup level, are essential, as national estimates often mask

heterogeneities at finer resolutions (United Nations, 2015).

Epidemiology, in its essence, focus on studying subgroups of the population that have at least one
characteristic in common. Other than blood ties, place of residence is a useful way of grouping people
based on their similarities. At national level, residents of a given country share several cultural,
political and environmental aspects, as well as specific beliefs and exposure to propaganda when
compared to different nations. Yet, there is tremendous within-country heterogeneity - across
regions, districts and municipalities. Each geographic division carries a great deal of social reflexes,
and as we descend to finer resolutions, we are able to look at more specific contexts and their

influences (Cummins et al., 2007).

LMICs heavily rely on survey data to monitor and report maternal and child health progress due to
weak or lacking health information and vital registration systems. Capturing geographic inequalities,
though, is challenging as these surveys usually provide representativeness for large geographic areas.
Since these surveys are not designed to be analyzed on a geographic perspective, information
obtained through geospatial analysis, particularly spatial modeling, can be helpful to fill existing gaps
of estimates on lower levels of disaggregation. As many countries are structured with decentralized
health systems, health managers greatly benefit from local estimates as their autonomy in terms of

financing and organization is endorsed by data.

Geospatial information has proven to be effective in supporting governments and organizations to
plan and allocate policies and resources (Greene, 2000; Folger, 2010). Maps of high granularity can
play an important role in advocacy as they are easy to interpret and are able to provide detailed
information on where the need for interventions is greater. The use of Geographic Information

Systems (GIS) is not limited to painting maps and pinpointing areas to intervene, though. It can
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contribute by creating or extracting knowledge when suitable data is available, and location influences
the relationships under investigation. Summarizing information for a large number of settings and
managing information from different data sources and types are also among the differentials of a

geospatial application.

2.1 Spatial analysis

Spatial analysis may be relevant whenever the geographical space is believed to be associated with
the subject under study. Within the health geography field of application, spatial analysis can be
divided into descriptive or analytic (Litva and Eyles, 1995). The most widely known and possibly one
of the first documented uses of spatial epidemiology was John Snow’s map of cholera in London
(Snow, 1855). Snow used the spatial distribution of the disease to test his hypothesis that the cases
were clustered around one of the water pumps. Describing patterns in space is a key strategy to
identify priority areas and guide the investigation of factors associated with high prevalence of a
disease or low coverage of an intervention. On the other hand, analytical approaches begin when the
focus becomes creating or extracting new information. Whether the objective is understanding the
relationship of the phenomena with its determinants, or predicting estimates for unmeasured areas,
spatial approaches are often applied when: a) territory can function as a proxy for unmeasured
contextual, political or environmental influences, and b) data integration is required, especially when

the information is available in pixels, satellite images or buffers.

2.2 Spatial autocorrelation

Tobler’s first law of geography states that "everything is related to everything else, but near things are
more related than distant things." (Tobler, 1970). This concept is the base of spatial autocorrelation,
which aims to measure the inter-dependency of observations in a geographic space. Spatial
correlation exists when the distribution of settings in the study area is not random. Several statistics,
such as Moran, Geary and Getis-Ord, try to quantify the degree of correlation by analyzing the
estimates according to the distance between its neighbors and the length of the borders they share
(De Smith, Goodchild and Longley, 2018). Positive values indicate higher or lower estimates are more
clustered than it would be expected if the distribution was random. Negative values indicate the
estimates are more dispersed, similar to what can be observed with the black and white squares in a
chess board. The null hypothesis is that the estimates are randomly distributed across the space, thus

resulting in a value close to zero.
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2.3 Spatial interpolation

In general, data points are observed and collected in order to describe a given phenomenon in a
particular area. Most of the times, measured data is incomplete or inaccurate, and insufficient to
provide values for the entire area under study. There is a variety of methods to impute missing data
based on similar characteristics and patterns found in observed data. In spatial statistics, the act of
impute values based on the distance to observed points is defined as spatial interpolation (De Smith,
Goodchild and Longley, 2018). Basic methods, such as inverse distance weighting, defines a smooth

gradient of values based on distance to closest neighbors alone.

2.4 Data availability for spatial analyses of health attributes

International surveys such as the DHS and the Multiple Indicator Cluster Survey (MICS) are carried out
every three to five years, providing accurate and reliable data on maternal and child health indicators.
The DHS program is carried out by the United States Agency for International Development (USAID)
since 1984, designed as a continuation for the World Fertility Survey in monitoring the progress of
women in reproductive age and children up to five years old (Corsi et al., 2012). In the last decades,
DHS have also started collecting Global Positioning System (GPS) coordinates for their surveys. Each
cluster, a grouping of 20 to 30 households similar to census tracts, has its center georeferenced,
allowing them to be linked with different sources of information, such as health facility or
environmental data. Due to confidentiality concerns, each cluster is randomly displaced for up to 2km

in urban areas and up to 5 km in rural areas, while 1% of them are displaced for up to 10km.

National health surveys are key data sources for LMICs and provide extensive and comparable
information on health outcomes and sociodemographic characteristics that can be applied to a variety
of research and policy questions at national and subnational levels (Carvajal-Aguirre et al., 2017). Still,
determining the mechanisms that lead to coverage or prevalence changes is often a complex task, of
which may require combining different domains such as cultural, environmental and political to the
available health information. Integrating and standardizing these data, though, is a time-consuming
and complex task. Publicly available data sources come in different formats, resolutions and quality,
of which many of them are uncleaned. Detailed information at high resolution is generally owned by
governments or private institutions and obtaining it, when possible, is costly or depends on

collaborating with the holders.

If access is the first barrier to data integration, putting everything together may be an even bigger
challenge. Linking georeferenced datasets through GPS coordinates is the simplest approach when
working with health facilities or specific events. Yet, individual level data, for ethical reasons, is not

released with their precise coordinates (Gething et al., 2015). Noise is added by scrambling the
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coordinates to ensure residents remain untraceable. Attaching this information to the closest territory
it is contained, like the neighborhood, municipality or district is frequently the only possible option,
yet precision is lost in the process. The amount of detail and precision that can be lost without

jeopardizing a given study will be determined by the scope of the research question.

Assuming all necessary information on point coordinates and territorial areas is available, layers will
often need to interact among themselves. Doing so requires human resources with the appropriate
skillset, which may be yet another obstacle to overcome. As complexity increases, and many projects
aim to go beyond developing enhanced thematic maps, the need for capacity building and

collaboration networks with experienced analysts rises.

3 Rationale

To achieve the desired progress proposed by the 2030 agenda, information on the current situation
of the countries and on how they are changing over time is key to ensure policies and investments are
being aimed properly. Monitoring is best when data on effective and simple indicators are available.
Most LMICs lack adequate health information systems and rely on survey data as their primary data

source.

Universal health coverage (UHC) is a broad definition covering equitable, efficient and financially
secure access to health services, comprising the World Health Organization (WHO) vision for health as
a human right (World Health Organization, 2014). In RMNCH studies, UHC is often employed as a
collection of preventive, curative and cost-effective essential interventions delivered throughout the

entire continuum of care (Kerber et al., 2007).

Monitoring UHC in LMICs is frequently based on survey data collected by international organizations
such as the DHS and MICS programs. They conduct interviews with a standardized questionnaire which
allows for comparability of internationally accepted health indicators. Estimates for these indicators
are provided at national and subnational level. The subnational units are generally representative of
the first administrative level of the country. Though relevant patterns can be derived from these units,
finer and more specific estimates allow for more focused interventions and better discrimination of

geographic inequalities.

Current computer processing power and the continued improvement of geospatial techniques allied
to the increase in reliable, updated and accurate data open up opportunities to study maternal,
newborn and child health outcomes from different angles. As survey data is still the leading source of
information, it is the academic community’s duty to extract and report the maximum amount of

knowledge available on these data sources to assist governments and stakeholders. The application
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of geospatial analyses can contribute to better understanding of the spatial patterns while also

producing highly granular data for more focused interventions.

This project aims to explore the potential benefits of geospatial analysis in RMNCH through three

different approaches:

a) Compiling knowledge from applications of geospatial analysis in the literature to uncover gaps

and opportunities for better intervention planning and reduction of inequalities.

b) Generating more granular data on UHC to improve detection, visualization and action on

geographic disparities.

c) Examining how vaccination coverage changes over time by studying the spatial patterns to

identify possible delays and geographic barriers leading to unequal coverage.

4  Literature review

To summarize the existing literature, we carried out a systematic review by searching the PubMed

(https://www.ncbi.nlm.nih.gov/pubmed) database for studies that used GIS and their primary data

source was national health surveys in LMICs. The search strategy considered MeSH (Medical Subject
Headings) terms and important keywords related to the scope of the study, which were also present

in previously identified relevant articles.

("Health Surveys"[Mesh] OR "Demographic and Health Surveys" OR DHS OR MICS OR "Multiple
Indicator Cluster Survey" OR "Health Survey") AND ("Geographic Information Systems"[Mesh] OR
GIS OR Spatial Analysis[Mesh])

Most of the articles relevant to the composition of this project were open source. The university proxy

access through Periddicos CAPES (http://www.periodicos.capes.gov.br) allowed us to obtain the

remainder. The few exceptions were retrieved from collaborators or directly from the authors.

The initial search, on 18 May 2019, resulted in 1060 articles, of which 121 were pre-selected after
screening through titles and abstracts. After full reading, another 67 were removed due to not meeting

our eligibility criteria, yielding 54 selected studies.

From the 56 selected studies, 46 included African countries. Asia and Latin America and the Caribbean
were included in only 10 and 6 studies, respectively. 80% of the studies were carried out after 2013,
corroborating the field has grown in the most recent years. All selected studies were cross-sectional.

The studies are described in Table 1.

The nutritional status of children was the most commonly studied outcome, being part of 13 studies.

Sociodemographic characteristics were assessed as determinants of the given outcome in most of the
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studies. Based on Ebener et. Al (Ebener et al., 2015), the selected studies were classified into three

categories: thematic mapping, spatial analysis and spatial modelling.

4.1 Thematic mapping

Timely and targeted interventions require geographic patterns in countries, subnational regions or
smaller territorial units to be properly described and documented. As defined by Ebener et. Al (2015),
thematic mapping studies are those whose objective lays on the “creation of maps to convey
information about a topic or theme”, thus providing augmented visualization details to help

surveillance, policy and investments planning.

The spatial patterns are often presented as choropleth or heat maps. While choropleth maps respect
the geographic boundaries and illustrate each unit of analysis (e.g., regions or districts of a country)
with a single color, heat maps use the density of the available points to interpolate values for the
entire surface, presenting a smoothed gradient. Regardless of the mapping strategy, most studies
identified in our literature review have focused on identifying statistically clustered areas of low or
high coverage. For this purpose, we identified two similar, but slightly different, approaches. The first
is scanning the study space to identify areas where the outcome is spatially concentrated (Cuadros,
Awad and Abu-Raddad, 2013; Cuadros and Abu-Raddad, 2014; Alemu et al., 2016; Wong et al., 2018).
Kulldorff was the most known and used implementation in the studies following this approach
(Kulldorff, 1997). The second approach uses measures of spatial autocorrelation or Local Indicators of
Spatial Autocorrelation (LISA) to evaluate the existence of spatial patterns (Anselin, 1995). Although
LISA detect clustered areas, their primary goal is to quantify the spatial dependence (or
autocorrelation), highlighting where it is greater (Adekanmbi, Uthman and Mudasiru, 2013; Lopez-
Cevallos, Chi and Ortega, 2014; Bogale et al., 2017; Brownwright, Dodson and van Panhuis, 2017;
Hasan et al.,, 2018; Khan and Mohanty, 2018; Tewara et al., 2018; Yourkavitch et al., 2018).
Additionally, a few studies attempted to describe geographic changes in coverage over time (Cuadros

and Abu-Raddad, 2014; Barankanira et al., 2017; Hasan et al., 2018).

4.2  Spatial analysis

Spatial analysis covers a wide range of concepts and techniques where space is a central element. In
our literature review, we have defined spatial analysis as the collection of methods aimed at extracting
or creating new information from spatial data (Ebener et al., 2015). Studies classified as spatial

modeling are presented in the next section.

Among the studies identified in our literature review, investigating determinants of maternal and child

health outcomes was the most frequent goal of spatial analysis. In addition to estimating the effects
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social and demographic health determinants, several studies considered a spatial correlation
component by applying spatial models (Thuilliez, 2010; Owoo and Lambon-Quayefio, 2013; Chirwa et
al., 2014; Gayawan, 2014; Gayawan, Adebayo and Chitekwe, 2014; Gayawan, Arogundade and
Adebayo, 2014; Kandala et al., 2015; Mtambo, Masangwi and Kazembe, 2015; Ngwira and Stanley,
2015; Barankanira et al., 2016; Chitunhu and Musenge, 2016; Haile et al., 2016; Helova, Hearld and
Budhwani, 2017; Ejigu, Wencheko and Berhane, 2018; Habyarimana and Ramroop, 2018). Both
frequentist and Bayesian models were used in similar fashion for estimating the spatial effects
throughout the studies. In a slightly different approach, a few studies attempted to estimate the
independent effect of environmental factors on health outcomes. We identified studies assessing the
influence of air pollution on neonatal and infant mortality (Goyal, Karra and Canning, 2019) and
stunting (Goyal and Canning, 2017), proximity to vegetation areas and forest loss cover on child diet
and nutrition (Johnson, Jacob and Brown, 2013; Galway, Acharya and Jones, 2018), proximity to
conflict (Ostby et al., 2018), vegetation and temperature on schistosomiasis (Yang et al., 2005) and
how earthquakes can affect child growth (Rydberg et al., 2015). Giardina et. al (2014) examined the
effect of interventions and environmental variables in malaria risk changes over times in a few sub-

Saharan countries.

Geographic access to health is one of the most common and promising applications of GIS capabilities
as mobility is associated with several environmental factors and trajectories could be observed or
estimated. Six studies assessed how health care utilization is affected by distance and quality provided
by the service (Heard, Larsen and Hozumi, 2004; Hong, Montana and Mishra, 2006; Choi et al., 2010;
Gabrysch et al., 2011; McKinnon et al., 2014; Skiles et al., 2015; Tansley et al., 2015; Gao and Kelley,
2019). Studies in which modeling of travel times or distance is estimated while considering associated

covariates were classified as spatial modeling and are described in the next section.

4.3 Spatial modeling

A subtle but important difference distinguishes spatial modeling as a separate class of studies:
incorporation of ancillary data in mathematical models to provide more precise and reliable estimates.
Small area estimation and travel time calculation stand out in the literature as the most popular, yet
promising line of works. To concentrate efforts and resources on the most needed, along with
characterizing the vulnerable shares of the population, the location of these groups must be
uncovered and described using solid and detailed data. National health surveys offer a vast amount
of information for policy planners at subnational geographic units — commonly the first administrative
level of the country. These units are often extensive and heterogeneous. In our literature review,
spatial modeling studies are presented below according to their modeling purposes: a) small area

estimation and b) calculation of travel times.
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Small area estimation studies vary from descending to finer geographic division (e.g. from regions to
districts or counties) to estimation of high-resolution units such as grids of 5km? or 10km?. District-
level estimates were generated for anthropometric indicators (Akseer et al., 2018), under-5 mortality
(Dwyer-Lindgren et al., 2014), maternal and health care service utilization (Ruktanonchai et al., 2016)
and adolescence births (Neal et al., 2016). Three studies provided maternal and child health estimates
for smaller areas of up to 10km? using associated covariates to improve precision (Acheson, Plowright
and Kerr, 2015; Burke, Heft-Neal and Bendavid, 2016; Ruktanonchai et al., 2016). Jia et. al (2016)
generated spatially-smoothed coverage estimates disaggregated by socioeconomic position but no
covariates were considered. Although Bayesian spatial models were the prevailing methodology for
small area estimation in the studies identified in our review, Bosco et al (2017) compared them to
machine learning and generalized linear models using a few outcomes in four different countries and

found no strong evidence for preferring one method over the others.

Travel time models attempt to provide more accurate measures of access to healthcare. Geographic
obstacles are known to affect the access to health facilities (Khan and Bhardwaj, 1994), especially in
poorer and less structured areas (Gething et al., 2012). Euclidean distances tend to underestimate
travel times where terrain conditions reduce mobility. Among the studies identified in this literature
review, different approaches were observed including the comparison of Euclidean distances to
modelled travel times (Noor et al., 2006) and examining the impact of sociodemographic and
economic characteristics to enhance travel times models (Ouma et al., 2017). Masters et al (2013)

attempted to estimate the effect of travel times in health facility delivery in Ghana.

We recognize that a few relevant studies were not comprised in this literature review. This is due to
the restriction of the search strategy to studies that were explicitly based on health surveys. Those
missed studies, despites using survey data, lacked clarification on data sources in their MeSH terms,

title or abstract. The search strategy will be expanded and improved for the proposed review paper.
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Table 1. Results of the literature review

Goyal et al
2019

Johnson et al

2013

Rydberg et al
2015

Akseer et al

2018

Ouma et al

2017

Alemu et al
2016
Bosco et al

2017

Outcomes: Neonatal and infant mortality
Exposures: Air pollution (PM;.s)

43 low and-middle income countries
Outcomes: Stunting, vitamin A, dietary
diversity, episodes of diarrhea

Exposures: Vegetation indexes

Malawi

Outcomes: Stunting

Exposures: Seismic activity intensity

Peru

Outcomes: Anthropometric indicators
Exposures: Sociodemographic characteristics
Afghanistan

Outcomes: Health facility utilization
Exposures: Travel time to health facility
Three Kenya’s counties

Outcomes: Child malnutrition

Ethiopia

Outcomes: Modern contraceptives, literacy
and stunting

Exposures: Travel time, distance, climate,
demographic, environmental, among others

Nigeria, Kenya, Tanzania and Bangladesh

Generalized linear models

Generalized linear models

Multilevel models

Bayesian spatial models

Bayesian spatial models

Cluster analysis

Spatial analysis

Spatial analysis

Spatial analysis

Spatial modelling

Spatial modelling

Thematic mapping

Bayesian spatial models and Spatial modelling

machine learning

29

To estimate the association of air pollution

on neonatal and infant mortality.

To estimate the association of proximity to
vegetation areas with child nutrition

indicators

To estimate the impact of an earthquake in
public health outcomes using stunting as a
proxy

To assess the geographical differences at

district-level in anthropometric indicators

To compare the accuracy of travel time

estimation models

To identify clusters of concentration of
malnutrition in Ethiopia

To test the accuracy of spatial predictive
methods on modern contraceptives use,

literacy and child stunting



Neal et al
2016
Jiaetal

2017

Ruktanonchai et a/

2017

Hong et al

2006

Gabrysch et al

2011

Chirwa et al

2014

Gayawan

2014

Ngwira et al

2015

Outcomes: Adolescent first birth
Tanzania, Kenya and Uganda
Outcomes: Improved sanitation

Kenya

Outcomes: Antenatal care, Skilled birth
attendance and postnatal care

Burundi, Kenya, Tanzania, Rwanda and
Uganda

Outcomes: Contraceptives (IUD)

Exposures: Health facility quality

Egypt

Outcomes: Skilled birth attendance
Exposures: Distance to facility and level of
care provided

Zambia

Outcomes: birth intervals

Exposures: Sociodemographic characteristics
DR Congo

Outcomes: Institutional delivery

Exposures: Sociodemographic characteristics
Nigeria

Outcomes: Birth weight

Exposures: sociodemographic characteristics

Malawi

Bayesian spatial models

Bayesian spatial models,

cluster analysis

Bayesian spatial models

Multilevel models

Multilevel models

Bayesian spatial models

Generalized linear models,

Bayesian spatial models

Bayesian spatial models
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Spatial modelling

Spatial modelling

Spatial modelling

Spatial analysis

Spatial analysis

Spatial analysis

Spatial analysis

Spatial analysis

To assess the geographical distribution of
adolescent first births in three countries

To estimate the coverage of access to
sanitation in small areas and identify spatial
clusters

To produce a high-resolution inaccessibility
score and district-level estimates to assess

how spatial inequalities changed over time

To estimate the effect of health facility

quality on IUD coverage

To estimate the effects of distance and level

of care on health facility delivery

To investigate the spatial heterogeneity of

birth intervals in young Congolese women

To identify the determinants of place of
delivery and the geographical location
variation

To identify the determinants of birth weight

and the spatial patterns



Tansley et al

2015

Wong et al
2018
Acheson et al

2015

Yourkavitch et al

2018

Gao and Kelley
2019

Masters et al

2013

Skiles et al

2015

Outcomes: Access to emergency health
facilities

Exposures: Population, roads,

Namibia and Haiti

Outcomes: Private facility birth delivery
Nigeria

Outcomes: Insecticide treated nets
Exposures: Population, land cover, elevation,
vegetation and temperature

Tanzania

Outcomes: Exclusive breastfeeding,
vaccination, care seeking, stunting and
under-5 mortality

27 African countries

Outcomes: Health facility utilization
Exposures: Distance to facility and quality of
care

Haiti and Kenya

Outcomes: Antenatal care and institutional
delivery

Exposures: Distance to health facility
Ghana

Outcomes: Use of injectables and unmet
need for contraceptives

Exposures: Distance to health facility

Network analysis

Spatial analysis

Cluster analysis, generalized Thematic mapping

linear models

Generalized linear models,

Spatial modelling

Species distribution model

Cluster analysis

Interpolation methods

Multilevel models

Interpolation methods

Thematic mapping

Spatial analysis

Spatial modelling

Spatial analysis

31

To estimate the share of the population
within 50km of health facilities with

different levels of care

To identify cluster of low and high private

facility birth delivery

To compare the distribution of insecticide

treated nets with concentration of malaria

and estimate the areas at risk

To identify areas of low coverage or high

need for intervention

To determine the effects of distance and

quality of care on maternal health services

To estimate and map the travel time to
health facilities and the effect on antenatal

care and in-facility deliveries

To test the association between use of
contraceptives and distance to health

facilities



Barankanira et a/
2017

Hasan et al

2018

Cuadros et al
2014

Mtambo et al
2015

Bogale et al
2017

Ejigu et al
2018

Khan and Mohanty
2018

Brownwright et a/
2017

Chitunhu and
Musenge

2016

Malawi

Outcomes: Stunting

Cote d’lvoire

Outcomes: Malnutrition

Bangladesh

Outcomes: HIV

Tanzania, Malawi, Kenya and Zimbabwe
Outcomes: Overweight

Exposures: Sociodemographic characteristics
Malawi

Outcomes: Diarrhea

Ethiopia

Outcomes: Anemia

Exposures: Sociodemographic characteristics
and malaria

Ethiopia

Outcomes: Malnutrition

India

Outcomes: Measles

10 Sub-Saharan countries

Outcomes: Malaria

Exposures: Sociodemographic characteristics,
vegetation, precipitation

Malawi

Multilevel models

Cluster analysis

Cluster analysis

Bayesian spatial models

Interpolation methods

Multilevel models

Generalized linear models

Generalized linear models

Bayesian spatial models,

Generalized linear models

32

Thematic mapping

Thematic mapping

Thematic mapping

Spatial analysis

Thematic mapping

Spatial analysis

Thematic mapping

Thematic mapping

Spatial analysis

To investigate the spatial heterogeneity of
stunting over time and the civil war effect
To examine changes over time in spatial
clustering of malnutrition

To identify how changes over time affected
the clusters of high prevalence of HIV

To identify overweight determinants based

on a quantile-based Bayesian regression

To explore the spatial patterns of diarrhea
in Ethiopia
To identify the determinants of anemia and

its spatial pattern

To examine the spatial heterogeneity
among districts and meso-scale correlates
To examine the spatial heterogeneity of
measles coverage

To compare different methods for

predicting malaria in Malawi



Habyarimana and
Ramroop

2018

Barankanira et a/

2016

Burke et al

2016

Tewara et al
2018
Gayawan et al

2014a

Otsby et al
2018

Owoo and Lambon-
Quayefio

2013

Noor et al

2006

Outcomes: Contraceptives use

Exposures: Sociodemographic characteristics
Rwanda

Outcomes: HIV

Exposures: Sociodemographic characteristics
Burundi

Outcomes: Under-5 mortality

Exposures: Malaria, conflict, temperature

28 Sub-Saharan countries

Outcomes: Malaria

Cameroon

Outcomes: Anemia

Exposures: Sociodemographic characteristics
Nigeria

Outcomes: Institutional delivery

Exposures: Organized violence

31 Sub-Saharan countries

Outcomes: Antenatal care

Exposures: Sociodemographic characteristics
Ghana

Outcomes: Access to health facilities
Exposures: Travel time

Kenya

Bayesian spatial models

Generalized linear models

Interpolation methods,

Generalized linear models

Interpolation methods

Bayesian spatial models

Generalized linear models

Generalized linear models

Naismith—Langmuir rule

33

Spatial analysis

Spatial analysis

Spatial modelling

Thematic mapping

Spatial analysis

Spatial analysis

Spatial analysis

Spatial modelling

To identify the determinants of

contraceptive use in Rwanda

To examine the spatial heterogeneity and

the determinants of HIV

To provide high resolution estimates of
under-5 mortality, assess the changes over
time and compare differences between
countries’ borders

To provide hot-spot maps of malaria
clustering in Cameroon

To identify the determinants of anemia in

Nigeria

To examine the relationship between
proximity to conflict and institutional
delivery

To investigate the effects of social influence
and health insurance in antenatal care
utilization

To compare travel time models of access to

health facilities



Cuadros et al
2013
Heard et al

2004

Thuilliez et al

2010

Goyal and Canning

2017

Adekanmbi et al
2013
Haile et al

2016

Gayawan et al

2014b

Dwyer-Lindgren et
al

2014

Giardina et al

2014

Outcomes: HIV
20 Sub-Saharan countries
Outcomes: Modern contraception

Malawi

Outcomes: Fever and school failure
Exposures: Sociodemographic characteristics
and malaria

Mali

Outcomes: stunting

Exposures: Air pollution

Bangladesh

Outcomes: Stunting

Nigeria

Outcomes: Stunting

Exposures: Sociodemographic characteristics
Ethiopia

Outcomes: Exclusive breastfeeding
Exposures: Sociodemographic characteristics
Nigeria

Outcomes: Under-5 mortality

Zambia

Outcomes: Malaria

6 Sub-Saharan countries

Cluster analysis

Generalized linear models

Generalized linear models

Generalized linear models

Cluster analysis

Mutilevel models

Bayesian spatial models

Generalized linear models,

Non-linear models

Bayesian spatial models

34

Thematic mapping

Spatial analysis

Spatial analysis

Spatial analysis

Thematic mapping

Spatial analysis

Spatial analysis

Spatial modelling

Spatial analysis

To identify clusters of high and low
prevalence of HIV

To determine the effect of distance to
health facilities on use of modern
contraceptives

To assess the impact of fever and malaria on
school performance and discuss using fever

as a proxy for malaria

To estimate the effect of air pollution on

stunting

To examine the spatial heterogeneity of
stunting in Nigeria
To investigate spatial variation and factors

associated with stunting

To investigate the determinants and spatial

heterogeneity in exclusive breastfeeding

To compare methods of mortality
estimation at district-level and evaluate
spatio-temporal changes

To estimate the changes in risk of malaria

and the effect of intervention over time



Author/Year

Study characteristics

Statistical methods

GIS coverage

Study objective

McKinnon et al

2014

Kandala et al

2015

Galway et al

2018

Helova et al

2017

Lépez-Cevallos et al

2014

Yang et al
2005

Outcomes: Neonatal mortality

Exposures: Distance to health facility
Ethiopia

Outcomes: Modern contraceptives
Exposures: Sociodemographic characteristics
DR Congo

Outcomes: Child diet diversity

Exposures: Forest cover, aridity,
sociodemographic characteristics

15 Sub-Saharan countries

Outcomes: Child mortality

Exposures: Sociodemographic characteristics
Pakistan

Outcomes: Health service utilization
Exposures: Sociodemographic characteristics
Ecuador

Outcomes: Schistosomiasis

Exposures: Vegetation, temperature

China

Generalized linear models

Bayesian spatial models,

Generalized linear models

Bayesian spatial models

Multilevel models

Multilevel models

Bayesian spatial models

35

Spatial analysis

Spatial analysis

Spatial analysis

Spatial analysis

Thematic mapping

Spatial analysis

To examine the effect of distance to health

facility on neonatal mortality

To investigate inequalities in modern

contraceptive use in DR Congo

To examine the association between diet

diversity and deforestation

To identify the determinants of child

mortality at individual and community level

To examine the spatial distribution and

inequalities in health service utilization

To examine the relationship between

schistosomiasis and environmental factors



5 Objectives

5.1 General objective

Investigate how geographic inequalities can be assessed through geospatial methodology

5.2  Specific objectives
1. Based on findings of the literature review, we aim to:
a) Compare the spatial modelling methodologies utilized for small area estimation.
b) Discuss spatial modeling suitability for given outcomes.
c) Identify gaps and opportunities for further studies in RMNCH.
d) Discuss how health policy makers can benefit from spatial modeling.

2. Model universal health coverage through the composite coverage index using DHS and

ancillary data sources:
a) Determine the best available analytical approach for the task.
b) Generate gridded surface maps for environmental associated factors.

c) Explore the possibilities for data imputation on missing CCl interventions to improve

data availability.
3. Understand the spatial patterns of vaccination coverage and how they change over time:

a) Explore how coverage of Hib and rotavirus vaccines increased geographically over the

years in both countries given different implementation strategies.

b) Identify geographical barriers delaying expansion of vaccination coverage.

6 Hypotheses

Since approaches introduced by this proposal point out to more descriptive rather than analytical
scenarios, there are no clear hypotheses to be tested. Nonetheless, several challenges and patterns

are expected.

1. We expect uncertainty to be inversely proportional to population density when modelling CCl
interventions. In Africa, we expect CCl coverage to be higher in urban and capital city areas,
and where richer populations live. We also expect to find higher coverage in areas with more
convenient environmental situations, like proximity to permanent water sources, nighttime

lights and remoteness.
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a. We expect INLA to be the most appropriate modeling approach given several studies

are using it to model RMNCH outcomes

2. After the implementation of Hib and rotavirus vaccines, we expect more urbanized and richer
areas to receive and achieve higher coverage first when compared to more rural and poorer
areas. We also expect lesser and late coverage to be found in remote areas with more difficult

levels of accessibility.

7 Methods

7.1  Paper 1: systematic review

The review aims at summarizing the current applications of spatial modeling on maternal and child
health in LMICs while discussing consolidated lines of work, challenges and unexplored paths. A
systematic search strategy will be used, in conjunction with searching references from the selected
papers. Also, the search strategy presented in Section 4, will be broadened so that papers not directly

referring to surveys are not left out and to include new databases.

Spatial modeling is becoming increasingly popular in the field of epidemiology in recent years,
including RMNCH, as observed in our literature review. Not only processing power enables more
complex analyses, but methodologies have evolved considerably in a short time span. The review will
attempt to summarize the growth of spatial modeling in the literature, pointing out to possible
reasons for such gain in popularity. This has also raised concerns regarding inadequate use of these
methodologies — e.g., for outcomes where the geographic correlation is not evident, therefore making

use of inappropriate predictive modeling approaches.

7.2 Paper 2: high resolution mapping of the CClI

The CCl utilizes eight essential interventions from four phases of the RMNCH continuum of care and
can be interpreted as a proxy measure of UHC for mothers and children (Wehrmeister et al., 2016).
Each of its components, their definitions and the CCl formulation are presented in Table 2. Estimates
for the CCl and its components at national and subnational level are provided by the International
Center for Equity in Health (International Center for Equity in Health, 2019), which reanalyzes DHS and
MICS surveys to ensure comparability between and within the countries. For this analysis we will

recalculate the CCl at the primary sampling unit level.

We anticipate a few challenges for generating CCl estimates for each cluster. Sample sizes for some of
its components may be very low to provide reliable — or even any — estimates for some locations. Also,

the standard error of the index is calculated using resampling strategies and the low level of
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disaggregation may invalidate this procedure. Alternatives for assessing variability and filling data gaps

are likely to be necessary.

Given the CCl is a composite of several interventions, in light of varied performances observed in the
literature (Bosco et al., 2017), there is no consensus on what is the best modelling approach for the
task. Regarding the vaccination component of the index, Bayesian spatial models have been tested in
one West African country and results were promising (Utazi et al., 2018). Bayesian models, through
Integrated Nested Laplace Approximations (INLA), slightly outperformed machine learning techniques
in modern contraceptives use estimation (Bosco et al., 2017). However, they highlight, that Artificial

Neural Networks (ANN) generally perform better on non-Gaussian distributions.

Two modeling exercises will assist in the selection of the best analytical approach. The first consist of
comparing the predictive power of different techniques. Ensemble models (i.e combining different
models to increase performance on the output) are also an option. The second lies on determining
whether fitting several country-specific models will outperform a single generic model for all
countries. Model’s performance will be internally assessed based on statistics such as Akaike
Information Criterion (AIC) and through n-fold cross-validation. A portion of the data will be left-out
for final assessment of external validity, though properly selecting geographically representative

training and validation sets is a challenge.

Ancillary data will be obtained from varied data sources to generate gridded surface estimates of
associated contextual variables. Those may include population (Tatem et al., 2015), poverty (Steele et
al., 2017), satellite imagery data (Tucker, Grant and Dykstra, 2004), among others. The selection of
ancillary data and the choice of a specific analytic tool will be part of the activities to be developed

during the sandwich PhD period.

Table 2. The composite coverage index and their components definitions

Demand for family Who is using (or whose partner is Women aged 15-49 years
planning satisfied by DFPSm using) a modern contraceptive either married or in union in
modern methods method need of contraception
Antenatal care 4 or ANCA Attended at least four antenatal Women aged 15-49 years who
more visits care (ANC) visits with any provider  had a birth in the last 2/3 years
. Delivered by a skilled attendant
Skilled attendant at o Women aged 15-49 years who
. SBA (based on each country’s definition e
delivery had a birth in the last 2/3 years

of skilled attendant)

. . . All live-children, 12-23/18-
o Received Bacillus Calmette-Guérin .
BCG vaccination BCG . 29/15-26 months (according to
(BCG) vaccine ,
country’s calendar)
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. ) . All live-children, 12-23/18-
. Received 3 doses of Diphteria, .
DPT3 vaccination DPT3 . . 29/15-26 months (according to
Pertussis, Tetanus (DPT) vaccine ,
country’s calendar)
All live-children, 12-23/18-
Measles vaccination MSL Received measles vaccine 29/15-26 months (according to
country’s calendar)

All live children aged 0-59

Treatment for Received oral rehydration salts . . .
. ORS months with diarrhea in the
diarrhea (ORS)
last 2 weeks
. Sought treatment from an Live children, 0-59 months,
Care-seeking for . . L.
. CAREP appropriate health facility or suspected pneumonia in the
pneumonia .
provider. last 2 weeks
Composite coverage 1 SBA+ ANC4 2(DPT3)+ BCG + MSL ORS + CAREP
P & ccr == <DFPSm + 4+ 2DPT) .
index 4 2 4 2

7.3 Paper 3: spatio-temporal vaccination patterns

Identifying determinants of immunization coverage is essential to implement successfully new
vaccines into the routine immunization calendar. Equity-oriented implementation of new vaccines can
dramatically shift the traditional patterns of coverage increase, as it is commonly observed in the
inverse equity hypothesis (Victora et al., 2018). One way to assess spatial differences associated with
equity-oriented implementation is by evaluating coverage expansion in two opposite scenarios. In this
paper, we will study Peru and an additional country as examples of implementation with and without

equity-oriented approaches.

Peru holds a unique geography by having highlands, coast and forest areas within its territory.
Additionally, Peru is located at the boundary of two tectonic plates, which causes the country to suffer
with occasional earthquakes. In 2004, the country was the pioneer of a series of continuous surveys
conducted by DHS yearly until 2012. Then, they decided to carry on through their own national
statistics institute, with 2018 being the most recent survey to this date. With the introduction of new
vaccines in the early 2000s, all this makes Peru a great case for evaluating how vaccination coverage

expanded spatially over time and how environmental factors can interfere with it.

As part of the pentavalent vaccine, Hib was firstly introduced to Peru in 1998 in areas of extreme
poverty (Padilla et al., 2017). The pentavalent vaccine was adopted as part of the national
immunization calendar only in 2004. Currently, as of 2016, 83.2% of children 18-29 months received
Hib immunization in Peru. The rotavirus vaccine was first introduced in Peru in 2009. In the first year,
the coverage was estimated in 41% and rapidly increased to 75% in 2010 (de Oliveira et al., 2013).
Information on both indicators is collected in DHS surveys from vaccinations cards and reports from

the mother. The standard indicator for tracking vaccine coverage considers both sources and is
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defined as the number of children aged 18-29 that received the vaccines (3 doses of Hib or 2 doses of

rotavirus vaccines) divided by the total number of children 18-29 months.

Senegal rose as a potential candidate for the secondary country as it is also part of a continuous DHS
series and it includes both Hib and Rotavirus in their routine immunization calendar. Unfortunately,
they only collected information on those vaccines in the 2017’s survey, which prevents us from
studying changes over. Yet to be decided, the additional country should ideally have at least three
data points in a span of at least 10 years between extremes, have considerably improved coverage in
the period and have introduced these vaccines in the routine immunization without equity-oriented

approaches.

High-resolution estimates will be modeled yearly from 2004 to 2017 using DHS surveys and ancillary
data sources. Absolute and relative changes will be examined overlaying maps from earlier years
compared to most recent years. Coverage thresholds will be established to determine which areas
have reached a desired coverage, which areas have not and how fast these changes took place in

different locations.

8 Ethical considerations

The primary data sources for RMNCH information is DHS surveys and ethical approval was already
obtained when the surveys were carried out. To preserve the confidentiality of the participants, the
georeferenced coordinates of DHS clusters are jittered in up to 5km. Ancillary data sources, if required,

will guarantee anonymity of the population under study.

9 Relevant and impact

Extending the application of geospatial analyses for monitoring RMNCH indicators has implications in
both the academy and at decision making. A common question asked by local health managers is
where and who is the population in need for intervention. These granular estimates allow for a closer
look into the specificities of country’s subnational divisions, which is particularly valuable in settings
where decentralized health systems prevail. Optimally, they can assist targeting policies and

investments to the most vulnerable areas.

Aside from the direct impact of these estimates for governments and policy makers, the academy
builds knowledge upon small steps towards an asserted direction. Demonstrating a set of techniques
is useful instigates further studies to push the field of study forward. Geospatial analysis has already
proven itself as a promising method for monitoring UHC and unveiling geographic inequalities,

despites several challenges such as dealing with uncertainty. Any step towards improving quality and
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availability of data must be addressed and spatial modeling is a strong candidate for succeeding in

such necessary goal.

10 Timeline of activities

The activities will follow the timeline presented in Table 3, below. We have established a collaboration
with University of Southampton and a sandwich period is planned for the second half of 2020. The
PhD sandwich supervisor is yet to be decided. We expect the thesis defense to be held in the second

half of 2021, achieving all the objectives in approximately 42 to 46 months.

Table 3. Timeline of activities

Year 2018 2019 2020 2021

Activities Ql1]Q2|Q3|Q4|Q1|Q2|Q3|Q4|Q1(Q2|Q3|Q4|1Q1 |[Q2|Q3|Q4

ICEH activities

Literature Review

PhD Work Planning

Literature review

Paper 1 writing

Data analysis — paper 2

Paper 2 writing

PhD sandwich period

Data analysis — paper 3

Paper 3 writing

Thesis defense

11 Dissemination of results

The main results of the thesis will be presented in scientific events and published in indexed academic
journals that we consider appropriate for the papers. In addition, these results will be sent to the press

to communicate the community about the findings.
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course of the work
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Project adjustments

The initial project proposed an article to analyze the spatio-temporal vaccination patterns and
compare the progress on geographical inequalities over time using Peru, a country that adopted
equity-oriented policies, and an additional country that introduced new vaccines to the immunization
routine in a regular fashion. This article was replaced due to data availability issues including the lack
of information on the vaccines of interest and the absence of surveys with collected cluster
coordinates. As an alternative, we developed an article that evaluated the empirical impact of an
aggregation issue known as the modifiable areal unit problem in complex measures of inequality, and

how different resolutions may hinder the assessment of time trends from a geographic perspective.

As a result of the review article, using a Bayesian framework with the integrated nested Laplace
approximation was chosen as the most appropriate technique for modeling the composite coverage
index (CCI). This approach was the most extensively used modeling strategy in the literature for
modeling reproductive, maternal, newborn and child health indicators. We also opted for a policy-
oriented article that focused on describing the geographic disparities of the CCl coverage at different
levels of aggregation rather than highlighting the importance of the geospatial modeling methodology
as a study that was a pioneer at modeling a composite index. The setting changed from West and
Central African countries to Peru mainly for two reasons: the lack of geospatial modeling studies in
Latin America, and the possibility of collaborating with a local researcher with expertise on health

inequalities in Peru.

50



Activities report

51



Activities report

This section describes a series of activities that the student was involved during the PhD that directly
or indirectly contributed to the development as a researcher. This thesis was produced within the
International Center for Equity in Health (ICEH), one of the many research projects conducted at the
Postgraduate Program in Epidemiology of the Universidade Federal de Pelotas. The ICEH mission is to
monitor inequalities in health and nutrition, with a special focus on women at childbearing age and
children under-five years old, in low- and middle-income countries using data from national health

surveys.

International Center for Equity in Health

Founded in 2009 under the leadership of professors Cesar Victora and Aluisio Barros, the initial goal
of the center was to analyze a series of health indicators disaggregated by a few inequality dimensions
at large scale. At the time guided by the Millennium Development Goals, this process has allowed the
group to contribute to the study of health equity as much as the monitoring and accountability of

inequalities at global scale.

The ICEH started building a database that as of January 2022 includes 433 surveys from 118 countries
providing information on over 375 indicators disaggregated by eight inequality dimensions. The main
source of information are two series of surveys known as Demographic and Health Surveys and
Multiple Indicator Cluster Survey, but more recently the group has started analyzing country-specific
surveys such as the ones carried out in Brazil, Ecuador, and Mexico. From these surveys, we are able
to analyze indicators related to reproductive health, antenatal care and birth, vaccines, breastfeeding,
nutritional status, mortality, fertility, gender, and many others. All estimates are prepared at national
level and disaggregated by place of residence, subnational region, sex of the child, wealth quintiles

and deciles, woman’s education, and woman’s age.

The main activity of the researchers that work at the ICEH is to maintain and update this massive
database that is the core of most studies produced by the group and is shared with several
international partners including the Health Equity Monitor of the World Health Organization (WHO),
the Lives Saved Tool, and the Countdown to 2030 initiative. Despite the evident relevance of the
database itself, the most valuable asset may be considered the ability to analyze hundreds of surveys

in a short period of time with the flexibility to modify any indicator or inequality dimension.
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Capacity building

Starting in 2017, the WHO officialized the partnership with the ICEH by designing it as a collaborating
center for health equity monitoring. One of the main activities of this collaboration is to provide
training and education on health equity monitoring to strengthen the capacity of the countries to
analyze their own data and use them to guide decisions and public health policies. In partnership with
the Countdown to 2030 initiative, the ICEH has offered and has been part of several workshops and
country case studies to enhance the analytical capacity of researchers and representatives of

ministries and institutes of health.

In July of 2018, | was part of the team that organized the workshop entitled “Leaving no women and
no child behind: levels and trends in inequalities for RMNCH by wealth, urban-rural residence, and
administrative area” in Nairobi, Kenya. The main objectives of the workshop were to 1) develop
comprehensive country and regional analyses on inequalities in reproductive, maternal, newborn and
child health (RMNCH), and 2) strengthen the analytical skills of the participants in survey and other
types of analyses, as well as interpretation and communication of the results. Participants from 15
African countries attended the 5-day event that consisted of lectures, group discussion and hands-on

practical sessions.

In November of 2019, the ICEH, through the Countdown to 2030 initiative and affiliated organizations,
held a workshop entitled “Female Headed-Households: intersectional analyses of gender and health
in low- and middle-income countries”. The event took place in Dakar, Senegal with 23 participants
from 15 countries and a team of facilitators from Universidade Federal de Pelotas, African Population
Health Research Center, WHO, University of Manitoba, University of Pretoria, and the American
University of Beirut. The overall goal of the workshop was to enhance capacity on statistical and
epidemiological data analyses of national surveys, with particular emphasis on gender equity analyses

focused on female-headed households in sub-Saharan Africa.

In August of 2019, | was invited as a representative of the ICEH for a technical meeting on Geospatial
Modeling for Immunization Equity in Washington, DC, USA. The meeting was organized by UNICEF and
the Bill and Melinda Gates Foundation which brought together 30 modelers and technical partners to
review the global efforts on geospatial immunization modeling and begin defining priorities to support

the global immunization equity agenda through geospatial modelling.

Additional training

In July of 2019, the Fundagdao Oswaldo Cruz held a two-week course entitled “Andlise Espacial e

Geoprocessamento em Saude” in Rio de Janeiro, Brazil, coordinated by professors Christovam
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Barcellos and Monica Magalhdes. The course focused on introducing key concepts of spatial analysis,
geoprocessing and cartography, as well as enabling students to use geographic information systems
to better understand, organize and plan health strategies and draw information from a geographical

perspective.

In March of 2019, the University of Bristol held a short course on statistical methods for mediation
analysis and repeated measures at the Postgraduate Program in Epidemiology. The course lasted a
week and covered topics such as traditional mediation analyses, structural equation models, G-

computation and methods for repeated measures.

Scientific collaborations

Beyond the articles that are part of the thesis, | got involved in several collaborations with other
researchers that resulted in scientific products. These products are not necessarily related to the main

theme of the thesis but were important in my training as a researcher.

Exploring the Potential for a New Measure of Socioeconomic Deprivation Status to Monitor Health
Inequality

Submitted to International Journal of Equity in Health.

cixr, siilogit, siilin and equiplot: A set of programs to estimate and visualize inequalities

Submitted to Stata Journal.

Modern contraceptive use among women in need of family planning in India: an analysis of the
inequalities related to the mix of methods used

Published at Reproductive Health. 2021. DOI:10.1186/s12978-021-01220-w

Association of the length of time using computers and mobile devices with low back, neck and
mid-back pains: findings from a birth cohort

Published at Public Health. 2021. DOI:10.1016/j.puhe.2021.04.003

Are the poorest poor being left behind? Estimating global inequalities in reproductive, maternal,
newborn and child health

Published at BMJ Global Health. 2020. DOI:10.1136/bmjgh-2019-002229

54



Early childhood suspected developmental delay in 63 low- and middle-income countries: Large
within- and between-country inequalities documented using national health surveys

Published at Journal of Global Health. 2020. DOI:10.7189/jogh.10.010427

Wealth-related inequalities in the coverage of reproductive, maternal, newborn and child health
interventions in 36 countries in the African Region

Published at Bulletin of the World Health Organization. 2020. DOI:10.2471/BLT.19.249078

Large and persistent subnational inequalities in reproductive, maternal, newborn and child health
intervention coverage in sub-Saharan Africa

Published at BMJ Global Health. 2020. DOI:10.1136/bmjgh-2019-002232

Analyses of inequalities in RMNCH: rising to the challenge of the SDGs
Published at BMJ Global Health. 2019. DOI:10.1136/bmjgh-2018-001295

Trends in socioeconomic inequalities in stunting prevalence in Latin America and the Caribbean
countries: differences between quintiles and deciles

Published at International Journal of Equity in Health. 2019. DOI:10.1186/s12939-019-1046-7

Measurement of social inequalities in health: concepts and methodological approaches in the
Brazilian context

Published at Epidemiologia e Servicos de Saude. 2018. DOI:10.5123/s1679-49742018000100017
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Abstract

Background: Geospatial approaches are increasingly used to produce fine spatial scale estimates of reproductive,
maternal, newborn and child health (RMNCH) indicators in low- and middle-income countries (LMICs). This study aims
to describe important methodological aspects and specificities of geospatial approaches applied to RMNCH coverage
and impact outcomes and enable non-specialist readers to critically evaluate and interpret these studies.

Methods: Two independent searches were carried out using Medline, Web of Science, Scopus, SCIELO and LILACS
electronic databases. Studies based on survey data using geospatial approaches on RMNCH in LMICs were considered
eligible. Studies whose outcomes were not measures of occurrence were excluded.

Results: We identified 82 studies focused on over 30 different RMNCH outcomes. Bayesian hierarchical models were
the predominant modeling approach found in 62 studies. 5 x 5 km estimates were the most common resolution and
the main source of information was Demographic and Health Surveys. Model validation was under reported, with the
out-of-sample method being reported in only 56% of the studies and 13% of the studies did not present a single vali-
dation metric. Uncertainty assessment and reporting lacked standardization, and more than a quarter of the studies
failed to report any uncertainty measure.

Conclusions: The field of geospatial estimation focused on RMNCH outcomes is clearly expanding. However, despite
the adoption of a standardized conceptual modeling framework for generating finer spatial scale estimates, meth-
odological aspects such as model validation and uncertainty demand further attention as they are both essential in
assisting the reader to evaluate the estimates that are being presented.

Keywords: Geospatial modeling, Small area estimation, Reproductive health, Maternal health, Newborn health, Child
health, Low- and middle-income countries, Household surveys

Background

Reproductive, maternal, newborn and child health

(RMNCH) is central to the Sustainable Development

Goals (SDG) agenda for 2030 given its potential for
. . e ¥ improving health and quality of life of current and future
*%r?tz‘friSggn;jncceeﬁtefrfrs:rS(ﬁﬁ?yuiln ?—ideiﬁ;?Universidade Federal de generations as summarized by the motto “survive, thrive,
Pelotas, Pelotas, Brazil transform” adopted by the Every Woman Every Child ini-
Full list of author information is available at the end of the article tiative [1]. Despite progress in the area, with the increase
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adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material

in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativeco
mmons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
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in coverage of several indicators, there is yet much to be
achieved [2]. Planning and implementation of essential
health interventions, delivered by supporting organiza-
tions and governments, is mainly done at small admin-
istrative divisions such as districts, states, provinces,
regions or counties [3]. This requires geographically
disaggregated information, which enables more precise
adjustment of policies and targeting of resources [4].
Information on RMNCH indicators is predominantly
obtained from national health surveys in low- and mid-
dle-income countries (LMIC), which offer standard-
ized and reliable estimates [5]. Still, most surveys are
usually designed to provide representative estimates at
the largest administrative divisions as further disaggre-
gation would require larger sample sizes [6]. Different
estimation methods are required since direct estimation
of lower administrative units in these surveys is highly
imprecise. Geospatial approaches have been widely used
for estimating RMNCH outcomes for small areas using
georeferenced survey data. These methods derive indirect
estimates from statistical models by ‘borrowing strength’
across space or from supplementary data, such as geo-
spatial variables, censuses and administrative records [7].
However, censuses are carried out every 10 years or more
in LMICs and administrative records are often incom-
plete, of poor quality or unavailable. Therefore, geospatial
variables (information that is continuous across space,
often retrieved from satellites or spatial interpolation),
have been frequently used as supplementary data given
their availability, timeliness, and reliance. The literature
often uses the terms model-based geostatistics, small
area estimation and (geo)spatial modeling interchange-
ably as model-based approaches to derive estimates for
small geographies assisted by supplementary data.
Despite the rapid increase in the use of geographic
information systems in RMNCH over the past dec-
ades, only a few studies have attempted to summarize
these efforts. Two of them presented a broad review
of spatial analyses in RMNCH [8] and health surveys
in Sub-Saharan Africa [9], while one study focused
on malaria transmission modeling [10]. Lastly, Rah-
man [11] carried out a review focusing on the meth-
ods used for estimation. To our knowledge, no study
has comprehensively evaluated the most important
methodological aspects for geospatial estimation of
RMNCH indicators in LMICs. This assessment is nec-
essary to identify approaches currently being used,
their strengths and limitations and to help inform
and improve future studies. Also, since these meth-
odologies are relatively complex, non-specialists may
struggle to evaluate and correctly interpret such stud-
ies. Therefore, this study aims to discuss the core
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methodological aspects of geospatial estimation,
including any specificities employed for each RMNCH
outcome, in studies focused on producing fine spatial
scale estimates. In addition, we aim to enable non-spe-
cialist readers to critically evaluate and interpret these
studies.

Methods

Conceptual framework

The structure and methodological aspects discussed in
the review are guided by a standard modeling framework,
adapted from Mayala et al. [12] and presented in Fig. 1.
This conceptual framework is widely adopted in the lit-
erature and geospatial estimation studies, as it defines the
flow of the modeling process. The use of the conceptual
framework is not part of the eligibility criteria and has no
effect on the selection of the studies.

Search strategy

Two independent reviewers carried out the same search
strategy on August 28th 2020, screened and extracted the
characteristics of the studies. Medline, Web of Science,
Scopus, SCIELO and LILACS electronic databases were
searched for studies based on survey data which applied
geospatial approaches to estimate RMNCH outcomes in
LMICs.

The search strategy consisted of a combination of
health and geospatial keywords. The keywords “health”
and “epidemiology” were used to define a broad health
construct, rather than focusing on RMNCH outcomes,
to increase the sensitivity of the search. For geospatial
approaches, keywords were: “geostatistical”’, “geo-statis-
tical”, “spatial modeling’, “spatial modelling’, “high-res-
olution mapping’, “geospatial”, “small area estimation’,
“small area estimates” and “spatial interpolation”. The
complete keywords combination using logical operators
is provided in Additional file 1. No restrictions on lan-
guage or publication date were applied. In addition to
the electronic databases, reference lists of the selected
articles were searched for additional eligible studies not
detected by the initial search strategy.

Articles retrieved from the search strategy were com-
bined using Mendeley and exported to Rayyan, a web
application for systematic reviews, for screening [13]. Ini-
tial duplicates were automatically removed in Mendeley,
and the remainder were manually removed using Rayyan.
The protocol for the systematic review was registered on
PROSPERO (ID: 206323). This review follows the guide-
lines from PRISMA, and the checklist is provided in
Additional file 2.
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Fig. 1 Overview of a geospatial estimation process (adapted from Mayala et al. [12])

Eligibility criteria 1. Carried out model-based geospatial approaches to
To be eligible, studies must have fulfilled all the following obtain more geographically precise estimates than
criteria: allowed by direct estimation due to insufficient sam-

ple size or to lack of representativeness;
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2. Focused on RMNCH outcomes: coverage or impact
indicators relevant to public health policies for
women in reproductive age (15 to 49 years) or chil-
dren aged<5 years. Studies covering a broader age
range for children but including the desired ages
were also eligible;

Outcomes had to be measured in LMICs as defined
by the 2020 World Bank country-income classifica-
tion [14];

The main source of information were survey data and
the minimum geographical coverage was an entire
country.

The eligibility criteria were applied to all retrieved
studies. Records were independently screened by both
reviewers, first assessing titles and abstracts, then by
reading the full text of the selected studies.

Exclusion criteria
Studies that did not estimate measures of occurrence of
the coverage or impact outcomes were excluded.

Data extraction and quality assessment

We developed a Microsoft Excel spreadsheet to extract
relevant characteristics of the selected studies based on
ten pre-selected studies and on expert opinion. Then,
each reviewer manually extracted the information from
all the selected studies separately and the spreadsheets
were compared later with disagreements dealt by con-
sensus. The extracted characteristics, details, and guid-
ance on how the spreadsheet was filled can be found
in Additional file 3. Quality of the studies was assessed
using Joanna Briggs Institute checklist for prevalence
studies [15] and presented in Additional file 3.

Results of the literature search

After removing duplicates, 5567 records were identi-
fied for title and abstract screening, resulting in 126
selected articles. After full-text assessment, another
44 studies were removed yielding a total of 82 studies
included in this review (Fig. 2). Several studies using
the methods of interest, but estimating outcomes not
considered to be RMNCH or covering age ranges out-
side our focus were not included in the review. The ear-
liest studies identified were carried out in 2000, but the
field grew steadily since 2016, comprising over 50% of
the included studies (Additional file 1). The following
sections discuss methodological aspects and outcomes.
Due to the large number of studies reviewed, the fol-
lowing sections do not cite all studies in their respec-
tive categories. Details from each study are provided in
Additional file 3.
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Methodological aspects

Ideally, models built to predict unobserved data aim to
minimize prediction errors, bias and overfitting of the
data. Certain decisions are taken in each step of the pro-
cess and presenting them in an organized and clear fash-
ion is essential to allow readers to assess how reliable the
estimates are. Based on the conceptual modeling frame-
work presented above, we discuss the most important
steps of geospatial estimation and details on how studies
are reporting crucial information for their interpretation.
These steps include data sources, covariates, modeling
techniques, resolution, model validation and uncertainty.

Data sources

RMNCH outcomes in LMICs are often estimated using
data from national health surveys. The Demographic and
Health Surveys (DHS), a series of nationally representa-
tive household surveys conducted in over 85 countries
[18], was the leading source of RMNCH information
used in 59 of the 82 selected studies (72%). Further data
sources include the Multiple Indicator Cluster Surveys
[16], Performance Monitoring for Action [17], country-
specific health surveys, censuses, and community surveys
(main source of information for malaria).

DHS data are available at both administrative (or areal)
level (e.g. regions, districts, provinces) and point level, i.e.
the centroids of each primary sampling units (or survey
clusters). The main difference between areal and point
data is the aggregation of the data. While areal data are
always summaries of individual level data, points can
have both individual and aggregated information. For
privacy reasons, DHS adds noise to their GPS coordi-
nates, displacing them in a radius of up to 2 km for urban
areas, up to 5 km for rural areas, and up to 10km in 1%
of the rural points. To account for this variation, DHS
recommends drawing a buffer around each coordinate
and averaging the neighboring values instead of using a
precise match [19]. Despite that, only 16 of the 36 stud-
ies that used point-level DHS data reported taking steps
regarding the displaced coordinates. Gething et al. [20]
described the impact of the displacement as modest,
overall, but varying between outcomes and locations.

Geospatial covariates

Geospatial variables or covariates are sources of infor-
mation from determinants or proxies of determinants
that are used as predictors in geospatial estimation for
any given outcome. Obtaining and processing covari-
ates is the most challenging and time-consuming step of
the geospatial estimation process since the availability of
this information is often limited to raw satellite indices,
previous work, and a few initiatives. Covariates are used
in the model for estimation and prediction and must be



Ferreira et al. Int J Health Geogr (2020) 19:41

Page 5 of 15

Records identified through electronic
database searching:
(n = 8287)

Identification

Records after duplicates removed
(n = 5567)

Screening

Records screened:
(n = 5567)

Eligibility

Full-text articles assessed for
eligibility:
(n=126)

Studies included:
(n=82)

Included

Fig. 2 Flow diagram of study selection
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prepared accordingly. For estimation, each covariate
information is extracted to the survey cluster location
(or the available administrative level for areal models)
and provided to the model along with the outcome. After
model fitting, for prediction, a surface layer for each
covariate is required at the desired resolution. Since these
covariates often come from different data sources, aggre-
gation is required when resolution is too high (e.g. sat-
ellite information) and interpolation when resolution is
too low (e.g. creating surface layers from survey cluster
coordinates).

The average number of covariates used across all
studies was 9, ranging from 0 to 40. A total of 15 stud-
ies did not include any information on covariates into
their models. We classified the covariates into seven
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groups: agriculture and livestock, climate, health-related
interventions and outcomes, remoteness, satellite indi-
ces, sociodemographic, and topography and land cover.
Covariates related to topography and land cover were
the most common predictors found in 59 studies, fol-
lowed by sociodemographic characteristics (53 studies),
climate (43 studies) and remoteness (43 studies), as pre-
sented in Table 1. Additional file 3 provides the com-
plete list of covariates for each study and their respective
classifications.

The optimal number of covariates chosen as predic-
tors, in order to optimize the refined estimation of the
outcomes of interest, is a frequent topic of discussion.
The principle of parsimony endorses the use of few and
strong explanatory covariates to prevent overfitting the
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Table 1 Summary of the characteristics for the selected studies

All studies Study outcomes?
Malaria Child mortality Malnutrition Vaccination Other
outcomes
Number of studies 82 34 14 1 8 19
Covariates®
Agriculture and livestock 17 3 3 5 4 5
Climate 43 28 5 5 4 5
Health-related interventions/ 24 9 5 5 1 7
outcomes
Remoteness 43 19 7 5 5 "
Satellite indices 19 4 5 3 4 7
Sociodemographic 53 17 6 1 6 17
Topography/land cover 59 30 7 10 4 12
No covariates 15 4 7 1 2 2
Geographic coverage
Single country 50 26 6 7 2
Multi-country 32 8 8 5 6 10
Temporal component
No 46 19 2 8 7 Il
Yes 36 15 12 1 8
Spatial resolution?
Less than 5x5km 23 18 0 1 3 2
5x5 to 10x10km 20 6 5 5 3
Lower admin. level 30 2 8 6 1 14
Not reported 12 10 1 1 0
Uncertainty?
Standard deviation map 14 6 1 1 5 2
Interval map/table 28 12 8 2 0 10
Relative map 7 0 2 3 0 2
Other metrics 13 9 2 0 1 1
Not reported 22 7 3 6 2 4
Modeling technique®
Bayesian-MCMC 35 24 3 3 3 2
Bayesian—INLA 28 4 7 6 3 12
Classical GLM 17 5 2 2 2
Spatial interpolation 2 0 1 1 0
Ensemble models 12 1 5 4 1
Out-of-sample pred.
Cross-validation 22 3 7 5 4
Hold-out 24 18 2 1 0
Not reported 36 13 5 6 4 9
Model fit metrics®
Bias 34 12 7 6 4 9
RMSE/MSE 30 3 7 6 6 12
Coverage 24 8 6 4 4 5
DIC/AIC 19 6 3 3 1 6
MAE 16 7 2 3 2 3
Correlation 15 1 0 2 1 2
Other metrics 31 15 4 3 1 9
None reported 11 5 2 3 1 1

? These characteristics allow studies to be classified in more than one subgroup

MCMC Markov Chain Monte Carlo, INLA Integrated Nested Laplace Approximation, GLM Generalized Linear Models, RMSE Root Mean Squared Error, MSE Mean
Squared Error, DIC Deviance Information Criterion, AIC Akaike Information Criterion, MAE Mean Absolute Error
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data. However, strong predictors are rarely available and
insufficient covariate information may lead to model mis-
specification. This effort in finding the balance reinforces
the importance of model validation (discussed later in the

paper).

Modeling techniques

Once outcome and covariate information are prepared,
they are passed to the chosen modeling technique,
including random coefficients to account for spatial
correlation and, sometimes, temporal correlation. The
Bayesian approach was predominant in the selected
studies, as 62 of the 82 studies were based on Bayesian
hierarchical models (Table 1). The main conceptual dif-
ference, in comparison to the frequentist approach, lies
on how the Bayesian framework interpret probabilities.
In a frequentist framework, only repeatable events have
probabilities, while Bayesian frameworks can assign
probabilities to any event [21]. Since Bayesian frame-
works also consider the distribution of its parameters,
they generate complex posterior distributions, in which
exact solutions are often not possible and numerical
approximation techniques are required to fit the mod-
els. Markov Chain Monte Carlo (MCMC) methods
approximate the true posterior distribution by generating
dependent samples from it [22]. MCMC can be consid-
ered a turning point for Bayesian inference, having been
used for model-fitting in 35 of the 62 studies that relied
on Bayesian hierarchical models. More recently, Rue and
colleagues [23] developed an alternative method called
Integrated Nested Laplace Approximation (INLA), which
quickly became popular given that it is much faster and
yields very similar results compared to MCMC. Despite
the first identified studies using INLA being carried out
only in 2014, the method has already replaced MCMC in
28 studies. Frequentist estimation was applied in 17 stud-
ies through classical generalized linear models. Only two
studies used spatial interpolation methods such as krig-
ing [24] and kernel density estimation [25].

Recent studies have started using an ensemble
approach, known as stacked generalization, to improve
model performance [26]. Briefly, this strategy consists of
fitting several models (usually each model uses a differ-
ent modeling technique), generating intermediate pre-
dictions. These predictions are then used as input to a
second model. The use of multiple modeling techniques
allows any complex non-linear effects of the covariates
to be captured, while the final predictions are estimated
using a robust, consolidated modeling technique. All 11
studies following this approach [27-37] used a Bayesian
hierarchical model fitted using INLA for the final predic-
tions. Only one study relied on ensemble models and did
not perform stacked generalization [38].
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In addition to borrowing strength from covariance
structures through space, spatio-temporal models can
also benefit from these structures through time. The
inclusion of a temporal component was identified in 36
studies as observed in Table 1. In 34 out of the 36 studies,
this approach attempted to evaluate changes over time.
These effects were primarily modelled using conditional
autoregressive models and stochastic partial differentia-
tion equation as described by Blangiardo et al. [39].

Resolution

Estimates are typically generated at two different levels
of aggregation: grid cells or country’s administrative divi-
sions. At grid cell-level, the entire country is divided into
an equally sized grid and predictions are made for each
cell individually. A total of 55 out of the 82 studies opted
for gridded-estimates (Table 1). Apart from three studies
[40-42], the approximate cell size (grid) for all reported
resolutions ranged from 1 x 1 km to 10 x 10 km, with 5 x
5 km being the most common one. Smoothed maps were
presented by 12 studies without specifying the originally
estimated resolution. Estimates for districts, counties,
provinces and other low administrative divisions were
produced by 30 studies (37%). These administrative level
estimates are often produced from the grid level esti-
mates through population-weighted aggregation using
gridded population data from, e.g., WorldPop [43]. Only
five of the 82 studies presented estimates at both grid
cell and administrative levels. There is much discussion
regarding the ideal level of aggregation, as it depends on
multiple factors including the outcome, the objective of
the analysis, how decentralized decision-making is within
the country and the trade-off between precision and res-
olution [41, 44].

Model validation

A good predictive model is a model capable of repro-
ducing the process that generates the outcome. How-
ever, depending on the outcome, available covariates and
model specification, its performance can vary substan-
tially [45]. Models should be validated against data that
was not used in its construction. Otherwise, the model
can learn the data instead of their underlying structure, a
phenomenon known as overfitting the data. The simplest
choice for out-of-sample predictions is known as the
hold-out method, which splits the data into two subsets—
a training subset used for model fitting and a test subset
used for validation. This approach was found in 29% of
the studies (Table 1). However, splitting the data and
ensuring geographical representativity in both samples is
an overlooked challenge. Seven studies [47-53], though,
attempted to overcome this limitation using a declus-
tering method, which gives less weight to observations
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geographically clustered when drawing the samples [54].
An alternative method for out-of-sample prediction is
the n-fold cross-validation, found in 22 studies. The algo-
rithm divides the data in “n” parts of equal size (which
can be done in a spatially structured or random manner),
leaving one for validation and using the remaining to
build the model. This process is repeated until each fold
is used for validation and the average of the combined
measures is taken. Cross-validation is particularly useful
when data is limited and holding out data could compro-
mise the model performance, while the drawback is that
it must fit one model for each fold, drastically increasing
the processing time. Nearly half of the studies (44%) did
not report on any validation method.

Within the out-of-sample data, there are several met-
rics that can be calculated and reported to assess the
validity of the model predictions. As shown in Table 1,
bias was the most reported validation measure, present
in 34 studies (41%). Bias is the average of the difference
between the observed and the predicted value. The mag-
nitude of the prediction errors was often reported using
the root mean squared error (RMSE) or the mean abso-
lute error (MAE), found in 30 and 15 studies, respec-
tively. RMSE and MAE are both positive values indicating
how much, on average, the model predictions differ from
the observed results. They differ on how deviations are
handled: RMSE takes deviations squared while MAE
ignores the signal. This makes RMSE more susceptible
to the impact of high magnitude prediction errors (such
data points are often referred to as outliers) [46]. A total
of 19 studies presented Deviance Information Criterion
(DIC) or similar metrics during model selection or vali-
dation. While DIC is useful for model selection, it has no
direct interpretation and cannot be used to compare dif-
ferent studies. Additionally, several studies reported the
achieved coverage within credible intervals [24] and the
correlation between predicted and observed values [16].

Presentation of uncertainty
As much as the most precise estimates are desirable,
there is always a degree of uncertainty in predictions
made. While geographically disaggregated point esti-
mates are easily interpretable when presented in a map,
the related uncertainty is much harder to present in an
intuitive way. Uncertainty is a complex multi-layer con-
cept and it exists in every step from data collection to the
modeled estimates. For the sake of this study, we consid-
ered uncertainty as the measures of variability associated
to the estimates, since a complete definition includes
measurable and unmeasurable components, sampling,
modeling strategies, and is out of the scope of this study.
Visualization approaches to present uncertainty in a
clear, comprehensive, and interpretable manner are still
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to be proposed. Bayesian models, for instance, produce
full posterior estimates that can be summarized in mul-
tiple ways. However, there is no visualization approach
that can fully address the challenges of communicat-
ing and using uncertainty and, as a result, the literature
clearly lacks standardization.

Options for presenting uncertainty are tied to the cho-
sen resolution. At the administrative level, where there
is a smaller number of divisions, uncertainty can be
described using maps or tables. On the other hand, grids
of high resolution can only be represented in maps due to
the large quantity of estimates. Uncertainty intervals and
standard deviation maps and tables were the most com-
mon approaches, found in 28 and 15 studies, respectively.
There were also seven studies presenting qualitative
measures of uncertainty (e.g., low or high uncertainty).
Further approaches include: coefficient of variation [55,
56], exceedance thresholds [57, 58], probability of being
correctly classified [48, 50, 52] and Coffey-Feingold
Bromberg metric [31]. A total of 22 studies (27%) did not
present any measure of uncertainty (Table 1). Aside from
the numerous ways of expressing uncertainty, it has been
exclusively reported in supplementary files of 23 out of
the 60 studies (38%) that presented uncertainty, putting
its relevance in check.

Maps with the limits of the uncertainty intervals are
often presented in two separate figures, demanding more
space, and only covering a best—worst case scenario.
Some studies use the width of the interval as an alterna-
tive, which is limited when the probabilities are close to
zero or 1. Standard deviation maps are harder to inter-
pret, especially for non-specialist readers. Lastly, quali-
tative measures of uncertainty are likely the easiest to
interpret, although defining what is low or high uncer-
tainty is arbitrary.

Key aspects for interpreting geospatial studies
Maps are long used for presenting geographically dis-
aggregated estimates and are often easily interpretable.
However, legend scales may be misleading, especially
when intervals of different widths are grouped and
presented together, or the amplitude is too narrow
or too wide. These caveats are particularly important
when several maps are presented in sequence and the
reader may assume the legend scales are the same.
Every modeled estimate carry assumptions and
uncertainties, and several aspects can be observed to
assess their reliability. For instance, data sources must
provide sufficient information for models to reproduce
the occurrence of the outcome. The data must also
come from reliable sources and be temporally close
to the objective of the study and the covariates used
in the process. In the case of multiple data sources
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and temporal assessment, constant change over time
is often an assumption that needs to be taken into
consideration.

Models tend to assume the input data are correct, so
any estimates from a good predictive model can only
be as accurate as the quality of the data sources. As
discussed in previous sections, several metrics can be
reported and interpreted to evaluate the validity of the
predictive model. Bias, the most reported validation
measure, indicates whether prediction errors are sys-
tematically leaning towards any direction. Therefore,
an unbiased estimator should present bias close to
zero. However, the scale of the outcome must always
be considered when interpreting these measures. For
instance, a bias of 1.5 in settings where the average
mortality rates are around 3 is huge (50% of the point
estimate), but for mortality rates close to 150, the rela-
tive importance of the same bias is much smaller (1%
of the point estimate). The same applies for inter-
preting measures of the magnitude of the prediction
errors, such as RMSE and MAE. For coverage indica-
tors (bound between 0% and 100%), RMSE or MAE
values of 2 indicate the model deviates from the true
value, on average, by 2 percentage points.

Incorporating uncertainty in decision-making is
often a major challenge. The interpretation of the
estimates requires changes in the thought process to
consider probabilities rather than an absolute, fixed
value. Non-experts tend to depend on heuristics rather
than formal statistics when taking decisions [59]. This
raises a question on whether considering uncertainty
leads to better decisions or simply discredits infor-
mation in which uncertainty estimates are high [60].
Associated credible intervals can be interpreted as
that we are confident (usually 95% confident) that the
true estimate is within the interval. Therefore, smaller
intervals reduce the probability of our estimate devi-
ating from the true value. The standard error can be
roughly interpreted as how precise the sample mean
estimate is in relation to the population mean.

Outcomes

Around 30 different outcomes were estimated using geo-
spatial approaches among the selected studies. We classi-
fied them into five groups based on their frequency and
similarity: malaria, child mortality, malnutrition, vacci-
nation, and other health-related outcomes. Within each
family of outcomes, their specificities are highlighted and
the summary of characteristics for all studies and by out-
come is presented in Table 1.
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Malaria

Malaria-related studies could be considered the pioneers
in RMNCH geospatial modeling with a large contribution
to this field. It took nearly a decade for studies of other
RMNCH outcomes to start using geospatial estimation
to increase the granularity of their available data. The
first identified studies are dated to the early 2000’s [61,
62], despite other spatial statistics in the field of malaria
having been used for several years before [63]. Malaria
is strongly affected by environmental factors. The mos-
quitoes of the anopheles species require certain climatic
conditions to develop themselves and act as transmission
vectors for the disease [64]. This geographical depend-
ence along with the burden of the disease led malaria to
be the most studied outcome with 34 out of the 82 stud-
ies [38, 42, 47-49, 51-53, 5658, 61, 62, 65—83].

Most of the information for malaria in LMICs comes
from combining multiple malariometric surveys con-
ducted at specific locations. Several projects, such as
MARA [84] and the Malaria Atlas Project [85], have
worked on putting together geo-referenced malaria sur-
vey data, allowing researchers to use the pre-processed
databases. These surveys were used in 21 of the 34 studies
that focused on malaria. Despite concerns over malario-
metric surveys being carried out only in endemic areas of
high prevalence, evidence shows they are well geographi-
cally distributed in various settings [47]. A secondary
source of information for malaria are nationally repre-
sentative surveys, either designed for several RMNCH
indicators, such as the standard DHS surveys, or focused
on malaria as in the Malaria Indicator Surveys, also car-
ried out by the DHS program. A total of 14 studies relied
on these surveys.

Although the malaria burden is not limited to children,
they are the most affected subset of the population due
to the lack of post-infection immunity [86]. Malaria indi-
cators were reported as malaria prevalence, parasitemia
risk or number of infected children. Both children under-
five and the standardized age range of 2 to 10 years were
the most common age subgroups, as observed in 14 and
12 studies, respectively. A few studies presented esti-
mates for other subgroups such as: 6-59 months [79],
under-10 years [61], under-16 years [71], 1-10 years [66,
87] and 1-14 years [65].

Different from other outcomes, malaria studies prior-
itized high-resolution estimates over small administrative
units. The only two studies that presented county [58]
and regional [72] level estimates also presented estimates
at finer resolutions. Single country studies were predomi-
nant with 77% of the geographical coverage, while 82%
opted for the Bayesian approach for modeling.
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Childhood mortality
Child survival is a central goal of maternal and child
health interventions and it is considered both a health
indicator and a measure of human development [88].
Reducing child mortality rates is a long-term priority
defined by international organizations and highlighted
in both the Millennium Development Goals and the
SDGs [89]. Even in high mortality settings, the death of
a child is a rare event, thus requiring larger samples sizes
in comparison to other RMNCH indicators. Among the
reviewed studies, 14 were focused on child mortality.
Within child mortality studies, we identified ten studies
focusing on all-cause mortality and four studies present-
ing cause-specific deaths. All ten studies reporting on all-
cause childhood mortality estimated under-five mortality
rate, while a few studies also presented estimates for neo-
natal [30, 90] and infant [90, 91] mortality rates. For
cause-specific mortality, deaths by malaria [38], diarrhea
[32, 35] and lower respiratory infection [33] were studied.
Most studies, 12 out of 14, assessed changes over
time—a major focus for mortality—most likely relating
to monitoring development goals. In terms of resolu-
tion, six studies aimed at reaching smaller administrative
units such as districts or counties [35, 55, 92—96], six pre-
sented gridded estimates [25, 30, 32, 33, 38, 91] and one
employed both approaches [90]. As with all outcomes,
Bayesian models were predominant, used in 10 out of 14
studies. Four studies attempted to develop or enhance
methods to estimate under-five mortality.

Malnutrition

Each year, 3.1 million deaths of under-five children are
directly attributable to undernutrition in the form of
stunting, wasting and micronutrient deficiencies [97],
and overweight in children is an increasing problem. A
total of 12 studies focused on malnutrition.

The burden of stunting, wasting, underweight and
overweight was estimated for the entire African conti-
nent [28] and in all LMICs [27, 37]. There were also sev-
eral single country studies that account for and focus on
local specificities as done in Bangladesh [98], Afghani-
stan [99], Cambodia [100], India [36], Mexico [101] and
Ethiopia [24, 102]. Five studies generated estimates at
district or province level [98-100, 102], four studies at
1x1km [45], 5x5km [27, 28] and 10x10km [103], and two
studies at both 5x5km and administrative level [36, 37].
Six studies modeled their outcomes using Bayesian mod-
els through INLA.

Among all outcomes, uncertainty was least reported on
studies focusing on malnutrition, available in only half of
the studies.
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Immunization

Vaccines save the lives of millions of children every year,
and despite being one of the most cost-effective health
interventions, many settings have seen coverage levels
stall or even decline in recent years [104]. For measles,
which is highlighted in six of the seven immunization
studies, many outbreaks occurred globally in 2018 and
2019, mainly due to lack of access and anti-vaccination
movements [105-107].

Geospatial modeling of immunization started rela-
tively recently, since all identified studies were published
from 2015 onwards. Possibly due to being very recent,
most of them carried out very comprehensive modeling
approaches. Six of the eight studies produced estimates
for at least three countries and only two failed to report
uncertainty measures. The granularity pursued was also
very high, having three studies at 1xlkm [108-110],
three studies at 5x5km [31, 111, 112] and one at 10x10km
[113]. Perhaps due to being the first, Pramanik et al. [114]
was the only vaccination study which focused in a single
country, aimed at lower administrative units rather than
gridded estimates, and one of the two studies that did not
report uncertainty measures.

Other RMNCH outcomes

The use of geospatial approaches to produce estimates
for small areas has reached a variety of outcomes. Within
reproductive health, we identified four studies focus-
ing on contraception [45, 115-117] and two studies on
undesired adolescence pregnancies [118, 119]. From
pregnancy to child birth, four studies focused on ante-
natal care, skilled birth attendance, c-section and post-
natal care [40, 41, 120, 121]. Diarrhea [32, 122, 123] and
respiratory infections [33] were the focus of a total of
seven studies, as they are still among the leading causes
of death for children in the poorest countries. One study
also attempted to map exclusive breastfeeding [34].

Conclusions

The field of geospatial estimation focused on RMNCH
outcomes is expanding and the number of published
studies has increased more rapidly since 2014. Bayesian
hierarchical models have taken place as the preferred
modeling technique, but this is a continuously evolving
area. More recently, ensemble approaches using several
different models that are put together with a Bayesian
model have been increasingly used and have the potential
to become the approach of choice. The main data sources
are likely to remain the same, DHS with a special place
among national health surveys, especially that they have
been putting a lot of effort in providing geolocated covar-
iates available already harmonized with the surveys [125].
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Geospatial models are complex and tend to produce a
large number of estimates. Therefore, a validity assess-
ment of how assumptions hold, the estimates precision
and the model mean error should always be done and
presented. These characteristics should be evaluated
out-of-sample using one of the several approaches pro-
posed in the literature, with cross-validation being the
most efficient in terms of data use. However, with such
complex models, fitting a model repeatedly can demand
considerable processing power. Nonetheless, this is a key
step to show that the results presented are stable and
represent the underlying process in study. Model valida-
tion needs to be clearly presented both in terms of how
it was done and its results. In our review, a considerable
number of studies failed to present clear and convincing
model validation—36 out of 82 —what makes the results
much harder to interpret.

Other important aspects of geospatial modeling are
the resolution of the estimates and how these are pre-
sented in terms of both point estimates and their uncer-
tainty. The objective of the work is central to choosing
the resolution or the type of aggregation to be used. A
study describing the spatial distribution of an outcome or
showing associations with geographical aspects can pre-
sent very high-resolution estimates. On the other hand,
if the aim is to support health policy decisions, estimates
matching health districts, or geographical units where
policies and programs are decided and implemented, are
likely to be much more useful. The presentation of esti-
mate uncertainty is also essential. However, we have not
identified in the literature a clear and robust approach,
as this represents a real challenge. Different measures
of uncertainty have been used, as well as a variety of
approaches of presentation — from simple to compli-
cated. Given its importance, it seems to us that simpler
and more direct visualization approaches could be used
in the main body of the paper, while full results could be
reported in the supplementary material.

As a final comment, given the often-large number of
maps and diagrams presented, special attention has to
be devoted to comparability of the scales used, color
schemes, and even the map projections. The results
need to be presented in an intuitive and understand-
able fashion so that non-specialists can grasp and make
use of such relevant estimates. Authors need to put as
much effort in the clarity of their presentations as they
invest in the complex process of geospatial estimation.

This study covers the main methodological aspects
that are part of a standard conceptual modeling frame-
work adopted by the literature. However, many details
that are lightly discussed here could be the focus of
further studies such as a thorough evaluation and
comparison of modeling techniques, covariates, and
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uncertainty. In addition, concern should be raised on
how far these models can be extended, given the expan-
sion of the field to over 30 different outcomes. Since
predictions are based on space and time correlation
and explanatory variables, producing fine spatial scale
estimates may not be feasible for all outcomes [45].

The authors encourage future studies focused
on modeling RMNCH outcomes using geospatial
approaches to make uncertainty presentation and
model validation as an integral part of their studies.
In light of the issues of handling uncertainty, incorpo-
rating it in the discussion of results could assist read-
ers in their interpretations and facilitate the practical
application of geospatial approaches for policy making
towards improving RMNCH in LMICs.
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Additional file 1 - Search strategy and decisions for each quality
criteria

Search strategy

Search strategy for MEDLINE, LILACS, Web of Science and Scielo

(health OR epidemiology) AND (geostatistical OR geo-statistical OR “spatial modeling” OR “spatial
modelling” OR “high-resolution mapping” OR geospatial OR “small area estimation” OR “small area
estimates” OR “spatial interpolation”)

Search strategy for Scopus

TITLE-ABS-KEY ( ( health OR epidemiology ) AND ( geostatistic OR "geo statistic" OR "spatial
modeling"” OR "high-resolution mapping" OR geospatial OR "small area estimation" OR "spatial
interpolation" ) ) AND ( LIMIT-TO ( DOCTYPE, "ar") OR LIMIT-TO ( DOCTYPE, "re")) AND (
EXCLUDE ( SUBJAREA, "AGRI") OR EXCLUDE ( SUBJAREA, "EART") OR EXCLUDE ( SUBJAREA,
"MATH") OR EXCLUDE ( SUBJAREA, "ENGI") OR EXCLUDE ( SUBJAREA, "BUSI") OR EXCLUDE (
SUBJAREA, "VETE" ) OR EXCLUDE ( SUBJAREA, "CHEM") OR EXCLUDE ( SUBJAREA, "ARTS") OR
EXCLUDE ( SUBJAREA, "PHYS") OR EXCLUDE ( SUBJAREA, "PSYC") OR EXCLUDE ( SUBJAREA ,
"NEUR") OR EXCLUDE ( SUBJAREA, "ENER") OR EXCLUDE ( SUBJAREA, "CENG") OR EXCLUDE (
SUBJAREA, "MATE") OR EXCLUDE ( SUBJAREA, "DENT"))

Decisions on quality assessment criteria

Were study participants sampled in an appropriate way? Studies using several data sources in which
most of the data come from structured national health surveys were classified as ‘yes’.

Was the sample size adequate? All studies were classified as ‘Not applicable’ because the rationale
behind small area estimation assumes insufficient sample sizes for direct estimation.

Were the study subjects and the setting described in detail? Studies covering multiple countries were
classified as ‘Not applicable’.

Was data analysis conducted with sufficient coverage of the identified sample? All studies were
classified as ‘Not applicable’ because most (if not all) of them are based on secondary data and this
information is usually presented by the responsible for the data collection process.

Was the condition measured in a standard, reliable way for all participants? All studies were
classified as ‘Not applicable’ because most (if not all) of them are based on secondary data and it is
uncommon for studies to discuss the validity of the data collection methods of the data sources.
Was there appropriate statistical analysis? All studies not reporting uncertainty measures were

classified as “no” based on the criteria definition.

72



Was the response rate adequate, and if not, was the low response rate managed appropriately? All
studies were classified as ‘Not applicable’ because most (if not all) of them are based on secondary
data and it is uncommon for studies report the response rate of their data sources, especially when

multiple data sources are utilized.
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Additional file 2 — PRISMA checklist

Section/topic # Checklist item Repaliee
on page #

TITLE

Title 1 | Identify the report as a systematic review, meta-analysis, or both. 1

ABSTRACT

Structured summary 2 | Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, | 1-2
participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and
implications of key findings; systematic review registration number.

INTRODUCTION

Rationale Describe the rationale for the review in the context of what is already known. 3

Objectives 4 | Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, | 3-4
outcomes, and study design (PICOS).

METHODS

Protocol and registration 5 | Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide 5
registration information including registration number.

Eligibility criteria 6 | Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, 5
language, publication status) used as criteria for eligibility, giving rationale.

Information sources 7 | Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify 4
additional studies) in the search and date last searched.

Search 8 | Present full electronic search strategy for at least one database, including any limits used, such that it could be 4
repeated.

Study selection 9 | State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, 5
included in the meta-analysis).

Data collection process 10 | Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes 6
for obtaining and confirming data from investigators.

Data items 11 | List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and 6

simplifications made.
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Risk of bias in individual 12 | Describe methods used for assessing risk of bias of individual studies (including specification of whether this was 6
studies done at the study or outcome level), and how this information is to be used in any data synthesis.

Summary measures 13 | State the principal summary measures (e.g., risk ratio, difference in means). NA
Synthesis of results 14 | Describe the methods of handling data and combining results of studies, if done, including measures of consistency NA

(e.g., 13 for each meta-analysis.

Section/topic

Checklist item

Reported
on page #

Risk of bias across studies 15 | Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective NA
reporting within studies).

Additional analyses 16 | Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating | NA
which were pre-specified.

RESULTS

Study selection 17 | Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at 6
each stage, ideally with a flow diagram.

Study characteristics 18 | For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and | §-18
provide the citations.

Risk of bias within studies 19 | Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12). AF1

Results of individual studies 20 | For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each NA
intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.

Synthesis of results 21 | Present results of each meta-analysis done, including confidence intervals and measures of consistency. NA

Risk of bias across studies 22 | Present results of any assessment of risk of bias across studies (see Item 15). NA

Additional analysis 23 | Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]). NA

DISCUSSION

Summary of evidence 24 | Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to 18-20
key groups (e.g., healthcare providers, users, and policy makers).

Limitations 25 | Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of 20
identified research, reporting bias).

Conclusions 26 | Provide a general interpretation of the results in the context of other evidence, and implications for future research. 18-20
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Abstract

Background: The composite coverage index (CCl) provides an integrated perspective towards
universal health coverage in the context of reproductive, maternal, newborn and child health.

However, the sample design of the surveys is not sufficient for an in-depth analysis from a
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geographical perspective. This study aims to describe and compare the CCl coverage at multiple

resolutions in Peru to support decision-makers with actionable information at local scale.

Methods: Using a model-based geostatistical approach, we generated estimates for all eight
indicators of the CCl (which were further combined using the index formula) for the
departments, provinces, and areas of 5 x 5 km of Peru using data from two national household
surveys carried out in 2018 and 2019 and geospatial covariates. Models were fit following a
Bayesian framework using INLA-SPDE and assessed using validation metrics and comparisons at

the department-level.

Results: Coverage in the provinces throughout the coast were consistently higher than the
remainder of the country. Areas in the north and east of the country, especially within the
Amazon jungle, were found to have the largest gaps between and within provinces. These gaps

are otherwise masked when looking at department-level only.

Conclusions: Our study highlights areas of low CCl coverage within departments and provinces
of Peru, showcasing the importance of estimates at high-resolution to unveil inequalities within
highly heterogeneous areas. Our results constitute a valuable guide for local policy makers and

managers to focus efforts in disadvantaged areas.

Keywords: geospatial modeling, child health, woman’s health, composite coverage index, Peru

Key messages

Geospatial modeling techniques allow the use of estimates for small areas in which direct

estimation from national household surveys is not possible or yield imprecise results.

Local managers and decision-makers benefit of information for smaller areas, such as

provinces, since the planning and allocation of resources is often done at local scale.
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Increasing the resolution reveals striking inequalities from a geographical perspective masked

by aggregation, highlighting the most vulnerable areas and subgroups of the population.

Introduction

Peru has shown tremendous progress in improving the health and survival of women and
children in the past few decades (1). Under-five mortality rates and undernutrition dropped by
over 50% since 2000, mainly due to the equitable increase in the coverage of reproductive,
maternal, newborn and child health (RMNCH) indicators, better water and sanitation conditions,
along with improvements in the social determinants of health (2). These efforts elevated the
country to a prime position in the pursuit of universal health coverage (UHC) in terms of access

to the full range of quality health services without undue financial burden.

Since the concept of UHC relies on a broad set of services and interventions, monitoring its
progress requires data on multiple RMNCH indicators. And even overlooking the difficulty of
reporting substantial amounts of data, visualizing and advocating for dozens of indicators
hampers the prioritization of areas and subgroups that are farther from receiving a
comprehensive assistance. In order to account for several indicators and present an integrated
summary measure, the composite coverage index (CCl) was created and has been widely used
as a proxy for tracking UHC in low- and middle-income countries in the context of RMNCH (3-
5). The CCl is a weighted average of eight essential preventive and curative interventions along
the continuum of care, covering four stages including reproductive, pregnancy, newborn and
child health. Its composition has proven to be robust as the inclusion of other important
interventions have shown to have little impact in the estimates (6). Also, its strong associations
with under-five mortality rate and stunting further support that the CCl can capture adequately

the combined effect of health interventions (7).
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Like the majority of low- and middle-income countries, Peru relies heavily on information from
national health surveys to monitor the progress of many RMNCH interventions, allowing data-
driven actions to increase coverage and reduce inequalities (8—10). These actions are more
effective when stakeholders and policy planners have available data disaggregated at local
levels, where policy is ultimately implemented (11,12). However, the sampling design of the
national surveys only provides reliable estimates for large subnational divisions, as further
geographical disaggregation would require much larger (often prohibitively so) sample sizes.
Alternatively, indirect estimates can be derived for smaller areas using geospatial modeling
approaches, as previous studies have done for RMNCH outcomes in recent years (13—15). These
strategies combine the georeferenced data from the surveys with relevant geospatial covariates,

while also taking advantage of spatial correlation, to predict small area estimates.

While a few studies have generated estimates for individual interventions or health outcomes
at global scale in which Peru was included, such as malnutrition (16), mortality (17) and diarrhea
management (18), no studies on RMNCH interventions were exclusively focused on Peru. Based
on fine-scale estimates generated using geospatial modeling techniques, this study aims to
describe the CCl coverage at province and grid-level in Peru, enabling local managers to identify

and act on areas in need of prioritization.

Methods

The following sections describe each stage of the modelling process. Further details can be

found in the supplementary materials.

Study area

Peruis an upper-middle income country located in the South American continent. Its lands cover
around 1.28 million km? making it the 19*" largest country in the world with a total population

of nearly 31 million (19). It shares borders with Ecuador, Colombia, Brazil, Bolivia, Chile, and the
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Pacific Ocean. The country is divided into 25 first administrative units (24 departments plus the
Callao province) which are subdivided into 196 provinces, and further into districts. The
geography of Peru is often divided into three main ecological zones known as a) coast, a semiarid
margin bordered by the Pacific Ocean, b) highlands or the Andean mountains, a climatic diverse
area separating the other two ecological zones from north to south, and c) jungle which is the

most extensive zone mostly covered by the Amazon rainforest (20).

Composite coverage index data

Carried out annually since 2004, the Encuesta Demografica y de Salud Familiar (ENDES) is a
household survey designed to provide estimates at the national and departmental levels for
several health and nutritional indicators for women and children in Peru. The 2018 ENDES survey
carried out a multi-stage sampling process by selecting 3,254 enumeration areas (EAs), or
primary sampling units (also known as clusters — the unit of analysis in this study), proportionally
distributed in all departments, followed by 36,760 households in the second stage. Similarly, the
2019 survey sampled 36,745 households in 3,254 EAs, totalizing 73,505 households within 6,508
EAs (Figure 1). More details on the sampling methodology can be found in the surveys’ reports

(21,22).

To increase the sample sizes, we combined data from the 2018 and 2019 ENDES surveys and
used them to calculate each of the indicators that are part of the CCIl. The CCl is a weighted
average of eight essential maternal and child health interventions and comprises the four stages

of the continuum of care. Its formula is given by

1 SBA+ ANC4 2(DPT3)+ BCG + MSL ORS + CAREP
CCI:Z DFPSm + +

2 4 + 2
where the interventions are: demand for family planning satisfied with modern methods

(DFPSm), skilled birth attendant (SBA), at least four antenatal care visits (ANC4), one dose of

bacille Calmette-Guérin vaccine (BCG), three doses of diphtheria-pertussis-tetanus vaccine
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(DPT3), one dose of measles vaccine (MSL), oral rehydration salts for diarrhoea (ORS), and care-
seeking for suspected childhood pneumonia (CAREP) (6). The complete definition on the

calculation of each indicator can be found in the supplementary table 1.

Figure 1 - Geographical distribution of cluster locations for ENDES 2018 and 2019 surveys

The coordinates for each cluster are displaced by up to 2km in urban areas and 5km in rural
areas for protect the anonymity of the respondents. This displacement was considered in the
covariate extraction process by drawing a buffer and taking its mean according to the place of

residence (23).

Geospatial covariates and covariate selection

A suite of 14 covariate layers known to correlate directly or indirectly with RMNCH indicators
were considered as predictors for each of the eight modelled indicators. These covariates
include measures of accessibility, remoteness, urbanicity, and sociodemographic characteristics

that were found to be associated with health interventions in previous studies (14,24-26). Some
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of these covariates were surfaces obtained from satellite imagery and publicly available
repositories while others were interpolated using survey and health facility data points. Further

information for each of the covariates is found in the supplementary tables 2 and 3.

We carried out a covariate selection strategy divided in two stages to achieve the best fit without
overparameterizing the models: 1) testing the predictors seeking the best outcome-covariate
relationship, followed by 2) backward elimination process within a stepwise logistic regression,
where variables were dropped starting with the ones with the highest p values until none had a
p value greater than 5%. Fractional polynomials of up to the second order were tested for all
predictors, as well as the logarithmic transformation, to allow for model flexibility. We also
assessed the association between all covariates using Pearson’s correlation and we checked any
combination of predictors with a high correlation coefficient (> 0.8) to address the problem of

(multi)collinearity.

Geospatial model

We followed a model-based geostatistical approach (27), similar to what was done previously
(28,29), to predict estimates at areas of 5 x 5 km in Peru based on geospatial covariate
information and spatial correlation. We fitted eight different models, one for each indicator, and
combined their posterior distributions to obtain estimates for the CCl. Let Y (s;) be the number
of individuals with a given outcome at cluster location s; (i=1, ..., n), out of a total of N(s;)

individuals sampled at the location. The model can be defined as:

Y (s;) ~Binomial (N(s;),p(s;))
logit(p(s)) = x(s)" B+ w(sy) +e(sy)

where x(s;) is a set of covariates values associated with cluster s;, § are the corresponding

regression parameters, w(s;) is a Gaussian spatial random effect used to capture residual spatial
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correlation in the model, and €(s;) is a Gaussian random effect used to model non-spatial
residual variation. The geostatistical model described above followed a Bayesian framework
using the integrated nested Laplace approximation with the stochastic partial differential

equations (30).

We drew 1000 samples from the posterior distribution generated from each model and
combined them using the CCl formula. Then, we used the combined posterior to predict a grid
of 5 x 5 km covering the entire study area. The estimates and uncertainty measures were further
aggregated into the first and the second administrative divisions using population layers for

weighting.

Uncertainty estimates were drawn from the posterior distributions and are presented as the

width of the credible intervals (difference between the 97.5 and the 2.5 percentiles).

Model validation

The validity of the estimated models was assessed using an out-of-sample cross validation
strategy. Data from all indicators were divided into five folds to ensure a minimum sample size
of 50 clusters within each fold. We calculated and presented the following metrics: bias (mean
error), the magnitude of the error (mean absolute error - MAE) and the correlation between
predicted and observed values. We also compared predicted estimates aggregated at the first

administrative division to the observed estimates directly derived from the surveys.

We used Stata 16 (31) for survey data analysis and the covariate selection process and R 4.0.2

(32) for the processing of geospatial covariates, model fitting and validation.

Results

Overall, the national coverage of the CCl in the country is 71.6% (Table 1). Interventions like SBA

and BCG vaccination are nearly universal in Peru with coverage above 95% (Table 1). On the
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other hand, treatment of diarrhea using ORS is surprisingly low with only 33.6% (Table 1).
Sample sizes are large for pregnancy and reproductive health indicators, moderate for vaccines

and low for treatment of childhood illnesses.

Table 1. Description of the CCl and its indicators in the sample.

. Number of Number of National
Indicator e e
clusters individuals coverage
Skilled birth attendant 6,383 24,513 94.6%
Antenatal care 4+ visits 6,383 24,141 96.3%
Demand for family planning satisfied
5,296 12,059 65.5%
with modern methods
DPT3 vaccine coverage 4,861 8,706 85.3%
BCG vaccine coverage 4,861 8,706 95.3%
Measles vaccine coverage 4,861 8,706 80.0%
Oral rehydration salts for diarrhea 3,301 5,014 33.6%
Care-seeking for suspected pneumonia 1,639 1,956 70.1%
Composite coverage index - - 71.6%

Out of the 14 geospatial covariates, improved sanitation coverage was the most stable predictor
as it was selected in 7 out of the 8 indicators, followed by the mean number of years of education
for women, used in six indicators. Conversely, improved water coverage failed to remain as a
predictor in all models and was left out of analysis. Both travel time to health facilities and
urbanicity were only eligible for one model each, putting them among the least relevant
covariates. The median number of covariates used to fit the models was seven, with SBA using

10 covariates and CAREP fitting the final model with a single predictor (Supplementary table 4).

The geospatial estimates for CCl coverage at the first and second administrative divisions of Peru

(departments and provinces, respectively) are presented in Figure 2. Coverage ranged from
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59.6% in Puno, in the south-east of the country, to 79.1% in Tumbes, in the north-west (Figure
2A). Figure 2B shows a clear pattern of higher coverage for the provinces along the coast while
most of the provinces with the lowest coverages are in the jungle area. Also, substantial
disparities in coverage are observed between the provinces within each department. The
maximum difference between the CCl coverage in provinces of Madre de Dios, Tumbes and Ica
range from 1 percentage point (p.p.) to 2.3 p.p. while these differences between the provinces
of Amazonas and Ucayali go up to 20 p.p. The widest gaps between provinces are found in jungle
departments but important gaps can also be seen in several departments along the coast, such

as Piura, La Libertad, Ancash, and Lima.
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Figure 2 — Geographical distribution of the CCl in Peru for a) the 26 departments (observed
data); b) the 195 provinces (predicted data), and associated uncertainty measured as c) the
width of the 95% confidence intervals for departmental estimates and, d) the width of the 95%

credible intervals for provincial estimates.

The same way estimates from sampled data present variability, the estimates generated by the
geospatial models are sensitive to the amount of data available in each area, and the further we
disaggregate, the more uncertainty we may observe. Figure 2C presents the width of the
confidence intervals as a measure of uncertainty for the estimates at the first administrative
division that were directly derived from the surveys. The width of the credible intervals for each
of the provincial estimates generated by the geospatial models are shown in Figure 2D. The
median width of the credible intervals for the provinces is 8.6 p.p., meaning that at least half of
the estimates should vary no more than 4.3 p.p. around the point estimate (median coverage of
71.7%). However, estimates for the provinces colored in orange should be interpreted with more
caution since those estimates could lay within a 15 to 20 p.p. interval, with a maximum interval

width of 23 p.p.

Geospatial models can provide estimates for much smaller areas than the political
administrative divisions of a country. Using grids of high resolution can shed light on pockets of
low or high coverage otherwise masked by aggregation that may hide the most vulnerable
subgroups of the population. Figure 3 presents high-resolution estimates in grids of 5 x 5 km
along with uncertainty maps measured using the width of the credible intervals. Pockets of low
coverage can be seen in several provinces across the jungle, while some smaller pockets exist
along the highlands throughout the country. Although these estimates show a more detailed
scenario, increasing the resolution also increases the uncertainty of these estimates, as
presented in Figure 3B. Of note, Figures 2B and 2D are not directly comparable to Figure 3

because scales differ.
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Figure 3 — a) Geographical distribution of the CCl in Peru by 5 x 5 km, and b) associated

uncertainty map measured as the width of the 95% credible intervals.

The correlation of the predicted coverage against the observed cluster estimates was strong for
SBA, weak for CAREP and moderate for the remainder. Bias was close to zero for all indicators
and the magnitude of the errors was between 4 and 7 percentage points for BCG, SBA and ANC4,
around 20 for DFPSm, MSL and DPT, and close to 30 for CAREP and ORS. We also generated
estimates at the departmental-level and compared them to the published survey results, where
the mean difference at the departmental-level for the CCl was 1.7% and the largest difference
was 5.2% in Madre de Dios. All validation metrics and further details on the validations process

are available in the supplementary tables 5 and 6.

Discussion

Geospatial models have become an important resource for assisting researchers and
stakeholders in unveiling hidden areas and populations in need of prioritization in the context

of RMNCH (13). Through them, it is possible to obtain information that is not available through
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conventional methods and can be easily used in health policy planning and decision-making.
When comparing department-level estimates to province-level estimates, it is evident that very
different coverage levels exist throughout the country, and even more detailed patterns are

observable when moving down to the grid-level.

In general, the size of the provinces in Peru seems sufficient to accurately inform the local
context in most of the country. However, this may not be true when looking at larger provinces
predominantly located in the Amazon rainforest. Some of these provinces, especially in the
north and east of Peru, do not stand out as low coverage in the province-level coverage map,
mainly because the low coverage areas are less populated and, on average, province coverage
is not particularly low. With the high-resolution map, it is possible to identify areas with very low
coverage within such provinces, supporting the use of both maps as complementary resources
since the provinces account for the size of the population affected and the grids focus on anyone
that lives on a specific zone. By this means, local managers will have their attention drawn to

these places with enough information to verify what type of action is most needed.

The rationale behind choosing the CCl rather than one or several of the many essential RMNCH
interventions is simple — one composite indicator gives a broad perspective of the status of
health intervention coverage (6). Looking at antenatal care or treatment of childhood diseases
instead, we found distinct levels of coverage without marked geographical variation. These
patterns are completely different from indicators such as demand for family planning satisfied
or skilled birth attendant — both presented huge spatial heterogeneity with pockets of low and
high coverage. As a composite measure, the CCl is able to highlight areas and subgroups that are
struggling in multiple fronts and are far away from UHC. Additionally, being a weighted average,

it is less susceptible to imprecision of some specific indicator.

Peru was able to improve substantially its RMNCH indicators and the availability and quality of

the departmental level data through annual ENDES to monitor appropriately the progress of
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coverage and impact indicators throughout the latest few decades (33,34). Now, it faces the
challenge of sustaining such a progress by tracking reliably the evolution of interventions
coverage at the provincial and more local levels. The use of granular information like the CCI
based on geospatial methods and high-resolution mapping may allow an increased efficiency of
policy makers in the design, implementation and impact evaluation of programs and
interventions for further improvement of maternal and child health, with a special focus on the
most disadvantaged communities, which are located mainly within the Amazon and the Andean
provinces. In particular, it may facilitate the identification of success and limiting factors at those

levels, thus contributing to an effective decentralization process.

Some limitations should be considered when interpreting the estimates described in our study.
All modeled estimates carry uncertainty, and it should be observed when interpreting the
coverage estimates. Due to low sample sizes, indicators for remote and less populated areas as
well as those related to treatment of childhood diseases can be unstable, as they are based on
information from few clusters or depend on children presenting with pneumonia or diarrhea at
the time of the survey. The most critical areas were concentrated in the Amazon jungle where
population density is low, and many preservation areas exist. Also, increased granularity implies
greater uncertainty. This phenomenon is evident when comparing the uncertainty produced in

the different levels of aggregation.

Conclusions

In summary, our study presents CCl coverage at three disaggregation levels in Peru, pinpointing
where are the population segments with the lowest coverage levels. It also showcases the
importance of geospatial methods and high-resolution mapping in comparison to coverage
estimates at administrative division level, especially where the divisions cover a large area and
are highly heterogeneous. Our results constitute a valuable guide for local policy makers and

managers to focus efforts in disadvantaged areas.
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Supplementary table 1 - Complete definitions for the composite coverage index (CCl) and its

indicators
Indicator Acronym Numerator Denominator
. . Who is using (or whose partner is Women aged 15-49 years either
Demand for family planning . . . . L
. FPSm using) a modern contraceptive married or in union in need of
satisfied by modern methods .
method contraception
Att tl f t tal
Antenatal care 4 or more ANCA catr:rzif\ldc;avi:i:sszv?crlrain enata Women aged 15-49 years who
visits . ¥ had a birth in the last 2/3 years
provider
. . Delivered by a skilled at'tendant Women aged 15-49 years who
Skilled attendant at delivery SBA (based on each country’s L
. . had a birth in the last 2/3 years
definition of skilled attendant)
All live-children, 12-23/18-
Recei Bacill | - ’
BCG vaccination BCG ec,el.ved aciiius .Ca mette 29/15-26 months (according to
Guérin (BCG) vaccine ,
country’s calendar)
. . , All live-children, 12-23/18-
DPT3 vaccination DPT3 Recelve.d 3 doses of Dlphte”é' 29/15-26 months (according to
Pertussis, Tetanus (DPT) vaccine ,
country’s calendar)
All live-children, 12-23/18-
Measles vaccination MSL Received measles vaccine 29/15-26 months (according to
country’s calendar)
Received oral rehydration salts Alllive children aged 0-59
Treatment for diarrhea ORS ¥ months with diarrhea in the last
(ORS)
2 weeks
Sought treatment from an Live children, 0-59 months,
Care-seeking for pneumonia CAREP  appropriate health facility or suspected pneumonia in the last
provider. 2 weeks
) ] 1 SBEA + ANC4 2(DPT3) + BCG + MSL ORS +CAREP
Composite coverage index Ccl cel = E( FESm + + + )

2

4 2
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Supplementary table 2 — Description of covariates included in the analysis

Covariate Year Resolution Unit Source
Altitude NA 1km meters SRTM (raster package)
Travel time to cities . ftp://ftp.worldpop.org.uk/GIS/Covariates/
>50,000 2000 Lkm — minutes Global_2000_2020/PER/
Dlsjc:.:\rimce to health 5017 1km meters https.://W\.Nw.datosablertos.gob.pe/datas
facilities et/minsa-ipress
Enhanced vegetation 0to 10000 (leastto https://ladsweb.modaps.eosdis.nasa.gov/
. 2017 1km . .
index most vegetation) search/history
0.00to 1.00 https://jeodpp.jrc.ec.europa.eu/ftp/jrc-
Urbanicity 2014 1km (extremely ruralto  opendata/GHSL/GHS_BUILT_LDSMT_GLO
urban) BE_R2018A/

. . . ftp://ftp.worldpop.org.uk/GIS/Covariates/
Nighttime lights 2016 100m nW/cm2/sr Global_2000_2020/PER/
Improved water . . .

201 1k | I k
coverage 018 m proportion nterpolated using kriging
Improved sanitation . . .
coverage 2018 1km proportion Interpolated using kriging
Mean number of . .
household members 2018 1km number Interpolated using kriging
% of households in . . .
Ql or Q2 2018 1km proportion Interpolated using kriging
Mean women's years . . .
of education 2018 1km proportion Interpolated using kriging
of Af i
fozzllgfifsnous 2018 1km proportion Interpolated using kriging
Distance to ftp://ftp.worldpop.org.uk/GIS/Covariates/
2017 1 k

protected areas 0 00m m Global_2000_2020/PER/
Distance to build 5017 100m km ftp://ftp.worldpop.org.uk/GIS/Covariates/

settlements (BGSM)

Global_2000_2020/PER/

99



Supplementary Table 3 - Summary statistics for covariates included in the analysis

Covariate Mean Median Min P1% P99% Max
Altitude 1373.00 487.00 0.00 6.60 4350.00 4876.00
Distance to health facilities 0.02 0.01 0.00 0.00 0.09 0.31
Travel time to health
facilities 14.67 2.21 0.00 0.00 219.00 888.00
Travel time to cities 50k 172.50 44.49 0.51 0.51 1438.00 3269.00
Enhanced vegetation index 2025.00 1771.00 -3000.00 -1666.00 5581.00 6378.00
Urbanicity 15.65 0.36 0.00 0.00 92.99 96.95
Nighttime lights 13.67 1.85 -0.07 -0.03 75.00 85.00
Improved water 0.96 0.98 0.01 0.37 1.00 1.00
Improved sanitation 0.63 0.75 0.00 0.00 0.98 0.99
% of households in Q1 or Q2 0.49 0.45 0.00 0.00 0.99 0.99
Mean number of household
members 3.84 3.82 2.35 2.72 4.84 5.45
Distance to built settlements 1.14 0.33 -2.17 -1.78 13.90 64.00
Distance to protected areas 705.00 702.00 56.00 195.00 1240.00 1278.00
Years of education (women) 10.00 10.40 4.10 5.30 13.60 14.00
% of indigenous population 0.07 0.00 0.00 0.00 0.99 0.99

Note: Zeros and negative values were replaced by a positive value close to 1 for some

covariates
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Supplementary Table 4 - Covariates selected for each modeled indicator

Covariate BCG DPT MSL CAREP ORS SBA3 ANC4  FPSmo

Altitude X X X
Distance to health facilities X X X X
Travel time to health
facilities X
Travel time to cities 50k X X X
Enhanced vegetation index X X X X
Urbanicity X
Nighttime lights X X X X
Improved water
Improved sanitation X X X X X X X
% of households in Q1 or Q2 X X X X
Mean number of household
members X X X X
Distance to built settlements X X
Distance to protected areas X X X X
Years of education (women) X X X X X X
% of indigenous population X X X

BCG Bacillus Calmette-Guérin vaccine; DPT3 3 doses of Diphteria, pertussis, tetanus vaccine;

CAREP Care-seeking for pneumonia; SBA Skilled attendant at delivery; ANC4 Antenatal care 4

or more visits; ORS Oral rehydration salts; FPSmo Demand for family planning satisfied by

modern methods

Supplementary Table 5 — Model validation metrics

Cross-validation In-sample
Indicator Correlation Bias MAE Correlation Bias MAE

BCG 0.31 0.00 0.07 0.61 0.00 0.06
DPT 0.20 0.00 0.18 0.55 0.00 0.16
Measles 0.20 0.00 0.22 0.59 0.00 0.20
CAREP 0.03 0.00 0.30 0.80 0.00 0.25
SBA 0.73 0.00 0.04 0.88 0.00 0.03
ANC4 0.25 0.00 0.06 0.45 0.00 0.06
ORS 0.26 0.00 0.27 0.60 0.00 0.24
FPSmo 0.34 -0.01 0.24 0.54 -0.01 0.22

MAE Mean absolute error; BCG Bacillus Calmette-Guérin vaccine; DPT3 3 doses of Diphteria,

pertussis, tetanus vaccine; CAREP Care-seeking for pneumonia; SBA Skilled attendant at
delivery; ANC4 Antenatal care 4 or more visits; ORS Oral rehydration salts; FPSmo Demand for
family planning satisfied by modern methods
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Supplementary Table 6 — Comparison of predicted vs observed estimates at department-level (adm1) for the composite coverage index (CCl) and its 8

indicators

bepartment BCG DPT3 MEASLES CARE-SEEKING ORS ANC4 SBA FPSmo cal

Pred Obs Diff Pred Obs Diff Pred Obs Diff Pred Obs Diff Pred Obs Diff Pred Obs Diff Pred Obs Diff Pred Obs Diff Pred Obs Diff
Amazonas 946 93.6 10 |845 834 1.1 |859 811 47 | 669 659 1.0 |277 242 35 |947 924 23 |857 813 44 |660 612 47 |72.7 696 3.1
Ancash 97.6 98.0 -0.4|87.6 90.0 -2.4 | 833 89.0 5.7 |69.6 745 -48 266 19.1i97.7 982 -0.5|97.9 980 -02 |647 630 1.8 |749 749 0.0
Apurimac 972 992 -2.0|89.0 903 -1.3|829 826 03 |684 756 |72 |237 229 09 |968 97.7 -09|99.1 999 -0.7|59.8 615 -1.7|733 750 -1.7
Arequipa 97.8 986 -0.8|91.9 939 -2.1|805 784 2.1 |69.7 80.5 303 30.8 -0.5|96.7 963 04 |988 990 -0.1|71.0 673 37 |773 779 -06
Ayacucho 957 93.8 1.8 | 882 87.6 0.6 |81.0 849 -39 |686 59.4 229 220 10 | 956 952 04 975 983 -08 |53.2 56.8 -3.6|71L0 707 0.3
Cajamarca 948 953 -0.5|87.2 902 -3.0 854 913 |-59|67.3 624 49 |21.8 21.4 05 |955 954 00 |87.1 87.4 -03|562 574 -1.2|702 706 -0.4
Callao 964 96.1 03 |81.4 825 -1.1|815 780 3.5 |73.7 746 -09 |408 405 03 |972 96.6 05 |99.6 998 -0.2|73.4 724 1.0 |785 782 03
Cusco 965 961 04 |884 859 25 832 747 850|665 74.8 [B88N 281 333 5.2 (971 979 -08 975 982 -0.7 |55.1 582 -3.1 (722 740 -18
Huancavelica  95.6 97.8 -2.2 | 86.9 887 -1.8 |84.7 89.0 -44 |661 71.6 55183 195 -1.2|951 959 -0.7 |92.9 93.1 -03 |42.9 466 -3.7 |669 694 -2.5
Huanuco 956 964 -0.8|89.6 922 -2.6 | 842 865 -2.4|659 649 1.0 |227 27.0 43 |964 964 00 |942 961 -19|60.8 669 | 6.1 |725 752 -2.7
Ica 971 973 -0.1|838 800 3.9 870 882 -12|73.0 858 [HM 391 382 10 (970 973 -03 (992 994 -02 (672 651 21 (773 780 -06
Junin 965 958 0.7 |89.6 91.8 -2.2 |80.6 81.0 -04 |63.2 605 27 |290 23.6 54 |956 963 -0.7|89.7 917 -19 |62.1 642 -2.1|725 726 -0.1
La Libertad 97.1 967 0.4 |826 80.6 2.0 |89 807 22 |680 643 37 |321 349 28968 963 04 |921 89.8 2.3 |665 626 3.9 |743 725 18
lambayeque ~ 95.9 954 0.4 861 845 17 |745 715 3.0 |689 726 -3.6 366 374 -0.8 951 940 10 |97.1 952 18 |686 60.9 (Al | 758 736 2.2
Lima Province 952 949 0.3 |83.6 828 08 [80.3 79.0 13 |73.1 755 -2.4 384 374 10 |973 976 -0.2|99.6 995 00 |72.6 702 2.4 |781 775 06
Loreto 838 856 -1.8|793 817 -25|70.4 758 |54 |66.2 73.1 169325 400 902 901 01 |e6.1 723 %2592 613 -2.1 |662 70.1|-38
Madre de Dios  95.5 995 -4.0 [810 822 -12|71.8 738 -19 |617 522 O8N 312 457 934 947 -12 886 97.9 (08N 545 65.4 [H0D) 686 738 -52
Moguegua 980 983 -0.3|90.1 888 14 |859 888 -2.9 |70.1 77.0 |69 |294 363 6.8 |97.4 979 -05|977 995 -18|69.2 722 -3.0|769 79.7 -2.8
Pasco 963 953 1.0 | 856 839 1.7 |83 810 1.3 |656 719 63 |225 31.2 962 967 -0.5|93.6 968 -3.3|654 699 45729 761 -3.1
Piura 972 980 -0.8|857 875 -1.8|81.1 81.8 -0.7 |67.4 693 -19 |368 375 -07 |96.6 96.8 -0.2 |919 919 00 |71.9 708 1.1 |76.4 768 -0.4
Puno 945 914 31 |763 750 1.4 |72.7 709 1.9 |644 40.8 213 186 2.7 | 925 919 06 |925 950 -2.5|41.2 434 21 |641 611 3.0
San Martin 946 932 14 902 909 -0.7 |82.7 785 41 |64.0 50.0.39.4 421 2.7 975 981 -0.6|935 920 15 |66.2 665 -03|757 740 1.7
Tacna 985 993 -0.890.2 90.2 00 |817 789 29 |709 648 60 |32.1 212 JHOMN 975 977 -02 982 986 -0.4 |63.6 600 3.6 |758 727 3.1
Tumbes 98.0 984 -0.4|929 939 -1.1|87.2 897 -24|639 67.9 -41|438 511 73 |965 967 -0.2|984 99.1 -0.6|852 832 2.0 |82.3 836 -13
Ucayali 927 945 -1.8|847 871 -2.4|702 691 1.0 |614 60.8 0.6 |41.5 42.0 -05|920 940 -2.1|825 88.6 62663 659 04 |72.0 733 -13
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BCG Bacillus Calmette-Guérin vaccine; DPT3 3 doses of Diphteria, pertussis, tetanus vaccine; CAREP Care-seeking for pneumonia; SBA Skilled attendant at
delivery; ANC4 Antenatal care 4 or more visits; ORS Oral rehydration salts; FPSmo Demand for family planning satisfied by modern methods; CC/ Composite
coverage index
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Supplementary table 7 — Predicted estimates for the composite coverage index (CCl) for the
provinces of Peru

. Point Standard 2.5th 97.5th
Provinces . . .
estimate error percentile percentile

Abancay 75.9 4.3 66.7 83.7
Acobamba 66.9 2.2 62.4 71.0
Acomayo 72.3 2.8 66.5 77.6
Aija 70.2 2.5 65.0 74.8
Alto Amazonas 61.9 1.7 58.6 65.1
Ambo 72.4 1.7 69.0 75.6
Andahuaylas 71.8 14 69.0 74.4
Angaraes 67.1 2.0 62.9 70.7
Anta 73.2 1.9 69.4 76.6
Antabamba 71.7 2.0 67.8 75.6
Antonio Raymondi 69.9 2.2 65.5 74.2
Arequipa 77.5 2.1 73.3 81.3
Ascope 76.8 1.9 73.0 80.3
Asuncion 71.9 2.4 66.9 76.7
Atalaya 60.2 2.5 55.0 64.9
Ayabaca 69.8 2.0 65.9 73.6
Aymaraes 73.1 1.7 69.8 76.2
Azangaro 61.6 2.0 57.5 65.4
Bagua 73.6 2.0 69.5 77.2
Barranca 79.4 2.5 74.2 84.0
Bellavista 72.8 1.9 69.0 76.3
Bolognesi 71.5 1.8 68.1 74.9
Bolivar 63.3 2.4 58.5 68.0
Bongara 73.5 2.7 67.8 78.5
Cajabamba 66.9 2.0 63.1 70.8
Cajamarca 69.8 2.0 65.8 73.4
Cajatambo 71.4 2.2 67.1 75.4
Calca 71.6 2.0 67.5 75.3
Callao 78.5 2.8 72.1 83.8
Camana 79.5 2.3 74.9 83.9
Canas 69.6 2.2 65.1 73.7
Canchis 70.8 4.3 61.9 78.9
Candarave 70.8 2.4 65.8 75.6
Cangallo 67.5 1.8 63.9 70.8
Canta 74.3 3.2 67.3 79.8
Carabaya 66.5 2.2 62.3 70.9
Caraveli 76.4 2.3 71.6 80.6
Carhuaz 72.4 2.3 67.7 76.6
Carlos Fermin

Fitzcarrald 70.8 2.2 66.5 75.1
Casma 76.0 2.2 71.6 80.1
Castilla 76.1 2.4 71.1 80.3
Castrovirreyna 63.6 2.5 58.7 68.4
Caylloma 70.6 2.0 66.5 74.3
Caiete 76.5 2.4 71.6 80.9
Celendin 67.5 2.0 63.5 71.2
Chachapoyas 77.3 4.6 68.2 85.3
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Chanchamayo
Chepén
Chiclayo
Chincha
Chincheros
Chota
Chucuito
Chumbivilcas
Chupaca
Churcampa
Concepcién
Condesuyos
Condorcanqui
Contralmirante Villar
Contumaza
Coronel Portillo
Corongo
Cotabambas
Cusco
Cutervo
Daniel Alcides Carridon
Dos de Mayo
El Collao

El Dorado
Espinar
Ferrefiafe
General Sanchez Cerro
Gran Chimu
Grau
Huacaybamba
Hualgayoc
Huallaga
Huamalies
Huamanga
Huanca Sancos
Huancabamba
Huancane
Huancavelica
Huancayo
Huanta

Huaral

Huaraz

Huari
Huarmey
Huarochiri
Huaura
Huaylas
Huaytara
Huenuco

Ica

llo

Islay

74.3
77.6
77.0
77.3
71.2
69.1
59.9
69.9
71.5
66.1
71.0
74.3
54.8
80.7
71.1
74.2
67.0
72.7
73.9
71.2
71.9
69.4
62.9
73.6
67.2
71.2
72.3
70.3
72.7
67.5
69.8
74.4
71.7
72.0
68.2
64.4
61.8
67.1
73.9
68.4
78.1
74.8
71.0
75.7
74.1
77.5
70.1
66.3
75.0
77.3
80.4
78.6
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4.7
4.0
2.7
4.0
2.7
1.5
2.5
1.8
2.9
1.7
3.0
2.3
2.4
1.7
2.1
2.9
2.6
1.7
4.4
2.3
1.6
1.9
2.8
2.3
2.7
2.1
2.2
3.6
2.3
2.2
4.1
3.4
1.5
4.1
2.2
2.0
2.2
2.0
3.0
1.4
2.0
4.3
1.6
2.0
1.8
2.0
3.0
2.1
2.2
3.5
3.4
2.2

64.0
69.4
714
68.9
65.7
65.9
55.0
66.4
65.8
62.6
65.0
69.7
50.3
77.1
66.8
68.1
61.8
69.5
65.1
66.4
68.7
65.8
57.0
68.9
61.5
67.1
67.9
62.8
68.1
63.2
61.4
67.2
68.8
64.1
64.0
60.2
57.3
63.0
68.0
65.6
73.8
65.7
67.8
715
70.4
73.5
64.1
62.3
70.2
70.0
73.3
74.3

82.3
84.4
81.8
84.2
76.2
72.0
64.8
73.3
76.9
69.3
76.5
78.6
59.3
83.8
74.9
79.7
71.6
75.9
82.0
75.8
74.9
73.2
68.3
77.7
72.3
75.3
76.4
76.6
76.9
71.8
77.1
80.8
74.3
79.6
72.6
68.2
66.1
70.9
79.4
71.0
81.9
82.2
74.2
79.3
77.5
81.2
75.8
70.2
79.0
83.7
86.8
82.4



Jauja

Jaén

Jorge Basadre
Julcan

Junin

La Convencidn
La Mar

La Unidn

Lago Titicaca
Lamas
Lambayeque
Lampa
Lauricocha
Leoncio Prado
Lima

Loreto
Lucanas

Luya

Manu
Marafidon
Mariscal Caceres
Mariscal Luzuriaga
Mariscal Nieto
Mariscal Ramon Castilla
Maynas
Melgar

Moho
Morropdn
Moyobamba
Nazca

Ocros

Otuzco
Oxapampa
Oyon
Pacasmayo
Pachitea
Padre Abad
Paita

Pallasca

Palpa
Parinacochas
Paruro

Pasco

Pataz

Paucar del Sara Sara
Paucartambo
Picota

Pisco

Piura
Pomabamba
Puerto Inca
Puno

72.3
72.5
77.0
62.8
72.9
71.7
70.0
72.3
63.3
76.1
73.8
63.3
69.4
75.8
78.1
61.7
72.3
72.8
68.0
69.2
75.4
71.6
76.9
62.9
69.1
65.4
63.9
73.4
76.3
78.7
73.7
67.0
71.0
72.6
76.8
70.5
72.8
77.8
65.2
76.4
71.7
72.4
74.7
68.3
73.1
69.0
73.6
76.4
78.3
70.6
70.2
64.2
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1.9
1.6
2.3
2.8
1.8
1.7
1.4
2.6
2.8
2.3
1.5
2.1
1.9
1.7
1.3
2.1
1.7
1.5
2.4
1.7
4.3
2.2
2.1
2.6
2.0
2.0
2.8
1.9
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Supplementary Figure 1 — Map of log of population density in Peru
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Abstract

Background: Monitoring health inequalities is an essential and continuous process to ensure
equitable progress in the countries. However, studying the geographic inequality dimension
presents many challenges including the modifiable areal unit problem (MAUP). This study aims
to quantify the magnitude of the scale effect, one of MAUP’s issues, when assessing geographic

inequalities over time in household surveys using complex measures of inequality.

Methods: Using data from two national health surveys carried out in Peru in 2009 and 2019, we
applied a model-based geostatistical approach to generate estimates for stunting in children
under-5 at different resolutions. Then, we calculated four complex measures of inequality
(weighted and unweighted mean absolute difference to the mean and index of disparity) and

used them to compare inequalities between resolutions and over time.

Results: The magnitude of the inequality measures increases as the number of geographical
units increase, but it reached a plateau around 2000 geographical units for all measures. The

absolute difference over the years remained stable for matching resolutions. Population-
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weighted measures of inequality varied substantially less between resolutions than their

unweighted counterparts.

Conclusions: Overall, weighted inequality measures presented more stability, especially for
absolute measures, and the magnitude of the changes over time was not affected by the MAUP

when comparing years at the same resolution.

Introduction

Monitoring and reducing inequalities is as crucial as ever as the world marches in the pursuit of
the Sustainable Development Goals set for 2030 (1). Dimensions such as wealth, education and
place of residence are long studied and have been monitored at global, regional, and local levels
in most low- and middle-income countries (2). However, within-country subnational
geographical units (districts, provinces, regions, etc.) are often overlooked especially in multi-
country comparisons and in the assessment of progress over time. Although central to the
process of policy design and decision-making, monitoring inequalities for subnational units
require accounting for the modifiable areal unit problem (MAUP) and facing the challenges of
measuring inequalities among unordered groups (3,4), which could partly explain the reason
other inequality dimensions are preferred. Estimates for subnational geographical units are
obtained by aggregating data points (e.g., sample clusters in household surveys) based on a
modifiable number of areas and shapes for the boundaries. Thus, the MAUP implies that
changing these parameters may affect the interpretation of geographical analyses due to
differences in scale (number of areas) or zoning (boundaries) alone, despite being originated
from the same data points. This potential issue has been acknowledged by many studies in the
field of geography and health inequalities (4—6), but a clearer picture of the amount of

uncertainty inherent from the variation in the size and aggregation of these areas is desired.
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Due to fragile and inefficient health information systems, most low- and middle-income
countries rely on national household surveys as their primary source of information on
reproductive, maternal, newborn and child health (RMNCH). These surveys are often carried out
every 3 to 5 years collecting information on multiple health indicators whose estimates are
representative nationally and for the first administrative division of the country - generally large
areas such as macroregions (states, regions) or the aggregation of smaller subdivisions. As of
late, studies have used geospatial models to obtain reliable estimates for smaller geographical
units from the surveys based on spatial correlation and geospatial covariates (7). This strategy
allows the use of subnational divisions whose estimates are more suitable for policy planners
and expand the possibilities for monitoring geographical inequalities over time and between
countries. Yet, empirical evidence on the impact of the MAUP is necessary to guide further
studies that aim to use geospatial modeling to quantify inequalities from a geographical

perspective.

This study aims to test the effects of the MAUP in assessing geographic inequalities over time by
using geospatial models and complex measures of inequality at different resolutions in two
Peruvian surveys as a case study. We expect to show the variation in absolute and relative
measures at different resolutions (the scale effect) and compare whether differences over time

vary as the scale changes.

Methods

Data

We used data from the Encuesta Demografica y de Salud Familiar (ENDES), a population-based
survey carried out in 2009 and 2019 in Peru (8,9). These surveys are designed to provide
representative estimates at national and departmental level for several RMNCH indicators. They
use a multi-stage sampling design accounting for age, sex and other characteristics of the

population where the clusters are selected in the first stage, followed by the selection of
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households in the second stage. Peru is administratively divided into 25 departments,

subdivided into 195 provinces which are further disaggregated into 1761 districts.

The outcome selected for the analysis was the prevalence of stunting defined as the percentage
of under-five children with height-for-age below -2 standard deviations in comparison to the
World Health Organization Child Growth Standard (10), based on anthropometric measures

collected by trained interviewers.

Geospatial modelling

A total of 11 geospatial covariates were prepared and tested to be used as predictors in the
geospatial model. The covariates relate to sociodemographic characteristics, urbanization,
accessibility, vegetation, and topography which were previously used as potential predictors in
other studies (11,12). The final set of covariates for each model were selected following a
backwards stepwise logistic regression at 5% significance level. The list of candidate covariates

is presented in the Supplementary Table 1.

We followed a Bayesian framework to generate estimates at 5 x 5 km, 10 x 10 km and 25 x 25
km resolutions using a model-based geostatistical approach (13) based on spatial correlation
and geospatial variables (14,15). Given Y (s;) is the number of households at cluster location s;
(i=1, ..., n), out of a total of N(s;) households sampled at the location, the model can be defined

as follows:

Y (s;) ~Binomial (N(s;),p(s;))
logit(p(s;)) = x(s)" B+ w(s;) + €(s;)
where x(s;) is a set of covariates for each cluster s;, § are the corresponding regression
parameters, w(s;) is a Gaussian spatial random effect used to capture residual spatial
correlation in the model, and €(s;) is a Gaussian random effect used to model non-spatial

residual variation. We used the integrated nested Laplace approximation with the stochastic
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partial differential equations to fit the geostatistical model (16). Estimates for the grid-level
resolutions were obtained by drawing 1000 samples from the posterior distribution generated
by the model and were further aggregated into the first, second and third administrative

divisions using population estimates obtained from Worldpop (17) for weighting.

We carried out an out-of-sample cross validation strategy with 5 folds to ensure model stability.
Model performance was assessed using mean error (bias), the mean absolute error and the

correlation between predicted and observed cluster values.

Inequality measures

We used four complex measures of inequality for unordered groups to quantify the magnitude
of the inequalities in the prevalence of stunting estimated at different resolutions. The mean
absolute difference to the mean (MADM) is an absolute measure that uses the national average
as the reference and takes the mean of all the absolute differences of each subnational unit to
the reference. As a relative measure, we opted for the index of disparity (IDISP), which can be
interpreted as the relative counterpart of the MADM. It takes the mean of the absolute
differences to the reference value (national average) and further divides it by the reference
value and multiplies the quotient by 100. We calculated for both measures unweighted and
population-weighted versions in each resolution. The inequality measures were calculated
according to the following equations

z:jlrj - rrefl

MADM =
J

Zj|rj_rref|/]
Tref

IDISP = * 100
WMADM = Z |77 = Trer| * Wy
j

WIDISP = —Zf”f‘r”ef %+ 100
ref

115



where 1; is the estimate for each subnational unit, ;.. represents the national average, J is the
total number of subnational units and w; is the proportion of the total population in each

subnational unit.

MAUP effects

As mentioned above, MAUP has two main components: scale and zoning effects. The statistical
analyses focused on scale effects, which were assessed by comparing results for the inequality
measures calculated at the following resolutions: departments (25 units), provinces (195 units),
districts (1761 units), 25 x 25km areas (2,657 units), 10 x 10 km areas (15,869 units) and 5 x 5
km areas (62,388 units). We evaluated the potential impact of the scale effect in two scenarios:
a) the behavior of each inequality measures at different resolutions in each time point and b)

the gap between time points in each inequality measures at different resolutions.

By comparing estimates between districts and areas of 25 x 25 km, where the number of
geographical units is similar, the zoning effect can also be observed. However, this effect was

not formally assessed in this study, and it is only briefly mentioned in the discussion section.

Survey data analysis, the covariate selection process and the calculation of the inequality
measures was done in Stata 16 (18) while R 4.0.2 (19) was used for the processing of geospatial

covariates, model fitting and validation.

Results

Geospatial models for both years were fit using altitude, improved sanitation, and the mean
number of household members as covariates. For 2009, they also included travel time to cities,
improved water, percentage of households in the first two quintiles of wealth, distance to
protected areas and percentage of indigenous population. For 2019, the additional covariates

were enhanced vegetation index and the mean years of education for women (Supplementary
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Table 2). Based on the cross-validated results, the correlation of predicted and observed
estimates at cluster-level was 0.65 and 0.56 for 2009 and 2019, respectively. Bias was very close
to zero for both years and the mean absolute error was 13 percentage points (p.p.) in 2009 and
10p.p. in 2019 (Supplementary Table 3). We also compared published and predicted estimates
at the first administrative level (ADM1) and found mean differences of 0.5p.p and -0.9p.p in
2009 and 2019, respectively, while the largest differences were 7.1p.p. in 2009 and -4.2p.p. in

2019 (Supplementary Table 4).

The national prevalence of stunting decreased from 23.9% in 2009 to 12.2% in 2019. At the first
administrative level (ADM1), the gap between the best and worst performing subnational units
was 49.7p.p. in 2009, decreasing to 28.2p.p. in 2019 (Table 1). Absolute inequalities decreased
from around 11p.p. to a little over 6p.p. from 2009 to 2019, but this pattern was not observed

for relative measures in the same period (Table 1).

When comparing subnational units disaggregated at the second administrative level (ADM2) to
ADM1, the gaps are larger in both years but the reduction over time in percentage points is very
similar (21p.p. for ADM1 vs 24p.p. for ADM2) for the absolute measures. The same pattern is
observed in higher resolutions where the gap between regions continues to increase but the
absolute difference over the years is stable. However, in relative terms, the inequality direction
seems to reverse as the number of subnational units increase when comparing 2009 to 2019

(Table 1).

Both absolute measures of inequality increased as the resolution got higher, although the
unweighted MADM varied substantially more than its weighted version (Figure 1). In the relative
measures, a much steeper increase can be observed with the increase in the size of the
subnational units, and a more stable pattern is seen in the weighted version of the IDISP (Figure
2). For all measures, the increase tends to reach a plateau from the 25 x 25 km to higher

resolutions.
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Table 1 — Inequality measures calculated for stunting in children under-five at each of the

predicted resolutions for Peru in 2009 and 2019

- _ Number __ Worst-best MADM WMADM IDISP WIDISP
esolution ¢ inits 2009 2019 2009 2019 2009 2019 2009 2019 2009 2019
ADM1 25 497 282 114 65 106 63 547 520 510 507
ADM2 195 608 368 151 92 122 7.6 721 734 586 611
ADM3 1,761 661 475 158 96 125 80 757 773 600 64.1
25 x 25 km 2,657 709 488 186 134 127 79 930 1059 636 62.6
10x10km 15869 742 553 186 13.8 125 80 922 1133 621 66.0
5 x5 km 62,388 768 567 187 138 125 81 915 1138 615 66.5

MADM: Mean absolute difference to the mean; WMADM: Weighted mean absolute difference

to the mean; IDISP: Index of disparity; WIDISP: Weighted index of disparity
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Figure 1 — Absolute inequalities measures for each of the estimated resolutions in 2009 and

2019.
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Figure 2 — Relative inequalities measures for each of the estimated resolutions in 2009 and
2019.

Discussion

Here, we assessed the behavior of four complex measures of inequality between six levels of
aggregation and compared them in two points in time. The magnitude of the inequalities
increased along the number of subnational units in all scenarios, but such increase stabilized in
different resolutions for each inequality measure. This plateau is better observed when
estimates are disaggregated after the grid-level, where very little variation is seen regardless of
the grid size. From the third administrative level to the most aggregated grid-level estimates, a
different effect of the MAUP is noticed. Also known as the zoning effect (20), estimates seem to
change based on the shape of the geographical units rather than its number, since we move
from administratively defined borders to equal-sized grid-cells. Weighted measures accounting
for the population in each subnational unit have consistently shown to be less affected by the

scale effect, suggesting they are more stable for monitoring inequalities in the dimension of
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subnational geographic units. Lastly, the magnitude of changes over time seems to be consistent
regardless of the resolution for absolute inequality measures, but such interpretation should be

taken cautiously for relative inequality measures, especially in higher resolutions.

The influence of the MAUP over geographically disaggregated estimates presented in this study
seems to be consistent with the literature. The scale effect tends to be minimized when working
with geographical units in higher resolutions (6), although this may not be available in many
cases without indirect estimation such as geospatial modeling due to the sample design of the
surveys. Also, comparing inequalities in one country over time using matching resolutions is
unlikely to be impacted by the MAUP effects (5) for absolute inequality measures. However, the

same may not be true when assessing inequalities through relative measures.

The inequality measures evaluated in our study are a part of a large set of complex measures,
all of which have strengths and limitations. Both the MADM and the IDISP use the national
average as a benchmark in their calculations and changing the benchmark may lead to different
interpretations of the results. We have also compared the use of weighted and unweighted
measures of inequality, and they both tell different stories. While the weighted measures tend
to be less affected by the scale effect, they are driven by estimates of areas with larger
populations, capturing the density of the spatial outcome more than its spatial heterogeneity,
in which the latter could be better assessed using unweighted measures. Opting to go with
unweighted or weighted measures mostly depends on the nature of the research question and
evaluating them as complementary results should always be considered. The same applies for
absolute versus relative ones. Nonetheless, these measures were chosen to illustrate how
inequalities may shift in the proposed scenarios and conclusions may not hold for different

inequality measures.

All in all, some limitations and caveats should be considered when interpreting our findings.

First, the estimates produced at the studied resolutions are derived from geospatial models,
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which also carry their share of uncertainty. Also, despite the large increase of the use of
geospatial models in the past years and the likeliness that they will become an integral part of
the data used for monitoring and accountability, there is still very scarce information of global
health indicators at resolutions beyond what is offered by the household surveys. Moreover, if
the quality of fit differs between surveys, it could also impact on the inequality measures. Lastly,
the assessment of the scale effect using the inequality measures did not account for the

uncertainty of each estimate.

Conclusions

This study attempted to quantify the magnitude of the scale effect of geographical units on
empirical data and understand the impact on inequality measures and its variation over the
years. We found that weighted inequality measures presented more stability in all scenarios
especially for absolute measures, and the magnitude of the changes over time was not affected
by the MAUP when comparing years at the same resolution. Further empirical studies are
desired to validate the magnitude of the scale effect in other countries and to confirm that

measuring geographic inequalities through time is viable and reliable.
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Supplementary table 1 — Description of covariates considered for the analysis

Covariate Year Resolution Unit Source

Altitude NA 5km meters SRTM (raster package)
Travel time to cities . ftp://ftp.worldpop.org.uk/GIS/Covariates/
>50,000 2000 Skm - minutes Global_2000_2020/PER/
Dlsjc:.:\rimce to health 5017 Skm meters https.://W\.Nw.datosablertos.gob.pe/datas
facilities et/minsa-ipress
Enhanced vegetation 2009, 0to 10000 (leastto  https://ladsweb.modaps.eosdis.nasa.gov/
. 5km . .
index 2019 most vegetation) search/history

. . . 2009, ftp://ftp.worldpop.org.uk/GIS/Covariates/
Nighttime lights 2016 5km nW/cm2/sr Global 2000 2020/PER/
Improved water 2003, 5km roportion Interpolated using krigin
coverage 2019 prop P g Kriging
Improved sanitation 2009, . . .
coverage 2019 5km proportion Interpolated using kriging
Mean number of 2003, 5km number Interpolated using krigin
household members 2019 P g Kriging
% of households in 2003, 5km roportion Interpolated using krigin
Q1 or Q2 2019 prop P g Kriging
Mean women's years 2009, . . .
of education 2019 5km proportion Interpolated using kriging
% of indigenous 2009, . . .
population 2019 5km proportion Interpolated using kriging
Distance to 2009, Skm km ftp://ftp.worldpop.org.uk/GIS/Covariates/
protected areas 2017 Global_2000_2020/PER/
Distance to build 2009, Skm km ftp://ftp.worldpop.org.uk/GIS/Covariates/
settlements (BGSM) 2017 Global_2000_2020/PER/
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Supplementary Table 2 - Covariates selected for the models in each survey year

Covariate 2009 2019
Altitude X X
Distance to health facilities
Travel time to cities 50k X
Enhanced vegetation index X

Nighttime lights

Improved water X

Improved sanitation X X

% of households in Q1 or Q2 X

Number of household members X X

Distance to built settlements

Distance to protected areas X

Years of education (women) X

% of indigenous population X

Supplementary Table 3 — Model validation metrics

Cross-validation In-sample
Survey Correlation Bias MAE Correlation Bias MAE

Peru 2009 0.65 0.01 0.13 0.87 0.01 0.09
Peru 2019 0.56 0.00 0.10 0.75 0.00 0.08
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Supplementary Table 4 — Comparison of predicted vs observed estimates at department-level
(adm1) for stunting in 2009 and 2019

Department 2009 2019

Pred Obs Diff Pred Obs Diff
Amazonas 31.1 27.1 -4.0 17.4 17.9 0.5
Ancash 32.6 28.2 -4.3 17.9 16.2 -1.7
Apurimac 37.7 34.6 -3.1 19.1 16.2 -2.8
Arequipa 9.9 12.2 2.3 5.6 6.1 0.4
Ayacucho 41.0 41.4 0.4 21.4 17.3 -4.2
Cajamarca 36.2 39.8 3.7 26.3 254 -0.9
Callao 7.4 6.0 -1.5 4.5 3.8 -0.7
Cusco 33.5 38.5 51 15.9 13.9 -2.1
Huancavelica 52.8 53.7 0.9 31.2 304 -0.8
Huanuco 379 39.9 2.0 225 19.3 -3.2
Ica 10.3 10.2 -0.1 5.6 5.5 -0.1
Junin 32.7 335 0.9 17.5 18.7 1.2
La Libertad 20.1 27.2 7.1 135 12.7 -0.8
Lambayeque 15.0 18.2 3.1 8.5 111 2.7
Lima Province 8.3 9.0 0.7 5.0 5.5 0.5
Loreto 32.6 28.9 -3.6 26.4 23.7 -2.8
Madre de Dios 15.3 12.6 -2.7 8.6 8.3 -0.3
Moquegua 8.4 53 -3.0 4.2 2.5 -1.8
Pasco 37.0 38.5 14 17.2 15.8 -1.4
Piura 215 22.9 13 13.1 13.0 -0.1
Puno 26.5 27.3 0.9 15.6 12.6 -3.0
San Martin 24.4 28.2 3.8 12.4 11.5 -0.9
Tacna 3.1 2.1 -1.0 3.0 2.4 -0.6
Tumbes 13.4 13.5 0.1 7.4 7.5 0.1
Ucayali 28.5 29.9 1.4 17.4 17.4 0.0
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Press release

Geospatial modeling is a powerful tool to reveal geographic inequalities and target

health interventions

A study conducted at the International Center for Equity in Health from the Federal University
of Pelotas evaluated the use of geospatial modeling methodologies as a tool to increase the
quality and availability of data used to monitor inequalities in maternal and child health in low-
and middle-income countries. These results were produced in the PhD research of the student
Leonardo Zanini Ferreira under the supervision of professor Aluisio JD Barros. “Analyzing the
estimates produced by these models, in comparison to those directly observed through the
surveys, is almost like adding a magnifying glass to a huge map. Despite adding some degree of

uncertainty, this allows us to assess specific areas in much more detail.”, comments Leonardo.

The researchers also assessed how these methodologies are being applied in the area of
maternal and child health and the challenges of comparing geographic inequalities at different
levels of aggregation. “We are talking about methodologies that have grown exponentially in
the literature in recent years and that have much to contribute to the study of inequalities”.
According to the authors, high-resolution maps are extremely powerful resources due to their
ease of interpretation, in addition to their ability to present large amounts of data
simultaneously. In Peru, a clear pattern of high coverage in the coastal areas and low coverage
in the north and east of country emerges when estimates for the provinces are observed. And,
especially in the jungle areas, the high-resolution maps reveal huge differences even within the
provinces. “Managers often ask where the most vulnerable populations are and maps allow us
to point directly at them. With these technologies, we continue to increase the chances of these
marginalized groups to be identified and receive the care and attention that they are entitled

to”, concludes the author.
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Nota de imprensa

Modelagem geoespacial é uma ferramenta poderosa para expor desigualdades

geograficas e direcionar intervencdes em satde

Um estudo conduzido no Centro Internacional de Equidade em Saude da Universidade Federal
de Pelotas analisou o uso de metodologias de modelagem geoespacial como uma ferramenta
para aumentar a qualidade e disponibilidade dos dados utilizados para o monitoramento de
desigualdades em saude materno-infantil em paises de baixa e média renda. Estes resultados
foram obtidos através da pesquisa de doutorado do estudante Leonardo Zanini Ferreira sob
orientacdo do professor Aluisio JD Barros. “Analisar as estimativas produzidas por esses
modelos, em comparag¢do com as observadas diretamente através dos inquéritos, é quase
como adicionar uma lupa a um enorme mapa. Mesmo com algum ganho de incerteza, isso nos

permite avaliar areas especificas com muito mais detalhes.”, comenta Leonardo.

Os pesquisadores também avaliaram como estas metodologias estdo sendo aplicadas na area
de salde materno-infantil e os desafios de comparar desigualdades geogréficas em diferentes
niveis de agregacdo. “Estamos falando de metodologias que cresceram exponencialmente na
literatura nos ultimos anos e que tem muito a contribuir para o estudo das desigualdades”.
Segundo os autores, mapas de alta resolugdo sdo recursos extremamente poderosos pela sua
facilidade de interpretagao, além de sua capacidade de apresentar grandes quantidades de
dados simultaneamente. No Peru, um claro padrdo de alta cobertura nas areas de costa e
baixa cobertura no norte e leste do pais emerge quando estimativas para as provincias sdao
observadas. E, especialmente para as areas de selva, os mapas de alta resolugdo revelam
enormes diferengas mesmo dentro das provincias. “Gestores costumam perguntar onde estao
as populagdes mais vulnerdveis e os mapas nos permitem apontar diretamente para eles. Com
essas tecnologias, cada vez mais aumentamos as chances desses grupos marginalizados serem

identificados e receberem o cuidado e atencdo que lhes é de direito”, conclui o autor.
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