

MONITORAMENTO SAZONAL DA QUALIDADE DAS ÁGUAS DA BACIA HIDROGRÁFICA DA LAGOA MIRIM ATRAVÉS DE MATRIZ DE CORRELAÇÃO

MARLON HEITOR K. VALENTINI¹; GABRIEL BORGES DOS SANTOS²; GABRIEL GIRARDI PAN²; IVANNA FRANCK KOSCHIER²; LARISSA ALDRIGHI DA SILVA²; BRUNO MÜLLER VIEIRA³

1Universidade Federal de Pelotas – marlon.valentini@hotmail.com 2Universidade Federal de Pelotas – gabrielwxsantos@hotmail.com 2Universidade Federal de Pelotas – gabrielgpan@hotmail.com 2Universidade Federal de Pelotas – ivannafk@hotmail.com 2Universidade Federal de Pelotas – larissa.aldrighi@gmail.com 3Universidade Federal de Pelotas – bruno.prppg@hotmail.com

1. INTRODUÇÃO

Os centros urbanos, ao longo da história, se desenvolveram no entorno de rios e lagos, demonstrando que os recursos hídricos desempenham um grande papel no desenvolvimento das populações (OLIVEIRA, 2017). Com o aumento da concentração populacional urbana, altos índices de poluição, bem como de outros fatores associados a aglomerados populacionais, decorre-se em um crescimento da preocupação com a qualidade dos recursos naturais, tais como a qualidade dos recursos hídricos. (RESENDE, 2002).

A Lagoa Mirim possui aproximadamente 375 mil hectares de superfície de água e é uma das lagoas de água doce mais importante do Brasil, sendo o segundo maior corpo hídrico do país, localizando-se na costa atlântica da América do Sul. Ela apresenta um elevado índice de poluição de origem agrícola em consequência da grande extensão territorial de suas áreas utilizadas para a agricultura. Não obstante, outro fator que contribui para a poluição dessa lagoa é o lançamento de esgoto urbano e industrial não tratado lançado no canal São Gonçalo, onde ocorre a interligação da Lagoa Mirim à Lagoa dos Patos (STEINKE, 2008; OLIVEIRA et al, 2015).

Logo, o objetivo deste estudo é analisar sazonalmente a qualidade deste recurso hídrico, através de métodos estatísticos tais como uma matriz de correlação para demonstrar como os parâmetros utilizados para o monitoramento da Lagoa Mirim se correlacionam entre si em diferentes estações do ano.

2. METODOLOGIA

Este estudo foi desenvolvido na Bacia Hidrográfica da Lagoa Mirim, localizada na Planície Costeira do Rio Grande do Sul, entre o sul do Brasil e o norte do Uruguai. As amostras analisadas foram coletadas em 7 pontos de monitoramento, conforme apresentados na Tabela 1. Estas amostras foram encaminhadas para análise no laboratório de águas e efluentes da Agência de Desenvolvimento da Lagoa Mirim, onde foram analisados 10 parâmetros, conforme as tabelas 1 e 2. Todas as análises laboratoriais seguiram a metodologia descrita por APHA (2017).

As coletas realizadas compreendem os anos de 2014 a 2017, totalizando 31 coletas, conforme os pontos descritos na tabela 1.

Tabela 1: Pontos de monitoramento da qualidade das águas da Lagoa Mirim

ı	dentificação	Coordenad	as
LM1	Praia do Pontal	32°20'052''	52°49'21,5"
LM2	Fazenda Bretanha	32°29'14,0"	52°58'14,9"
LM3	Fazenda São Francisco	32°38'25,6"	53°08'56,8"
LM4	Capilha	32°29'23''	52°35'33''
LM5	Curral Alto	32°44'47,41''	52°40'35,99"
LM6	Vila Anselme	32°54'31''	52°48'08''
LM7	Porto de Santa Vitória	33°29'51''	53°26'09''

Fonte: Org. do Autor

Como tratamento prévio dos dados, afim de evitar que a diferença nas ordens de grandeza influenciassem na matriz de correlação, realizou-se a padronização dos dados seguindo a metodologia descrita por WILKS (2006). Uma vez de posse dos dados padronizados, procedeu-se com a matriz de correlação entre os parâmetros utilizados para o monitoramento da Lagoa Mirim. O software utilizado para a construção da matriz de correlação foi o Excel *ActionStat*, através do qual obteve-se a matriz de correlação conforme apresentada nas Tabelas 2 e 3. Os dados utilizados para fazer a matriz de correlação refere-se as médias anuais dos parâmetros analisados em laboratório, referentes as coletas realizadas para cada um dos pontos de monitoramento.

3. RESULTADOS E DISCUSSÃO

Conforme verificado na matriz de correlação referente ao período primaveraverão, na tabela 2, podemos observar que as variáveis temperatura, condutividade, coliformes e DBO não apresentam forte correlação com nenhuma outra variável para o período indicado. As demais variáveis apresentaram correlação forte com ao menos uma das outras variáveis. A que mais apresentou correlações fortes foi a variável OD apresentando, respectivamente, correlações fortes com outras três variáveis. Os valores destas correlações podem ser visualizados na tabela 2, sendo o de mais alto valor, em módulo, o da correlação entre pH e OD (0,77).

No que diz respeito ao período outono-inverno, conforme mostrado na tabela 3, pode-se observar que apenas a variável DBO não apresenta correlação forte com nenhum dos outros parâmetros. As demais variáveis apresentaram forte correlação com ao menos uma das outras, sendo a de maior expressão a correlação entre pH e NTK (0,69).

Para os fins deste estudo, consideramos como correlação forte os valores superiores, em modulo, a 0,5.

Tabela 2: Matriz de correlação primavera-verão

Matriz de correlação - Verão/Primavera

	T (°C)	Cond (m S/cm)	P (mg/L)	N (mg/L)	COLIFORMES (NP/100mL)	DBO (mg/L)	OD (mg/L)	TURB (NTU)	PHLAB	ST (mg/L)
T (°C)	1,00									
Cond (m S/cm)	-0,15	1,00								
P (mg/L)	-0,01	0,46	1,00							
N (mg/L) COLIFORMES	-0,02	-0,31	-0,05	1,00						
(NP/100mL)	-0,31	0,20	0,01	-0,01	1,00					
DBO (mg/L)	0,33	-0,36	0,20	0,25	-0,24	1,00				
OD (mg/L)	0.06	0.07	-0.10	-0.60	-0,09	-0,08	1,00			
TURB (NTU)	-0.08	-0.31	0.34	0,37	0,15	0.22	-0.52	1,00		
PH LAB	-0.11	-0.09	-0.18	0.54	0,10	0.02	-0,77	0,37	1,00	
ST (mg/L)	-0.01	0.14	0.57	0.00	0.02	0,13	-0,10	0.53	-0.03	1.00

Fonte: Org. do Autor

Tabela 3: Matriz de correlação outono-inverno

Matriz de correlação - Outono/Inverno

	T (°C)	Cond (m S/cm)	P (mg/L)	N (mg/L)	COLIFORMES (NP/100mL)	DBO (mg/L)	OD (mg/L)	TURB (NTU)	PH LAB	ST (mg/L)
T (°C)	1,00									
Cond (m S/cm)	0,01	1,00								
P (mg/L)	0,09	0,27	1,00							
N (mg/L)	-0.45	-0,19	0.38	1,00						
COLIFORMES (NP/100mL)	0,34	0,50	0,01	-0,52	1,00					
DBO (mg/L)	-0,04	-0,06	-0,36	-0,17	-0,19	1,00				
OD (mg/L)	0,00	-0,62	-0,51	-0,18	-0,27	0,35	1,00			
TURB (NTU)	0,55	-0,25	0,32	-0,04	-0,01	-0,10	0,04	1,00		
PH LAB	-0,10	-0,35	0,44	0,69	-0,42	-0,15	-0,21	0,09	1,00	
ST (mg/L)	0,16	0,61	0,38		0,37	0,08	-0,29	0,36	-0,29	1,00

Fonte: Org. do Autor

4. CONCLUSÕES

Através deste estudo pode-se concluir que é possível fazer o uso de uma matriz de correlação para as variáveis analisadas no monitoramento da Lagoa Mirim, bem como estas matrizes podem ser de grande utilidade para o monitoramento da qualidade destas águas. Foi verificado que há diferença sazonal no que diz respeito a correlação entre os parâmetros analisados, bem como, nos dois períodos estudados, pode-se observar fortes correlações entre os parâmetros considerados neste estudo, o que confirma a importância de analisar tais variáveis e atesta a relevância do uso deste método para o monitoramento dessa bacia hidrográfica.

5. REFERÊNCIAS BIBLIOGRÁFICAS

OLIVEIRA, H. A.; FERNANDES, E. H. L.; MÖLLER JUNIOR, O. O.; COLLARES, G. L. Processos hidrológicos e hidrodinâmicos da Lagoa Mirim. Revista Brasileira de Recursos Hídricos, v. 20, n. 1, p. 34-45, 2015.

OLIVEIRA, M. L. V. M. Gestão de águas, territórios e desenvolvimento econômico. ACTA Geográfica, Boa Vista, v.11, n.27, set./dez. de 2017. pp.42-61.

DE RESENDE, A. V. Agricultura e qualidade da agua: contaminacao da agua por nitrato. Embrapa Cerrados-Documentos (INFOTECA-E), 2002.

STEINKE, Valdir Adilson; SAITO, Carlos Hiroo. Exportação de carga poluidora para identificação de áreas úmidas sob risco ambiental na bacia hidrográfica da Lagoa Mirim. 2008.

WASTEWATER. 23.ed. Washington, DC, EUA: American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), 2017

WILKS, D. S.; Statistical Methods in the atmospheric sciences second edition. International geophysics series 91, 2006.