

CARACTERIZAÇÃO DOS AGREGADOS PARA ESTUDO DO USO DA TERMOGRAFIA INFRAVERMELHA NA DETECÇÃO DE CORROSÃO EM ESTRUTURAS DE CONCRETO ARMADO

TAIS MARINI BRANDELLI¹; FERNANDO RITIÉLE TEIXEIRA²; CHARLEI MARCELO PALIGA³; ARIELA DA SILVA TORRES⁴

¹Uiversidade Federal de Pelotas – taisbrandelli @hotmail.com
 ²Universidade Federal de Pelotas – fernandoteixeira5400 @gmail.com
 ³Universidade Federal de Pelotas – charlei.paliga @ufpel.edu.br
 ⁴Universidade Federal de Pelotas – arielatorres @gmail.com

1. INTRODUÇÃO

Um concreto deve preservar sua forma, qualidade e capacidade de uso para o qual foi projetado e pelo tempo previsto, sua vida útil (METHA & MONTEIRO, 2008). Nas estruturas de concreto armado, a corrosão das armaduras é uma manifestação patológica que compromete o desempenho e a segurança estrutural (HELENE, 1993).

Para HIASA et al. (2016) o monitoramento e a inspeção periódica das estruturas são indispensáveis, pois permite a manutenção e recuperação da estrutura, prolongando sua vida útil. Atualmente as técnicas de inspeção não destrutivas tem se destacado por permitirem a avaliação da condição do concreto para fins de reabilitação e por assegurarem a qualidade dos reparos realizados, sem agredirem a construção (ACI, 2013). Uma técnica não destrutiva que tem sido amplamente estudada é a termografia por infravermelhos, capaz de detectar, de forma rápida, à distância e em tempo real, a temperatura superficial dos elementos, possível pela emissão da radiação infravermelha dos objetos (BARREIRA, 2004).

A condutividade térmica do concreto interfere significativamente no uso da termografia, FARRAG et al. (2016) afirmam que quanto maior a densidade do concreto, definida pela sua dosagem, melhor a detecção de defeitos por leitura termográfica. Esta pesquisa irá utilizar o método de dosagem da ABCP, em função da facilidade e confiança que a dosagem oferece. O uso do método é condicionado pela caracterização dos materiais (BOGGIO, 2000).

Diante do exposto, este trabalho teve como objetivo caracterizar os agregados que serão utilizados para a confecção do concreto que, posteriormente, será submetido ao ensaio termográfico a fim de validar que através do seu uso é possível identificar a corrosão de armaduras.

2. METODOLOGIA

Os ensaios de caracterização foram realizados nos agregados miúdo e graúdo, em duas amostras de cada material, seguindo a normatização vigente.

A composição granulométrica do agregado graúdo e miúdo seguiu a NBR NM 248 (ABNT, 2003), como mostrado na Figura 1. O ensaio de absorção do agregado miúdo foi realizado conforme a NBR NM 30 (ABNT, 2001) onde a amostra de agregado previamente seca em estufa foi coberta de água durante 24 horas (Figura 2). A massa específica da areia foi estabelecida pela NBR NM 52 (ABNT, 2001), como mostrado na Figura 3.

ENPOS XIX ENCONTRO DE POS-GRADUAÇÃO

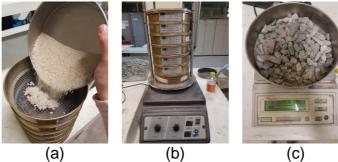


Figura 1 Ensaio composição granulométrica – (a) Colocação do agregado miúdo nas peneiras. (b) Vibrador mecânico. (c) Massa de agregado graúdo passante nas peneiras.

Fonte: autora (2017)

Figura 2: Ensaio de absorção da areia – (a) Agregado miúdo imerso em água. (b) Remoção do molde.

Fonte: autora (2017)

Figura 3: Ensaio da massa específica da areia Fonte: autora (2017)

A massa específica e a absorção da brita foram medidas de acordo com a NBR NM 53 (ABNT, 2002), conforme Figura 4.

Figura 4: Massa específica e absorção da brita – (a) Agregado graúdo imerso em água. (b) Remoção da água visível do agregado graúdo. (c) Massa do agregado graúdo saturada.

Fonte: autora (2017)

A massa unitária e o índice de vazios dos agregados foram determinados pela NBR NM 45 (ABNT, 2006), mostrado na Figura 5.

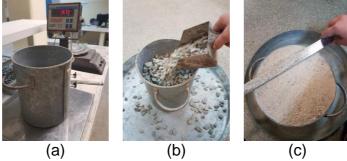


Figura 5: Massa unitária e índice de vazios – (a) Determinação da massa do recipiente. (b) Colocação da brita no recipiente. (c) Rasamento da areia no recipiente.

Fonte: autora (2017)

3. RESULTADOS E DISCUSSÃO

A Figura 6 e a Figura 7 mostram a classificação dos agregados conforme a NBR 7211 (ABNT, 2005) que especifica os agregados para concreto.

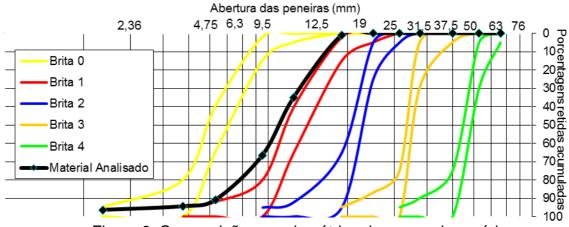


Figura 6: Composição granulométrica do agregado graúdo Fonte: autora (2017)

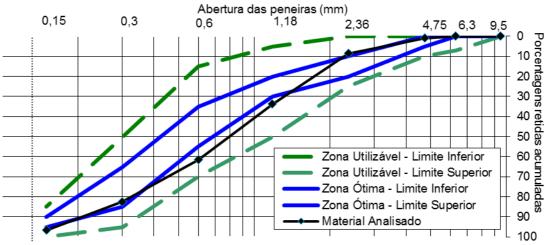


Figura 7: Distribuição granulométrica do agregado miúdo Fonte: autora (2017)

Os ensaios de massa específica resultaram em 2,60g/cm³ para brita e 2,62g/cm³ para areia. A massa unitária solta da brita foi de 1,41g/cm³ e da areia

de 1,55g/cm³. O índice de volume de vazios apurado para o agregado graúdo foi de 43,54% e do miúdo de 40,87%. O teor de absorção da brita resultou em 1,54% e da areia em 0,56%.

4. CONCLUSÕES

Analisando os resultados obtidos nos ensaios de caracterização, os agregados escolhidos para a confecção dos corpos de prova são adequados para a composição do concreto. A brita foi classificada como brita 1 e a areia está dentro da zona utilizável de distribuição granulométrica, próximo a zona ótima.

Na próxima etapa pretende-se executar a dosagem do concreto dos corpos de prova com os resultados da caracterização obtidos, a fim de verificar a potencialidade do uso da câmera termográfica na detecção de corrosão na armadura de aço do concreto.

5. REFERÊNCIAS BIBLIOGRÁFICAS

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Agregado miúdo
Determinação da absorção de água: NBR NM 30. Rio de Janeiro, 2001.
Agregado graúdo - Determinação de massa específica, mass
específica aparente e absorção de água: NBR NM 53. Rio de Janeiro, 2003.
Agregado miúdo - Determinação da massa específica e mass
específica aparente: NBR NM 52. Rio de Janeiro, 2003.
Agregados - Determinação da composição granulométrica: NBF
NM 248. Rio de Janeiro, 2003.
Agregados para concreto - Especificação: NBR 7211. Rio de
Janeiro, 2005.
Agregados - Determinação da massa unitária e do volume de
vazios: NBR NM 45. Rio de Janeiro, 2006.
ACI - American Concrete Institute. 228:2R-13 Report on nondestructive tes
methods for evaluation of concrete in structures. Detroit United States: AC

- methods for evaluation of concrete in structures. Detroit, United States: ACI Publications, 2013.

 BARREIRA, E. S. B. M. Aplicação da termografia ao estudo do
- BARREIRA, E. S. B. M. Aplicação da termografia ao estudo do comportamento higrotérmico dos edifícios. 2004. Dissertação (Mestrado em Construção de Edifícios) Departamento de Engenharia Civil, Faculdade de Engenharia da Universidade do Porto.
- BOGGIO, A. J. Estudo comparativo de métodos de dosagem de concretos de cimento Portland. Dissertação de mestrado (Mestrado em Engenharia) Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Sul, 2000.
- FARRAG, S., YEHIA, S., QADDOUMI, N. Investigation of mix-variation effect on defect detection ability using infrared thermography as a nondestructive evaluation technique. **Journal of Bridge Engineering**, V.21, No. 3, pp. 1-15, 2016.
- HELENE, P. R. L. Contribuição ao estudo da corrosão em armaduras de concreto armado. Tese (Livre Docência) Escola Politécnica, Universidade de São Paulo, 1993.
- HIASA, S., CATBAS, F., MATSUMOTO, M. Monitoring concrete bridge decks using infrared thermography with high speed vehicles. **Structural Monitoring and Maintenance**. V. 3, No. 3. Pp. 277-296, 2016.
- MEHTA, P. K.; MONTEIRO, P. J. M. Concreto Microestrutura, Propriedade e Materiais 3ª Edição. Ed.: IBRACON. p. 674, 2008.