

Elaboração e avaliação antimicrobiana de microcápsulas contendo óleo de Melaleuca (Melaleuca alternifolia)

ALESSANDRA MACHADO DE OLIVEIRA; LIGIA FURLAN; MIGUEL PINTO DE OLIVEIRA

Universidade Federal de Pelotas – alessandramachadodeoliveira13@gmail.com ligia.furlan@gmail.com – miguel.oliveira@pq.cnp.br

1. INTRODUÇÃO

Atualmente a procura por compostos bioativos para enriquecer os dermocosméticos estão sendo largamente pesquisados. A sua utilização via microcápsulas visa atender as necessidades de proteger e controlar a liberação destes compostos.

Micropartículas são sistemas poliméricos sólidos e esféricos de tamanho variando entre 1 e 1000 μm e são subdivididas em microcápsulas, microesferas e microesferas lipídicas (SILVA et al., 2003). Visto que a substância ativa encontrase dissolvida, é considerada um sistema reservatório (DURÁN et al., 2002). A seleção do agente encapsulante depende do método utilizado para formar as microcápsulas, do tipo de aplicação do produto e ainda da forma como ele agirá (RÊ, 2000).

A melaleuca (*Melaleuca alternifolia*), conhecida internacionalmente como Tea Tree, é uma espécie arbórea da família Myrtaceae. Seu principal produto é o óleo essencial, sobre o qual estudos vem sendo realizados a fim de comprovar sua ação bactericida e antifúngica contra vários patógenos humanos. Sua obtenção se dá por hidrodestilação ou destilação por arraste a vapor (CASTRO Silva e Pinheiro 2005 apud RIEDL, 1997; GUSTAFSON et al., 1998).

2. METODOLOGIA

2.1 Obtenção de Microcápsulas

A uma solução de 3 g de pectina em 100ml de água destilada na temperatura de 25 °C, com agitação constante, foram adicionados 100 μL de óleo essencial de melaleuca. Com o auxílio de uma seringa foram transferidos alíquotas da mistura de pectina e óleo para a solução de cloreto de cálcio 2%, assim constituindo microesferas de pectinato de cálcio.

2.2 Atividade Antimicrobiana

O método da difusão em disco de papel foi realizado de acordo com Kalemba e Kunicka (2003). Para o procedimento, E.coli e S.aureus foram ativados em caldo BHI (Brain Heart Infusion), a 35°C por 24 horas de incubação. Posteriormente foi semeado em placas com Ágar Mueller-Hinton com auxílio de um swab estéril. A inoculação é feita em forma de estrias na superfície do ágar em três direções, girando a placa em ângulo de 60° após cada estria. A seguir, sobre a superfície semeada, foram colocados com o auxílio de uma pinça estéril os discos de papel de filtro (previamente cortados no diâmetro padrão de 6 mm e esterilizados em autoclave) impregnados com o óleo de melaleuca por 15 minutos. As placas foram incubadas a 35°C por 24 horas. Os testes foram realizados em triplicata e os resultados expressos em diâmetro dos halos de inibição formado ao redor dos discos em milímetros (mm).

3. RESULTADOS E DISCUSSÃO

O diâmetro dos halos estão expressos nas tabelas abaixo para determinada cepa usada.

Tabela 1: Halos de inibição para a cepa *Escherichia coli*.

Bactéria	Halo (mm) óleo de	Halo (mm)	Halo (mm)
	Melaleuca	Amikacin	Ampicilina
Escherichia coli	12mm	22mm	19mm

Tabela 2: Halos de inibição para a cepa *Staphylococcus aureus*.

Bactéria	Halo (mm) óleo de	Halo (mm)	Halo (mm)
	Melaleuca	Penicilina	Vancomycin
Staphylococcus	18 mm	35 mm	19 mm
aureus			

As Tabelas 1 e 2 demonstram a eficiência do composto ativo (óleo de melaleuca) perante as cepas Escherichia coli e Staphylococcus aureus, as quais apresentam um halo de 12 mm e 18 mm, respectivamente. Em comparação com os valores apresentados pelos antibióticos ampicilina e vamcomycin de 19 mm, observa-se que os valores obtidos para o 'composto ativo encontram-se semelhantes aos dos antibióticos que foram utilizados como padrão de inibição da atividade microbiana.

4. CONCLUSÕES

As microcapsulas a partir de pectina elaboradas foram efetivas na proteção e liberação do composto ativo.

O teste antimicrobiano do óleo de melaleuca obteve resultados satisfatórios em relação as cepas.

5. REFERÊNCIAS BIBLIOGRÁFICAS

BRAND-WILLIANS,W.;CUVELIER,M.E.;BERSETC., Use of a free radical method to evaluate antioxidant activity. **Food Science and Tecnology.** v.28, p.25-30. 1995.

CASTRO, Ciro de; SILVA, Márcio Lopes da; PINHEIRO, Antônio Lelis. Análise econômica do cultivo e extração do óleo essencial de Melaleuca alternifolia Cheel. **Revista Árvore,** Viçosa, p.241-249, abr. 2005.

DURÁN, N.; AZEVEDO, M. M. Rede de pesquisa em nanobiotecnologia. Nanociência e Nanotecnologia, 2002. Disponível em: http://www.comciencia.br/reportagens/nanotecnologia/nano20.htm. Acesso em 03 Agosto de 2017.

KALEMBA, D.; KUNICKA, A. Antibacterial and antifungal properties of essential oils. Current Medicinal Chemistry, v.10, p. 813-819, 2003.

RÊ, M. I. Microencapsulação em busca de produtos 'inteligentes'. Ciência Hoje – **Revista de divulgação científica da Sociedade Brasileira para o Progresso da Ciência**, São Paulo, v. 27, n. 162, p. 24-29, jul. 2000.

SILVA, C.; RIBEIRO, A.; FERREIRA, D.; VEIGA, F. Administração oral de peptídeos e proteínas: II. Aplicação de métodos de microencapsulação. **Revista Brasileira de Ciências Farmacêuticas,** v. 39, n. 1, jan/mar 2003.