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CAPITULO |
MAGNETISMO

O universo é uma harmonia dos contrarios

Pitagoras

1.1- Falando da Historia

O magnetismo € uma das areas da Fisica mais fascinantes até mesmo
para leigos. O simples fenomeno de uma bussola deixa as pessoas
interessadas na “magia” que rege a agulha desse instrumento.

Na antiga Grécia os filésofos ja falavam sobre “maravilhosas”
propriedades de uma pedra que teria uma “alma” que seria de origem
divina. A primeira referéncia sobre essa pedra diz que um pastor
chamado Magnes, encontrou uma pedra que tinha essa “propriedade
divina”. Dai vem a origem no nome desse mineral, Magnetita. Outros
relatos refutam essa informacao e dizem que, na verdade a primeira
descoberta desse material foi feito em uma regiao da Turquia conhecida
como Magnesia.

Qualquer que seja a verdade, na época da descoberta o conhecimento
era dominio dos filosofos animistas' e, mais tarde pelos filésofos
mecanicistas. Essas ideias (supersticoes metafisicas) formaram a base
de quase todo pensamento cientifico até o renascimento. Mesmo assim,
nessa época surgiu a primeira aplicacao cientifica do material, a bussola.
O relato sobre o surgimento da bussola tem varia fontes diferentes e seu
surgimento vai desde textos que citam 1100 AC na China até textos que
relatam o surgimento em 1637 DC na Espanha. A uUnica coisa que
podemos afirmar é que ja no século XIV ela ja era bastante usada.

Em 1600, William Gilbert escreveu o primeiro tratado sobre magnetismo,
“De Magnete”. Essa publicacao fez com que Gilbert seja considerado o
pai do Magnetismo. Talvez o fato mais interessante registrado por ele seja
a afirmacgao que a Terra € um grande magneto.

Descarte publicou a primeira teoria que eliminava a ideia de “efluvia”, que
significa emanacoes e passou a atribuir o conceito de partes “enroscada”
que penetram em “canais” existentes nos magnetos e na Terra, e esses
vao de um polo ao outro. Essa é a origem da ideia de polos.

Até o periodo situado entre 1600 e 1700, o pensamento metafisico passou
a ser substituido pela matematica e o método cientifico comecou a surgir
com Galileu, Newton dentre outros. Nesse mesmo periodo, mais
especificamente em 1750, Coulomb estabelecia a teoria da Eletricidade.

' Os animistas eram membros de uma seita religiosa que acreditavam eu animais, objetos
inanimados, plantas e até mesmo fendomenos possuiam uma esséncia espiritual.



Pouco depois, ja no inicio de 1800, Oersted apresenta os principios da
eletrodinamica,

E nesse periodo que surgem também Biot, Savart, Arago, Weber e
Ampere (introduziu o conceito de campo magnético) e seus estudos
levaram a ideia de que o magnetismo era resultado de correntes
microscopicas.

Ainda na contribuicao para o progresso do estudo do eletromagnetismo,
no final do século XIX, surgem dois grandes génios, Faraday e Maxwell.
Faraday era um cientista teérico e foi o primeiro a utilizar o campo
magnético além de ter feito varias contribuigcoes, principalmente com alei
dainducao e a caracterizacao dos materiais segundo seu comportamento
magnético.

Todas essas deducoes e definicdes foram feitas sem que Faraday tivesse
escrito uma unica equacao.

Todo o equacionamento das descobertas de Faraday ficou a cargo do
outro génio, Maxwell. Além de equacionar os conceitos de Faraday, ele
deu toda a base da eletrodinamica.

Os estudos sobre eletromagnetismo seguiram progredindo e em seguida
veio a descoberta de Thompson, o elétron e depois a descoberta do efeito
Zeeman.

Todas essas descobertas comegaram a evidenciar as inconsisténcias da
fisica classica.

Pierre Curie, baseado nos conhecimentos da termodinamica, iniciou os
seus estudos sobre as propriedades termodinamicas das substancias. A
famosa lei de Curie pode ser explicada teoricamente por Langevin com
modelos classicos e a estatistica de Maxwell-Boltzmann.

Com o surgimento da mecanica quantica, no século XX, tornou-se possivel
o entendimento do magnetismo. Atingindo esse entendimento, o
desenvolvimento da mecanica estatistica e da termodinamica quantica,
foram facilitados principalmente quanto aos fendbmenos cooperativos.

Do ponto de vista classico, duas importantes contribuigcées surgiram:
Primeiramente o surgimento da teoria moderna do magnetismo com o
conceito de campo molecular de Weiss e a famosa lei de Curie-Weiss, que
foi seguida pela maioria dos sistemas magnéticos, mesmo que o valor do
campo molecular nao tivesse explicacao classica.

Em segundo lugar veio o Teorema de Van Leeuwen que dizia
“Classicamente a qualquer temperatura, campos magnéticos e elétricos,
a magnetizacéo total de um conjunto de elétrons em equilibrio térmico é
identicamente nula”, demonstrado e utilizando-se as equacdes de
Maxwell e a estatistica de Boltzmann. Isso significa que a fisica classica
nao pode ser explicada pela fisica classica mas sim pela fisica quantica.
A mecanica quantica antiga foi capaz de explicar a origem dos momentos
magnéticos atdomicos com o modelo de Bohr. Ela estabeleceu a unidade



fundamental do momento magnético, o magneton do Bohr que é dado pela
equacao:

B_eh
Ko = e

A nova Mecanica Quantica com as formulas de odulatéria de Schrodinger
e s formulas matriciais de Heisenberg e finalmente a formulacao
relativista de Dirac foram responsaveis por estabelecer uma base que
teve uma aplicacao de sucesso em sélidos e na mecanica estatistica.
Baseados nesses conceitos, Pauli, Heisenberg e Dirac descreveram o
spin do elétron com g=2, o ferromagnetismo e a origem do campo de
Weiss com a interagao de troca §;. S;.

Transcorreram mais 4 anos e nesse tempo, Hartree, Fock, Heitler,
London, Slater, Van Vleck e outros cientistas foram capazes de calcular a
nivel atdmico e molecular e solucionar quase todos os problemas
pendentes como dados espectroscopicos, as regras de Hund, os
momentos magnéticos dos atomos e ions, o efeito Zeeman, e outras.

Em seus estudos, Weiss explicou, em nivel macroscépico, o porqué do
ferro nao ser magnético no seu estado natural. Além disso, explicou a
curva de histerese magnética utilizando o movimento das paredes de
dominio que posteriormente foi confirmado na experiéncia realizada por
Barkhousen.

1.2 - O estudo do magnetismo

O entendimento amplo do magnetismo passa por uma base sustentada em
trés pilares principais: € necessario conhecer a origem do magnetismo e
a existéncia dos momentos magnéticos; em segundo lugar é preciso
entender as interacdoes entre os momentos e; conhecer a mecanica
estatistica, para poder entender e descrever as propriedades
macroscopicas observaveis.

1.2.a - Conceitos
a) Polos magnéticos (m)

Assim como nas pilhas e baterias, os imas possuem dois polos, no caso,
polo Norte e polo Sul. No caso especifico dos imas, o nome oficial é
monopolios magnéticos. O mais interessante dos polos magnéticos é o
fato de que, apesar de todos os esforcos da comunidade cientifica sua
existéncia nao é estabelecida de forma experimental. Os efeitos ocorrem
sempre em pares, ou seja, se dividirmos um ima em duas partes, essas



duas partes serao outros dois imas, com dois polos, exatamente como o
ima que deu origem aos demais.

>
.
B S o

Figura 1 - Ima intacto (A); fracionamento do ima (B); Imas resultantes (C)

Apesar de nao existirem, esse conceito € muito atil nos calculos micro
magnéticos. Calculos micro magnéticos sao os calculos dos campos
internos a amostra e de fendmenos relacionados com a estrutura do
dominio.

Esse calculo é definido a partir do equivalente da lei de Coulomb, que é
feito pela forca (F) entre dois polos m: e m. que ocorre entre dois
magnetos cilindricos.

k(m;m;)

F=——7—
r

Um dos polos cria no seu entorno um campo magnético que sera

responsavel por exercer uma forca em um outro polo préximo. A principal

caracteristica dessa forca é proporcionalidade dela com o campo

magnético. Ou seja, quanto maior a forca, maior sera o campo magnético.

A essa proporcionalidade denominamos Intensidade de Campo
Magnético (17).

F = mH
H - medido em A/m (ampére por metro) ou Oe (Oersteds)

b) Dipolos Magnéticos ou Momentos Magnéticos (/i)

Apesar de ndao vermos, os dipolos sao reais e podem ser comparados com
pares de polos, por exemplo, +m e -m que se situam nas extremidades de
um corpo cilindrico, que possui um comprimento £ e area A, considerando
de o comprimento seja muito maior que o raio do cilindro (£ >>r).

i=m.?



Podemos dizer que o momento magnético situado em um campo H estara
sujeito a um torque. Consequentemente podemos deduzir que a energia
poténcial associada sera dada por:

E =—jH

Apesar de podermos calcular um momento magnético, na pratica, como
lidamos com amostras macroscopicas, trabalhamos com um
agrupamento de momentos magnéticos. Com esse conceito é possivel

determinar a magnetizacao (M) que sera o resultado da soma de todos os
momentos magnéticos elementares divididos pelo volume que ocupa.

¥
|74
c) Campo Magnético (forca magnetizante)

Produzida por solenoides é também conhecida como campo solenoidal.
Para entendermos esse conceito, basta imaginar um solenoide de
comprimento muito longo onde, no seu centro temos H = yynl, onde n é a
densidade linear de espiras e | € a corrente que passa pelas espiras. No
sistema internacional, a unidade para Campo Magnético € ampeéere/m
(A/m) e no sistema CGS? é o Oersted (Oe)®.

Existe um outro campo magnético que é representado pelas linhas de
forca de inducao que é conhecido como Inducao Magnética B. Essa
inducao magnética também recebe a denominacao de densidade de fluxo.
Isso ocorre porque € possivel quantificar o numero de linhas de forga por
unidade de area. Nos espacos vazios (ar ou vacuo)

B = poH (no CGS B = H)
No caso de materiais s6lidos a indugcao magnética é dada por:
B = po(H + M)

cuja unidade no S| & Weber/m? (G/m?) ou Tesla (T)*.
No sistema CGS
B =H + 4mM

e a unidade é Gauss

2 Sistema Centimetro, Grama, Segundo que precedeu o sistema MKS
%1 0e=80A/m
“1T=10*G



d) Permeabilidade Magnética (u)

A permeabilidade magnética é a quantificagcao do “valor” magnético de
um material, ou seja, ele indica o campo magnético no interior de um
material. Esse campo magnético existe devido a associagao de uma
condicao magnética pré-existente na regiao que envolve o material e a
magnetizacao induzida no material por esse campo.

B

.U=ﬁ

Essa é chamada de permeabilidade magnética absoluta.
e) Susceptibilidade Magnética ()

Materiais magnéticos respondem de formas diferentes quando
submetidos a um campo magnético. Essa resposta diferenciada é
conhecida como Susceptibilidade Magnética e ela pode ser estatica, se
for um campo de corrente continua, ou dinamica, se for gerada por um
campo de corrente alternada. Em alguns casos os materiais apresentam
uma resposta nao linear. Desse modo devemos tomar o limite nulo da
excitacao (campo aplicado). Sendo assim:
M oM

Xpc = i0VH ~ 9H

Na pratica costumamos utilizar campos estaticos pequenos o suficiente
para obter-se uma boa relacgao sinal/ruido. Podemos também medir com
pequenas excitagcoes alternadas e utilizamos a detecgao sincrona. Para
esse caso podemos dizer que a susceptibilidade é alternada ou
simplesmente é uma susceptibilidade.

Dependendo do material devemos tomar cuidado com a intensidade do
campo de excitacao. Para materiais moles ou doces, esse cuidado deve
ser tomado.

Materiais moles ou doces sao materiais ferromagnéticos que possuem
uma caracteristica conhecida como magnetizacao espontanea.
Magnetizacao espontanea significa que esses materiais possuem uma
magnetizacao nao nula, mesmo sem estarem em presenca de um campo
externo. O que diferencia os materiais ferromagnéticos moles dos
materiais ferromagnéticos duros é uma caracteristica chamada de
coercividade®. Normalmente os materiais doces possuem uma
coercividade menor que os materiais duros. Apesar de nao ser um valor
absoluto é costume considerar que materiais com coercividade maior que
10 A/m sao considerados materiais duros, enquanto valores de
coercividade menores que 500 A/m sao considerado materiais moles.

® Define o campo necessario para levar a magnetizagio do material a zero.



Outro tipo de fendbmenos ocorre quando ha uma dissipacao de energia e
nesse caso a resposta dos momentos magnéticos elementares nao é
instantanea, isso significa porque ocorre um atraso temporal da
magnetizacao em relacao a excitagcao. Isso torna a susceptibilidade
magnética uma grandeza complexa, ou seja, devemos escrever essa
dependéncia temporal como uma consequéncia da funcao da frequéncia
da excitacao o, além de depender da temperatura e do campo:

oM

Xaczﬁle_ix

14

onde y'(w,T,H) é adispersao
X' (w,T,H) é aabsorgio

A susceptibilidade magnética e a sua dependéncia da temperatura, do
campo, e também sua dependéncia em relacao a posicao na amostra
pode ainda depender da posicao microscopica na amostra com a
periodicidade da rede cristalina. Sendo assim pode ser expressa por um
vetor de onde g da rede reciproca, estudo importante nas relagcoes das
refracoes de néutrons.

Os principais tipos de comportamentos magnéticos conhecido sao
listados na tabela abaixo:

Material Y u
Diamagnético <0 <1
Paramagnético >0 >1
Ferromagnético >>0 >>1
Ferrimagnético >>0 >>1
Antiferromagnético | >0 >1

Existem outros tipos de comportamento magnético. Iremos citar esses
comportamentos, mas nao vamos nos fixar em nenhum deles:
metamagnético, superparamagnético, vidro de spin, speromagnético,
helimagnético, etc.

Para caracterizarmos os materiais magnéticos utilizamos uma série de
técnicas experimentais. As duas principais técnicas sao a Magnetizacao
e a Susceptibilidade magnética.

A magnetizagcao é medida em fungao do campo magnético aplicado ao
material, a uma temperatura constante, chamadas de curvas ou
isotermas de magnetizacao (MxH):. Ainda controlando a temperatura
podemos utilizar uma segunda técnica que é conhecida como
susceptibilidade, normalmente em corrente alternada. E uma técnica
simples e nao necessita de campos magnéticos. Esse processo nos
informa como a parte inicial da magnetizacao varia com a temperatura.
Entretanto, nem sempre é possivel determinar o comportamento
magnético, nesse caso, o microscopio e outras técnicas complementares
sao necessarias. Para esses casos podemos lancar mao de técnicas



como calor especifico, difracao de néutrons, ressonancia magnética,
espectroscopia 6tica e Mossbauer, resistividade e etc...
A propriedade conhecida como Diamagnetismo aparece em todos os
materiais que possuam cargas em movimento que sofrem influéncia de
um campo externo ou a sua variagao. Sua principal caracteristica € uma
pequena suscetibilidade magnética negativa que é independente da
temperatura. Isso significa que a qualquer magnetizacao induzida por um
campo externo é proporcionalmente contraria ao campo.
Essa contraposicao pode ser explicada através da reacao das cargas em
movimento que é capaz de cancelar qualquer variacao no fluxo
magnético, conforme a lei de Lenz, em um caminho fechado qualquer. O
fendmeno ocorre em dois niveis. O primeiro € no nivel atdmico e ocorre
sob a forma de um rearranjo das funcdes de onda de tal modo que
aumenta a area efetiva a ser percorrida pelas orbitas atomicas. O
segundo ocorre no nivel macroscopico através das correntes induzidas,
principalmente em materiais metalicos e semicondutores.
No caso macroscoépico ocorre uma dependéncia da temperatura, que
normalmente estd relacionada a resisténcia do material e da forma
geomeétrica da amostra que, nesse caso passa a ser importante para a
resposta.

Lei de Lenz
Vamos fazer uma pausa para explicar a lei de Lenz que esclarecera a
explicacao anterior.
Durante muito tempo Faraday realizou testes experimentais para chegar
a uma conclusao sobre o comportamento da corrente induzida.
Finalmente ele concluiu que “quando o numero de linhas de campo que
atravessam um circuito varia, nesse circuito aparece uma corrente
elétrica denominada corrente induzida”.
Faraday explicou a condicao de surgimento de uma corrente induzida.
Entretanto ele nao explicava como definir a orientacao dessa corrente.
Foi Heinrich Friedrich Lenz quem conseguiu explicar esse fenébmeno.
Ele descobriu que “O sentido da corrente induzida é tal que o campo
magnético por ela produzido se opée a mudanca de fluxo que se originou.”
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Figura 3 - Campo magnético cruzando um condutor Figura 2 - Surgimento da corrente
induzida e do campo que se opoe

Como mostram as figuras acima o campo gerado pelo ima que se desloca
em direcao ao condutor produz uma variagcao no campo elétrico que



envolve o condutor provocando o surgimento de uma corrente | que
produzira um campo de igual intensidade e sentido contrario ao campo
original.

Continuando a analise sobre Diamagnetismo se aplicarmos a lei de Lenz
ao movimento orbital atbmico pode ser representado tanto no aspecto
classico quanto na analise quantica:

NZe2< 2 o
= —Ug——<T
XD Moo= o

No caso de se utilizar o sistema cgs, divide-se o resultado por y,c?.
Nessa equacio o elemento <r®> é o valor médio quadratico do raio da
orbita atomica em questao.

Os supercondutores, que sdo diamagnéticos perfeitos®, quando sao
submetidos ao efeito Meissner’ temos:

1

Xec = _ZT[

A propriedade conhecida como paramagnetismo por uma pequena
susceptibilidade positiva e pequena. Dependendo da origem, existe uma
forte dependéncia com a temperatura.

A
’

]

Q0

@

c

()}

©

=

()

O

(]

ke

5

g

[0]

o

[2]

>

w

Paramagnetismo de Van Vleck
Paramagnetismo de Pauli (metais)
L [ e SRR LT T
0 >
- Temperature
Diamagnetsmo

Figura 4 - Curva de relacionamento da susceptibilidade magnética em relagao a temperatura

¢ Os elementos diamagnéticos blindam perfeitamente o campo B em seu interior.

" Nos supercondutores, em campos suficientemente pequenos, o valor do campo
magnético no interior do material é zero, isto €, os supercondutores expelem o campo
magnético



Para entendermos o paramagnetismo € preciso pressupor a existéncia de
momentos magnéticos no material que podem ser de origem atémica ou
molecular (ji;) ou nuclear (i;). Quando o momento magnético faz parte dos

elétrons ou ao Spin eletronico S teremos ji;, assim como quando se refere

ao momento angular L dos orbitais teremos i, .
Em cada atomo todos esses momentos se adicionam formando o

chamado, momento angular total atdémico J=L+S. Mas isso serve para
quando o campo magnético € pequeno.

Da mecanica quéantica sabemos que py; = (L(L+ 1))1/2ub, onde p, =
eh/2mm, ou nos sistema cgs, u;, = eh/2nmc. Essa é a unidade do momento

magnético atdmico, também conhecida como magneton de Bohr. Para o

elétron, u; = 2(S(s + 1)) "%

Se formos considerar o momento angular total, entdo teremos como

resultado a equagao p; = (](] + 1))1/29;11,. O “g” que aparece na equacgao
€ conhecido como Fator de Lande. Por definicao esse fator € um termo
multiplicativo que aparece na expressao dos niveis de energia de um
atomo submetido a um campo magnético fraco. Ele é determinado por:

_q Jg+1D)+SS+1)—-L(L+1)
-t 2/ + 1)

O acoplamento LS deixa de funcionar quando o campo aplicado se torna
muito grande. Quando isso acontece, os momentos angulares e de spin
passam a ocorrer no campo, de forma independente um do outro.

E importante atentar para o fato de que no caso de atomos que possuem
muitos elétrons, é necessario que se obedeca ao principio de Pauli e a
repulsao de Coulomb. Esses principios sao sintetizados pela regra de
Hund e nos permite o estado fundamental do sistema analisado. A regra
de Hund, também conhecida como Principio da Maxima Multiplicidade,
mostra que quanto maior o niumero de elétrons com spin paralelos em um
orbital incompleto, menor sera a energia.

No caso de atomos isolados que contém momentos magnéticos e sao
submetidos a um campo H, os estados 2J+1 estdo degenerados e sao
separados pelo efeito Zeeman. Esse efeito, conhecido por efeito Zeeman
anormal ou efeito Zeeman anémalo ocorre em espectros na regiao visivel
do espectro eletromagnético e é o desdobramento de uma risca
espectroscopica® original (ou risca espectral original), em 2J+1 raias
diferentes. J é a projecao de um vetor momento angular quantico que
ocorre sobre o eixo de quantizacao. Ele ocorre em campos fracos. Essa
separacao entre as raias espectrais varia. No caso de campos muito

8 Risca espectroscopica, raia espectral, risca espetral ou linha espectral é o resultado
de uma transicao quéantica que pode ser observado macroscopicamente. Estas linhas se
apresentam como revelagoes em algum tipo de material e sao a maneira mais simples
de se detectar as transigoes quanticas.



intensos, eles sobrepujam o campo eletromagnético inerente ao atomo e
ocasionam o desdobramento das raias em multiplas secoes de separacao
constante. Esse efeito é conhecido como Efeito Paschen-Back.

Existe também um efeito conhecido como efeito Zeeman normal, nesse
caso o desdobramento da raia espectral ocorre de duas maneiras
diferentes. Se a observacao for feita ao longo da direcao paralela ao vetor
de inducao magnética, a raia espectral original do espectro (com a
auséncia de campo magnético) se desdobra em duas raias. Caso a
observacgao seja feita em uma diregcao perpendicular ao vetor de indugao
magnética, entao a raia original se desdobra em trés raias.

As energias que sao separadas pelo efeito Zeeman sao dadas pela
equacgao:

E] = m]gubH

Se submetermos os atomos a uma variacao de temperatura T, obtida
através de um banho térmico, e utilizarmos a estatistica de Boltzmann®

teremos:

M = NoJgupB; (x)

Na equagdo x=gjuzH/kT e B;=((2]+1)/2])coth((2] + 1)x/2]) —

Essa segunda equacao é conhecida como fung¢ao de Brillouin.
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Figura 5 - Curva experimental do momento magnético em diversos materiais paramagnéticos

9 aestatistica Maxwell-Boltzmann descreve a distribuicio estatistica de particulas
materiais em varios estados de energia em equilibrio térmico, quando a temperatura é
alta o suficiente e a densidade é baixa suficiente para tornar os efeitos quanticos
negligenciaveis. A estatistica Maxwell-Boltzmann é consequentemente aplicavel a
quase qualquer fendomeno terrestre para os quais a temperatura esta acima de poucas
dezenas de kelvins.



Dois pontos importantes nessa curva sao:
para X > 1, B] - 1,e M= MSAT = No]gHB

eparaX < 1, B] - % , donde
M (NJO+Dg?pg) _C
XP=q 3kg T T

Essa equacao é conhecida como lei de Curie. Dessa equagcao podemos
obter experimentalmente o momento efetivo dos atomos, ou o numero
efetivo de magnetons de Bohr.
O grande problema é que nem todos os sais tem um comportamento tao
regular quanto esses 3 do exemplo acima. Esses trés possuem um
comportamento mais previsivel pelo fato de que os ions magnéticos estao
no estado S, ou seja, L#0 o que garante funcoes de onda esfericamente
simétricas. Em uma expressiva quantidade de sais, tais como os metais
de transicao, o momento que pode ser observado experimentalmente tem
resultados diferentes dos que seriam esperados quando utilizamos a
regra de Hund. Para isso utilizaremos L=0. Nesses casos, podemos dizer
que o momento orbital é inibido pelo campo cristalino. Esse efeito do
campo cristalino é capaz de quebrar o acoplamento Spin-orbita.
Sendo assim, a simetria das fungcdes das ondas orbitais, no caso de um
atomo isolado, nao vai ser o mesmo que de um atomo em um estado
cristalino em que ele esteja situado.
Para esses casos, onde a simetria € imposta pelo cristal temos que as
autofuncoes do Hamiltoniano de campos cristalinos sao resultado das
combinacoes lineares dos orbitais atomicos. Geralmente ocorre uma
quebra parcial da degenerescéncia que tem grande influéncia sobre o
fendmeno paramagnético.
No caso dos materiais que sao caracterizados por uma magnetizacao
espontanea em uma temperatura abaixo de T., temos o que chamamos de
ferromagnetismo. Isso s6 €& possivel quando existe algum tipo de
interacao entre os momentos magnéticos atomicos que sao responsaveis
pelo ordenamento direcional que resulta em um momento magnético total
nao nulo.
As principais interacdes possiveis nesse caso sao:

O classico Dipolo — Dipolo

Nesse caso ha uma tendéncia para o alinhamento dos momentos que
estao ao longo do eixo, paralelamente ou antiparalelamente, se os
momentos magnéticos se situam em um plano perpendicular ao eixo.
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O tratamento analitico dessa interacao é dificil e complexo. A razao 1/r3’

H =

apesar de ser de longo alcance, possui uma intensidade muito fraca para
ser capaz de explicar as altas temperaturas de ordenamento. Mesmo
assim, nas temperaturas muito baixas, ela nao deve ser desprezada.

Interacao de troca direta

A teoria do Valéncia, também conhecida como teoria de Heitler-London
descreve a ligagcao quimica em termos do enlace ou da sobreposicao de
orbitais de valéncia semipreenchidos dos atomos constituintes das
moléculas em analise. Em alguns casos podemos ter a formacao de uma
ligacao covalente dativa por superposicao de um orbital totalmente
preenchido de um atomo com o orbital vazio de outro atomo.

Essa teoria pode ser melhor entendida através da molécula de
Hidrogénio. Quando aproximamos dois atomos de Hidrogénio comeca a
ocorrer uma superposicao dos orbitais 1s de cada atomo e, nesse caso,
os elétrons ficam sujeitos a atragao simultanea dos dois nucleos. Assim,
a distancia internuclear de equilibrio correspondera a distancia em que
sao maximizadas as atracoes entre os dois elétrons e os dois nucleos e
sao minimizadas as repulsdes eletrénicas e nucleares. Essa
sobreposicao dos orbitais atdmicos 1s origina uma ligagcao sigma, que é
uma ligacao formada pela sobreposi¢cao do tipo topo a topo dos orbitais
de valéncia onde o maximo de probabilidade de encontrar o elétron, situa-
se abaixo do eixo internuclear.

Essa demonstracao, para molécula de Hidrogénio, da teoria de Heitler-
London demonstra de forma clara que a interacao pode ser resumida
como a repulsao coulombiana quando é feita a combinacgao linear dos
orbitais atomicos localizados nos atomos situados na vizinhancga, mais
especificamente na regiao de recobrimento, considerando o principio de
Pauli.

Dependendo da paridade da funcao de onda espacial a energia podera
ser minimizada por duas configuragoes dos spins, singleto ou tripleto. Se
o estado de energia mais baixo é singleto teremos uma interacao do tipo
Antiferromagnética. Ja no caso de termos o estado de energia mais baixo
ser tripleto, teremos uma interacao ferromagnética. Sendo assim, o
desdobramento dos niveis de energia singleto-tripleto pode ser
representado de forma conveniente pela Hamiltoniana de Heisenberg.

— —

H = _2]l]Sl S]



Nessa equacao J; é a integral de troca. Para o ferromagnetismo J>0 e o
antiferromagnetismo J<0.
Interacao de troca indireta ou de supertroca

Quando as fungdes de ondas atdbmicas nao possuem recobrimento direto,
fato que ocorre de forma comum nos 6xidos, se houver algum atomo nao
magnético colocado entre os atomos magnéticos, este tem suas funcoes
de onda com spin opostos, parcialmente polarizados pelas funcoes de
onda dos atomos magnéticos. Como consequéncia disso os dois atomos
magnéticos interagem entre si. Dependendo da orientacao relativa do
atomo nao magnético e dos dois atomos magnéticos teremos um
comportamento especifico para a interacao. Na maioria das vezes o
atomo nao magnético é o Oxigénio e o resultado da interacao é
antiferromagnética.
Interacao de troca indireta do tipo RKKY

Essa denominacao tem origem no nome dos seus descobridores,
Rudeman, Kittel, Kasuya e Yosida. Esse tipo de interacao ocorre sempre
em metais onde existam atomos cujo seus momentos magnéticos estao
bem localizados, como por exemplo, nas Terras Raras. Esses polarizam
os elétrons do gas de elétrons quando nas proximidades destes existem
outros atomos magnéticos que levam a “informacao”. Nisso resulta uma
interacao de longo alcance que possui um valor oscilante. Dependendo
da distancia entre os vizinhos podemos ter interagdées Ferromagnéticas
ou Antiferromagnéticas.

sp) 2kpr cos(2kpr) — sin(2kgr)

Jrky = (EF (kar)4

Interacao de troca indireta em semicondutores (Bloembergen-Rowland)

Esse tipo de interacao é analoga a interacao RKKY e envolve elétrons e
buracos nos semicondutores e sao de alcance mais curto pois, além de
oscilar e ter um termo em 1/73, ela também é amortecida por um termo
exponencial.

1.2.b — Campo Molecular Médio

Agora ja temos condicdes de calcular as grandezas macroscopicas que
sao mensuraveis em laboratério. Essas grandezas podem ser a
magnetizacao, o calor especifico. Isso pode ser feito utilizando a fisica
estatistica nas resolugcoes desses problemas. Como ja vimos, o caso do



paramagnetismo, como os momentos magnéticos sao independentes, é
facil fazer essa analise.

O principal problema é quando os momentos magnéticos interagem entre
si. No ano de 1907 P. Weiss formulou, pela primeira vez, uma teoria
fenomenoloégica. Essa foi a primeira teoria para o ferromagnetismo, que
até hoje € uma importante ferramenta para entender, de forma mais
aproximada, o magnetismo e de outras areas da fisica estatistica. Muito
antes do conhecimento da Mecanica Quantica, Weiss postulou a
existéncia de um campo interno H,, proporcional a magnetizacao.

H,, = AM
Essa equacao mostra que um campo médio de origem molecular, dada
por AM que é adicionada ao campo externo aplicado substitui a interacao
de cada momento magnético atdomico com todos os vizinhos. No caso de
temperaturas elevadas podemos substituir o campo externo por um
campo total e utilizar os resultados do paramagnetismo que ja
conhecemos. Sendo assim teremos:

C(H + AM)
T

M= y,(H+2AM) =

Logo, com |A\M| « H
M C C

KW= W™ (T-Ch) T-T.

Essa é a equacao da teoria de Curie-Weiss.

Weiss explicou a magnetizacao espontdnea dos materiais
ferromagnéticos através da hipotese de que cada dipolo magnético
microscopico do material estaria sujeito ao campo produzido pelos
dipolos vizinhos. Ele ainda considerou que haveria uma
proporcionalidade entre o campo e a magnetizacao, de tal forma que esse
campo total atuando sobre o dipolo, seria igual a soma do campo Hcom o
campo médio molecular Am, considerando sempre o elemento A como
maior que zero(0).

Com essa consideracao Weiss concluiu que, mesmo com a auséncia de
uma campo H (aplicado) o dipolo estaria sujeito a um campo que ele
denominou de campo molecular e que é o responsavel pela orientagao do
dipolo. Considerando isso, podemos substituir H por H + Am, na equacao
de estado de um sistema paramagnético ideal e, com isso, alcangamos a
equacao de estado de um sistema que sofre uma transicao de
ferromagnético para paramagnético.

Se considerarmos a equacgao da Teoria de Brillouin para magnetizacao,
quando o dipolo magnético J, assume o valor 'z, teremos:



uH
m = ptanhﬁ

Entretanto, para campos pequenos o processo de magnetizagao tem um
comportamento linear com o campo e age de acordo com

_WH
M= RT

A susceptibilidade a um campo nulo esta de acordo com a lei de Curie
onde:

Substituindo nessa equacao o valor da equacao de estado paramagnético
ideal, teremos:

m = utanh %(H + Am)

Se o campo aplicado for nulo, H=0 e teremos

uim
m=U tanh ﬁ

Utilizaremos o método grafico para confirmarmos que essa equacao
possui uma solucao diferente de zero (ndao nula). Vamos langcar mao de
uma variavel auxiliar x, que sera dada por

_ Aum
X = RT

e vamos substitui-la na equacao anterior. Assim teremos:

RT _ tanh
A,uzm_ anh x

A funcao tanh x é representada na figura abaixo:
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Figura 6 - Solugao grafica da tanh (x)

Sobre esse grafico tragamos a reta representada pelo elemento (RT/Ap?)x.
Observe que uma das solucoes € em x = 0 e ela existe para qualquer valor
de temperatura. Essa sera uma solucao unica se a inclinacao da reta for
maior ou igual a inclinacido da tanh x em x = 0, isto &, sempre que RT/Ap? >
1. Essa condicao é validaem T > Tc e, por sua vez Tc sera dada por:

Ja para o caso de T < Tc, teremos duas solugdoes nao triviais que
correspondem ao cruzamento da reta com a curva, conforme mostra a

figura 6. Na figura 7, abaixo, vemos as solugoes positivas para cada valor
de temperatura.
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Figura 7 - Magnetizacao correspondente a solucao grafica em funcao da temperatura

Se utilizarmos a equacao para calculo de Tc para determinar o valor de A.
Mas isso s6 pode ser obtido se conhecermos o valor da magnetizacao de



saturacao u. No entanto, € mais interessante se obtivermos o valor do
campo molecular de Weiss utilizando a equacao

RT,
U

Para fazer isso, vamos supor que u seja de valor aproximado ao magneton
de Bohr™ p, (9,274 008 99(37)-10% J.-T"). Desse modo Hw =~ RT./u. Se
utilizarmos a temperatura critica do ferro, teremos que Hw = 10° T.

Agora vamos comparar Hw com o campo Hd que é criado por um dipolo
magnético, também da ordem do magneton de Bohr, situado a uma
distancia a que corresponde ao espacamento entre os atomos

szﬂlu:

2
magnéticos em um sélido. Esse campo Hd = 107 MB/N2a3' Agora vamos
a

supor que g assuma o valor de 2.10"° m, nesse caso, Hd tera um valor
aproximado de Hd = 10" T. Com esse resultado é possivel constatar que
Hd e muitas vezes menor que Hw. Isso significa que em um material
ferromagnético ainteracao entre os dipolos magnéticos nao tem como ter
origem magnética, desse modo s6 podemos concluir que o
ferromagnetismo ocorre por uma interacao nao magnética entre os
atomos magnéticos.

Essa interacao tem origem quantica e tem por base o principio de
exclusao de Pauli.

Concluindo, para valores de A > 0 teremos o ferromagnetismo,
caracterizado pelo deslocamento da lei de Curie em um grafico y x T para
a direita, e isso é contrario para o antiferromagnetismo. Isso pode ser

observado nos graficos abaixo. X

0 T 0 T.
C _cC
X =7 ATToT
Figura 8 - Paramagnetismo (lei de Curie) Figura 9 - Ferromagnetismo (lei de

Curie Weiss) )
(T =T,

10 & uma constante fisica relacionada com o momento magnético que recebe seu nome

do fisico Niels Bohr. Pode ser expresso em termos de outras constantes elementares

__ eh
como y, = E



(T > Tw)

em um ponto que se situa a uma distancia aque é o espagcamento entre os

2
atomos magnéticos em um sélido. Esse campo vale 10”7 Hp ; - Agora

NZa
imaginemos que g vale 2.107"" m. Nesse caso, podemos avaliar que Hd
sera aproximadamente 10"'T. E facil observar que Hd é muitas vezes
menor que Hw. Isso significa que em um material ferromagnético a
interacao entre os dipolos magnéticos nao é de origem magnética, na
verdade é originado por uma interacao nao magnética que ocorre entre
os atomos magnéticos. Esse processo € uma interacao de origem
quantica e tem por base o principio de exclusao de Pauli.

Como uma primeira aproximagao (aproximacao qualitativa), a teoria do
campo médio serve como uma boa forma para descrever esse
comportamento dos materiais. No entanto, uma analise quantitativa ainda
apresenta resultados muito simplificados. Se observarmos a curva de
magnetizacao em funcao da temperatura, veremos que ha uma
discrepancia no limite das baixas temperaturas. Isso ocorre também
quando T —»Tc, M tendera a zero suavemente, ou seja, sem nenhuma
descontinuidade, o que caracteriza a transicao da fase ferromagnético
para a fase paramagnética de segunda ordem. Isso esta em desacordo
com os resultados experimentais como susceptibilidade e de calor
especifico.

No entanto, essa aproximacao é razoavelmente seguida para os materiais
ferromagnéticos nao metalicos, tais como o CrBr;, EuO, e EuS. Para o
restante os ferromagnéticos metalicos vamos necessitar de um modelo
alternativo, onde os momentos magnéticos nao sao mais localizados.
Nesse caso sao momentos magnéticos itinerantes.

-10

1.2.c - Processos de Magnetizacao

O processo de magnetizacao envolve mudancgas na chamada estrutura de
dominios — movimento das paredes que separam os dominios — e na
direcao da magnetizacao de cada dominio - rotacao de dominio. Quando
analisamos um material ferromagnético, pelo ponto de Vvista



macroscopico, fazemos a partir das curvas de magnetizagcao (MxH) ou as
curvas de Indugao (BxH). Essas curvas apresentam uma histerese, isso
faz com que essas curvas recebam o nome de curvas de histerese. A
figura abaixo mostra uma figura dessas.
Essas duas curvas, a de magnetizacao e a de inducao, apresentam uma
pequena diferenca entre elas. No caso da curva de magnetizacao (MxH),
pode acontecer da amostra se alinhar completamente, nesse caso, todo
os momentos magnéticos estarao alinhados e isso faz com que o material
atinja a magnetizagao de saturag@o M... E importante observar que néo
se trata da magnetizagcao espontanea, que € aquela que aparece em um
campo nulo e nao podemos confundi-la com a magnetizagcao de saturacao
que ocorre em um campo aplicado alto. Partindo de uma amostra
desmagnetizada, a curva inicial de magnetizacao tem um formato em S
com uma determinada inclinacao inicial, essa €& chamada de
susceptibilidade inicial. No caso da curva de indugao, é chamado de
permeabilidade inicial. Existem trés regimes diferentes que caracterizam
a magnetizacgao.
M

Figura 10 - Toréide

Figura 11 - Curva de histerese

Para entendermos o processo de magnetizagcao, vamos imaginar um
tordide circulado por um fio, conforme mostra a figura.

Assumindo que o material ferromagnético esteja inicialmente
desmagnetizado, e portanto H = M = 0. Conforme aumentamos o valor de
H, aumentando a corrente através da bobina e a intensidade magnética
cresce a partir do ponto O. Os momentos magnéticos irao se alinhar como
0 campo, e causam um aumento de M. Esse aumento, em principio, &
quase linear com H, mas tende a saturar quando o alinhamento magnético
total é atingido.

A magnetizagcao ira se processar ao longo da trajetéria Oa. Se a
magnetizacao fosse mais carregada, uma magnetizacao M = npn. seria



quase atingida correspondendo ao alinhamento de todos os dipolos
atdmicos da amostra no sentido de H.

Mas vamos imaginar que paramos o processo ho ponto a e comecamos a
reduzir gradualmente o campo de H novamente. O problema é que a
magnetizacao do material nao retrocede na curva Oa. Ao invés disso, ele
assume a trajetoria ab. No instante em que H é reduzido a zero, a curva
atinge o ponto b.

Ao atingir esse ponto, apesar da intensidade magnética do material ser
zero, uma grande propor¢ao dos dipolos atomicos retém seu primeiro
alinhamento e, portanto, teremos uma magnetizagao substancial M, que
€ denominada magnetizacdo remanescente. Com isso teremos um ima
permanente que possui uma magnetizacao capaz de produzir seu proprio
campo B, mesmo nao havendo corrente.

A partir desse momento, vamos inverter o sentido da corrente e,
consequentemente, iremos inverter o sentido da intensidade magnética
H. Com isso o alinhamento magnético ira ser destruido. No ponto ¢,
quando é atingido um certo valor negativo H., a magnetizacao sera
completamente removida e, novamente a amostra esta desmagnetizada.
Conforme seguimos aumentando o valor negativo de H, a magnetizacao
ira se tornando negativa ao longo da curva cd, até atingir o ponto d. Nesse
ponto, o campo H tem a mesma intensidade mas com sinal oposto em
relacao ao que se tinha no ponto a.

Aumentando o valor de H, teremos o tracado da curva defa, até que,
finalmente, o campo atinge novamente o campo H em seu primeiro valor
maximo e o ponto g é recuperado.

Com isso, podemos perceber que a magnetizacdo nao depende
exclusivamente da intensidade magnética, mas também da “histéria
magnética” anterior do material. Esse efeito, como ja mencionamos, é
conhecido como histerese magnética e existe em algum grau, em todas
as substancias ferromagnéticas.

.'
<
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: @
Figura 12 - Processo de magnetizacao (1) sem aproximagao do ima permanente (2) com
aproximacao do ima



CAPITULO I
CARGA ELETRICA E CAMPO ELETRICO

A auséncia da evidéncia nao significa
evidéncia da auséncia.
Carl Segan

2.1 CARGA E CAMPO ELETRICO
2.1.1 - Histoérico

O conhecimento de carga elétrica nao é tao novo quanto se imagina.
Entre os anos de 640 e 540 antes da nossa era'', Tales de Mileto' verificou
qgue quando ele esfregava um pedagco de ambar' em pele de carneiro,
esse ambar atraia lascas de madeira, fundamento basico da eletrostatica.
Posteriormente, em seus estudos verificou que pequenos pedacos de um
tipo especial de pedra, tinham a capacidade de atrair materiais com ferro
e também eram atraidos por esses materiais, dando origem aos estudos
sobre magnetismo.

No século XVI, Willian Guilbert', demonstrou que outros materiais além
do ambar, quando atritados, apresentavam as mesmas propriedades de
atrair objetos. Descobriu também o comportamento da agulha de uma
bussola e foi capaz de distinguir exatamente a diferenca entre atracao
magnética e atracao elétrica. Descobriu a eletrizagao por inducao, que
ocorre de forma preferencial entre os materiais metalicos. Além disso foi
o primeiro a caracterizar as diferencas entre condutores e isolantes.

Ja na primeira metade do século XVIIl, Stephen Gray'® realizava
trabalhos que o levaram a descoberta da possibilidade de transferir para
outros corpos a eletricidade obtida no atrito do vidro.

Ainda na primeira metade XVIIIl Charles Francois du Fay'® foi o
descobridor das cargas positiva e negativa, aos quais denominou,

" Nova forma de se referir aos periodos de Antes e Depois de Cristo

2 Pensador grego pré socratico, considerado “pai da Ciéncia” e “pai da Filosofia
Ocidental”. Suas idéias ajudaram a expandir os horizontes teéricos da astronomia,
matematica e filosofia.

3 Resina fossilizada, nao se trata de um mineral apesar de ser utilizado varias vezes
como gema preciosa.

4 Fisico e médico inglés, pertencia a corte da rainha Elizabete | e James | e foi o autor
do trabalho sobre magnetismo intitulado De magnet, magneticisque corporibus, et
magno magnete tellure (Sobre os imas, os corpos magnéticos e o grande ima terrestre.

% Tintureiro inglés que tinha como hobby o estudo de Fisica e Astronomia. Recebeu duas
vezes a medalha Copley, prémio dado no dominio das Ciéncias e a mais alta e mais antiga
distincao oferecida pela Real Sociedade de Londres para o Melhoramento do
Conhecimento Natural.

1 Quimico francés descobridor das cargas positiva e negativa o qual utilizou para
explicar pela primeira vez os fendmenos de atragao e repulsao.



respectivamente de vitreas e resinosa, que se separavam quando
atritadas e se tornavam neutras quando combinavam.

Ja na metade do século XVIII, Benjamin Franklin'” propds o modelo de um
so fluido para os fendbmenos elétricos, o conceito de que todos os corpos
sao eletricamente estaveis e, com o atrito perdem ou adquirem cargas
elétricas se desequilibrando. Dessa forma fundamentou o conceito de
conservagao da carga elétrica, evidenciando que as cargas nao sao
criadas e sim transferidas pelo atrito. Explicou que a perda de cargas
torna o corpo positivo e o acréscimo de cargas o torna negativo.

Na mesma época dessas descobertas, Franklin, ao notar que bolinhas de
cortica, colocadas no interior de um vaso metalico, nao eram afetadas
pela eletricidade, por esse motivo pediu a Joseph Priestley'® que
investigasse o fato. Priestley chegou a conclusao de que a forga entre
duas cargas variava de acordo com o inverso do quadrado da distancia
entre elas e provou nao haver eletricidade no interior de um vaso metalico
0co, com excegao da regiao proéoxima a borda.

Poucos anos depois das descobertas de Priestley, Charles Augustin
Coulomb™, aprofundando as descobertas do outro cientista chegou a
equacao para calcular a forgca de atracao ou repulsao entre duas cargas
elétricas, conhecida como Lei de Coulomb.

Posteriormente, ja no final do século XVIIl e inicio do século XIX, Hans
Christian Oersted?® realizou um experimento que mudou a maneira como
os fendbmenos elétricos e magnéticos eram observados. Até os
experimentos de Oersted, fendmenos elétricos e fendmenos magnéticos
eram desassociados, considerados efeitos independentes. Ao fazer
circular uma corrente elétrica em um condutor e observar que isso
provocava uma mudanca de direcao na agulha de uma bussola, ele
provou a existéncia dainteracao entre fendomenos elétricos e magnéticos,
dando origem aos estudos de eletromagnetismo.

Ainda no século XIX, Michael Faraday*'lanca um livro intitulado A Rotacédo
Eletromagnética, base para o entendimento do principio de
funcionamento dos motores elétricos.

7 Diplomata, escritor, jornalista, filosofo e cientista norte-americano. Foi um dos
signatarios da Declaracao da Independéncia dos Estados Unidos, do Tratado de Paris e
da Constituicao Americana. Fundou uma Academia na Filadélfia que, mais tarde, se
tornou a Universidade da Pensilvania.

8 Cientista, filosofo, teélogo, educador e politico inglés, descobridor do oxigénio,
inventor da agua carbonatada.

% Foi um fisico francés que iniciou seus estudos de eletricidade e magnetismo para
participar de um concurso aberto da Académie des Sciences de Paris sobre a fabricacao
de agulhas imantadas. O resultado desses estudos foram a chamada Lei de Coulomb.

2 Farmacéutico dinamarqués, posteriormente professor de Fisica e Quimica na
Universidade de Copenhague e secretario vitalicio da Academia de Ciéncias de
Copenhague, fundador da Sociedade para o Desenvolvimento do Estudo da Ciéncia e da
Escola Politécnica.

2! Fisico e quimico inglés, realizou trabalhos na area de eletroquimica e consolidou os
conceitos para a construcao de motores elétricos



Contemporaneo de Faraday, James Clerk Maxwell?* foi o cientista que deu
forma a moderna teoria eletromagnética que envolve eletricidade,
magnetismo e o6tica.

No inicio do século XX, Robert Millikan® descobriu que a carga elétrica
possui uma unidade fundamental e que os valores de cargas dos corpos
sao sempre multiplos inteiros dessa unidade.

2.1.2 - Um pouco de conceitos

Todos os corpos sao constituidos de atomos. Na Grécia antiga, filosofos
gregos, dentre eles Demoécrito, passaram a imaginar qual o resultado de
sucessivos desmembramentos de qualquer tipo de matéria e concluiram
que apods inumeros processos de divisao, restaria um elemento indivisivel
que denominaram atomo.
A palavra atomo tem origem na palavra grega atomos, que tem como
significado: indivisivel.
A primeira proposta concreta para um modelo de atomo, foi proposto por
John Dalton, quimico inglés que chegou a sua teoria a partir de
experimentos que, infelizmente, nao conseguiram revelar claramente a
natureza do atomo. Sua natureza era capaz de gerar uma série de
postulados sem que fossem possiveis comprovacgoes.
A teoria proposta por Dalton propunha que:
¢ Os atomos eram macicos com a forma esférica;
e Eram indivisiveis e indestrutiveis;
¢ Um conjunto de atomos com as mesmas propriedades (tamanho e
massa) compunham um elemento quimico;
e Os atomos de diferentes elementos quimicos, apresentam
propriedades diferentes;
e Podemos utilizar o peso de dois atomos diferentes para diferencia-
los
e Todas as substancias quimicas compostas sao formadas por
diferentes tipos de atomos;
Dalton nomeou esse modelo como bola de bilhar e criou um sistema de
simbologia especial para os elementos conhecidos da época.

2 Fisico e matematico escocés, responsavel pela redacao final dos conceitos da
moderna teoria do eletromagnetismo que une eletricidade, magnetismo e 6tica.

2 Fisico experimental estadunidense trabalhou com cargas elétricas fundamentais e
efeito fotoelétrico.
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Figura 13- Representacao atomica de Dalton
Em 1898, o fisico inglés Joseph John Thomson apresentou uma nova
teoria para explicar a estrutura do atomo. Seu novo modelo teve como
base as descobertas feitas por Geissler e Crookes em seu experimento
do tubo de raios catoédicos.
O experimento de Geissler consistia de um tubo de vidro contendo um gas
em baixa pressao e dois eletrodos circulares nas extremidades. Quando
esses dois eletrodos eram energizados provocavam uma descarga no
gas. Essa descarga, ao invés de produzir um ruido caracteristico, fazia
com que o gas ficasse iluminado. Posteriormente, Crookes colocou gases

mais rarefeitos dentro da ampola de vidro e viu a produgao dos raios
catodicos.

Figura 14-Ampola de Geissler

Raios Anodo®)
Catodicos

Mancha
Luminosa

Figura 15- Tubo de raios catodicos de Crookes

Quando esses raios eram submetidos a um campo, se desviavam,
comprovando sua natureza negativa.



A partir dai Thomson propés um modelo com a existéncia de elétrons, ou
seja, o atomo possuia particulas subatomicas.

Figura 16 - Modelo atémico de Thomson

Dessa forma Thomson propoés que atomo era uma esfera. No entanto nao
era macica como era proposto no modelo atdmico de Jonh Dalton. Dizia
também que o atomo era neutro, ja que toda matéria também era neutra.
Sendo assim, ele concluiu que como o atomo apresenta elétrons, que
possuem cargas negativas, entao, deve apresentar também deveria ter
particulas positivas para que a carga final fosse nula. Ele ainda afirmava
que os elétrons nao estavam fixos ou presos no atomo, e desse modo
podiam ser transferidos para outro atomo em determinadas condicgoes.
Além disso, o atomo poderia ser considerado como um fluido continuo de
cargas positivas onde estariam distribuidos os elétrons, que possuem
carga negativa. Ele comparou o seu modelo a um pudim de passas onde
essas passas representam os elétrons. Por fim, ele explicava que como
os elétrons que estao espalhados apresentam a mesma carga, existe
entre eles uma repulsao mutua, o que faz com que estejam uniformemente
distribuidos na esfera.

A principal influéncia da proposta de Thomson foi adicionar alguns
conceitos sobre atomos que ainda nao haviam sido considerados. O
primeiro conceito novo era a natureza elétrica da matéria pois com o
entendimento da existéncia de cargas negativas e positivas o que
adicionava essa caracteristica elétrica a todas as matérias.

O segundo conceito era o da possibilidade da divisao do atomo, ja que o
mesmo possuia particulas subatdémicas o que associava o terceiro
conceito que diz respeito a presenca de pequenas particulas nos atomos.
No ano de 1911, Ernest Rutherford, cientista neozelandés, propés um
novo modelo para o atomo. Esse novo modelo, também conhecido como
modelo solar foi considerado o modelo que estimulou toda a evolucao da
ciéncia que estudava o elemento fundamental de toda a matéria, o atomo.



A proposicao de Rutherford teve inicio a partir das propriedades do raio
X e das emissoes radioativas.

O experimento de Rutherford era constituido de trés elementos: o
primeiro era um emissor de radiagcao alfa, no caso o polonio, que era
colocado em um bloco de chumbo que possuia um pequeno orificio pelo
qual escapava a radiagcao. O segundo elemento era uma lamina de ouro,
extremamente fina posicionada a frente da caixa de chumbo. Finalmente
o terceiro elemento que era uma placa metalica coberta com material
fluorescente (no experimento ele utilizou sulfeto de zinco) posicionada
atras, ao lado e um pouco a frente da lamina de ouro.

Lamina de ouro

Placa metalica

—

Caixa de chumbo

Figura 17 - Experimento de Rutherford

A radiacao emitida pelo polonio se propagou em direcao a placa de ouro,
passando, em grande parte, pela lamina e atingindo a placa metalica no
outro lado, evidenciando que boa parte da radiacao alfa atravessou o
ouro sem sofrer desvios consideraveis. Uma fracao da radiacao foi
dispersada atras da lamina de ouro indo refletir na placa metalica o que
evidenciou que parte da radiacao havia sido desviada pela placa de ouro.
Finalmente, uma pequena fracao da radiacao foi refletida pela placa de
ouro revelando que parte dessa radiacao foi refletida pela placa.

A partir desses resultados, Rutherford concluiu que o fato de boa parte
da radiacao ter passado pela lamina de ouro significava que os atomos
possuem grandes espacgos vazios (eletrosfera), isto é, regides incapazes
de oferecer obstaculos as particulas da radiacao alfa. O desvio de parte
da radiacao, que provocou uma difusao na parte posterior da placa
metalica, ocorreu porque uma pequena quantidade de radiacao passou
préximo a regiao positiva (nucleo) que foi o responsavel por esse desvio.
Quanto a porcao que foi refletida, certamente seria resultado de uma
parcela daradiacao que se chocou com uma area extremamente pequena
no interior do atomo, o nucleo.
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Figura 18 - Resultado da emissao alfa no experimento

Baseado nessas conclusdes Rutherford propdoe uma estrutura para o
atomo. A denominacao dada ao novo modelo apresentado por ele, teve
origem na ideia que o atomo possuia uma regiao central, o nucleo, onde,
em torno dele, orbitam os elétrons. Analogamente, o nucleo seria como o
sol no sistema solar e os planetas seriam os elétrons.

Figura 19 - esquema do modelo de Rutherford

Dando continuidade ao trabalho de Rutherford, o fisico dinamarqués Niels
Bohr tentou explicar alguns erros no modelo anterior. Para isso ele
sugeriu que o atomo possuia uma energia quantizada, ou seja, cada
elétron s6 pode ter determinada quantidade de energia.

Para explicar isso o modelo de Bohr representava niveis de energia para
os elétrons. Nesse caso, o modelo onde cada elétron possui a sua propria
orbita e com quantidades de energia ja determinadas.



O grande problema é que as leis da Fisica Classica nao conseguem
explicar esse modelo. Esse ocorre porque quando um elétron salta de um
nivel menor para um nivel mais elevado, ocorre uma absorcao de energia
e, quando esse elétron retorna para um nivel menor, ocorre uma emissao
de radiacao em forma de luz.

Bohr organizou os elétrons em camadas, também conhecidos como niveis
de energia. Cada camada recebeu um nome e s6 pode ter um numero
maximo de elétrons. No modelo de Bohr existem sete camadas ao redor
do nucleo: K,L,M,N,O,P,Q.

A tabela abaixo apresenta o nome das camadas, seu numero quantico e
o0 humero maximo de elétrons em cada uma destas camadas.

N° QUANTICO N © MAXIMO DE é
K 1 2
L 2 8
M 3 18
N 4 32
o) 5 32
P 6 18
Q 7 2

Tabela 1 - Camadas, numero quantico e nimero maximo de elétrons em cada camada.
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Figura 20 - Distribuicao dos elétrons nas camadas de um atomo

A Gltima camada de um atomo é conhecida como camada de valéncia. A
camada de valéncia recebe elétrons no nivel de maior numero quantico



principal ou secundario na distribuicao eletronica. Sao os elétrons
contidos nas camadas de valéncia que participam das ligagdes quimicas.
Na primeira metade do século XX, o cientista norte americano, Linus
Pauling, aprofundou a ideia da distribuicao dos elétrons no atomo,
apresentou o conceito da distribuicao eletronica de Linus Pauling. Esse
método especifica como ocorre a distribuicao dos elétrons na eletrosfera.
Na verdade, o método foi desenvolvido pelo fisico alemao Erwin Madelung
que provou experimentalmente que os elétrons sao dispostos nos atomos
em ordem crescente de energia. Ele baseou seus estudos nos conceitos
apresentados por Rutherford e Bohr.

/ a 7 A

Figura 21 - Diagrama de Pauling
1s? 2s? 2p°® 3s? 3p°® 4s? 3d"° 4p° 5s% 4d"° 5p° 6s% 4 f* 5d"° 6p°® 7s? 5f'* 6d"° 7s°

Ordem crescente de energia

/ Numero quantico principal

1 S ¥—— Quantidade de elétrons no nimero quantico azimutal

Namero quantico azimutal

Uma das utilizagcdes da camada de valéncia é a determinacao de um
material € condutor, semicondutor ou isolante.

Os materiais condutores possuem um excedente de elétrons em sua
camada de valéncia. Nesse caso, os elétrons se encontram nas camadas
de valéncia mais distantes do nucleo e, portanto, necessitam de uma
energia menor para que sejam retirados dessa camada. Essa facilidade



de retirada dos elétrons faz com que eles sejam chamados de elétrons
livres. Materiais metalicos normalmente sao bons condutores.

No caso dos materiais isolantes, ou dielétricos, os elétrons da camada de
valéncia sofrem forte influéncia de atracao do nucleo, sendo muito dificil
a extracao de elétrons dessas camadas.

No caso dos elementos semicondutores o comportamento de conducao
ou resisténcia sera ditado pelas condicdes fisicas aos quais o material €
submetido.

Todos os materiais isolantes possuem uma caracteristica chamada
RIGIDEZ DIELETRICA, ou seja, o valor maximo de campo elétrico que elas
podem suportar sem perder sua caracteristica de isolante. Essa rigidez
dielétrica é dada em Kv/imm (quilo volts* por milimetro).

Particula Massa Massa Carga elétrica Carga
(grama) relativa (Coulomb) liquida
Préton (+) | 1,7.10% 1 +1,6.107"° +1
Néutron (0) | 1,7.10* 1 0 0
Elétron (-) | 9,1.10% | 1/1840 -1,6.10"° -1

Tabela 2 - Tabela de caracterizagao dos elementos componentes de um atomo

2.1.3 - O Conceito de Corpo Eletrizado

2.1.3.a - Eletrizacéao por atrito

Como ja vimos, todos os materiais sao compostos de atomos e, por sua
vez, esses atomos possuem um nucleo com proétons e néutrons e uma
coroa, com elétrons que circundam em torno do nucleo.

Na natureza, todos esses corpos possuem em seus atomos o mesmo
numero de proétons e de elétrons, sendo assim, dizemos que esses corpos
estao em equilibrio eletrostatico ou com carga elétrica nula.

Como ja vimos também, Tales de Mileto, observou que o ambar atritado
com a pele de carneiro, passava a ter a propriedade de atrair pequenos
materiais. Mas o que ocorria durante o processo de atrito para que isso
pudesse acontecer?

Se pegarmos dois materiais quaisquer, mesmo que isolantes, e
comegarmos um processo de atrito entre os dois, verificaremos que os
elétrons dos atomos mais externos trocam cargas elétricas. Esse
fendmeno recebe o nome de triboelétrico. No caso de atritarmos vidro em
um pedaco de |a, veremos que o vidro ira adquirir uma carga positiva
enquanto a la adquire uma carga negativa.

244 Kv equivale a 1000 volts



Figura 22 - exemplo de eletrizacao por atrito - pente no cabelo

No exemplo acima, o atrito de um pente de plastico com o cabelo produz
a eletrizacao dos dois e o pente passa a atrair pequenos pedacos de papel
colocados sobre uma superficie qualquer.

Além da eletrizagao por atrito, outras formas sao, eletrizagcao por contato
e eletrizacao por inducao.

O processo de eletrizacao por atrito foi melhor explicado a partir dos
estudos de Enrico Fermi. Ele mostrou que durante o atrito ocorre uma
variacao de temperatura que modifica a distribuicdo de energia dos
elétrons o qual, a partir do qual ocorre a alteracao do poténcial de
contato.

2.1.3.b Eletrizacao por contato

Na eletrizacao por contato, um corpo é carregado com cargas negativas,
a partir de um processo qualquer de eletrizacao. Estando esse corpo
carregado, ao encostarmos o mesmo em um segundo corpo,
imediatamente cargas contidas no primeiro elemento irao migrar para o
segundo tornando-o também carregado com cargas negativas, conforme
mostra o esquema da figura 11. Esse processo foi entendido a partir das
experiéncias de Alexandre Volta que verificou que quando dois metais
condutores diferentes se unem surge uma pequena diferenca de
poténcial elétrico denominado poténcial de contato.

Uma analise mais aprofundada, ja migrando para a area da fisica quantica
podemos verificar que essa diferenca de poténcial que surge entre os
dois materiais é inerente ao tipo de material que se une e a temperatura
que envolve essa uniao. Isso ocorre porque a diferenca de poténcial que
ira surgir esta relacionada com o poténcial quimico de cada um dos
materiais, ou seja, depende do numero de elétrons que cada um dos
elementos possui em sua camada de valéncia. Nesse caso, quando dois
materiais diferentes sao unidos, um deles ira ceder elétrons e o outro ira
receber esses elétrons provocando uma diferenca de poténcial entre os
dois materiais.



Figura 23 - Processo de eletrizagcao por contato

O experimento de Alexandre Volta provou essa particularidade e ordenou,
pela primeira vez, uma sequéncia ordenada de metais, onde cada um era
caracterizado por um valor denominado valor galvanico. Entretanto, foi a
teoria de Enrico Fermi, que possibilitou um melhor ordenamento dos
materiais em niveis de energia e que possibilitou estabelecer as relagoes
entre esses materiais metalicos para determinar a capacidade de
geracao de um poténcial de juncao para cada tipo de combinacao
metalica.

Metal Poténcial do Eletrodo
Magnésio -2,340
Aluminio -1,670
Zinco -0,762
Cromo -0,710
MENOS Ferro - 0,440 ANODICOS
NOBRES Cadmio - 0,402
Niquel -0,250
Estanho -0,135
Chumbo -0,126
Cobre + 0,345
MAIS Prata +0,800 CATODICOS
NOBRES Ouro +1,680

Tabela 3 - Série Galvanica dos Metais

2.1.3.c Entendendo a série triboelétrica

Foi Benjamin Franklin, em seus estudos sobre eletricidade, mais
especificamente nos estudos sobre a “producao” de cargas elétricas por
atrito e seguindo a convencao de sinais de cargas, por ele mesmo
proposto, que mostrou que, ao se friccionar vidro com seda, alguns
elétrons do vidro passam para a seda, deixando-a negativa enquanto o
vidro fica positivo. Da mesma forma, ao atritarmos uma pele de coelho ou



seda com ambar, este ficara negativo, enquanto a pele ou a seda ficarao
positivos.

O estudo da interacao entre variados materiais levou ao estabelecimento
de uma lista ordenada desses materiais, sejam eles, condutores ou
isolantes. Essa lista, como ja comentamos, é conhecida como série
triboelétrica.

A palavra triboelétrica tem origem grega, pois tribo em grego significa
atrito.

A tabela abaixo apresenta esta série.

Pele humana seca Aluminio Isopor
Amianto Papel - Filme de PVC
Couro Algodao Neutros Estanho
Pele de Coelho Aco Prata
Vidro Madeira Borracha sintética
Cabelo humano _ Ambar Poliuretano +
Nylon Borracha dura Polietileno
La Niquel e Cobre + PVC
Chumbo Latao e Prata Teflon
Pele de gato Ouro e Platina Borracha de silicone
Seda Poliester

Tabela 4 - Série Triboelétrica

2.1.3.d Eletrizagao por Inducao

Chamamos de eletrizacao por indugcao o processo em que atribuimos
carga elétrica a um objeto a partir de um segundo objeto que esta
carregado. Esse processo ocorre baseado no conceito de atracao e
repulsao de cargas elétricas.

O corpo que esta inicialmente carregado recebe o nome de indutor
enquanto o corpo que ira receber a carga é denominado de induzido. O
processo ocorre em 4 etapas.

A primeira etapa consiste em aproximar o corpo carregado (indutor) do
corpo que se pretende carregar (induzido). Ao aproximarmos um corpo
do outro, pelo principio de atracao e repulsao das cargas elétricas, a
carga existente no indutor, comeca a repelir as cargas iguais e atrair as
cargas diferentes existentes no corpo. Lembre-se que todos os corpos em
equilibrio possuem um igual niumero de prétons e elétrons.

Na segunda etapa, ligamos o induzido a terra, mantendo-o aproximado do
indutor. Nessa etapa, a ligacao terra ira complementar a carga total do
induzido.

Na terceira etapa desligamos e fio de aterramento e, posteriormente,
afastamos o indutor do induzido.

Na etapa final teremos o corpo induzido completamente carregado.
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Figura 24 - Processo de Eletrizacao por indugcao

O processo de eletrizagao por indugao, no caso de um corpo dielétrico, o
maximo que ira acontecer sera uma reorientagcao dos dipolos elétricos.
Entretanto, nao ha um deslocamento de cargas ao longo da rede de

atomos quem compoée o corpo. Na figura 12 podemos ver o que isso
acontece.

@ @ e @ @
@ @ @ @ @ E
@ @ e @ @

Induzido (dielétrico)
Indutor

Figura 25 - Eletrizagao por indugcao de um corpo dielétrico

No caso do corpo induzido ser um material condutor, o corpo eletrizado,
ao se aproximar do induzido, comecga a atrair as cargas de valor contrario
e ira repelir as cargas de valor igual. Nesse momento ligamos o induzido
aterra queira anular as cargas que foram repelidas pelo indutor. Quando
o sistema atinge o equilibrio eletrostatico (momento em que as cargas
param de se movimentar pelo fio que esta ligado a terra).

@ @ee@epbpb
@e@eee@ebbbDb
@ee@@pbDbDD E
@e@e@e@epDbDDb
Induzido
Indutor
DPDEPDDDDD
@e@epbbbbDDbD
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D PEDODDDDBDD
Induzido
Indutor
PODDDPDDDDB
PODPDPDDDDD
PODDDDD DD
DPEPDDDDBDD

Induzido

Figura 26 - Processo de eletrizagao por indugao



2.1.4 - Carga Elétrica

Com tudo o que ja vimos, vamos tratar entdo sobre o elemento
fundamental da eletricidade, o elétron, mais especificamente a carga
elétrica.

Mas o que é carga elétrica?

A carga elétrica é a propriedade fisica da matéria. Essa carga pode ser
positiva ou negativa. Pela teoria mais utilizada na maior parte dos estudos
de Fisica, as menores particulas portadoras de carga elétrica sao os
prétons e os elétrons. Isso faz com que a carga elétrica possua um valor
minimo (carga de 1 elétron), sendo assim, a carga de um corpo é um
multiplo da carga do elétron. Desse modo dizemos que a quantidade de
carga elétrica de um corpo é quantizada. Considerando a lei de Lavoisier,
“na natureza nada se cria, nada se destroi, tudo se transforma”’, sabemos
que as cargas elétricas nao surgem e nem sao destruidas e, portanto, se
conserva.

As particulas, que podem ser eletricamente carregadas, sao conhecidas
como portadoras de cargas elétricas. Nos elementos metalicos sélidos, o
portador de carga elétrica negativa é o elétron. No caso dos fluidos, o
portador de carga elétrica positiva € o cation (ions que excesso de
proétons). A fisica moderna mostrou que, ao contrario do elétron, o préton
nao € uma particula elementar pois eles sao compostos de quarks.

Particula Massa Massa Carga elétrica Carga
(grama) relativa (Coulomb) liquida
Préton (+) 1,7.10-24 1 +1,6.10-19 +1
Néutron (0) 1,7.10-24 1 0 0
Elétron (-) 9,1.10-28 1/1840 -1,6.10-19 -1

Tabela 5 - Dados das particulas do atomo

Quando um corpo esta carregado eletricamente, seja positiva ou
negativamente, dizemos que esse corpo esta ionizado. Ou seja, o
equilibrio do atomo é quebrado. Quando um atomo esta em equilibrio, o
numero de prétons e nUumero de elétrons € o mesmo. Entretanto, quando
um processo qualquer de eletrizacao retira ou cede um elétron para um
corpo ou uma particula, é gerado um processo de desequilibrio elétrico.

Como ja dissemos existe uma quantidade minima de carga que é dada

pelo valor da carga do elétron: e

Qualquer carga “q” deve ser um valor inteiro de cargas elementares:

q =tne,n= 1,23, ..

e =1,60 x 1071°C



2.1.5 - Campo elétrico

Sempre que temos uma carga elétrica ou uma variagao, no tempo, de um
campo magnético, estaremos na presenca de um campo elétrico.
Analisando os casos estaticos (referentes a cargas elétricas
estacionarias), veremos que na presenca de um campo elétrico formado
por um conjunto de cargas estacionarias, qualquer carga que seja
aproximada desse campo sofrera a acao do mesmo através da forca
elétrica.

A intensidade dessa forca elétrica (ou vetor forca elétrica) é dado pela
equacgao:

F=E.q

onde : F-é o vetor FORCA ELETRICA; q —carga elétrica de prova
E - é o vetor CAMPO ELETRICO;

Carga elétrica de prova é um corpo com carga muito pequena. Esse valor

deve ser muito pequeno para garantir que o campo elétrico gerado por
essa carga, nao influencie de forma significativa a distribuicao de carga
que cria o campo elétrico que esta sendo analisado.
A partir dessa carga de prova, € possivel determinar a caracteristica do
campo analisado. Ou seja, se aproximamos de um campo uma carga de
prova positiva e essa sofre uma forca de repulsao, € possivel dizer que
estamos na presenca de um campo elétrico positivo. Se ela for atraida,
podemos afirmar que se trata de um campo elétrico negativo. Nao
esquecer que cargas de mesmo sinal se repele e de sinais contrarios se
atraem.

O campo elétrico € composto por um conjunto de linhas de forgca que tem
origem no polo positivo e se deslocam até o polo negativo. Uma forma
simplificada de representacao dessas linhas de campo para possibilitar a
visualizacao da direcao e do sentido desse campo. Essa representacao,
obedecendo uma convencao, permite determinar de forma comparativa a
diferenca de intensidade de dois campos diferentes. Pela convencao,
campos mais intensos possuem um numero maior de linhas de campo e
essas linhas ficam mais préximas umas das outras. Campos menos
intensos, possuem menos linhas e mais distantes umas das outras.

/ Nas cargas pontuais, as linhas de campo se
N

e estendem até o infinito (cargas positivas), ou

/7 \;\ se originam no infinito (cargas negativas).

Figura 27 - Carga Pontual (positiva)
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Figura 28 - Duas cargas pontuais de mesmo sinal elétrico é nulo.
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Figura 29 - Duas cargas pontuais de sinais diferentes

Para melhor entender o comportamento das cargas elétricas Coulomb
passou a estudar e experimentar as reacdes de corpos carregado
eletricamente.

2.1.6 - Lei de Coulomb

Entre 1785 e 1791, Charles Augustin de Coulomb, pesquisou as
interacoes entre cargas elétricas. Ele utilizou um equipamento chamado
balancga de torgao.

Balanca de torcao € um equipamento, construido por Coulomb e podia
fazer medicoes da forca de atracao ou repulsao entre duas esferas
eletricamente carregadas.

A balancga consiste de uma haste suspensa por um fio tendo em cada uma
das extremidades uma esfera. Uma terceira esfera presa em uma haste e
também eletrizada é aproximada das outras duas. Devido a forga elétrica
que ocorre pela interacao entre as esferas carregadas, a haste gira e
provoca uma torcao no fio. Quando medimos o angulo de giro, Coulomb
conseguia determinar a forca entre as esferas.

Coulomb repetiu diversas vezes o experimento e acabou concluindo que
a forca elétrica é inversamente proporcional ao quadrado da distancia
entre as duas esferas. Ele também concluiu que a forca elétrica era
proporcional ao produto das cargas elétricas das duas esferas.

Com isso, ele determinou a equacao da forca elétrica exercida pela
interacao entre duas esferas carregadas.

19192
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Figura 30 - Balanca

Constante eletrostatica
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2.1.7 - Principio da Superposicao

Até agora analisamos a interacao entre duas cargas elétricas. A partir de
agora vamos analisar o que ocorre quando mais de duas cargas

interagem.

Quando duas cargas interagem, surge um par conjugado de forcgas.

Sendo assim, quando varias cargas
sobre a carga de prova e, conse

interagem um conjunto de forcas atua
quentemente o deslocamento dessa

carga tera a intensidade e a direcao da forca resultante desse conjunto.

(F2 + F3)
F23
F2
F3
F2
F234
(F23 + F4)
F4
F1234
(Resultante)
(F234 - F1)

-F1

Figura 31 — Representacao esquematica do Principio da Superposicao e sua resolucao vetorial



O principio da superposicao diz que a forca resultante em uma particula
que esta submetida a acdo de um nimero N de outras particulas é o
somatério das forcas que surgem entre cada uma das particulas do
conjunto, sobre a particula que esta sendo analisada.

Desse modo:

Fi234 = z Fp = Fi3,=(=F) +F,+F; +F, (1)

n=1

Nao podemos esquecer que essas forgcas sao vetores, sendo assim,
possuem modulo e direcao. Sendo assim, e sabendo que a forca elétrica
€ dada pela equacao:

Entao podemos escrever a equacgao geral do principio da superposicao
como:

Q1Qs Q2Qs Q3Qs Q4Qs
az +K0d +K0d

Ko—3—

+ + +
dis ~ d3s = d3;  dis

K <Q1Q5 Q2Qs | Q3Qs Q4Q5>
0

Q  Q Q3  Qq )
KoQs ( +
P \dfs  dgs  dis di

“ ”

Se substituirmos os indices 1,2,3 e 4, por “j” e o indice 5 por
escrever a equagao como:

i” podemos

KoQi Y 2

i#joj=1 JI
Mas Ko, a constante eletrostatica do meio é dada por

1

K =
41e




Sendo assim, podemos escrever a equagao do principio da superposicao
como:

Qi Qj

) —
TeS T Amey L d-zl-
lq‘:]—)]:l ]

O entendimento do principio da superposicao &€ muito importante para o
entendimento dos processos eletromagnéticos que iremos estudar mais
adiante.

Em eletricidade, o ente “carga elétrica” é o elemento fundamental.
Entretanto, com excecao de analises tedricas, ele nao é analisado
individualmente. Normalmente, o comportamento do fluxo de cargas
elétricas é analisado em condutores e componentes elétricos e
eletronicos.

Vamos analisar o comportamento do campo elétrico no principal
elemento utilizado em eletricidade, o condutor.

Qualquer material condutor é caracterizado por ter um chamado “elétron
livre” que nada mais € que um elétron na ultima camada de valéncia.

No caso, dos atomos que compde o material condutor, os elétrons
situados na ultima camada de valéncia necessitam pouca energia para
serem retiradas do atomo.

Um condutor em equilibrio eletrostatico quando nao ha um movimento
organizado de cargas. Isso pode ocorrer mesmo quando o condutor esta
submetido a um campo elétrico externo.

Em um condutor em equilibrio eletrostatico, tem em seu interior, um
campo elétrico nulo.

A existéncia de um campo elétrico no interior de um condutor significa a
existéncia de um fluxo organizado de cargas. Esse fluxo organizado de
cargas surge com a finalidade de anular o campo elétrico interno.

Um condutor submetido a um campo elétrico externo, tem suas cargas
livres reorganizadas de tal forma a anular o campo elétrico que surge no
interior do condutor.

Por sua vez, a orientagcao dessas cargas, faz surgir um campo elétrico de
intensidade igual e sentido oposto ao campo elétrico externo.

Utilizando o principio da superposi¢cao, na regiao interna do condutor os
campos sao somados vetorialmente e o resultado € um campo nulo.
Como o campo elétrico no interior do condutor é nulo, significa que a
diferenca de poténcial elétrico entre a superficie e o volume do condutor
também é nulo.

Em um condutor que se encontra em equilibrio eletrostatico o campo

P

elétrico é perpendicular a superficie do condutor. Essa condicao é



importante por que, caso o campo nao fosse perpendicular a superficie
seria possivel decompor esse campo em dois vetores, um deles
perpendicular a superficie e outro paralelo a ela. Essa componente
paralela seria responsavel pelo surgimento de um movimento de cargas
elétricas no condutor, desfazendo a condicao de equilibrio eletrostatico.
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Figura 32 - (1) Condutor em equilibrio eletrostatico; (2) Condutor atravessado por campo elétrico
externo; (3) Reorganizagcao das cargas com surgimento de um campo contrario; (4) equilibrio
eletrostatico atingido pela equiparacao dos campos externo e interno.

2.1.8 - Comportamento de condutores e isolantes submetidos a
um campo elétrico

2.1.8.a Condutores

Alguns materiais como o cobre, o ouro, o aluminio e o ferro, possuem a
caracteristica de possuir elétrons situados nas suas ultimas camadas de
valéncia. Isso significa que o elétron da ultima camada é mantido no
atomo por uma forgca de atracao baixa. Isso significa que o elétron esta
ligado ao atomo de maneira ténue e, portanto, uma pequena quantidade
de energia é capaz de fazer esse elétron migrar de um atomo para outro.
Essa caracteristica € uma peculiaridade dos materiais que chamamos de
condutores. Esses materiais apresentam, caracteristicamente, 1, 2 ou 3
elétrons na sua camada de valéncia.

Na tabela periédica esses materiais se encontram no centro da mesma e
sao conhecidos como metais de transicdo. O nome transicao é, de certo
modo, bem apropriado, pois esses elementos dividem os elementos
metalicos que ficam a esquerda da tabela e os materiais nao metalicos,
que ficam a direita.

Segundo a Uniao Internacional de Quimica Pura e Aplicada, os metais de
transicao sao “elementos cujo atomo possui um subnivel d incompleto ou
que possam vir a formar cations com um subnivel d incompleto. A maioria
desses elementos possui caracteristicas semelhantes aos metais, tais
como, boa condutibilidade térmica e elétrica e brilho. O ponto de fusao e



a dureza variam entre os materiais dessa categoria, entretanto, todos
possuem maior dureza, ponto de fusao e ponto de ebulicao, maiores que
os metais alcalinos e que os metais alcalino-terrosos.

2.1.8.b Isolantes

Um segundo grupo de materiais, & constituido de elementos que
possuem, na sua camada de valéncia, 5, 6, 7 ou 8 elétrons. Isso
caracteriza um conjunto de materiais que necessitam de valores, as vezes
astronémicos (depende do material), de energia para que um elétron de
sua camada de valéncia possa se deslocar para outro atomo.

Esses materiais sdo conhecidos como isolantes ou dielétricos. Quando
aplicamos um campo elétrico a um material dielétrico, este se polariza.
Essa polarizacao, diferentemente dos condutores nao provoca a
liberacao dos elétrons da camada de valéncia mas surgem momentos de
dipolos. O somatério desses dipolos origina a polarizacao do material,
tanto interna quanto externamente.

2.1.8.c Semicondutores

O terceiro grupo de materiais que nos interessa em eletricidade e
magnetismo é o conjunto de elementos que possuem 4 elétrons em sua
camada de valéncia. Esses materiais, dependendo de uma série de
condicdes, podem se comportar como isolantes ou entdao como
condutores.

2.1.8.d Outros parametros de caracterizagcao

Nem s6 o numero de elétrons da camada de valéncia caracteriza o
comportamento elétrico de um material. Determinados materiais,
submetidos a condicdoes extremas de temperatura, alteram suas
caracteristicas.

Alguns isolantes, submetidos a altas temperaturas, aumentam sua
condutibilidade. Isso ocorre porque, o aumento da temperatura ocasiona
um aumento na agitacao das moléculas do material. Isso facilita o
processo de liberacao dos elétrons da camada de valéncia provocando o
surgimento de uma corrente elétrica.

Outros materiais, quando associados sob certas condicdes de pressao e
temperatura e, posteriormente submetido a temperaturas abaixo de zero,
tornam-se supercondutores, com valores de resistividade inferiores aos
melhores condutores existentes na natureza.

Como ja vimos, um material condutor, submetido a um campo elétrico fara
surgir em seu interior um campo de sentido contrario ao campo externo.



O surgimento desse campo contrario podera formar o equilibrio
eletrostatico do material.

No caso de materiais isolantes serem mergulhados em um campo
elétrico, fara surgir em seu interior um dipolo que ser orientara conforme
a disposi¢cao do campo.
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Figura 33 - Condutor atravessado por Campo Elétrico
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Figura 34 - Isolante atravessado por Campo Elétrico

2.1.9 - Distribuicao continua de carga

Vamos imaginar um corpo ou regiao do espaco, e dentro desse corpo um
ponto P com um vetor posicédo r . Esse vetor é produzido por uma carga
distribuida de forma continua dentro de uma determinada regiao do
espaco.

Dividindo essa regiao em n subdivisdes, tao pequenas que possam ser
consideradas cargas pontuais. Se o vetor posicao de cada uma dessas
cargas for denominado de rea carga pontual Aq’, entdo, o vetor que tem

origem no ponto de carga analisado, indo até o ponto P, tera seu modulo
. A T ) . ~ .
e sentido dados por ri=r-r’ e a sua diregao, ou versor, sera dada por:

NG

[7 -7}

L =

n’

Figura 35 - Cagga distribuida em uma regiao



Utilizando a equacao do campo para uma carga pontual, obteremos a
equacao do campo para uma carga distribuida.

n
- kA, A’F—T"
Fa) Y AE )
=i |7 =]

n
i=1 L i=1

Quando o limite tende a «, ou seja h —» «, a aproximacgao da formula acima
torna-se exata de tal forma que torna todas as cargas AQ’
infinitesimalmente pequena (dg’) e a soma nesse limite é definido pela
integral.

L AT 77
Regiéo'r_ ’l

Essa integral pode ser utilizada em uma linha, uma superficie ou um
volume dependendo da forma como a carga € distribuida.

Vamos analisar cada um dos trés casos para determinar o
comportamento do campo.

2.1.9 a - Carga distribuida em uma linha

Nesse tipo de situacao a carga diferencial dg’ em um fio no espaco entre
(r’) e (r’ + dr’) é diretamente proporcional ao comprimento ds’, sendo
assim:

dq' = A(r")ds’

Nesse caso, o elemento /1(7”) € uma funcao que depende da posicao do fio

que recebe a denominacao de carga linear. Essa carga linear é igual a
carga por unidade de comprimento do fio.

Figura 36 - Carga distribuida em uma linha



A equacao vetorial de uma curva continua é dada por uma expressao para
r’ que € uma funcao de um parametro real v. Esse parametro determina a
posicao dos pontos da curva.

Para cada valor atribuido ao parametro v é determinada a posicao de um
ponto da curva. Esse valor pode ser um angulo, um comprimento ou um
instante de tempo. N
Como esse parametro v sofre um incremento infinitesimal, isso gera, no
vetor r, também um incremento dr. O comprimento infinftesimal ds , é
igual ao modulo do vetor dr-

Para determinar o valor da carga distribuida, aplicamos a integral de linha
ao longo do curso C para a formula geral do campo. Nao esquecga que a
integral de linha nada mais é que uma integral para uma sé6 variavel.

, T
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Se observarmos a equacgao acima, veremos que nao ha umaigualdade (=),
mas sim uma aproximacao (=). Isso ocorre porque um fio, nao é apenas
uma curva, mas sim o sélido extremamente fino na sua relacao entre
espessura e comprimento. Desse modo, quanto menor for a seccao
transversal desse condutor, mais préximo da igualdade ficara a
expressao.

Em um condutor qualquer, na realidade, existem varios caminhos
possiveis para a analise do percurso da corrente. Desse modo,
costumamos utilizar o percurso médio para o calculo da integral.

2.1.9.b Carga distribuida em uma superficie

Vamos imaginar agora uma lamina extremamente delgada. Para a
determinacao da carga distribuida nessa lamina utilizaremos a integral de
superficie.

A integral de superficie € uma integral dupla, ou seja, € uma integracao
de duas variaveis.

Para esses casos a carga infinitesimal dg’em uma determinada regiao da
lamina estara relacionada com uma chamada carga de superficie c.
Desse modo :

dq' = o(r')dA’



Nesse caso dA’é o elemento diferencial da area da regiao®. O elemento
o(r’) € a carga por unidade de superficie em uma |55sigéo r sobre alamina
analisada.

Para esse caso, aplicaremos uma integral dupla a equacgao geral do carga
distribuida e teremos.

ek [ ] T
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Assim como na linha, cujo valor € aproximado, para a superficie o mesmo
raciocinio é valido, nesse caso porque nao existe uma superficie com
espessura zero. Na verdade as laminas reais, por mais finas que seja,
ainda ocupam um volume, sendo necessario determinar um caminho
médio para toda a superficie da lamina.

Figura 37 - Carga distribuida em uma superficie

Note que exemplificamos na nota de rodapé sobre uma integral dupla que
ela seria aintegracao nos eixos xe y, entretanto, esses eixos poderao ser
quaisquer dois que definam a superficie. -
Nesse caso, a equacao vetorial de uma expressao para o vetor posicaor’,
sera dada em funcao de dois parametros reais, v e v. Sendo assim, o
elemento dlferenmal da superficie, dada por dA’, sera igual a area da
superficie que é descrlta pelo vetor r’ quando esse o parametro v é
incrementado de duv e o parametros vé incrementado de dv.

Na maioria dos casos (superficies planas), os parametros v e v sao
substituidos pelos eixos cartesianos, xe y. Entretanto, em alguns casos é
mais interessante utilizarmos a notacao polar, com re 6.

2.1.9.c Carga distribuida em um volume

Na verdade, esse é o caso mais comum dos trés analisados. Isso por que,
na realidade, todos os objetos que analisamos sao volumétricos, por
menor que sejam algumas de suas dimensoées. Esse € o motivo pelo qual

% dA’é o resultado de um elemento diferencial composto por dX’x d Y’



nos dois casos anteriores, as equagdes sao uma aproximacao da
realidade.

No caso de volumes, a carga infinitesimal distribuida em um volume
infinitesimal da sub-regiao analisada sera dada por:

dq' = p(r')dx'dy'dz’

Nesse casg, o elemento p(r’), € denominado de carga volumétrica no
ponto dado pelo vetor r’, representando a carga distribuida por unidade
de volume.

Por analogia, podemos dizer que nesse caso, a integral sera tripla, ou
seja:

—)

dq' = kﬂ]p(r) il dx'dy'dz’
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Onde V é o volume onde a carga esta.

Nos casos onde existe uma simetria na forma como a carga esta
distribuida no espacgo, a solugao analitica dessa integral tripla € mais
simples. Nos demais casos, lancamos mao de outros métodos que tornam
a solucao dessas integrais triplas mais simples do que o processo
analitico convencional.

Esses métodos sao chamados métodos numéricos de solucao de
integrais triplas e podem ser: o método de Newton-Coates, o método da
Quadratura de Gauss; e o método das Integrais Improéprias.
Normalmente esses métodos requerem solugdes computacionais pois
sao todas recursivas.

2.2 FLUXO ELETRICO

2.2.1 - O que é Fluxo Elétrico?

Sempre que trabalhamos com distribuicdes continuas de cargas e essa
distribuicao possui uma simetria plana, esférica ou cilindrica, podemos
determinar a expressao do campo elétrico aplicando a lei de Gauss.

Para explicarmos a lei da Gauss é preciso entender o conceito de fluxo
elétrico.

Para entender o conceito de Fluxo Elétrico vamos imaginar uma superficie
que se encontra perpendicular as linhas de um campo elétrico.
Consideremos também que o médulo do campo seja constante em todos
os pontos dessa superficie.



Podemos definir Fluxo Elétrico como sendo o produto do moédulo do
campo e a area da superficie. De uma forma simplificada, podemos dizer
que o fluxo elétrico indica o numero de linhas de forca que cruzam uma
superficie por unidade de area.

Y=EA

Existem casos em que a superficie € perpendicular as linhas de campo,
mas seu modulo nao é constante em toda essa superficie, a forma de
resolucao desse tipo de problema consiste em dividir essa superficie em
varias subdivisbes com areas significativamente pequenas para que o
moédulo do campo seja considerado constante em cada subdivisao. Nesse
caso especifico, o fluxo elétrico é o resultado da soma de todos os fluxos
de cada uma das subdivisdes da superficie analisada.

n
Y = Z EiAAi
i=1

Figura 38 - Representacgao de duas superficies perpendiculares as linhas de campo

Para melhor entendermos fluxo elétrico podemos tragar um paralelo com
o comportamento de um fluido. O fluxo elétrico pode ser comparado a
vazao.

Vazao pode ser definida como o volume de um fluido que passa por
unidade de tempo em uma determinada seccao. Por analogia o volume
que é definido pelas linhas de campo que passam por uma determinada
seccao. Esse volume é denominado tubo de fluxo. Assim como em um
fluido, se essas linhas de campo é incompressivel e nao existe nenhum
ponto de entrada e saida de fluxo, entao esse fluxo em todas as seccoes
transversais do tubo € o mesmo, independente se esse tubo faz curvas
ou inclinagoes.

Figura 39 - Tubo de fluxo e o fluxo € igual em todas as sec¢oes



Dependendo da forma do volume analisado, podem existir subseccoes
onde as linhas de campo nao sao perpendiculares. Desse modo, elas
formam um angulo 6; em relagao ao versor 77, normal a superficie. O fluxo
através da area AA; é igual ao fluxo através da projecao dessa area
perpendicular as linhas de campo, isto é, através de uma superficie
horizontal, conforme mostra a figura. Podemos fazer isso porque a
superficie Aie a superficie horizontal fazem parte do mesmo tubo de fluxo
que é formado pelas linhas de campo que passam pelas fronteiras das
duas superficies.

Figura 40 - Versor normal ni (azul) a uma superficie e projecao da superficie no plano
perpendicular as linhas de campo

A area da superficie horizontal é AA; cos 6; que é perpendicular as linhas
de campo. Se aplicarmos a equacao de ¥, anteriormente apresentada, é

AY; = E; cos 0; AA;

Desse modo, o fluxo total numa superficie qualquer que nao seja
perpendicular as linhas de campo é dada por:

n
Y = ZEl COS Hl- AAL

i=1

O vetor AA; é definido na direcao e no sentido do versor 1, que € normal a
superficie. Seu moédulo € igual a area da superficie AA..

Desse modo, podemos dizer que o produto E; cos 0; AA; é igual ao produto
escalar E;. AA;. Como sempre, a aproximagao desse valor se torna mais
exata conforme os limites das sub-regides sao infinitesimalmente
pequenas e se aproximam de zero. Desse modo o somatério é convertido

em uma integral. Para isso convertemos a expressao E,. AA; ha expressao

E'.dA’, onde A’ indica que os vetores sdo calculados sobre os pontos da
superficie.



tp=ff§".d,4'
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Lembre-se que a integral é dupla porqué dA’ depende das duas variaveis
em cada um dos eixos que delimitam a area da superficie analisada.

Figura 41 - Campo elétrico e vetor infinitesimal de area numa superficie

Em cada ponto dessa superficie € possivel definir o vetor dA’ em dois
sentidos opostos e normal a superficie. O sentido escolhido determinara
o sentido do fluxo calculado pela integral. O valor absoluto desse vetor é
o mesmo em ambos os sentidos, mas com sinais diferentes.

Para o caso de superficies fechadas, € normal definirmos o vetor dA’
apontando para fora da superficie. Desse modo, se o fluxo calculado for
positivo, sera para fora da superficie e se for negativo ele sera para dentro
da superficie.

N:>

Figura 42 - Superficies fechados

fora

Podemos solucionar a integral dupla é interessante parametrizar a
superficie S com dois parametros u’ e v’ do tipo:

S = {r’(u’, v'); u’'e v’ pardmetros reais}



Para que seja mais facil o entendimento do que foi escrito acima, vamos
imaginar se a superficie fosse dada pelo plano z’' = 5x’ + 4y’, uma possivel
equacao parametrizada desse plano seria dado por:

r=xT+y7+ (5x' + 4y')z

E essa equacao ficaem funcaode x’ ey’.

Os parametros reais que definem uma superficie correspondem aos
pontos em uma regiao no plano. Na figura abaixo podemos verificar que
os dois parametros sao as proéprias variaveis x’ e y’, e os valores que
esses parametros podem assumir correspondem ao retangulo T’ no plano

Xy.

v

pa=

X

Figura 44 - Superficie com dominio no retangulo T' do plano xy

Aumentos infinitesimais dx’ e dy’, no retangulo T’ sao projetados na
superficie T, formando uma pequena regiao na superficie com a area dA’.
Nesse limite infinitesimal, dA’ é a area do paralelepipedo formado pelos
vetores:

or’ 70
ax’ ry_ay’ y

o
drj =

a express3ao dr'/9x’ é uma derivada parcial, ou seja, € uma funcio em xe
yque sé é derivada em funcao da variavel x, e € um vetor que determina o
aumento da funcgao 7, devido ao aumento unitario da variavel x’. Da
mesma forma a expressao dr’'/dx’ determina o aumento de 1’ devido ao
aumento unitario da variavel y’.

O produto vetorial dos vetores sera um vetor direcao normal a superficie,
versor 71, e de modulo igual a area do paralelepipedo, desse modo, a
seccgao infinitesimal dA’, sera igual ao produto vetorial entre esses dois
vetores, sendo assim:
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2.2.2 - Lei de Gauss

Johann Carl Friedrich Gauss foi um matematico, astronomo e fisico
alemao. Suas contribuicdes para o progresso das Ciéncias foram muito
relevantes. Dentre elas podemos citar a feoria dos numeros, estatistica,
analise matematica, geometria diferencial, geodésia, geofisica,
eletrostatica, astronomia e optica.

Com relacao ao fluxo elétrico, a chamada Lei de Gauss, permite uma
analise do fluxo elétrico produzido por uma carga pontual em qualquer
tipo de situacao. Seja o campo uniforme ou nao, e para qualquer tipo de
superficie fechada. Essas superficies sdao conhecidas como superficies
Gaussianas. Apesar disso, essa lei s6 é operacional e util em
determinadas circunstancias. Casos onde o produto escalar do campo e
do vetor superficie de uma superficie Gaussiana é obtido com facilidade
€ um exemplo dessas circunstancias favoraveis.

Isso sempre é possivel quando a distribuicao de carga apresenta o que
podemos chamar de alta simetria. Podemos exemplificar essas simetrias
que facilitam a solucao de problemas usando a lei de Gauss.

O primeiro exemplo é conhecido como simetria planar. A simetria planar
aplica-se a casos de uma distribuicao de cargas em um plano infinito ou,
em casos similares onde se possa fazer a aproximacao de um plano
infinito. Essa aproximacao ocorre, por exemplo, quando o campo elétrico
calculado tiver origem em um ponto muito préximo ao plano. Para isso é
necessario que o plano tenha dimensdes muitas vezes maior que a
distancia entre o ponto e o plano.

O segundo exemplo é a simetria cilindrica, também conhecida como axial,
e aplica-se ao caso de uma distribuicao linear infinita. Existem dois casos
classicos para esse tipo de simetria: as linhas infinitas de carga e as
cargas distribuidas em um cilindro infinito. Do mesmo modo que com o
plano infinito, no caso do cilindro infinito, um cilindro de dimensoes finitas,
pode ser aproximado de um infinito se a distancia entre a carga e a
superficie do cilindro for muitas vezes maior que o comprimento do
cilindro.

Finalmente a simetria esférica é aplicada em analises de cargas
puntiforme e distribuicao esférica de cargas.

Segundo Gauss, o campo elétrico produzido por uma distribuicao de
cargas é a sobreposicao dos campos produzidos por muitas cargas
pontuais. E interessante uma analise do fluxo elétrico que o campo de uma
carga pontual produz.



Quando analisamos uma superficie fechada, podemos colocar a carga q,
dentro ou fora dessa superficie.

N\
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q

Figura 45 - Carga pontual dentro (a) e fora (b) de uma superficie fechada.

Sempre que a carga esta fora da superficie fechada o tubo de fluxo é
determinado pelas linhas de campo que sao tangentes a superficie.
Dividimos a superficie S em duas sub-regides, S; e S;, em dois lados da
curva por onde passam as linhas de campo tangentes a superficie. Em
ambas as superficies, S e S, o fluxo elétrico € igual. Isso ocorre porque
ambas as superficies fazem parte do mesmo tubo de fluxo. Entretanto,
ambos possuem sinais opostos, ja que um dos versores aponta para um
lado e o outro para o lado oposto.

Se a carga g for positiva, o fluxo entra por S, e sai por Si; no caso
contrario, ou seja, se a carga g for negativa, o fluxo entra por S, e sai por
S.. Utilizando a analise de Gauss, concluimos que o fluxo elétrico gerado
por uma carga pontual, colocada fora de uma superficie fechada, é
sempre zero.

Para o caso de cargas colocadas no interior da superficie fechada S, sera
atravessada por todas as linhas de campo. Uma carga pontual, gera em
seu entorno, um fluxo de geometria esférica. Esse fluxo é igual ao fluxo
total que atravessa a superficie fechada. Isso ocorre porque a esfera de
fluxo e a superficie fechada, fazem parte do mesmo tubo de fluxo.
Considerando que a esfera de fluxo gerada pela carga possui um raio R,
o campo elétrico em um ponto qualquer dessa superficie é dada por:

Como ja mencionamos, o fluxo total na superficie fechada S igual ao fluxo
na superficie esférica, que é dado por:

2T T

Lps:j E".dﬁ=kqj fsinc|>dc|>d9=4nkq
S 0O 0



Na forma da superficie, independentemente do tamanho, sera igual a
4rnkq, se a carga pontual estiver no interior da superficie fechada. Por
convencao o fluxo é direcionado para fora se a carga for positiva e é
direcionado para dentro se a carga for negativa.

Como ja mencionamos, uma distribuicao de cargas pode ser dividida em
varias cargas pontuais qs, g2, ..., g, desse modo, o fluxo total, através da
superficie fechada S, é igual a soma de todos os fluxos individuais
produzidos por cada carga.

As cargas colocadas fora da superficie S, conforme ja mencionamos, nao
produzem um fluxo total e cada carga g; que esteja dentro da superficie
fechada produz um fluxo de 4nkq:.

Desse modo, o fluxo total através da superficie fechada é dada por:

# E'.dA” = 41kqin,

S
onde qit € a carga total no interior da superficie S. Essa foi a equacao

determinada por Gauss e define a Lei de Gauss.

O enunciado dessa lei, determinada por Gauss, diz que:

“O fluxo elétrico através de qualquer superficie fechada é igual ao valor
da carga total no interior da superficie, multiplicado por 4rk.”

Podemos escrever a lei de Gauss, de outra forma:

#—;. dA7 = Jint
€0

S
g0 também é conhecido como permissividade no vacuo?® que é igual a
1
Eo = —
4tk

O interessante da equacao utilizada para determinar a lei de Gauss, é o
fato de que a equacéo W, = [[, E'.dA’ =kq f02“ Jy sin ¢dpde = 4mkq pode
ser utilizada para calcular o fluxo produzido através de uma superficie
qualquer que nao necessita ser obrigatoriamente fechada.

Para fazermos isso, basta substituirmos os limites das integrais pela
expressoes que delimitam a superficie S:

26 permissividade no vacuo 8,85x10'2 C2/Nm?



Y. = kq ﬂ sin ¢ d¢pdl = kq()
S

Nesse caso, Q é o resultado da dupla integral e representa o angulo
solido, cuja carga pontual se situa no vértice desse angulo que é
delimitado pela superficie S. Para superficies fechadas em torno desse
vértice, o valor maximo do angulo sélido é igual a 4.

Quando necessitamos descobrir a carga total dentro de uma regiao do
espaco onde existe um campo elétrico. Os valores dos fluxos calculados
na superficie esférica de raio R permitem determinar a carga total no
interior da esfera.

Noés ja determinamos que a carga no interior da esfera é nula e, portanto,
a carga no interior da esfera temos que:

W, 2R®
Qint =41 = 3k

Desse modo, podemos afirmar que a Lei de Gauss também é util para
calcular o campo elétrico devido a distribuicao simétrica das cargas. Para
isso & preciso lembrar que para descobrir o campo elétrico significa
descobrir que uma superficie imaginaria que é fechada (superficie
gaussiana) que, por sua vez, passa pelo ponto onde se quer calcular o
campo, de tal forma que a componente normal a superficie seja sempre
normal e constante.

Sempre que existir uma superficie gaussiana, o fluxo nessa superficie
sera dada pela equacao W =E.A que sera substituida na equacao

Js E’.dA’ = 41kq;,, 0 que resulta na equacio:
E = 41tk qint
A

A é a area total da parte da superficie onde o campo é nulo e tem médulo
constante E.

Existem casos em que as superficies nao se comportam como superficies
gaussianas. Nesses casos a lei de Gauss, como ja vimos, hao consegue
ser aplicada. Para que possamos utiliza-la, precisamos analisar essa lei
com o principio da sobreposicao e isso nos permite calcular o campo em
sistemas que nao possuem simetria (plana, cilindrica ou esférica), mas
que podem ser obtidos por sobreposicao de sistemas com simetria.

Em outros casos, podemos obter uma expressao aproximada do campo
fazendo a substituicao da distribuicao de carga por uma distribuicao
idealizada com alguma simetria.



Esse método pode ser utilizado em situacoes tais como a de estruturas
(fios, planos ou sélidos) de dimensoes finitas que podem ser substituidos
por estruturas infinitas. A expressao obtida para fios, planos ou sélidos
infinitos sera uma boa aproximacao nas regidoes proximas ao centro da
estrutura analisada e se a distancia até essa estrutura fosse muito menor
que o comprimento das mesmas.

2.2.3 - A Lei de Gauss e as Distribuicoes Simétricas

Vamos analisar agora o comportamento da lei de Gauss, nas distribuicoes
simétricas anteriormente comentadas.

2.2.3.a - Distribuicao de cargas com simetria esférica

Vamos comecgar analisando uma esfera sélida isolante de raio R que
possua uma densidade volumétrica com carga uniforme p e estando
carregada com uma carga total Q.

a) Calculo do campo elétrico fora da esfera (r > R)

Em primeiro lugar, vamos analisar o caso de uma carga colocada no
centro de uma esfera isolante. Essa carga forma uma superficie
gaussiana de raio R e concéntrica com a esfera como podemos ver na
figura abaixo.

Figura 46 - Campo elétrico com raio superior a superficie esférica

Podemos resolver o problema a partir de duas possiveis simplificagcoes. A
primeira o campo Eeé paralelo a dA em qualquer ponto da superficie. Na

segunda simplificagao o médulo do campo E é constante, jaque depende
apenas do raio r. Portanto:
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Valor igual ao resultado obtido para uma carga puntiforme.
b) Calculo do campo elétrico no interior da esfera (r <R)

Para esse caso vamos selecionar uma superficie gaussiana de estrutura
esférica com r < R, que é concéntrica com a esfera conforme a figura
abaixo.

Figura 47 - Campo elétrico com raio inferior ao raio da superficie esférica

Agora iremos utilizar uma superficie gaussiana de formato esférico com
um raio r inferior ao raio R da esfera. Denominaremos a esfera menor de
V’. Aplicaremos a lei de Gauss levando em conta que a carga interna a
superficie gaussiana de volume V’, q;,:, € menor que a carga total da
esfera Q. Nesse caso, para calcularmos q;,, € utilizaremos o fato de que

Qint = P-V.

! 4 3
din = PV’ = p(gm‘ )

Devido a simetria, o médulo do campo elétrico é constante em qualquer
ponto na superficie gaussiana e € normal a superficie em cada ponto.
Sendo assim, ao usarmos a lei de Gauss teremos:

3€EdA= EjgdA — E(47r?) =%
0

Resolvendo a equacao para o campo E teremos:



g~ _int _P(%“r3)_ p

= = = r
4megr?  4Amegr? 3g

. e~ 4 . ~
Por definicao sabemos que p = Q/;na3, sendo assim a expressao para E
sera dada por:

Qr

E=——
4mgyal

2.2.3.b - Campo elétrico devido a uma casca esférica.

Imaginemos agora uma casca esférica de raio R que possui uma carga
total Q distribuida de forma uniforme sobre uma superficie externa. Agora
vamos determinar o campo elétrico fora e dentro da casca.

Figura 48 - Carga elétrica em uma esfera oca com carga uniforme Eint =0

a) Calculo do campo fora da casca esférica (r > R)

O calculo do campo fora da casca é feito de forma idéntica ao que
obtivemos na analise da esfera anterior. Adotando uma superficie
gaussiana esférica cujo raio r € maior que o raio interno da esfera (R)
concéntrico com a casca, sendo a carga interior € Q. Desse modo, o
campo em um ponto fora da casca é equivalente aquela relativa a carga
pontual Q que esta localizada no centro da esfera oca.

Figura 49 - Superficie gaussiana com raio superior ao raio da esfera oca.
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b) Calculo do campo dentro da casca esférica (r <R)

Nesse caso, conforme mostra a figura 36, o campo no interior da casca é
zero. Isso pode ser obtido através da aplicacao da lei de Gauss para a
superficie esférica. Nesse caso especifico, o raio da superficie gaussiana
€ menor que o raio da casca esférica. Como a carga liquida no interior da
casca é zero, a lei de Gauss indica que o valor de E=0 para essa situacao.

Figura 50 - Superficie gaussiana com raio inferior ao raio da esfera oca.

2.2.3.c - Distribuicao de cargas com simetria cilindrica

Considere uma linha infinita de cargas positivas e densidade de carga
linear A constante. Vamos agora verifica como se calcula o campo elétrico
a uma distancia r da linha.

Para termos uma simetria na distribuicao das cargas é necessario que o
vetor E seja perpendicular a linha de cargas e se dirigindo para fora. Se
tentarmos refletir essa simetria, utilizaremos uma superficie gaussiana
cilindrica de raio R e comprimento L. O eixo central corresponde ao eixo
da linha.

Na regiao do envoltério (parte curva da superficie) o campo E possui
moédulo constante e perpendicular a superficie em cada um dos pontos.
Os fluxos através das bases superior e inferior sao nulos. Isso ocorre
porque o campo E é paralelo a essas superficies.

\ Superficie
Gaussiana

Figura 51 - Linha de carga infinita envolvida por uma superficie gaussiana de simetria cilindrica

Aplicando a Lei de Gauss sobre essa superficie gaussiana veremos que,

como nas bases do cilindro o valor de E e de dA sao iguais a zero, devemos
considerar apenas a integral sobre a superficie do cilindro.



A carga total dentro da superficie gaussiana sera AL e, aplicando a lei de
Gauss, teremos:

CDE:ng.dA:EédA:EA:—:—
€ €o
Mas a area da superficie curva é dada por
A = 2nRL
logo
E(2mRL) AL E AL E A
= — > = ———— = —
m £ £ 2TRL 21Re,

Desse modo o campo elétrico produzido por cargas em uma simetria
cilindrica é inversamente proporcional ao raio (1/r). Ja no caso de uma
distribuicao esférica ele é inversamente proporcional ao quadrado do raio
(1/r?).

2.2.3.d - Plano infinito nao condutor

Para finalizar essa analise vamos verificar o comportamento da lei de
Gauss em um plano infinito nao condutor. Para isso vamos imaginar que
esse plano esteja carregado com cargas positivas que estao distribuidas
de forma uniforme sobre a superficie infinita com uma densidade
superficial de cargaigual a c.

Se desejamos calcular o campo elétrico a uma distancia qualquer do

plano, considerando a simetria, entdao o campo E deve ser perpendicular
a superficie infinita e deve ser constante em todos os pontos situados a
uma mesma distancia do plano.

Como se trata de um plano infinito delgado, a diregcao do campo elétrico
produzido por esse plano é para fora do mesmo e para os dois lados do
mesmo.

Superficie
Gaussiana

Figura 52 - Superficie gaussiana cilindrica trespassado um plano infinito de carga.



Podemos ver na figura que a superficie gaussiana que reflete a simetria
consiste de um pequeno cilindro cujo eixo central &, como ja dissemos, é
perpendicular ao plano. As bases desse cilindro possuem uma area A, e

sao equidistantes ao plano. Como o campo Eeé paralelo a superficie curva
do cilindro, o fluxo é zero em toda a superficie. No caso das bases, o fluxo
sera dado por E.A e desse modo o fluxo total que atravessa toda a
superficie gaussiana é a soma do fluxo de cada uma das bases, ou seja

Ja a carga elétrica total no interior da superficie gaussiana &€ dada por
Jint = 0A. Se aplicarmos a lei de Gauss teremos:

— - ] O-A
b =3€E.dA=ZEA=q‘“t=—
€0 €0

E = o)
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Se vocé observar, a distancia entra as bases da superficie gaussiana
cilindrica nao aparece na equagao acima. Sendo assim podemos
determinar que para esse caso, nao interessa a distancia do ponto
analisado para o plano infinito carregado com densidade superficial de
cargas constantes.

2.2.4 - Condutores em equilibrio eletrostatico

Como ja vimos, condutores sao materiais que possuem elétrons livres em
sua camada de valéncia. Esses elétrons livres sao chamados elétrons de
conducao. Se esses elétrons livres nao estao em movimento afirmamos
que esse condutor esta em equilibrio eletrostatico.

Essa condicao somente ocorre se o campo elétrico, em toda a extensao
do condutor, é nulo. Isso é necessario pois a existéncia de um campo
elétrico em torno do condutor aceleraria os elétrons livres e o condutor
nao estaria em equilibrio.

Um condutor em equilibrio eletrostatico, quando submetido a um campo
elétrico externo, tem seus elétrons livres acelerados no sentido contrario
do campo. Isso faz com que, em uma extremidade do condutor, ocorra um
acumulo de elétrons, enquanto no lado oposto ocorre um acumulo de
prétons.

Esse excesso de cargas positivas e negativas nas extremidades faz surgir
um campo elétrico que, dentro do condutor, tem um sentido oposto ao



campo elétrico fora do condutor. Isso faz com que o campo total dentro
do condutor diminua.

Enquanto houver campo elétrico no interior do condutor, haver
movimento de cargas nesse condutor, e esse movimento de cargas ira
provocar uma reducao da carga que, por sua vez, ira reduzir o campo até
que o mesmo atinja o valor zero.

No momento em que o campo atinge zero novamente o condutor volta ao
equilibrio eletrostatico e, nesse momento, novamente o campo é zero. O
valor tipico de tempo para condutores normais atingirem esse equilibrio
eletrostatico é da ordem de 10 segundos.

2.2.5 - Comportamento da Carga e do Campo em um
Condutor em Equilibrio Eletrostatico.

Anteriormente mencionamos que um condutor em equilibrio eletrostatico
tem, obrigatoriamente, o campo elétrico nulo. O fluxo elétrico em uma
superficie fechada no interior do condutor, também sera nulo. Também
sabemos que isso ocorre porque o campo € nulo em todos os pontos do
condutor.

A Lei de Gauss, nos afirma que nao existe carga no interior de uma
superficie fechada onde o fluxo elétrico seja nulo. Obviamente, se isso
ocorre, nao pode haver carga em qualquer ponto interno do condutor.
Como se trata de uma superficie fechada nao consideramos os pontos na
superficie do condutor. Isso ocorre porque superficies fechadas que
tenham em seu interior, pontos da superficie do condutor, estara externa
ao condutor. Sendo assim, os unicos locais onde pode existir carga em
um condutor em equilibrio eletrostatico, sera a superficie. Qualquer
excesso de carga que possa surgir no condutor isolado, devera ser
distribuido sobre a superficie.

Figura 53 - (a) Condutor isolado com carga; (b) Fluxo em superficies internas e externas e a
direita, linhas de campo

Na figura a vemos que o campo elétrico dentro do condutor em equilibrio
é zero.



Imaginemos que o campo estivesse atuando ao longo da superficie do
condutor. Ja comentamos que esse campo seria responsavel por acelerar
os elétrons de conducao ao longo da superficie do condutor. Isso seria o
suficiente para retirar o condutor do equilibrio eletrostatico.

A componente normal a superficie tem a tendéncia de “puxar para fora”
os elétrons da superficie, ou ira atrair os elétrons para o exterior.
Entretanto, como o condutor esta isolado, isso é praticamente impossivel
e o condutor permanecera em equilibrio.

Com isso, podemos concluir que o campo elétrico na superficie de um
condutor em equilibrio eletrostatico sempre sera perpendicular a
superficie.

Para que possamos calcular o campo elétrico na superficie de um
condutor em equilibrio, imaginemos um pequeno cilindro de bases
paralelas a superficie. Se esse cilindro for pequeno o suficiente, podemos
aproxima-lo de uma superficie gaussiana.

Se fizermos isso, sé existira fluxo elétrico na base do cilindro na parte
externa do condutos e o fluxo total através da superficie gaussiana sera
dada pela expressao:

Y =~ EAA = 4ntkAq
AA - é a area da parte da superficie no interior do cilindro;
Aq - é a carga contida na superficie no interior do cilindro.

Quando levamos AA tender a zero tornamos a equacgao exata e podemos
escreve-la como:

E = 4k lim 24
B HAJEOE

Na equacao acima, o limite é igual a carga superficial. Desse modo, o
campo em um ponto da superficie do computador é dado por:

Py

E = 41tkofi = —1fi

o
€o

o - carga superficial
i — versor normal para fora do condutor.



Figura 54 - Representagao de uma pequena superficie gaussiana na superficie de um condutor
isolado

Como o campo elétrico é perpendicular ao plano da superficie do
condutor, as linhas de forca sao tangentes as laterais do cilindro desse
modo, nao existe fluxo nessas paredes laterais. Desse modo, sé existe

fluxo nas duas bases do cilindro da superficie gaussiana. Desse modo, ao
aplicarmos esse principio na equagao

_ 47qumt
A
teremos:
o)
E = 2nko = —
260

Podemos ver pela equagao acima que o campo da superficie do condutor
€ o dobro do valor do campo de uma superficie plana infinita.

Na verdade, imaginavamos que uma superficie gaussiana muito proxima
do plano da superficie do condutor, seria uma forma de admitir uma 6tima
aproximacao de uma superficie muito extensa, proxima ao infinito.

No caso de superficies infinitas, um campo em um dado ponto é devido
somente a carga que se encontra nesse ponto. Nesse caso, por simetria,
podemos dizer que o campo produzido por todas as outras cargas
situadas em todos os outros pontos situados no plano, sera zero.

No caso do condutor fechado, o campo em um ponto da superficie resulta
da sobreposicao de todos os campos produzidos pelo ponto em questao
adicionado ao campo produzido por todos os outros pontos que estao
distribuidos na superficie.

E importante verificar que o campo do ponto devera ser o mesmo que no
caso do plano infinito, mas em sentidos opostos. Nesse caso, o campo que
falta para completar o campo total é devido ao restante da superficie.
Mas como o campo total & nulo no interior o campo sera 4k no exterior. O
campo produzido pela superficie, sem incluir o ponto P sera igual a 2k em
ambos os lados da superficie e com o mesmo sentido.



O campo 2k que é produzido pela superficie atua sobre a carga local no
ponto P, produz uma forca para fora da superficie. Esse campo nao inclui
o proéprio ponto.

dF = 2nko?dA

O sentido dessa forca sera sempre nesse sentido independente do sinal
da carga superficial c.

2.3 POTENCIAL, TRABALHO e ENERGIA POTENCIAL
ELETROSTATICA

2.3.1 - Historico

Luigi Galvani, médico, investigador, fisico e filésofo italiano, em seus
experimentos sobre bioeletricidade deduziu que a eletricidade, ou
melhor, a corrente elétrica, se originava nos seres vivos. Em 1780,
Alexandre Volta demonstrou que, ao contrario do que pensava Galvani, a
corrente tinha origem através do contato de dois metais diferentes em um
meio ionizado. A partir dessa descoberta, Volta desenvolveu e construiu
a primeira pilha elétrica. Essa sua descoberta deu origem ao estudo da
eletricidade e dos circuitos elétricos.

Nas décadas seguintes as descobertas de Volta, favoreceram o
desenvolvimento da teoria eletromagnética. Dentre as suas descobertas
ele também conseguiu isolar o gas metano e desenvolveu um aparelho
capaz de produzir cargas elétricas por atrito, o eletréforo.

Nesse capitulo vamos estudar os efeitos de campos elétricos nas cargas
elétricas.

2.3.2 - Trabalho e energia

Na Fisica newtoniana o problema fundamental da area conhecida como
mecanica é determinar, a partir das forcas que atuam em um corpo, a
trajetéria do mesmo. Podemos também determinar as forgcas que atuam
sobre um corpo a partir das trajetérias dos corpos.

Trajetéria € um fenémeno fisico, que é representado por uma grandeza
vetorial. Isso significa que ele possui uma intensidade e uma direcao e é
representado em funcao do tempo. De acordo com a Segunda Lei de
Newton:



s AU (@)
M= = Mg

Essa equacao sera facil de integrar se a forga for constante, ou se sé
depender do tempo.

No caso de campos de forga, F sera funcao da posicao e a forma usual de
resolver esse tipo de problema, consiste em calcular primeiramente a
velocidade em funcao da posicao. Primeiro iremos integrar os dois lados
da equacao, em funcao do deslocamento vetorial d7, ao longo de um

percurso qualquer entre A e B.
B
f d
dt’

B
fﬁd =m
A A

Vamos analisar o lado direito da equacgao. Ela pode ser escrita em fungao
da velocidade, sendo assim podemos dizer que:

Ay}

dv 07 < 1i AﬁAF—*d*—ld 5
q = i T = v = 7400
B
AF
A F
o)

Com isso, podemos calcular a integral de linha de F em funcao da
velocidade escalar v.

[, Fd? =m [, 9dv = -mv§ —-mvj (a)

e define o trabalho entre os pontos A e B.



B>,
Wup = [, Fd7 (b)
Sabendo que a energia cinética é definida por

1

Ey = =mv?
k va

Considerando também as equacoes (a) e (b) teremos o chamado teorema
do trabalho e da energia

Wyp = Ex(B) — Ex(A)

Podemos dizer que o trabalho realizado por uma forgca sobre uma
particula ao longo de uma trajetéria qualquer, é igual ao aumento da
energia cinética da particula.

Como o trabalho da particula independe da trajetéria que ela toma
dizemos que a forca é conservativa. Sendo assim é possivel definir uma
funcao E, em cada um dos pontos do espaco. Para fazer isso, em primeiro
lugar, definimos aleatoriamente um E, em um ponto A, Ey(A); para
definirmos o valor de E;, em um ponto B qualquer, devemos definir o
trabalho realizado pela forgca entre os pontos A e B, logo:

Ep (A) — Ep (B) = Wi (o)

Como o trabalho nao depende da trajetéria, o valor de E,(B) é consistente
e a funcdao E, é a energia poténcial que esta associada a forca
conservativa. Quando combinamos as equacoes b e c teremos a lei de
conservagao de energia mecanica.

Ex(A) + E,(A) = Ex(B) + E;(B)

2.3.3 Diferenca de poténcial eletrostatico

Como ja mencionamos o trabalho realizado por um campo elétrico sobre
uma carga pontual é independente da trajetéria que ela percorra. Isso
corrobora a afirmacgao de que o campo elétrico € um campo conservativo.



Mas nao basta isso para termos essa certeza, sendo assim vamos provar
tal afirmacao.

Vamos comecgar analisando um campo elétrico que tem origem em uma
carga pontual, o mais simples de todos os campos elétricos.

O campo elétrico produzido por uma Unica carga elétrica é dado pela
equacao:

Figura 55 - Representagcao do deslocamento de uma particula em uma trajetoria qualquer

Se observarmos a figura acima veremos que o angulo 6 é formado pelo
deslocamento A7 e o vetor 7. Se observarmos veremos que 7. A7 = |A7| cos 8
€ aproximadamente igual a Ar. Desse modo, para o limite As —» 0 teremos

f.Ar = dr

Sendo assim, o trabalho realizado pela forga elétrica sobre uma carga de
prova qo sera igual a:

B

N dr 1 1
WAquojE.dFquOq —=kq0q(r___>
A A TIp

Podemos ver que esse resultado nao depende da trajetoéria, ja que ela sé
necessita das posi¢coes dos pontos A e B. Isso resulta no fato de que o



campo elétrico que é produzido por uma carga pontual é, portanto,
conservativo.

Agora analisemos a condicao de uma distribuicao mais complexa de
cargas. E facil verificar que podemos adotar uma simplificacao
considerando que se trata de uma soma de pequenas cargas pontuais.
Desse modo, é facil entender que o resultado obtido para uma carga
pontual pode ser extrapolado para casos mais complexos. Assim, o
campo elétrico produzido por uma distribuicao de cargas elétricas
também é um campo conservativo.

Considerando que o campo elétrico é conservativo, podemos definir a
energia poténcial elétrica de uma particula pontual é definido pela
equacgao

B
E,(A) —E,(B) = qOJE.dF
A

Podemos definir poténcial elétrico como sendo a energia poténcial
elétrica por unidade de carga, ou seja:

Desse modo, qualquer que seja a carga de prova, a diferenca de poténcial
elétrico entre dois pontos, A e B, sera dado por:

B
VA—VBZJEdF
A

No sistema internacional a unidade de poténcial elétrico é o volt (V). Como
o poténcial é definido como uma energia por unidade de carga, a relagao
entre o volt, o joule e o coulomb sera dada por:

1V—1]—1N"m
- TCc T ¢

Podemos utilizar outra unidade de energia, essa unidade é o eletro-volt
(eV), que é definido como a energia que é adquirida por uma carga



elementar equando essa passa por uma regiao onde existe uma diferenca
de poténcial de 1V, ou seja:

leV=1,6 x1071°C.v=1,6 x10"19

Para um caso de uma particula pontual, situada na origem, o poténcia
elétrico é dado por:

Nessa equacao podemos somar qualquer constante arbitraria e, mesmo
assim nao iremos contrariar a equacao do trabalho. Normalmente
consideramos V = 0 quando r - o e, desse modo, nao incluimos a
constante.

Para podermos deslocar uma carga de prova de um ponto A até um ponto
B, sem que haja aceleragcao devemos aplicar uma forga externa igual e
oposta a forga elétrica. Essa forga externa ira realizar um trabalho que,
nessas condicoes é dada por:

W,g(externo) = —W,g(elétrico) = qoVg — qoVa

Nesse caso, se o ponto inicial A esta a uma distancia infinita,
consideramos o poténcial Va = 0. Esse valor & dado por definicdo. Vg sera
igual ao trabalho que serarealizado pela forca externa para trazer a carga
elétrica qo = 1 do ponto no infinito até o ponto B.

Sendo assim, o poténcial elétrico V(7) seraigual ao trabalho que sera feito
para trazer uma unidade de carga positiva do infinito até a posicao 7.

O poténcial V() constitui um campo escalar, ou seja, cada ponto do
espacgo existe em um valor numérico (escalar) do poténcial.

2.3.4 - Gradiente do poténcial elétrico

Como ja vimos, a equacao V, — Vg = f:l_f.df define o poténcial elétrico
associado a um determinado campo elétrico. Nesse ponto iremos fazer o
problema no sentido contrario. Dessa vez, iremos calcular o campo
elétrico dado por um determinado por um poténcial elétrico.

A diferenca de poténcial AV = V5 — V,, gerado entre os pontos A e B sera
dado pela integral do campo elétrico que sera multiplicado por -1.
Sabemos que a integral pode ser calculada independentemente do
percurso do ponto A até o ponto B. Para facilitar utilizaremos um caminho
igual a um segmento de reta, conforme mostra a figura abaixo.



AT

A
Figura 56 - Percurso entre A e B separados por um deslocamento Ar

Se os pontos A e B estao muito préximos, podemos considerar que o

campo elétrico E é constante. Desse modo, podemos dizer que a integral
€ calculada de maneira simples por:

— -
AV =~ —E.Ar
Onde o A7 é o deslocamento entre os pontos A e B e o modulo é igual ao
deslocamento escalar As.
Se levarmos o limite As — 0 a aproximacao se torna mais exata, ou seja

AV - .
lim—=—-E.t
As—0 AS

Nesse caso, t € o versor tangencial a direcéo e o sentido do deslocamento
de d7. O limite da equacao define a derivada direcional de uma funcao que
possui varias variaveis. No nosso caso, a variavel é V, na diregao que é
definida pelo versor t. Assim,

V_ _E¢
ds

Sendo assim, a derivada do poténcial elétrico, em qualquer direcao do

versor, sera igual a componente do campo elétrico nessa direcao,

multiplicado por -1. A
j

Dbccoooo__ B

6 1
As cosfy by > !
1
1

A As costx C i
Figura 57 - projeg¢ao do deslocamento nos eixos xe y



Vamos considerar que os pontos A e B sao coplanares e que o plano que
contem esses pontos esteja paralelo ao plano xy. As projecdées do
deslocamento sobre os eixos x e y serao dadas por As cos 6« e As cos 6.
Os angulos 0, e 0, sdo formados pelo versor { e os versores i e j,
respectivamente. No grafico acima podemos ver que o aumento do
poténcial AV, na trajetéria de A até B sera igual a soma dos aumentos dos
poténciais das trajetorias de A até C e de C até B.

Se fizermos o limite de AS —0 e considerando que V é uma funcao
continua, podemos dizer que o aumento de V a partir do ponto C até o
ponto B pode ser obtido com a aproximag¢ao do aumento do ponto A até o
ponto D. Note que os aumentos em V, por unidade de deslocamento, nas
direcoes AD e AC sao as derivadas parciais de V em ordem a xe a y
respectivamente, ou seja:

av A%
AV = AS cos GX—X + AS cos Gy&

Mas devemos lembrar que:
cosO, =1.t ecos®

y =J.t

e portanto, a derivada na direcio do versor t sera dada por:

dav. AV_(OVA_l_aVA)%
ds  ass0AS  \ax | ay))

O interessante dessa equacao é o fato de que a mesma pode ser
generalizada para o caso de analise em 3 dimensoes, na qual obteriamos

av. - ..
<= (Vv).t

E, nesse caso, o vetor gradiente do poténcial VIV sera definido como

Essa equacao permite a obtencao de resultados validos em qualquer
campo escalar. Apesar de definir o gradiente em coordenadas
cartesianas, o produto escalar entre o gradiente e o versor de direcao,



por ser independente do sistema de coordenadas, faz com que a equacao
seja valida para qualquer tipo de coordenada.

Vamos analisar especificamente o caso ja estudado de um poténcial
eletrostatico. A derivada direcional é igual ao produto escalar entre —Ee
o versor t e desse modo temos a relagao que permite calcular o campo
elétrico a partir do poténcial, ou seja

Quando o versor t estiver na diregao do campo elétrico, obteremos o valor
maximo do produto escalar de E.t que, no caso, sera igual ao médulo de

-

E.

E importante notar que quando temos um poténcial V, o campo elétrico
sera na direcao em que o poténcial diminuir rapidamente. Ja o modulo do
campo sera igual ao valor absoluto da derivada nessa direcao.

A linhas de forga de um campo elétrico sempre migram de uma zona de
maior poténcial para uma zona de menor poténcial. Isso significa que uma
linha jamais ira retornar a um ponto de poténcial superior ao ponto de
poténcial em que ela se encontra.

Podemos simplificar a representagdao no sistema de coordenadas
cartesianas representadas no sistema de 3 dimensodes, fazendo da
seguinte forma:

aVv av oV

Exza Ey=a—y ) EZ:E

Sendo de natureza conservativa, o campo elétrico permite uma igualdade
entre as derivadas cruzadas. Isso torna muito simples a tarefa de
descobrir se um campo vetorial qualquer é conservativo ou nao, bastando
para isso verificar a igualdade entre as derivadas cruzadas.

OEx OEy JEx OEz OEy OEz
dy  0Ox ’ dz  0x ’ dz  dy

2.3.5 - Linhas de campo e superficies equipoténciais

Denominamos superficie equipoténcial toda superficie em que os pontos
formadores possuem um mesmo poténcial elétrico. Essas superficies
apresentam duas propriedades importantes.

A primeira refere-se ao fato de que aforca elétrica durante o
deslocamento de uma carga elétrica puntiforme sobre uma superficie



equipoténcial é nula. Ja a segunda propriedade diz que as superficies
equipoténciais sao perpendiculares as linhas de forca ou linhas de campo
elétricoe, consequen-temente, perpendiculares ao vetor campo
elétrico E.

Existe uma condicao particular em que um campo gerado por uma carga
puntiforme Q, tem sua simetria que sugere que as superficies
equipoténciais sao superficies esféricas concéntricas na carga Q e as
linhas de for¢ga do campo sao radiais com o centro da carga.

Vamos considerar um deslocamento na diregcao tangente a superficie
equipoténcial em um ponto P qualquer. A derivada do poténcial nessa
direcao é nula. Isso ocorre porque o poténcial nao varia nessa diregao.

v _ .
dt

Sendo assim, E.f = 0 e, desse modo, as linhas de campo elétrico sao
perpendiculares as superficies equipoténciais. As linhas de campo
apontarao para o lado da superficie equipoténcial com menor poténcial.
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Figura 58 - superficie equipoténcial

Como podemos ver na figura acima uma todas as linhas de campo que
passam por uma determinada area de uma superficie, possuem, nos
pontos de contato com essa superficie, 0 mesmo poténcial.

O poténcial V(x,y), que se situa no plano xy, pode ser visualisado de forma
grafica. Nessa representacao, o valor de V estara situado no eixo zem um
sistema de coordenadas xyz. Podemos notar no grafico que a curva
resultante tem uma forte semelhangca com uma superficie geografica
onde surgem montanhas e vales.

Assim como nas representacées topograficas, as curvas
correspondentes a um determinado nivel sao equipoténciais, as linhas de
campo sao as trajetoria que a agua seguiria descendo pelas montanhas.
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Figura 59 - representagao das superficies equipoténciais em um sistema xyz

O local nesse espagco onde a derivada em qualquer direcao € nula
(maximos e minimos), é considerado ponto critico do poténcial V(x,y,z) e
nesses pontos o poténcial elétrico é zero.

E importante entender que, em todos os pontos onde tivermos maximos
ou minimos ocorre um efeito interessante. Nos pontos de maximo,
qualquer que seja a direcao escolhida, o poténcial elétrico ira diminuir.
Por outro lado, nos pontos de minimo, em qualquer direcao o poténcial ira
aumentar. Como consequéncia disso, nos pontos de maximo as linhas de
forca apontam em uma direcao que “sai” do ponto, enquanto que os
poténciais de minimo, tem suas linhas de forgca apontando em direcao a
carga.

Figura 60 - Linhas equipoténciais e linhas de campo em um dipolo

Existe um terceiro ponto importante nas linhas equipoténciais, além dos
pontos de maximo e minimo, sao os pontos conhecidos como pontos de
sela. Nesses pontos de sela as curvas poténciais aumentam em algumas
direcoes e diminuem em outras.



Ponto de Maximo

Ponto de Minimo

Ponto de Sela

Também é possivel encontrarmos regioes onde o campo elétrico seja nulo
e, nesse caso, o poténcial é constante em toda a regiao. Esses casos
ocorrem, por exemplo, dentro de condutores em equilibrio eletrostatico,
e ocorrem nos chamados volumes equipoténciais.

2.3.6 - Como calcular o poténcial elétrico?

Se considerarmos que uma distribuicao de cargas nada mais € do que um
conjunto de cargas elétricas para calcular o poténcial elétrico, podemos
dividir esse conjunto em n pequenas cargas Aqi. Desse modo calculamos
o poténcial utilizando a sobreposicao dos poténciais produzidos por cada
elemento que, nesse caso é considerado como uma carga pontual. Ja
sabemos que o poténcial que cada carga produz é dado pela equacgao,
kq
v r

entretanto esse valor nao é exato, mas esse valor pode se aproximar da
exatidao quando levamos o limite n - «, desse modo Ag; » 0 e, desse
modo a equagao sera:

_ - kAql
i=1 L

Aq;i € a carga existente dentro de cada elemento i

7, € 0 vetor que une o ponto onde se encontra a carga Aq; até o ponto onde
se pretende calcular o campo.

Como ja sabemos, no caso do campo elétrico, a carga pode ser
distribuida em um volume com a carga volumétrica p sobre uma superficie



com carga superficial o, que se desenvolve ao longo de uma curva com
carga linear .

Se considerarmos que a carga esta distribuida dentro de um volume entao
o poténcial pode ser calculado com uma integral tripla do tipo

V:k,gJ|f(—7")|

Nesse caso r’ varia dentro da regiao de integracao.
No caso da carga estar distribuida sobre uma superficie entao a integral
sera uma integral dupla, integral de superficie.

v = kﬂ |:(_r)|dA’

Observando as condi¢cdes anteriores, € facil deduzir que, no caso da
carga ser distribuida sobre uma curva, a integral que resolve o poténcial
sera uma integral de linha. Sendo assim

V= kj s’
|7”—7”|

Existe uma semelhancga entre as integrais que utilizamos para calcular o
campo e as integrais que utilizamos no calculo do poténcial. Entretanto s6
€ necessario calcular uma integral ao invés de trés no caso do campo
elétrico. Se desejamos calcular o campo elétrico da distribuicao de
cargas, o trabalho se torna mais simples se calcularmos o poténcial
através da integracao e, posteriormente utilizar o gradiente do poténcial
para determinar o valor do campo elétrico.

Por outro lado, quando for possivel calcular o campo elétrico utilizando a
lei de Gauss, torna-se mais conveniente calcular o poténcial a partir do
campo e utilizando qualquer percurso de integracao, como mostra a
equacao.
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2.3.7 - O comportamento do poténcial e da carga em
condutores.

Como ja sabemos, o campo elétrico na superficie de um condutor em
equilibrio vai ser perpendicular a superficie do mesmo. Mas, qualquer
superficie perpendicular a um campo elétrico &, necessariamente, uma
equipoténcial, ou seja, a superficie de um condutor sempre sera uma
superficie equipoténcial. O interior do condutor tem um campo elétrico
nulo e isso implica no fato de que o poténcial dentro do condutor é
constante.

Em um condutor em equilibrio, qualquer excesso de carga sera
distribuido sempre sobre a superficie, entretanto, a distribuicao de carga
nao pode ser uniforme.

Para provar essa afirmacgcao, em primeiro lugar, vamos considerar trés
condutores diferentes com a mesma carga superficial. Um dos
condutores é plano, o outro é convexo e o ultimo é concavo.

Em todos os trés casos a separacao das linhas de campo sobre a
superficie deve ser a mesma e o campo sera igual e o campo é igual nos
trés casos quando a distancia d a partir da superficie for igual a zero.
Conforme aumentamos a distancia d as linhas de campo sao
perpendiculares a superficie do condutor. A separacao das linhas sera
maior no caso do condutor convexo e menor no caso do condutor
concavo. No caso dos condutores concavos, as linhas de campo acabam
se afastando com o aumento da distancia.

Considerando que o campo elétrico &€ inversamente proporcional a
distancia entre as linhas de campo.

el L

Plano Convexo Céncavo
Figura 61 - Campo elétrico produzido em 3 condutores diferentes, em fungao da distancia



A

Figura 62 - Curva indicativa do comportamento da intensidade de campo elétrico em funcao da
distancia da superficie

A integracao do campo elétrico desde uma distancia igual a zero (0) até
uma distancia infinita (<) nos fornecera o poténcial em cada um dos
condutores das figuras acima. E importante notar, no grafico, que
tendendo o valor ao infinito estamos fazendo com que a tensao tenda a
ZERO. Da mesma forma, é preciso salientar que os valores dos trés
poténciais calculados, correspondem as areas que se situam abaixo de
cada uma das curvas.

A partir dessa observacao é possivel constatar que o poténcial da
superficie concava é maior do que os poténciais das superficies plana e
convexa. Assim como o poténcial da superficie plana € maior que a
superficie convexa.

Com isso podemos determina que é impossivel que a carga superficial
possa ser a mesma onde o condutor é convexo, plano ou concavo. E essa
variagao nas intensidades do poténcial elétrico nas superficies € que
permite que o valor da integral do campo elétrico, obtenha os mesmos
valores.

\\ T3 E
T—\\Jiw//

Figura 63 - Representacao da intensidade de campo na superficie de um automoével



Note que observando o desenho acima e extrapolando o numero de linhas
de forga, nas regidoes de forma convexa, a carga superficial sera maior,
quanto menor for a curvatura da regiao. Ja no caso das regides concavas
a carga superficial aumenta diretamente proporcional ao raio da
curvatura.

Os projetos de para raios utilizam essa caracteristica para funcionarem
de forma mais eficiente. Como sabemos uma descarga atmosférica nada
mais é do que o resultado de um grande acumulo de cargas elétricas, que
provocam uma diferenca de poténcial entre as nuvens e o solo e, em um
determinado momento, possuem poténcial suficiente para quebrar a
capacidade dielétrica (isolamento) do ar, ocorrendo assim o raio.

Sendo assim, as cargas que sao acumuladas nas nuvens comegcam a
induzi cargas em objetos que se encontram préximos, no caso, os para
raios. E por qué nos para raios? Eles aproveitam o fenébmeno que foi
explicado anteriormente, através do que chamamos de “poder das
pontas”. As pontas agudas (convexas) dos para raios, acumulam grande
quantidade de carga. Como esses dispositivos sao colocados na parte
mais alta das estruturas e, portanto, mais proximos das nuvens, oferecem
o ponto perfeito para a descarga atmosférica, protegendo assim as
estruturas.

2.4 Discutindo o que foi visto

2.4.1- A lei de Coulomb e suas limitacoes

Como ja estudamos, o poténcial elétrico de uma carga elétrica
volumétrica p(r’), colocada dentro de um volume qualquer, é dado pela
integral tripla

o = f[[ 2

|F—r

Sendo uma integral de volume, para um resultado correto, é necessario
que o calculo dessa integral seja desenvolvido sobre todo o espaco
volumétrico onde exista carga elétrica. Para que isso seja possivel, torna-
se necessario que se conhecga toda a carga volumétrica existente em todo
os pontos dados pelo vetor ¥ onde a carga volumétrica seja diferente de
zero p=0. Desse modo, nao podemos calcular o campo somente em pontos
que nos interessam.

Entretanto, na pratica, as uUnicas informacdoes que possuimos, na
esmagadora maioria das vezes, dizem respeito apenas a uma
determinada regiao do espaco e nos deparamos tentando calcular o



campo, pelo menos, dentro dessa regiao. Mas mesmo para essa regiao
limitada, por vezes encontramos problemas associados as condigcoes
analisadas.

Vamos tomar como exemplo uma carga colocada dentro de uma caixa
metalica. Analisando as linhas de for¢ca de uma carga pontual livre, solta
no espago, veremos que elas se dispersam radialmente a carga,
conforme mostra a figura.

Figura 64 - linhas de forca em uma carga elétrica livre no espaco

No entanto, ao colocarmos a carga elétrica em uma caixa metalica, as
suas linhas de forgca ja nao se comportam mais como mostra figura
anterior, pois, como também ja estudamos, em superficies metalicas as
linhas de forga sao perpendiculares a essas superficies.

B
1Y

Figura 65 - linhas de forga de uma carga elétrica colocada no interior de uma caixa metalica

Além desse fato, podem haver outras cargas na superficie metalica cujo
calculo é mais complexo. Finalmente, no exterior da caixa metalica podem
também haver outras cargas que interagem com a superficie metalica.
Para solucionar esse problema causado pela “falta de informacodes”,
podemos lancar mao de outros métodos que permitem o calculo do
campo, sem a necessidade dessas informacoes que nao temos acesso,
bastando conhecer alguns detalhes das chamadas “condigcdoes de
fronteira”.

2.4.2 - Calculo vetorial - Divergente

Quando desejamos determinar um valor de fluxo por unidade de volume
em um determinado ponto, podemos utilizar o divergente, que é uma
funcao matematica associada a qualquer campo vetorial.



Desse modo, vamos entao considerar um campo vetorial qualquer, que

denominaremos de F e que possui um conjunto de coordenadas
cartesianas.

F=E@®i+EM®j+E@k

Vamos tomar também um paralelepipedo com arestas que chamaremos,
respectivamente de Ax,Ay e Az. Essas arestas obedecem as seguintes
condicoes

AX > [x-Xol, Ay > |y-Yol, Az > |z-2q|

Para calcularmos o fluxo F através da superficie fechada representada
pelo paralelogramo definido acima. Agora, imaginemos que esse
paralelogramo seja numerado da mesma forma que um dado, guardando
a seguinte caracteristica: a soma de dois lados opostos sera sempre 7,

conforme mostra a figura.
Z A
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X

Figura 66 - paralepipedo para representagao do gradiente.

Agora vamos tomar uma das superficies do paralelepipedo para analise.
Peguemos a superficie representada pelo numero 1 do dado, frontal ao
nosso cubo. A primeira constatacao é que a face escolhida possui
coordenadas nos eixos x, y e z. No caso do eixo x, a coordenada do ponto
x sera dada por x = xo + Ax, enquanto nos eixos y e z, os valores sao
constantes. Nesse caso o versor normal a superficie S, sera §; =1, ou
seja:

F.S, = E.(xo + Ax,y,2)

O fluxo que passa através dessa superficie sera dada pelaintegral de area
(integral dupla) da funcao acima, portanto:



Zo+Az yo+Ay

Y, = ﬂ(ﬁ.fl)d/ll = f f E(x, + Ay, ,)dydz
S1 Yo

Zo

Nessaintegral, y, <y; <y, + Ay.
Para solucionar essa equacao, langamos mao, novamente, do teorema do
valor médio e, sendo assim, o valor obtido sera:

Y, = F.(x, + Ax, y1,2,)AyAz

Onde z,<7; <z,+Az. Se extrapolarmos para as outras faces do
paralelogramo teremos:

W, = E,(X2,¥0 + Ay, 23)AxAz
Y. = F,(X3,Y3,29 + Az)AxAy
W, = —F (X4, Y4, 2o)AxAy
W5 = —F, (X5, Y0, 25)AxAz

—F (%0, Y6, Z6)AyAz

oE
I

E importante ressaltar que os valores médios que aparecem nessas
equacoes, podem pertencer aos mesmos intervalos, no entanto nao
possuem o mesmo. Um exemplo disso sao os valores médios de y; e y,,
que pertencem ao mesmo intervalo (yo, yo + Ay), no entanto ndo possuem
0 mesmo valor.

Como todos os valores médios pertencem aos seus respectivos
intervalos, no limite onde esses valores tendem a zero todos se tornam
iguais aos seus valores iniciais, ou seja

Ax - 0 = x;~x
Ay = 0 = yi~yo
Az - 0~ z;~2

Como sabemos, o divergente do campo sera o limite da razao entre a
variacao do fluxo pela variacao do volume do objeto, quando esse tende a
0. Sendo assim teremos que o divergente do campo sera dado por:



S AY
divF = lim —

Ax—0 AV
— lim F(xg + Ax, y0,20) — F(x0, Y0, Zo)
Ax—0 Ax
+ lim Fy (%0, Y0 + Ay, zo) — E,(x0, Y0, Zo)
Ay—0 Ay
+ lim F, (%0, Y0, 2o + Ax) — F;(x0, Y0, Zo)
Az—0 Az

Como sabemos cada um dos limites que compode o divergente sao uma
definicao de derivada parcial, em x, y e z, ou seja:

. OF, dF, 0F,
divF =
= ax T oy T oz

Ao observarmos a equacao acima vemos que ela tem muita semelhanca
com a equacao que define o gradiente de um campo escalar. Sendo
assim, podemos escrever a equacgao utilizando o operador “nabla” (V)
para denotar o divergente:

v=2i4 254 %%
“ox' "oyl Tz

Portanto, a divergéncia de um campo vetorial F sera igual ao produto
escalar entre o operador nabla e o campo:

OF, | OF, , OF,

dx dy 0z

Desse modo, o gradiente do campo escalar V é obtido aplicando o
operador nabla ao campo escalar:

. av._ av _ adV .
k

V.F =

2.4.3 - Teorema de Ostrogradski - Gauss

O teorema de Ostrogradski-Gauss, também conhecido como teorema do
divergente, estabelece uma relacao entre a integral (derivada) do
divergente de um campo vetorial F sobre uma regiao com a integral de F
sobre a fronteira da regiao.



Uma regiao E € R3 é chamada regiéo sélida simples se E pode ser escrita
simultaneamente como:

E={(x,Y,2):(X,y) € Dy, ui(x,y) <z <uzxx, y)}, (tipo 1),

E={(x,y,2):(Y,2) €Dy, va(y, Z) < x < va(y, 2)}, (tipo 2),

E={(x, Y, 2):(X,Z) € Dxz, Wi(X, Z) <y < Wz(x, 2)}, (tipo 3).
A fronteira de E € uma superficie fechada e usaremos a convencao de que
a orientacao positiva é para fora.
Vamos considerar entdo uma superficie fechada qualquer que
denominaremos de S. Essa superficie delimita uma regiao que
denominaremos de R. Usando o principio que inspira os conceitos de
limite e integral, vamos imaginar que essas superficies sejam pequenos
paralelepipedos cujos volumes sao infinitesimalmente pequenos e de
valor AV..
Note que, por se tratar de um grupo de paralelepipedos, podemos esperar
um pequeno erro na chamada regiao de fronteira ou borda. Se ha esse
erro, porque podemos desconsidera-lo? Isso pode ser feito na medida em
que o limite da superficie tende a zero, reduzindo significativamente o
erro.
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Figura 67 - Aproximacao melhorada com a diminuigao do volume dos paralelepipedos

Na figura, na construgcao com paralelogramos de menor tamanho, o fluxo

de campo F que passa por 4 paralelogramos dessa construgcao, é o
mesmo que passa por dois da construcao maior e por 1 da maior
construcao. Lembre que o cubo da construcao da construcao a contém
dois cubos da construgcao B que, por sua vez, contém 4 cubos da
construcao C.

A soma de todos os fluxos que atravessam os diversos paralelogramos é
igual ao fluxo que atravessa a fronteira S. Sendo assim



Entretanto, AV—-0, o que nos permite usar a definicao de divergéncia e
obtemos a seguinte equacao

AY; = V.E.AV,

Se substituirmos essa equacao na anterior teremos:

F.A.dA = MV.E.AI@
R

Essa equacao é conhecida como teorema de Ostrogradski — Gauss, ou
simplesmente Teorema da Divergéncia. Apesar de sua aparéncia
complexa, a equacao do lado direito da igualdade €&, por vezes, mais
simples de calcular. Isso ocorre por que €& mais facil calcular a
divergéncia de um campo do que calcular todos os versores normais a
todos os pontos da superficie.

S

2.4.4 — Rotacional

Por definicao, o rotacional € um operador, no calculo vetorial, utilizado
para superficies infinitesimais, e é capaz de calcular o quanto os vetores
de um campo vetorial se afastam ou se aproximam de um vetor normal a
essa superficie.

Desse modo, podemos afirmar que o rotacional corresponde a uma
transformacao linear de um campo de vetores em um outro campo
vetorial. Isso significa que, em cada ponto do espaco em que definimos
um rotacional ele sera dado por um vetor.

Anteriormente ja comentamos que em uma superficie aberta existem dois
versores normais a essa superficie. Além disso comentamos que se a
superficie for orientavel, um dos seus lados sera positivo e o outro sera
negativo. Sendo assim, cada versor normal indicara a diregao positiva e
a direcao negativa, respectivamente.

Assim que definimos a diregao positiva da superficie a sua fronteira C
sera definida pela regra da mao direita. T

A
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Figura 68 - Regra da mao direita para rotacional



Vamos considerar um ponto qualquer cujo vetor posicao é dado por 7, =
xol + yof + Zok € uma curva fechada que iremos denominar de C. Essa
curva passa por um ponto e que envolve uma pequena area AA, conforme
mostra a figura abaixo.

A
\ C

>*|

Se aplicarmos a integral de linha teremos:

fﬁ.d?

C

Essa integral tera diferentes valores para diferentes diregcées do versor
fi. Esse valor ira diminuir conforme diminuimos AA. Se o versor tiver a
mesma diregcao do campo, a integral tera valor nulo. Isso ocorre porque o
campo é perpendicular ao percurso.

Agora vamos imaginar que, em um ponto qualquer 7, exista um rotacional

rotF. Esse sera o rotacional de campo e esse tera a seguinte propriedade.

SN 1 s>
(rotF).n = Al,}gloﬂ F.dr
C

para qualquer direcao 71, para qualquer curva fechada C e sera orientada
na direcao do versor A que passa pelo ponto 7;.

Sendo assim, o rotacional de F sera dado por:

5 doF, O0F,\, <6Fx 6FZ>A+ J0F, O0F, 7
dx 0dy

tF = | — —— —
ro dy 0z az+6x



Essa expressao é exatamente igual a forma do produto vetorial entre o
vetor operador nabla e o vetor campo F.Ou seja, o rotacional do campo F
€ igual ao produto vetorial VxE.

O rotacional pode ser representado sob o sistema de coordenadas

retangulares, cilindricas ou esféricas.
Em coordenadas retangulares, o produto vetorial anterior, sera dado por:

<!
X
T
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J ok
Jd 0
dy 0z
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Figura 69 - Sistema de cooraenaaas retanguiares

Nas coordenadas cilindricas teremos:

p pd 2

S F_|0 @ 0 -
op 0p 06 oA
F, oFy F :

8
X
Figura 70 - Sistema de coordenadas cilindricas

E nas coordenadas esféricas teremos:

0 0
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Figura 71 - Sistema de coordenadas esféricas

2.4.5 Teorema de Stokes e Equacao de Poisson

Como ja vimos, o rotacional facilita o calculo das integrais de linhas em
percurso fechado. Para solucionarmos um problema nessa area, basta
que delimitemos uma superficie cuja fronteira seja um percurso fechado.
A partir dai, dividimos a superficie em pequenos elementos
quadrangulares Ri cuja area sera AA, conforme mostra a figura abaixo.
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Figura 72 - Superficie fechada com os elementos quadrangulares de aproximacao

Cada um dos elementos quadrangulares sera percorrido no sentido anti-

horario. Se somarmos a integral de linha de F em dois percursos
adjacentes, teremos como resultado a integral de linha do paralelogramo
maior que sera formado delimitando os dois elementos quadrangulares
cujos percursos foram somados. Isso ocorre porque no lado que é comum
entre os dois quadrilateros a integral de linha é calculado duas vezes em
sentidos contrarios e, portanto, nesse ponto o valor é zero. Por
consequéncia, somando as integrais de linha de F de todos os elementos
quadrangulares teremos um resultado cuja aproximagao é
significativamente boa a integral de linha de C.
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Essa equacao também pode ser escrita como:

j@ﬁ.ﬁ:ﬂ(vxﬁ).dz
Cc S

Essa superficie da integral dupla, pode ser uma superficie qualquer, e o
resultado dessa equacao é conhecida como Teorema de Stokes

Vamos analisar agora o teorema de Stokes para calcular o rotacional do
campo elétrico.

A integral do percurso fechado pode ser calculada com a soma daintegral
de A até B, ao longo de toda a curva C. e da integral de B até A ao longo
da curva C,. A integral de B até A sera sempre igual e de sinal contrario a
integral de A até B e, portanto, temos:
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Figura 73 - Divisao do caminho C em dois caminhos Ca e Cs

Devemos lembrar que o campo elétrico é conservativo e, portanto, a
integral de linha entre os pontos A e B é igual ao longo dos dois percursos
e, desse modo, a integral do percurso fechado sera zero.

Se substituirmos esse resultado, gﬁc E.d7 = 0, na equacao do teorema de
Stokes, teremos:

VXE=0

Ja vimos que a lei de Gauss relaciona o fluxo do campo elétrico através
de qualquer superficie fechada, com a carga em seu interior. Se usarmos
o teorema da divergéncia poderemos calcular o fluxo como uma integral
de volume da divergéncia do campo. Sendo assim, podemos escrever a
lei de Gauss de outra maneira que sera mais conveniente para o calculo
do campo elétrico em geral.

Vamos considerar uma regiao R que é limitada por uma superficie
fechada S. Lembremos que a lei de Gauss diz:

# (E .ﬁ)dA = Ak Aqin:
S
Ao aplicarmos o teorema da divergéncia e a entre a carga interna e a

carga volumétrica, obteremos:

gjﬁ.ﬁdv=4nkgjpdv



Podemos calcular as duas integrais de volume podem ser calculados
como produto do valor médio da funcao integrada pelo volume total AV.
Sendo assim teremos:

V.EAVV= 4k AV

No limite onde AV—0, podemos notar que o interior da superficie S vai se
aproximando de um ponto e os valores médios de E e p sao os valores de

Ee p, para esse ponto onde a superficie S se aproxima. Logo, podemos
dizer que:

- -

pV.E = 4mk

Essa equacao é a representacao da forma diferencial da lei de Gauss.
Quando temos conhecimento da carga volumétrica representada por p,
que esta dentro de uma regiao, obtemos a divergéncia do campo em
qualquer ponto da regiao.

Apesar disso, a divergéncia de um campo vetorial nao é o suficiente para
podermos definir esse campo. Para podermos defini-lo, € necessario
também conhecer o rotacional, além de algumas condi¢des na regiao de
fronteira.

As equacoes

l

X E =0
E = 4k

< Jd

p

Sao duas equacgoes basicas da eletrostatica. Elas permitem o calculo do
campo elétrico em uma regiao onde se conhecga p.

Podemos reduzir essas equagcoes a uma unica de valor escalar, que seja
funcao do poténcial eletrostatico V que ja falamos anteriormente e,
portanto, teremos:

—

E=-VV

Como o rotacional do gradiente de um campo escalar qualquer, é sempre
nulo, a equacao VXE =0, € uma equagao trivial. Sendo assim, se
considerarmos o poténcial V e usarmos o operador laplaciano, temos:

V2V = _P
€o



Essa equacao é conhecida como Equacao de Poisson. De um modo geral,
essa equacao possui muitas solugdes para um determinado p dentro de
uma regiao. No entanto é possivel obter uma solugao unica. Para isso é
necessario impor alguma condicao na fronteira, por exemplo, o valor do
poténcial ao longo da fronteira.

Quando a regiao de interesse para analise é todo o espago e a condicao
de fronteira é V=0 no infinito, temos um caso particular para o que foi dito
acima. Note que, nesse caso, a solugcao também é a equacao que € obtida
pela lei de Coulomb.

Em face da amplitude de resolugdes possiveis através da Equacao de
Poisson, ele se torna aplicavel a sistemas mais complexos que,
normalmente, nao podem ser solucionados pela lei de Coulomb. E 6bvio
que, para isso, € necessario que adentremos no campo das equagoes
diferenciais parciais o que € muito mais complexo e escapa do escopo
desse nosso estudo.



Capitulo Il
MATERIAIS ELETRICOS

Se quiser ter uma boa idéia,
tenha uma porgao de idéias
Thomas Edson

3.1 COMPORTAMENTO DOS MATERIAIS ELETRICOS

3.1.1 — Materiais Elétricos

Estudar e entender o comportamento de materiais elétricos é
fundamental para entender os estudos sobre resisténcia elétrica,
projetos de maquinas, eletrotécnica e uma série de outros elementos da
eletricidade.

O fundamental é permitir a analise comportamental desses materiais.

Os materiais podem ser classificados sob diversos pontos de vista. Em
Engenharia, as mais utilizadas sao: a capacidade de transmitir calor ou
eletricidade, que conhecida como CONDUTIBILIDADE; a capacidade de
manipulagcao para transformacao desse material, também conhecida
como MALEABILIDADE; a capacidade de ser esticado ou comprimido e
voltar ao seu tamanho e forma originais, chamada de ELASTICIDADE e,
por fim, a capacidade de sofrer tracao sem romper, conhecida como
TENACIDADE.

O nosso principal interesse é quanto aos materiais elétricos e/ou
magnéticos e, portanto, iremos nos concentrar nesses dois.

Vamos iniciar estudando as caracteristicas ligadas a condutibilidade. Os
materiais podem ser divididos em CONDUTORES, SEMICONDUTORES e
ISOLANTES. Para analisa-los vamos estudar sua RESISTIVIDADE, ou
seja, sua capacidade de resistir a passagem de corrente elétrica.

O principal critério para determinar se um material é condutor,
semicondutor ou isolante é sua resistividade e a tabela de caracterizagcao
aparece abaixo.

Tipo de Material Resistividade (Qmm?/m)
CONDUTOR 10%a10

SEMICONDUTOR 10a10™
ISOLANTE 102a10*

Tabela 6 - Tabela de resistividade de condutores, semicondutores e isolantes.



Os materiais condutores possuem 1,2 e 3 elétrons na camada de
valéncia. Os elementos que possuem 4 elétrons na camada de valéncia
sao os materiais semicondutores. Os materiais que possuem 5,6, 7e 8
elétrons na camada de valéncia sao os materiais isolantes.

3.1.2 — Materiais Condutores

Se observarmos veremos que, de um modo geral, a maior parte dos
materiais condutores € composta por metais. Isso ocorre porque nos
metais, a estrutura atdmica tem, em sua camada de valéncia elétrons que
podem fluir livremente de um atomo para outro.

Nucleos lonicos

@QP@
@E:-)@
® P P
@(-:3@

Elétrons de valéncia sob a forma Elétron de valéncia na forma de
de nuvem de cargas elétricas cargas negativas individuais

Figura 74 - Representacao de estruturas de um material qualquer

Quando estabelecemos uma corrente elétrica em um condutor metalico,
um numero elevado de elétrons livres passa a se deslocar por esse
condutor. Durante esse deslocamento alguns dos elétrons podem colidir
entre esses elétrons e os atomos que constituem o material, o que
representa uma certa resisténcia a essa passagem. Essa resisténcia,
apesar de muito pequena, existe, pois, mesmo o melhor dos materiais
condutores possui resisténcia elétrica.

Existem também materiais que nao sao metalicos que sao condutores,
tais como, grafite, agua salgada e qualquer material em estado de plasma.
Além desses materiais, tanto metalicos como nao metalicos que sao
condutores, existem também estudos para o desenvolvimento de ligas
metalicas que apresentam o6timas caracteristicas de condutibilidade
elétrica. Algumas dessas ligas constituem os supercondutores, cuja
resisténcia é extremamente baixa. Entretanto, esses materiais
necessitam de condicdes especiais em termos de temperatura, tanto que
todos os supercondutores existentes necessitam ficar imersos em uma
atmosfera de nitrogénio liquido.



A tabela abaixo apresenta as caracteristicas elétricas de alguns dos
principais materiais condutores.

Material Resistividade Caracteristicas
Qmm?2/m
Prata 0,0162 seu principal uso é em pecgas de contato
pequena resistividade, boas caracteristicas
Cobre 0.0169 mecanicas, baixa oxidacao, facil deformacao a
’ quente - o bronze e o latdo sdao as ligas mais
usadas;
bastante resistente a oxidagao por sua estrutura
Ouro 0,0240 altamente estavel, é utilizado principalmente em

pecas de contato.

€ o0 segundo metal mais usado depois do cobre,
Aluminio 0,0262 tendo caracteristicas elétricas e mecanicas piores
do que este mas com um custo menor;

dado que retém a sua resisténcia a altas
temperaturas e tem altoponto de fusao, o
tungsténio elementar é usado em muitas

Tungsteénio 0,055 aplicacdes de alta temperatura, como filamentos
de lampadas, tubos de raios catédicos e valvulas
termidnicas, resisténcias de aquecimento.

. é utilizado como elemento de protecao contra a
Zinco 0,059 proteg

corrosao, principalmente em contatos

é utilizado em ligas para imas, usa para proteger
campos magnéticos por sua elevada
permeabilidade magnética, as ligas niquel-
cobre (monel) sao muito resistentes a corrosao,
Niquel 0,072 utilizando-se em motores maritimos e industria
quimica, a liga niquel-titanio (nitinol-55) apresenta
o fendmeno memoria de formae ¢é usado
em robética, também existem ligas que
apresentam superelasticidade.

por suas caracteristicas magnéticas ele € muito

Ferro 0,098 utilizado na construcao de motores e geradores
elétricos
Platina 0,100 Usado nas pontas das velas de ignicao dos langa-

chamas a explosao e nas pontas dos para-raios;

Utilizado na fabricacdo de soldas para circuitos

Estanho 0,114 .

eletrénicos

€ utilizado principalmente em soldas, sendo
Chumbo 0,205 sensivel a vinagre, cal e materiais organicos em

apodrecimento - ‘e um produto venenoso;




Mercurio

0,960

utilizado na fabricacao de lampadas fluorescentes,
como chave de contato em boias elétricas, e em
instrumentos de laboratorio

Tabela 7 - Tabela de resistividade e uso de materiais condutores.

Os metais puros tém uma estrutura cristalina perfeita e isso reduz a sua
resisténcia elétrica. Entretanto, a insercao de impurezas altera a
estrutura aumentando a resistividade do material. A quantidade de
impurezas adicionadas nao precisa ser significativamente grande para
causar essa mudanca. Esse aumento de resisténcia também ocorre
quando os metais sao misturados em alguns tipos de ligas de dois ou mais

metais.

Condutividade, | Resisténcia a
Liga Tratamentos | em tragdo, em Alongamentos,
relegdo ao kg/mm? %)
cobre (%) -
Cu + Cd recozido 95 até 31 50
0,9 Cd) encruado 83-90 até 73 4
Bronze recozido 55-60 29 55
08 Cd + encruado 50-55 até 73 4
+ 0,6 Sn
Cu > 60%
Bronze recozido 15-18 37 45
2,5 Al + encruado 15-18 até 97 4
25n
Bronze recozido 10-15° 40 60
fosforoso | encruado 10-15 105 3
78n+ 1P
Latdo recozido 25 32-35 60-70
30 Zn encruado 25 até 88 5
Bronze
BIO,1% ,
Mnun, o - 82 50-52 -
resto Cu
BIl
0,8 Mn ou
1%Sn + - 60 56-58 -
+1Cd
BIII
2,4% Sn
oul2Sn+ - 31 66-74 -
+ 1,22Zn

Tabela 8 - Caracteristicas elétricas das principais ligas de cobre



Caracteristica fisica

Densidade a 20 °C (g/cm?)

Condutividade minima porcentual a 20 °C
Resistividade maxima a 20 °C (Qmm?/m)
Relagio entre os pesos de condutores de
igual resisténcia em corrente continua e

igual comprimento

Coeficiente de variagio da resisténcia por
°C a 20°C

Calor especifico (cal/g °C)
Condutividade térmica (cal/cm?s. °C)

Mboédulo de elasticidade do fio sélido
(kgf/mm?)

Coeficiente de dilatagéo linear/°C

23 x 107°

Aluminio
(duro)

2,70
61
0,0282

0,48

0,0040

0,214

0,48

7.000

Cabre

. (duro)

8,89
97
0,0177

1,03
0,0038

0,092

0,93

12.000

Padrdo
IACS*

8,89

0,0172

1,00

0,0039

0,092
0,93

17x 1075 17 x 107

* Padrio IACS: Padrio Internacional do cobre recosido, tomado como

referéncia de 100%, de condutividade.

Tabela 9 - Tabela de comparagéao entre o cobre e o aluminio

Reslst, Dureza | Condut, |Coeficiente de
Composigio Tipe tragio Brinell elétricn temperatura | Caracteristicas
(kg/mm?) | (kg/mm?) | {flmm?/m}|  27{1C)
ligas normais
maole < I3 ] 8 35 = 1072
AlCuMg |encruado &) L0y X 1,1 = 107%
Dura- para construgio
huminic de pegas; sofrem
ligas com corrosio
elevada
resisténcia:
encruado 40 110 - -
encruado e
laminado &
frio 30 ... 50 120 - =
Al Mg 5i | mole. 8 35 30 3,5 % 107 |resisténcia mec-
duro. 16 55 26 3,5 % 1077 |nica média, boa
laminado a deformabilidade
frio. 10 60 7 28 % 107? |boa estabilidade
laminado a gquimica
quente 20 20 2 28 = 1072
Al Mg Si | mole 10 3 30 36 = 1072
{ Al.dr*r:"y )| encruada 0 |L 0 1 3,6 x lg-» [W4ad0 em cabos
Al Mg mole 2 55 20 24 x 107 |estavel contra
(valeres | meio mole 28 T 17 L1 = 107 |dgua do mar nio
médios) duro 30 90 15 1,8 x 107 [suporta solugbes
alcalinas. Cuanto
maior 7, Mg
maier dificuldade
para soldagem
Al Mn mole 7 .| ] 25 27w 107" | Melhor  estahili-
meio mole 12 30 24 17 = 107 |dade gue Al, boa
dure 15 &) 3 37 x 107 |capscidade de
soldagem
Al Mg Mn| mole 15 &0 23 24 = 107? | Estabilidade
meio mole 20 ] s 24 x 107* |média perante
dure 15 60 21 4 x 107 |sais ¢ dcidos.

Tabela 10 - Caracteristicas das ligas de aluminio



3.1.3 — Materiais Semicondutores

Os materiais semicondutores sao soélidos cristalinos que possuem
condutividade intermediaria. Atualmente o semicondutor mais utilizado é
o silicio, devido a sua abundancia na natureza. Existem também o
germanio e o carbono, que podem ser utilizados em determinadas
condicdes. Como ja mencionamos, os semicondutores sao elementos
tetravalentes e o silicio possui uma configuracao eletrénica do tipo s? p%
A condutibilidade ou resistividade do semicondutor sao alterados a partir
de algumas alteragdes na estrutura cristalina através da insercao de
“impurezas” no material semicondutor puro. Quando inserimos
impurezas no silicio puro, alteramos suas caracteristicas elétricas e
podemos criar materiais com abundancia de elétrons livres (condutor) ou
materiais com falta de elétrons livres (isolantes). Esses materiais
recebem o nome de materiais tipo N e tipo P respectivamente.

As impurezas que associamos ao silicio para obtencao desse tipo de
material sao outros elementos quimicos. Um exemplo desses elementos é
o antimoénio. Sendo um elemento pentavalente, ao se associar com o
silicio torna o elemento um material tipo N. Ja no caso de “doparmos” o
silicio com o elemento indio que é um elemento trivalente, transformamos
o material em um elemento tipo P.

Esses elementos tipo P e tipo N, podem ser associados criando um
elemento elétrico capaz de controlar a condutibilidade de corrente em um
circuito. Cada um desses elementos recebe um nome é possui um
conjunto de utilidades para a eletrénica. Um par PN, da origem a um
diodo, que € um componente eletronico que permite a corrente elétrica
circule somente em uma direcao. Esses diodos podem ser do tipo zener,
tanel, scotch, led, varicap e outros. Além disso podemos associar trés
materiais, dois do tipo N e um do tipo P ou dois do tipo P e um do tipo N.
Essas associacoes formam transistores bipolares, transistores de efeito
de campo, MOSFET e outros.

Vamos explicar como ocorre esse fendbmeno da associagao de dois
materiais, tipo P e tipo N.

Material tipo N

Difusao de Elétrons

Material tipo N

Rarreira de Potencial

Figura 75 - juncao PN e barreira de poténcial



Quando os dois materiais sao reunidos, imediatamente a diferenca de
poténcial elétrico entre o material P e o material N “tenta” se estabilizar e
ocorre uma pequena circulacao de corrente entre os materiais. No
entorno da juncao essa circulacao permanece até que ocorra uma
estabilizacao das cargas nessa regiao surgindo o que se denomina de
barreira de poténcial. Essa barreira de poténcial € a responsavel pela
estabilizacao do fluxo de elétrons, fazendo com que o dispositivo adquira
as caracteristicas desejadas.

Mas como se constroi esse tipo de componente?

O processo de construcao de um elemento semicondutor segue uma série
de etapas que passaremos a explicar.

A fabricacao de dispositivos semicondutores é o processo utilizado para
criar componentes ou chips de circuitos integrados. Consiste em uma
sequéncia de multiplos passos de processamento fotografico e quimico.
Durante esses processos, os componentes ou circuitos eletronicos sao
criados.

O primeiro passo consiste em purificar o silicio até um ponto de 99,999%
de pureza. Esse material se torna um lingote monocristalino,
normalmente de formato cilindrico, de até 300 mm de diametro. Esses
cilindros sao entao fatiados em pastilhas de 0,75mm de espessura e
polidas para que se possa obter uma superficie muito regular e plana.
Uma vez cortadas essas bolachas sao preparadas para as diversas
etapas do processo de dopagem.

Figura 76 - Cilindros de silicio e discos de silicio.

No processo de fabricagcao de componentes e circuitos semicondutores
existem uma série de etapas que devem ser processadas. Podemos
dividir esses processos em quatro grandes grupos. Deposi¢cao, Remocgao,
Padronizacao e Modificacao das propriedades elétricas.

Para o processo de DEPOSICAO, primeiramente a bolacha é “pintada”
com uma solucao fotossensivel em toda sua superficie. Feito isso, e apos
o material fotossensivel secar, & colocada sobre a bolacha uma



“mascara” que é transparente nas partes que deseja depositar o
“dopante” que ira transformar a condutibilidade do material.

Sobre essa mascara é aplicada luz que impressiona a pelicula
fotossensivel nas partes onde a mascara esta vazada.

Apés o material fotossensivel ser impressionado, o material passa por um
processo de lavagem com acido, que remove a parte impressionada do
material, expondo partes do substrato tipo N e deixando o material pronto
para o processo de dopagem para formacao da juncao PN.

Material Fotossensivel

- ’ \ ascara
——
Substrato

Si monocristalino dopado

Area sens;bilizada
Banhode acido

Material prontopara
dopagem

N R

Figura 77 - Processo de preparacao para confecgao de uma jungao PN

Estando o material pronto para dopagem a “bolacha” de silicio é
submetida a uma alta temperatura e um processo de imersao em gas
constituido do material dopante. Esse processo permite que ocorram as
interacoes entre o material dopante e o substrato para o surgimento do
substrato do tipo P. Durante esse processo surge a barreira de poténcial.
Posteriormente é feita a metalizacao das areas de contato do material P e
do material N para que sejam adicionados os terminais elétricos.

Apesar de simplificada, a explicagao acima da uma ideia do processo
utilizado para construcao de semicondutores.

Aquecimento e
Dopagem domaterial /

Material pronto para
dopagem

Jungao PN formada Metalizacao dos contatos

T E> 28

Figura 78 - Processo de conclusao do semicondutor



3.1.3 - Isolantes ou Dielétricos

Os elementos dielétricos, por natureza quimica, sao materiais que
apresentam alta resisténcia a passagem de corrente elétrica. Como ja
mencionamos, os materiais desse tipo possuem uma auséncia de elétrons
livres em uma determinada temperatura.

Quando submetemos um material dielétrico a uma diferenca de poténcial,
esse material sera polarizado devido a presenca do campo elétrico. Esse
tipo de comportamento pode ser notado em um capacitor de placas
paralelas. Essa polarizagao vai levar o material a um aumento de
temperatura que é resultante do consumo de energia.

Noés podemos classificar os dielétricos a partir do tipo de polarizagao.
Isso faz surgir dielétricos com caracteristicas bastante diferenciadas.
Por vezes, quando aplicamos uma tensao em um dielétrico, surge uma
pequena corrente que circula em um circuito fechado. Dependendo da
aplicagcao que estamos fazendo desse dielétrico, torna-se necessario o
estudo dessa corrente. Existem também outros fatores que sao
importantes, tais como: temperatura, rigidez e envelhecimento.

Todos os materiais dielétricos possuem uma caracteristica conhecida
como rigidez dielétrica. Ela é o valor limite da tensao aplicada sobre o
material a partir do momento em que os atomos que compoem o material
se tornam ionizados e o material deixa de funcionar como um isolante.
Esse valor nao é fixo nos materiais, pois depende de fatores como
temperatura, espessura do material, tempo de aplicacao da diferenca de
poténcial, sua taxa de crescimento, pressao (importante para gases).
Esses materiais podem ser sélidos, liquidos ou gasosos. Os sélidos sao os
mais utilizado na Engenharia. Alguns deles sao: porcelana, vidro,
plastico. No caso dos materiais gasosos, os mais comuns sao o ar e o
hexafluorido sulfurico.

Muitas vezes, os dielétricos utilizados resultam de uma mistura de
matérias primas. Isso leva a presenca simultanea de diversas formas
possiveis de polarizacao.

Rigidez
Material dielétrica
(kV/imm)
Ar (1 atm) 3
Vidro 35
Papel 20
Oleo 4
Borracha 25

Tabela 11 - Tabela de regidez dielétrica de alguns materiais




A polarizacao eletronica é definida como o deslocamento elastico de
elétrons que estdo ligados ao nucleo do atomo pela acao do campo
elétrico que é aplicado.
Uma das caracteristicas dos dielétricos sélidos é a polarizagcao idnica.
Quando um material qualquer recebe ou perde um elétron da sua ultima
camada (camada de valéncia), ele se torna um ion. Nesse caso, a
polarizacao bipolar ocorre quando a orientacao espacial das conexoes
das moléculas. Sendo assim, € possivel que, ao aplicarmos uma diferenca
de poténcial sobre o material, ocorra uma reorganizagao das moléculas.
Finalmente temos a polarizacao estrutural. Ela ocorre quando as
estruturas complexas de um material sdo submetidas a um campo elétrico
externo. Quando o material é aquecido, surge um campo devido ao
deslocamento de ions que compdée o dipolo. Juntamente com a
polarizacao estrutural, essa forma de polarizagao, € muito sensivel aos
efeitos da temperatura.
Considerando que:

e capacitancia CO e carga no vacuo QO;

e capacitancia Ce e carga na polarizacao eletrénica Qe;

e capacitancia Ci e carga na polarizagao idnica Qi;

e capacitancia Cd e carga na polarizacao dipolar Qd;

e capacitancia Cs e carga na polarizacao estrutural Qs;
Sabemos que a carga que um capacitor possui no vacuo, Q, e a carga
eletronica que resulta da polarizacao eletronica Q. sempre estao
presentes. Ja as polarizagdes idonica, estrutural e dipolar, sao
dependentes do tipo de material dielétrico que se esta utilizando.
A equacao

e =1+ 4nk, + 4nk,; + 4k,

é conhecido como constante dielétrica e ke, ks € ks sao conhecidos como
suscetibilidades elétricas. Elas sao originadas nas polarizagoes
eletronica, dipolar e estrutural, respectivamente.

3.1.4 - Materiais Magnéticos

Como ja vimos anteriormente, os materiais podem ser divididos em
ferromagnético, diamagnéticos e paramagnéticos. Os materiais
ferromagnéticos sao caracterizados por uma magnetizagcao espontanea.
Essa magnetizacao nao exige que sejam originadas por campos
magnéticos exteriores. Nesses materiais, a temperatura é importante,
pois na temperatura critica o material pode passar de ferromagnético
para diamagnético.

Os materiais diamagnéticos, tem sua permeabilidade magnética menor
que 1 e, quando submetidos a um campo magnético tem os seus elétrons
sendo ajustados enquanto giram em torno do seu eixo. Durante esse



ajuste libera, durante o processo, um momento magnético que se dirige
de forma contraria ao campo magnético que € aplicado. Isso provoca um
enfraquecimento do préprio campo.

Ja os materiais paramagnéticos possuem uma permeabilidade magnética
em torno da unidade.

3.2 RESISTENCIA ELETRICA

3.2.1 - Definicao

Como ja vimos anteriormente, todos os materiais elétricos oferecem uma
maior ou menor dificuldade a circulacao de uma corrente elétrica.
Entretanto, mesmo os materiais condutores possuem uma determinada
capacidade de se opor a passagem de uma corrente elétrica. Essa
oposicao a passagem da corrente elétrica é conhecida como
RESISTENCIA ELETRICA e ela existe porque todos os materiais possuem
uma determinada RESISTIVIDADE ELETRICA.

No ano de 1827, o fisico e matematico alemao, Georg Simon Ohm,
publicou os resultados dos seus estudos sobre as relagdoes entre
corrente, tensao e resisténcia dos materiais. O resultado desses estudos,
passou a ser conhecido como LEI DE OHM. Poucos anos antes, Alexandre
Volta havia desenvolvido a bateria eletrolitica e os estudos sobre os
efeitos da eletricidade eram novos.

Enquanto era professor em uma escola em Colénia, Ohm aproveitava o
tempo livre e os laboratérios da escola para fazer seus estudos sobre
circuitos elétricos. Ao concluir os estudos, publicou o trabalho
denominado “O circuito galvanico investigado matematicamente” onde
mostrava que uma corrente elétrica que percorria um fio condutor era
proporcional a diferenca de poténcial aplicada a esse condutor,
diretamente proporcional a sua secao transversal e inversamente
proporcional ao seu comprimento.

O grande elemento inspirador do trabalho de Ohm foi um trabalho
publicado por Fourier sobre conducao de calor. Fourier descobriu que a
conducao de calor é proporcional entre dois pontos, &€ proporcional a
diferenca de temperatura entre eles e a condutividade térmica do meio
que os separa. Baseado nessa descoberta, Ohm, por analogia, iniciou o
estudo sobre a corrente elétrica.

Essa proporcionalidade entre a corrente e a diferenca de poténcial, que
podemos observar em alguns tipos de material € conhecida como a
PRIMEIRA LElI DE OHM. Todos os materiais que apresentam essa
proporcionalidade sao denominados de materiais 6hmicos.

Essarelacao indica o quanto de tensao deve ser aplicado a cada diferente
material 6hmico para que a corrente seja mantida a mesma, ou seja,



quanto maior for a dificuldade oferecida por um determinado material, a
passagem da corrente elétrica, tanto maior devera ser a tensao aplicada
a ele, para que um determinado valor de corrente seja estabelecido.
Como ja dissemos, em seus experimentos, Ohm determinou a relagao
entre a secao transversal do condutor, seu comprimento e sua
resisténcia. Entretanto ele determinou também que cada material
necessitava de um coeficiente para garantir um mesmo comportamento
dessarelacao. Ele determinou que esse coeficiente era a resistividade de
cada material (p) e concluiu que a resisténcia de um determinado material
elétrico pode ser determinada pela equacao:

R L
onde: R é a resisténcia do material (Q2)
p é a resistividade desse material (Q m/mm?)

L € o comprimento do condutor (m)
A é a secao do condutor (mm?)

A partir dai Ohm definiu a relacao entre a tensao, a corrente e a
resisténcia a partir da equacao

R |74
o
onde: R é aresisténcia ()
V é a voltagem (V)
| é a corrente (A)
Material p (2.m) Material p (Q.m)
Prata 1,59. 107 Germanio 4,6. 10"
Cobre 1,7. 10 Silicio 6.4. 10°
Aluminio 2,82. 10" Parafina 10"

Tabela 12 - Resistividade de alguns materiais

Se igualarmos as duas equacdes teremos:



Rearranjando a equacao teremos:

V I

L A

Mas o elemento V/L é o campo elétrico que esta atuando sobre o condutor,
enquanto arelacao I/A € denominada de densidade de corrente, que pode
ser simbolizado J. Sendo assim,

E=p]

Na realidade, nao se utiliza a formula nessa configuragcao, na realidade
utilizamos a formula em funcao da condutividade e, portanto

J =oFE

3.2.2 - O modelo de Drude

A lei de Ohm ja estava sendo utilizada, o elétron havia sido descoberto no
final do século XIX, ja estava determinado que era o elétron o responsavel
pelos fendbmenos elétricos que estavam sendo estudados. Entretanto era
necessario explicar a relagao entre o elétron e os fenobmenos elétricos e
as leis que regiam essas relacdoes. Quem fez essas descobertas foi Paul
Drude no ano de 1900.

Nos capitulos anteriormente estudados ja verificamos que o poténcial
elétrico em um condutor € o mesmo em toda a extensao do condutor, ou
seja, o material se encontra em equilibrio eletrostatico. A conclusao disso
€ simples, em um contador eletrostaticamente carregado, nao ha
diferenca de poténcial entre dois pontos quaisquer. Como em um
condutor, os elétrons da camada de valéncia sao fracamente ligados ao
nucleo, podemos verificar que, devido a energia térmica, esses elétrons
estao livres para se moverem aleatoriamente ao longo do condutor e,
nessa condicdo esses elétrons recebem o nome de ELETRONS DE
CONDUGCAO.

Quando submetido a um campo elétrico, surge uma forgca sobre os
elétrons livres e nesse caso, além do movimento aleatério originado pelo
gradiente térmico do material, surge também um movimento ordenado na
direcao do campo.

Ao ser submetido ao campo elétrico, o condutor nao esta mais em
equilibrio eletrostatico.



Teoricamente, nessas condigcdoes, o condutor submetido a essas
condicdes, teria a velocidade de deslocamento dessas cargas
aumentando indefinidamente. Entretanto, os elétrons em movimento
enfrentam colisoes entre eles e os ions de fundo, mantendo a velocidade
de deslocamento dentro de determinados limites.
Podemos explicar esse fendomeno a partir de uma analise microscoépica
que é conhecida como modelo de Drude.
O modelo de Drude, analisa esses fendomenos a partir das seguintes
hipéteses:
1. Nao ha interacao elétron-elétron ou elétron-ion no intervalo entre
as colisoes;
2. As colisdes ocorrem de forma abruptamente e os ions nao se
movem;
3. Existe um tempo médio entre as colisoes (At);
4. Apds cada colisao, o elétron perde a “meméria” sobre sua
velocidade e trajetéria.
Vamos imaginar que um condutor, que possua um comprimento L esteja
submetido a uma diferenca de poténcial V. Ao aplicarmos uma tensao V a
esse condutor fazemos com que um campo elétrico de intensidade E = V/L
no condutor. Sendo assim, se selecionarmos um elétron de conducao
qualquer veremos que o mesmo esta submetido a uma forcga elétrica que
€ dada por F = -eE. Esse elétron sera acelerado até uma velocidade v
durante um tempo At. Podemos representar esse efeito através da
equacao de variacao de velocidade atingida é:

Av eE At
m—=——eE=>Av=———
At m

Em um condutor percorrido por uma corrente, a quantidade de carga que
passa através da secao transversal desse condutor pode ser escrita
como:

AQ = n(—e)Av, At

onde: n é a densidade volumétrica dos elétrons de condugao (C/m?)

e é a carga do elétron (C)

A é a secao transversal do condutor (m?)

Vvm € a velocidade média de deslocamento dos elétrons (m/s)

At é o tempo percorrido (s)
Desse modo, a corrente elétrica que flui através do condutor pode ser
escrita da seguinte maneira:



_A¢

I
At

= —neAv,,

e a velocidade média que o elétron atinge é dada por:

I

[V neA

Esse valor médio da velocidade, na verdade é a velocidade de arraste dos
elétrons e nao a média das velocidades individuais de cada elétron, cujos
valores sao determinados pela agitacao térmica.

Essa velocidade individual, devido a agitacao térmica pode ser estimada
através do Teorema da Equiparticao da Energia, estudado em Fisica
Estatistica. Esse teorema estabelece o grau de liberdade de translacao
dos elétrons contribui com k;T/2 para a energia térmica dos mesmos.
Nesse valor apresentado temos kg é a constante de Boltzman (1,38064852
x 102 m2kg/s?K) e T é a temperatura.

Se igualarmos a energia cinética média dos elétrons com a energia
térmica teremos:

1 ) 2
_me<v ) = §

kgT
2 B

onde (v?) € a média do quadrado das velocidades dos elétrons
m. € a massa do elétron

3kpT
VrMms = v (v2) = Z

me

O valor de vrus € conhecido como valor quadratico médio da velocidade
dos elétrons ou, em inglés, root mean square.

A velocidade de um elétron apds a colisao tem direcao aleatéria, mas o
que realmente importa é o comportamento coletivo dos elétrons. Desse
modo, se fizermos a média das velocidades para todos os elétrons,
veremos que a velocidade resultante é nula, ou seja, vi = 0, ou seja:

Av = vy —v; = Uy

_vf+vi_vf

Vm 2 2



As equacdoes mostram que a variacao da velocidade sofrida por um
elétron é o dobro da velocidade média. Sendo assim, podemos escrever:

I eE At

neA m

Além das grandezas ja mencionadas sobre a resisténcia, temos também
o chamado caminho médio livre (¢). Essa grandeza representa a distancia
percorrida pelos elétrons entre duas colisdbes sucessivas. Como ja
dissemos, o tempo médio entre as colisdes é AT e a velocidade média dos
elétrons dada por v; e, portanto, o caminho médio livre sera calculado por:

2vfm1

[ =veAt =
! ne?AE

A equacao acima mostra que a diferenca de poténcial é proporcional a

corrente, confirmando a primeira lei de Ohm. Como a resisténcia € dada

pela razao entre tensao e corrente, entao teremos:

|4 2m AL

I ne?At A

Como podemos ver a resisténcia é diretamente proporcional ao
comprimento do condutor e inversamente proporcional a secgao
transversal do mesmo, o que confirma a lei de Ohm.

Sendo assim, podemos afirmar que a resistividade do material € dada por:

_ 2m
p_nezAt

Como vimos o modelo de Drude fornece a expressao para a resistividade
dos materiais elétricos, que se trata de uma grandeza macroscoépica, cuja
a dependéncia é apenas de grandezas microscopicas que sao, a massa
do elétron, sua carga, a densidade de elétrons livres e o tempo médio
entre colisdes. Essa analise também é valida para condugao idnica e para
regidoes com falta de elétrons.

3.2.3 - Efeito Joule e Poténcia Elétrica

Quando um condutor é percorrido por uma corrente elétrica dissipa toda
a energia retida pela resisténcia é dissipada sob a forma térmica.



Esse efeito térmico, que recebe o nome de efeito joule, ocorre devido ao
choque dos elétrons livres contra os atomos dos condutores. Esses
atomos, ao receberem energia vibram com mais intensidade. Desse
modo, quanto maior for a vibragcao desses atomos, maior sera a
temperatura que o condutor ira atingir.

Dependendo da utilizagao que queremos fazer do material elétrico, essa
dissipacao de calor pode ser, ou nao, interessante. Em casos como
chuveiros elétricos, torradeiras, cafeteiras e outros equipamentos desse
tipo, esse efeito é interessante.

Por outro lado, em circuitos eletronicos, onde o funcionamento e a
velocidade de processamento estdo associados a temperatura do
material, o efeito Joule é totalmente indesejado e dispositivos de
resfriamento sao necessarios nesses casos.

Qualquer maquina ou equipamento elétrico, a poténcia é definida como o
quociente entre a energia que é transformada pelo tempo corresponde.

No sistema internacional, a energia tem como unidade o Joule, e o tempo
€ dado em segundos. Desse modo, a unidade de poténcia é dada pela
unidade J/s ou, a unidade mais utilizada que é o Watt (w).
A poténcia é o resultado do produto da corrente que circula em um
condutor, pela tensao que alimenta esse condutor, assim

P=V.I

Entretanto, como sabemos a tensao V é o produto da corrente pela
resisténcia, desse modo:

V=R.I
Substituindo essa equacao na equacgao da poténcia, teremos:
P=R.I.I=>P=R.I?

Por outro lado, sabemos que:



E, novamente, substituindo essa equacao na equacao da poténcia,
teremos:

VZ
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Figura 79 - Grafico com as relagoes entre Tensao, Corrente, Resisténcia e Poténcia

3.3.4 - Tipos e usos dos Resistores

A grande pergunta que devemos fazer é. Para que servem os resistores?
Na pratica, os resistores servem para limitar a intensidade de corrente
elétrica através de determinados componentes, ou dividir um valor de
tensao de alimentacao.

Existem duas formas basicas de representar um resistor. Podemos fazé-
lo através de um retangulo ou através de uma linha em zig-zag. A
representacao de retangulo com terminais &€ uma representacao
simboélica para os resistores de valores fixos tanto na Europa como no
Reino Unido, ja a representacao em "linha quebrada” (zig-zag) é usada
nas Américas e Japao. No Brasil, qualquer uma das duas formas sao
aceitas.

Outro uso para os resistores é a possibilidade de utilizados como
transdutores. Transdutores sao componentes capazes de realizar
conversao de uma forma de energia em outra. Alguns exemplos sao os
microfones, interruptores e Resistores Dependentes da Luz ou LDRs, que
sao exemplos de transdutores de entrada, ou seja, transformam formas
de energia como a mecanica em um sinal elétrico. O outro tipo de
transdutor é representado por alto-falantes, lampadas de filamento, relés,



"buzzers" e também os LEDs, sao exemplos de transdutores de saida.
Transformam sinais elétricos em outras formas de energia.
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—

Figura 80 - Representacoes graficas de um resistor

Existem varias formas e construcoes dos resistores. Cada forma obedece
alguns critérios das necessidades dos seus usos.

Simbologia Comum Alta Poténcia Potenciémetro Termistor

Trimpot

—ph—
4

Figura 81 - Tipos de resistores

Veremos, a seguir, esses tipos de construcao.

3.3.4.a - Resistores de Valor Fixo

Resistores de valor fixo, sdao dispositivos, como o préprio nome diz, tem
seu valor fixado durante a fabricagcao. Existem dois tipos de materiais
utilizados para confeccao desses componentes. O primeiro é o resistor
de fio, onde se utiliza um fio de uma liga resistiva conhecida como
Constantan.

A liga de Constantan é composta por cobre (entre 53% e 57%), Niquel
(entre 43% e 45%), Manganés (entre 0,5% e 1,2%) e Ferro (<0,5%). Sua

resistividade é de 40+4n°% ™ ~~

Conector Isolamento
Metalico / Cerdmico

A WDy

Fio de Nicromo Enrolado em
um Bastao de Fibra de Vidro

Figura 82 - Construcéao de resistor de fio



O outro material é o resistor de carbono. Esse tipo de resistor, muito
utilizado na eletrénica, tem em sua construcao a deposicao de uma fina
pelicula de carbono sobre um tubo de ceramica. Eles também sao
conhecidos como resistores de filme. O filme resistivo é enrolado em
hélice por fora desse tubo. Posteriormente sao instalados os terminais e
o resistor é recoberto por uma camada isolante. Depois que a camada
isolante seca, sao pintadas faixas coloridas que identificam o resistor.

filme de carvao

terminal helicoidal
(tampa) cobertura isolante
terminal fgm = -~ \
(fio)
A
e » ~—

tubo ceramico

Figura 83 - Construcgao interna de um resistor de carbono

Esse tipo de resistor é de facil fabricagao e barato. Os valores comerciais
apresentam uma precisao entre 5% e 10% dos valores apresentados no
codigo de cores.

Existem resistores de precisao maior, entre 1% e 2%. Eles sao construidos
de filme metalico ou 6xido metalico que apresentam uma maior precisao
na sua confeccgao.

3.3.4.b - Identificagcao dos Resistores

Dependendo do tipo de resistor, o valor 6hmico de sua resisténcia é
apresentado de forma diferente.
Os resistores de fio tém seu valor e sua precisao impressos no corpo do
dispositivo e é de facil leitura.
Os resistores de carbono, por serem muito pequenos, nao permitem a
impressao dos valores de resisténcia no seu corpo. Sendo assim é
necessario que se utilize uma outra forma de representagao do valor da
resisténcia e da tolerancia desse resistor. Para isso utilizamos um
sistema de cédigo de cores. aue é uma codificacao internacional.
Nominal 1
Nominal 2

Multiplicador
- rToIegmma
—{ [T —

Figura 84 - Representacao da disposi¢cao das cores em um resistor comum.

Nominal 1
Nominal 2

Nominal 3
Multiplicador
EToler_éncia
—{ [T



Figura 85 — Representacao da disposicao de cores de um resistor de precisao

Cor No':'"a' Nonz"nal Multiplicador | Tolerancia
Sem codificacao +20%
Prateado x 0.01 *10%
Dourado x 0.1 *5%
Preto 0 x 1.0
Castanho 1 1 x10 1%
Vermelho 2 2 x 100 2%
Laranja 3 3 x1K
Amarelo 4 4 x 10K
Verde 5 5 x 100 K
Azul 6 6 x1M
Violeta 7 7 x10M
Cinza 8 8
Branco 9 9
Figura 86 - Tabela do c6digo de cores para resistores comuns
Cor Nomina | Nomina | Nomina | Multiplicado | Toleranci
1 12 13 r a
Sem
codificaca
0
Prateado x 0.01
Dourado x 0.1 5%
Preto 0 0 x 1.0
Castanho 1 1 1 x 10 *1%
Vermelho 2 2 2 x 100 +2%
Laranja 3 3 3 x1K
Amarelo 4 4 4 x 10 K
Verde 5 5 5 x 100 K +0,5%
Azul 6 6 6 x1M
Violeta 7 7 7 x10M
Cinza 8 8 8
Branco 9 9 9

Figura 87 - Tabela do codigo de cores para resistores de precisao

3.3.4.c — Poténcia Dissipada pelos Resistores




Dependendo do tipo de utilizacao que daremos ao resistor &€ necessario
que ele seja capaz de suportar uma maior ou menos poténcia que sera
dissipada pela circulacao de corrente.

Os resistores de fio sao capazes de atingir poténcias maiores pois sua
construcao é mais robusta. Comercialmente eles podem atingir poténcias
de 100W, 50W, 20W, 10W e 5W.

e - R

Figura 88 - Resistores de fio de varias poténcias

Os resistores de filme suportam poténcias menores e sua capacidade
esta relacionada ao tamanho do componente, conforme mostra a
ilustracao abaixo. Esses resistores podem atingir até 2W. Para casos
onde o componente vai trabalhar proximo a sua poténcia nominal, é
interessante utilizar um dissipador de calor.

Figura 89 - Tamanhos padrao dos resistores e um dissipador de calor para esses componentes

3.3.4.d — Resistores Variaveis e Resistores Ajustaveis

Além dos resistores fixos, existe um outro grupo de resistores cujo valor
de resisténcia pode ser alterado e ajustado de acordo com a necessidade
do projeto. Esse tipo de resistor existe para casos em que sao
necessarios valores diferentes dos valores comerciais de resistores fixos,



ou quando se necessita de uma variagcao de valor da resisténcia de
acordo com o momento.

Um exemplo desse segundo caso € o ajuste do volume de saida de um
amplificador de audio.

Os resistores ajustaveis sao utilizados quando o valor da resisténcia
pode, ou deve ser continuamente ajustada. Por exemplo, volume de audio,
valor da intensidade luminosa e outras. Esses resistores recebem um
nome especifico, sao conhecidos como POTENCIOMETROS.
Construtivamente € um dispositivo que possui um elemento mével que
desliza sobre uma trilha de carbono depositada no corpo do
potenciometro. O deslocamento do cursor sobre a trilha varia a
resisténcia entre o centro do cursor e uma das extremidades do
potencidometro.

TERMINAIS
FIX0S

Figura 90 - Esquema construtivo de um potencidometro e vista externa

Outra forma de resistor é o resistor ajustavel. Esse tipo de resistor é
utilizado para circuitos onde o valore de resisténcia desejado nao é um
valor comercial. Nesse tipo de resistor o valor é ajustado durante a
montagem e nao é mais alterada.

Construtivamente ela é muito similar ao potenciometro, diferenciando
somente a sua estrutura fisica externa.

WIPER RESISTIVE
RESIST\ANCE MATERIAL
L

WIPER ]

Figura 91 - Construcao interna de um trimpot e duas formas construtivas

3.3.4.e — Resistores Especiais



Existem ainda dois tipos de resistores especiais cuja resisténcia varia de
acordo com caracteristicas especiais.

O primeiro tipo de resistor especial € um NTC cujo nhome é a abreviagcao
de Negative Temperature Coefficient , € um dispositivo nao linear cuja
resisténcia varia de acordo com a variacao da temperatura. Sao
construidos a partir de um 6xido semicondutor que pode ser, Fe;0, (6xido
de ferro)+Zn,TiO,4 (6xido de titanio) ou CoO (6xido de cobalto) + Li-O (6xido
de litio)

PTC

-

- NTC

e

Figura 92 - NTC e simbologia para NTC e PTC
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Figura 93 - Curva caracteristica de um NTC

O valor da resisténcia em um NTC pode ser calculado por:
R=A.eB/T

Onde: R - resisténcia (Q2)
e —numero de Euler (2,718)
B - Constante do material no NTC em °K®
T - temperatura do NTC em °K
A - constante a uma dada Temperatura (retirada do grafico abaixo)
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Figura 94 - Grafico que relaciona a razao R2s/Rt de um NTC a temperatura ambiente de 25°C

Por outro lado, podemos obter os valores de A e B. Para isso é necessario
medir o valor da resisténcia R do NTC em dois valores quaisquer de
temperaturas.

Da equacao do NTC temos:

R, =A.e8/M
R2 = A eB/TZ

Se dividirmos a resisténcia R2/R,, teremos:

- = eB(l/Tl_l/TZ) - log— =B|—— —) lOge

R4 R4 ( 1 1
RZ RZ Tl TZ

onde:

1 logR; —logR,
B=(——).
loge 1 1

T

Podemos calcular o valor de B através da formula:



_logR; —logR,

loge (Tll - le)

Para calcular o coeficiente de temperatura or pela relacao

B

CZT - _ﬁ

Além do resistor que varia com a temperatura, temos resistores que
variam sua resisténcia com a luminosidade e sao conhecidos como LDR
(Ligth Dependent Resistor). Ele é um dispositivo construido basicamente
com sulfeto de cadmio (CdS) ou seleneto de cadmio (CdSe), sendo
considerados semicondutores que diminuem sua resisténcia com o
aumento da intensidade da luz.

Para determinar a resisténcia de um LDR em uma determinada
luminosidade temos a seguinte equacao

_ —-a
Ripr = Rescuro X L

onde: R.or Resisténcia do LDR (Q2)
Rescuro Resisténcia do LDR sem presenca de luminosidade (Q)
L Luminosidade incidente sobre o LDR (lux)
a Constante do material usado no LDR (Q/lux)

LDR &
-

LDR 4
—AWW—

Figura 95 - LDR e seus simbolos esquematicos
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Figura 97 - Curva de resposta da sensibilidade do LDR pelo comprimento de onda.

3.2.5 - Associacao de Resistores

Resistor € um dispositivo elétrico qualquer, cuja funcao seja inserir em
um circuito uma determinada dificuldade a passagem de corrente
elétrica. O chuveiro elétrico, promove o aquecimento da agua através da
resisténcia que fornece a passagem de corrente elétrica. Como veremos
mais adiante, essa resisténcia, ao ser percorrida por uma corrente,
dissipa energia sob a forma de calor. Essa mesma caracteristica é



utilizada em fornos elétricos, ferros elétricos e outros aparelhos de
aquecimento.

Os resistores podem ser associados em série, em paralelo ou em
associacdes mistas e, cada uma dessas disposicoes possui
caracteristicas especificas que vamos analisar a seguir.

3.2.5.a Associacao em série

Um conjunto de resistores esta associado em série quando todos os
resistores que compdem o circuito sao percorridos pelo mesmo valor de
corrente elétrica. Para que os resistores estejam associados em série
basta que os resistores sejam ligados um em seguida do outro, conforme
mostra a figura abaixo.

Rs

Rs R7 Re
Figura 98 - Associacao série de resistores

Para conhecermos o comportamento dessa associacao de resistores
frente a tensao que alimenta o mesmo, sera necessario encontrar o que
denominamos de RESISTENCIA EQUIVALENTE.

No caso da associacao em série a resisténcia equivalente é obtida da
soma de todas as resisténcias em série, desse modo:

Em cada resistor ira passar o mesmo valor de corrente | e cada resistor

ficara com uma pequena parcela da tensao que alimenta todo o circuito.
Desse modo, a queda de tensao em cada resistor sera dada por:

Ve, = Rn X

Do mesmo modo, como ja mencionamos, cada resistor ira dissipar uma
poténcia, sob a forma de calor, que sera proporcional a sua resisténcia.
Desse modo



Baseados nessas equacdes podemos determinar a poténcia total
dissipada por uma associagcao em série.

I/eqXI=V1XI+V2XI+V3XI++I/nXI
I/eqXI=IX(V1+V2+V3++I/n)

IX(V1+V2+V3+‘+Vn)
eq — I

]/eq=V1+V2+V3+"‘+Vn

Mas
= Veq X1
Peq - (Vl +V2 +V3 + +VTL)I

Peq == Vll +V21 +V3I + +VTLI

Peq=P1+P2+P3+"'+Pn

A associacao em série € denominada DIVISOR DE TENSAO.

3.2.5.b Associacao em paralelo

Na associacao em paralelo a tensao de alimentacao é igual em todos os
resistores e a corrente se divide de forma proporcional aos valores das
resisténcias associadas.
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Figura 99 - Circuito paralelo

Para o caso de somente dois resistores estarem associados, teremos:

1 1 N 1 R 1

_— _— =

Req Rl RZ “a i+i
Ry " R;

Fazendo o minimo multiplo comum entre os dois denominadores teremos:

o 1 o _RiXR;
€ R2 + Rl = €q R1 + R2
R, X R,

Analisando as equacgodes para encontrar a relacao das correntes e
poténcia teremos:

1 _t,1 1 1
Req Rl R2 RS Rn
1 1 1 1 1
=ty Tt +z
leqg Ig, Ig, Ig, I,
qu 11 12 13 In
—=—F—t—F -]
|74 Vv v Vv |74 eq
_V(IR1+IR2+IR3+".+IRn
B Vv

qu - IR1 + IR2 +IR3 + -+ IRn




Considerando a poténcia teremos:
Py =V.lgg
Peq == V(IRl + IRZ + IR3 + -+ IRn)

Peq == VIR1 + VIRZ + VIR3 + -+ VIRn

Peq=PR1+PR2+PR3+“.+PRn

Como podemos ver, assim como no circuito série, a poténcia total no
circuito paralelo, também é resultado da soma de todas as poténcias
parciais.

3.2.5.c Associacao Mista

A associacao mista de resistores € a mais comum das ligagcoes de
resistores. Nela encontramos resistores associados em série e em
paralelo e existem varias formas de resolugao desse tipo de circuito.

R1 Rs3

W\/

v R2 § R4

Re Rs
Figura 100 - associacao mista de resistores

Como ja dissemos, esse tipo de circuito permite uma série de formas de
resolugao. A primeira, e mais simples, é facil de realizar em circuitos com
pouco componentes.

Esse método consiste em reduzir o circuito toda a uma sé6 resisténcia
equivalente. Com o valor da resisténcia equivalente encontramos a
corrente inicial que sera a corrente total do circuito e depois comegamos
a retornar ao circuito anterior.

No caso do circuito da figura 91, em primeiro lugar resolveriamos a
associacao em série de R;, Rs, Rs. De posse desse resultado, que
chamaremos de Ry, resolvemos o circuito paralelo entre Ry e R..
Chamaremos o resultado dessa segunda associacao de Rr.. Esse
resultado é associado em série com os resistores Ry e Rs. Teremos, por



fim, o Resistor Equivalente do circuito. Conforme mostra o diagrama a
seguir.

Associacao Associacao

Série Série
R3,R4,Rs5 =Rt4 \ Associagao / Rr2, R1,R5 = Req
Paralelo

Rt1, R2=R~2

Figura 101 - Sequencia para encontrar o resistor equivalente do circuito da figura 80

Encontrado o resistor equivalente, aplicamos a lei de Ohm e encontramos
a corrente total do circuito.

Com essa corrente total, que chamaremos de |;, encontramos a queda de
tensao sobre o resistor Rtz que sera igual a queda de tensao no resistor
Ro.

Como R: esta em paralelo com o resistor equivalente Rr1 podemos utilizar
esse valor de tensao para encontrar a corrente sobre Rs, R4, Rs € a analise
esta concluida.

Como podemos ver pela descrigao, para circuitos com muitos resistores
esse método apresenta muita complexidade e muito trabalho. Para isso
utilizamos outros métodos que simplificam significativamente o resultado.

3.2.6 - Leis de Kirchhoff

As leis de Kirchhoff sao leis utilizadas para solugao de problemas com
circuitos mais complexos. Esses circuitos podem ter sua complexidade
devido a 3 fatores:

e Grande numero de resistores;

e Grande numero de resistores e outros componentes;

¢ Mais de uma fonte de alimentacao.
As leis de Kirchhoff sao duas. A primeira lei € conhecida como Lei dos Né6s
e a segunda lei é conhecida como Lei das Malhas.

3.2.6.a - Primeira Lei de Kirchhoff — A Lei dos Nos

A primeira lei diz que a soma de todas as correntes que chegam em um né
€ igual a soma de todas as correntes que saem desse mesmo no, ou seja:

z Iin = z Loyt

Essa lei € uma consequéncia da conservacgao da carga total existente no
circuito. Isso confirma que nenhuma carga é acumulada em um né



elétrico. Definimos n6 como um ponto onde 3 ou mais componentes
elétricos se juntam.
Imaginemos o circuito abaixo:

R1 Rs

— Rz R«

Re Rs
Figura 102 - Representacao de nés

O ponto de encontro dos resistores Ri, R € Rs € um nd, e nele, temos
correntes que chegam e que saem desse no e, portanto, a soma de todas
é igual a zero. Do mesmo modo teremos esse resultado no né
representado pela uniao dos resistores Rz, Rs e Re.

3.2.6.b - Segunda Lei de Kirchhoff — A Lei das Malhas

A lei das malhas diz que o somatério de todas as Forgas Eletromotrizes
(f.e.m) em uma malha qualquer, € igual as quedas de tensao de todos os
componentes dessa malha.

Zf.e.m=ZRn.In

Vamos analisar o circuito abaixo.

T R: R

Re Rs

Figura 103 - Representacao de malha

Nesse circuito existe 3 malhas possiveis. Nem sempre é necessario
utilizar todas.



A primeira malha é constituida da fonte V e dos resistores Ry, R; € Rs. A
segunda malha é composta pelos resistores Rz, Rs, Rs € Rs. Finalmente a
terceira malha é composta pela fonte V e os resistores R4, Rs, R4, Rs € Re.



Capitulo IV
CAPACITORES

“Em todo o espaco ha energia...é(s6) uma questéo de
tempo até que os homens tenham éxito em associar
seus mecanismos ao aproveitamento desta energia.”

Nikola Tesla

4.1 CAPACITORES EM CORRENTE CONTINUA

4.1.1 - Definicao e Histoérico

Uma das principais descobertas ligadas a eletricidade, ocorrida no
século XVIII foi feita por Von Musschenbroek, na cidade de Leiden, na
Holanda que foi realizada a partir de um experimento realizado
anteriormente por dois estudiosos da Pomerania, Andreas Cunaeus e
Ewald Jurgen Von Kleist. O experimento de Von Musschenbroek consistia
de uma garrafa cheia de agua que foi conectada a uma maquina
eletrostatica. Em seguida ele aproximou a outro objeto e verificou o
surgimento de uma grande faisca.

Posteriormente esse experimento foi aperfeicoado com a colocacao de
uma chapa metalica no interior da garrafa, encostada na parte interior do
vidro e outra chapa metalica na parte externa da garrafa. A chapa interna
€ ligada ao exterior através de um fio que é conectado na chapa interior.
Esse foi o primeiro protétipo do capacitor modernos.

Um capacitor &€ um dispositivo muito utilizado em eletroeletréonico que é
utilizado para armazenar energia elétrica sob a forma de campo elétrico
que existe no seu interior.

Consideremos um gerador de cargas elétricas ou corpo carregado que é
conectado a uma esfera condutora com o raio R. Ambos estao imersos em
um meio cuja constante eletrostatica é k.

Meio k

Esfera
Condutora

Geradorde

Cargas
Figura 104 - Experimento para mostrar o funcionamento do capacitor



O condutor que liga a esfera até o gerador de cargas fara com que as
cargas geradas sejam levadas para a esfera condutora carregando-a com
uma carga Q. Pelo que ja vimos anteriormente, sabemos que o poténcial
elétrico formado na superficie de uma esfera condutora carregada sera
dado pela equacao.

Q
= k=
v R

onde: V - poténcial elétrico na superficie da esfera (Volts)
Q - quantidade de carga (Coulomb)
R - raio da esfera (metros)
k — constante eletrostatica do meio (9 x 10° Nm?/C? para o vacuo)

Se trabalharmos a equacgao teremos:

g_R

V Kk
Aumentando a quantidade de cargas Q na esfera, iremos verificar que o

poténcial elétrico V aumenta na mesma proporcao e isso nos permite
realizar a seguinte relacao matematica:

@ Q@ Q@ R
L == _=(¢te=C
v, VW i Wk

Essa constante C depende do raio da esfera e do meio ou da quantidade
de carga Q e do poténcial elétrico V, € chamada Capacitancia.

Entao podemos dizer que a capacitancia é a expressao da habilidade de
um dispositivo em armazenar cargas elétricas.

A unidade de capacitancia € o FARAD (F), que é a razao entre a
quantidade de carga elétrica e a voltagem.

Terminais

Condutores ou
Placas ou armaduras

Dielétrico
(isolante)

Figura 105 - Esquema construtivo de um capacitor e sua simbologia



Material Constante Dielétrica K K Usual

Vacuo 1 1
Ar 1,0001 1
Agua 78,0 78
Oxido de Aluminio 7a8
Cerdmica =10
Vidro 4a10 8
Vidro Pyrex 45 45
Mica 6a8 6
Papel 2a5 35
Pertinax 5 5
Policarbonato (MKC ou MAC) & 3
Poliéster (MKT) 3,0a3.2
Polipropileno (MKP) 21a23
Poliestireno (MKS) 25 25
Porcelana 4a8 6,5
Oxido de Tantalo 11 11
Teflon 20a21
Baquelite 4,8 48

Figura 106 - Tabela das constantes dielétricas de alguns materiais

4.1.2 - Processo de Carga dos Capacitores

Imagine um capacitor sendo ligado em uma fonte de alimentacao através
de uma chave do tipo Liga-Desliga. Gradativamente as duas placas do
capacitor passarao a ficar carregadas. A placa ligada ao polo positivo da
bateria ficara carregada positivamente e a placa ligada ao polo negativo
ficara carregada negativamente. Como ja vimos, considerando que as
duas placas ficaram com a mesma quantidade de cargas, mas com sinais
diferentes, surgira entre elas um campo elétrico uniforme que é orientado
da placa positiva para a placa negativa.

Considerando que as cargas elétricas se encontram imersas em um
campo elétrico, elas possuem poténcial elétrico e a diferenga de poténcial
entre as placas estabelece uma tensao elétrica no capacitor carregado.
Esse € o motivo pelo qual dizemos que o capacitor armazena energia
elétrica no seu campo elétrico.
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3
Figura 107 - (1) Capacitor descarregado; (2) Chave fechada, capacitor carregando; (3) Capacitor
carregado; (4) Campo elétrico uniforme no interior do capacitor

Vamos agora considerar o circuito abaixo:

— ™S

s

Figura 108 - Circuito RC em corrente continua

Enquanto a chave esta aberta, nao ha corrente e, portanto, a tensao no
capacitor e no resistor sao nulos.

Quando a chave é fechada, o capacitor esta descarregado, sendo assim,
toda a tensao da bateria estara sobre o resistor. Desse modo, podemos
concluir que, no instante em que a chave é fechada, a corrente maxima
do circuito sera dada por:

E
[, ==

R

Essa corrente continuara fluindo no circuito enquanto o capacitor esta
sendo carregado. Durante esse processo a corrente ira diminuindo até
chegar a zero.

A tensao sobre o capacitor também ira diminuindo e, a cada instante de
tempo ela tera o valor dado pela seguinte equacgao:

Vg = E.e"/RC



onde: Vg — Tensao no resistor (volt)

E - Tensao na fonte (volt)

e - 2,718 (constante)

t - tempo decorrido do momento do fechamento da chave até o
instante que se deseja.

Sabendo que um circuito série € um divisor de tensao, a tensao do
capacitor sera dada por:

V.=E—Vg

Logo:
V.=E—E.e"t/RC

Desse modo:

V. = E(1 — e”¥RC)

Com essa equacao podemos calcular a tensao do capacitor em qualquer
instante durante a carga do capacitor. O denominador RC é chamado
CONSTANTE DE TEMPO do circuito.

Essa constante de tempo sera a mesma para a carga e para descarga do
capacitor.

Durante o processo de descarga do capacitor a tensao sobre o capacitor
sera dada por:

V. =E,.e %/RC
E a corrente sera dada por

[ =1,e"/RC

A partir dessas equacdes conseguimos levantar as curvas de carga e
descarga dos capacitores em corrente continua.
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t=RC 2RC 3RC t
Tempo

Figura 109 - Curva de carga e descarga de um capacitor.

4.1.3 - Reatancia Capacitiva

Os capacitores apresentam grande resisténcia quando sofrem variagoes
de tensao. A essa oposicdo damos o nome de REATANCIA CAPACITIVA.
O valor da reatancia capacitiva é dado por:

1
2nfC

X, =

Em corrente continua, o capacitor se comporta como um circuito aberto.
Em corrente alternada o capacitor se comporta com alta impedancia,
entretanto, como podemos ver na equacao, para frequéncias muito altas
o capacitor tem um comportamento que se aproxima de um curto circuito.

4.1.3 - Associacao de Capacitores

Assim como os resistores, os capacitores podem ser associados em
série, em paralelo ou em uma associacao mista.

4.1.3.a—- Associacao em Série

Quando associamos capacitores em série temos:

q; = C;Vy,q, =GV, eqs = C3V;
d1 = q2 = (3 = (n

Em uma associacao em série



V:V1 +V2+"‘+Vn

Logo
V= (1 + - + 4 1)
B C,
Considerando que
ve 9
Ceq

Entao

1 1 N 1 - 1 1 z 1
- = — —_— =S — = —
Ceq Cl CZ Cn Ceq Ci

i
4.1.3.b Associacao em Paralelo

Partido do mesmo pressuposto anterior, temos:

q; = C;Vy,q, =GV, eqz = C3V;
d1 =92 = (3 = (n

Mas em uma associagcao em série a carga total é igual a soma das cargas
parciais, sendo assim:

q=4q;+qz +-+(qn
Como

q = CeqV

Entao

Cog = (€1 + Gy + 4 Co) = Coq= ) G,
1



4.1.3.c — Associacao Mista

Entre os capacitores, as associacdes mistas sao resolvidas da mesma
forma que as associagoes mistas de resistores.

4.1.3 - Tipos de Capacitores

Comercialmente existem diversos tipos de capacitores que sao utilizados
nas mais diversas aplicacées. Para classificarmos os capacitores,
geralmente o fazemos relacionando com o material que compéem seu
dielétrico.
Os tipos mais comuns encontrados no comércio sao:
e Capacitores Ceramicos (disco Ceramico, tipo “plate” e
multicamadas);
e Capacitores de Filme Plastico (de poliéster, policarbonato,
polipropileno e poliestireno);
e Capacitores Eletroliticos de Aluminio;
e Capacitores Eletroliticos de Tantalo;
e Capacitores Variaveis;
e Capacitores de Mica.

4.1.3.a - Capacitores de Disco Ceramico

Esse tipo de capacitor é construido com um dielétrico que é feito de
material ceramico. Para fabricar esses capacitores come¢ca com uma
determinada quantidade de pé de ceramica que é colocado em uma
prensa e comprimido na forma de pastilhas. Quando as pastilhas estao
prontas elas recebem um tratamento térmico para consolidacao da
pastilha. Apds esse processo, as pastilhas sao impregnadas de prata que
€ pulverizada nas duas faces da pastilha. Elas formarao as duas placas do
capacitor. Depois de pronto sao soldados os terminais sobre as camadas
de prata. Isso ocorre apés um banho desengordurante para limpeza.
Concluida essa etapa uma resina é impregnada para protecao e
isolamento e o capacitor é levado a um forno pra endurecimento da
resina.

Soldagem dos futuros .
Pastilha de Capacitor
termunais na lh\\f (lt.‘

~ordise; Ceramico
Ceramica prata :

-

Figura 110 - Sequéncia das etapas de fabricacao de um capacitor de ceramica



Os capacitores de disco ceramico sao componentes com valores de
média e baixa capacitancia, normalmente na ordem dos picofarads (10™?).
Tem sua principal utilizacao em circuitos que operam em alta frequéncia.
Isso ocorre porque o baixo fator de perda e alta estabilidade do valor de
capacitancia sao importantes, e esses capacitores fornecem essas
caracteristicas.

A identificacao do valor de capacitancia desses capacitores é,
normalmente feita pela leitura direta no corpo do capacitor, bastando ler
o numero impresso no componente e multiplica-lo por 10" Esses
numeros respeitam um cédigo de 3 algarismos. O primeiro algarismo
indica a unidade, o segundo indica a dezena e o terceiro indica o humero
de zeros que compoem o valor do componente.

A tolerancia do capacitor de ceramica é expresso por uma letra que,
normalmente, é impressa ap6s o valor da capacitancia.

C <10 pF letra indicativa C>10 pF
+/- 0,1 pF B
+/- 0,25 pF C
+/- 0,5 pF D
+/- 1 pF F +/-1 %
+/- 2 pF G +/- 2 %
H +/-3 %
J +/- 5 %
K +/- 10 %
M +/- 20 %
S +50% a - 20%
z +80% a-20%
+100% a — 20%
P + 100%

Figura 111 - Cédigo para identificagao da tolerancia

4.1.3.b — Capacitores de Disco Ceramico “Plate”

Esse tipo de capacitor ceramico tem como principais vantagens e
caracteristicas o seu tamanho que é ultra reduzido, grande estabilidade
no valor da capacitancia, baixo custo e uma estreita faixa de tolerancia
que gira em torno de 2%. Na tabela abaixo temos uma representacao
resumida dos principais dados desse tipo de capacitor. A principal
diferenca em relacao aos capacitores de ceramica é o fato de que os tipo
“plate” possuem placas retangulares de cobre e os ceramicos
convencionais possuem placas circulares de prata.



Corpo Faixa Tipo Tolerancia Tensao Valores Disponiveis
CINZA PRETA TC - NPO +/-2% 100V 1,8 a 120 pF
CINZA VIOLETA TC - N750 +/-2% 100 V 3,9 a 330 pF
OCRE AMARELA GP +/-10% 100V 180 a 4700 pF
OCRE VERDE GMV 80% 63V 1000 a 22000 pF

Figura 112 - Tabela de caracteristicas dos capacitores do tipo "plate”
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Figura 113 - Exemplos de capacitores tipo plate
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4.1.3.c - Capacitores Ceramicos Multicamadas

Esses capacitores sao construidos a partir da superposicao de finas
camadas de material dielétrico ceramico com placas de metal
depositados entre as superficies formando uma espécie de “sanduiche”.
As camadas metalicas individuais sao conectadas umas as outras através
de um terminal metalico onde sao soldados os terminais de capacitor,
como mostra a figura abaixo.

Estrutura de um capacitor multicamadas com

: Encapsulamento
terminais

Dielétrico ceramico

Terminagao metalica

Metal depositade
Terminais

Figura 114 - Estrutura de um capacitor multicamada

Eles apresentam baixas perdas, capacitancia estavel, alta resisténcia de
isolacao, alta capacitancia e pequenas dimensoes.



4.1.3.d - Capacitores de Filme Plastico

Esse tipo de capacitor possui um dielétrico que € uma lamina de material
plastico (poliéster, polipropileno, poliestireno, policarbonato). Sua
capacitancia é da ordem dos nanofarads (10°). Tem como principais
caracteristicas a baixissimas perdas no dielétrico, alta resisténcia de
isolacao, estabilidade da capacitancia, baixa porosidade e,
consequentemente, grande resisténcia a umidade. Os tipos sao Poliester
(MKT), prolipropileno (MKP), Poliestireno (MKS) e Policarbonato (MKC ou
MAC).

Existem dois tipos. Os nao metalizados possuem dielétrico de filme
plastico e armaduras de folhas de aluminio. O conjunto de armaduras
mais o dielétrico podem ser bobinados ou sanfonados, fornecendo duas
opgoes construtivas. Ja os capacitores metalizados tém como
caracteristica marcante tem a propriedade de auto regeneracao. O
dielétrico desses tipos de capacitores consiste de filmes de plastico em
cuja a superficie era depositada, através de um processo de vaporizacao,
uma camada de aluminio que deixa esse filme plastico metalizado. Nesse
caso, podemos bobinar o capacitor ou entdao dispor o conjunto em
camadas. Através da deposicao das superficies laterais dos capacitores
com o metal vaporizado obtemos um bom contato entre as armaduras e
os terminais, assegurando baixa indutancia e baixas perdas. Nesse tipo
de capacitor, em caso de sobre tensao capaz de perfurar o filme plastico,
a camada de aluminio que existe em torno do furo, por ser submetido a
elevada temperatura, acaba se transformando em 6xido de aluminio, que
€ isolante desfazendo o curto-circuito. Esse fenédmeno é conhecido como
auto regeneracao.

Figura 115 - Esquemas construtivos dos capacitores de filme plastico metalizado e nao
metalizado



A leitura do valor do capacitor pode ser feito de forma direta com os
valores impressos que aparecem da seguinte forma: o valor nominal (um
numero), a tolerancia (em letra maiuscula) e a tensao nominal (um numero
com unidade, geralmente). Uma das principais caracteristicas dessa
representacao é que quando o valor nominal for maior que 1, o valor esta
sendo indicado em picofarad (pF). No caso do valor indicado ser menor
que 1, o valor estara expresso em microfarad (uF). Quanto a tolerancia,
utilizamos a mesma tabela da figura 8. A outra forma de indicagao do valor
desse tipo de capacitor € o coédigo com 5 faixas coloridas e a leitura deve
ser feita conforme a figura abaixo.

1 Algarismo

2 Algarismo — |

NUmero de Zeros

Tolerancia —— |

Tensao Nominal

Cor 1° Algarismo  2° Algarisme Numero de Zeros Tolerancia Tensido Nominal
Preto 0 0 +20%
Marrom 1 1 0 100V
Vermelho 2 2 00 250V
Laranja 3 3 000
Amarelo 4 4 0000 400V
Verde 5 5 00000
Azul 6 6 630V
Violeta 7 7
Cinza 8 8
Branco 9 9 +10%

Figura 116 - Tabela de cores para capacitores de filme plastico

4.1.3.e — Capacitores Eletroliticos de Aluminio

De um modo geral, todo o capacitor é constituido de duas armaduras e
um dielétrico entre elas. Os capacitores eletroliticos também possuem
essa caracteristica, entretanto se diferenciam dos demais pelo fato de
que o terminal que corresponde ao catodo esta associado a um fluido
condutor conhecido como eletrélito, e nao a uma armadura metalica. O
outro terminal, o anodo, esta ligado a uma folha de aluminio que teve sua
superficie formada por um processo eletroquimico que forma uma
camada de 6xido de aluminio que servira como dielétrico. Normalmente o
nucleo é bobinado. Esse nucleo bobinado possui afolha de aluminio acima
descrita e uma segunda folha de aluminio conhecida como folha de
catodo. Essa folha nao é oxidada e tem a funcao de servir como eletrodo
da substancia liquida condutora.



Ambas as folhas sao separadas por algumas camadas de papel poroso
que armazena o eletrélito. A principal caracteristica desses capacitores
€ a alta capacitancia especifica e apresentam valores da ordem de
microfarads (10°). Como em qualquer outro capacitor, os capacitores
eletroliticos tém sua capacitancia proporcional a areas de suas placas e
inversamente proporcional a distancia entre elas. Nos capacitores
eletroliticos a distancia entre as placas é determinada pela espessura ca
camada de 6xido que se forma na folha de anodo. O 6xido de aluminio é
mais vantajoso que outros dielétricos pois pode ser obtido direto do filme
de aluminio, além de ser capaz de suportar altas tensoes elétricas. A
distancia maxima de afastamento entre as armaduras é de 0,7 mm
enquanto a espessura da camada de papel gira em tornode 6 a 8 mm. O
processo de cauterizagao eletroquimica torna a folha de aluminio rugosa,
o que aumenta a superficie das placas. Isso ocorre porque, como o catodo
€ um eletrolito ele preenche muito bem as reentrancias da folha do anodo.

folha de
anodo

papel impregnado

(tielétrico) terminais

foiha de catodo

ditactric {aluminium oxide}
conductng slecholyte

encapsulamento

902004-5-13

Figura 117 - Aspectos construtivos de um capacitor eletrolitico
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Figura 118 - Superficie rugosa que surge apoés a cauterizagao eletroquimica



Os capacitores eletroliticos que sao construidos dessa forma sao
polarizados, ou seja, o polo positivo deve ser ligado no anodo e o polo
negativo no catodo. A ligacao com polarizacao invertida inicia o processo
eletrolitico que deposita uma camada de 6xido sobre a folha de catodo.
Esse processo pode gerar gas e esse pode destruir ou explodir o
capacitor. Existem alguns capacitores eletroliticos que nao sao
polarizados. Eles sao conhecidos como bipolares. Esses capacitores sao
construidos substituindo a folha de catodo, por uma segunda folha de
anodo, que é construida da mesma forma da primeira. Esse tipo de
substituicao permite que o capacitor funcione em corrente continua, em
qualquer polaridade e também funcione em corrente alternada. Esse tipo
de capacitor necessita de até o dobro do volume de um capacitor
polarizado de mesmo valor de capacitancia e tensao.

Os valores de capacitancia vém indicados no corpo do capacitor, bem
como a polaridade, no caso dos capacitores

Figura 119 - Capacitor Eletrolitico Polarizado Figura 120 - Capacitor Eletrolitico Nao
Polarizado

4.1.3.f - Capacitores Eletroliticos de Tantalo

Esse tipo de capacitor utiliza 6xido de tantalo como material isolante e
também sao polarizados devido a existéncia de um eletrélito. Esse tipo de
capacitor é indicado especificamente para circuitos impressos e que
requeiram baixa corrente de fuga e baixo fator de perdas. Sao
capacitores que apresentam longa vida operacional, sao muito
compactos e elevada estabilidade nos parametros elétricos. Sua
identificacao é feita pelo valor impresso diretamente no corpo do

capacitor, assim como a tensao nominal e a polaridade.

camada de dié:bdo !
dodmanggs s Soxido ,,2: |
fio de tantalo camada de 2° armadura
tantalo em po rbxido dielétrico
1* armadura

tantalo
1* armadura

Figura 121 - Aspecto construtivo de um capacitor de tantalo



4.1.3.g - Capacitores Variaveis

Existem determinados dispositivos eletronicos cuja utilizacao necessita
de variagdes em um valor de capacitancia. Circuitos de sintonia de radio
€ um exemplo. Paraisso utilizamos capacitores variaveis, que sao aqueles
que permitem a variacao de sua capacitancia.

Nesses capacitores o dielétrico &€, normalmente, o ar ou entdo, o filme
plastico e sua capacitancia pode ser variada por meio de um eixo ou
parafuso. Nesse eixo ou parafuso sao fixadas placas ou grupo de placas
moveis. Um segundo grupo de placas é fixo e montado sobre um material
isolante do corpo ou chassi. Esse eixo ou parafuso, ao ser movimentado
aproxima ou afasta as placas moéveis das placas fixas fazendo com que a
capacitancia varie.

L
e

SECOES el ¥ PARAFUSO

(3) i " de
AJUSTE

Figura 122 - Tipos de capacitores variaveis



Capitulo V
CIRCUITOS ELETRICOS

“Em todo o espaco ha energia...é(s6) uma questéo de
tempo até que os homens tenham éxito em associar
seus mecanismos ao aproveitamento desta energia.”

Nikola Tesla

5.1 CIRCUITOS EM CORRENTE CONTINUA

Definimos um circuito de Corrente Continua C.C. como sendo aquele
circuito em que todas as fontes de tensao tém sua forgca eletromotriz
constante.

Quando os circuitos possuem capacitores, existe uma pequena flutuagao
na corrente durante um periodo de tempo denominado transitério. Esse
periodo transitério, que dura fracoes de segundos, se estabiliza quando
os capacitores estdo carregados, e a corrente passa a ser estavel
novamente.

Para estudar um circuito de forma mais eficaz é interessante representa-
lo sob a forma de um diagrama de circuito.

A figura abaixo mostra um circuito divisor de tensao onde os pontos A, B
e C sao os trés terminais do potenciometro.

R4 \

Ii

Rs

R2
Figura 123 - Representacao de um diagrama de circuito.

5.1.1 Leis dos Circuitos

A analise de um circuito elétrico consiste em calcular correntes e tensdes
em cada componente que constitui o circuito. Através desses valores
podemos determinar a poténcia dissipada em cada componente do
circuito.



Como ja comentamos anteriormente, existem varias formas de
analisarmos um circuito elétrico. Entretanto, podemos lancar mao de uma
técnica que é capaz de solucionar de forma mais simples e rapida
qualquer tipo de circuito elétrico. Essas técnicas sao conhecidas como
Leis de Kirchhoff.

5.1.1.a - Primeira Lei de Kirchhoff

Como ja vimos, a primeira lei de Kirchhoff € também conhecida como a lei
dos nés e ela nos diz que o somatoério de todas as correntes que fluem
para um né é igual ao somatoério de todas as correntes que saem desse
noé. Essa lei é valida sempre que as correntes sao estacionarias, ou seja,
que se mantenham constantes. Nesse caso a densidade da nuvem de
cargas de conducao permanece constante dentro do condutor, sem que
ocorra acumulacao de cargas em nenhum ponto do circuito. Sendo assim,
toda a carga que entra em um condutor, por unidade de tempo, devera
sair por outros condutores.

5.1.1.b — Segunda Lei de Kirchhoff

A segunda lei, também conhecida como lei das malhas ou lei das tensoes
nos diz que a soma das diferencas de poténcial, em qualquer percurso

fechado em um circuito é sempre nula. Esse percurso fechado é
conhecido como malha.

5.1.1.c - Analisando o Método das Malhas

Como ja vimos, em circuitos com varias resisténcias e somente uma fonte
de alimentacao, podemos dimensionar o circuito através do método de
encontrar a resisténcia equivalente e, a partir dela, comecar a determinar
as correntes e as quedas de tensao nos componentes dos circuitos.
Existem casos em que os circuitos possuem mais de uma fonte de
alimentacao e, nesses casos, é necessario utilizar as leis de Kirchhoff
para solucionar o problema.

Vamos analisar o caso do circuito abaixo.

R1 < (12" §R2® §R3

R4 R5




As correntes sao dispostas com seu sentido escolhido aleatoriamente,
uma em cada malha. Depois de resolvido o problema, as correntes que se
deslocarem em sentido contrario aos estipulados, apresentarao sinal
negativo.

Na analise, utilizaremos as duas leis de Kirchhoff para organizar o sistema
de equacodes.

A malha da corrente |1 tera a seguinte equacao (pela segunda lei de
Kirchhoff):

V — 11R4_ + 11R5
A malha da corrente 12 sera dada por:
0= LR+ ;- 3Ry + (I — [1)R,
Finalmente na malha da corrente I3 teremos:
0=(,—I)R; + 3Rz + (I3 — I1)Rs
Com essas trés equagdées montamos um sistema.

LR, + I,Rs =V
Ile + Isz - I3R2 + 12R4 - 11R4_ = 0
12R2 - 13R2 + 13R3 + I3R5 - 11R5 - 0

Colocando as correntes em evidéncia temos:

11(R4_ + Rs) - V
IZ(Rl + R2 + R4_) - I3R2 - 11R4 - 0
12R2 + 13(—R2 + R3 + R5) - 11R5 == 0

Agora basta montarmos um sistema de matrizes:

(R4 + Rs) 0 0 I 14
—R, —R, (Ri+R;+Ry)||I2] =10
—Rs R, (=R, + R; + R | U3 0



Para calcularmos as correntes, utilizamos a lei de OHM. Desse modo
teremos:

I 1% (Ry,+R;) O 0
12 =0+ —R4_ _RZ (Rl + Rz + R4)
13 0 —R5 RZ (_RZ + R3 + R5)

Assim teremos:

Voo 0 (R,+Rs) 0 0
11 =10 _RZ (Rl + R2 + R4) - —R4 —R2 (Rl + R2 + R4)
0 R, (—R;+R3+R5) —Rs R, (=R, + R;+R;)
V (R, +Rs) 0 (R,+Rs) O 0
12 = 0 _R4_ (Rl + R2 + R4) - _R4, _R2 (Rl + R2 + R4_)
0 —Rsg (=R, + R; + R5) —Rsg R, (—=R,+ R;+R;)
V. 0 (R,+Rs)] [Ra+Rs) © 0
13 = 0 _RZ —R4_ - _R4_ _R2 (Rl + R2 + R4_)
0 Rz _R5 _R5 R2 (_Rz + R3 + R5)

5.1.2 Circuitos com Capacitores

Como ja vimos, a diferenca de poténcial em um capacitor é diretamente
proporcional a carga que esta armazenada nas suas armaduras. Quando
ligamos um capacitor que esta sem carga, a diferenga de poténcial em
seus terminais é nula. Para o circuito, esse capacitor se comporta como
um curto circuito. Nos instantes seguintes a carga do capacitor comecga
a aumentar e a diferenca de poténcial em seus terminais comeca a
aumentar.

Também ja vimos que essa carga nao pode aumentar indefinidamente ela
vai até atingir um valor constante. Quando esse valor € atingido a corrente
no capacitor é zero e ele passa a ser considerado um interruptor aberto
que impossibilita a passagem de corrente. Como ja foi dito, o periodo até
a estabilizacao da carga do capacitor € denominado TRANSITORIO.
Essa analise tedrica, na pratica nao se verifica integralmente pois os
capacitores possuem uma pequena corrente, mesmo com carga
completa, que é denominada CORRENTE DE FUGA.



Capitulo VI
CORRENTE ALTERNADA

“Lembre-se que as pessoas podem tirar tudo de
vocé, menos seu conhecimento”
Albert Einstein

6.1 CORRENTE ALTERNADA

Vamos imaginar um circuito de corrente continua, um circuito basico,
com uma fonte, que pode ser quimica ou eletromecanica, e uma carga que
pode ser uma lampada. Nesse tipo de circuito, a corrente flui a partir do
terminal negativo da fonte, viaja pelo circuito, passa pela carga e retorna
ao terminal positivo da fonte. Esse movimento de carga é conhecido como
corrente elétrica e, nesse caso, é corrente continua.

Agora vamos imaginar o mesmo circuito s6 que com uma pequena
modificacao, vamos substituir a fonte de energia de corrente continua,
por uma fonte de corrente alternada. Isso significa que a fonte esta
constantemente trocando de polaridade. Desse modo, por um intervalo
de tempo, a corrente flui em uma direcao e, no intervalo seguinte, a
corrente ird fluir na direcao contraria. Esse ciclo se repete
indefinidamente enquanto a fonte estiver ligada. Essa corrente é
conhecida como Corrente Alternada.

6.1.1 Fontes de Corrente Alternada

Como ja falamos, um condutor elétrico, quando corta um campo
magnético, surge nesse uma corrente nesse condutor. Agora, vamos
imaginar um gerador que possui uma bobina que sera imersa em um
campo magnético B e gira, imersa nesse campo, com uma frequéncia
angular o. Enquanto gira, o fluxo do campo magnético que atravessa a
bobina é dado por:

by = A_n)l? = AB cos(8) = AB cos(wt + 6)

Nessas condigcoes, uma forca eletromotriz ¢ sera induzida nas
extremidades do anel, como é determinado pela lei de Faraday



Nestas condicdes, uma forca eletromotriz & sera induzida nas
extremidades do anel, como determinado pela Lei de Faraday:

d d
e(t) = _ECDB = —EABcos(wt + 8§) = ABw sin(wt + 6) =

= &, sin(wt + §)

O valor do angulo de fase ¢ € determinado pelas condicdes iniciais. Se na
definicao das condicdes iniciais delimitarmos o angulo de fase como nulo,
as operacoes matematicas serao mais simplificadas, logo:

g(t) = gy sin(wt)

A mudanca da polaridade em uma fonte de corrente alternada é feita de
forma suave e regular que se repete em uma sucessao de ciclos em uma
forma senoidal.

O sinal senoidal é obtido devido ao posicionamento do enrolamento em
relacao as linhas de campo magnético conforme mostra a figura abaixo

o° Qg0 180° 270° 360°

180° Angulos de

I
: Rotagdo ("
|
I

Ciclo

Figura 124 - Geragao de um sinal alternado

As maquinas que geram corrente alternada, os geradores de C.A,
também conhecidos como alternadores, sao maquinas capazes de
converter energia mecanica, gerada por uma maquina primaria, em
energia elétrica. Essa transformacao se baseia nas leis de Faraday e
Lenz, que ja analisamos. O gerador elementar, monofasico, de corrente
alternada é uma concepcao de Michael Faraday, feita em 1831, na
Inglaterra. Essa maquina consistia de uma espira que girava entre os
polos de um ima.
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Figura 125 - Gerador de Faraday

Nesse gerador monofasico elementar, a espira de fio girando dentro do
campo magnético produz uma forgca eletromotriz induzida (fem). Os
terminais da bobina sao ligados ao circuito externo através de anéis
coletores e escovas. Essas escovas, hormalmente sao pequenos blocos
de grafite, que € um material condutor. Sem essas escovas nao seria
possivel fazer com que a forga eletromotriz alternada, fosse fornecida na
saida do gerador. Tanto a corrente quanto a tensao, nesse tipo de
gerador, mudam de direcao, cada vez que a espira gira 180° e como ja
vimos ambas tem o formato de uma senoide.

Os valores instantaneos da forga eletromotriz podem ser calculados pela
equacgao:

e =B Xl XvXsen(0)

onde: e - forgca eletromotriz induzida (volts)
B - inducao do campo magnético (tesla)
| - comprimento do condutor (metros)
v — velocidade linear de deslocamento do condutor (m/s)
0 -anguloentre Bev

Como a corrente e a tensao sofrem as mudancgas de forma regular, elas
possuem algumas caracteristicas e propriedades basicas.

Frequéncia - é a propriedade elementar de qualquer onda regular. Ela
indica o numero de vezes que um ciclo ocorre por unidade de tempo. No
Nnosso caso, a unidade de tempo é o segundo. Sendo assim, a frequéncia



determina quantos ciclos completos ocorrem em 1 segundo, e sua
unidade é o Hertz.

Periodo - é a medida do tempo que é necessario para que um ciclo seja
completo. Desse modo, a unidade de tempo do periodo é o segundo e ele
€ oinverso da frequéncia.

Comprimento de onda — Como uma onda se move fisicamente no espaco
de forma simultanea com a sua evolucao no tempo, pode ser interessante
determinar o quanto uma onda se move no tempo em um ciclo.
Obviamente esse valor depende da velocidade com que a onda se move.
Se soubermos a frequéncia de uma onda podemos dividir a velocidade de
propagacao da luz (c = 3 x 10® m/s) pela frequéncia para obtermos o valor
do comprimento de onda que sera representado pela letra \.. Desse modo
podemos dizer que

Amplitude - A amplitude indica qual o maximo valor positivo e qual o
maximo valor negativo que uma onda atinge, a partir de um referencial
neutro. Em corrente alternada a amplitude de uma onda senoidal é o valor
da funcao seno em seu maximo valor. Entretanto, para sistemas elétricos,
nao esse valor, denominado valor de pico, que nos interessa. O valor de
referencia em uma tensao alternada é sempre o valor eficaz. O valor
eficaz é a parcela da corrente ou tensao que realmente realiza trabalho
elétrico, ou seja, € o valor que realiza o mesmo trabalho, que uma fonte de
corrente continua realizaria. Esse valor eficaz é dado pela equacao:

. Vpico

Ver =1

6.1.2 Por qué utilizar corrente alternada?

= 0,707V,pico

Como sabemos muitos equipamentos de hoje, por serem eletrénicos e,
principalmente, digitais, funcionam com corrente continua e,
consequentemente, podem funcionar com corrente continua ou corrente
alternada (com uso de retificadores). Desse modo podemos perguntar, e
por qué utilizar a corrente alternada?

Existe um motivo simples para isso, o custo desse tipo de energia é mais
baixo.

Ja sabemos que quando uma corrente percorre um condutor, devido a
resisténcia que esse condutor possui a passagem dessa corrente,
provoca uma perda de energia sob a forma de calor. Sabemos também



que a poténcia é o produto da corrente, vezes a tensao sobre o circuito.
Agora imaginemos uma cidade como sendo uma carga ligada a um
sistema que consiste de usina - transmissao - distribuicao, conforme o

desenho.
T, O ceracio
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Figura 126 - Sistema de geracao - transmissao - distribuicao de energia

A carga representada pela cidade, com todas as suas atividades
produtivas e consumidores residenciais, exige alta poténcia para seu
funcionamento.

Agora imagine que todo esse sistema seja alimentado com, por exemplo,
220 volts, em corrente continua. Para atingirmos a poténcia necessaria,
a corrente transmitida pela linha seria muito alta o que provocaria uma
alta perde de energia sob a forma de calor. Poderiamos entao reduzir a
corrente transmitida aumentando a tensao na linha (como de fato é feito
na corrente alternada).

Entretanto, é extremamente complexo e caro fazer essa operagao em
corrente continua. JA no caso da corrente alternada, um simples
transformador de forca faz essa conversao.

Atualmente, a energia elétrica gerada nas usinas no mundo inteiro, gira
em torno de algumas centenas ou milhares de volts, por unidade
geradora, dependendo do tamanho do gerador.

O que se faz nas usinas é transformar esses milhares de volts em dezenas
ou centenas de milhares de volts, reduzindo a corrente para que a
poténcia seja mantida. Com essa reducao da corrente, reduzimos as
perdas na transmissao. Isso significa que, boa parte dos recursos gastos
na geracao de energia, nao sao desperdicados sob a forma de calor na
perda dos condutores.

Esse é o principal motivo para continuarmos utilizando a corrente
alternada como forma de alimentacao da maioria dos circuitos.



Capitulo VI
INDUTORES E INDUGAO ELETROMAGNETICA

“Nao se pode ensinar nada a um homem; s6 é
possivel ajuda-lo a encontrar a coisa dentro de si”
Galileu Galilei

7.1 INDUTORES

7.1.1 —Introducao

Indutores, basicamente sao fios enrolados em torno de um nucleo, que
podera ser magnético, tal como o ferro ou ferrite, ou nao magnético como
o ar. Eles sao elementos capazes de armazenar energia na forma de
campo magnético.

Devido a forma da sua construgcao faz com que o campo magnético criado
pela circulacao de corrente, seja concentrado. Como resultado, a
corrente que percorre o indutor se torna dependente do fluxo magnético
gerado pela proépria corrente. Podemos determinar o valor da indutancia
através da razao entre o fluxo magnético e a corrente, ou seja:

oM
"=

onde: ¢ € o fluxo em funcao do tempo (W - weber)
i € a corrente (A- amperes)
L é aindutancia (H - henry)

Assim como nos capacitores, um indutor € um elemento de circuito em
que podemos aplicar, entre os seus terminais, uma diferenca de
poténcial. Analogamente ao que tratamos nos capacitores, o fluxo
magnético total em um indutor que é formado por um nimero N de
espiras, & proporcional a corrente elétrica que circula nessas espiras, ou
seja:

O ai

A constante que transforma essa proporcionalidade em uma igualdade é
a indutancia. E por esse motivo que temos:



Utilizando a Lei de Faraday, teremos que a difereng¢a de poténcial no
indutor sera dado por:

ot
VL - B
dt
ou seja:
Voo Ldi
Lo Tt

A forma como enrolamos a bobina, o material que utilizamos no nucleo e
o0 numero de espiras no enrolamento, determinam a indutancia de um
indutor.

Ja podemos concluir que:

e O aumento da indutancia L é diretamente proporcional ao aumento
do numero de espiras. A indutancia aumenta com o quadrado do
numero de espiras.

e A permeabilidade magnética relativa K, do material age de forma
diretamente proporcional a indutancia.

¢ Na medida em que a area A abrangida por cada espira aumenta,
veremos que a indutancia aumenta com o quadrado do diametro.

e A indutancia diminui conforme se aumenta o comprimento da
bobina.

N2. A .
L= p—— (1,26 X 107°) (H)

Toda a indutancia, quando percorrida por uma corrente variavel,
apresenta uma oposicao a essa variagcao da corrente. Essa oposicao
recebe o nome de Reatancia Indutiva e sua unidade € o ohm (Q).

A formula da reatancia indutiva é:

Xl = 27TfL

Os indutores podem ser associados de varias formas, assim como os
capacitores e os resistores. Entretanto essas associagoées apresentam
algumas peculiaridades.

No caso da associagcao em série existem duas possibilidades:



No primeiro caso, os indutores podem estar afastados um do outro de tal
forma que nao ocorra interacao eletromagnética entre eles. Nesse caso,
o valor da Indutancia Resultante é dada por:

Lt=L1+L2+“'+Ln

No segundo caso, os indutores sao colocados em uma distancia tal que
ocorre interacao eletromagnética entre eles. Para casos como esse
devemos considerar o efeito da indutancia mutua. Sendo assim:

Lt=L1+L2+"‘+LninLM

No caso das associagdées em paralelo, a questao relativa , ou seja, nao
existem duas condicoes para tal associagao:
Para uma associacgao de varios indutores em paralelo, teremos:

1 1t 1
L Ly L, Ly

Para o caso de apenas dois indutores, teremos:

L,.L,
Ly =—2
L +L,

7.1.2 Indutancia Mutua

Vamos considerar dois indutores concéntricos de raio Rs e R; e por onde
circulam uma corrente is e i.. Cada indutor tem um numero de espiras N
e N, e ambas com comprimento ¢.

O campo que sera criado no primeiro indutor sera dado por:

N |
B, ZMOTll
onde0<r<R;

Desse modo, o fluxo ®; induzido pelo enrolamento 1 nas N, espiras desse
segundo enrolamento sera dado por:



— — N;
cI32(1) = N, j B,.dA; = NzB1(7TR%) = N, (ﬂo_h) (ﬂR%)

[
TR?
= UgN1 N, _l lq

Desse modo:
(D1(2) = L1204

TR?
Ly1 = uoN1 N, _l
Denominamos a indutancia L,s como INDUTANCIA MUTUA.
De forma similar teremos:

N, .
B, :Hole

onde 0<r<R:
Desse modo, o fluxo magnético @4, produzido por B; sobre as espiras N,
do solenoide 1 sera dada por:

TR5

D2y = N1JB—2>dA_1) = N1B,(TR3) = uoNi N, ] Iz
E teremos:

q’1(2) = Lq1,

TR5

Li, = uoN1N, I

= Ly,

7.1.3 Associacao de Indutores

7.1.4 Auto indutancia

Agora vamos imaginar que as duas bobinas acima descritas coincidam,
ou seja, tenham o mesmo raio, sendo assim teremos:



® — NanZ_
_lu'O l l

Desse modo, a autoindutancia desse conjunto de bobinas é dada por:

L =.U0N2_l

E facil perceber que a autoindutancia L é diretamente proporcional ao
quadrado do numero de espiras. Isso ocorre porque o fluxo em cada
espira é proporcional a espira N, ja que ele depende de todas as outras
espiras e o fluxo total produz mais um N.

A polaridade oposta que surge na bobina devido a autoinducao é
denominada FORCA CONTRAELETROMOTRIZ (fcem). Sendo assim,
podemos representar o circuito da seguinte forma:

II fcem

Figura 127 - Circuito RL com a representagcao da fcem

Assim que surge a fcem teremos a tensao resultante dada por :
Vies = E — fcem
e a corrente no circuito sera dada por

_E—fcem

I
R

Essa fcem s6 existe enquanto o campo magnético, gerado na indutancia,
varia. Quando o campo magnético atinge o valor maximo, a corrente
também atinge seu valor maximo e a fcem deixa de existir.
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Figura 128 - Curva caracteristica da corrente durante o periodo dg'carga do indutor.

Quando o circuito é desligado (posicao da chave em A), a concentragao
do campo ira induzir uma fcem no indutor, o que fara com que o
decréscimo da corrente.
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Figura 129 - Curva caracteristica de carga e descarga do indutor

7.1.5 Circuitos RL

Vamos analisar um circuito que contém um resistor e um indutor
associados em série, conforme mostra a figura abaixo.

E ==

Figura 130 - Circuito RL



Em primeiro lugar vamos colocar a chave S no ponto B. Nesse instante o
circuito RL passa a ser alimentado e a corrente vai aumentando da
seguinte forma:

di
E—Ri—L—=0

dt
Podemos transformar a equacao em
E R N di
—_— T — L —
L L dt

Se multiplicarmos os dois lados da equacao por e?/, teremos:
d E
— (i(t)etR/L) = Z ptR/L
ar (O =1

Integrando teremos:

E E
i(t)etR/L = JzetR/Ldt +K=—e®t+K
E
= l(t) = E + Ke_tR/L

Mas, i(0) = 0, entao:

E E
0=i(0)=z+K=K=—

E a solugcao da equacao fica:

i(6) = & (1~ e7tR/L)

Essa é a equacao do comportamento da corrente para o circuito enquanto
a corrente inicial sobe.

Vamos agora analisar a partir do instante em que mudamos a chave do
ponto B para o ponto A. Nesse instante, o circuito, que acumulou carga
no indutor, passa a descarregar.

A equacgao sera:



Ri Ldi—o
TR AT

O sinal negativo surge por que a corrente nesse momento comecga a
circular no sentido contrario ao que circulava quando o circuito estava no
processo de carga.

O valor da corrente, agora, ira diminuindo e V. (tensao no indutor) tem um
sentido contrario do fluxo magnético. E como a corrente esta caindo, V.
tem o sentido oposto ao tempo em que estava carregando. Mas di/dt < 0
garante que isso ocorra. A solucao para i(t) fica:

le

=0=i(t) = Ke tR/L
dt l i(t) e

Emi(0) = E/L, entao:

E
i(t) Re

Sendo essa a equacao do comportamento da corrente para o periodo de
descarga.

7.1.6 Energia do Campo Magnético do Indutor

Vamos analisar o comportamento da energia que é armazenada no
indutor.

Consideremos o circuito RL série anteriormente analisado. Durante o
tempo em que a corrente cresce no circuito temos:

E —Ri Ldi—o
TR aE T

Se multiplicarmos toda essa equacgao por / teremos:

di
Ei = Ri®+ Li—
dt

O primeiro termo da equacao é a poténcia fornecida pela bateria, o
segundo termo é a poténcia dissipada no resistor e o Gltimo termo é a
poténcia armazenada no indutor.



it M@t rar T al\ 7

dUy  di Ldi? d(Li2> Li?

Sendo assim, a densidade de energia magnética que um solenoide de
comprimento ¢e area A armazena é dada por:

:2
o Up - Li /2
B vol — Al
Mas, para um solenoide, temos:
NZ
L = MO TA
N
B - ,U.O_l
[
E portanto:
L7 NZA i2  puN%*i? B2
Y=o T\ T )2al T T2 T 2

Sendo essa a energia armazenada no indutor.

7.1.7 Circuito LC

Ja estudamos o comportamento de capacitores e de indutores de forma
individual ou associados com resistores. Vamos analisar agora o
comportamento desses dois componentes juntos.

Figura 131 - Circuito LC



Para um circuito LC temos:

Com o capacitor descarregado a corrente sera dada por:

. dq
[ =——
dt
Derivando essa equacgao teremos
d?i i .
— = —— = —wpl
dt? LC 0

1
onde w, = =

E a solugcao da equacao fica:
i(t) = A.cos(wyt + @)

A carga g sera dada por

A
q(t) = ——sen(wyt + @)
Wo

Se considerarmos os dois componentes como ideais, ou seja, sem perdas
resistivas, e considerando ainda que nao existem resisténcias no circuito,
a corrente e as cargas ficam oscilando, transferindo energia do capacitor
para o indutor e vice-versa.

7.1.8 Correntes de Foucault

Podemos obter correntes induzidas em fios condutores e condutores
macicos, que estejam em movimento, em um campo elétrico ou
atravessando um fluxo magnético variavel. Dentro desses materiais
condutores podemos encontrar, para uma mesma corrente, varios
percursos fechados para a circulagao. Em cada percurso fechado o fluxo
magnético ira variar com o tempo. Desse modo as tensodes fazem circular
correntes induzidas no interior desses materiais condutores.
Denominamos essas correntes de CORRENTES DE FOUCAULT.



Correntes Parasitas
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Figura 132 - Correntes parasitas induzidas no material condutor
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Figura 134 - Corrente parasita em material Figura 133 - Corrente parasita em
macico material laminado

Podemos notar nas figuras acima que nos materiais macicos a corrente
parasita resultante circula em torno do material como um todo. Essa
corrente resultante s6 ocorre na periferia do material por que, nos pontos
internos as pequenas correntes resultantes se anulam. Essas correntes
podem atingir valores elevados e esse fenbmeno provoca um
aquecimento devido ao efeito Joule o que exige mais energia adicional da
fonte de alimentacao. Esse aquecimento indesejado é chamado de perdas
de Foucault.

Apesar desse efeito ser indesejado nos transformadores, ele € muito
interessante nos fornos de inducao.

Nos transformadores, uma das formas de reduzir esse efeito é a utilizagao

de nucleos laminados isolados o que reduz a circulagcao de correntes
parasitas.

7.1.9 Acoplamento Magnético

Vamos imaginar dois indutores que sao colocados muito préximos um do
outro de tal forma que o fluxo magnético de ambos os indutores se
entrelace. A esse fendmeno damos o nome de acoplamento magnético.



Quando os dois indutores se encontram nessa situagcao, ocorre uma
transferéncia de energia de um indutor para outro através do campo
magnético. Com isso teremos uma variagao na corrente e essa variagao
produz uma variacao do fluxo induzindo uma tensao no outro indutor.

b1 = b11 + P12
Gy = Pz + b2

Figura 135 - Acoplamento Magnético

7.1.10 Coeficiente de Acoplamento

Continuemos analisando as bobinas da figura 9. Vamos considera-las
acopladas magneticamente através de um nucleo. Como ja vimos o uso
de um nulcleo metalico facilita a concentracao do fluxo magnético
facilitando o acoplamento.

Vamos imaginar entao que a bobina da esquerda esteja alimentada por
uma fonte de alimentagcao que varia no tempo V.(t) e que provoca a
circulagcao de uma corrente variavel no tempo l4(t) e um fluxo variavel ¢+4(t)
no nucleo. A bobina 1 possui N4 espiras e uma indutancia L. Como os
terminais da bobina 2, que possui N: espiras e indutancia L. encontram-
se abertos. Desse modo, a corrente e o fluxo magnético gerados, sao
nulos.

Com essas condigcoes, apenas uma parte do fluxo magnético que é gerado
na bobina 1 ira atravessar as espiras da bobina 2 criando o fluxo mutuo
d12(t).

Nesse caso, definimos COEFICIENTE DE ACOPLAMENTO k, como sendo
um numero adicional dado pela relagao entre o fluxo mutuo e o fluxo total
e expressa o percentual do fluxo magnético mutuo existente entre os
circuitos magneticamente acoplados. Desse modo:



ooz _ P

b $2



Capitulo VIl
CIRCUITOS OPERANDO EM

CORRENTE ALTERNADA

“Lembre-se que as pessoas podem tirar tudo de

vocé, menos seu conhecimento”

Albert Einstein

8.1 ANALISE DE CIRCUITOS MONOFASICOS

Vamos agora analisar o comportamento dos circuitos puramente
resistivos, puramente indutivos, puramente capacitivos, e a associagcao
resultante de dois ou mais desses componentes, quando submetidos a
tensdes alternadas.

8.1.1 - Circuitos Puramente Resistivos

Vamos imaginar a possibilidade de um circuito que contenha somente
resisténcias ohmicas. Nesse caso, de acordo com as Leis de Ohm, a
corrente sera sempre proporcional a tensao. No caso de aplicarmos uma
tensao alternada a esse circuito puramente resistivo, a corrente também
tera um sinal sinusoidal em fase com o sinal da tensao.

Devemos lembrar que um sinal esta em fase quando os valores da tensao
e da corrente crescem ou diminuem exatamente no mesmo instante,
conforme mostra o grafico abaixo.

Figura 136 - Relacao entre corrente e tensao em um circuito puramente resistivo

Sob o ponto de vista de calculos, apesar da tensao e da corrente serem
representadas em funcao de ot, ou seja, da frequéncia e do tempo, as
equacoes sao as mesmas da lei de ohm sem nenhum tipo de modificacao.



Fasorialmente podemos representar essa condicao entre tensao e
corrente como mostra a figura abaixo.
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8.1.2 - Circuitos Puramente Indutivos

Como ja vimos anteriormente um indutor, quando percorrido por uma
corrente alternada, ou que varia no tempo, surge uma forca eletromotriz.
E como ja vimos, essa forca eletromotriz é expressa da seguinte forma:

E—Ldi
T dt

Onde L é aindutancia da bobina. Entao, como também ja vimos, a variacao
da corrente em uma bobina, provoca o surgimento de uma forga contra
eletromotriz. Se imaginarmos que a corrente instantanea é expressa pela
equacao:

i = I,.sen(wt)

Teremos, nos terminais do indutor a tensao dada pela equacgao:

e —e = Lﬂ _ d(Im.sen(a)t))
dt ot

= I,.w.L.sen(wt + 90)

= I,,.w.L.cos(wt) =

E com isso confirmamos que existe uma defasagem entre a corrente e a
tensao que, no caso de circuitos puramente indutivos, é de 90°. A
representacao fasorial dessa situagao se encontra na figura abaixo.
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Figura 137 - Representacgao fasorial da relacao entre corrente e tensdao em um circuito
puramente indutivo



Figura 138 - Representagao grafica temporal da defasagem entre tensao e corrente em um
circuito puramente indutivo

Se observarmos o grafico acime veremos que quando a corrente é nula,
a tensao é maxima (tanto positiva quanto negativamente), e quando a
corrente atinge seu valor maximo a tensao se anula.

A razao entre o valor maximo da tensao, dada por U, e o valor maximo da
corrente |, em uma bobina é igual a oL e, como ja vimos, recebe o nome
de REATANCIA INDUTIVA (X.):

X, = wL = 2nfL
Como podemos ver essa reatancia indutiva, ao contrario da resisténcia,

varia com a frequpéncia. Quanto maior for a frequéncia maior sera a
reatancia indutiva.

8.1.3 — Circuitos Puramente Capacitivos

Ja sabemos que a carga elétrica acumulada em um capacitor, em
qualquer instante de tempo, é dada por:

Q=CV

Considerando que a corrente é definida como sendo a quantidade de
carga elétrica que passa por um condutor por unidade de tempo, teremos:

_4Q

| = —=<
dt

Quando relacionamos a tensao e a corrente, em um capacitor de
capacitancia C, teremos:



I—CdV
T dt

Da mesma forma que ocorre nos indutores, em um capacitor, quando a

tensao varia, a sua corrente também varia. Novamente supondo a tensao
instantanea seja expressa por:

u = U,,.sen(wt)

A corrente que atravessa o capacitor € dada pela equacgao:

. CCSZ _c d(U,,.sen(wt))

7 = U,,.w.C.cos(wt) =
= U,,.w.C.sen(wt + 90°)

Nesse caso, verificamos que a tensao esta atrasada em relagciao a
corrente em 90°, conforme mostra a representacao fasorial abaixo.
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Figura 139 - Diagrama fasorial da relagao entre tensao e corrente em um circuito puramente
capacitivo

Figura 140 - Grafico tensao corrente em um circuito puramente capacitivo.



De forma analoga ao circuito puramente indutivo, podemos notar que no
circuito puramente capacitivo, quando a tensao atinge o valor zero, a
corrente atinge seu valor maximo (negativo ou positivo). Do mesmo modo,
quando a tensao atinge seu maximo positivo ou negativo, a corrente é
zero.

A razao entre o valor maximo da tensao (Un) e o valor maximo da corrente
() em um capacitor € 1/(oC) e recebe o nome de REATANCIA
CAPACITIVA (Xc), logo:

11
- wC  2nfC

Xc

No caso das reatancias capacitivas, o aumento da frequéncia ao qual o
circuito é submetido, provoca uma reducao nessa reatancia.

8.1.4 - Circuitos RL em Corrente Alternada.

Figura 141 - Circuito RL submetido a tensao alternada

Para analisar esse tipo de circuito, devemos admitir que o fio que constroi
o indutor, tenha resisténcia nula (seja um condutor ideal). Da mesma
forma iremos considerar que a resisténcia € uma resisténcia ideal, nao
apresentando nenhuma outra caracteristica elétrica.

Com essas consideracgoes iniciais podemos afirmar que a tensao V, esta
em fase com a corrente, angulo de 0° e que a tensao V. esta em um angulo
de 90° de defasagem.

Se aplicarmos as leis de Kirchhoff, teremos:

V = Vr + VL
Considerando agora essa equacgao e as afirmacgoées anteriores, podemos

tracar um diagrama fasorial do comportamento das tensdes e correntes
no circuito



Figura 142 - Diagrama fasorial de um circuito RL em corrente alternada

Sob o ponto de vista de analise temporal, a adicao das duas tensoes
defasadas de 90° nos apresenta o grafico abaixo.
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Figura 143 - Representagcao temporal da relacéao entre Vg, VL e V

No grafico fasorial, é possivel ver que o valor do modulo da tensao V é
obtida com a aplicacao do Teorema de Pitagoras.

V= /VLZ + VZ

VR =R.I

Entretanto:

VL - XLI

A IMPEDANCIA (2) do circuito é o resultado da associacao da resisténcia
ohmica com a reatancia indutiva e é dada por:
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Como a corrente |, tem fase nula, podemos desenhar o triangulo da
impedancia conforme a figura abaixo.
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Figura 144 - Diagrama fasorial das impedancias, reatancias e resisténcias de um circuito RL

>

Do mesmo modo que a tensao, podemos encontrar o valor da impedancia
do sistema executando o Teorema de Pitagoras para solucionar tal

problema, logo:
Z = /XLZ + R?

E facil notar que o angulo @ é igual para o triangulo das tensdes quanto
para o triangulo das resisténcias, sendo assim, podemos obter esse valor
a partir da equacao:

® = arccos 7) ou® = aretan ()
= arccos|—=] ou ® = arctan | —
YA R
8.1.5 - Circuitos RC em Corrente Alternada
Ve
R

v = C v,

<

Figura 145 - Circuito RC em corrente alternada



Vamos analisar agora o comportamento de um circuito RC submetido a
uma tensao alternada.

Nessa situagcao podemos dizer que a tensao Vg sobre a resisténcia R esta
em fase com a corrente | e que a tensao V. do capacitor esta em
defasagem de 90° com a corrente.

Novamente aplicando a lei de Kirchhoff teremos:

V="Vg+V,

A representacao fasorial dessa relagcao pode ser vista na figura a seguir:

I
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Figura 146 - Diagrama Fasorial de um Circuito RC submetido a Corrente Alternada
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Figura 147 - Diagrama de tempo da relacao entre as tensdes de um circuito RC em corrente
alternada
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Novamente podemos ver que a tensao resultante pode ser obtida pelo

Teorema de Pitagoras.
V= / V2 + V2

Novamente temos que:

Novamente, se desenvolvermos o diagrama fasorial da relacao de
resisténcias, reatancias e impedancias teremos:

R

X

Figura 148 - Diagrama fasorial das resisténcias, reatancias e impedancias em um circuito RC em
corrente alternada

O moédulo da impedancia sera dado por:

Z= /X(Z:+R2

O angulo de defasagem sera dada por :



= arceos ) ou @ = aretan (3)
= arccos 7 ou = arctan R

8.1.6 — Circuitos RLC Série em Corrente Continua
V. V,
ﬁ:H R

%, L v,

-

Figura 149 - Circuito RLC série em corrente alternada

Vamos analisar agora circuitos RLC série quando submetidos a correntes
alternadas. Na verdade, esse tipo de circuito é o mais comum que existe
jaque praticamente todos os componentes eletroeletréonicos apresentam
caracteristicas de resistores, de indutores e de capacitores. O exemplo
mais simples é o de uma resisténcia de chuveiro.
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Figura 150 - exemplo de resisténcias de chuveiro

Como podemos ver nos exemplos de resisténcias de chuveiros
apresentados acima, qualquer que seja a forma ela é sempre constituida
de um fio, de alta resisténcia (resistor) enrolado sob a forma de uma
bobina (indutor) e entre cada duas espiras dessa bobina ocorre um efeito
de capacitancia (capacitor). E 6bvio que a principal funcdo desse
componente é oferecer resisténcia a passagem de corrente elétrica e,
através do efeito Joule, produzir o aquecimento da agua do banho.
Entretanto, os efeitos de impedancia capacitiva e indutiva também estao
presentes no circuito, mesmo que de forma muito pequena quando
comparados a resisténcia.



Em outros casos, tais como linhas de transmissao e distribuicao de
energia, esses parametros capacitivos e indutivos tem uma influéncia
muito maior e, portanto, sao consideraveis no sistema.

Novamente utilizando a lei das malhas podemos dizer que:

V == VC + VR + VL
Nesse caso da associagcao em série, surgem trés possibilidades:

12 O circuito é predominantemente indutivo, ou seja:
V, > Ve, (X, > Xc)

Nesse caso, o diagrama fasorial resultante sera:

Figura 151 - Diagrama fasorial das tensdes em um circuito RLC série com VL > V¢ (Indutivo)

22 O circuito é predominantemente capacitivo, isto é:

V., <Ve, (X, < Xc)

Ve
> >
) 1
V4V, D |
V
Ve
V.

Figura 152 - Diagrama fasorial das tensées em um circuito RLC série com VL < VC (capacitivo)



32 Circuito com Ressonancia, ou seja,
V, = Ve, (X, = X¢)

Nesse caso, o diagrama fasorial sera:

Vo=V
VoA g

VCY

Como podemos ver, no caso de ressonancia, as tensodes no capacitor e no
indutor sao de médulo igual, sinal contrario e, portanto, se anulam. Esse
tipo de condicao normalmente deve ser evitados, pois podem produzir
valores de sobretensdao elevados que sao perigosos, para o0s
equipamentos e para o pessoal que os opera.

Entretanto, existem alguns casos em que a ressonancia tem utilidade.
Cada circuito RLC possui uma frequéncia de ressonancia, nesses casos,
XL = Xc e essa frequéncia pode ser determinada por:

X, =X, ©2nf,L =——
L ¢ fr 2nf,.C

1
2nVLC

8.1.7 — Circuitos RLC Paralelo em Corrente Alternada

c| | r| &
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-

Figura 153 - Circuito RLC paralelo



Como ja vimos anteriormente, em todos os circuitos elétricos existem
caracteristicas resistivas, indutivas e capacitivas. Isso ocorre mesmo
que, em alguns casos, algumas dessas caracteristicas possam ter valores
tao pequenos que sejam desconsiderados. Para analise, vamos
considerar que todos os componentes sejam ideais, ou seja, o resistor s6
tem resisténcia, o capacitor s6 tem capacitancia e o indutor s6 tem
indutancia.

Utilizando a Lei dos Nos, teremos:

I=IR+IL+IC

Como estamos tratando das correntes, nesse caso iremos tracar o
diagrama fasorial das correntes.

I
Figura 154 - Diagrama fasorial das correntes do circuito RLC paralelo

Para encontrarmos o valor de | basta aplicarmos novamente o Teorema
de Pitagoras e assim teremos:

I = \/1,% + (e — I)?

O angulo de defasagem entre as correntes é dado por:

Ir
b = arccosT

Do mesmo modo que a associacao em série, os circuitos RLC em paralelo
podem assumir uma de trés condicoes diferentes:

I, > 1., (X, > X.) - Circuito Indutivo
I, < I, (X, < X.) - Circuito Capacitivo
I, = 1., (X, = X;) — Circuito em Ressonancia



Da mesma forma como acontece com as tensdées em um circuito
ressonante em série, no caso do circuito em paralelo, as correntes I_e Ic
se anulam. Nos circuitos em série, a ressonancia pode causar
sobretensao, no caso dos circuitos em paralelo a ressonancia pode
causar sobrecorrente.

Como XL = Xc, a frequéncia de ressonancia sera dada da mesma forma que
no circuito em série, desse modo:

1

fr:Zm/R

8.1.8 — Observacoes sobre Analise de Circuitos em Corrente
Alternada

As leis que governam a analise de circuitos em corrente alternada sao as
mesmas que foram analisadas em corrente continua. Desse modo, as leis
de Kirchhoff, analisadas para corrente continua, também valem para a
corrente alternada.

Entretanto, para corrente alternada, tanto as tensdes quanto as correntes
variam no tempo o que torna complexa a analise, tanto se formos
trabalhar no dominio tempo ou com a representacao grafica vetorial. Uma
forma de facilitar essa analise é utilizar a Transformada de Steinmetz, que
nos permite atingir esse objetivo, principalmente em circuitos RLC com
alto grau de complexidade.

De forma similar as outras formas de transformada, Fourier, Laplace, Z e
outras), as grandezas sao transformadas para o dominio de Steinmetz,
sao complexas e permitem as operacdes simplificadas de adicao,
subtracao, multiplicacao e divisao na resolucao de circuitos.

No Apéndice | vocé podera ter uma explicacao mais aprofundada o
conceito abrangido pela Transformada de Kirchhoff.

8.2 — Poténcias Instantanea, Ativa, Reativa e Aparente
8.2.1 — Poténcia Instantanea

Vamos analisar um circuito que é alimentado por uma tensao:
v =V,.sen(wt)
E, consequentemente é percorrido pela corrente

[ = I,,.sen(wt + ®)



Entao dizemos que a poténcia instantanea é a poténcia dissipada em cada
instante de tempo e é resultado do produto da tensao V pela corrente |
naquele instante de tempo.

Figura 155 - Grafico da Tensao, Corrente e Poténcia Instantanea

Como podemos notar, a poténcia sera sempre positiva o que significa que
o circuito esta sempre recebendo energia e que esta sendo consumida
pela resisténcia do circuito.

8.2.2 — Poténcia Ativa

Como podemos ver no grafico anterior, existem instante de tempo em que
a poténcia instantanea é nula e outras em que a poténcia é maxima. Mas
em termos de funcionamento de circuitos, o que nos interessa é o
chamado, VALOR MEDIO dessa poténcia.

Por definicao, o valor médio de qualquer funcao variavel no tempo,
representa a média de todos os valores instantaneos. Entretanto, se
calcularmos o valor médio para um ciclo completo, teremos como
resultado, um valor nulo, pois o valor, em médulo, obtido para o semiciclo
positivo sera igual ao valor em médulo do semiciclo negativo, entretanto
terao sinais trocados e se anulam. O que fazemos é sempre calcular o
valor médio para um dos semiciclos.

A poténcia média é calculada por:

P=V.I

A POTENCIA ATIVA é medida diretamente em wattimetros e é calculada
por:



P =R.I? =V.Icos(D)

8.2.3 — Poténcia Reativa

0

Figura 156 - Grafico da Poténcia Reativa

E facil observar, ao olhar o grafico, que a poténcia alterna entre positiva
e negativa, com o dobro da frequéncia da tensao e da corrente. Se a
poténcia instantanea sobre a carga é positiva, essa carga esta
consumindo energia da fonte de alimentacao. Nos periodos em que a
poténcia instantanea é negativa sobre a carga, essa passa a fornecer a
energia para a fonte de alimentacgao.

No caso de a carga ser indutiva, essa recebera e fornecera energia, de
forma alternada, sendo o valor médio nulo, ou seja, a energia recebida é
igual a energia que é devolvida.

Se tentarmos medir essa poténcia com um wattimetro ele indicara um
valor nulo, ou seja, P=0W.

Apesar da poténcia nao estar sendo consumida ela circula, sob a forma
de corrente elétrica. Essa poténcia que corresponde a esta energia
oscilante recebe o nome de Poténcia Reativa, e é representada por Q.
No caso de um circuito puramente indutivo a poténcia reativa é calculada
por:

_ 2
Q=2X,.1
Mas circuitos puramente indutivos sao teéricos, na pratica, os circuitos

apresentam um misto de caracteristicas, sendo assim, o angulo de
defasagem é diferente de 90°, sendo assim:



Q =V.Isen(d)
Onde V e | sao a tensao e a corrente nesse circuito e ® é o angulo de

defasagem entre a tensao e a corrente. Essa poténcia € medida por um
VARIMETRO e o valor € dado e Volt-Ampére Reativo (Var).

8.2.4 — Poténcia Aparente

A poténcia aparente &€ a poténcia aparentemente consumida em um
circuito CA. Essa poténcia é representada por S é se mede em Volt-
Ampére (VA) e pode ser determinado pela seguinte expressao:

S=V.1

A representacao fasorial esta apresentado abaixo.

S

o
P

Figura 157 - Diagrama Fasorial de Poténcias

>

Como se trata de um triangulo retangulo, podemos encontrar a poténcia
S, através do Teorema de Pitagoras.

S =P2+Q?
8.2.5 - Fator de Poténcia

Como ja vimos, somente a poténcia ativa € consumida. Mas ela nao existe
sozinha na corrente alternada, pois temos também a poténcia reativa e
essa poténcia representa um gasto para quem produz, transmite e
distribui essa energia. Isso ocorre, como ja vimos, pelo Efeito Joule e, por
conseguinte, depende da intensidade de corrente que percorre os
condutores.

Por esse motivo, as companhias de energia elétrica nao se interessam
que essas poténcias reativas sejam minimas, ou seja, que a poténcia
ativa, seja o mais proximo possivel da poténcia aparente.



Se dividirmos a poténcia real pela poténcia aparente, teremos:

P V.I.cos(®)
s VI

= cos(d)

Essa relagcao entre a poténcia real e a poténcia aparente é conhecida
como FATOR DE POTENCIA.

A existéncia de fatores de poténcia com valores inferiores a 1 em
instalagoes elétricas ocorrem devido a um excesso de cargas indutivas,
normalmente motores elétricos e outros tipos de cargas.

Alguns dos inconvenientes desse baixo fator de poténcia sao:

- Para o produtor de energias, o gerador é caracterizado por uma tensao
e uma corrente, ou seja, pela poténcia aparente S = V.. Como o gerador
€ uma maquina elétrica a poténcia ativa que ele vai produzir depende da
defasagem (@) apresentado pela carga. Desse modo, quanto mais baixo o
fator de poténcia, maior tera que ser a capacidade de geracao do
gerador.

Com isso, o transformador de transmissao também devera ter uma
capacidade maior, onerando o custo de construcao da usina e sua
operacao, ja que parte da energia produzida é perdida.

- Para as empresas que transmitem e distribuem a energia elétrica, temos
dois efeitos. Nas linhas de transmissao dimensionada para uma
determinada poténcia aparente, o baixo fator de poténcia da carga, faz
com que o investimento na construgao da linha de transmissao foi em vao.
Pois a linha devera transmitir uma energia aquém da sua capacidade e o
consumidor recebera uma energia de baixa qualidade.

Jano caso dadistribuicao, a corrente é mais elevada, pois atensao &€ mais
baixa, sendo assim, a corrente sera maior e, consequentemente, ha um
aumento das perdas por efeito Joule. Além disso, todos os sistemas de
protecao, devem ser superdimensionados.

- Para os consumidores, se forem consumidores industriais, o baixo fator
de poténcia exige sistemas superdimensionados de protecao,
transformacao e medicao. Para todos os tipos de consumidores, ha um
aumento do consumo de energia sem que seja uma energia aproveitavel,
aumentando as contas de luz.

Além disso, segundo a legislacao, fatores de poténcia inferiores a 0,92,
geram, além da conta de luz, uma multa ao consumidor.

8.2.6 — Correcao do Fator de Poténcia

Sempre que o fator de poténcia € muito baixo devemos promover a
correcao do fator de poténcia. Como a reducao do fator de poténcia é
originada pelo excedente de cargas indutivas no sistema, a forma de



corrigir esse fator de poténcia é agregar capacitores em paralelo com o
sistema para regularizar o fator de poténcia do mesmo.

Vk
R
C
V — [lc L V.
I

Figura 158 - Circuito RL com capacitor de correcao de fator de poténcia
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Figura 159 - Diagrama Fasorial das Correntes

Na realidade, a associacao do capacitor em paralelo, nao anula a
componente indutiva do circuito é isso nao ocorre porque a poténcia
aparente sempre varia e, em segundo lugar, porque a sobre
compensacao de uma instalagao, pode provocar o aparecimento de
sobretensoées na linha.

Para corrigir o Fator de Poténcia devemos seguir uma sequencia simples
de passos, como veremos a seguir:

1° - Determine a impedancia:

2=+ @

2° - Encontre o angulo de defasagem:
Tan® P
an® = —
Q

3° - Encontre a corrente total:



4° — Calcule a poténcia aparente:

VZ
S=—
Z
5° - Calcule a poténcia real:
P=1I%R

6° — Calcule o fator de poténcia:
f P
P=5

Se o fator de poténcia calculado for menor que 0,92, ou seja:
fr < 0,92
Significa que a poténcia reativa € maior que zero, ou seja, € indutiva.
Q>0

Desse modo devemos encontrar o valor do capacitor, ou banco de
capacitores que faca a correcao desse fator de poténcia. Isso significa
que esse capacitor ou banco de capacitores deve produzir uma poténcia
reativa menor que zero, o que fara com que essa poténcia reativa inferior
a zero contrabalance a poténcia reativa maior que zero, aproximando o
fator de poténcia de 1.

O fator de poténcia encontrado é resultado, da impedancia do circuito,
cujo moédulo é dado por:

Z =/R? + X2

Como conhecemos a resisténcia e a impedancia do circuito devemos
lembrar que, sob a forma retangular é representado da seguinte forma:



Z=R+jX

Mas
X=X, - X,
Para que tenhamos um fator de poténcia proximo a 1 devemos prever que:
X=X,-X:=0
Logo
X, =Xc

Sendo assim devemos igualar o valor de X, da equacao de impedancia
com o valor de Xc, ou seja:

XC - X
Considerando que:
Xc = . =X

CTwC
P 1

c 2nfC
- 1

- 2nfX,

Na verdade, na pratica nao tentamos fazer Xc = X, e isso por que nesse
momento enfrentamos um segundo problema.

Como vimos na realizagao do processo calculado, tentamos fazer Xc = X.,
apesar disso ser possivel, devemos lembrar dois aspectos importantes:
1° - Os bancos de capacitores sao de alto custo. Sendo assim, quanto
maior for o valor da capacitancia de correcao, maior sera o custo do
banco de capacitores;

2° — A legislacao que estipula um valor minimo para o fator de poténcia
indutiva € a mesma que controla o efeito contrario, ou seja, um fator de
poténcia capacitivo, o que ocorre conforme as cargas indutivas vao
sendo desligadas em determinados periodos do dia. Por esse motivo os



bancos de capacitores devem ser automaticos, ou seja, devem ser
capazes de acompanhar as variagdes da carga indutiva, o que aumenta
mais ainda o custo do banco de capacitores.

Devido ao exposto acima, devemos procurar atingir um valor do fator de
poténcia levemente superior ao valor de 0,92, de acordo com a
disponibilidade econémica.

8.3 Sistemas Trifasicos

8.3.1 - Vantagens dos Sistemas Trifasicos

Quando comparamos os sistemas trifasicos com os sistemas
monofasicos, notamos algumas vantagens do primeiro sobre o segundo:

Um gerador trifasico tem uma poténcia 50% maior que um gerador
monofasico que tenha o mesmo volume e tenha custado o mesmo
preco;

O somatoério das segoes dos condutores que transportam uma
determinada poténcia em um sistema trifasico € menor que o
somatério da secao dos condutores monofasicos que transportam
a mesma poténcia, possua as mesmas perdas e tenha a mesma
tensao de alimentacao;

A capacidade de produzir campos magnéticos girantes, que
possuem os sistemas trifasicos, permite a utilizacao de motores
assincronos, aparelhos simples que sao robustos e econdémicos e
que tem o maior percentual de uso no mercado de tracao elétrica
industrial;

Partido de sistemas trifasicos & possivel obter alimentacoes
monofasicas, enquanto o contrario nao é possivel.

8.3.2 - Geracao Trifasica

Ja vimos como um gerador monofasico produz energia elétrica, vamos
ver agora como é gerada a energia trifasica.

Vi

B/
\@@66@ (QQQQQJ/

Figura 160 - Representagao esquematica de um gerador trifasico



Note que, construtivamente um gerador trifasico possui trés bobinas
dispostas ha 120 graus uma da outra. Quando o rotor gira, induz, através
do seu campo magnético, uma Forca Eletromotriz sinusoidal. Essa f.e.m
tem uma amplitude maxima e os picos de cada fase estao deslocadas 120°
uma da outra. Isso significa que cada fase comecga seu ciclo, ha 1/3 do
periodo da anterior, ou seja:

v, = V. sen(wt)
v, = V. sen(wt — 120°)
vy = V. sen(wt — 240°%) = V,,.sen(wt + 120°)

O grafico abaixo apresenta as curvas relativas as 3 fases.

Vs Vi V.

Figura 161 - Representagao temporal das 3 fases

A representacao vetorial das trés fases esta apresentada abaixo.

Vi
A

1207 120°

120°
Vs V-

Figura 162 - Diagrama Fasorial Trifasico



8.3.3 - Sistemas Trifasicos Equilibrados

Vamos imaginar um sistema trifasico (representamos 3¢) que esta
alimentando uma determinada carga caracterizada por trés receptores
independentes. Nesse caso, utilizaremos 6 fios (um par para cada
receptor). Se as cargas tiverem a mesma impedancia, entao as correntes
I+ (fase 1), |> (fase 2), |5 (fase 3), sdo de valor eficaz idénticos defasados de
120° uma da outra.

Nesse caso dizemos que o sistema esta EQUILIBRADO. Dizemos isso por
que, a soma das trés correntes € sempre nula.

B

Figura 163 - Vetores de corrente

Como podemos ver na figura acima, a corrente lrq2 € a corrente resultante
da soma dos vetores de corrente | e |.. Como é possivel ver também, essa
corrente lr12 tem o0 mesmo modulo da corrente I3, mas com sinal contrario.
Sendo assim, esses dois vetores se anulam, comprovando que a soma de
trés vetores de mesma intensidade, defasados de 120°, é igual a zero.

8.3.4 - Ligacao Estrela

I,
Figura 164 - Ligagcao em Estrela



Se pegarmos os terminais x, y e z, do gerador e unirmos em um ponto
teremos o que é conhecido como LIGACAO EM ESTRELA. O ponto comum
desses trés enrolamentos € denominado NEUTRO que, nesse caso,
substitui os trés condutores de retorno do exemplo anterior. Como ja
vimos, no caso do sistema estar balanceado, a corrente no neutro sera
nula.

Essa forma de ligacao exige 4 condutores (3 condutores de fase e 1
condutor neutro). Os condutores de fase recebem os nomes R, S e T.
Normalmente esse tipo de ligacao é utilizado, nos sistemas de
distribuicao de energia, para alimentacao na baixa tensao (220v ou 110v,
dependendo do consumidor).

Nesse caso, as cargas sao alimentadas por TENSOES DE FASE e essas
tensodes sao dadas por:

Uy = Vp.sen(wt) ou vy, = Vg[0% = Vg

=V,.sen(wt — 120°) ou

% D

§%%
Dy = Vel —1200 =V (-3 —j 2
Vzw = Vp.sen(wt + 120°) ou
1, .3
Vo = Vel120° = Vg (=5 + %)

Porém, quando as cargas nao sao balanceadas (o caso mais comum), as
tensoes entre duas fases, que sao chamadas TENSOES DE LINHA, e sio
dadas por:

1 V3 3 43
URSzvxu_vyvva_VF ___]7 =Vr _+]7

2 2
V3

1
=\/§VF<7+]§)

Portanto

Vps = \/§VF l300

1 V3 1 3
vSTzvyv_vzwva _5_17 Vel —5+j—

=Vp(=jV3) = —jV3V;

Portanto



vsr = V3Vr|—90°

1 V3 3 43
VIR = Vaw = Vxu = Ve =5+ | = Vr = Ve | =5+ )=

V3 1

= —\/§VF <—7 +]E)

Portanto

vrr = V3V [150°

Com isso, concluimos que:

VL == \/§VF

Vca Ve -\Ve

v/ Vec

Figura 165 - Diagrama Fasorial com Carga Balanceada em Sistemas Estrela.



8.3.5 - Ligacao Triangulo

|A—|L

A
_VF_VL \iAB=iF
lsc
P i

H

Ic
Figura 166 - Ligacao Triangulo ou Delta

Nesse tipo de ligacao, Vag, Vec, Vca correspondem as tensoes de fase e as
tensoes de linha. Isso significa que:

Entretanto, diferentemente da ligacao estrela, na ligacao triangulo as
correntes de fase ias,isc,ica, s20 diferentes das correntes de linha ia, is, ic
que podem ser calculadas da seguinte forma:

Iy =i4p —ica
Ig = ipc — isB
lca — lpc

~
o
Il

No caso de carga balanceada, as defasagens entre a tensao e a corrente
em cada uma das fases € igual. Isso significa que:

CDAZCDqu)Cch
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Figura 167 - Diagrama Fasorial para Carga Balanceada em um Sistema Triangulo

Da mesma forma como no sistema em estrela, no caso do sistema em
triangulo, quando as cargas nao estao balanceadas, ou seja, ®a # ®g # Dc,
as tensoes de linha e de fase podem ser escritas como:

Vag = Vp.sen(wt) ouvyg =V, |0° =V,
vge = Vp.sen(wt — 120°) ou
1 .3
vpe = Vi1-120° = v, (-5 5)
Vea = Vp.sen(wt + 120°) ou

1. .3
vea =V, 1120° =V, (=2 +,2)

A relacao entre os modulos das tensodes de linha e de fase é determinada
exatamente da mesma forma como ocorre com as tensoes no sistema
estrela, portanto:

iL - \/§ iF



8.3.6 — Poténcia em Sistemas Trifasicos

Como ja vimos, nos sistemas monofasicos, a poténcia ativa é dada por:
P =Vicos® [W]

Onde V e | sao a tensao e a corrente eficazes, respectivamente. ® é o
angulo entre elas. Pois bem, em um sistema trifasico balanceado as
poténcias em cada uma das fases é igual as demais. Desse modo, a
poténcia ativa total sera a soma das poténcias de cada uma das fases, ou
seja:

P =3.Vp.Ig.cos®

Sendo V¢ e I séo os valores eficazes.
Na ligacao em estrela, sabemos que a corrente de fase é igual a corrente
de linha (I = I.). Também sabemos que:

VL
VF = ﬁ

Se substituirmos essas duas igualdades na equacao da poténcia,
teremos:

VL

P =3.
V3

I, cos®

Operando a divisao teremos:
P = \/§VL IL' cosd
Para o caso do sistema em triangulo, a poténcia sera dada por:

I

V3

Novamente aplicando a divisao teremos:

P=3.—V,.cos®

P = \/§IL.VL.COSCD



Observando as duas equacgodes (estrela e triangulo), vemos que a equacao
€ a mesma para ambos os casos. Entretanto essas poténcias sao
diferentes.

Se utilizarmos o mesmo raciocinio podemos determinar as poténcias
reativa total e aparente total.

No caso da poténcia reativa total em sistemas trifasicos, ela pode ser
calculada por:

PR = 3.VF.IF.SenCD [VAR]

Ou ainda

P, =/3.V,.1,.sen® [VAR]
Para poténcia aparente total, teremos:

PA - 3'VF'IF [VA]

Ou ainda

P, =v3.V,.I, [VA]



Capitulo IX
ELETRODINAMICA

“Todas as ciéncias matematicas sao baseadas nas
relacdes entre as leis fisicas e as leis dos numeros, de
modo que o objetivo da ciéncia exata é reduzir os
problemas da natureza a determinagcdo das
quantidades por operagdes com nimeros”

James Clerk Maxwell

9.1 CORRENTE DE DESLOCAMENTO

Ja vimos que a Lei Ampére relaciona a densidade da corrente em um
ponto qualquer com o rotacional do campo magnético que ela produz.
Sendo assim:

1
Ho

J=—VxB

Também ja vimos que a divergéncia do rotacional de um campo vetorial
qualquer é sempre zero. Sendo assim, a equacao anterior, obviamente
implicara que a densidade de corrente, em qualquer ponto, sera nula.
Entretanto, como também ja vimos, isso esta em contradicao com o
principio fundamental que define a conservacao da carga elétrica.

Como voceé deve lembrar, que a equagao que expressa a conservacao da
carga elétrica, na sua forma diferencial é:

QU

V.i+—’Z=o

Desse modo, a Lei de Ampére s6 é valida para o caso de correntes
estacionarias. Nesses casos, como sabemos, nao ocorrem variagcoes na
carga volumétrica em qualquer ponto. E, portanto, necessario encontrar

uma formula que seja mais geral para o rotacional do campo B que seja
capaz de reproduzir a Lei de Ampére para os casos particulares das
ondas estacionarias. Para fazer isso, vamos comecar com a equacao da
continuidade.

Vamos entao utilizar a carga volumétrica na equacao da conservagao da
carga elétrica e utilizaremos a Lei de Gauss. Com isso obtemos:



Devemos lembrar que o termo entre parénteses é o campo vetorial F' cujo
divergente é igual a zero. Sendo assim:

dE

[+eg— =F
J Eodt

Para o caso particular onde a derivada do campo elétrico é zero, teremos

que a densidade de corrente seraigual ao campo F. Nesse caso, para que
a Lei de Ampére seja valida, &€ necessario que:

1
Ho

F=—VxB

Nesse caso, a divergéncia € nula como se fazia necessario. Isso ocorre
por que a divergéncia do rotacional de qualquer campo, como ja vimos, é
sempre nula. As duas ultimas equagdes nos permitem chegar a Lei de
Ampére-Maxwell.

-
— e - dE
VX B = +.U0€0d_

t
Quando o sistema esta em presenca de correntes nao estacionarias, a
variagcao de carga elétrica em alguns pontos traz como consequéncia o
aparecimento de campos elétricos variaveis que introduzem na equacao
um termo adicional.

-

Ip :EOE

Esse termo é conhecido como DENSIDADE DE CORRENTE DE
DESLOCAMENTO.
Para obtermos a forma integral da equacao de Ampére-Maxwell

multiplicamos dA4, e integramos sobre uma superficie S.



—> =g - - - d - -
ﬂ(VxB).dA =uoﬂj.d,4+uoeoaﬂls.d,4
S S

S

Usando o teorema de Stokes podemos escrever a integral do lado
esquerdo como uma integral de linha. A integral do vetor 7, que se
encontra na equacao do lado direito representa a corrente que percorre
a curva C e a integral de E representa o fluxo elétrico ®. Sendo assim, o
resultado que obteremos é semelhante a Lei de Ampére, entretanto, tem
uma corrente modificada:

C

Onde: C é a curva fronteira da integral;
Ic € a corrente através da superficie S
Io € a corrente de deslocamento.

Essa corrente de deslocamento é definhada por:

dod

ID =EOE

9.2 EQUACOES DE MAXWELL

Nos primeiros capitulos desse livro ja vimos as equacgdes que sao a base
da eletrostatica e do magnetismo. Além disso sabemos que no caso de
campos nao estaticos, devemos modificar as equagdes basicas, pois
nesse caso, os campos elétrico e magnético ja nao sao independentes.

A equacao de Ampére-Maxwell, possui uma constante (y,¢,) que pode ser
determinada a partir da constante de Coulomb e da constante magnética.

Constante magnética

k. 1 s 1

Hofo =" = 91016 mz ¢

\ Constante de Coulomb

c é a velocidade da luz no vacuo (c = 3 x 10® m/s).




Como a luz € uma onda eletromagnética, nao é estranho a relagcao entre
as constantes eletromagnéticas e a velocidade da luz.

Os campos, elétrico (F?) e magnético (E) sao definidos por 4 equacoes
basicas que definem as divergentes e os rotacionais. Essas equacoes
sao:

Lei de Gauss V.E = L
€o
Lei da Faraday VXE =— —
Equacdo de Ampére Maxwell V.B =10
== > 1 dE
Lei de Ampére Maxwell VXB =y +=—

Essas quatro equacoes, derivadas das respectivas leis, sao conhecidas

como LEIS DE MAXWELL e definem os campos EeFBem qualquer ponto,
em qualquer meio somente em funcao da carga volumétrica e da
densidade de corrente.

A densidade de corrente, por sua vez, depende da quantidade de cargas
em movimento. Isso é determinado a partir das leis da mecanica e levando
em consideracao que a forgca eletromagnética sobre uma particula com
carga g é definida como sendo a Forga de Lorentz:

ﬁ=q(§+3x§)

E facil entender que seria quase impraticavel resolver o problema se
fossemos considerar todas as cargas e correntes que existem dentro de
um condutor. Entretanto, vamos trabalhar com uma ordem de grandeza
das distancias entre atomos que é muitas vezes maior que o tamanho do
proéprio atomo. Justamente por causa disso, torna-se mais interessante,
incluir os campos das cargas e as correntes polarizadas que existem nos
atomos em dois novos campos, denominados, DeH.Em funcao desses
dois campos (que analisaremos com mais calma no Apéndice Il). Por
enquanto, vamos aceitar que as equacoes de Maxwell, em funcao desses
dois campos ficam:

v)l_)) =p0



S dB

VXE =——
dt

V.B=0
Tl =g+ D
_]0 dt

Nessas equacoes: po € uma carga volumétrica “livre” (ndo inclui as cargas
polarizadas nos atomos)

Jo € a densidade de corrente “livre” (nao incluindo as
correntes de polarizagao)

D é o chamado Deslocamento Elétrico
H é o campo magnético do meio.

E interessante constatar que as quatro ultimas equacdes apresentadas,
sao as equacgoes de Maxwell para analises macroscépicas. Quando
vamos resolver &€ necessario fazer uma relacao entre o deslocamento

elétrico (B) e 0 campo magnético do meio (ﬁ), com o campo elétrico (E) e
0 campo magnético (§).

Para analisarmos as equagoes o mais simples € a analise feita em um meio
que seja isotropico e linear. Nesse caso, os campos D e H séo paralelos e
diretamente proporcionais a EeB.

D = ¢k B = uH

Nesse caso, ¢ € a permissividade elétrica do meio;
u é a permeabilidade magnética.

As equacoes de Maxwell também podem ser representadas sob a forma
de integral. Desse modo, se integrarmos sobre uma superficie fechada S
e aplicarmos o segundo teorema da divergéncia a integral ao longo de
uma curva fechada C e aplicarmos o teorema de Stokes, teremos:

#5dﬁ=%
S



Essas equagoes sao validas em qualquer superficie fechada (S), curva
fechada (C) e superficie S delimitada por C (Sc). Essas sdo as equacgoes
basicas da eletrodinamica.

9.3 TRANSFORMACAO DE GALILEU DO CAMPO
ELETROMAGNETICO

1 dE
C2 dt
magnético sem que existam correntes, por que a variacao do campo
elétrico em funcao do tempo é também uma fonte do campo magnético.
Essa variacao temporal do campo elétrico pode ocorrer por causa das
variagoes nas suas fontes ou simplesmente devido a um deslocamento
global das fontes.

Se analisarmos o deslocamento das fontes, no referencial em movimento
com as fontes nao existe variagcao do campo elétrico em funcao do tempo
e, por conseguinte, o campo magnético nao pode ser igual ao do
referencial em movimento.

Vamos considerar uma distribuicao de carga p(t) que é fixa em um
referencial R’. Essa carga se desloca com uma velocidade 7. No
referencial R’, nao existe corrente, sendo assim, de acordo com a
1 dE
cz dt’
a derivada do campo elétrico em funcao do tempo, dividida pela
velocidade da luz ao quadrado. Sendo assim, a derivada do campo

A derivada da equacao VxB= HoT + indica que pode existir um campo

equacgao VxB= uOT + o rotacional do campo magnético (E) seraigual

elétrico E', qguando em movimento, é calculada aplicando a derivada
convectiva ao campo E.



. — 1dE' 1dE ¥ - -
VXB' ==+ CZ(E)— vX(vxm

Se utilizarmos a lei de Gauss, teremos que o termo #(V.E) sera igual a

pv/eo Nesse caso, o produto pv é a densidade de corrente e Jea

constante ¢, e c?=1/, .

— —; 1 dE, - 1
V X (ﬁdt+mJ——Vx(vxE)

Se utilizarmos a lei de Ampére-Maxwell, podemos substituir os dois
primeiros termos que estao no lado direito da equacao pelo rotacional do

campo magnético B. Sendo assim obtemos:

Entao:

1 N,
—VvXE+C

B'=B-—v

¢ éum campo com rotacional igual a zero.

Essa relagao ao qual chegamos é valida para qualquer velocidade v, mas
devemos atentar que para o caso especifico em que v = 0, ambos os
campos B e B deverao ser iguais. Isso significa que ¢ =0.

Dessa forma iremos obter o campo magnético B’ em funcéo dos campos
elétrico £ e magnético B. Esses dois campos, associados a equacao

E=E+DxB

Constituem o que denominamos de TRANSFORMACAO DE GALILEU do
campo eletromagnético.
Sendo assim teremos:



E=E+DxB
—_> — 1 - -
B’=B——21_7>XE+C

C

Equacéao 1 - Transformacéao de Galileu do campo Eletromagnético

Note que essas duas equacdes relacionam os campos E e B’ no
referencial em movimento em qualquer ponto 7 e qualquer instante £
Vamos aqui lancar um conceito. A ideia de “laboratério”, que ira se
distinguir do conceito “referencial em movimento”. As equacdes de
Maxwell variam em relacao a transformacao entre referenciais inerciais.
Para poder entender o que dissemos acima, vamos definir o mesmo
sistema de eixos coordenados para os dois referenciais. Chamaremos o
referencial R (laboratério) e R’ (referencial em movimento). Vamos
também determinar uminstante inicial t=0. Desse modo, se selecionamos
um instante £ qualquer, diremos que a origem do referencial R’ esta nas
coordenadas tv que é relativa ao referencial R e a relacao entre a posigao
de uma particula nos dois referenciais, sera dada pela transformacao de
Galileu:

- -

r'=7r—v

A transformacao reversa dessa equagao sera 7 = ¥ + ¥t. Essa equacao
que tem a forma da transformacao de Galileu por que a velocidade de R,
relativa a R’, sera —v.

Desse modo, o tratamento dado para R e R’ € idéntico e € completamente
arbitraria a escolha do referencial que definimos como laboratério. Se
derivarmos a equacao acima, teremos a derivada da velocidade e da
aceleracao. Essas duas derivadas também nao irao permitir a distincao
entre os referenciais inerciais.

Quando fazemos a transformacao de Galileu do campo eletromagnético,
ja nao possuimos uma situacao de simetria. Sendo assim, se quisermos

obter a transformacao inversa, devemos substituir B eE nas equacgoes da
transformacao de Galileu e teremos:

Definimos § = Y/,



Também podemos eliminar (5.B) e (B.E) por que realizando uma

multiplicacao escalar das equacgoes de transformacao de Galileu por
vamos obter as seguintes equacoes:

E

RN ™
UQl “11

E
B

"%¢

Se substituirmos essas duas igualdades nas equagoes acima teremos:

-

E=y2(?—ﬁx§’>)—yzﬁ(ﬁ.ﬁ)
B = y? (ﬁ+%ﬁx?)—yzﬁ(ﬁ.§’>)

Nessas formulas y é conhecido como FATOR DE DILATACAO DE
LORENTZ e é definida por:

Nesse caso a transformada inversa ndo tem a mesma forma da
transformacao inicial. Isso pode ser comprovado se analisarmos, por
exemplo, um campo magnético que seja nulo no referencial R. Se
passarmos esse campo magnético para o referencial R’, ira surgir um

campo elétrico E' que sera igual ao campo elétrico E. Entretanto se o
movimento fosse contrario, ou seja, o campo magnético estivesse
originalmente no referencial R’ e fosse nulo, ao passa-lo para o referencial

R verificariamos o surgimento de um campo elétrico E que seria diferente
do campo E.

Na verdade, a diferenca entre os valores dos dois campos é muito
pequena. Isso ocorre por que as velocidades que normalmente
trabalhamos, o valor de 3 sera muitas vezes menor que 1 e o valor de y é
praticamente 1. Para esse caso, a transformada inversa apresenta a
mesma forma da inicial.

A situacao fica mais complexa quando nossas analises se aproximam da
velocidade da luz. Em principio seria facil descobrir qual seria o
verdadeiro referencial R, local em que as equagcdoes de Maxwell sao
exatas. Com a simples medida da velocidade da luz no vacuo e sua
respectiva comparagcao com c.



Esse meio hipotético que constitui o referencial R e por onde se propaga
o campo eletromagnético, recebeu o nome de “éter”. O final do século XIX,
principalmente suas ultimas quatro décadas, testemunharam varios
experimentos de 6tica para a descoberta da velocidade da Terra no éter.
Esses experimentos chegaram a sugerir que o éter era material e poderia
ser arrastado parcialmente por objetos, incluindo a Terra.

Os responsaveis pela derrocada total do conceito de éter foram
Michelson e Morley com o seu interferometro que € um instrumento capaz
variagcoes minimas na velocidade de propagacao da luz em diferentes
direcoes.

O funcionamento desse equipamento é, de certa forma, muito simples.
Um feixe de luz é separado em duas partes em um espelho
semitransparente (EST). Os dois feixes resultantes dessa separacao sao
refletidos em dois outros espelhos E, e E; e atingem um anteparo A. Nesse
ponto sao observadas as franjas de interferéncia entre esses feixes. As
faixas mais claras aparecerao nos pontos onde a diferenca entre os
percursos dos dois feixes for multiplo inteiro do comprimento de onda e
produzem uma interferéncia construtiva.

Se deslocarmos o espelho E; ou o espelho E; iremos provocar uma
modificacao no tempo de demora de um dos feixes que chegaem A e, com
isso, produziremos um deslocamento nas franjas de interferéncia. Se a
velocidade da luz variasse com a dire¢cao, o movimento dos espelhos do
interferometro seria possivel alterar os tempos de chegada dos dois
feixes e, com isso, deslocar as franjas.

Movable
Mirror

|—|E1

Beam  compensator
Splitter

Detector
Sodium

Fringes

Fonte de luz EsT

s A

Equacgao 2 - Interferometro de Michelson e Morley



Michelson e Morley em seu experimento mostraram que a velocidade da
luz solar nao varia com a diregao, uma vez que durante a experiéncia eles
nao observaram nenhuma variacao na posicao das franjas. Mas foi
Hendrik Lorentz que conseguiu explicar de forma mais substancial o
resultado do experimento. Ele explicou a invariancia da velocidade da luz.
Para isso, ele admitiu que os corpos em movimento no éter sofrem uma
contracao igual a 1/y na diregcao do movimento. Ele explicou que essa
contracao se da devido a uma modificagcao da transformacao de Galileu
que, nesse caso, passaria a ser substituida pela transformacao de
Lorentz. Desse jeito as transformadas dos campos eletromagnéticos sao
idénticas em qualquer referencial.

A consolidacao dessas teorias veio com Albert Einstein, em 1905, quando
publicou a sua Teoria da Relatividade. Com essa teoria ela conseguiu
compatibilizar as equacoes de Maxwell com a inexisténcia de referenciais
absolutos.

Devemos lembrar que um dos postulados fundamentais da teoria da
relatividade é a invariancia da velocidade da luz no vacuo. Os resultados
desse estudo sao extremamente surpreendentes e, ao mesmo tempo, se
mostram irreconciliaveis com a mecanica classica, e o mais interessante
€ que no caso do eletromagnetismo, as equacdées de Maxwell e a
invariancia da carga permanecem validas, mesmo com as questodes do
relativismo.

9.4 ENERGIA DO CAMPO ELETROMAGNETICO

No estudo do campo eletrostatico, concluimos que esse campo tem
associado a si uma energia poténcial. Pois bem, da mesma forma, no caso
de um campo eletromagnético dinamico existe uma energia associada. Se
quisermos determinar a forgca que age sobre um pequeno volume dV, cuja
carga volumétrica é determinada por p(#t), e se desloca com uma

-

velocidade v dentro de campos eletromagnéticos E(?,t) e §(F,t),
utilizaremos a equacao:

dF = p(E + ¥ x B)dV

Essa forga ira realizar um trabalho durante o intervalo de tempo, descrito
por dt que seraigual a dF.d7. A poténcia fornecida sera dada por:

dP = dF. ¥

A partir dessa equacao teremos:



dP = dF.v = p(E.v)av = (E.])dV

Como pode ser visto, o campo magnético nao entra explicitamente na
equacao. Isso ocorre por que a forca magnética, na realidade, nao realiza
trabalho. Entretanto, a poténcia depende, de forma implicita, do campo
magnético, isso por que, as variagoes desse campo, influem diretamente
no campo elétrico.

A poténcia fornecida em uma regiao R sera o resultado de uma integral de
volume da equacao anterior. Se utilizarmos a lei de Ampére-Maxwell,
podemos descrever a densidade de corrente em funcao dos campos
magnético e elétrico, assim:

=Ljf§<Vxﬁ—aa—€>dV

Podemos agora reescrever a equacao acima utilizando a identidade
vetorial V.(E x H) = H.(Vx E) —E.(Vx H) e alei de Faraday e obteremos:

ﬂ” aB Eaa—lt)—V(ExH)

A equacao possui trés termos. O ultimo representa um fluxo que passa
através da fronteira da regiao R. Esse termo pode ser escrito como a
integral da superficie se utilizamos o teorema da divergéncia.

Se utilizarmos os conceitos D = ¢E e B = uﬁ, no caso de um meio linear,
veremos que o deslocamento elétrico e o campo magnético, estao
relacionados com o campo elétrico e a indugcao magnética. O produto
escalar de qualquer vetor com a sua derivada é igual a metade da
derivada do quadrado do seu médulo.

Desse modo, a equacgao anterior pode ser escrita como:

- [} 22 av 2 ff (& x 5).ad
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Na equacao anterior v é energia eletromagnética volumétrica e pode ser
definida pela equacao:

1 €
u=-—B?+-E*
2U 2

O outro elemento introduzido na equacao S, & conhecido como vetor de
Poynting e sera definido pela equacgao:

S=-FxB

Tl

A poténcia instantanea P representa a energia mecanica que o sistema
fornece por unidade de tempo. Essa energia sera igual a diminuicao de
energia eletromagnética na regiao R.

Desse modo na equacao da poténcia, aintegral de volume de vrepresenta
a energia eletromagnética total que se encontra dentro da regiao R. A

integral fechada de S & o fluxo de energia eletromagnética.

A energia mecanica ou energia eletromagnética dentro do volume V sao
diretamente afetados pela variagao do fluxo de energia eletromagnética.
Ja o vetor de Poynting representa a densidade de fluxo de energia
eletromagnética, ou seja, € a energia eletromagnética transferida por
unidade de area e por unidade de tempo. Sua direcao e sentido indicam a
direcao e sentido de transferéncia da energia.

9.5 POTENCIA VETORIAL

Como ja vimos, podemos representar o campo eletrostatico em fungao do
seu poténcial eletrostatico. Uma das condi¢cdes necessarias para a
definicdo do poténcial é o fato de que o campo eletrostatico é
conservativo.

Quando submetido a condi¢gbes nao estaticas, como o rotacional do
campo nao é nulo, o campo elétrico deixa de ser conservativo. Apesar
disso ainda é possivel definir poténciais eletromagnéticos através da
analise que faremos a seguir.

Primeiro vamos relembrar do Calculo Vetorial que, qualquer campo

vetorial F é capaz de verificar a seguinte propriedade:



Note que essa propriedade, juntamente com a terceira equacao de

Maxwell ( V.B = 0) indicam que podemos escrever a equagao do campo
magnético como:

B=VxA
Onde: 4 - campo vetorial que recebe o nome de POTENCIAL VETORIAL.
Entretanto existem algumas questdes sobre essa equacao quer devem
ser analisadas.
Se observarmos bem, o rotacional de A €, na verdade, uma combinacgao

das derivadas quem compoe 4, no entanto, existem varias funcoées cujas
derivadas sao iguais. O que torna a definicao de poténcial vetorial, uma
definicao arbitrada.

Vamos imaginar que exista um vetor A e um outro vetor A’ representem
dois campos que possuam o mesmo rotacional B, sendo assim:

—

VxA=Vx ’:Vxﬁ—ﬁxﬁzﬁx(z—ﬁ)

Nesse caso, a diferenca entre A e A’ € um campo conservativo e podemos
determinar se calcularmos o gradiente de um campo escalar ¢.

—

A =A+V¢

Anteriormente vimos que a mesma coisa ocorria no caso eletrostatico
onde podiamos somar uma constante arbitraria ao poténcial e isso nao
modificava o campo elétrico. O poténcial foi definido de forma Gnica, com
a definicao de um ponto onde deveria ser nulo.

Mas essa solugao so é valida para A’, no caso do poténcial A a definigao
do ponto onde esse poténcial é nulo, nao é o bastante, obrigatoriamente

devemos escolher um valor arbitrario para a divergéncia desse A. Isso
ocorre por que, para definir um campo vetorial, necessitamos do
rotacional e do divergente desse campo.

Se tomarmos a equacao que definiu o poténcial vetorial e substituirmos
na segunda equacao de Maxwell teremos:

(. 0A
VX|E+— | =0
ot



Rotacionais do gradiente de qualquer campo escalar sao sempre zero e
isso implica a existéncia de um campo escalar, que nos denominamos de
poténcial escalar V, de tal forma que:

Isolando o campo elétrico teremos:

E=-VV——

Dessa forma, ainda podemos definir o poténcial escalar V. Entretanto,
nesse caso, o campo elétrico irda depender tanto do poténcial escalar
quanto do poténcial vetorial.

Quando o sistema é estatico, temos uma derivada do poténcial vetorial em
funcao do tempo, cujo resultado é zero. Sendo assim, o campo elétrico
sera igual ao gradiente do poténcial escalar, com sinal negativo.

Vamos voltar a equacgao que relaciona os vetores A e A'. Ao adicionarmos

o termo V¢ no poténcial A nés nao iremos alterar o campo magnético.
Entretanto, segundo a equacao acima o campo elétrico ira se reduzir em

= 0
V("/5¢)-
Como ja sabemos, para que o campo elétrico seja bem definido, é

necessario que operemos uma alteracao de 4 e A’ e, a0 mesmo tempo,
ocorra uma alteragcao do poténcial escalar V, para:

V=V -———
ot

Com isso, a segunda e a terceira ficam garantidas através da definicao
dada de poténcial escalar e poténcial vetorial. Nesse caso, em funcao dos
poténciais, escreveremos a primeira e a quarta equacao de Maxwell
como:



Note que mesmo com as duas equacgoes temos a liberdade de escolher de
forma arbitraria a divergéncia de A; qualquer escolha que fagamos para
o divergente (V. Af) denominaremos esse de CALIBRACAO. A calibracao
de Coulomb, V.A=0, é a mais simples que pode ser escolhida.

Substituindo essa calibragao na equacao (a), acima, transformarmos
essa ha equacao de Poisson da eletrostatica.

Ja a equacao (b) envolve dois poténcias, que sao, V e A, o que torna a
utilizacao da calibracao mais complicada. Para isso, utilizamos o fato de

que a calibracao permite que se possa dividir V e A em duas equacoes de
mesma estrutura. Essa é chamada de Calibracao de Lorentz:

ﬁ/i)_ 10V
T 2 ot

Na equacao (b), o segundo e o terceiro termo somem e podemos escrever
as equacoes (a) e (b) da seguinte forma:

2 _iaz_Vz _P

c? 0t? €o
,» 1024 R
A= = HJ

Dessa forma, as duas equacgoes apresentam uma simetria melhor. Além
disso, apresentam a vantagem de ser uma unica equacao capaz de ser
aplicada a campos diferentes, pois a solugcao matematica é semelhante
nos dois casos.

Para o caso de regioes onde nao existam cargas ou correntes, os termos
que se encontram no lado direito das equagoées tem resultado nulo e, com
isso, obtemos as chamadas EQUACOES DE ONDA.



Capitulo X
ESTUDO DAS ONDAS ELETROMAGNETICAS

“Nao penso que as ondas de radio que
descobri vao ter alguma aplicagao pratica”
Heinrich Hertz
“Em todo o espaco ha energia...é (s6) uma
questao de tempo até que os homens tenham
éxito em associar seus mecanismos ao
aproveitamento desta energia.”
Nikola Tesla

10.1 ONDAS ELETROMAGNETICAS

Como ja estudamos, em qualquer espagco onde nao existam cargas ou
correntes, podemos escrever as equagoes de Maxwell da seguinte forma:

V.E=0
., . 9B
VXE=-—
V.E=0
. . 10E
VxB=——

Essas equacoes possuem varias solugoes e a mais simples sera E=B=0
para qualquer ponto. Entretanto, sabemos que um campo pode ser nulo
em um referencial que esteja em movimento e diferente de zero em um
outro referencial que nao esteja em movimento. Sendo assim essa
consideracao nos faz questionar; havera uma situacao em que as
solucoes triviais E = B = 0 ocorram em um determinado referencial e ndo
ocorram no referencial de laboratério?

Vamos testar as provaveis respostas a essa questao utilizando as
equacdes de transformacao dos campos. Faremos isso igualando os
campos do referencial R’ a zero.

E=—-83xB
1

DX E
C2

ol



Na primeira equacao, como sabemos de Calculo Vetorial, implica que o

campo elétrico E é perpendicular ao campo magnético B e também
perpendicular a 7. Desse modo, esses trés vetores definem um sistema
de coordenadas cartesianas. Nesse caso, o eixo x aponta o campo
elétrico, o eixo y aponta o eixo do campo magnético e o eixo z aponta a
velocidade do referencial R’ (V).

O fato dos trés vetores serem perpendiculares podemos analisar as
equacoes anteriores através das seguintes relagoes entre os moédulos:

E =vB
c’B = vE

Ao analisarmos essas igualdades podemos afirmar que a velocidade do
referencial R’ é igual a velocidade da luz. Podemos afirmar também que o
modulo do campo elétrico é igual a velocidade da luz (¢) multiplicada pelo
campo de inducao magnética, ou seja:

E =cB

Como ja vimos anteriormente vimos que a existéncia de campos elétricos
e magnéticos que nao sejam paralelos, ocasiona o surgimento de uma
densidade de fluxo de energia eletromagnética que é dado pelo vetor de
Poynting, ou seja:

- 1 — — ~
S=—E X B = ceyE?*D
Ho

Nessa equacao ¥ é o versor na diregcao e sentido de propagacao da onda.
Ele se situa perpendicular aos campos pela regra da mao direita. A
consequéncia disso € que irao existir solugdes nao triviais no vazio. Essas
solucoes sao chamadas ONDAS ELETROMAGNETICAS. Nessas ondas, os
campos elétrico e magnético sao cruzados, para cada ponto analisado, e
transportam a energia eletromagnética na direcao perpendicular a esses
campos, que é a direcao de propagacao da onda.

Enguanto a onda eletromagnética se propaga no vazio, em cada ponto por
onde ela passa, existira uma energia que sera dada pela equacao:

€o

u= ?(CZBZ + E?) = ¢,E,



Note que essa equacao foi definida no capitulo anterior como sendo a
energia eletromagnética volumétrica, entretanto, substituimos . por o e
€ pOr ;.

Embora a equacao E = cB mostre que em uma onda eletromagnética, o
campo magnético seja muitas vezes menor que o campo elétrico, ambas
as ondas contribuem da mesma forma para a energia.

10.2 EQUACAO DA ONDA ELETROMAGNETICA

Agora vamos utilizar as equagoes de Maxwell, citadas no inicio desse
capitulo, e encontraremos a forma explicita dos campos em uma onda
eletromagnética. Essa expressao sera obtida em funcao do tempo e da
posicao.

Em primeiro lugar vamos analisar a segunda e a quarta equacao de
Maxwell. Os rotacionais dessas duas equagoes sao:

VX(V)XE)=—&V><§
Vx(VxB)=C—2aV><E

Se aplicarmos a propriedade do rotacional de um rotacional no lado
esquerdo das duas equacdes e utilizarmos o lado direito das duas
equacoes para obter:

L . 10%
— V2F = ——
V(V.E) = V?E = =5 —
9(©.5)- v =227
' 2% 0t?

Agora vamos trabalhar com a primeira e a terceira equacao de Maxwell.
Delas sabemos que o divergente dos dois campos é nulo, o que nos leva a
EQUACAO DA ONDA para os campos elétrico e magnético.
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Como podemos observar essas duas equacdoes tem a mesma forma
matematica e também possuem solugcdées que sao semelhantes. Essas
equacoes de onda aparecem em varias areas da Fisica e da Engenharia e
ja haviam sido objeto de estudos de d’Alembert e outros matematicos,
mesmo antes de Maxwell.

E importante observar que essa siao somente duas das quatro equacdes
de Maxwell, sendo assim & necessario utilizar as outras duas equacgoes
para calcular um dos campos em funcao do outro. Desse modo sé
necessitaremos solucionar uma das equacdes de onda.

A equacao de onda é linear, na verdade uma combinacao linear de
solucdes, chamadas FUN(}()ES DE ONDA, é também uma solucao. Isso
significa que duas ondas sobrepostas originam uma terceira onda que é
o resultado da soma das funcoes das duas ondas iniciais.

10.3 ONDAS PLANAS

Ja sabemos que o campo elétrico e o campo magnético sao
perpendiculares entre si e perpendiculares na direcao da propagacao da
onda eletromagnética. Entretanto, a direcao dos campos nao sao
obrigatoriamente as mesmas em pontos diferentes.

Para os casos onde os campos tém sempre a mesma diregcao dizemos que
se trata de uma ONDA PLANA POLARIZADA, e adirecao de polarizagao é
a direcao do campo elétrico.

Vamos analisar uma onda plana que seja polarizada na diregcao de j que
se propaga na direcao do eixo z. Dessa forma teremos:

E=Ej
B = Bk

Se analisarmos a primeira e a terceira equacao de Maxwell veremos que
o divergente de cada uma dessas equacgoes tem que ser nulo.

0E 0B
—_— = _— = 0

ady 0z

E interessante observar que o campo elétrico E ndo depende da variavel
ye o campo magnético B nao depende da variavel z. Por outro lado, como



em qualquer ponto temos que o médulo do campo elétrico sera E = cB,
entao confirmamos que nem o campo elétrico e nem o campo magnético
podem depender de y ou z, respectivamente. Desse modo, o campo
elétrico sera funcao de xe £no eixo y e o campo magnético sera funcao
de xe tno eixo z, ou seja:

E = E(x,t)j

B = B(x, )k

Substituindo o campo elétrico na equacao de onda teremos os dois lados
da equacao na direcao j e obteremos a equagao escalar de onda escalar.

0°E 1 0°E
dx2 2 Ot2

Vamos utilizar agora um operador que atua sobre a funcao E(x,t), para
encontrar a solugao da equagao acima.

0% 1 92 .
dx2 ¢20t? B

Podemos entao fatorar o operador e teremos:

(6 +1 6)(6 1 a)E 0

ox codt/\ox coat)

Nesse caso a ordem dos operadores é indiferente. Como se trata de uma
multiplicacao, para que a equacgao se verifique &€ necessario que:

(6 +16)E—0
Jdx cOt B

(6 16)E—0
Jdx cOt B

Vamos entao analisar a primeira condigcao:

ou
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Note que o lado esquerdo da equacao tem a mesma forma da derivada
convectiva, onde a velocidade, no caso dessa analise é na direcaode i e
o seu modulo é igual a ¢. Como ja vimos, a derivada convectiva é a
variacao do campo E, no referencial R’ que acompanha o movimento da
onda, com a velocidade c na direcao de 7, ou seja:

dE
—=0

dt

e essa condicao ira acontecer ao longo das retas x' = x — ct.

Isso significa que para cada valor que x’pode assumir teremos um ponto
correspondente que esta em R’ e que se desloca na diregcao positiva do
eixo x e descreve uma trajetéria que é retilinea e se encontra no dominio
(x,t) da funcao E.

Ao longo de todas essas retas caracteristicas teremos a derivada de E
com valor nulo. Desse modo o valor de E é constante. Na figura abaixo
podemos ver esse efeito.

Xo=x—c"~_ fix —cty)

Figura 168 - Onda plana com propagacao na direcao positiva do eixo x

Alterando as caracteristicas o valor constante de E ao longo da reta
caracteristica também pode ficar diferente. Ora, se a funcao f(x’) esta
representando todos os valores de E nas mais diferentes caracteristicas,
entao o valor de E para qualquer ponto do dominio sera dado por:

E(x,t) = f(x — ct)



Nessa equacao fpode ser uma funcao qualquer que corresponde ao valor
de E ao longo do eixo x, no instante inicial £ = 0. Essa é a representacao da
onda que se propaga ho eixo x, no sentido positivo.

Agora vamos analisar a segunda equacao. Ela possui uma solugao
idéntica a primeira, o que a diferencia é o fato de que agora a onda se
propaga no sentido negativo do eixo x. Isso conduz a fungcdes que
apresentam a forma g(x+*ct).

Podemos dizer que a forma geral das ondas planas que se propagam na
direcao do eixo xe uma sobreposicao de duas ondas, uma que se propaga
no sentido positivo e outra que se propaga no sentido negativo,
respectivamente, funcao de x - cte funcao de x * ct.

E(x,t) = f(x —ct) + g(x + ct)

Essas duas fungdes podem ser determinadas a partir das chamadas
condicdes de fronteira. Uma das regioes de fronteira esta no instante
inicial t = o0 nesse ponto teremos:

E(x,0) = f(x) + g(x)

A figura abaixo mostra o que ocorre com os campos elétrico e magnético
de uma onda plana em um determinado instante de tempo t. Se
observarmos um segundo instante de tempo ¢ + Af veremos um grafico
semelhante com um deslocamento a uma distancia cA¢no eixo x e sentido
positivo.

Figura 169 - Campo de ondas eletromagnéticas planas com propagacao no eixo x e sentido
positivo

Até agora consideramos apenas as ondas de polarizagao linear onde os
campos E tem sempre a mesma direcao. No entanto, existem também



ondas planas com campos que rodam, com polarizagdes circulares ou
elipticas.

10.4 ONDAS HARMONICAS

Ondas com periodicidade sao um caso importante de ser estudado. Elas
sao ondas que se repetem em intervalos determinados de tempo. Uma
onda periédica é o resultado de um conjunto de fungcdes seno e fungoes
cosseno, que possuem frequéncias diferentes. Quando a funcao de onda,
que analisamos na sec¢ao anterior, € uma funcao seno ou cosseno, ela é
denominada ONDA HARMONICA ou ONDA MONOCROMATICA.

Vamos imaginar uma funcao sinusoidal, que possua um periodo A cuja
funcao é dada por:

27
sin (711 + <p0)

Se v assumir, por exemplo, o valor (y - ct), a fungao ira corresponder a
uma onda plana que se propaga na direcao j. No caso da onda estar
polarizada na direcao de i, o campo elétrico sera dado por:

- . [2m )
E =E051n[7(y—ct)+<p0]l

A constante E, define a amplitude do campo elétrico. O angulo ¢ é
chamado FASE e é dado por:
B 2rt(y — ct)
_I 1+ @,

E a constante g0 € chamada de FASE INICIAL. Se dois pontos tem a mesma
fase, em qualquer instante de tempo, dizermos que eles estao em fase. 1
recebe o nome de COMPRIMENTO DE ONDA, e mede a distancia entre
dois pontos consecutivos que estejam em fase, na direcao da propagacao
da onda.
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Figura 170 - Campo elétrico de uma onda eletromagnética harmoénica, plana e polarizada (a)
em funcao do tempo e (b) em funcao da posicao

O campo E oscila sinusoidalmente e o PERIODO T é o tempo que leva para
que a onda complete um ciclo. Para esse periodo ser constante, durante
cada oscilagao é necessario que a onda se desloque em um comprimento
de onda A mantendo uma velocidade constante c, consequentemente
teremos:
A

T=-
C
A FREQUENCIA indica o numero de ciclos completos em uma unidade de
tempo. Ela é dada pela equacao:

E a frequéncia angular, que indica o aumento, por unidade de tempo, em
radianos, da fase em um ponto qualquer.

Da mesma forma como medimos a distancia entre dois pontos em fase
com o comprimento de onda 1, o nUmero de pontos que se encontram em
fase, dividido pela unidade de comprimento. Essa medida é conhecida
como NUMERO DE ONDA. Se multiplicarmos 2n pelo nimero de onda,
estaremos determinando o aumento de fase por unidade de comprimento.
Denominamos esse nGmero como NUMERO DE ONDA ANGULAR.



Podemos entao calcular a onda harmonica, a partir da frequéncia angular
e do numero de onda angular.

E = E,sin(ky — ot + ¢,)i

Sabemos que o comprimento de onda e o periodo estao relacionados,
desse modo a frequéncia angular e o numero de onda angular devem
obedecer a seguinte relagao:

_C()
‘%

Podemos encontrar ondas harmoénicas que estdao se propagando em
qualquer direcao que seja diferente da direcao do eixo y. Costumamos

definir o VETOR DE PROPAGACAO k utilizando o médulo que é igual ao
numero da onda angular k e na diregcao de propagacao da onda.

Na equacao da onda harmonica y é a projecao da posicao 7 de um ponto,
nadirecao de propagacao j, desse modo Ay deve ser substituido por Aque
sera multiplicado pela projecao do vetor 7 na direcao da propagacao, ou
seja k.7 e, com isso, temos uma formula mais geral para a onda harmonica
plana:

E =E, sin(l_c).F — wt + @g)P

Denominamos p como sendo o VERSOR DE POLARIZACAO que ira definir
a direcao do campo elétrico que podera ser qualquer direcao
perpendicular ao vetor de propagacao k.

Como ja vimos, a sobreposicao de duas ondas harmonicas planas ira
originar uma nova onda eletromagnética plana, porque a equacao de
onda é linear. Essa sobreposicao permite a construcao de onda planas
mais complexas que nao precisam ser, necessariamente, harmonicas. A
utilizacao de séries de Fourier permite a obtencao de uma onda periédica
que é obtida da sobreposicao das ondas harmonicas.

10.5 ONDAS ESFERICAS

Podemos considerar as ondas planas como simples aproximagao que é
valida dentro de uma pequena regiao quando comparada a distancia da



fonte. Isso ocorre porque a onda eletromagnética real se propaga em
varias direcoes e a aproximacao é feita para uma sé diregao.

Se temos uma fonte produzindo uma onda eletromagnética, nés podemos
considera-la como sendo uma fonte pontual. Para fontes pontuais a
propagacao ocorre sob a forma radial cuja origem é a fonte. Desse modo,
o vetor de polarizacao estara sobre 4 e ¢.

Para entendermos, vamos considerar uma onda que em cada ponto esta
polarizada na direcéo ¢, a formula geral do campo elétrico sera:

E=E(06,¢t)¢

Se a fonte for capaz de emitir em todas as dire¢cdes de forma igual, sera
considerada isotropica e, com isso, teremos uma simetria esférica. Nesse
caso, a funcao de onda ira depender apenas da distancia do ponto
escolhido até a origem re do tempo £
Utilizando a expressao do Laplaciano para vetores com simetria esférica,
obteremos:

2

. 10 ~
V2E(r,t)d = —5z [rE(r,t)]d

A partir da equacao de onda, ja analisada, temos a seguinte implicagao

10*(rE) 1 09°E

r o0r? c2 0t2

Se multiplicarmos ambos os lados dessa equacgao por r, considerando que
as variaveis r e t sao independentes, teremos a equacao da onda plana
para a funcgao rE:

0°(rE) 1 0%rE
ar2  c? t?

Note que r£ devera ser uma onda plana cuja funcao que a define é f(r,t)
que se propaga na direcao radial:

E(r,0) =~ f(r £ ct)



Na equacao, sinal positivo corresponde a ondas que se propagam na
direcao da origem. No entanto, como consideravamos as ondas com
origem da fonte, devemos somente considerar o sinal negativo.

Desse modo, o sinal negativo na funcgao f(r + ct) /r representa que a onda
se propaga se afastando da fonte.

1 \
;f(r—Ct) \

Figura 171 - Funcao de onda esférica em trés instantes de tempo diferentes

Todos os pontos que estdo em fase formam esferas concéntricas, cujos
centros coincidem na origem da onda. Elas sao chamadas FRENTES DE
ONDA.

Utilizamos a lei de Faraday para calcular o campo magnético,
considerando que o campo elétrico esta na direcdo ¢, desse modo o seu
rotacional, em coordenadas esféricas, sera:

- o 10(0E). 1, ~
VXE=——7"—70=—f"(r —ct)d
r or r

Se integrarmos em funcao de ¢ e multiplicarmos por -1, obteremos a
equacao do campo magnético.

- 1 A
B==f(@-
crf(r ct)6

Ja sabemos que os campos elétricos sao perpendiculares e, nesse caso,
seu produto vetorial tem a direcao radial.

Ja sabemos também que o médulo do campo magnético é c vezes menor
do que o médulo do campo elétrico. Além disso a onda poderia estar
polarizada na direcao do versor § ou em qualquer outra direcido que seja
perpendicular a diregcao radial.



Se a funcao ffor sinusoidal, teremos a formacao de uma onda esférica
harménica, sendo a formula geral da equacao dada por:

E
E(r,t) = 7osin(kr — wt + @)

A amplitude da onda ira diminuir a medida que r aumenta.

10.6 INTENSIDADE DAS ONDAS MAGNETICAS

Definimos a densidade de fluxo energético de uma onda ¢ com sendo a
energia que é transportada por uma onda, em uma superficie normal a
sua direcao de propagacao dividida pela unidade de area e pela unidade
de tempo. Uma medida que podemos utilizar como referéncia é o valor do
fluxo energético da luz solar que entra na atmosfera da terra. Esse valor
é, aproximadamente 1.4 kW/m?2.

Para as ondas eletromagnéticas, o fluxo de energia dividido pela unidade
de area é igual ao médulo do vetor de Poynting, entao:

¢ = ceyE?

Essa equacao nos apresenta um valor instantaneo, isso por que, o campo
elétrico é variavel, nesse caso, uma onda periédica. Sendo uma onda
periédica possui um valor médio que sera dado por:

T
jEZdt
0

Considerando que a onda é harmonica e plana, entao utilizaremos a
identidade trigonométrica

EZ =

~| =

1—cos2a
2

sin‘a =

para aplicarmos na equacao de campo elétrico. Sendo assim teremos:

T

—  E§ =

E? =%f[1 — cos 2(k.7 — wt + ¢,)|dt
0



No entanto, a funcao cosseno tem seu periodo igual a 2T, o que faz com
que dentro dos limites de integracao 0 e T, sua integral seja nula, entao:

2
= _E
2
Assim teremos a densidade média de fluxo energético como diretamente
proporcional ao quadrado da amplitude do campo elétrico.

O fluxo energético, também denominado, poténcia radiante, ®., € a
energia total emitida por unidade de tempo.

Para uma fonte pontual, que emita uma onda esférica, se a densidade de
fluxo energético for ¢, situado a uma distancia r, teremos um fluxo
energético dado por:

&, = 4nr¢

Ao diminuirmos o angulo sélido (Q2) da onda que é emitida por uma fonte
pontual, veremos que a sua intensidade aumente devido a concentracao
da radiacao.

Desse modo definimos INTENSIDADE de uma onda como sendo a razao
entre o fluxo energético e a unidade de angulo solido.

Para o caso de fontes isotrépicas, teremos um angulo sélido que é de 4x.
Se associarmos com a equacao do fluxo energético, teremos a seguinte
equacgao:

I= 1%
Para calcularmos a densidade média de fluxo energético utilizamos uma

forma analoga ao que utilizamos na solugao da onda plana. Para fazer isso
iremos substituir E, por Eo/r?, entio:



E a intensidade também sera diretamente proporcional ao quadrado da
amplitude do campo elétrico.

€o
I =—CE§
2 0

10.7 ESPECTROS ELETROMAGNETICOS

Uma das caracteristicas das ondas harménicas é o fato de que seus
comprimentos de onda ) e suas frequéncias fnao podem variar de forma
independente, pois como ja vimos Lf=c.
Além disso, as amplitudes dos campos elétrico e magnético também nao
variam de forma independente pois se relacionam na relagao Eo/Bo= 0.
A partir da frequéncia ou do comprimento de onda temos como classificar
uma determinada onda dentro de um ESPECTRO ELETROMAGNETICO.
Com essa classificacao podemos caracterizar as propriedades de uma
onda.
A figura abaixo apresenta o espectro eletromagnético das ondas com i e
fconhecidas. Entretanto é possivel que existam ondas com comprimentos
e frequéncias que variem do 0 ao «.

ESPECTRO ELETROMAGNETICO

10°’nm
10°'nm
10'nm
10°'nm
10'nm
10nm| 1A
1nm
10 nm
100 nm
10'nm| |um
10m
100im
1000im | 1 mm
10mm| 1 cm
10cm
100cm| 1 m
10m
100 m
1000 m| 1 Km
10 Km|
100 Km
1 Mm

10 Mm
100 Mm

A- angstrom nm-nanémetro Um-micrometro mm - milimetro

cm-centimetro m-metro Km-quildmetro  Mm - megametro



Uma forma de produzir ondas eletromagnéticas basta produzirmos
aceleragao das cargas em um condutor, normalmente uma antena. Outra
€ aradiacao de corpo negro que € emitida por sistemas termodinamicos
em temperaturas que sao maiores que o zero absoluto. Além dessas duas
temos as transicoes entre niveis de energia em sistemas quanticos como
atomos ou nucleos.

Podemos observar que conforme a frequéncia aumenta, o comprimento
da onda diminui e os mecanismos de emissao sao sistemas menores. Do
mesmo modo, uma interacao de onda eletromagnética € maior com
objetos que possuem tamanhos da ordem de grandeza A.

Devido a isso, ondas de radar nao conseguem penetrar em objetos muito
pequenos. Por outro lado, por outro lado, o raio X é capaz de atravessar
com facilidade as células e a radiacdao e a radiacao gama, cujo
comprimento de onda € menor e consegue penetrar nos cromossomos,
sendo capaz de alterar o conteudo genético.

Outra caracteristica das ondas eletromagnéticas € o fato de que elas nao
apresentam uma frequéncia definida como no caso das ondas
harménicas, pois elas sao resultado de um conjunto, ou soma, de um
conjunto de ondas harmoénicas, cada uma com uma frequéncia particular.
O exemplo mais conhecido vem da descoberta de Isaac Newton, sobre a
decomposicao da luz. Em seu experimento ele fez a luz visivel (branca),
atravessar um prisma e verificou que a luz branca era composta por 7
cores distintas. A figura abaixo mostra o efeito do experimento.

Figura 172 - Experimento de decomposigcao da luz visivel

Existem ainda algumas outras constatacdoes em relagcao as ondas
eletromagnéticas. Quanto maior for a frequéncia da onda, maior sera a
permissividade elétrica, significando que a luz tera uma velocidade menor
para frequéncias mais altas. O indice de refracao, que sabemos ser
inversamente proporcional a velocidade do meio por onde se desloca a
luz, é diretamente proporcional ao valor da frequéncia.



Um dos usos cientificos dessa propriedade de decomposicao da cor € a
possibilidade de determinarmos a composicao quimica da fonte. Em um
espectrometro uma luz atravessa uma superficie padrao e a amostra, ao
mesmo tempo. Cada uma ira gerar um espectro de cores, a partir da
comparacao é possivel determinar os elementos quimicos que compde a
amostra. Outra forma de realizarmos essa analise € procedendo a queima
da amostra que em sua chama, ird apresentar as cores relativas aos
elementos quimicos que a compoe.

L D [
[EEmn

(h)

Figura 173 - Exemplos de fotometria de chama para alguns elementos (a) cloreto de sodio, (b)
cloreto de estroncio, (c) cloreto de magnésio, (d) cloreto de aluminio, (e) cloreto de calcio, (f)
cloreto de cobre, (g) cloreto de manganés, (h) cloreto de litio

No processo apresentado acima, ha uma emissao de luz visivel através da
queima do material. No outro processo, como ja mencionamos, € um
processo de absorg¢ao onde a luz passa pelo material analisado. As faixas
absorvidas pelo espectro aparecem de forma escura caracterizando
assim a composicao quimica.
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Figura 174 - Exemplos de emissao de espectro (a) césio, (b) rubidio, (c) indio, (d) talio, (e) litio, (f)
estroncio, (g) calcio, (h) sédio, (i) bario, (j) molibdénio, (k) boro, (I) fosforo, (m) zinco, (n) telario
Esse processor de espectroscopia permite inclusive analisar a

composicao quimica dos planetas e estrelas.

10.8 ONDAS ELETROMAGNETICAS EM MEIOS
MATERIAIS

Até agora estudamos a propagacao de ondas eletromagnéticas no vazio.
Quando tratamos das ondas em meios materiais, substituimos as
equacoes de Maxwell, pelas equacoes utilizadas em meios
macroscopicos. Vamos considerar que o meio seja isotropico e linear e
que nao existem cargas e nem correntes livres. Nesse caso, obteremos
um sistema de equacgodes do seguinte tipo:

V.E=0
. . 9B
VXE=-—
V.E=0
. . 10E
VxB=——

Que sao as equacoes de Maxwell adaptadas para o meio macroscoépico,
conforme vimos no inicio do capitulo.
Como ja vimos:



No caso das equagdes acima vamos substituir €, por € (a permissividade
elétrica do material), e 1o por p (a permeabilidade magnética do material).
Isso ocorre por que as ondas eletromagnéticas ja nao se propagam mais
na velocidade da luz e a nova equacao de velocidade é dada por:

1
vV =—

Veu

No caso de materiais condutores, os elétrons atenuam qualquer campo
elétrico externo de forma muito rapida. Isso impede a propagacao de
ondas eletromagnéticas. Com excecao dos materiais ferromagnéticos, a
permeabilidade magnética dos demais materiais € muito préxima de o e,
portanto, a velocidade das ondas eletromagnéticas é dada por:

1 \/?0 C
VR——=(C [—=—
v EULo e Vk

K é a constante dielétrica conforme vimos ao estudar o conceito e a
equacao de permissividade elétrica. Mas também ja vimos que a
constante dielétrica tem uma forte dependéncia da frequéncia. Mesmo
nas frequéncias muito baixa vamos acabar encontrando um valor de K
que é diferente dos valores estaticos medidos no capacitor. Essa
dependéncia de K em relacao a frequéncia é que vai determinar as
diferentes velocidades para as diferentes componentes harménica. E isso
é que da origem a DISPERSAO.

Como ja vimos enquanto estudavamos as ondas eletromagnéticas no
espaco vazio sao transversais. Isso significa que os campo elétrico e o
campo magnético sao perpendiculares. Vamos agora estudar o
comportamento das ondas eletromagnéticas em meios materiais,
tentando verificar a existéncia de outras solugcdes para as equagoes de
Maxwell, nessas condicdoes. Para isso vamos utilizar o método da
Transformada de Fourier que € muito semelhante a Transformada de
Laplace.

No caso do uso da Transformada de Fourier de um campo vetorial, ela ira
outro campo vetorial que é definido da seguinte forma:

F{F} = f f j j F(t, Melkm-ot)gqyqe

A integral, calculada no tempo tem um intervalo de um periodo T = 21/,
No caso do volume de integracao, temos um paralelepipedo com arestas



que tem o0 mesmo tamanho dos comprimentos de onda (i, Ay, A2), que tem
como definicdo os valores, 2n/k., 2n/ky, 2n/k,, respectivamente. E
importante observar que a fungao ‘:j.‘n{ﬁ} nao depende das variaveis (t,7).
Entretanto, essa funcao depende da frequéncia angular (») e do vetor de
propagacao (E). Sendo assim, a transformada do divergente do vetor F

sera dada por:
f f f j V. Fellki-wt)gyqe

Aplicando a propriedade distributiva no divergente, teremos:
V.(fF) =Vf.F+ fV.F

Considerando que o gradiente de uma funcao exponencial é a propria
funcao que é multiplicada por ik, entao teremos:

jﬂj [V. (ei(E.f-—wt)ﬁ) _”‘g.ﬁei(ﬁ.?_wt)] dvdt

Segundo o teorema do divergente, a primeira integral de volume pode ser
escrita como o produto do fluxo de F vezes a fungao exponencial. Esse
produto ocorre através do paralelepipedo com as arestas ), Ay, A, € seu

valor é nulo porque F e o exponencial sao fungoes periédicas.
O tratamento da segunda integral sera feito escrevendo o produto da

constante -ik vezes a transformada de Fourier do campo F.Desse modo a
transformada do divergente sera dada por:

V.F > —ik. ‘&{ﬁ}

Da mesma maneira é possivel provar que as transformadas do rotacional
e da derivada em funcao do tempo, de F sao:

— =

x F - —ik x F{F)

)
E%lw{(;{F}



E com isso € possivel determinar as Transformadas de Fourier para as
equacdoes de Maxwell para situacées em que nao existam cargas ou
correntes livres.

A primeira e a terceira equacao mostram que o deslocamento elétrico D
e o campo magnético B sao perpendiculares ao vetor de propagacao,
lembrando que é direcao que cada componente harménico do campo é a
mesma direcao da sua correspondente Transformada de Fourier. Nos
casos anteriormente estudados da propagacao no vazio, vimos que o
deslocamento elétrico é igual ao campo elétrico Ee, consequentemente,
essas ondas sao ondas transversais. No caso dos meios materiais, a
segunda e a quarta equacao podem receber valores que tornam as
solucoes de em que E ou H oscilam na direcao do vetor de propagacao k

se o campo B for zero. Para esse caso sabemos que o vetor de Poynting
sera zero e as ondas nao irao transportar energia. Esse tipo de onda
recebe o nome de onda eletromagnética longitudinal ou estatica.





