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CAPITULO I 

MAGNETISMO 
 

O universo é uma harmonia dos contrários 

Pitágoras 

1.1- Falando da História 
 

O magnetismo é uma das áreas da Física mais fascinantes até mesmo 

para leigos. O simples fenômeno de uma bússola deixa as pessoas 

interessadas na “magia” que rege a agulha desse instrumento.  

Na antiga Grécia os filósofos já falavam sobre “maravilhosas” 

propriedades de uma pedra que teria uma “alma” que seria de origem 

divina. A primeira referência sobre essa pedra diz que um pastor 

chamado Magnes, encontrou uma pedra que tinha essa “propriedade 

divina”. Daí vem a origem no nome desse mineral, Magnetita. Outros 

relatos refutam essa informação e dizem que, na verdade a primeira 

descoberta desse material foi feito em uma região da Turquia conhecida 

como Magnesia.  

Qualquer que seja a verdade, na época da descoberta o conhecimento 

era domínio dos filósofos animistas1 e, mais tarde pelos filósofos 

mecanicistas. Essas ideias (superstições metafísicas) formaram a base 

de quase todo pensamento científico até o renascimento. Mesmo assim, 

nessa época surgiu a primeira aplicação científica do material, a bússola. 

O relato sobre o surgimento da bússola tem vária fontes diferentes e seu 

surgimento vai desde textos que citam 1100 AC na China até textos que 

relatam o surgimento em 1637 DC na Espanha. A única coisa que 

podemos afirmar é que já no século XIV ela já era bastante usada. 

Em 1600, William Gilbert escreveu o primeiro tratado sobre magnetismo, 

“De Magnete”. Essa publicação fez com que Gilbert seja considerado o 

pai do Magnetismo. Talvez o fato mais interessante registrado por ele seja 

a afirmação que a Terra é um grande magneto. 

Descarte publicou a primeira teoria que eliminava a ideia de “efluvia”, que 

significa emanações e passou a atribuir o conceito de partes “enroscada” 

que penetram em “canais” existentes nos magnetos e na Terra, e esses 

vão de um polo ao outro. Essa é a origem da ideia de polos. 

Até o período situado entre 1600 e 1700, o pensamento metafísico passou 

a ser substituído pela matemática e o método científico começou a surgir 

com Galileu, Newton dentre outros. Nesse mesmo período, mais 

especificamente em 1750, Coulomb estabelecia a teoria da Eletricidade. 

                                                 
1 Os animistas eram membros de uma seita religiosa que acreditavam eu animais, objetos 
inanimados, plantas e até mesmo fenômenos possuíam uma essência espiritual. 



Pouco depois, já no início de 1800, Oersted apresenta os princípios da 

eletrodinâmica, 

É nesse período que surgem também Biot, Savart, Arago, Weber e 

Ampere (introduziu o conceito de campo magnético) e seus estudos 

levaram a ideia de que o magnetismo era resultado de correntes 

microscópicas. 

Ainda na contribuição para o progresso do estudo do eletromagnetismo, 

no final do século XIX, surgem dois grandes gênios, Faraday e Maxwell.  

Faraday era um cientista teórico e foi o primeiro a utilizar o campo 

magnético além de ter feito várias contribuições, principalmente com a lei 

da indução e a caracterização dos materiais segundo seu comportamento 

magnético.  

Todas essas deduções e definições foram feitas sem que Faraday tivesse 

escrito uma única equação. 

Todo o equacionamento das descobertas de Faraday ficou a cargo do 

outro gênio, Maxwell. Além de equacionar os conceitos de Faraday, ele 

deu toda a base da eletrodinâmica.  

Os estudos sobre eletromagnetismo seguiram progredindo e em seguida 

veio a descoberta de Thompson, o elétron e depois a descoberta do efeito 

Zeeman. 

Todas essas descobertas começaram a evidenciar as inconsistências da 

física clássica. 

Pierre Curie, baseado nos conhecimentos da termodinâmica, iniciou os 

seus estudos sobre as propriedades termodinâmicas das substâncias. A 

famosa lei de Curie pode ser explicada teoricamente por Langevin com 

modelos clássicos e a estatística de Maxwell-Boltzmann. 

Com o surgimento da mecânica quântica, no século XX, tornou-se possível 

o entendimento do magnetismo. Atingindo esse entendimento, o 

desenvolvimento da mecânica estatística e da termodinâmica quântica, 

foram facilitados principalmente quanto aos fenômenos cooperativos. 

Do ponto de vista clássico, duas importantes contribuições surgiram:  

Primeiramente o surgimento da teoria moderna do magnetismo com o 

conceito de campo molecular de Weiss e a famosa lei de Curie-Weiss, que 

foi seguida pela maioria dos sistemas magnéticos, mesmo que o valor do 

campo molecular não tivesse explicação clássica. 

Em segundo lugar veio o Teorema de Van Leeuwen que dizia 

“Classicamente a qualquer temperatura, campos magnéticos e elétricos, 

a magnetização total de um conjunto de elétrons em equilíbrio térmico é 

identicamente nula”, demonstrado e utilizando-se as equações de 

Máxwell e a estatística de Boltzmann. Isso significa que a física clássica 

não pode ser explicada pela física clássica mas sim pela física quântica. 

A mecânica quântica antiga foi capaz de explicar a origem dos momentos 

magnéticos atômicos com o modelo de Bohr. Ela estabeleceu a unidade 



fundamental do momento magnético, o magneton do Bohr que é dado pela 

equação: 

 

𝜇𝐵 =
𝑒ℎ

2𝑚𝑐
 

 

A nova Mecânica Quântica com as fórmulas de odulatória de Schrödinger 

e s fórmulas matriciais de Heisenberg e finalmente a formulação 

relativista de Dirac foram responsáveis por estabelecer uma base que 

teve uma aplicação de sucesso em sólidos e na mecânica estatística. 

Baseados nesses conceitos, Pauli, Heisenberg e Dirac descreveram o 

spin do elétron com g=2, o ferromagnetismo e a origem do campo de 

Weiss com a interação de troca 𝑆𝑖. 𝑆𝑗. 

Transcorreram mais 4 anos e nesse tempo, Hartree, Fock, Heitler, 

London, Slater, Van Vleck e outros cientistas foram capazes de calcular a 

nível atômico e molecular e solucionar quase todos os problemas 

pendentes como dados espectroscópicos, as regras de Hund, os 

momentos magnéticos dos átomos e ions, o efeito Zeeman, e outras. 

Em seus estudos, Weiss explicou, em nível macroscópico, o porquê do 

ferro não ser magnético no seu estado natural. Além disso, explicou a 

curva de histerese magnética utilizando o movimento das paredes de 

domínio que posteriormente foi confirmado na experiência realizada por 

Barkhousen. 

 

1.2 - O estudo do magnetismo 
 

O entendimento amplo do magnetismo passa por uma base sustentada em 

três pilares principais: é necessário conhecer a origem do magnetismo e 

a existência dos momentos magnéticos; em segundo lugar é preciso 

entender as interações entre os momentos e; conhecer a mecânica 

estatística, para poder entender e descrever as propriedades 

macroscópicas observáveis. 

1.2.a – Conceitos 

a) Polos magnéticos (m) 

Assim como nas pilhas e baterias, os imãs possuem dois polos, no caso, 

polo Norte e polo Sul. No caso específico dos imãs, o nome oficial é 

monopólios magnéticos. O mais interessante dos polos magnéticos é o 

fato de que, apesar de todos os esforços da comunidade científica sua 

existência não é estabelecida de forma experimental. Os efeitos ocorrem 

sempre em pares, ou seja, se dividirmos um imã em duas partes, essas 



duas partes serão outros dois imãs, com dois polos, exatamente como o 

imã que deu origem aos demais. 

 

                                                                                           (A) 

 

                                                                                            (B)   

 

 

                                                                                                     (C) 
Figura 1 - Imã intacto (A); fracionamento do imã (B); Imãs resultantes (C) 

Apesar de não existirem, esse conceito é muito útil nos cálculos micro 

magnéticos. Cálculos micro magnéticos são os cálculos dos campos 

internos a amostra e de fenômenos relacionados com a estrutura do 

domínio. 

Esse cálculo é definido a partir do equivalente da lei de Coulomb, que é 

feito pela força (F) entre dois polos m1 e m2 que ocorre entre dois 

magnetos cilíndricos. 

 

F =
k(m1m2)

r2
 

Um dos polos cria no seu entorno um campo magnético que será 

responsável por exercer uma força em um outro polo próximo. A principal 

característica dessa força é proporcionalidade dela com o campo 

magnético. Ou seja, quanto maior a força, maior será o campo magnético. 

A essa proporcionalidade denominamos Intensidade de Campo 

Magnético (𝐻⃗⃗ ). 

 

F⃗ = mH⃗⃗  

H – medido em A/m (ampère por metro) ou Oe (Oersteds) 

 

b) Dipolos Magnéticos ou Momentos Magnéticos (𝜇 ) 

 

Apesar de não vermos, os dipolos são reais e podem ser comparados com 

pares de polos, por exemplo, +m e -m que se situam nas extremidades de 

um corpo cilíndrico, que possui um comprimento l e área A, considerando 

de o comprimento seja muito maior que o raio do cilindro (l >>r). 

 

𝜇 = 𝑚. ℓ⃗  

 

N S

N S

N S SN



Podemos dizer que o momento magnético situado em um campo 𝐇⃗⃗  estará 

sujeito a um torque. Consequentemente podemos deduzir que a energia 

potêncial associada será dada por: 

 

𝐸 = −𝜇 𝐻⃗⃗  
 

Apesar de podermos calcular um momento magnético, na prática, como 

lidamos com amostras macroscópicas, trabalhamos com um 

agrupamento de momentos magnéticos. Com esse conceito é possível 

determinar a magnetização (𝑀⃗⃗ ) que será o resultado da soma de todos os 

momentos magnéticos elementares divididos pelo volume que ocupa. 

 

𝑀⃗⃗ = ∑
𝜇𝑖⃗⃗  ⃗

𝑉
 

 

c) Campo Magnético (força magnetizante) 

 

Produzida por solenoides é também conhecida como campo solenoidal. 

Para entendermos esse conceito, basta imaginar um solenoide de 

comprimento muito longo onde, no seu centro temos H = μ0nI, onde n é a 

densidade linear de espiras e I é a corrente que passa pelas espiras. No 

sistema internacional, a unidade para Campo Magnético é  ampère/m 

(A/m) e no sistema CGS2 é o Oersted (Oe)3. 

Existe um outro campo magnético que é representado pelas linhas de 

força de indução que é conhecido como Indução Magnética B. Essa 

indução magnética também recebe a denominação de densidade de fluxo. 

Isso ocorre porque é possível quantificar o número de linhas de força por 

unidade de área. Nos espaços vazios (ar ou vácuo) 

 

B⃗⃗ = μ0H⃗⃗  (no CGS B⃗⃗ = H⃗⃗ ) 
 

No caso de materiais sólidos a indução magnética é dada por: 

 

B⃗⃗ = μ0(H⃗⃗ + M⃗⃗⃗ ) 
 

cuja unidade no SI é Weber/m2 (G/m2) ou Tesla (T)4. 

No sistema CGS 

B⃗⃗ = H⃗⃗ + 4πM⃗⃗⃗  
e a unidade é Gauss 

 

                                                 
2 Sistema Centímetro, Grama, Segundo que precedeu o sistema MKS 
3 1 Oe = 80 A/m 
4 1 T = 104 G 



d) Permeabilidade Magnética () 

 

A permeabilidade magnética é a quantificação do “valor” magnético de 

um material, ou seja, ele indica o campo magnético no interior de um 

material. Esse campo magnético existe devido a associação de uma 

condição magnética pré-existente na região que envolve o material e a 

magnetização induzida no material por esse campo. 

𝜇 =
𝐵

𝐻
 

 

Essa é chamada de permeabilidade magnética absoluta. 

 

e) Susceptibilidade Magnética (𝜒) 

 

Materiais magnéticos respondem de formas diferentes quando 

submetidos a um campo magnético. Essa resposta diferenciada é 

conhecida como Susceptibilidade Magnética e ela pode ser estática, se 

for um campo de corrente contínua, ou dinâmica, se for gerada por um 

campo de corrente alternada. Em alguns casos os materiais apresentam 

uma resposta não linear. Desse modo devemos tomar o limite nulo da 

excitação (campo aplicado). Sendo assim: 

𝜒𝐷𝐶 = lim
𝐻→0

𝑀

𝐻
=

𝜕𝑀

𝜕𝐻
 

 

Na prática costumamos utilizar campos estáticos pequenos o suficiente 

para obter-se uma boa relação sinal/ruído. Podemos também medir com 

pequenas excitações alternadas e utilizamos a detecção síncrona. Para 

esse caso podemos dizer que a susceptibilidade é alternada ou 

simplesmente é uma susceptibilidade.  

Dependendo do material devemos tomar cuidado com a intensidade do 

campo de excitação. Para materiais moles ou doces, esse cuidado deve 

ser tomado.  

Materiais moles ou doces são materiais ferromagnéticos que possuem 

uma característica conhecida como magnetização espontânea. 

Magnetização espontânea significa que esses materiais possuem uma 

magnetização não nula, mesmo sem estarem em presença de um campo 

externo. O que diferencia os materiais ferromagnéticos moles dos 

materiais ferromagnéticos duros é uma característica chamada de 

coercividade5. Normalmente os materiais doces possuem uma 

coercividade menor que os materiais duros. Apesar de não ser um valor 

absoluto é costume considerar que materiais com coercividade maior que 

104 A/m são considerados materiais duros, enquanto valores de 

coercividade menores que 500 A/m são considerado materiais moles. 

                                                 
5 Define o campo necessário para levar a magnetização do material a zero. 



Outro tipo de fenômenos ocorre quando há uma dissipação de energia e 

nesse caso a resposta dos momentos magnéticos elementares não é 

instantânea, isso significa porque ocorre um atraso temporal da 

magnetização em relação a excitação. Isso torna a susceptibilidade 

magnética uma grandeza complexa, ou seja, devemos escrever essa 

dependência temporal como uma consequência da função da frequência 

da excitação , além de depender da temperatura e do campo: 

χac =
∂M

∂H
= χ′ − iχ′′ 

onde  𝜒′(𝜔, 𝑇, 𝐻) é a dispersão 

            𝜒′′(𝜔, 𝑇, 𝐻) é a absorção 

 

A susceptibilidade magnética e a sua dependência da temperatura, do 

campo, e também sua dependência em relação a posição na amostra 

pode ainda depender da posição microscópica na amostra com a 

periodicidade da rede cristalina. Sendo assim pode ser expressa por um 

vetor de onde q da rede recíproca, estudo importante nas relações das 

refrações de nêutrons. 

Os principais tipos de comportamentos magnéticos conhecido são 

listados na tabela abaixo: 

 

Material   

Diamagnético <0 <1 

Paramagnético >0 >1 

Ferromagnético >>0 >>1 

Ferrimagnético >>0 >>1 

Antiferromagnético >0 >1 

 

 

Existem outros tipos de comportamento magnético. Iremos citar esses 

comportamentos, mas não vamos nos fixar em nenhum deles: 

metamagnético, superparamagnético, vidro de spin, speromagnético, 

helimagnético, etc.  

Para caracterizarmos os materiais magnéticos utilizamos uma série de 

técnicas experimentais. As duas principais técnicas são a Magnetização 

e a Susceptibilidade magnética. 

A magnetização é medida em função do campo magnético aplicado ao 

material, a uma temperatura constante, chamadas de curvas ou 

isotermas de magnetização (MxH)T. Ainda controlando a temperatura 

podemos utilizar uma segunda técnica que é conhecida como 

susceptibilidade, normalmente em corrente alternada. É uma técnica 

simples e não necessita de campos magnéticos. Esse processo nos 

informa como a parte inicial da magnetização varia com a temperatura. 

Entretanto, nem sempre é possível determinar o comportamento 

magnético, nesse caso, o microscópio e outras técnicas complementares 

são necessárias. Para esses casos podemos lançar mão de técnicas 



como calor específico, difração de nêutrons, ressonância magnética, 

espectroscopia ótica e Mössbauer, resistividade e etc... 

A propriedade conhecida como Diamagnetismo aparece em todos os 

materiais que possuam cargas em movimento que sofrem influência de 

um campo externo ou a sua variação. Sua principal característica é uma 

pequena suscetibilidade magnética negativa que é independente da 

temperatura. Isso significa que a qualquer magnetização induzida por um 

campo externo é proporcionalmente contrária ao campo. 

Essa contraposição pode ser explicada através da reação das cargas em 

movimento que é capaz de cancelar qualquer variação no fluxo 

magnético, conforme a lei de Lenz, em um caminho fechado qualquer. O 

fenômeno ocorre em dois níveis. O primeiro é no nível atômico e ocorre 

sob a forma de um rearranjo das funções de onda de tal modo que 

aumenta a área efetiva a ser percorrida pelas orbitas atômicas. O 

segundo ocorre no nível macroscópico através das correntes induzidas, 

principalmente em materiais metálicos e semicondutores.  

No caso macroscópico ocorre uma dependência da temperatura, que 

normalmente está relacionada a resistência do material e da forma 

geométrica da amostra que, nesse caso passa a ser importante para a 

resposta. 

Lei de Lenz 

Vamos fazer uma pausa para explicar a lei de Lenz que esclarecerá a 

explicação anterior. 

Durante muito tempo Faraday realizou testes experimentais para chegar 

a uma conclusão sobre o comportamento da corrente induzida. 

Finalmente ele concluiu que “quando o número de linhas de campo que 

atravessam um circuito varia, nesse circuito aparece uma corrente 

elétrica denominada corrente induzida”. 

Faraday explicou a condição de surgimento de uma corrente induzida. 

Entretanto ele não explicava como definir a orientação dessa corrente. 

Foi Heinrich Friedrich Lenz quem conseguiu explicar esse fenômeno. 

Ele descobriu que “O sentido da corrente induzida é tal que o campo 

magnético por ela produzido se opõe à mudança de fluxo que se originou.” 

 

 

 

 

 

 

 

 
Figura 3 - Campo magnético cruzando um condutor                 

 

Como mostram as figuras acima o campo gerado pelo imã que se desloca 

em direção ao condutor produz uma variação no campo elétrico que 

Figura 2 - Surgimento da corrente 

induzida e do campo que se opõe 



envolve o condutor provocando o surgimento de uma corrente I que 

produzirá um campo de igual intensidade e sentido contrário ao campo 

original. 

 

Continuando a análise sobre Diamagnetismo se aplicarmos a lei de Lenz 

ao movimento orbital atômico pode ser representado tanto no aspecto 

clássico quanto na análise quântica: 

 

χD = −μ0

NZe2

6m
< r2 > 

 

No caso de se utilizar o sistema cgs, divide-se o resultado por μ0c
2. 

Nessa equação o elemento <r2> é o valor médio quadrático do raio da 

órbita atômica em questão. 

Os supercondutores, que são diamagnéticos perfeitos6, quando são 

submetidos ao efeito Meissner7 temos: 

 

𝜒𝑐 = −
1

4
𝜋 

  

A propriedade conhecida como paramagnetismo por uma pequena 

susceptibilidade positiva e pequena. Dependendo da origem, existe uma 

forte dependência com a temperatura. 
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Figura 4 - Curva de relacionamento da susceptibilidade magnética em relação a temperatura 

                                                 
6 Os elementos diamagnéticos blindam perfeitamente o campo B em seu interior. 
7 Nos supercondutores, em campos suficientemente pequenos, o valor do campo 
magnético no interior do material é zero, isto é, os supercondutores expelem o campo 
magnético 

             
           

                                

                           

 

 

 



Para entendermos o paramagnetismo é preciso pressupor a existência de 

momentos magnéticos no material que podem ser de origem atômica ou 

molecular (𝜇 𝑗) ou nuclear (𝜇 𝑖). Quando o momento magnético faz parte dos 

elétrons ou ao Spin eletrônico 𝑆  teremos 𝜇 𝑠, assim como quando se refere 

ao momento angular 𝐿⃗  dos orbitais teremos 𝜇 𝐿.  

Em cada átomo todos esses momentos se adicionam formando o 

chamado, momento angular total atômico 𝐽 = 𝐿⃗ + 𝑆 . Mas isso serve para 

quando o campo magnético é pequeno. 

Da mecânica quântica sabemos que 𝜇𝐿 = (𝐿(𝐿 + 1))
1

2⁄ 𝜇𝑏, onde 𝜇𝑏 =

𝑒ℎ 2𝜋𝑚⁄ , ou nos sistema cgs, 𝜇𝑏 = 𝑒ℎ 2𝜋𝑚𝑐⁄ . Essa é a unidade do momento 

magnético atômico, também conhecida como magneton de Bohr. Para o 

elétron, 𝜇𝑠 = 2(𝑆(𝑆 + 1))
1 2⁄

. 

Se formos considerar o momento angular total, então teremos como 

resultado a equação 𝜇𝑗 = (𝐽(𝐽 + 1))
1 2⁄

𝑔𝜇𝑏. O “g” que aparece na equação 

é conhecido como Fator de Lande. Por definição esse fator é um termo 

multiplicativo que aparece na expressão dos níveis de energia de um 

átomo submetido a um campo magnético fraco. Ele é determinado por: 

 

𝑔 = 1 +
𝐽(𝐽 + 1) + 𝑆(𝑆 + 1) − 𝐿(𝐿 + 1)

2𝐽(𝐽 + 1)
 

 

O acoplamento LS deixa de funcionar quando o campo aplicado se torna 

muito grande. Quando isso acontece, os momentos angulares e de spin 

passam a ocorrer no campo, de forma independente um do outro. 

É importante atentar para o fato de que no caso de átomos que possuem 

muitos elétrons, é necessário que se obedeça ao princípio de Pauli e a 

repulsão de Coulomb. Esses princípios são sintetizados pela regra de 

Hund e nos permite o estado fundamental do sistema analisado. A regra 

de Hund, também conhecida como Princípio da Máxima Multiplicidade, 

mostra que quanto maior o número de elétrons com spin paralelos em um 

orbital incompleto, menor será a energia.  

No caso de átomos isolados que contém momentos magnéticos e são 

submetidos a um campo H, os estados 2J+1 estão degenerados e são 

separados pelo efeito Zeeman. Esse efeito, conhecido por efeito Zeeman 

anormal ou efeito Zeeman anômalo ocorre em espectros na região visível 

do espectro eletromagnético e é o desdobramento de uma risca 

espectroscópica8 original (ou risca espectral original), em 2J+1 raias 

diferentes. J é a projeção de um vetor momento angular quântico que 

ocorre sobre o eixo de quantização. Ele ocorre em campos fracos. Essa 

separação entre as raias espectrais varia. No caso de campos muito 

                                                 
8 Risca espectroscópica, raia espectral, risca espetral ou linha espectral é o resultado 
de uma transição quântica que pode ser observado macroscopicamente. Estas linhas se 
apresentam como revelações em algum tipo de material e são a maneira mais simples 
de se detectar as transições quânticas. 



intensos, eles sobrepujam o campo eletromagnético inerente ao átomo e 

ocasionam o desdobramento das raias em múltiplas seções de separação 

constante. Esse efeito é conhecido como Efeito Paschen-Back. 

Existe também um efeito conhecido como efeito Zeeman normal, nesse 

caso o desdobramento da raia espectral ocorre de duas maneiras 

diferentes. Se a observação for feita ao longo da direção paralela ao vetor 

de indução magnética, a raia espectral original do espectro (com a 

ausência de campo magnético) se desdobra em duas raias. Caso a 

observação seja feita em uma direção perpendicular ao vetor de indução 

magnética, então a raia original se desdobra em três raias. 

As energias que são separadas pelo efeito Zeeman são dadas pela 

equação: 

 

Ej = mjgμbH 
 

Se submetermos os átomos à uma variação de temperatura T, obtida 

através de um banho térmico, e utilizarmos a estatística de Boltzmann9 

teremos: 

 

𝑀 = 𝑁0𝐽𝑔𝜇𝑏𝐵𝑗 (𝑥) 
 

Na equação 𝑥 = 𝑔𝐽𝜇𝐵 𝐻 𝑘𝑇⁄  e 𝐵𝐽 = ((2𝐽 + 1)/2𝐽) coth((2𝐽 + 1)𝑥/2𝐽) −

(1 2⁄ 𝐽) coth (𝑥 2𝐽⁄ ) 

Essa segunda equação é conhecida como função de Brillouin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 5 - Curva experimental do momento magnético em diversos materiais paramagnéticos 

                                                 
9 a estatística Maxwell–Boltzmann descreve a distribuição estatística de partículas 
materiais em vários estados de energia em equilíbrio térmico, quando a temperatura é 
alta o suficiente e a densidade é baixa suficiente para tornar os efeitos quânticos 
negligenciáveis. A estatística Maxwell–Boltzmann é consequentemente aplicável a 
quase qualquer fenômeno terrestre para os quais a temperatura está acima de poucas 
dezenas de kelvins. 



Dois pontos importantes nessa curva são: 

para  x ≫ 1, BJ → 1, e M = MSAT = N0JgμB 

e para x ≪ 1, BJ →
(J+1)x

3J
 , donde 

χP =
M

H
=

(NoJ(J + 1)g2μB
2)

3kBT
=

C

T
 

Essa equação é conhecida como lei de Curie. Dessa equação podemos 

obter experimentalmente o momento efetivo dos átomos, ou o número 

efetivo de magnetons de Bohr.  

O grande problema é que nem todos os sais tem um comportamento tão 

regular quanto esses 3 do exemplo acima. Esses três possuem um 

comportamento mais previsível pelo fato de que os íons magnéticos estão 

no estado S, ou seja, L≠0 o que garante funções de onda esfericamente 

simétricas. Em uma expressiva quantidade de sais, tais como os metais 

de transição, o momento que pode ser observado experimentalmente tem 

resultados diferentes dos que seriam esperados quando utilizamos a 

regra de Hund. Para isso utilizaremos L=0. Nesses casos, podemos dizer 

que o momento orbital é inibido pelo campo cristalino. Esse efeito do 

campo cristalino é capaz de quebrar o acoplamento Spin-orbita.  

Sendo assim, a simetria das funções das ondas orbitais, no caso de um 

átomo isolado, não vai ser o mesmo que de um átomo em um estado 

cristalino em que ele esteja situado. 

Para esses casos, onde a simetria é imposta pelo cristal temos que as 

autofunções do Hamiltoniano de campos cristalinos são resultado das 

combinações lineares dos orbitais atômicos. Geralmente ocorre uma 

quebra parcial da degenerescência que tem grande influência sobre o 

fenômeno paramagnético. 

No caso dos materiais que são caracterizados por uma magnetização 

espontânea em uma temperatura abaixo de Tc, temos o que chamamos de 

ferromagnetismo. Isso só é possível quando existe algum tipo de 

interação entre os momentos magnéticos atômicos que são responsáveis 

pelo ordenamento direcional que resulta em um momento magnético total 

não nulo. 

As principais interações possíveis nesse caso são: 

O clássico Dipolo – Dipolo 

 

Nesse caso há uma tendência para o alinhamento dos momentos que 

estão ao longo do eixo, paralelamente ou antiparalelamente, se os 

momentos magnéticos se situam em um plano perpendicular ao eixo.  

 



𝐻 =
(𝜇𝑖⃗⃗  ⃗ 𝜇𝑗⃗⃗  ⃗)

𝑟𝑖𝑗
3 − 3

(𝜇𝑖⃗⃗  ⃗𝑟𝑖𝑗)(−𝑢𝑗⃗⃗  ⃗𝑟𝑖𝑗)

𝑟𝑖𝑗
5  

O tratamento analítico dessa interação é difícil e complexo. A razão 1 𝑟3⁄ , 

apesar de ser de longo alcance, possui uma intensidade muito fraca para 

ser capaz de explicar as altas temperaturas de ordenamento. Mesmo 

assim, nas temperaturas muito baixas, ela não deve ser desprezada. 

 

Interação de troca direta 

 

A teoria do Valência, também conhecida como teoria de Heitler-London 

descreve a ligação química em termos do enlace ou da sobreposição de 

orbitais de valência semipreenchidos dos átomos constituintes das 

moléculas em análise. Em alguns casos podemos ter a formação de uma 

ligação covalente dativa por superposição de um orbital totalmente 

preenchido de um átomo com o orbital vazio de outro átomo.  

Essa teoria pode ser melhor entendida através da molécula de 

Hidrogênio. Quando aproximamos dois átomos de Hidrogênio começa a 

ocorrer uma superposição dos orbitais 1s de cada átomo e, nesse caso, 

os elétrons ficam sujeitos a atração simultânea dos dois núcleos. Assim, 

a distância internuclear de equilíbrio corresponderá a distância em que 

são maximizadas as atrações entre os dois elétrons e os dois núcleos e 

são minimizadas as repulsões eletrônicas e nucleares. Essa 

sobreposição dos orbitais atômicos 1s origina uma ligação sigma, que é 

uma ligação formada pela sobreposição do tipo topo a topo dos orbitais 

de valência onde o máximo de probabilidade de encontrar o elétron, situa-

se abaixo do eixo internuclear. 

Essa demonstração, para molécula de Hidrogênio, da teoria de Heitler-

London demonstra de forma clara que a interação pode ser resumida 

como a repulsão coulombiana quando é feita a combinação linear dos 

orbitais atômicos localizados nos átomos situados na vizinhança, mais 

especificamente na região de recobrimento, considerando o princípio de 

Pauli. 

Dependendo da paridade da função de onda espacial a energia poderá 

ser minimizada por duas configurações dos spins, singleto ou tripleto. Se 

o estado de energia mais baixo é singleto teremos uma interação do tipo 

Antiferromagnética. Já no caso de termos o estado de energia mais baixo 

ser tripleto, teremos uma interação ferromagnética. Sendo assim, o 

desdobramento dos níveis de energia singleto-tripleto pode ser 

representado de forma conveniente pela Hamiltoniana de Heisenberg. 

 

𝐻 = −2𝐽𝑖𝑗𝑆𝑖
⃗⃗⃗   𝑆𝑗⃗⃗⃗   



Nessa equação Jij é a integral de troca. Para o ferromagnetismo J>0 e o 

antiferromagnetismo J<0. 

Interação de troca indireta ou de supertroca 

 

 Quando as funções de ondas atômicas não possuem recobrimento direto, 

fato que ocorre de forma comum nos óxidos, se houver algum átomo não 

magnético colocado entre os átomos magnéticos, este tem suas funções 

de onda com spin opostos, parcialmente polarizados pelas funções de 

onda dos átomos magnéticos. Como consequência disso os dois átomos 

magnéticos interagem entre si. Dependendo da orientação relativa do 

átomo não magnético e dos dois átomos magnéticos teremos um 

comportamento específico para a interação. Na maioria das vezes o 

átomo não magnético é o Oxigênio e o resultado da interação é 

antiferromagnética. 

Interação de troca indireta do tipo RKKY 

 

Essa denominação tem origem no nome dos seus descobridores, 

Rudeman, Kittel, Kasuya e Yosida. Esse tipo de interação ocorre sempre 

em metais onde existam átomos cujo seus momentos magnéticos estão 

bem localizados, como por exemplo, nas Terras Raras. Esses polarizam 

os elétrons do gás de elétrons quando nas proximidades destes existem 

outros átomos magnéticos que levam a “informação”. Nisso resulta uma 

interação de longo alcance que possui um valor oscilante. Dependendo 

da distância entre os vizinhos podemos ter interações Ferromagnéticas 

ou Antiferromagnéticas. 

 

𝐽𝑅𝐾𝐾𝑌 = (
𝐽𝑆𝐹

𝐸𝐹
)(

2𝑘𝐹𝑟 cos(2𝑘𝐹𝑟) − sin(2𝑘𝐹𝑟)

(2𝑘𝐹𝑟)
4

) 

 

Interação de troca indireta em semicondutores (Bloembergen-Rowland) 

 

Esse tipo de interação é análoga à interação RKKY e envolve elétrons e 

buracos nos semicondutores e são de alcance mais curto pois, além de 

oscilar e ter um termo em 1 𝑟3⁄ , ela também é amortecida por um termo 

exponencial. 

 

1.2.b – Campo Molecular Médio 

 

Agora já temos condições de calcular as grandezas macroscópicas que 

são mensuráveis em laboratório. Essas grandezas podem ser a 

magnetização, o calor específico. Isso pode ser feito utilizando a física 

estatística nas resoluções desses problemas. Como já vimos, o caso do 



paramagnetismo, como os momentos magnéticos são independentes, é 

fácil fazer essa análise. 

O principal problema é quando os momentos magnéticos interagem entre 

si. No ano de 1907 P. Weiss formulou, pela primeira vez, uma teoria 

fenomenológica. Essa foi a primeira teoria para o ferromagnetismo, que 

até hoje é uma importante ferramenta para entender, de forma mais 

aproximada, o magnetismo e de outras áreas da física estatística. Muito 

antes do conhecimento da Mecânica Quântica, Weiss postulou a 

existência de um campo interno Hw proporcional a magnetização. 

 

Hw = λM 
Essa equação mostra que um campo médio de origem molecular, dada 

por M que é adicionada ao campo externo aplicado substitui a interação 

de cada momento magnético atômico com todos os vizinhos. No caso de 

temperaturas elevadas podemos substituir o campo externo por um 

campo total e utilizar os resultados do paramagnetismo que já 

conhecemos. Sendo assim teremos: 

M = χp(H + λM) =
C(H + λM)

T
 

 

Logo, com |λM| ≪ H 

χCW =
M

W
=

C

(T − Cλ)
=

C

T − Tc
 

 

Essa é a equação da teoria de Curie-Weiss.  

Weiss explicou a magnetização espontânea dos materiais 

ferromagnéticos através da hipótese de que cada dipolo magnético 

microscópico do material estaria sujeito ao campo produzido pelos 

dipolos vizinhos. Ele ainda considerou que haveria uma 

proporcionalidade entre o campo e a magnetização, de tal forma que esse 

campo total atuando sobre o dipolo, seria igual à soma do campo H com o 

campo médio molecular m, considerando sempre o elemento  como 

maior que zero(0).  

Com essa consideração Weiss concluiu que, mesmo com a ausência de 

uma campo H (aplicado) o dipolo estaria sujeito a um campo que ele 

denominou de campo molecular e que é o responsável pela orientação do 

dipolo. Considerando isso, podemos substituir H por H + m, na equação 

de estado de um sistema paramagnético ideal e, com isso, alcançamos a 

equação de estado de um sistema que sofre uma transição de 

ferromagnético para paramagnético.  

Se considerarmos a equação da Teoria de Brillouin para magnetização, 

quando o dipolo magnético J, assume o valor ½, teremos: 



m = μ tanh
μH

RT
 

 

Entretanto, para campos pequenos o processo de magnetização tem um 

comportamento linear com o campo e age de acordo com 

 

m =
μ2H

RT
 

 

A susceptibilidade a um campo nulo esta de acordo com a lei de Curie 

onde: 

 

X0 = 
C

T
  e C =

μ2

R
 

 

Substituindo nessa equação o valor da equação de estado paramagnético 

ideal, teremos: 

 

𝑚 = 𝜇 tanh (
𝜇

𝑅𝑇
(𝐻 + 𝜆𝑚)) 

 

Se o campo aplicado for nulo, H=0 e  teremos 

 

𝑚 = 𝜇 tanh
𝜇𝜆𝑚

𝑅𝑇
 

 

Utilizaremos o método gráfico para confirmarmos que essa equação 

possui uma solução diferente de zero (não nula). Vamos lançar mão de 

uma variável auxiliar x, que será dada por 

 

𝑥 =
𝜆𝜇𝑚

𝑅𝑇
 

 

e vamos substitui-la na equação anterior. Assim teremos: 

 

 

𝑅𝑇

𝜆𝜇2
𝑚 = tanh 𝑥 

 

A função tanh 𝑥 é representada na figura abaixo: 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 6 - Solução gráfica da tanh (x) 

 

Sobre esse gráfico traçamos a reta representada pelo elemento (RT/2)x. 

Observe que uma das soluções é em x = 0 e ela existe para qualquer valor 

de temperatura. Essa será uma solução única se a inclinação da reta for 

maior ou igual à inclinação da tanh 𝑥 em x = 0, isto é, sempre que RT/2  

1. Essa condição é válida em T > Tc e, por sua vez Tc será dada por: 

 

𝑇𝑐 =
𝜆𝜇2

𝑅
 

 

Já para o caso de T < Tc, teremos duas soluções não triviais que 

correspondem ao cruzamento da reta com a curva, conforme mostra a 

figura 6. Na figura 7, abaixo, vemos as soluções positivas para cada valor 

de temperatura. 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 7 - Magnetização correspondente a solução gráfica em função da temperatura 

Se utilizarmos a equação para cálculo de Tc para determinar o valor de . 

Mas isso só pode ser obtido se conhecermos o valor da magnetização de 



saturação . No entanto, é mais interessante se obtivermos o valor do 

campo molecular de Weiss utilizando a equação 

 

𝐻𝑤 = 𝜆𝜇 =
𝑅𝑇𝑐

𝜇
 

Para fazer isso, vamos supor que  seja de valor aproximado ao magneton 

de Bohr10 b (9,274 008 99(37)·10-24 J·T-1). Desse modo Hw ≈ RTc/b. Se 

utilizarmos a temperatura crítica do ferro, teremos que Hw ≈ 103 T. 

Agora vamos comparar Hw com o campo Hd que é criado por um dipolo 

magnético, também da ordem do magneton de Bohr, situado a uma 

distância a que corresponde ao espaçamento entre os átomos 

magnéticos em um sólido. Esse campo Hd = 10-7 
𝜇𝐵

2

𝑁𝑎
2𝑎3⁄ . Agora vamos 

supor que a assuma o valor de 2.10-10 m, nesse caso, Hd terá um valor 

aproximado de Hd ≈ 10-1 T. Com esse resultado é possível constatar que 

Hd e muitas vezes menor que Hw. Isso significa que em um material 

ferromagnético a interação entre os dipolos magnéticos não tem como ter 

origem magnética, desse modo só podemos concluir que o 

ferromagnetismo ocorre por uma interação não magnética entre os 

átomos magnéticos. 

Essa interação tem origem quântica e tem por base o princípio de 

exclusão de Pauli. 

Concluindo, para valores de  > 0 teremos o ferromagnetismo, 

caracterizado pelo deslocamento da lei de Curie em um gráfico  x T para 

a direita, e isso é contrário para o antiferromagnetismo. Isso pode ser 

observado nos gráficos abaixo. 

 

 

 

 

 

 

 

 

 
Figura 8 - Paramagnetismo (lei de Curie)                                    Figura 9 - Ferromagnetismo (lei de 
Curie Weiss) 

 

 

 

 

                                                 
10 é uma constante física relacionada com o momento magnético que recebe seu nome 
do físico Niels Bohr. Pode ser expresso em termos de outras constantes elementares 

como 𝜇𝑏 =
𝑒ℏ

2𝑚𝑒
 



 

 

 

 

 

 

 

 

 

 

 

 

em um ponto que se situa a uma distância a que é o espaçamento entre os 

átomos magnéticos em um sólido. Esse campo vale 10-7 
𝜇𝐵

2

𝑁𝐴
2𝑎3⁄  . Agora 

imaginemos que a vale 2.10-10 m. Nesse caso, podemos avaliar que Hd 

será aproximadamente 10-1T. É fácil observar que Hd é muitas vezes 

menor que Hw. Isso significa que em um material ferromagnético a 

interação entre os dipolos magnéticos não é de origem magnética, na 

verdade é originado por uma interação não magnética que ocorre entre 

os átomos magnéticos.  Esse processo é uma interação de origem 

quântica e tem por base o princípio de exclusão de Pauli. 

Como uma primeira aproximação (aproximação qualitativa), a teoria do 

campo médio serve como uma boa forma para descrever esse 

comportamento dos materiais. No entanto, uma análise quantitativa ainda 

apresenta resultados muito simplificados. Se observarmos a curva de 

magnetização em função da temperatura, veremos que há uma 

discrepância no limite das baixas temperaturas. Isso ocorre também 

quando T Tc, M tenderá a zero suavemente, ou seja, sem nenhuma 

descontinuidade, o que caracteriza a transição da fase ferromagnético 

para a fase paramagnética de segunda ordem. Isso está em desacordo 

com os resultados experimentais como susceptibilidade e de calor 

específico.  

No entanto, essa aproximação é razoavelmente seguida para os materiais 

ferromagnéticos não metálicos, tais como o CrBr3, EuO2  e EuS. Para o 

restante os ferromagnéticos metálicos vamos necessitar de um modelo 

alternativo, onde os momentos magnéticos não são mais localizados. 

Nesse caso são momentos magnéticos itinerantes. 

 

1.2.c - Processos de Magnetização 

 

O processo de magnetização envolve mudanças na chamada estrutura de 

domínios – movimento das paredes que separam os domínios – e na 

direção da magnetização de cada domínio – rotação de domínio. Quando 

analisamos um material ferromagnético, pelo ponto de vista 



macroscópico, fazemos a partir das curvas de magnetização (MxH) ou as 

curvas de Indução (BxH). Essas curvas apresentam uma histerese, isso 

faz com que essas curvas recebam o nome de curvas de histerese. A 

figura abaixo mostra uma figura dessas. 

Essas duas curvas, a de magnetização e a de indução, apresentam uma 

pequena diferença entre elas. No caso da curva de magnetização (MxH), 

pode acontecer da amostra se alinhar completamente, nesse caso, todo 

os momentos magnéticos estarão alinhados e isso faz com que o material 

atinja a magnetização de saturação Msat. É importante observar que não 

se trata da magnetização espontânea, que é aquela que aparece em um 

campo nulo e não podemos confundi-la com a magnetização de saturação 

que ocorre em um campo aplicado alto. Partindo de uma amostra 

desmagnetizada, a curva inicial de magnetização tem um formato em S 

com uma determinada inclinação inicial, essa é chamada de 

susceptibilidade inicial.  No caso da curva de indução, é chamado de 

permeabilidade inicial. Existem três regimes diferentes que caracterizam 

a magnetização. 

 

 

 

 

 

 

 

  
 

 

 
                                                                                                                                    Figura 10 - Toróide 

 

 
                    Figura 11 - Curva de histerese                                            

 Para entendermos o processo de magnetização, vamos imaginar um 

toróide circulado por um fio, conforme mostra a figura.  

Assumindo que o material ferromagnético esteja inicialmente 

desmagnetizado, e portanto H = M = 0. Conforme aumentamos o valor de 

H, aumentando a corrente através da bobina e a intensidade magnética 

cresce a partir do ponto O. Os momentos magnéticos irão se alinhar como 

o campo, e causam um aumento de M. Esse aumento, em princípio, é 

quase linear com H, mas tende a saturar quando o alinhamento magnético 

total é atingido. 

A magnetização ira se processar ao longo da trajetória Oa. Se a 

magnetização fosse mais carregada, uma magnetização M = npm seria 



quase atingida correspondendo ao alinhamento de todos os dipolos 

atômicos da amostra no sentido de H. 

Mas vamos imaginar que paramos o processo no ponto a e começamos a 

reduzir gradualmente o campo de H novamente. O problema é que a 

magnetização do material não retrocede na curva Oa. Ao invés disso, ele 

assume a trajetória ab. No instante em que H é reduzido a zero, a curva 

atinge o ponto b. 

Ao atingir esse ponto, apesar da intensidade magnética do material ser 

zero, uma grande proporção dos dipolos atômicos retém seu primeiro 

alinhamento e, portanto, teremos uma magnetização substancial Mr, que 

é denominada magnetização remanescente. Com isso teremos um imã 

permanente que possui uma magnetização capaz de produzir seu próprio 

campo B, mesmo não havendo corrente.  

A partir desse momento, vamos inverter o sentido da corrente e, 

consequentemente, iremos inverter o sentido da intensidade magnética 

H. Com isso o alinhamento magnético irá ser destruído. No ponto c, 

quando é atingido um certo valor negativo Hc, a magnetização será 

completamente removida e, novamente a amostra esta desmagnetizada. 

Conforme seguimos aumentando o valor negativo de H, a magnetização 

irá se tornando negativa ao longo da curva cd, até atingir o ponto d. Nesse 

ponto, o campo H tem a mesma intensidade mas com sinal oposto em 

relação ao que se tinha no ponto a.  

Aumentando o valor de H, teremos o traçado da curva defa, até que, 

finalmente, o campo atinge novamente o campo H em seu primeiro valor 

máximo e o ponto a é recuperado.  

Com isso, podemos perceber que a magnetização não depende 

exclusivamente da intensidade magnética, mas também da “história 

magnética” anterior do material. Esse efeito, como já mencionamos, é 

conhecido como histerese magnética e existe em algum grau, em todas 

as substâncias ferromagnéticas. 

 

 

  
 

 

 

 

 

 
 

 

 

 

 
Figura 12 - Processo de magnetização (1) sem aproximação do imã permanente (2) com 
aproximação do imã 



CAPITULO II 

CARGA ELÉTRICA E CAMPO ELÉTRICO 
 

A ausência da evidência não significa  

evidência da ausência. 

Carl Segan 

 

2.1 CARGA E CAMPO ELÉTRICO 

2.1.1 - Histórico 

 
O conhecimento de carga elétrica não é tão novo quanto se imagina.  

Entre os anos de 640 e 540 antes da nossa era11, Tales de Mileto12 verificou 

que quando ele esfregava um pedaço de âmbar13 em pele de carneiro, 

esse âmbar atraia lascas de madeira, fundamento básico da eletrostática. 

Posteriormente, em seus estudos verificou que pequenos pedaços de um 

tipo especial de pedra, tinham a capacidade de atrair materiais com ferro 

e também eram atraídos por esses materiais, dando origem aos estudos 

sobre magnetismo. 

No século XVI, Willian Guilbert14, demonstrou que outros materiais além 

do âmbar, quando atritados, apresentavam as mesmas propriedades de 

atrair objetos. Descobriu também o comportamento da agulha de uma 

bússola e foi capaz de distinguir exatamente a diferença entre atração 

magnética e atração elétrica. Descobriu a eletrização por indução, que 

ocorre de forma preferencial entre os materiais metálicos. Além disso foi 

o primeiro a caracterizar as diferenças entre condutores e isolantes. 

Já na primeira metade do século XVIII, Stephen Gray15 realizava 

trabalhos que o levaram à descoberta da possibilidade de transferir para 

outros corpos a eletricidade obtida no atrito do vidro. 

Ainda na primeira metade XVIIII Charles François du Fay16 foi o 

descobridor das cargas positiva e negativa, aos quais denominou, 

                                                 
11 Nova forma de se referir aos períodos de Antes e Depois de Cristo 
12 Pensador grego pré socrático, considerado “pai da Ciência” e “pai da Filosofia 
Ocidental”. Suas idéias ajudaram a expandir os horizontes teóricos da astronomia, 
matemática e filosofia. 
13 Resina fossilizada, não se trata de um mineral apesar de ser utilizado varias vezes 
como gema preciosa. 
14 Físico e médico inglês, pertencia a corte da rainha Elizabete I e James I e foi o autor 
do trabalho sobre magnetismo intitulado De magnet, magneticisque corporibus, et 
magno magnete tellure (Sobre os imãs, os corpos magnéticos e o grande imã terrestre. 
15 Tintureiro inglês que tinha como hobby o estudo de Física e Astronomia. Recebeu duas 
vezes a medalha Copley, prêmio dado no domínio das Ciências e a mais alta e mais antiga 
distinção oferecida pela Real Sociedade de Londres para o Melhoramento do 
Conhecimento Natural. 
16 Químico francês descobridor das cargas positiva e negativa o qual utilizou para 
explicar pela primeira vez os fenômenos de atração e repulsão. 



respectivamente de vítreas e resinosa, que se separavam quando 

atritadas e se tornavam neutras quando combinavam. 

Já na metade do século XVIII, Benjamin Franklin17 propôs o modelo de um 

só fluido para os fenômenos elétricos, o conceito de que todos os corpos 

são eletricamente estáveis e, com o atrito perdem ou adquirem cargas 

elétricas se desequilibrando. Dessa forma fundamentou o conceito de 

conservação da carga elétrica, evidenciando que as cargas não são 

criadas e sim transferidas pelo atrito. Explicou que a perda de cargas 

torna o corpo positivo e o acréscimo de cargas o torna negativo. 

Na mesma época dessas descobertas, Franklin, ao notar que bolinhas de 

cortiça, colocadas no interior de um vaso metálico, não eram afetadas 

pela eletricidade, por esse motivo pediu a Joseph Priestley18 que 

investigasse o fato. Priestley chegou a conclusão de que a força entre 

duas cargas variava de acordo com o inverso do quadrado da distância 

entre elas e provou não haver eletricidade no interior de um vaso metálico 

oco, com exceção da região próxima a borda. 

Poucos anos depois das descobertas de Priestley, Charles Augustin 

Coulomb19, aprofundando as descobertas do outro cientista chegou a 

equação para calcular a força de atração ou repulsão entre duas cargas 

elétricas, conhecida como Lei de Coulomb. 

Posteriormente, já no final do século XVIII e início do século XIX, Hans 

Christian Oersted20 realizou um experimento que mudou a maneira como 

os fenômenos elétricos e magnéticos eram observados. Até os 

experimentos de Oersted, fenômenos elétricos e fenômenos magnéticos 

eram desassociados, considerados efeitos independentes. Ao fazer 

circular uma corrente elétrica em um condutor e observar que isso 

provocava uma mudança de direção na agulha de uma bússola, ele 

provou a existência da interação entre fenômenos elétricos e magnéticos, 

dando origem aos estudos de eletromagnetismo. 

Ainda no século XIX, Michael Faraday21lança um livro intitulado A Rotação 

Eletromagnética, base para o entendimento do princípio de 

funcionamento dos motores elétricos.  

                                                 
17 Diplomata, escritor, jornalista, filósofo e cientista norte-americano. Foi um dos 
signatários da Declaração da Independência dos Estados Unidos, do Tratado de Paris e 
da Constituição Americana. Fundou uma Academia na Filadélfia que, mais tarde, se 
tornou a Universidade da Pensilvânia. 
18 Cientista, filosofo, teólogo, educador e politico inglês, descobridor do oxigênio, 
inventor da água carbonatada. 
19 Foi um físico francês que iniciou seus estudos de eletricidade e magnetismo para 
participar de um concurso aberto da Académie des Sciences de Paris sobre a fabricação 
de agulhas imantadas. O resultado desses estudos foram a chamada Lei de Coulomb. 
20 Farmacêutico dinamarquês, posteriormente professor de Física e Química na 
Universidade de Copenhague e secretário vitalício da Academia de Ciências de 
Copenhague, fundador da Sociedade para o Desenvolvimento do Estudo da Ciência e da 
Escola Politécnica.  
21 Físico e químico inglês, realizou trabalhos na área de eletroquímica e consolidou os 
conceitos para a construção de motores elétricos 



Contemporâneo de Faraday, James Clerk Maxwell22 foi o cientista que deu 

forma a moderna teoria eletromagnética que envolve eletricidade, 

magnetismo e ótica. 

No início do século XX, Robert Millikan23 descobriu que a carga elétrica 

possui uma unidade fundamental e que os valores de cargas dos corpos 

são sempre múltiplos inteiros dessa unidade. 

 

2.1.2 - Um pouco de conceitos 
 
Todos os corpos são constituídos de átomos. Na Grécia antiga, filósofos 

gregos, dentre eles Demócrito, passaram a imaginar qual o resultado de 

sucessivos desmembramentos de qualquer tipo de matéria e concluíram 

que após inúmeros processos de divisão, restaria um elemento indivisível 

que denominaram átomo.  

A palavra átomo tem origem na palavra grega átomos, que tem como 

significado: indivisível.  

A primeira proposta concreta para um modelo de átomo, foi proposto por 

John Dalton, químico inglês que chegou a sua teoria à partir de 

experimentos que, infelizmente, não conseguiram revelar claramente a 

natureza do átomo. Sua natureza era capaz de gerar uma série de 

postulados sem que fossem possíveis comprovações. 

A teoria proposta por Dalton propunha que: 

• Os átomos eram maciços com a forma esférica; 

• Eram indivisíveis e indestrutíveis; 

• Um conjunto de átomos com as mesmas propriedades (tamanho e 

massa) compunham um elemento químico; 

• Os átomos de diferentes elementos químicos, apresentam 

propriedades diferentes; 

• Podemos utilizar o peso de dois átomos diferentes para diferenciá-

los 

• Todas as substâncias químicas compostas são formadas por 

diferentes tipos de átomos; 

Dalton nomeou esse modelo como bola de bilhar e criou um sistema de 

simbologia especial para os elementos conhecidos da época. 

 

 

                                                 
22 Físico e matemático escocês, responsável pela redação final dos conceitos da 
moderna teoria do eletromagnetismo que une eletricidade, magnetismo e ótica. 
23 Físico experimental estadunidense trabalhou com cargas elétricas fundamentais e 
efeito fotoelétrico. 
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Figura 13- Representação atômica de Dalton 

Em 1898, o físico inglês Joseph John Thomson apresentou uma nova 

teoria para explicar a estrutura do átomo. Seu novo modelo teve como 

base as descobertas feitas por Geissler e Crookes em seu experimento 

do tubo de raios catódicos.  

O experimento de Geissler consistia de um tubo de vidro contendo um gás 

em baixa pressão e dois eletrodos circulares nas extremidades. Quando 

esses dois eletrodos eram energizados provocavam uma descarga no 

gás. Essa descarga, ao invés de produzir um ruído característico, fazia 

com que o gás ficasse iluminado. Posteriormente, Crookes colocou gases 

mais rarefeitos dentro da ampola de vidro e viu a produção dos raios 

catódicos.   

 

 

 

 

 

 

 

 

 
Figura 14-Ampola de Geissler 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 15- Tubo de raios catódicos de Crookes 

Quando esses raios eram submetidos a um campo, se desviavam, 

comprovando sua natureza negativa. 
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A partir daí Thomson propôs um modelo com a existência de elétrons, ou 

seja, o átomo possuía partículas subatômicas. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 16 - Modelo atômico de Thomson 

Dessa forma Thomson propôs que átomo era uma esfera. No entanto não 

era maciça como era proposto no modelo atômico de Jonh Dalton. Dizia 

também que o átomo era neutro, já que toda matéria também era neutra. 

Sendo assim, ele concluiu que como o átomo apresenta elétrons, que 

possuem cargas negativas, então, deve apresentar também deveria ter 

partículas positivas para que a carga final fosse nula. Ele ainda afirmava 

que os elétrons não estavam fixos ou presos no átomo, e desse modo 

podiam ser transferidos para outro átomo em determinadas condições.  

Além disso, o átomo poderia ser considerado como um fluido contínuo de 

cargas positivas onde estariam distribuídos os elétrons, que possuem 

carga negativa. Ele comparou o seu modelo a um pudim de passas onde 

essas passas representam os elétrons. Por fim, ele explicava que como 

os elétrons que estão espalhados apresentam a mesma carga, existe 

entre eles uma repulsão mútua, o que faz com que estejam uniformemente 

distribuídos na esfera. 

A principal influência da proposta de Thomson foi adicionar alguns 

conceitos sobre átomos que ainda não haviam sido considerados. O 

primeiro conceito novo era a natureza elétrica da matéria pois com o 

entendimento da existência de cargas negativas e positivas o que 

adicionava essa característica elétrica a todas as matérias.  

O segundo conceito era o da possibilidade da divisão do átomo, já que o 

mesmo possuía partículas subatômicas o que associava o terceiro 

conceito que diz respeito a presença de pequenas partículas nos átomos. 

No ano de 1911, Ernest Rutherford, cientista neozelandês, propôs um 

novo modelo para o átomo. Esse novo modelo, também conhecido como 

modelo solar foi considerado o modelo que estimulou toda a evolução da 

ciência que estudava o elemento fundamental de toda a matéria, o átomo. 
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A proposição de Rutherford teve início a partir das propriedades do raio 

X e das emissões radioativas.  

O experimento de Rutherford era constituído de três elementos: o 

primeiro era um emissor de radiação alfa, no caso o polônio, que era 

colocado em um bloco de chumbo que possuía um pequeno orifício pelo 

qual escapava a radiação. O segundo elemento era uma lâmina de ouro, 

extremamente fina posicionada à frente da caixa de chumbo. Finalmente 

o terceiro elemento que era uma placa metálica coberta com material 

fluorescente (no experimento ele utilizou sulfeto de zinco) posicionada 

atrás,  ao lado e um pouco à frente da lâmina de ouro. 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 17 - Experimento de Rutherford 

A radiação emitida pelo polônio se propagou em direção a placa de ouro, 

passando, em grande parte, pela lâmina e atingindo a placa metálica no 

outro lado, evidenciando que boa parte da radiação alfa atravessou o 

ouro sem sofrer desvios consideráveis. Uma fração da radiação foi 

dispersada atrás da lâmina de ouro indo refletir na placa metálica o que 

evidenciou que parte da radiação havia sido desviada pela placa de ouro. 

Finalmente, uma pequena fração da radiação foi refletida pela placa de 

ouro revelando que parte dessa radiação foi refletida pela placa. 

A partir desses resultados, Rutherford concluiu que o fato de boa parte 

da radiação ter passado pela lâmina de ouro significava que os átomos 

possuem grandes espaços vazios (eletrosfera), isto é, regiões incapazes 

de oferecer obstáculos as partículas da radiação alfa. O desvio de parte 

da radiação, que provocou uma difusão na parte posterior da placa 

metálica, ocorreu porque uma pequena quantidade de radiação passou 

próximo a região positiva (núcleo) que foi o responsável por esse desvio. 

Quanto a porção que foi refletida, certamente seria resultado de uma 

parcela da radiação que se chocou com uma área extremamente pequena 

no interior do átomo, o núcleo. 
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Figura 18 - Resultado da emissão alfa no experimento 

Baseado nessas conclusões Rutherford propõe uma estrutura para o 

átomo. A denominação dada ao novo modelo apresentado por ele, teve 

origem na ideia que o átomo possuía uma região central, o núcleo, onde, 

em torno dele, orbitam os elétrons. Analogamente, o núcleo seria como o 

sol no sistema solar e os planetas seriam os elétrons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 19 - esquema do modelo de Rutherford 

Dando continuidade ao trabalho de Rutherford, o físico dinamarquês Niels 

Bohr tentou explicar alguns erros no modelo anterior. Para isso ele 

sugeriu que o átomo possuía uma energia quantizada, ou seja, cada 

elétron só pode ter determinada quantidade de energia. 

Para explicar isso o modelo de Bohr representava níveis de energia para 

os elétrons. Nesse caso, o modelo onde cada elétron possui a sua própria 

órbita e com quantidades de energia já determinadas.  
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O grande problema é que as leis da Física Clássica não conseguem 

explicar esse modelo. Esse ocorre porque quando um elétron salta de um 

nível menor para um nível mais elevado, ocorre uma absorção de energia 

e, quando esse elétron retorna para um nível menor, ocorre uma emissão 

de radiação em forma de luz.  

Bohr organizou os elétrons em camadas, também conhecidos como níveis 

de energia. Cada camada recebeu um nome e só pode ter um número 

máximo de elétrons. No modelo de Bohr existem sete camadas ao redor 

do núcleo: K,L,M,N,O,P,Q.  

A  tabela abaixo apresenta o nome das camadas, seu número quântico e 

o número máximo de elétrons em cada uma destas camadas. 
 

  N° QUÂNTICO N ° MÁXIMO DE é 

K 1 2 

L 2 8 

M 3 18 

N 4 32 

O 5 32 

P 6 18 

Q 7 2 

Tabela 1 - Camadas, número quântico e número máximo de elétrons em cada camada. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 20 - Distribuição dos elétrons nas camadas de um átomo 

A última camada de um átomo é conhecida como camada de valência. A 

camada de valência recebe elétrons no nível de maior número quântico 



principal ou secundário na distribuição eletrônica. São os elétrons 

contidos nas camadas de valência que participam das ligações químicas. 

Na primeira metade do século XX, o cientista norte americano, Linus 

Pauling, aprofundou a ideia da distribuição dos elétrons no átomo, 

apresentou o conceito da distribuição eletrônica de Linus Pauling. Esse 

método especifica como ocorre a distribuição dos elétrons na eletrosfera. 

Na verdade, o método foi desenvolvido pelo físico alemão Erwin Madelung 

que provou experimentalmente que os elétrons são dispostos nos átomos 

em ordem crescente de energia. Ele baseou seus estudos nos conceitos 

apresentados por Rutherford e Bohr. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 21 - Diagrama de Pauling 
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Uma das utilizações da camada de valência é a determinação de um 

material é condutor, semicondutor ou isolante. 

Os materiais condutores possuem um excedente de elétrons em sua 

camada de valência. Nesse caso, os elétrons se encontram nas camadas 

de valência mais distantes do núcleo e, portanto, necessitam de uma 

energia menor para que sejam retirados dessa camada. Essa facilidade 
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de retirada dos elétrons faz com que eles sejam chamados de elétrons 

livres. Materiais metálicos normalmente são bons condutores. 

No caso dos materiais isolantes, ou dielétricos, os elétrons da camada de 

valência sofrem forte influência de atração do núcleo, sendo muito difícil 

a extração de elétrons dessas camadas. 

No caso dos elementos semicondutores o comportamento de condução 

ou resistência será ditado pelas condições físicas aos quais o material é 

submetido. 

Todos os materiais isolantes possuem uma característica chamada 

RIGIDEZ DIELÉTRICA, ou seja, o valor máximo de campo elétrico que elas 

podem suportar sem perder sua característica de isolante. Essa rigidez 

dielétrica é dada em Kv/mm (quilo volts24 por milimetro). 

 

Partícula 
Massa 

(grama) 

Massa 

relativa 

Carga elétrica 

(Coulomb) 

Carga 

líquida 

Próton (+) 1,7.10-24 1 +1,6.10-19 +1 

Nêutron (0) 1,7.10-24 1 0 0 

Elétron (-) 9,1.10-28 1/1840 -1,6.10-19 -1 
Tabela 2 - Tabela de caracterização dos elementos componentes de um átomo 

2.1.3 - O Conceito de Corpo Eletrizado 
 

2.1.3.a - Eletrização por atrito 
 
Como já vimos, todos os materiais são compostos de átomos e, por sua 

vez, esses átomos possuem um núcleo com prótons e nêutrons e uma 

coroa, com elétrons que circundam em torno do núcleo.  

Na natureza, todos esses corpos possuem em seus átomos o mesmo 

número de prótons e de elétrons, sendo assim, dizemos que esses corpos 

estão em equilíbrio eletrostático ou com carga elétrica nula. 

Como já vimos também, Tales de Mileto, observou que o âmbar atritado 

com a pele de carneiro, passava a ter a propriedade de atrair pequenos 

materiais. Mas o que ocorria durante o processo de atrito para que isso 

pudesse acontecer? 

Se pegarmos dois materiais quaisquer, mesmo que isolantes, e 

começarmos um processo de atrito entre os dois, verificaremos que os 

elétrons dos átomos mais externos trocam cargas elétricas. Esse 

fenômeno recebe o nome de triboelétrico. No caso de atritarmos vidro em 

um pedaço de lã, veremos que o vidro irá adquirir uma carga positiva 

enquanto a lã adquire uma carga negativa. 

 

 

 

                                                 
24 1 Kv equivale a 1000 volts 



 

 

 

 

 

 

 

 
Figura 22 - exemplo de eletrização por atrito - pente no cabelo 

No exemplo acima, o atrito de um pente de plástico com o cabelo produz 

a eletrização dos dois e o pente passa a atrair pequenos pedaços de papel 

colocados sobre uma superfície qualquer. 

Além da eletrização por atrito, outras formas são, eletrização por contato 

e eletrização por indução. 

O processo de eletrização por atrito foi melhor explicado a partir dos 

estudos de Enrico Fermi. Ele mostrou que durante o atrito ocorre uma 

variação de temperatura que modifica a distribuição de energia dos 

elétrons o qual, a partir do qual ocorre a alteração do potêncial de 

contato. 

 

2.1.3.b Eletrização por contato 
 
Na eletrização por contato, um corpo é carregado com cargas negativas, 

a partir de um processo qualquer de eletrização. Estando esse corpo 

carregado, ao encostarmos o mesmo em um segundo corpo, 

imediatamente cargas contidas no primeiro elemento irão migrar para o 

segundo tornando-o também carregado com cargas negativas, conforme 

mostra o esquema da figura 11. Esse processo foi entendido a partir das 

experiências de Alexandre Volta que verificou que quando dois metais 

condutores diferentes se unem surge uma pequena diferença de 

potêncial elétrico denominado potêncial de contato. 

Uma análise mais aprofundada, já migrando para a área da física quântica 

podemos verificar que essa diferença de potêncial que surge entre os 

dois materiais é inerente ao tipo de material que se une e a temperatura 

que envolve essa união. Isso ocorre porque a diferença de potêncial que 

irá surgir está relacionada com o potêncial químico de cada um dos 

materiais, ou seja, depende do número de elétrons que cada um dos 

elementos possui em sua camada de valência. Nesse caso, quando dois 

materiais diferentes são unidos, um deles irá ceder elétrons e o outro irá 

receber esses elétrons provocando uma diferença de potêncial entre os 

dois materiais. 

 

 



 

 

 

 

 

 

 

 

 

 
Figura 23 - Processo de eletrização por contato 

 

O experimento de Alexandre Volta provou essa particularidade e ordenou, 

pela primeira vez, uma sequência ordenada de metais, onde cada um era 

caracterizado por um valor denominado valor galvânico. Entretanto, foi a 

teoria de Enrico Fermi, que possibilitou um melhor ordenamento dos 

materiais em níveis de energia e que possibilitou estabelecer as relações 

entre esses materiais metálicos para determinar a capacidade de 

geração de um potêncial de junção para cada tipo de combinação 

metálica. 

 

 Metal Potêncial do Eletrodo  

MENOS 

NOBRES 

Magnésio - 2,340 

ANÓDICOS 

Alumínio - 1,670 

Zinco - 0,762 

Cromo - 0,710 

Ferro - 0,440 

Cádmio - 0,402 

Níquel - 0,250 

Estanho - 0,135 

Chumbo - 0,126 

MAIS 

NOBRES 

Cobre + 0,345 

CATÓDICOS Prata + 0,800 

Ouro + 1,680 

Tabela 3 - Série Galvânica dos Metais 

 

2.1.3.c Entendendo a série triboelétrica 

 
Foi Benjamin Franklin, em seus estudos sobre eletricidade, mais 

especificamente nos estudos sobre a “produção” de cargas elétricas por 

atrito e seguindo a convenção de sinais de cargas, por ele mesmo 

proposto, que mostrou que, ao se friccionar vidro com seda, alguns 

elétrons do vidro passam para a seda, deixando-a negativa enquanto o 

vidro fica positivo. Da mesma forma, ao atritarmos uma pele de coelho ou 
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seda com âmbar, este ficará negativo, enquanto a pele ou a seda ficarão 

positivos. 

O estudo da interação entre variados materiais levou ao estabelecimento 

de uma lista ordenada desses materiais, sejam eles, condutores ou 

isolantes. Essa lista, como já comentamos, é conhecida como série 

triboelétrica. 

A palavra triboelétrica tem origem grega, pois tribo em grego significa 

atrito. 

A tabela abaixo apresenta esta série. 

 

Pele humana seca  

 

 

   

Alumínio  Isopor  

 

 

 

+ 

Amianto Papel Filme de PVC 

Couro Algodão 
Neutros 

Estanho 

Pele de Coelho Aço Prata 

Vidro Madeira  

 

 + 
 

Borracha sintética 

Cabelo humano Ambar Poliuretano 

Nylon Borracha dura Polietileno 

Lã Níquel e Cobre PVC 

Chumbo Latão e Prata Teflon 

Pele de gato Ouro e Platina Borracha de silicone 

Seda Poliester  

Tabela 4 - Série Triboelétrica 

 

2.1.3.d Eletrização por Indução 

 
Chamamos de eletrização por indução o processo em que atribuímos 

carga elétrica a um objeto a partir de um segundo objeto que está 

carregado. Esse processo ocorre baseado no conceito de atração e 

repulsão de cargas elétricas.  

O corpo que está inicialmente carregado recebe o nome de indutor 

enquanto o corpo que irá receber a carga é denominado de induzido. O 

processo ocorre em 4 etapas. 

A primeira etapa consiste em aproximar o corpo carregado (indutor) do 

corpo que se pretende carregar (induzido). Ao aproximarmos um corpo 

do outro, pelo princípio de atração e repulsão das cargas elétricas, a 

carga existente no indutor, começa a repelir as cargas iguais e atrair as 

cargas diferentes existentes no corpo. Lembre-se que todos os corpos em 

equilíbrio possuem um igual número de prótons e elétrons. 

Na segunda etapa, ligamos o induzido à terra, mantendo-o aproximado do 

indutor. Nessa etapa, a ligação terra irá complementar a carga total do 

induzido. 

Na terceira etapa desligamos e fio de aterramento e, posteriormente, 

afastamos o indutor do induzido. 

Na etapa final teremos o corpo induzido completamente carregado. 

 



 

  

 

 

 

 

 

 

 

 

 
Figura 24 - Processo de Eletrização por indução 

 

O processo de eletrização por indução, no caso de um corpo dielétrico, o 

máximo que irá acontecer será uma reorientação dos dipolos elétricos. 

Entretanto, não há um deslocamento de cargas ao longo da rede de 

átomos quem compõe o corpo. Na figura 12 podemos ver o que isso 

acontece. 

 

 

 

 
Figura 25 - Eletrização por indução de um corpo dielétrico 

No caso do corpo induzido ser um material condutor, o corpo eletrizado, 

ao se aproximar do induzido, começa a atrair as cargas de valor contrário 

e irá repelir as cargas de valor igual. Nesse momento ligamos o induzido 

à terra que irá anular as cargas que foram repelidas pelo indutor. Quando 

o sistema atinge o equilíbrio eletrostático (momento em que as cargas 

param de se movimentar pelo fio que está ligado à terra). 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 26 - Processo de eletrização por indução 
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2.1.4 - Carga Elétrica 
 
Com tudo o que já vimos, vamos tratar então sobre o elemento 

fundamental da eletricidade, o elétron, mais especificamente a carga 

elétrica. 

Mas o que é carga elétrica? 

A carga elétrica é a propriedade física da matéria. Essa carga pode ser 

positiva ou negativa. Pela teoria mais utilizada na maior parte dos estudos 

de Física, as menores partículas portadoras de carga elétrica são os 

prótons e os elétrons. Isso faz com que a carga elétrica possua um valor 

mínimo (carga de 1 elétron), sendo assim, a carga de um corpo é um 

múltiplo da carga do elétron. Desse modo dizemos que a quantidade de 

carga elétrica de um corpo é quantizada. Considerando a lei de Lavoisier, 

“na natureza nada se cria, nada se destrói, tudo se transforma”, sabemos 

que as cargas elétricas não surgem e nem são destruídas e, portanto, se 

conserva. 

As partículas, que podem ser eletricamente carregadas, são conhecidas 

como portadoras de cargas elétricas. Nos elementos metálicos sólidos, o 

portador de carga elétrica negativa é o elétron. No caso dos fluídos, o 

portador de carga elétrica positiva é o cátion (íons que excesso de 

prótons). A física moderna mostrou que, ao contrário do elétron, o próton 

não é uma partícula elementar pois eles são compostos de quarks. 

 
 

Tabela 5 - Dados das partículas do átomo 

Quando um corpo está carregado eletricamente, seja positiva ou 

negativamente, dizemos que esse corpo está ionizado. Ou seja, o 

equilíbrio do átomo é quebrado. Quando um átomo está em equilíbrio, o 

número de prótons e número de elétrons é o mesmo. Entretanto, quando 

um processo qualquer de eletrização retira ou cede um elétron para um 

corpo ou uma partícula, é gerado um processo de desequilíbrio elétrico. 

Como já dissemos existe uma quantidade mínima de carga que é dada 

pelo valor da carga do elétron: e 

Qualquer carga “q” deve ser um valor inteiro de cargas elementares: 

 

q = ±ne , n = 1,2,3, … 

 

e = 1,60 × 10−19C 

Partícula Massa 
(grama) 

Massa 
relativa 

Carga elétrica 
(Coulomb) 

Carga 
líquida 

Próton (+) 1,7.10-24 1 +1,6.10-19 +1 

Nêutron (0) 1,7.10-24 1 0 0 

Elétron (-) 9,1.10-28 1/1840 -1,6.10-19 -1 



 

2.1.5 - Campo elétrico 
 
Sempre que temos uma carga elétrica ou uma variação, no tempo, de um 

campo magnético, estaremos na presença de um campo elétrico. 

Analisando os casos estáticos (referentes a cargas elétricas 

estacionárias), veremos que na presença de um campo elétrico formado 

por um conjunto de cargas estacionárias, qualquer carga que seja 

aproximada desse campo sofrerá a ação do mesmo através da força 

elétrica. 

A intensidade dessa força elétrica (ou vetor força elétrica) é dado pela 

equação: 

 

F⃗ =  E⃗⃗ . q 
 

onde : F – é o vetor FORÇA ELÉTRICA;                    q – carga elétrica de prova 

             E – é o vetor CAMPO ELÉTRICO; 

 Carga elétrica de prova é um corpo com carga muito pequena. Esse valor 

deve ser muito pequeno para garantir que o campo elétrico gerado por 

essa carga, não influencie de forma significativa a distribuição de carga 

que cria o campo elétrico que está sendo analisado. 

A partir dessa carga de prova, é possível determinar a característica do 

campo analisado. Ou seja, se aproximamos de um campo uma carga de 

prova positiva e essa sofre uma força de repulsão, é possível dizer que 

estamos na presença de um campo elétrico positivo. Se ela for atraída, 

podemos afirmar que se trata de um campo elétrico negativo. Não 

esquecer que cargas de mesmo sinal se repele e de sinais contrários se 

atraem. 

O campo elétrico é composto por um conjunto de linhas de força que tem 

origem no polo positivo e se deslocam até o polo negativo. Uma forma 

simplificada de representação dessas linhas de campo para possibilitar a 

visualização da direção e do sentido desse campo. Essa representação, 

obedecendo uma convenção, permite determinar de forma comparativa a 

diferença de intensidade de dois campos diferentes. Pela convenção, 

campos mais intensos possuem um número maior de linhas de campo e 

essas linhas ficam mais próximas umas das outras. Campos menos 

intensos, possuem menos linhas e mais distantes umas das outras. 

 

 

 

 

 
Figura 27 - Carga Pontual (positiva) 

+

Nas cargas pontuais, as linhas de campo se 

estendem até o infinito (cargas positivas), ou 

se originam no infinito (cargas negativas). 



 

 

 

 

 

 
Figura 28 - Duas cargas pontuais de mesmo sinal 

 

 

 

 

 
Figura 29 - Duas cargas pontuais de sinais diferentes 

Para melhor entender o comportamento das cargas elétricas Coulomb 

passou a estudar e experimentar as reações de corpos carregado 

eletricamente. 

 

2.1.6 - Lei de Coulomb 
 
Entre 1785 e 1791, Charles Augustin de Coulomb, pesquisou as 

interações entre cargas elétricas. Ele utilizou um equipamento chamado 

balança de torção.  

Balança de torção é um equipamento, construído por Coulomb e podia 

fazer medições da força de atração ou repulsão entre duas esferas 

eletricamente carregadas. 

A balança consiste de uma haste suspensa por um fio tendo em cada uma 

das extremidades uma esfera. Uma terceira esfera presa em uma haste e 

também eletrizada é aproximada das outras duas. Devido a força elétrica 

que ocorre pela interação entre as esferas carregadas, a haste gira e 

provoca uma torção no fio. Quando medimos o ângulo de giro, Coulomb 

conseguia determinar a força entre as esferas. 

Coulomb repetiu diversas vezes o experimento e acabou concluindo que 

a força elétrica é inversamente proporcional ao quadrado da distância 

entre as duas esferas. Ele também concluiu que a força elétrica era 

proporcional ao produto das cargas elétricas das duas esferas. 

Com isso, ele determinou a equação da força elétrica exercida pela 

interação entre duas esferas carregadas. 

 

F = k
|q1q2|

r2
 

++ Nesse caso as linhas 

de campo, mostram a 

repulsão das duas 

cargas. Nas áreas em 

branco o campo 

elétrico é nulo. 

+ -
As cargas de sinais opostos 

se atraem, portanto as 

linhas de campo partem da 

carga positiva para a carga 

negativa.  
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Figura 30 – Balança de Torção de Coulomb 

 

2.1.7 - Princípio da Superposição 
 
Até agora analisamos a interação entre duas cargas elétricas. A partir de 

agora vamos analisar o que ocorre quando mais de duas cargas 

interagem.  

Quando duas cargas interagem, surge um par conjugado de forças. 

Sendo assim, quando várias cargas interagem um conjunto de forças atua 

sobre a carga de prova e, consequentemente o deslocamento dessa 

carga terá a intensidade e a direção da força resultante desse conjunto. 

 

 

                                                           

 

 

 

 

 

Figura 31 – Representação esquemática do Princípio da Superposição e sua resolução vetorial 
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O princípio da superposição diz que a força resultante em uma partícula 

que está submetida a ação de um número N de outras partículas é o 

somatório das forças que surgem entre cada uma das partículas do 

conjunto, sobre a partícula que está sendo analisada. 

Desse modo: 

 

F1234 = ∑Fn

4

n=1

→ F1234 = (−F1) + F2 + F3 + F4        (1) 

 

Não podemos esquecer que essas forças são vetores, sendo assim, 

possuem modulo e direção. Sendo assim, e sabendo que a força elétrica 

é dada pela equação: 

F = K0

Q1Q2

d2
       (2) 

 

Então podemos escrever a equação geral do princípio da superposição 

como: 

 

K0

Q1Q5

d15
2 + K0

Q2Q5

d25
2 + K0

Q3Q5

d35
2 + K0

Q4Q5

d45
2  

 

K0 (
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d15
2 +
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2 +
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d45
2 ) 

 

K0Q5 (
Q1

d15
2 +

Q2

d25
2 +

Q3

d35
2 +

Q4

d45
2 ) 

 

Se substituirmos os índices 1,2,3 e 4, por “j” e o índice 5 por “i” podemos 

escrever a equação como: 

 

K0Qi ∑
Qj

dji
2

n

i≠j→j=1

 

 

Mas K0, a constante eletrostática do meio é dada por  

 

𝐾 =
1

4𝜋𝜀0
 



Sendo assim, podemos escrever a equação do princípio da superposição 

como: 

 

𝐹𝑟𝑒𝑠 =
𝑄𝑖

4𝜋𝜀0
∑

𝑄𝑗

𝑑𝑗𝑖
2

𝑛

𝑖≠𝑗→𝑗=1

 

 

O entendimento do princípio da superposição é muito importante para o 

entendimento dos processos eletromagnéticos que iremos estudar mais 

adiante. 

Em eletricidade, o ente “carga elétrica” é o elemento fundamental. 

Entretanto, com exceção de análises teóricas, ele não é analisado 

individualmente. Normalmente, o comportamento do fluxo de cargas 

elétricas é analisado em condutores e componentes elétricos e 

eletrônicos. 

Vamos analisar o comportamento do campo elétrico no principal 

elemento utilizado em eletricidade, o condutor. 

Qualquer material condutor é caracterizado por ter um chamado “elétron 

livre” que nada mais é que um elétron na última camada de valência. 

No caso, dos átomos que compõe o material condutor, os elétrons 

situados na última camada de valência necessitam pouca energia para 

serem retiradas do átomo. 

Um condutor em equilíbrio eletrostático quando não há um movimento 

organizado de cargas. Isso pode ocorrer mesmo quando o condutor está 

submetido a um campo elétrico externo. 

Em um condutor em equilíbrio eletrostático, tem em seu interior, um 

campo elétrico nulo. 

A existência de um campo elétrico no interior de um condutor significa a 

existência de um fluxo organizado de cargas. Esse fluxo organizado de 

cargas surge com a finalidade de anular o campo elétrico interno. 

Um condutor submetido a um campo elétrico externo, tem suas cargas 

livres reorganizadas de tal forma a anular o campo elétrico que surge no 

interior do condutor.  

Por sua vez, a orientação dessas cargas, faz surgir um campo elétrico de 

intensidade igual e sentido oposto ao campo elétrico externo. 

Utilizando o princípio da superposição, na região interna do condutor os 

campos são somados vetorialmente e o resultado é um campo nulo. 

Como o campo elétrico no interior do condutor é nulo, significa que a 

diferença de potêncial elétrico entre a superfície e o volume do condutor 

também é nulo. 

Em um condutor que se encontra em equilíbrio eletrostático o campo 

elétrico é perpendicular a superfície do condutor. Essa condição é 



importante por que, caso o campo não fosse perpendicular à superfície 

seria possível decompor esse campo em dois vetores, um deles 

perpendicular à superfície e outro paralelo a ela. Essa componente 

paralela seria responsável pelo surgimento de um movimento de cargas 

elétricas no condutor, desfazendo a condição de equilíbrio eletrostático. 

 

 

 

 

 

 

 

 

 

 

 
Figura 32 - (1) Condutor em equilibrio eletrostático; (2) Condutor atravessado por campo elétrico 
externo; (3) Reorganização das cargas com surgimento de um campo contrário; (4) equilíbrio 
eletrostático atingido pela equiparação dos campos externo e interno. 

 

2.1.8 - Comportamento de condutores e isolantes submetidos à 

um campo elétrico 

 

2.1.8.a Condutores 

 
Alguns materiais como o cobre, o ouro, o alumínio e o ferro, possuem a 

característica de possuir elétrons situados nas suas últimas camadas de 

valência. Isso significa que o elétron da última camada é mantido no 

átomo por uma força de atração baixa. Isso significa que o elétron esta 

ligado ao átomo de maneira ténue e, portanto, uma pequena quantidade 

de energia é capaz de fazer esse elétron migrar de um átomo para outro. 

Essa característica é uma peculiaridade dos materiais que chamamos de 

condutores. Esses materiais apresentam, caracteristicamente, 1, 2 ou 3 

elétrons na sua camada de valência. 

Na tabela periódica esses materiais se encontram no centro da mesma e 

são conhecidos como metais de transição. O nome transição é, de certo 

modo, bem apropriado, pois esses elementos dividem os elementos 

metálicos que ficam à esquerda da tabela e os materiais não metálicos, 

que ficam a direita.  

Segundo a União Internacional de Química Pura e Aplicada, os metais de 

transição são “elementos cujo átomo possui um subnível d incompleto ou 

que possam vir a formar cátions com um subnível d incompleto. A maioria 

desses elementos possui características semelhantes aos metais, tais 

como, boa condutibilidade térmica e elétrica e brilho. O ponto de fusão e 
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a dureza variam entre os materiais dessa categoria, entretanto, todos 

possuem maior dureza, ponto de fusão e ponto de ebulição, maiores que 

os metais alcalinos e que os metais alcalino-terrosos. 

 

2.1.8.b Isolantes 
 
Um segundo grupo de materiais, é constituído de elementos que 

possuem, na sua camada de valência, 5, 6, 7 ou 8 elétrons. Isso 

caracteriza um conjunto de materiais que necessitam de valores, as vezes 

astronômicos (depende do material), de energia para que um elétron de 

sua camada de valência possa se deslocar para outro átomo. 

Esses materiais são conhecidos como isolantes ou dielétricos. Quando 

aplicamos um campo elétrico à um material dielétrico, este se polariza. 

Essa polarização, diferentemente dos condutores não provoca a 

liberação dos elétrons da camada de valência mas surgem momentos de 

dipolos. O somatório desses dipolos origina a polarização do material, 

tanto interna quanto externamente. 

 

2.1.8.c Semicondutores 

 
O terceiro grupo de materiais que nos interessa em eletricidade e 

magnetismo é o conjunto de elementos que possuem 4 elétrons em sua 

camada de valência.  Esses materiais, dependendo de uma série de 

condições, podem se comportar como isolantes ou então como 

condutores. 

 

2.1.8.d Outros parâmetros de caracterização 

 
Nem só o número de elétrons da camada de valência caracteriza o 

comportamento elétrico de um material. Determinados materiais, 

submetidos à condições extremas de temperatura, alteram suas 

características.  

Alguns isolantes, submetidos à altas temperaturas, aumentam sua 

condutibilidade. Isso ocorre porque, o aumento da temperatura ocasiona 

um aumento na agitação das moléculas do material. Isso facilita o 

processo de liberação dos elétrons da camada de valência provocando o 

surgimento de uma corrente elétrica. 

Outros materiais, quando associados sob certas condições de pressão e 

temperatura e, posteriormente submetido à temperaturas abaixo de zero, 

tornam-se supercondutores, com valores de resistividade inferiores aos 

melhores condutores existentes na natureza. 

Como já vimos, um material condutor, submetido à um campo elétrico fará 

surgir em seu interior um campo de sentido contrário ao campo externo. 



O surgimento desse campo contrário poderá formar o equilíbrio 

eletrostático do material. 

No caso de materiais isolantes serem mergulhados em um campo 

elétrico, fará surgir em seu interior um dipolo que ser orientará conforme 

a disposição do campo. 

 

 

 

 

 

Figura 33 - Condutor atravessado por Campo Elétrico 

 

 

 

 

 
Figura 34 - Isolante atravessado por Campo Elétrico 

 

2.1.9 - Distribuição contínua de carga 
 
Vamos imaginar um corpo ou região do espaço, e dentro desse corpo um 

ponto P com um vetor posição r . Esse vetor é produzido por uma carga 

distribuída de forma continua dentro de uma determinada região do 

espaço. 

Dividindo essa região em n subdivisões, tão pequenas que possam ser 

consideradas cargas pontuais. Se o vetor posição de cada uma dessas 

cargas for denominado de r’ e a carga pontual ∆q’, então, o vetor que tem 

origem no ponto de carga analisado, indo até o ponto P, terá seu modulo 

e sentido dados por ri = r – r’ e a sua direção, ou versor, será dada por: 

𝑟𝑖̂ =
(𝑟 − 𝑟′⃗⃗  ⃗)

|𝑟 − 𝑟′⃗⃗  ⃗|
 

 

 

 

 

 

 

Figura 35 - Carga distribuida em uma região 
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Utilizando a equação do campo para uma carga pontual, obteremos a 

equação do campo para uma carga distribuída. 

 

𝐸⃗ ≈ ∑
𝑘∆𝑞′

𝑟𝑖
2 𝑟𝑖̂

𝑛

𝑖=1

= 𝑘 ∑
∆𝑞′(𝑟 − 𝑟′⃗⃗  ⃗)

|𝑟 − 𝑟′⃗⃗  ⃗|
3

𝑛

𝑖=1

 

 

Quando o limite tende a  , ou seja n  , a aproximação da fórmula acima 

torna-se exata de tal forma que torna todas as cargas ∆q’ 

infinitesimalmente pequena (dq’) e a soma nesse limite é definido pela 

integral. 

 

𝐸⃗ = 𝑘 ∑
∆𝑞′(𝑟 − 𝑟′⃗⃗  ⃗)

|𝑟 − 𝑟′⃗⃗  ⃗|
3 = 𝑘 ∫

𝑟 − 𝑟′⃗⃗  ⃗

|𝑟 − 𝑟′⃗⃗  ⃗|
3 𝑑𝑞′

𝑅𝑒𝑔𝑖ã𝑜

∞

𝑖=1

 

 

Essa integral pode ser utilizada em uma linha, uma superfície ou um 

volume dependendo da forma como a carga é distribuída. 

Vamos analisar cada um dos três casos para determinar o 

comportamento do campo. 

 

2.1.9 a – Carga distribuída em uma linha 

 

Nesse tipo de situação a carga diferencial dq’ em um fio no espaço entre 

(r’) e (r’ + dr’) é diretamente proporcional ao comprimento ds’, sendo 

assim: 

𝑑𝑞′ =  𝜆(𝑟′⃗⃗  ⃗)𝑑𝑠′ 

Nesse caso, o elemento 𝜆(𝑟′⃗⃗  ⃗) é uma função que depende da posição do fio 

que recebe a denominação de carga linear. Essa carga linear é igual a 

carga por unidade de comprimento do fio. 

 

 

 

 

 

 

 

 

 

 
Figura 36 - Carga distribuída em uma linha 
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A equação vetorial de uma curva contínua é dada por uma expressão para 

r’ que é uma função de um parâmetro real u. Esse parâmetro determina a 

posição dos pontos da curva.  

Para cada valor atribuído ao parâmetro u é determinada a posição de um 

ponto da curva. Esse valor pode ser um ângulo, um comprimento ou um 

instante de tempo. 

Como esse parâmetro u sofre um incremento infinitesimal, isso gera, no 

vetor r , também um incremento dr. O comprimento infinitesimal ds , é 

igual ao módulo do vetor dr. 

Para determinar o valor da carga distribuída, aplicamos a integral de linha 

ao longo do curso C para a fórmula geral do campo. Não esqueça que a 

integral de linha nada mais é que uma integral para uma só variável. 

 

𝐸⃗ ≈ 𝑘 ∫ 𝜆(𝑟 ′)
𝑟 − 𝑟′⃗⃗  ⃗

|𝑟 − 𝑟′⃗⃗  ⃗|
3 𝑑𝑠′

𝐶

 

 

Se observarmos a equação acima, veremos que não há uma igualdade (=), 

mas sim uma aproximação (≈). Isso ocorre porque um fio, não é apenas 

uma curva, mas sim o sólido extremamente fino na sua relação entre 

espessura e comprimento. Desse modo, quanto menor for a secção 

transversal desse condutor, mais próximo da igualdade ficará a 

expressão. 

Em um condutor qualquer, na realidade, existem vários caminhos 

possíveis para a análise do percurso da corrente. Desse modo, 

costumamos utilizar o percurso médio para o cálculo da integral.  

 

2.1.9.b Carga distribuída em uma superfície 

 

Vamos imaginar agora uma lâmina extremamente delgada. Para a 

determinação da carga distribuída nessa lâmina utilizaremos a integral de 

superfície.  

A integral de superfície é uma integral dupla, ou seja, é uma integração 

de duas variáveis. 

Para esses casos a carga infinitesimal dq’ em uma determinada região da 

lâmina estará relacionada com uma chamada carga de superfície . 

Desse modo : 

 

𝑑𝑞′ = 𝜎(𝑟′)𝑑𝐴′ 

 



Nesse caso dA’ é o elemento diferencial da área da região25. O elemento 

(r’) é a carga por unidade de superfície em uma posição r sobre a lâmina 

analisada. 

Para esse caso, aplicaremos uma integral dupla à equação geral do carga 

distribuída e teremos. 

 

𝐸⃗ ≈ 𝑘 ∬(𝑟′)
𝑟 − 𝑟′⃗⃗  ⃗

|𝑟 − 𝑟′⃗⃗  ⃗|
3 𝑑𝐴′

𝑆

 

 

Assim como na linha, cujo valor é aproximado, para a superfície o mesmo 

raciocínio é válido, nesse caso porque não existe uma superfície com 

espessura zero. Na verdade as lâminas reais, por mais finas que seja, 

ainda ocupam um volume, sendo necessário determinar um caminho 

médio para toda a superfície da lâmina. 

 

 

 

 

 

 
Figura 37 - Carga distribuida em uma superfície 

Note que exemplificamos na nota de rodapé sobre uma integral dupla que 

ela seria a integração nos eixos x e y, entretanto, esses eixos poderão ser 

quaisquer dois que definam a superfície. 

Nesse caso, a equação vetorial de uma expressão para o vetor posição r’, 

será dada em função de dois parâmetros reais, u e v. Sendo assim, o 

elemento diferencial da superfície, dada por dA’, será igual a área da 

superfície que é descrita pelo vetor r’ quando esse o parâmetro u é 

incrementado de du e o parâmetros v é incrementado de dv. 

Na maioria dos casos (superfícies planas), os parâmetros u e v são 

substituídos pelos eixos cartesianos, x e y. Entretanto, em alguns casos é 

mais interessante utilizarmos a notação polar, com r e . 

 

2.1.9.c Carga distribuída em um volume 

 

Na verdade, esse é o caso mais comum dos três analisados. Isso por que, 

na realidade, todos os objetos que analisamos são volumétricos, por 

menor que sejam algumas de suas dimensões. Esse é o motivo pelo qual 

                                                 
25 dA’ é o resultado de um elemento diferencial composto por dX’ x dY’ 
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nos dois casos anteriores, as equações são uma aproximação da 

realidade. 

No caso de volumes, a carga infinitesimal distribuída em um volume 

infinitesimal da sub-região analisada será dada por: 

 

𝑑𝑞′ = 𝜌(𝑟′)𝑑𝑥′𝑑𝑦′𝑑𝑧′ 
 

Nesse caso, o elemento (r’), é denominado de carga volumétrica no 

ponto dado pelo vetor r’, representando a carga distribuída por unidade 

de volume. 

Por analogia, podemos dizer que nesse caso, a integral será tripla, ou 

seja: 

𝑑𝑞′ = 𝑘 ∭𝜌(𝑟′)
𝑟 − 𝑟′⃗⃗  ⃗

|𝑟 − 𝑟′⃗⃗  ⃗|
3

𝑉

𝑑𝑥′𝑑𝑦′𝑑𝑧′ 

Onde V é o volume onde a carga está. 

Nos casos onde existe uma simetria na forma como a carga está 

distribuída no espaço, a solução analítica dessa integral tripla é mais 

simples. Nos demais casos, lançamos mão de outros métodos que tornam 

a solução dessas integrais triplas mais simples do que o processo 

analítico convencional.  

Esses métodos são chamados métodos numéricos de solução de 

integrais triplas e podem ser: o método de Newton-Coates, o método da 

Quadratura de Gauss; e o método das Integrais Impróprias. 

Normalmente esses métodos requerem soluções computacionais pois 

são todas recursivas.  

 

 

2.2 FLUXO ELÉTRICO 
 

2.2.1 - O que é Fluxo Elétrico? 
 

Sempre que trabalhamos com distribuições contínuas de cargas e essa 

distribuição possui uma simetria plana, esférica ou cilíndrica, podemos 

determinar a expressão do campo elétrico aplicando a lei de Gauss. 

Para explicarmos a lei da Gauss é preciso entender o conceito de fluxo 

elétrico. 

Para entender o conceito de Fluxo Elétrico vamos imaginar uma superfície 

que se encontra perpendicular às linhas de um campo elétrico. 

Consideremos também que o módulo do campo seja constante em todos 

os pontos dessa superfície. 



Podemos definir Fluxo Elétrico como sendo o produto do módulo do 

campo e a área da superfície. De uma forma simplificada, podemos dizer 

que o fluxo elétrico indica o número de linhas de força que cruzam uma 

superfície por unidade de área. 

Ψ = 𝐸. 𝐴 

 

Existem casos em que a superfície é perpendicular às linhas de campo, 

mas seu módulo não é constante em toda essa superfície, a forma de 

resolução desse tipo de problema consiste em dividir essa superfície em 

várias subdivisões com áreas significativamente pequenas para que o 

módulo do campo seja considerado constante em cada subdivisão. Nesse 

caso específico, o fluxo elétrico é o resultado da soma de todos os fluxos 

de cada uma das subdivisões da superfície analisada. 

Ψ ≈ ∑𝐸𝑖∆𝐴𝑖

𝑛

𝑖=1

 

 

 

 

 

 
Figura 38 - Representação de duas superfícies perpendiculares às linhas de campo 

Para melhor entendermos fluxo elétrico podemos traçar um paralelo com 
o comportamento de um fluido. O fluxo elétrico pode ser comparado a 
vazão. 
 
 
Vazão pode ser definida como o volume de um fluido que passa por 
unidade de tempo em uma determinada secção. Por analogia o volume 
que é definido pelas linhas de campo que passam por uma determinada 
secção. Esse volume é denominado tubo de fluxo. Assim como em um 
fluido, se essas linhas de campo é incompressível e não existe nenhum 
ponto de entrada e saída de fluxo, então esse fluxo em todas as secções 
transversais do tubo é o mesmo, independente se  esse tubo faz curvas 
ou inclinações. 

 

  

 

 

 

 

 
Figura 39 - Tubo de fluxo e o fluxo é igual em todas as secções 



Dependendo da forma do volume analisado, podem existir subsecções 

onde as linhas de campo não são perpendiculares. Desse modo, elas 

formam um ângulo i em relação ao versor 𝑛𝑖̂ normal a superfície. O fluxo 

através da área ∆Ai é igual ao fluxo através da projeção dessa área 

perpendicular às linhas de campo, isto é, através de uma superfície 

horizontal, conforme mostra a figura. Podemos fazer isso porque a 

superfície Ai e a superfície horizontal fazem parte do mesmo tubo de fluxo 

que é formado pelas linhas de campo que passam pelas fronteiras das 

duas superfícies. 

 

 

 

 

 

 

 

 

 

 
Figura 40 - Versor normal ni (azul) a uma superfície e projeção da superfície no plano 

perpendicular às linhas de campo 

 

A área da superfície horizontal é ∆Ai cos i que é perpendicular às linhas 

de campo. Se aplicarmos a equação de , anteriormente apresentada,  é 

∆Ψ𝑖 = 𝐸𝑖 cos 𝜃𝑖 ∆𝐴𝑖 

Desse modo, o fluxo total numa superfície qualquer que não seja 

perpendicular às linhas de campo é dada por: 

 

Ψ ≈ ∑𝐸𝑖 cos 𝜃𝑖 ∆𝐴𝑖

𝑛

𝑖=1

 

 

O vetor ∆Ai é definido na direção e no sentido do versor 𝑛𝑖̂ que é normal à 

superfície. Seu módulo é igual a área da superfície ∆Ai. 

Desse modo, podemos dizer que o produto 𝐄𝐢 𝐜𝐨𝐬 𝛉𝐢 ∆𝐀𝐢 é igual ao produto 

escalar 𝐄𝐢. ∆𝐀𝐢. Como sempre, a aproximação desse valor se torna mais 

exata conforme os limites das sub-regiões são infinitesimalmente 

pequenas e se aproximam de zero. Desse modo o somatório é convertido 

em uma integral. Para isso convertemos a expressão 𝐄𝐢.⃗⃗⃗⃗ ∆𝐀𝐢 na expressão 

𝐄′. 𝐝𝐀′⃗⃗  ⃗, onde A’ indica que os vetores são calculados sobre os pontos da 

superfície.  







 

Ψ = ∬𝐸′⃗⃗  ⃗

𝑆

. 𝑑𝐴′ 

Lembre-se que a integral é dupla porquê dA’ depende das duas variáveis 

em cada um dos eixos que delimitam a área da superfície analisada. 

 

 

 

 

 

 

 

 

 
Figura 41 - Campo elétrico e vetor infinitesimal de área numa superfície 

Em cada ponto dessa superfície é possível definir o vetor dA’ em dois 

sentidos opostos e normal à superfície. O sentido escolhido determinará 

o sentido do fluxo calculado pela integral. O valor absoluto desse vetor é 

o mesmo em ambos os sentidos, mas com sinais diferentes. 

Para o caso de superfícies fechadas, é normal definirmos o vetor dA’ 

apontando para fora da superfície. Desse modo, se o fluxo calculado for 

positivo, será para fora da superfície e se for negativo ele será para dentro 

da superfície. 

 

 

 

 

 

 

 

 

 

 
Figura 43 - Superfície com dois vetores normais                   

 

Podemos solucionar a integral dupla é interessante parametrizar a 

superfície S com dois parâmetros u’ e v’ do tipo: 

 

S = {r′⃗⃗ (u′, v′); u′e v′ parâmetros reais} 

E’  ’

n1

n2

Figura 42 - Superfícies fechados 
escolhemos os vetores apontando para 
fora 

 



Para que seja mais fácil o entendimento do que foi escrito acima, vamos 

imaginar se a superfície fosse dada pelo plano 𝐳′ = 𝟓𝐱′ + 𝟒𝐲′, uma possível 

equação parametrizada desse plano seria dado por: 

 

r = x′i + y′j + (5x′ + 4y′)z  
 

E essa equação fica em função de x’ e y’. 

Os parâmetros reais que definem uma superfície correspondem aos 

pontos em uma região no plano. Na figura abaixo podemos verificar que 

os dois parâmetros são as próprias variáveis x’ e y’, e os valores que 

esses parâmetros podem assumir correspondem ao retângulo T’ no plano 

xy. 

 

 

 

 

 

 

 

 

 

 
Figura 44 - Superfície com domínio no retângulo T' do plano xy 

 

Aumentos infinitesimais dx’ e dy’, no retângulo T’ são projetados na 

superfície T, formando uma pequena região na superfície com a área dA’. 

Nesse limite infinitesimal, dA’ é a área do paralelepípedo formado pelos 

vetores: 

 

drx
′⃗⃗  ⃗ =

∂r′⃗⃗  

∂x′
dx′                     dry

′⃗⃗  ⃗ =
∂r′⃗⃗  

∂y′
dy′ 

 

a expressão 𝛛𝐫′⃗⃗⃗  𝛛𝐱′⁄  é uma derivada parcial, ou seja, é uma função em x e 

y que só é derivada em função da variável x, e é um vetor que determina o 

aumento da função 𝐫′⃗⃗⃗  , devido ao aumento unitário da variável x’. Da 

mesma forma a expressão 𝛛𝐫′⃗⃗⃗  𝛛𝐱′⁄  determina o aumento de 𝐫′⃗⃗⃗   devido ao 

aumento unitário da variável y’. 

O produto vetorial dos vetores será um vetor direção normal à superfície, 

versor 𝑛̂, e de modulo igual a área do paralelepípedo, desse modo, a 

secção infinitesimal 𝑑𝐴′⃗⃗  ⃗, será igual ao produto vetorial entre esses dois 

vetores, sendo assim: 

z

x

y

T

 ’



dA′ ⃗⃗ ⃗⃗ = (
∂r′⃗⃗  

∂x′
×

∂r′⃗⃗  

∂y′
)dx′dy′ 

 

2.2.2 - Lei de Gauss 
 

Johann Carl Friedrich Gauss foi um matemático, astrônomo e físico 

alemão. Suas contribuições para o progresso das Ciências foram muito 

relevantes. Dentre elas podemos citar a teoria dos números, estatística, 

análise matemática, geometria diferencial, geodésia, geofísica, 

eletrostática, astronomia e óptica. 

Com relação ao fluxo elétrico, a chamada Lei de Gauss, permite uma 

análise do fluxo elétrico produzido por uma carga pontual em qualquer 

tipo de situação. Seja o campo uniforme ou não, e para qualquer tipo de 

superfície fechada. Essas superfícies são conhecidas como superfícies 

Gaussianas. Apesar disso, essa lei só é operacional e útil em 

determinadas circunstâncias. Casos onde o produto escalar do campo e 

do vetor superfície de uma superfície Gaussiana é obtido com facilidade 

é um exemplo dessas circunstâncias favoráveis. 

Isso sempre é possível quando a distribuição de carga apresenta o que 

podemos chamar de alta simetria. Podemos exemplificar essas simetrias 

que facilitam a solução de problemas usando a lei de Gauss. 

O primeiro exemplo é conhecido como simetria planar. A simetria planar 

aplica-se a casos de uma distribuição de cargas em um plano infinito ou, 

em casos similares onde se possa fazer a aproximação de um plano 

infinito. Essa aproximação ocorre, por exemplo, quando o campo elétrico 

calculado tiver origem em um ponto muito próximo ao plano. Para isso é 

necessário que o plano tenha dimensões muitas vezes maior que a 

distância entre o ponto e o plano. 

O segundo exemplo é a simetria cilíndrica, também conhecida como axial, 

e aplica-se ao caso de uma distribuição linear infinita. Existem dois casos 

clássicos para esse tipo de simetria: as linhas infinitas de carga e as 

cargas distribuídas em um cilindro infinito. Do mesmo modo que com o 

plano infinito, no caso do cilindro infinito, um cilindro de dimensões finitas, 

pode ser aproximado de um infinito se a distância entre a carga e a 

superfície do cilindro for muitas vezes maior que o comprimento do 

cilindro. 

Finalmente a simetria esférica é aplicada em análises de cargas 

puntiforme e distribuição esférica de cargas. 

Segundo Gauss, o campo elétrico produzido por uma distribuição de 

cargas é a sobreposição dos campos produzidos por muitas cargas 

pontuais. É interessante uma análise do fluxo elétrico que o campo de uma 

carga pontual produz. 



Quando analisamos uma superfície fechada, podemos colocar a carga q, 

dentro ou fora dessa superfície. 

 

 

 

 

 

 

 

 

 

(a)                                                     (b) 

 
Figura 45 - Carga pontual dentro (a) e fora (b) de uma superfície fechada. 

Sempre que a carga está fora da superfície fechada o tubo de fluxo é 

determinado pelas linhas de campo que são tangentes à superfície. 

Dividimos a superfície S em duas sub-regiões, S1 e S2, em dois lados da 

curva por onde passam as linhas de campo tangentes à superfície. Em 

ambas as superfícies, S1 e S2, o fluxo elétrico é igual. Isso ocorre porque 

ambas as superfícies fazem parte do mesmo tubo de fluxo. Entretanto, 

ambos possuem sinais opostos, já que um dos versores aponta para um 

lado e o outro para o lado oposto. 

Se a carga q  for positiva, o fluxo entra por S2 e sai por S1; no caso 

contrário, ou seja, se a carga q for negativa, o fluxo entra por S1 e sai por 

S2. Utilizando a análise de Gauss, concluímos que o fluxo elétrico gerado 

por uma carga pontual, colocada fora de uma superfície fechada, é 

sempre zero.  

Para o caso de cargas colocadas no interior da superfície fechada S, será 

atravessada por todas as linhas de campo. Uma carga pontual, gera em 

seu entorno, um fluxo de geometria esférica. Esse fluxo é igual ao fluxo 

total que atravessa a superfície fechada. Isso ocorre porque a esfera de 

fluxo e a superfície fechada, fazem parte do mesmo tubo de fluxo. 

Considerando que a esfera de fluxo gerada pela carga possui um raio R, 

o campo elétrico em um ponto qualquer dessa superfície é dada por: 

E′⃗⃗  ⃗ =
kq

R2
r̂ 

Como já mencionamos, o fluxo total na superfície fechada S igual ao fluxo 

na superfície esférica, que é dado por: 

 

Ψs = ∬E′⃗⃗  ⃗. dA′⃗⃗  ⃗

S

= kq∫ ∫ sinϕdϕdθ

π

0

2π

0

= 4πkq 

q

n2

S2

S1

n1

q



 

Na forma da superfície, independentemente do tamanho, será igual a 

4πkq, se a carga pontual estiver no interior da superfície fechada. Por 

convenção o fluxo é direcionado para fora se a carga for positiva e é 

direcionado para dentro se a carga for negativa. 

Como já mencionamos, uma distribuição de cargas pode ser dividida em 

várias cargas pontuais q1, q2, ..., qn, desse modo, o fluxo total, através da 

superfície fechada S, é igual à soma de todos os fluxos individuais 

produzidos por cada carga. 

As cargas colocadas fora da superfície S, conforme já mencionamos, não 

produzem um fluxo total e cada carga qi que esteja dentro da superfície 

fechada produz um fluxo de 4πkqi.  

Desse modo, o fluxo total através da superfície fechada é dada por: 

 

∯E′⃗⃗  ⃗. dA′⃗⃗  ⃗

S

= 4πkqint 

onde qint é a carga total no interior da superfície S. Essa foi a equação 

determinada por Gauss e define a Lei de Gauss. 

O enunciado dessa lei, determinada por Gauss, diz que: 

“O fluxo elétrico através de qualquer superfície fechada é igual ao valor 

da carga total no interior da superfície, multiplicado por 4πk.” 

Podemos escrever a lei de Gauss, de outra forma: 

 

∯E′⃗⃗  ⃗. dA′⃗⃗  ⃗

S

=
qint

ε0
 

0 também é conhecido como permissividade no vácuo26 que é igual a 

𝜀0 =
1

4𝜋𝑘
 

 

O interessante da equação utilizada para determinar a lei de Gauss,  é o 

fato de que a equação 𝚿𝐬 = ∬ 𝐄′⃗⃗  ⃗
𝐒

. 𝐝𝐀′⃗⃗⃗⃗ = 𝐤𝐪∫ ∫ 𝐬𝐢𝐧𝛟𝐝𝛟𝐝𝛉
𝛑

𝟎

𝟐𝛑

𝟎
= 𝟒𝛑𝐤𝐪 pode 

ser utilizada para calcular o fluxo produzido através de uma superfície 

qualquer que não necessita ser obrigatoriamente fechada. 

Para fazermos isso, basta substituirmos os limites das integrais pela 

expressões que delimitam a superfície S: 

 

                                                 
26 Permissividade no vácuo 8,85x10-12 C2/Nm2 



Ψ𝑠 = 𝑘𝑞 ∬sin𝜙

𝑆

𝑑𝜙𝑑𝜃 = 𝑘𝑞Ω 

Nesse caso,  é o resultado da dupla integral e representa o ângulo 

sólido, cuja carga pontual se situa no vértice desse ângulo que é 

delimitado pela superfície S. Para superfícies fechadas em torno desse 

vértice, o valor máximo do ângulo sólido é igual a 4π. 

Quando necessitamos descobrir a carga total dentro de uma região do 

espaço onde existe um campo elétrico. Os valores dos fluxos calculados 

na superfície esférica de raio R permitem determinar a carga total no 

interior da esfera. 

Nós já determinamos que a carga no interior da esfera é nula e, portanto, 

a carga no interior da esfera temos que: 

 

𝑞𝑖𝑛𝑡 =
Ψ𝑠

4𝜋𝑘
=

2𝑅3

3𝑘
 

 

Desse modo, podemos afirmar que a Lei de Gauss também é útil para 

calcular o campo elétrico devido a distribuição simétrica das cargas. Para 

isso é preciso lembrar que para descobrir o campo elétrico significa 

descobrir que uma superfície imaginária que é fechada (superfície 

gaussiana) que, por sua vez, passa pelo ponto onde se quer calcular o 

campo, de tal forma que a componente normal à superfície seja sempre 

normal e constante. 

Sempre que existir uma superfície gaussiana, o fluxo nessa superfície 

será dada pela equação 𝚿 = 𝐄.𝐀 que será substituída na equação 

∬ 𝐄′⃗⃗  ⃗
𝐒

. 𝐝𝐀′⃗⃗⃗⃗ = 𝟒𝛑𝐤𝐪𝐢𝐧𝐭 o que resulta na equação: 

𝐸 =
4𝜋𝑘𝑞𝑖𝑛𝑡

𝐴
 

A é a área total da parte da superfície onde o campo é nulo e tem módulo 

constante E. 

Existem casos em que as superfícies não se comportam como superfícies 

gaussianas. Nesses casos a lei de Gauss, como já vimos, não consegue 

ser aplicada. Para que possamos utiliza-la, precisamos analisar essa lei 

com o princípio da sobreposição e isso nos permite calcular o campo em 

sistemas que não possuem simetria (plana, cilíndrica ou esférica), mas 

que podem ser obtidos por sobreposição de sistemas com simetria. 

Em outros casos, podemos obter uma expressão aproximada do campo 

fazendo a substituição da distribuição de carga por uma distribuição 

idealizada com alguma simetria. 



Esse método pode ser utilizado em situações tais como a de estruturas 

(fios, planos ou sólidos) de dimensões finitas que podem ser substituídos 

por estruturas infinitas. A expressão obtida para fios, planos ou sólidos 

infinitos será uma boa aproximação nas regiões próximas ao centro da 

estrutura analisada e se a distância até essa estrutura fosse muito menor 

que o comprimento das mesmas. 

 

2.2.3 – A Lei de Gauss e as Distribuições Simétricas 
 

Vamos analisar agora o comportamento da lei de Gauss, nas distribuições 

simétricas anteriormente comentadas. 

 

2.2.3.a – Distribuição de cargas com simetria esférica 

 

Vamos começar analisando uma esfera sólida isolante de raio R que 

possua uma densidade volumétrica com carga uniforme  e estando 

carregada com uma carga total Q. 

 

a) Cálculo do campo elétrico fora da esfera (r > R) 

 

Em primeiro lugar, vamos analisar o caso de uma carga colocada no 

centro de uma esfera isolante. Essa carga forma uma superfície 

gaussiana de raio R e concêntrica com a esfera como podemos ver na 

figura abaixo. 

 

 

 

 

 

 

 

 

 
Figura 46 - Campo elétrico com raio superior a superfície esférica 

Podemos resolver o problema a partir de duas possíveis simplificações. A 

primeira o campo 𝐄⃗  é paralelo a 𝐝𝐀⃗⃗  em qualquer ponto da superfície. Na 

segunda simplificação o módulo do campo 𝐄⃗  é constante, já que depende 

apenas do raio r. Portanto: 

 

 

r R



∮ 𝐸⃗ . 𝑑𝐴 = ∮𝐸. 𝑑𝐴 = 𝐸 ∮𝑑𝐴 =
𝑞𝑖𝑛

𝜀0
 

𝐸 ∮𝑑𝐴 = 𝐸(4𝜋𝑟2) =
𝑄

𝜀0
 

𝐸 =
1

4𝜋𝜀0

𝑄

𝜀0
 

 

Valor igual ao resultado obtido para uma carga puntiforme. 

 

b) Cálculo do campo elétrico no interior da esfera (r < R) 

 

Para esse caso vamos selecionar uma superfície gaussiana de estrutura 

esférica com r < R, que é concêntrica com a esfera conforme a figura 

abaixo. 

 

 

 

 

 

 

 

 
Figura 47 - Campo elétrico com raio inferior ao raio da superfície esférica 

Agora iremos utilizar uma superfície gaussiana de formato esférico com 

um raio r inferior ao raio R da esfera. Denominaremos a esfera menor de 

V’. Aplicaremos a lei de Gauss levando em conta que a carga interna à 

superfície gaussiana de volume V’, 𝐪𝐢𝐧𝐭, é menor que a carga total da 

esfera Q. Nesse caso, para calcularmos 𝐪𝐢𝐧𝐭, e utilizaremos o fato de que 

𝐪𝐢𝐧𝐭 = 𝛒. 𝐕. 

qin = ρV′ = ρ(
4

3
πr3) 

Devido a simetria, o módulo do campo elétrico é constante em qualquer 

ponto na superfície gaussiana e é normal à superfície em cada ponto. 

Sendo assim, ao usarmos a lei de Gauss teremos: 

∮EdA = E∮dA = E(4πr2) =
qin

ε0
 

Resolvendo a equação para o campo E teremos: 

r
R



E =
qint

4πε0r
2

=
ρ(

4
3
πr3)

4πε0r
2

=
ρ

3ε0
r 

Por definição sabemos que 𝛒 = 𝐐
𝟒

𝟑
𝛑𝐚𝟑⁄ , sendo assim a expressão para E 

será dada por: 

E =
Qr

4πε0a
3
 

2.2.3.b - Campo elétrico devido a uma casca esférica. 

 

Imaginemos agora uma casca esférica de raio R que possui uma carga 

total Q distribuída de forma uniforme sobre uma superfície externa. Agora 

vamos determinar o campo elétrico fora e dentro da casca. 

 

 

 

 

 

 

Figura 48 - Carga elétrica em uma esfera oca com carga uniforme Eint = 0 

a) Cálculo do campo fora da casca esférica (r > R) 

O cálculo do campo fora da casca é feito de forma idêntica ao que 

obtivemos na análise da esfera anterior. Adotando uma superfície 

gaussiana esférica cujo raio r é maior que o raio interno da esfera (R) 

concêntrico com a casca, sendo a carga interior é Q. Desse modo, o 

campo em um ponto fora da casca é equivalente àquela relativa a carga 

pontual Q que está localizada no centro da esfera oca. 

 

 

 

 

 

Figura 49 - Superfície gaussiana com raio superior ao raio da esfera oca. 
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b) Cálculo do campo dentro da casca esférica (r < R) 

Nesse caso, conforme mostra a figura 36, o campo no interior da casca é 

zero. Isso pode ser obtido através da aplicação da lei de Gauss para a 

superfície esférica. Nesse caso específico, o raio da superfície gaussiana 

é menor que o raio da casca esférica. Como a carga líquida no interior da 

casca é zero, a lei de Gauss indica que o valor de E=0 para essa situação. 

 

 

 

 

Figura 50 - Superfície gaussiana com raio inferior ao raio da esfera oca. 

 

2.2.3.c – Distribuição de cargas com simetria cilíndrica 

 

Considere uma linha infinita de cargas positivas e densidade de carga 

linear  constante. Vamos agora verifica como se calcula o campo elétrico 

a uma distância r da linha. 

Para termos uma simetria na distribuição das cargas é necessário que o 

vetor E seja perpendicular à linha de cargas e se dirigindo para fora. Se 

tentarmos refletir essa simetria, utilizaremos uma superfície gaussiana 

cilíndrica de raio R e comprimento L. O eixo central corresponde ao eixo 

da linha.  

Na região do envoltório (parte curva da superfície) o campo E possui 

módulo constante e perpendicular à superfície em cada um dos pontos. 

Os fluxos através das bases superior e inferior são nulos. Isso ocorre 

porque o campo E é paralelo a essas superfícies. 

 

 

 

 

 

 

 

 
Figura 51 - Linha de carga infinita envolvida por uma superfície gaussiana de simetria cilíndrica 

Aplicando a Lei de Gauss sobre essa superfície gaussiana veremos que, 

como nas bases do cilindro o valor de 𝐄⃗  e de 𝐝𝐀⃗⃗  são iguais a zero, devemos 

considerar apenas a integral sobre a superfície do cilindro. 
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A carga total dentro da superfície gaussiana será L e, aplicando a lei de 

Gauss, teremos: 

 

Φ𝐸 = ∮ 𝐸⃗ . 𝑑𝐴 = 𝐸 ∮𝑑𝐴 = 𝐸𝐴 =
𝑞𝑖

𝜀0
=

𝜆𝐿

𝜀0
 

 

Mas a área da superfície curva é dada por  

 

𝐴 = 2𝜋𝑅𝐿 
logo  

 

E(2πRL) =
λL

ε0
⟶ E =

λL

ε02πRL
⟶ E =

λ

2πRε0
 

 

Desse modo o campo elétrico produzido por cargas em uma simetria 

cilíndrica é inversamente proporcional ao raio (1/r). Já no caso de uma 

distribuição esférica ele é inversamente proporcional ao quadrado do raio 

(1/r2). 

 

2.2.3.d – Plano infinito não condutor 

 

Para finalizar essa análise vamos verificar o comportamento da lei de 

Gauss em um plano infinito não condutor. Para isso vamos imaginar que 

esse plano esteja carregado com cargas positivas que estão distribuídas 

de forma uniforme sobre a superfície infinita com uma densidade 

superficial de carga igual a . 

Se desejamos calcular o campo elétrico a uma distância qualquer do 

plano, considerando a simetria, então o campo 𝐄⃗  deve ser perpendicular 

à superfície infinita e deve ser constante em todos os pontos situados a 

uma mesma distância do plano. 

Como se trata de um plano infinito delgado, a direção do campo elétrico 

produzido por esse plano é para fora do mesmo e para os dois lados do 

mesmo. 

 

 

 

 

 

 

 
Figura 52 - Superfície gaussiana cilíndrica trespassado um plano infinito de carga. 
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Podemos ver na figura que a superfície gaussiana que reflete a simetria 

consiste de um pequeno cilindro cujo eixo central é, como já dissemos, é 

perpendicular ao plano. As bases desse cilindro possuem uma área A, e 

são equidistantes ao plano. Como o campo 𝐄⃗  é paralelo à superfície curva 

do cilindro, o fluxo é zero em toda a superfície. No caso das bases, o fluxo 

será dado por E.A e desse modo o fluxo total que atravessa toda a 

superfície gaussiana é a soma do fluxo de cada uma das bases, ou seja 

𝜙𝐸 = 2. 𝐸. 𝐴 
Já a carga elétrica total no interior da superfície gaussiana é dada por 

𝐪𝐢𝐧𝐭 = 𝛔𝐀. Se aplicarmos a lei de Gauss teremos: 

 

𝜙𝐸 = ∮ 𝐸⃗ . 𝑑𝐴 = 2𝐸𝐴 =
𝑞𝑖𝑛𝑡

𝜀0
=

𝜎𝐴

𝜀0
 

 

𝐸 =
𝜎

2𝜀0
 

 

Se você observar, a distância entra as bases da superfície gaussiana 

cilíndrica não aparece na equação acima. Sendo assim podemos 

determinar que para esse caso, não interessa a distância do ponto 

analisado para o plano infinito carregado com densidade superficial de 

cargas constantes. 

 

2.2.4 – Condutores em equilíbrio eletrostático 
 

Como já vimos, condutores são materiais que possuem elétrons livres em 

sua camada de valência. Esses elétrons livres são chamados elétrons de 

condução. Se esses elétrons livres não estão em movimento afirmamos 

que esse condutor está em equilíbrio eletrostático. 

Essa condição somente ocorre se o campo elétrico, em toda a extensão 

do condutor, é nulo. Isso é necessário pois a existência de um campo 

elétrico em torno do condutor aceleraria os elétrons livres e o condutor 

não estaria em equilíbrio. 

Um condutor em equilíbrio eletrostático, quando submetido a um campo 

elétrico externo, tem seus elétrons livres acelerados no sentido contrário 

do campo. Isso faz com que, em uma extremidade do condutor, ocorra um 

acúmulo de elétrons, enquanto no lado oposto ocorre um acúmulo de 

prótons.  

Esse excesso de cargas positivas e negativas nas extremidades faz surgir 

um campo elétrico que, dentro do condutor, tem um sentido oposto ao 



campo elétrico fora do condutor. Isso faz com que o campo total dentro 

do condutor diminua. 

Enquanto houver campo elétrico no interior do condutor, haver 

movimento de cargas nesse condutor, e esse movimento de cargas irá 

provocar uma redução da carga que, por sua vez, irá reduzir o campo até 

que o mesmo atinja o valor zero. 

No momento em que o campo atinge zero novamente o condutor volta ao 

equilíbrio eletrostático e, nesse momento, novamente o campo é zero. O 

valor típico de tempo para condutores normais atingirem esse equilíbrio 

eletrostático é da ordem de 10-9 segundos. 

 

2.2.5 –  Comportamento da Carga e do Campo em um 

Condutor em Equilíbrio Eletrostático.  
 

Anteriormente mencionamos que um condutor em equilíbrio eletrostático 

tem, obrigatoriamente, o campo elétrico nulo. O fluxo elétrico em uma 

superfície fechada no interior do condutor, também será nulo. Também 

sabemos que isso ocorre porque o campo é nulo em todos os pontos do 

condutor. 

A Lei de Gauss, nos afirma que não existe carga no interior de uma 

superfície fechada onde o fluxo elétrico seja nulo. Obviamente, se isso 

ocorre, não pode haver carga em qualquer ponto interno do condutor. 

Como se trata de uma superfície fechada não consideramos os pontos na 

superfície do condutor. Isso ocorre porque superfícies fechadas que 

tenham em seu interior, pontos da superfície do condutor, estará externa 

ao condutor. Sendo assim, os únicos locais onde pode existir carga em 

um condutor em equilíbrio eletrostático, será a superfície. Qualquer 

excesso de carga que possa surgir no condutor isolado, deverá ser 

distribuído sobre a superfície. 

 

 

 

 

 

 

 

 

(a)                                                                  (b) 

 
Figura 53 - (a) Condutor isolado com carga; (b) Fluxo em superfícies internas e externas e a 

direita, linhas de campo 

Na figura a vemos que o campo elétrico dentro do condutor em equilíbrio 

é zero. 
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Imaginemos que o campo estivesse atuando ao longo da superfície do 

condutor. Já comentamos que esse campo seria responsável por acelerar 

os elétrons de condução ao longo da superfície do condutor. Isso seria o 

suficiente para retirar o condutor do equilíbrio eletrostático. 

A componente normal à superfície tem a tendência de “puxar para fora” 

os elétrons da superfície, ou irá atrair os elétrons para o exterior. 

Entretanto, como o condutor está isolado, isso é praticamente impossível 

e o condutor permanecerá em equilíbrio.  

Com isso, podemos concluir que o campo elétrico na superfície de um 

condutor em equilíbrio eletrostático sempre será perpendicular à 

superfície. 

Para que possamos calcular o campo elétrico na superfície de um 

condutor em equilíbrio, imaginemos um pequeno cilindro de bases 

paralelas à superfície. Se esse cilindro for pequeno o suficiente, podemos 

aproxima-lo de uma superfície gaussiana. 

Se fizermos isso, só existirá fluxo elétrico na base do cilindro na parte 

externa do condutos e o fluxo total através da superfície gaussiana será 

dada pela expressão: 

 

Ψ ≈ 𝐸∆𝐴 = 4𝜋𝑘∆𝑞 
∆A – é a área da parte da superfície no interior do cilindro; 

∆q – é a carga contida na superfície no interior do cilindro. 

 

Quando levamos ∆A tender a zero tornamos a equação exata e podemos 

escreve-la como: 

𝐸 = 4𝜋𝑘 lim
∆𝐴⟶0

∆𝑞

∆𝐴
 

 

Na equação acima, o limite é igual a carga superficial. Desse modo, o 

campo em um ponto da superfície do computador é dado por: 

 

E⃗⃗ = 4πkσn̂ =
σ

ϵ0
n̂ 

 

 - carga superficial  

𝑛̂ – versor normal para fora do condutor. 

 

 

 

 

 

 



 

 

 

 

 

 

 
Figura 54 - Representação de uma pequena superfície gaussiana na superfície de um condutor 

isolado 

Como o campo elétrico é perpendicular ao plano da superfície do 

condutor, as linhas de força são tangentes as laterais do cilindro desse 

modo, não existe fluxo nessas paredes laterais. Desse modo, só existe 

fluxo nas duas bases do cilindro da superfície gaussiana. Desse modo, ao 

aplicarmos esse princípio na equação 

 

𝐸 =
4𝜋𝑘𝑞𝑖𝑛𝑡

𝐴
 

teremos: 

 

𝐸 = 2𝜋𝑘𝜎 =
𝜎

2𝜖0
 

 

Podemos ver pela equação acima que o campo da superfície do condutor 

é o dobro do valor do campo de uma superfície plana infinita.  

Na verdade, imaginávamos que uma superfície gaussiana muito próxima 

do plano da superfície do condutor, seria uma forma de admitir uma ótima 

aproximação de uma superfície muito extensa, próxima ao infinito. 

No caso de superfícies infinitas, um campo em um dado ponto é devido 

somente a carga que se encontra nesse ponto. Nesse caso, por simetria, 

podemos dizer que o campo produzido por todas as outras cargas 

situadas em todos os outros pontos situados no plano, será zero. 

No caso do condutor fechado, o campo em um ponto da superfície resulta 

da sobreposição de todos os campos produzidos pelo ponto em questão 

adicionado ao campo produzido por todos os outros pontos que estão 

distribuídos na superfície.  

É importante verificar que o campo do ponto deverá ser o mesmo que no 

caso do plano infinito, mas em sentidos opostos. Nesse caso, o campo que 

falta para completar o campo total é devido ao restante da superfície.  

Mas como o campo total é nulo no interior o campo será 4k no exterior. O 

campo produzido pela superfície, sem incluir o ponto P será igual a 2k em 

ambos os lados da superfície e com o mesmo sentido. 

+ + + +

+ + + +



O campo 2k que é produzido pela superfície atua sobre a carga local no 

ponto P, produz uma força para fora da superfície. Esse campo não inclui 

o próprio ponto. 

 

𝑑𝐹 = 2𝜋𝑘𝜎2𝑑𝐴 
 

O sentido dessa força será sempre nesse sentido independente do sinal 

da carga superficial .  

 

 

2.3 POTÊNCIAL, TRABALHO e ENERGIA POTÊNCIAL 

ELETROSTÁTICA 
 

2.3.1 - Histórico 
 

Luigi Galvani, médico, investigador, físico e filósofo italiano, em seus 

experimentos sobre bioeletricidade deduziu que a eletricidade, ou 

melhor, a corrente elétrica, se originava nos seres vivos. Em 1780, 

Alexandre Volta demonstrou que, ao contrário do que pensava Galvani, a 

corrente tinha origem através do contato de dois metais diferentes em um 

meio ionizado. A partir dessa descoberta, Volta desenvolveu e construiu 

a primeira pilha elétrica. Essa sua descoberta deu origem ao estudo da 

eletricidade e dos circuitos elétricos. 

Nas décadas seguintes as descobertas de Volta, favoreceram o 

desenvolvimento da teoria eletromagnética. Dentre as suas descobertas 

ele também conseguiu isolar o gás metano e desenvolveu um aparelho 

capaz de produzir cargas elétricas por atrito, o eletróforo.  

Nesse capítulo vamos estudar os efeitos de campos elétricos nas cargas 

elétricas. 

 

2.3.2 - Trabalho e energia 
 

Na Física newtoniana o problema fundamental da área conhecida como 

mecânica é determinar, a partir das forças que atuam em um corpo, a 

trajetória do mesmo. Podemos também determinar as forças que atuam 

sobre um corpo a partir das trajetórias dos corpos. 

Trajetória é um fenômeno físico, que é representado por uma grandeza 

vetorial. Isso significa que ele possui uma intensidade e uma direção e é 

representado em função do tempo. De acordo com a Segunda Lei de 

Newton: 

 



 

 

𝐹 = 𝑚
𝑑𝑣 (𝑡)

𝑑𝑡
= 𝑚

𝑑2𝑟 (𝑡)

𝑑𝑡2
 

 

Essa equação será fácil de integrar se a força for constante, ou se só 

depender do tempo. 

No caso de campos de força, 𝐹  será função da posição e a forma usual de 

resolver esse tipo de problema, consiste em calcular primeiramente a 

velocidade em função da posição. Primeiro iremos integrar os dois lados 

da equação, em função do deslocamento vetorial d𝑟 , ao longo de um 

percurso qualquer entre  A e B. 

 

∫ 𝐹 

𝐵

𝐴

𝑑𝑟 = 𝑚 ∫
𝑑𝑣 

𝑑𝑡
. 𝑑𝑟 

𝐵

𝐴

 

 

Vamos analisar o lado direito da equação. Ela pode ser escrita em função 

da velocidade, sendo assim podemos dizer que: 

 

𝑑𝑣 

𝑑𝑡
. 𝑑𝑟 = lim

∆→0

∆𝑣 . ∆𝑟 

∆𝑡
= 𝑣 𝑑𝑣 =

1

2
𝑑(𝑣2) 

 

 

 

 

 

 

 

 

 

 

 

Com isso, podemos calcular a integral de linha de 𝐹  em função da 

velocidade escalar v. 

 

∫ 𝐹 𝑑𝑟 = 𝑚 ∫ 𝑣 𝑑𝑣 
𝐵

𝐴

𝐵

𝐴
=

1

2
𝑚𝑣𝐵

2 −
1

2
𝑚𝑣𝐴

2 (a) 

 

 

e define o trabalho entre os pontos A e B. 

r(
t)

O

F

ΔF

A

B



 

𝑊𝐴𝐵 = ∫ 𝐹 𝑑𝑟 
𝐵

𝐴
 (b) 

 

Sabendo que a energia cinética é definida por 

 

𝐸𝑘 =
1

2
𝑚𝑣2 

 

Considerando também as equações (a) e (b) teremos o chamado teorema 

do trabalho e da energia 

 

𝐖𝐀𝐁 = 𝐄𝐤(𝐁) − 𝐄𝐤(𝐀) 
 

Podemos dizer que o trabalho realizado por uma força sobre uma 

partícula ao longo de uma trajetória qualquer, é igual ao aumento da 

energia cinética da partícula. 

Como o trabalho da partícula independe da trajetória que ela toma 

dizemos que a força é conservativa. Sendo assim é possível definir uma 

função Ep em cada um dos pontos do espaço. Para fazer isso, em primeiro 

lugar, definimos aleatoriamente um Ep em um ponto A, Ep(A); para 

definirmos o valor de Ep em um ponto B qualquer, devemos definir o 

trabalho realizado pela força entre os pontos A e B, logo: 

 

𝐄𝐩(𝐀) − 𝐄𝐩(𝐁) = 𝐖𝐀𝐁    (c) 

 

 

Como o trabalho não depende da trajetória, o valor de Ep(B) é consistente 

e a função Ep  é a energia potêncial que está associada a força 

conservativa. Quando combinamos as equações b e c teremos a lei de 

conservação de energia mecânica. 

 

𝐄𝐤(𝐀) + 𝐄𝐩(𝐀) = 𝐄𝐤(𝐁) + 𝐄𝐩(𝐁) 

 

 

2.3.3 Diferença de potêncial eletrostático 
 

Como já mencionamos o trabalho realizado por um campo elétrico sobre 

uma carga pontual é independente da trajetória que ela percorra.  Isso 

corrobora a afirmação de que o campo elétrico é um campo conservativo. 



Mas não basta isso para termos essa certeza, sendo assim vamos provar 

tal afirmação. 

Vamos começar analisando um campo elétrico que tem origem em uma 

carga pontual, o mais simples de todos os campos elétricos. 

 

 

O campo elétrico produzido por uma única carga elétrica é dado pela 

equação: 

 

𝐄⃗ . ∆𝐫 =
𝐤𝐪

𝐫𝟐
(𝐫̂∆𝐫 ) 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 55 - Representação do deslocamento de uma particula em uma trajetória qualquer 

Se observarmos a figura acima veremos que o ângulo   é formado pelo 

deslocamento ∆𝑟  e o vetor 𝑟̂. Se observarmos veremos que 𝑟̂. ∆𝑟 = |∆𝑟 | cos 𝜃 

é aproximadamente igual a ∆𝑟. Desse modo, para o limite ∆𝑠 → 0 teremos  

 

𝐫̂. ∆𝐫 = 𝐝𝐫 
 

Sendo assim, o trabalho realizado pela força elétrica sobre uma carga de 

prova q0 será igual a: 

 

𝐖𝐀𝐁 = 𝐪𝟎 ∫ 𝐄⃗ 

𝐁

𝐀

. 𝐝𝐫 = 𝐤𝐪𝟎𝐪 ∫
𝐝𝐫

𝐫𝟐

𝐁

𝐀

= 𝐤𝐪𝟎𝐪(
𝟏

𝐫𝐀
−

𝟏

𝐫𝐛
) 

 
Podemos ver que esse resultado não depende da trajetória, já que ela só 

necessita das posições dos pontos A e B. Isso resulta no fato de que o 

 

 

  

  

 

 

q



campo elétrico que é produzido por uma carga pontual é, portanto, 

conservativo. 

Agora analisemos a condição de uma distribuição mais complexa de 

cargas. É fácil verificar que podemos adotar uma simplificação 

considerando que se trata de uma soma de pequenas cargas pontuais. 

Desse modo, é fácil entender que o resultado obtido para uma carga 

pontual pode ser extrapolado para casos mais complexos. Assim, o 

campo elétrico produzido por uma distribuição de cargas elétricas 

também é um campo conservativo. 

Considerando que o campo elétrico é conservativo, podemos definir a 

energia potêncial elétrica de uma particula pontual é definido pela 

equação 

 

𝐄𝐩(𝐀) − 𝐄𝐩(𝐁) = 𝐪𝟎 ∫ 𝐄⃗ 

𝐁

𝐀

. 𝐝𝐫  

 

Podemos definir potêncial elétrico como sendo a energia potêncial 

elétrica por unidade de carga, ou seja: 

 

𝐕 =
𝐄𝐩

𝐪𝟎
 

 

Desse modo, qualquer que seja a carga de prova, a diferença de potêncial 

elétrico entre dois pontos, A e B, será dado por: 

 

𝐕𝐀 − 𝐕𝐁 = ∫ 𝐄⃗ 

𝐁

𝐀

. 𝐝𝐫  

 

No sistema internacional a unidade de potêncial elétrico é o volt (V). Como 

o potêncial é definido como uma energia por unidade de carga, a relação 

entre o volt, o joule e o coulomb será dada por: 

 

𝟏𝐕 = 𝟏
𝐉

𝐂
= 𝟏

𝐍.𝐦

𝐂
 

 
Podemos utilizar outra unidade de energia, essa unidade é o eletro-volt 

(eV), que é definido como a energia que é adquirida por uma carga 



elementar e quando essa passa por uma região onde existe uma diferença 

de potêncial de 1V, ou seja: 

 

𝟏𝐞𝐕 = 𝟏, 𝟔 × 𝟏𝟎−𝟏𝟗𝐂. 𝐕 = 𝟏, 𝟔 × 𝟏𝟎−𝟏𝟗𝐉 
 

Para um caso de uma partícula pontual, situada na origem, o potência 

elétrico é dado por: 

𝐕 =
𝐤𝐪

𝐫
 

 

 

  

Nessa equação podemos somar qualquer constante arbitrária e, mesmo 

assim não iremos contrariar a equação do trabalho. Normalmente 

consideramos V = 0 quando 𝑟 → ∞ e, desse modo, não incluímos a 

constante. 

Para podermos deslocar uma carga de prova de um ponto A até um ponto 

B, sem que haja aceleração devemos aplicar uma força externa igual e 

oposta a força elétrica. Essa força externa irá realizar um trabalho que, 

nessas condições é dada por: 

𝐖𝐀𝐁(𝐞𝐱𝐭𝐞𝐫𝐧𝐨) = −𝐖𝐀𝐁(𝐞𝐥é𝐭𝐫𝐢𝐜𝐨) = 𝐪𝟎𝐕𝐁 − 𝐪𝟎𝐕𝐀 
 

Nesse caso, se o ponto inicial A está a uma distância infinita, 

consideramos o potêncial VA = 0. Esse valor é dado por definição. VB será 

igual ao trabalho que será realizado pela força externa para trazer a carga 

elétrica q0 = 1 do ponto no infinito até o ponto B.  

Sendo assim, o potêncial elétrico V(𝑟 ) será igual ao trabalho que será feito 

para trazer uma unidade de carga positiva do infinito até a posição 𝑟 . 

O potêncial V(𝑟 ) constitui um campo escalar, ou seja, cada ponto do 

espaço existe em um valor numérico (escalar) do potêncial. 

 

2.3.4 - Gradiente do potêncial elétrico 
 

Como já vimos, a equação 𝐕𝐀 − 𝐕𝐁 = ∫ 𝐄⃗ 
𝐁

𝐀
. 𝐝𝐫   define o potêncial elétrico 

associado a um determinado campo elétrico. Nesse ponto iremos fazer o 

problema no sentido contrário. Dessa vez, iremos calcular o campo 

elétrico dado por um determinado por um potêncial elétrico. 

A diferença de potêncial ∆𝐕 = 𝐕𝐁 − 𝐕𝐀, gerado entre os pontos A e B será 

dado pela integral do campo elétrico que será multiplicado por -1. 

Sabemos que a integral pode ser calculada independentemente do 

percurso do ponto A até o ponto B. Para facilitar utilizaremos um caminho 

igual a um segmento de reta, conforme mostra a figura abaixo. 



 

 

 

 

 

 

 

 

 
Figura 56 - Percurso entre A e B separados por um deslocamento  

Se os pontos A e B estão muito próximos, podemos considerar que o 

campo elétrico 𝐸⃗  é constante. Desse modo, podemos dizer que a integral 

é calculada de maneira simples por: 

∆𝐕 ≈ −𝐄⃗ . ∆𝐫  
Onde o ∆𝑟  é o deslocamento entre os pontos A e B e o modulo é igual ao 

deslocamento escalar ∆𝑠. 

Se levarmos o limite ∆𝑠 → 0 a aproximação se torna mais exata, ou seja 

 

𝐥𝐢𝐦
∆𝐬→𝟎

∆𝐕

∆𝐬
= −𝐄⃗ . 𝐭̂ 

 

Nesse caso, 𝑡̂ é o versor tangencial a direção e o sentido do deslocamento 

de 𝑑𝑟 . O limite da equação define a derivada direcional de uma função que 

possui várias variáveis. No nosso caso, a variável é V, na direção que é 

definida pelo versor 𝑡̂. Assim, 

 

𝐝𝐕

𝐝𝐬
= −𝐄⃗ . 𝐭̂ 

 
Sendo assim, a derivada do potêncial elétrico, em qualquer direção do 

versor, será igual a componente do campo elétrico nessa direção, 

multiplicado por -1.

 

 

 

 

 

 

 

 
Figura 57 - projeção do deslocamento nos eixos x e y 

 

 

 

 

 

 

 

     

     

 

 

 

 

 

 
 

 



Vamos considerar que os pontos A e B são coplanares e que o plano que 

contem esses pontos esteja paralelo ao plano xy. As projeções do 

deslocamento sobre os eixos x e y serão dadas por ∆s cos x e ∆s cos y. 

Os ângulos x e y são formados pelo versor 𝑡̂ e os versores 𝑖̂ e 𝑗̂, 

respectivamente. No gráfico acima podemos ver que o aumento do 

potêncial ∆V, na trajetória de A até B será igual a soma dos aumentos dos 

potênciais das trajetórias de A até C e de C até B. 

Se fizermos o limite de ∆S 0 e considerando que V é uma função 

contínua, podemos dizer que o aumento de V a partir do ponto C até o 

ponto B pode ser obtido com a aproximação do aumento do ponto A até o 

ponto D. Note que os aumentos em V, por unidade de deslocamento, nas 

direções AD e AC são as derivadas parciais de V em ordem a x e a y 

respectivamente, ou seja: 

 

∆V ≈ ∆S cos θx

∂V

∂x
+ ∆S cos θy

∂V

∂x
 

 

Mas devemos lembrar que: 

cos θx = î. t̂  e cos θy = j.̂ t̂ 
 

e portanto, a derivada na direção do versor 𝑡̂ será dada por: 

 

dV

ds
= lim

∆s→0

∆V

∆S
= (

∂V

∂x
î +

∂V

∂y
j)̂ . t̂ 

 

O interessante dessa equação é o fato de que a mesma pode ser 

generalizada para o caso de análise em 3 dimensões, na qual obteríamos 

 

dV

dS
= (∇⃗⃗ V). t̂ 

 

E, nesse caso, o vetor gradiente do potêncial ∇⃗⃗ 𝑉 será definido como 

 

∇⃗⃗ V =
∂V

∂x
î +

∂V

∂y
ĵ +

∂V

∂z
k̂ 

 

Essa equação permite a obtenção de resultados válidos em qualquer 

campo escalar. Apesar de definir o gradiente em coordenadas 

cartesianas, o produto escalar entre o gradiente e o versor de direção, 



por ser independente do sistema de coordenadas, faz com que a equação 

seja válida para qualquer tipo de coordenada. 

Vamos analisar especificamente o caso já estudado de um potêncial 

eletrostático. A derivada direcional é igual ao produto escalar entre −𝐸⃗  e 

o versor 𝑡̂ e desse modo temos a relação que permite calcular o campo 

elétrico a partir do potêncial, ou seja 

 

−E⃗⃗ = ∇⃗⃗ V 
 

Quando o versor 𝑡̂ estiver na direção do campo elétrico, obteremos o valor 

máximo do produto escalar de 𝐸⃗ . 𝑡̂ que, no caso, será igual ao módulo de 

𝐸⃗ . 

É importante notar que quando temos um potêncial V, o campo elétrico 

será na direção em que o potêncial diminuir rapidamente. Já o modulo do 

campo será igual ao valor absoluto da derivada nessa direção. 

A linhas de força de um campo elétrico sempre migram de uma zona de 

maior potêncial para uma zona de menor potêncial. Isso significa que uma 

linha jamais irá retornar a um ponto de potêncial superior ao ponto de 

potêncial em que ela se encontra. 

Podemos simplificar a representação no sistema de coordenadas 

cartesianas representadas no sistema de 3 dimensões, fazendo da 

seguinte forma: 

 

Ex =
∂V

∂x
     ,     Ey =

∂V

∂y
      ,       Ez =

∂V

∂z
 

 

Sendo de natureza conservativa, o campo elétrico permite uma igualdade 

entre as derivadas cruzadas. Isso torna muito simples a tarefa de 

descobrir se um campo vetorial qualquer é conservativo ou não, bastando 

para isso verificar a igualdade entre as derivadas cruzadas. 

 

∂Ex

∂y
=

∂Ey

∂x
        ,         

∂Ex

∂z
=

∂Ez

∂x
         ,            

∂Ey

∂z
=

∂Ez

∂y
 

 

2.3.5 - Linhas de campo e superfícies equipotênciais 
 

Denominamos superfície equipotêncial toda superfície em que os pontos 

formadores possuem um mesmo potêncial elétrico. Essas superfícies 

apresentam duas propriedades importantes. 

A primeira refere-se ao fato de que a força elétrica durante o 

deslocamento de uma carga elétrica puntiforme sobre uma superfície 



equipotêncial é nula. Já a segunda propriedade diz que as superfícies 

equipotênciais são perpendiculares às linhas de força ou linhas de campo 

elétrico e, consequen-temente, perpendiculares ao vetor campo 

elétrico 𝐸⃗ . 

Existe uma condição particular em que um campo gerado por uma carga 

puntiforme Q, tem sua simetria que sugere que as superfícies 

equipotênciais são superfícies esféricas concêntricas na carga Q e as 

linhas de força do campo são radiais com o centro da carga. 

Vamos considerar um deslocamento na direção tangente à superfície 

equipotêncial em um ponto P qualquer. A derivada do potêncial nessa 

direção é nula. Isso ocorre porque o potêncial não varia nessa direção. 

 

𝑑𝑉

𝑑𝑡
= 0 

Sendo assim, 𝐸⃗ . 𝑡̂ = 0 e, desse modo, as linhas de campo elétrico são 

perpendiculares às superfícies equipotênciais. As linhas de campo 

apontarão para o lado da superfície equipotêncial com menor potêncial. 

 

 

 

 

 

 

 

 

 
Figura 58 - superfície equipotêncial 

 

Como podemos ver na figura acima uma todas as linhas de campo que 

passam por uma determinada área de uma superfície, possuem, nos 

pontos de contato com essa superfície, o mesmo potêncial. 

O potêncial V(x,y), que se situa no plano xy, pode ser visualisado de forma 

gráfica. Nessa representação, o valor de V estará situado no eixo z em um 

sistema de coordenadas xyz. Podemos notar no gráfico que a curva 

resultante tem uma forte semelhança com uma superfície geográfica 

onde surgem montanhas e vales. 

Assim como nas representações topográficas, as curvas 

correspondentes a um determinado nível são equipotênciais, as linhas de 

campo são as trajetória que a água seguiria descendo pelas montanhas. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O local nesse espaço onde a derivada em qualquer direção é nula 

(máximos e mínimos), é considerado ponto crítico do potêncial V(x,y,z) e 

nesses pontos o potêncial elétrico é zero. 

É importante entender que, em todos os pontos onde tivermos máximos 

ou mínimos ocorre um efeito interessante. Nos pontos de máximo, 

qualquer que seja a direção escolhida, o potêncial elétrico irá diminuir. 

Por outro lado, nos pontos de mínimo, em qualquer direção o potêncial irá 

aumentar. Como consequência disso, nos pontos de máximo as linhas de 

força apontam em uma direção que “sai” do ponto, enquanto que os 

potênciais de mínimo, tem suas linhas de força apontando em direção a 

carga. 

 

 

 

 

 

 

 

 
Figura 60 - Linhas equipotênciais e linhas de campo em um dipolo 

Existe um terceiro ponto importante nas linhas equipotênciais, além dos 

pontos de máximo e mínimo, são os pontos conhecidos como pontos de 

sela. Nesses pontos de sela as curvas potênciais aumentam em algumas 

direções e diminuem em outras. 

 

 

 

 

Figura 59 - representação das superficies equipotênciais em um sistema xyz 



 

 

 

 

 

 

  

 

 

 

 

  

Também é possivel encontrarmos regiões onde o campo elétrico seja nulo 

e, nesse caso, o potêncial é constante em toda a região. Esses casos 

ocorrem, por exemplo, dentro de condutores em equilíbrio eletrostático, 

e ocorrem nos chamados volumes equipotênciais. 

 

2.3.6 - Como calcular o potêncial elétrico? 
 

Se considerarmos que uma distribuição de cargas nada mais é do que um 

conjunto de cargas elétricas para calcular o potêncial elétrico, podemos 

dividir esse conjunto em n pequenas cargas ∆qi. Desse modo calculamos 

o potêncial utilizando a sobreposição dos potênciais produzidos por cada 

elemento que, nesse caso é considerado como uma carga pontual. Já 

sabemos que o potêncial que cada carga produz é dado pela equação, 

V =
kq

r
 

 

entretanto esse valor não é exato, mas esse valor pode se aproximar da 

exatidão quando levamos o limite 𝑛 → ∞, desse modo ∆𝑞𝑖 → 0 e, desse 

modo a equação será: 

 

V = ∑
k∆qi

 𝑟𝑖⃗⃗ 

∞

i=1

 

 

∆qi é a carga existente dentro de cada elemento i 

𝑟𝑖⃗⃗  é o vetor que une o ponto onde se encontra a carga ∆qi até o ponto onde 

se pretende calcular o campo. 

Como já sabemos, no caso do campo elétrico, a carga pode ser 

distribuída em um volume com a carga volumétrica  sobre uma superfície 

Ponto de Máximo 

Ponto de Mínimo 

Ponto de Sela 



com carga superficial , que se desenvolve ao longo de uma curva com 

carga linear . 

Se considerarmos que a carga está distribuída dentro de um volume então 

o potêncial pode ser calculado com uma integral tripla do tipo 

 

𝑉 = 𝑘 ∭
𝜌(𝑟′⃗⃗  ⃗)

|𝑟 − 𝑟′⃗⃗  ⃗|
𝑣

𝑑𝑉′ 

 

Nesse caso 𝑟′⃗⃗  varia dentro da região de integração. 

No caso da carga estar distribuída sobre uma superfície então a integral 

será uma integral dupla, integral de superfície. 

 

𝑉 = 𝑘 ∬
𝜎(𝑟′⃗⃗  ⃗)

|𝑟 − 𝑟′⃗⃗  ⃗|
𝑠

𝑑𝐴′ 

 

Observando as condições anteriores, é fácil deduzir que, no caso da 

carga ser distribuída sobre uma curva, a integral que resolve o potêncial 

será uma integral de linha. Sendo assim 

 

𝑉 = 𝑘 ∫
𝜆(𝑟′⃗⃗  ⃗)

|𝑟 − 𝑟′⃗⃗  ⃗|
𝐿

𝑑𝑆′ 

 
Existe uma semelhança entre as integrais que utilizamos para calcular o 

campo e as integrais que utilizamos no cálculo do potêncial. Entretanto só 

é necessário calcular uma integral ao invés de três no caso do campo 

elétrico. Se desejamos calcular o campo elétrico da distribuição de 

cargas, o trabalho se torna mais simples se calcularmos o potêncial 

através da integração e, posteriormente utilizar o gradiente do potêncial 

para determinar o valor do campo elétrico. 

Por outro lado, quando for possível calcular o campo elétrico utilizando a 

lei de Gauss, torna-se mais conveniente calcular o potêncial a partir do 

campo e utilizando qualquer percurso de integração, como mostra a 

equação. 

 

 



𝑉𝐴 − 𝑉𝐵 = ∫ 𝐸⃗ 

𝐵

𝐴

𝑑𝑟  

 

 

2.3.7 - O comportamento do potêncial e da carga em 

condutores. 
 

Como já sabemos, o campo elétrico na superfície de um condutor em 

equilíbrio vai ser perpendicular a superfície do mesmo. Mas, qualquer 

superfície perpendicular a um campo elétrico é, necessariamente, uma 

equipotêncial, ou seja, a superfície de um condutor sempre será uma 

superfície equipotêncial. O interior do condutor tem um campo elétrico 

nulo e isso implica no fato de que o potêncial dentro do condutor é 

constante. 

Em um condutor em equilíbrio, qualquer excesso de carga será 

distribuído sempre sobre a superfície, entretanto, a distribuição de carga 

não pode ser uniforme. 

Para provar essa afirmação, em primeiro lugar, vamos considerar três 

condutores diferentes com a mesma carga superficial. Um dos 

condutores é plano, o outro é convexo e o último é côncavo. 

Em todos os três casos a separação das linhas de campo sobre a 

superfície deve ser a mesma e o campo será igual e o campo é igual nos 

três casos quando a distância d a partir da superfície for igual a zero. 

Conforme aumentamos a distância d as linhas de campo são 

perpendiculares a superfície do condutor. A separação das linhas será 

maior no caso do condutor convexo e menor no caso do condutor 

côncavo. No caso dos condutores côncavos, as linhas de campo acabam 

se afastando com o aumento da distância.   

Considerando que o campo elétrico é inversamente proporcional a 

distância entre as linhas de campo. 

 

 

 

 

 

 

 
 

 

 

Plano Convexo C ncavo

Figura 61 - Campo elétrico produzido em 3 condutores diferentes, em função da distância 



 

 

 

 

 

 

 

 

Figura 62 - Curva indicativa do comportamento da intensidade de campo elétrico em função da 
distância da superfície 

 

A integração do campo elétrico desde uma distância igual a zero (0) até 

uma distância infinita (∞) nos fornecerá o potêncial em cada um dos 

condutores das figuras acima. É importante notar, no gráfico, que 

tendendo o valor ao infinito estamos fazendo com que a tensão tenda a 

ZERO. Da mesma forma, é preciso salientar que os valores dos três 

potênciais calculados, correspondem às áreas que se situam abaixo de 

cada uma das curvas.  

A partir dessa observação é possível constatar que o potêncial da 

superfície côncava é maior do que os potênciais das superfícies plana e 

convexa. Assim como o potêncial da superfície plana é maior que a 

superfície convexa. 

Com isso podemos determina que é impossível que a carga superficial 

possa ser a mesma onde o condutor é convexo, plano ou côncavo. É essa 

variação nas intensidades do potêncial elétrico nas superfícies é que 

permite que o valor da integral do campo elétrico, obtenha os mesmos 

valores. 

 

 

 

 

 

 

 

 

 

 

 
Figura 63 - Representação da intensidade de campo na superfície de um automóvel 
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Note que observando o desenho acima e extrapolando o número de linhas 

de força, nas regiões de forma convexa, a carga superficial será maior, 

quanto menor for a curvatura da região. Já no caso das regiões côncavas 

a carga superficial aumenta diretamente proporcional ao raio da 

curvatura. 

Os projetos de para raios utilizam essa característica para funcionarem 

de forma mais eficiente. Como sabemos uma descarga atmosférica nada 

mais é do que o resultado de um grande acúmulo de cargas elétricas, que 

provocam uma diferença de potêncial entre as nuvens e o solo e, em um 

determinado momento, possuem potêncial suficiente para quebrar a 

capacidade dielétrica (isolamento) do ar, ocorrendo assim o raio.  

Sendo assim, as cargas que são acumuladas nas nuvens começam a 

induzi cargas em objetos que se encontram próximos, no caso, os para 

raios. E por quê nos para raios? Eles aproveitam o fenômeno que foi 

explicado anteriormente, através do que chamamos de “poder das 

pontas”. As pontas agudas (convexas) dos para raios, acumulam grande 

quantidade de carga. Como esses dispositivos são colocados na parte 

mais alta das estruturas e, portanto, mais próximos das nuvens, oferecem 

o ponto perfeito para a descarga atmosférica, protegendo assim as 

estruturas.  

 

2.4 Discutindo o que foi visto 
 

2.4.1- A lei de Coulomb e suas limitações 
 

Como já estudamos, o potêncial elétrico de uma carga elétrica 

volumétrica (𝑟′⃗⃗ ), colocada dentro de um volume qualquer, é dado pela 

integral tripla 

𝑉(𝑟 ) = 𝑘 ∭
𝜌 (𝑟′⃗⃗ )

|𝑟 − 𝑟′⃗⃗ |
𝑑𝑉′ 

Sendo uma integral de volume, para um resultado correto, é necessário 

que o cálculo dessa integral seja desenvolvido sobre todo o espaço 

volumétrico onde exista carga elétrica. Para que isso seja possível, torna-

se necessário que se conheça toda a carga volumétrica existente em todo 

os pontos dados pelo vetor 𝑟  onde a carga volumétrica seja diferente de 

zero ≠0. Desse modo, não podemos calcular o campo somente em pontos 

que nos interessam. 

Entretanto, na prática, as únicas informações que possuímos, na 

esmagadora maioria das vezes, dizem respeito apenas a uma 

determinada região do espaço e nos deparamos tentando calcular o 



campo, pelo menos, dentro dessa região. Mas mesmo para essa região 

limitada, por vezes encontramos problemas associados as condições 

analisadas. 

Vamos tomar como exemplo uma carga colocada dentro de uma caixa 

metálica. Analisando as linhas de força de uma carga pontual livre, solta 

no espaço, veremos que elas se dispersam radialmente a carga, 

conforme mostra a figura. 

 

 

 

 

 

 

 
Figura 64 - linhas de força em uma carga elétrica livre no espaço 

No entanto, ao colocarmos a carga elétrica em uma caixa metálica, as 

suas linhas de força já não se comportam mais como mostra figura 

anterior, pois, como também já estudamos, em superfícies metálicas as 

linhas de força são perpendiculares a essas superfícies. 

 

 

 

 

 

 

 

 
Figura 65 - linhas de força de uma carga elétrica colocada no interior de uma caixa metálica 

Além desse fato, podem haver outras cargas na superfície metálica cujo 

cálculo é mais complexo. Finalmente, no exterior da caixa metálica podem 

também haver outras cargas que interagem com a superfície metálica. 

Para solucionar esse problema causado pela “falta de informações”, 

podemos lançar mão de outros métodos que permitem o calculo do 

campo, sem a necessidade dessas informações que não temos acesso, 

bastando conhecer alguns detalhes das chamadas “condições de 

fronteira”. 

 

2.4.2 - Cálculo vetorial – Divergente 
 

Quando desejamos determinar um valor de fluxo por unidade de volume 

em um determinado ponto, podemos utilizar o divergente, que é uma 

função matemática associada a qualquer campo vetorial. 

+

 



Desse modo, vamos então considerar um campo vetorial qualquer, que 

denominaremos de 𝐹  e que possui um conjunto de coordenadas 

cartesianas. 

 

𝐹 = 𝐹𝑥(𝑟 )𝑖̂ + 𝐹𝑦(𝑟 )𝑗̂ + 𝐹𝑧(𝑟 )𝑘̂ 

 

Vamos tomar também um paralelepípedo com arestas que chamaremos, 

respectivamente de ∆x,∆y e ∆z. Essas arestas obedecem as seguintes 

condições  

 

∆x > |x-x0|, ∆y > |y-y0|, ∆z > |z-z0| 

 

Para calcularmos o fluxo 𝐹  através da superfície fechada representada 

pelo paralelogramo definido acima. Agora, imaginemos que esse 

paralelogramo seja numerado da mesma forma que um dado, guardando 

a seguinte característica: a soma de dois lados opostos será sempre 7, 

conforme mostra a figura. 

 

 

 

 

 

 

 

 

 

Agora vamos tomar uma das superfícies do paralelepípedo para análise. 

Peguemos a superfície representada pelo número 1 do dado, frontal ao 

nosso cubo. A primeira constatação é que a face escolhida possui 

coordenadas nos eixos x, y e z. No caso do eixo x, a coordenada do ponto 

x será dada por x = x0 + ∆x, enquanto nos eixos y e z, os valores são 

constantes. Nesse caso o versor normal a superfície S1 será 𝑆1̂ = 𝑖̂, ou 

seja: 

 

𝐹 . 𝑆1̂ = 𝐹𝑥(𝑥0 + ∆𝑥, 𝑦, 𝑧) 
 

O fluxo que passa através dessa superfície será dada pela integral de área 

(integral dupla) da função acima, portanto: 

 

 

 

Figura 66 - paralepipedo para representação do gradiente. 
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Ψ1 = ∬(𝐹 

𝑆1

. 𝑆1̂)𝑑𝐴1 = ∫ ∫ 𝐹𝑥(𝑥𝑜 + ∆𝑥,𝑦,𝑧)𝑑𝑦𝑑𝑧

𝑦0+∆𝑦

𝑦0

𝑧0+∆𝑧

𝑧0

 

 

Nessa integral, 𝑦0 ≤ 𝑦1̅̅ ̅ ≤ 𝑦0 + ∆𝑦 . 

Para solucionar essa equação, lançamos mão, novamente, do teorema do 

valor médio e, sendo assim, o valor obtido será: 

 

Ψ1 = 𝐹𝑥(𝑥𝑜 + ∆𝑥, 𝑦1, 𝑧1)∆𝑦∆𝑧 
 

Onde 𝑧0 ≤ 𝑧1̅ ≤ 𝑧0 + ∆𝑧. Se extrapolarmos para as outras faces do 

paralelogramo teremos: 

Ψ2 = 𝐹𝑦(𝑥2̅̅ ̅, 𝑦0 + ∆𝑦, 𝑧2̅)∆𝑥∆𝑧 

Ψ3 = 𝐹𝑧(𝑥3̅̅ ̅, 𝑦3̅̅ ̅, 𝑧0 + ∆𝑧)∆𝑥∆𝑦 

Ψ4 = −𝐹𝑧(𝑥4̅̅ ̅, 𝑦4̅, 𝑧0)∆𝑥∆𝑦 

Ψ5 = −𝐹𝑦(𝑥5̅̅ ̅, 𝑦0, 𝑧5̅)∆𝑥∆𝑧 

Ψ6 = −𝐹𝑥(𝑥𝑜, 𝑦6̅̅ ̅, 𝑧6̅)∆𝑦∆𝑧 
 

É importante ressaltar que os valores médios que aparecem nessas 

equações, podem pertencer aos mesmos intervalos, no entanto não 

possuem o mesmo. Um exemplo disso são os valores médios de 𝑦3̅̅ ̅ e 𝑦4̅, 

que pertencem ao mesmo intervalo (y0, y0 + ∆y), no entanto não possuem 

o mesmo valor. 

Como todos os valores médios pertencem aos seus respectivos 

intervalos, no limite onde esses valores tendem a zero todos se tornam 

iguais aos seus valores iniciais, ou seja  

∆𝑥 → 0 ∴ 𝑥𝑖~𝑥0 

∆𝑦 → 0 ∴ 𝑦𝑖~𝑦0 

∆𝑧 → 0 ∴ 𝑧𝑖~𝑧0 
 

Como sabemos, o divergente do campo será o limite da razão entre a 

variação do fluxo pela variação do volume do objeto, quando esse tende a 

0. Sendo assim teremos que o divergente do campo será dado por: 

 



𝑑𝑖𝑣𝐹 = lim
∆𝑥→0

∆Ψ

∆𝑉

=  lim
∆𝑥→0

𝐹𝑥(𝑥0 + ∆𝑥, 𝑦0, 𝑧0) − 𝐹𝑥(𝑥0, 𝑦0, 𝑧0)

∆𝑥

+ lim
∆𝑦→0

𝐹𝑦(𝑥0, 𝑦0 + ∆𝑦, 𝑧0) − 𝐹𝑦(𝑥0, 𝑦0, 𝑧0)

∆𝑦

+ lim
∆𝑧→0

𝐹𝑧(𝑥0, 𝑦0, 𝑧0 + ∆𝑥) − 𝐹𝑧(𝑥0, 𝑦0, 𝑧0)

∆𝑧
 

 

Como sabemos cada um dos limites que compõe o divergente são uma 

definição de derivada parcial, em x, y e z, ou seja: 

𝑑𝑖𝑣𝐹 =
𝜕𝐹𝑥
𝜕𝑥

+
𝜕𝐹𝑦

𝜕𝑦
+

𝜕𝐹𝑧
𝜕𝑧

 

 

Ao observarmos a equação acima vemos que ela tem muita semelhança 

com a equação que define o gradiente de um campo escalar. Sendo 

assim, podemos escrever a equação utilizando o operador “nabla” ( ) 

para denotar o divergente: 

∇⃗⃗ =
𝜕

𝜕𝑥
𝑖̂ +

𝜕

𝜕𝑦
𝑗̂ +

𝜕

𝜕𝑧
𝑘̂ 

Portanto, a divergência de um campo vetorial 𝐹   será igual ao produto 

escalar entre o operador nabla e o campo: 

∇⃗⃗ . 𝐹 =
𝜕𝐹𝑥

𝜕𝑥
+

𝜕𝐹𝑦

𝜕𝑦
+

𝜕𝐹𝑧 

𝜕𝑧
 

Desse modo, o gradiente do campo escalar V é obtido aplicando o 

operador nabla ao campo escalar: 

∇⃗⃗ 𝑉 =
𝜕𝑉

𝜕𝑥
𝑖̂ +

𝜕𝑉

𝜕𝑦
𝑗̂ +

𝜕𝑉

𝜕𝑧
𝑘̂ 

2.4.3 - Teorema de Ostrogradski - Gauss 
 

O teorema de Ostrogradski-Gauss, também conhecido como teorema do 

divergente, estabelece uma relação entre a integral (derivada) do 

divergente de um campo vetorial F sobre uma região com a integral de F 

sobre a fronteira da região. 



Uma região E ⊆ ℝ3 é chamada região sólida simples se E pode ser escrita 

simultaneamente como: 

 

E = {(x, y, z) : (x, y) ∈ Dxy , u1(x, y) ≤ z ≤ u2(x, y)}, (tipo 1), 

E = {(x, y, z) : (y, z) ∈ Dyz , v1(y, z) ≤ x ≤ v2(y, z)}, (tipo 2), 

E = {(x, y, z) : (x, z) ∈ Dxz , w1(x, z) ≤ y ≤ w2(x, z)}, (tipo 3). 

A fronteira de E é uma superfície fechada e usaremos a convenção de que 

a orientação positiva é para fora. 

Vamos considerar então uma superfície fechada qualquer que 

denominaremos de S. Essa superfície delimita uma região que 

denominaremos de R. Usando o princípio que inspira os conceitos de 

limite e integral, vamos imaginar que essas superfícies sejam pequenos 

paralelepípedos cujos volumes são infinitesimalmente pequenos e de 

valor ∆Vi.  

Note que, por se tratar de um grupo de paralelepípedos, podemos esperar 

um pequeno erro na chamada região de fronteira ou borda. Se há esse 

erro, porque podemos desconsidera-lo? Isso pode ser feito na medida em 

que o limite da superfície tende a zero, reduzindo significativamente o 

erro. 

 

 

  

 

 

 

 

 

Na figura, na construção com paralelogramos de menor tamanho, o fluxo 

de campo 𝐹  que passa por 4 paralelogramos dessa construção, é o 

mesmo que passa por dois da construção maior e por 1 da maior 

construção. Lembre que o cubo da construção da construção a contém 

dois cubos da construção B que, por sua vez, contém 4 cubos da 

construção C. 

A soma de todos os fluxos que atravessam os diversos paralelogramos é 

igual ao fluxo que atravessa a fronteira S. Sendo assim 

 

∯𝐹 . 𝑛̂ . 𝑑𝐴

𝑆

= ∑∆Ψ𝑖

∞

𝑖=1

 

 

Figura 67 - Aproximação melhorada com a diminuição do volume dos paralelepípedos 

A 
B 

C 



Entretanto, ∆V0, o que nos permite usar a definição de divergência e 

obtemos a seguinte equação 

 

∆Ψ𝑖 = ∇⃗⃗ . 𝐹𝑖⃗⃗ . ∆𝑉𝑖  
 

Se substituirmos essa equação na anterior teremos: 

∯𝐹 

𝑆

. 𝑛̂. 𝑑𝐴 = ∭∇⃗⃗ . 𝐹𝑖⃗⃗  . ∆𝑉𝑖

𝑅

 

 

Essa equação é conhecida como teorema de Ostrogradski – Gauss, ou 

simplesmente Teorema da Divergência. Apesar de sua aparência 

complexa, a equação do lado direito da igualdade é, por vezes, mais 

simples de calcular. Isso ocorre por que é mais fácil calcular a 

divergência de um campo do que calcular todos os versores normais a 

todos os pontos da superfície. 

 

2.4.4 – Rotacional 
 

Por definição, o rotacional é um operador, no cálculo vetorial, utilizado 

para superfícies infinitesimais, e é capaz de calcular o quanto os vetores 

de um campo vetorial se afastam ou se aproximam de um vetor normal a 

essa superfície.  

Desse modo, podemos afirmar que o rotacional corresponde a uma 

transformação linear de um campo de vetores em um outro campo 

vetorial. Isso significa que, em cada ponto do espaço em que definimos 

um rotacional ele será dado por um vetor. 

Anteriormente já comentamos que em uma superfície aberta existem dois 

versores normais a essa superfície. Além disso comentamos que se a 

superfície for orientável, um dos seus lados será positivo e o outro será 

negativo. Sendo assim, cada versor normal indicará a direção positiva e 

a direção negativa, respectivamente. 

Assim que definimos a direção positiva da superfície a sua fronteira C 

será definida pela regra da mão direita. 

 

 

 

 

 

 

 
Figura 68 - Regra da mão direita para rotacional 



Vamos considerar um ponto qualquer cujo vetor posição é dado por 𝑟0⃗⃗  ⃗ =

𝑥0𝑖̂ + 𝑦0𝑗̂ + 𝑧0𝑘̂ e uma curva fechada que iremos denominar de C. Essa 

curva passa por um ponto e que envolve uma pequena área ∆A, conforme 

mostra a figura abaixo. 

 

 

 

 

 

 

 

 

 

 

 

 

Se aplicarmos a integral de linha teremos: 

∮ 𝐹 . 𝑑𝑟 

𝐶

 

 

Essa integral terá diferentes valores para diferentes direções do versor 

𝑛̂. Esse valor irá diminuir conforme diminuímos ∆A. Se o versor tiver a 

mesma direção do campo, a integral terá valor nulo. Isso ocorre porque o 

campo é perpendicular ao percurso. 

Agora vamos imaginar que, em um ponto qualquer 𝑟𝑜⃗⃗⃗   exista um rotacional 

𝑟𝑜𝑡𝐹 . Esse será o rotacional de campo e esse terá a seguinte propriedade. 

 

(𝑟𝑜𝑡𝐹 ). 𝑛̂ ≡ lim
∆𝐴→0

1

∆𝐴
∮ 𝐹 

𝐶

. 𝑑𝑟  

 

para qualquer direção 𝑛̂, para qualquer curva fechada C e será orientada 

na direção do versor 𝑛̂ que passa pelo ponto 𝑟0⃗⃗  ⃗. 

Sendo assim, o rotacional de 𝐹  será dado por: 

 

𝑟𝑜𝑡𝐹 = (
𝜕𝐹𝑧
𝜕𝑦

−
𝜕𝐹𝑦

𝜕𝑧
) 𝑖̂ + (

𝜕𝐹𝑥
𝜕𝑧

+
𝜕𝐹𝑧
𝜕𝑥

) 𝑗̂ + (
𝜕𝐹𝑦

𝜕𝑥
−

𝜕𝐹𝑥
𝜕𝑦

) 𝑘̂ 

 

𝑟0⃗⃗  ⃗ 

C 

𝑛̂ 

x 

y 

z 



Essa expressão é exatamente igual a forma do produto vetorial entre o 

vetor operador nabla e o vetor campo 𝐹 . Ou seja, o rotacional do campo 𝐹  

é igual ao produto vetorial ∇⃗⃗ × 𝐹 . 

O rotacional pode ser representado sob o sistema de coordenadas 

retangulares, cilíndricas ou esféricas. 

Em coordenadas retangulares, o produto vetorial anterior, será dado por: 

 

∇⃗⃗ × 𝐹 = |
|

𝑖 𝑗 𝑘⃗ 

𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝐹𝑥 𝐹𝑦 𝐹𝑧

|
| 

Figura 69 - Sistema de coordenadas retangulares 

Nas coordenadas cilíndricas teremos: 

 

∇⃗⃗ × 𝐹 = |
|

𝜌 𝜌𝜙⃗ 𝑧 
𝜕

𝜕𝜌

𝜕

𝜕𝜙

𝜕

𝜕𝜃
𝐹𝜌 𝜌𝐹𝜙 𝐹𝑧

|
| 

 
Figura 70 - Sistema de coordenadas cilíndricas 

E nas coordenadas esféricas teremos: 

 

∇⃗⃗ × 𝐹 = |
|

𝑟 𝑟𝑠𝑒𝑛𝜃𝜙⃗ 𝑟𝜃 

𝜕

𝜕𝑟

𝜕

𝜕𝜙

𝜕

𝜕𝜃
𝐹𝑟 𝑟𝑠𝑒𝑛𝜃𝐹𝜙 𝑟𝐹𝜃

|
| 

 

 
Figura 71 - Sistema de coordenadas esféricas 

2.4.5 Teorema de Stokes e Equação de Poisson 
 

Como já vimos, o rotacional facilita o cálculo das integrais de linhas em 

percurso fechado. Para solucionarmos um problema nessa área, basta 

que delimitemos uma superfície cuja fronteira seja um percurso fechado. 

A partir daí, dividimos a superfície em pequenos elementos 

quadrangulares Ri cuja área será ∆A, conforme mostra a figura abaixo. 

 



 

 

 

 

 

 

 

 

 
Figura 72 - Superfície fechada com os elementos quadrangulares de aproximação 

Cada um dos elementos quadrangulares será percorrido no sentido anti-

horário. Se somarmos a integral de linha de 𝐹  em dois percursos 

adjacentes, teremos como resultado a integral de linha do paralelogramo 

maior que será formado delimitando os dois elementos quadrangulares 

cujos percursos foram somados. Isso ocorre porque no lado que é comum 

entre os dois quadriláteros a integral de linha é calculado duas vezes em 

sentidos contrários e, portanto, nesse ponto o valor é zero. Por 

consequência, somando as integrais de linha de 𝐹  de todos os elementos 

quadrangulares teremos um resultado cuja aproximação é 

significativamente boa à integral de linha de C. 

 

∮ 𝐹 

𝐶

. 𝑑𝑟 = (∇⃗⃗ × 𝐹 ). 𝑛̂∆𝐴𝑖 

 

Essa equação também pode ser escrita como: 

 

∮ 𝐹 . 𝑑𝑟 

𝐶

= ∬(∇⃗⃗ × 𝐹 ). 𝑑𝐴 

𝑆

 

 

Essa superfície da integral dupla, pode ser uma superfície qualquer, e o 

resultado dessa equação é conhecida como Teorema de Stokes 

Vamos analisar agora o teorema de Stokes para calcular o rotacional do 

campo elétrico. 

A integral do percurso fechado pode ser calculada com a soma da integral 

de A até B, ao longo de toda a curva Ca  e da integral de B até A ao longo 

da curva Cb. A integral de B até A será sempre igual e de sinal contrário a 

integral de A até B e, portanto, temos: 

 



∮ 𝐸⃗ . 𝑑𝑟 

𝐶

= ∫ 𝐸⃗ (𝐶1)

𝐵

𝐴

. 𝑑𝑟 (𝐶1) − ∫ 𝐸⃗ (𝐶2). 𝑑𝑟 (𝐶2)

𝐵

𝐴

 

 

 

 

 

 

 

 

 

 
Figura 73 - Divisão do caminho C em dois caminhos CA e CB 

Devemos lembrar que o campo elétrico é conservativo e, portanto, a 

integral de linha entre os pontos A e B é igual ao longo dos dois percursos 

e, desse modo, a integral do percurso fechado será zero. 

Se substituirmos esse resultado, ∮ 𝐸⃗ . 𝑑𝑟 
𝐶

= 0, na equação do teorema de 

Stokes, teremos: 

 

∇⃗⃗ × 𝐸⃗ = 0 
 

Já vimos que a lei de Gauss relaciona o fluxo do campo elétrico através 

de qualquer superfície fechada, com a carga em seu interior. Se usarmos 

o teorema da divergência poderemos calcular o fluxo como uma integral 

de volume da divergência do campo. Sendo assim, podemos escrever a 

lei de Gauss de outra maneira que será mais conveniente para o cálculo 

do campo elétrico em geral. 

Vamos considerar uma região R que é limitada por uma superfície 

fechada S. Lembremos que a lei de Gauss diz: 

 

∯(𝐸⃗ . 𝑛̂)𝑑𝐴

𝑆

= 4𝜋𝑘∆𝑞𝑖𝑛𝑡 

Ao aplicarmos o teorema da divergência e a entre a carga interna e a 

carga volumétrica, obteremos: 

 

∭∇⃗⃗ . 𝐸⃗ 𝑑𝑉

𝑅

= 4𝜋𝑘 ∭𝜌𝑑𝑉

𝑅

 

 

A
B

A
B

C CA 

CB 



Podemos calcular as duas integrais de volume podem ser calculados 

como produto do valor médio da função integrada pelo volume total ∆V. 

Sendo assim teremos: 

 

∇⃗⃗ . 𝐸⃗ ̅̅ ̅̅ ̅∆𝑉∇= 4𝜋𝑘𝑝̅∆𝑉 
 

No limite onde ∆V0, podemos notar que o interior da superfície S vai se 

aproximando de um ponto e os valores médios de 𝐸̅ e 𝜌̅  são os valores de 

𝐸⃗  e , para esse ponto onde a superfície S se aproxima. Logo, podemos 

dizer que: 

 

𝜌∇⃗⃗ . 𝐸⃗ = 4𝜋𝑘 
 

Essa equação é a representação da forma diferencial da lei de Gauss. 

Quando temos conhecimento da carga volumétrica representada por , 

que está dentro de uma região, obtemos a divergência do campo em 

qualquer ponto da região. 

Apesar disso, a divergência de um campo vetorial não é o suficiente para 

podermos definir esse campo. Para podermos defini-lo, é necessário 

também conhecer o rotacional, além de algumas condições na região de 

fronteira. 

As equações  

∇⃗⃗ × 𝐸⃗ = 0 

𝜌∇⃗⃗ . 𝐸⃗ = 4𝜋𝑘 
 

São duas equações básicas da eletrostática. Elas permitem o calculo do 

campo elétrico em uma região onde se conheça .  

Podemos reduzir essas equações à uma única de valor escalar, que seja 

função do potêncial eletrostático V que já falamos anteriormente e, 

portanto, teremos: 

 

𝐸⃗ = −∇⃗⃗ 𝑉 
 

Como o rotacional do gradiente de um campo escalar qualquer, é sempre 

nulo, a equação ∇⃗⃗ × 𝐸⃗ = 0, é uma equação trivial. Sendo assim, se 

considerarmos o potêncial V e usarmos o operador laplaciano, temos: 

 

∇2𝑉 = −
𝜌

𝜖0
 

 



Essa equação é conhecida como Equação de Poisson. De um modo geral, 

essa equação possui muitas soluções para um determinado  dentro de 

uma região. No entanto é possível obter uma solução única. Para isso é 

necessário impor alguma condição na fronteira, por exemplo, o valor do 

potêncial ao longo da fronteira.  

Quando a região de interesse para análise é todo o espaço e a condição 

de fronteira é V=0 no infinito, temos um caso particular para o que foi dito 

acima. Note que, nesse caso, a solução também é a equação que é obtida 

pela lei de Coulomb. 

Em face da amplitude de resoluções possíveis através da Equação de 

Poisson, ele se torna aplicável à sistemas mais complexos que, 

normalmente, não podem ser solucionados pela lei de Coulomb. É óbvio 

que, para isso, é necessário que adentremos no campo das equações 

diferenciais parciais o que é muito mais complexo e escapa do escopo 

desse nosso estudo. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Capítulo III 

MATERIAIS ELÉTRICOS 
Se quiser ter uma boa idéia,  

tenha uma porção de idéias 

Thomas Edson 

 

3.1 COMPORTAMENTO DOS MATERIAIS ELÉTRICOS 
 

3.1.1 – Materiais Elétricos 

 

Estudar e entender o comportamento de materiais elétricos é 

fundamental para entender os estudos sobre resistência elétrica, 

projetos de máquinas, eletrotécnica e uma série de outros elementos da 

eletricidade. 

O fundamental é permitir a análise comportamental desses materiais. 

Os materiais podem ser classificados sob diversos pontos de vista. Em 

Engenharia, as mais utilizadas são: a capacidade de transmitir calor ou 

eletricidade, que conhecida como CONDUTIBILIDADE; a capacidade de 

manipulação para transformação desse material, também conhecida 

como MALEABILIDADE; a capacidade de ser esticado ou comprimido e 

voltar ao seu tamanho e forma originais, chamada de ELASTICIDADE e, 

por fim, a capacidade de sofrer tração sem romper, conhecida como 

TENACIDADE. 

O nosso principal interesse é quanto aos materiais elétricos e/ou 

magnéticos e, portanto, iremos nos concentrar nesses dois.  

Vamos iniciar estudando as características ligadas a condutibilidade. Os 

materiais podem ser divididos em CONDUTORES, SEMICONDUTORES e 

ISOLANTES. Para analisa-los vamos estudar sua RESISTIVIDADE, ou 

seja, sua capacidade de resistir a passagem de corrente elétrica. 

O principal critério para determinar se um material é condutor, 

semicondutor ou isolante é sua resistividade e a tabela de caracterização 

aparece abaixo. 

 

Tipo de Material Resistividade (mm2/m) 

CONDUTOR 10-2 a 10 

SEMICONDUTOR 10 a 1012 

ISOLANTE 1012 a 1024 

 
Tabela 6 - Tabela de resistividade de condutores, semicondutores e isolantes. 

 



Os materiais condutores possuem 1,2 e 3 elétrons na camada de 

valência. Os elementos que possuem 4 elétrons na camada de valência 

são os materiais semicondutores. Os materiais que possuem 5, 6, 7 e 8 

elétrons na camada de valência são os materiais isolantes. 

 

3.1.2 – Materiais Condutores 
 

Se observarmos veremos que, de um modo geral, a maior parte dos 

materiais condutores é composta por metais. Isso ocorre porque nos 

metais, a estrutura atômica tem, em sua camada de valência elétrons que 

podem fluir livremente de um átomo para outro. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 74 - Representação de estruturas de um material qualquer 

Quando estabelecemos uma corrente elétrica em um condutor metálico, 

um número elevado de elétrons livres passa a se deslocar por esse 

condutor. Durante esse deslocamento alguns dos elétrons podem colidir 

entre esses elétrons e os átomos que constituem o material, o que 

representa uma certa resistência a essa passagem. Essa resistência, 

apesar de muito pequena, existe, pois, mesmo o melhor dos materiais 

condutores possui resistência elétrica. 

Existem também materiais que não são metálicos que são condutores, 

tais como, grafite, água salgada e qualquer material em estado de plasma. 

Além desses materiais, tanto metálicos como não metálicos que são 

condutores, existem também estudos para o desenvolvimento de ligas 

metálicas que apresentam ótimas características de condutibilidade 

elétrica.  Algumas dessas ligas constituem os supercondutores, cuja 

resistência é extremamente baixa. Entretanto, esses materiais 

necessitam de condições especiais em termos de temperatura, tanto que 

todos os supercondutores existentes necessitam ficar imersos em uma 

atmosfera de nitrogênio líquido. 

Núcleos Iônicos 

Elétrons de valência sob a forma 

de nuvem de cargas elétricas 

Elétron de valência na forma de 

cargas negativas individuais 



A tabela abaixo apresenta as características elétricas de alguns dos 

principais materiais condutores. 

 

 

 

 

 

 

 

 

Material 
Resistividade 

mm2/m 

Características 

Prata 0,0162 seu principal uso é em peças de contato 

Cobre 0,0169 

pequena resistividade, boas características 
mecânicas, baixa oxidação, fácil deformação a 
quente - o bronze e o latão são as ligas mais 
usadas; 

Ouro 0,0240 
bastante resistente à oxidação por sua estrutura 
altamente estável, é utilizado principalmente em 
peças de contato. 

Alumínio 0,0262 
é o segundo metal mais usado depois do cobre, 
tendo características elétricas e mecânicas piores 
do que este mas com um custo menor; 

Tungstênio 0,055 

dado que retém a sua resistência a altas 

temperaturas e tem alto ponto de fusão, o 

tungstênio elementar é usado em muitas 

aplicações de alta temperatura, como filamentos 

de lâmpadas, tubos de raios catódicos e válvulas 

termiônicas, resistências de aquecimento. 

Zinco 0,059 
é utilizado como elemento de proteção contra a 

corrosão, principalmente em contatos 

Níquel 0,072 

é utilizado em ligas para imãs, usa para proteger 
campos magnéticos por sua elevada 
permeabilidade magnética, as ligas níquel-
cobre (monel) são muito resistentes a corrosão, 
utilizando-se em motores marítimos e indústria 
química, a liga níquel-titânio (nitinol-55) apresenta 
o fenômeno memória de forma e é usado 
em robótica, também existem ligas que 
apresentam superelasticidade.  

Ferro 0,098 
por suas características magnéticas ele é muito 

utilizado na construção de motores e geradores 

elétricos 

Platina 0,100 
Usado nas pontas das velas de ignição dos lança-
chamas a explosão e nas pontas dos para-raios; 

Estanho 0,114 
Utilizado na fabricação de soldas para circuitos 

eletrônicos 

Chumbo 0,205 
é utilizado principalmente em soldas, sendo 
sensível a vinagre, cal e materiais orgânicos em 
apodrecimento - ´e um produto venenoso; 



Mercúrio 0,960 
utilizado na fabricação de lâmpadas fluorescentes, 

como chave de contato em boias elétricas, e em 

instrumentos de laboratório 

 
Tabela 7 - Tabela de resistividade e uso de materiais condutores. 

Os metais puros têm uma estrutura cristalina perfeita e isso reduz a sua 
resistência elétrica. Entretanto, a inserção de impurezas altera a 
estrutura aumentando a resistividade do material. A quantidade de 
impurezas adicionadas não precisa ser significativamente grande para 
causar essa mudança. Esse aumento de resistência também ocorre 
quando os metais são misturados em alguns tipos de ligas de dois ou mais 
metais. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tabela 8 - Características elétricas das principais ligas de cobre 

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tabela 9 - Tabela de comparação entre o cobre e o alumínio 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tabela 10 - Características das ligas de alumínio 



3.1.3 – Materiais Semicondutores 
 

Os materiais semicondutores são sólidos cristalinos que possuem 

condutividade intermediária. Atualmente o semicondutor mais utilizado é 

o silício, devido a sua abundância na natureza. Existem também o 

germânio e o carbono, que podem ser utilizados em determinadas 

condições. Como já mencionamos, os semicondutores são elementos 

tetravalentes e o silício possui uma configuração eletrônica do tipo s2 p2. 

A condutibilidade ou resistividade do semicondutor são alterados à partir 

de algumas alterações na estrutura cristalina através da inserção de 

“impurezas” no material semicondutor puro. Quando inserimos 

impurezas no silício puro, alteramos suas características elétricas e 

podemos criar materiais com abundância de elétrons livres (condutor) ou 

materiais com falta de elétrons livres (isolantes). Esses materiais 

recebem o nome de materiais tipo N e tipo P respectivamente. 

As impurezas que associamos ao silício para obtenção desse tipo de 

material são outros elementos químicos. Um exemplo desses elementos é 

o antimônio. Sendo um elemento pentavalente, ao se associar com o 

silício torna o elemento um material tipo N. Já no caso de “doparmos” o 

silício com o elemento índio que é um elemento trivalente, transformamos 

o material em um elemento tipo P. 

Esses elementos tipo P e tipo N, podem ser associados criando um 

elemento elétrico capaz de controlar a condutibilidade de corrente em um 

circuito. Cada um desses elementos recebe um nome é possui um 

conjunto de utilidades para a eletrônica. Um par PN, da origem a um 

diodo, que é um componente eletrônico que permite a corrente elétrica 

circule somente em uma direção. Esses diodos podem ser do tipo zener, 

túnel, scotch, led, varicap e outros. Além disso podemos associar três 

materiais, dois do tipo N e um do tipo P ou dois do tipo P e um do tipo N. 

Essas associações formam transistores bipolares, transistores de efeito 

de campo, MOSFET e outros. 

Vamos explicar como ocorre esse fenômeno da associação de dois 

materiais, tipo P e tipo N. 

 

 

 

 

 

 

 

 

 

 
Figura 75 - junção PN e barreira de potêncial 

Material tipo P Material tipo N

Difusão de  buracos 

Difusão de Elétrons

Material tipo P Material tipo N++
++
++
++
++
++
++
++

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Barreira de Potencial



 

Quando os dois materiais são reunidos, imediatamente a diferença de 

potêncial elétrico entre o material P e o material N “tenta” se estabilizar e 

ocorre uma pequena circulação de corrente entre os materiais. No 

entorno da junção essa circulação permanece até que ocorra uma 

estabilização das cargas nessa região surgindo o que se denomina de 

barreira de potêncial. Essa barreira de potêncial é a responsável pela 

estabilização do fluxo de elétrons, fazendo com que o dispositivo adquira 

as características desejadas. 

Mas como se constrói esse tipo de componente? 

O processo de construção de um elemento semicondutor segue uma série 

de etapas que passaremos a explicar. 

A fabricação de dispositivos semicondutores é o processo utilizado para 

criar componentes ou chips de circuitos integrados. Consiste em uma 

sequência de múltiplos passos de processamento fotográfico e químico. 

Durante esses processos, os componentes ou circuitos eletrônicos são 

criados. 

O primeiro passo consiste em purificar o silício até um ponto de 99,999% 

de pureza. Esse material se torna um lingote monocristalino, 

normalmente de formato cilíndrico, de até 300 mm de diâmetro. Esses 

cilindros são então fatiados em pastilhas de 0,75mm de espessura e 

polidas para que se possa obter uma superfície muito regular e plana. 

Uma vez cortadas essas bolachas são preparadas para as diversas 

etapas do processo de dopagem. 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figura 76 - Cilindros de silício e discos de silício. 

No processo de fabricação de componentes e circuitos semicondutores 

existem uma série de etapas que devem ser processadas. Podemos 

dividir esses processos em quatro grandes grupos. Deposição, Remoção, 

Padronização e Modificação das propriedades elétricas. 

Para o processo de DEPOSIÇÃO, primeiramente a bolacha é “pintada” 

com uma solução fotossensível em toda sua superfície. Feito isso, e após 

o material fotossensível secar, é colocada sobre a bolacha uma 



“mascara” que é transparente nas partes que deseja depositar o 

“dopante” que irá transformar a condutibilidade do material. 

Sobre essa máscara é aplicada luz que impressiona a película 

fotossensível nas partes onde a máscara está vazada.  

Após o material fotossensível ser impressionado, o material passa por um 

processo de lavagem com ácido, que remove a parte impressionada do 

material, expondo partes do substrato tipo N e deixando o material pronto 

para o processo de dopagem para formação da junção PN. 

 

 

 

 

 

 

 
 

 

 

Figura 77 - Processo de preparação para confecção de uma junção PN 

Estando o material pronto para dopagem a “bolacha” de silício é 

submetida à uma alta temperatura e um processo de imersão em gás 

constituído do material dopante. Esse processo permite que ocorram as 

interações entre o material dopante e o substrato para o surgimento do 

substrato do tipo P. Durante esse processo surge a barreira de potêncial. 

Posteriormente é feita a metalização das áreas de contato do material P e 

do material N para que sejam adicionados os terminais elétricos. 

Apesar de simplificada, a explicação acima dá uma ideia do processo 

utilizado para construção de semicondutores. 

 

 
 

 

 

 

 

 

 

 

 
Figura 78 - Processo de conclusão do semicondutor 
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3.1.3 - Isolantes ou Dielétricos 
 

Os elementos dielétricos, por natureza química, são materiais que 

apresentam alta resistência a passagem de corrente elétrica. Como já 

mencionamos, os materiais desse tipo possuem uma ausência de elétrons 

livres em uma determinada temperatura. 

Quando submetemos um material dielétrico à uma diferença de potêncial, 

esse material será polarizado devido a presença do campo elétrico. Esse 

tipo de comportamento pode ser notado em um capacitor de placas 

paralelas. Essa polarização vai levar o material a um aumento de 

temperatura que é resultante do consumo de energia. 

Nós podemos classificar os dielétricos a partir do tipo de polarização. 

Isso faz surgir dielétricos com características bastante diferenciadas. 

Por vezes, quando aplicamos uma tensão em um dielétrico, surge uma 

pequena corrente que circula em um circuito fechado. Dependendo da 

aplicação que estamos fazendo desse dielétrico, torna-se necessário o 

estudo dessa corrente. Existem também outros fatores que são 

importantes, tais como: temperatura, rigidez e envelhecimento. 

Todos os materiais dielétricos possuem uma característica conhecida 

como rigidez dielétrica. Ela é o valor limite da tensão aplicada sobre o 

material a partir do momento em que os átomos que compõem o material 

se tornam ionizados e o material deixa de funcionar como um isolante. 

Esse valor não é fixo nos materiais, pois depende de fatores como 

temperatura, espessura do material, tempo de aplicação da diferença de 

potêncial, sua taxa de crescimento, pressão (importante para gases).  

Esses materiais podem ser sólidos, líquidos ou gasosos. Os sólidos são os 

mais utilizado na Engenharia. Alguns deles são: porcelana, vidro, 

plástico. No caso dos materiais gasosos, os mais comuns são o ar e o 

hexafluorido sulfúrico. 

Muitas vezes, os dielétricos utilizados resultam de uma mistura de 

matérias primas. Isso leva a presença simultânea de diversas formas 

possíveis de polarização. 

 

Material 
Rigidez 

dielétrica 
(kV/mm) 

Ar (1 atm) 3 

Vidro 35 

Papel 20 

Oleo 4 

Borracha 25 
 

Tabela 11 - Tabela de regidez dielétrica de alguns materiais 



A polarização eletrônica é definida como o deslocamento elástico de 

elétrons que estão ligados ao núcleo do átomo pela ação do campo 

elétrico que é aplicado. 

Uma das características dos dielétricos sólidos é a polarização iônica. 

Quando um material qualquer recebe ou perde um elétron da sua última 

camada (camada de valência), ele se torna um ion. Nesse caso, a 

polarização bipolar ocorre quando a orientação espacial das conexões 

das moléculas. Sendo assim, é possível que, ao aplicarmos uma diferença 

de potêncial sobre o material, ocorra uma reorganização das moléculas. 

Finalmente temos a polarização estrutural. Ela ocorre quando as 

estruturas complexas de um material são submetidas a um campo elétrico 

externo. Quando o material é aquecido, surge um campo devido ao 

deslocamento de ions que compõe o dipolo. Juntamente com a 

polarização estrutural, essa forma de polarização, é muito sensível aos 

efeitos da temperatura. 

Considerando que: 

• capacitância C0 e carga no vácuo Q0; 

• capacitância Ce e carga na polarização eletrônica Qe; 

• capacitância Ci e carga na polarização iônica Qi; 

• capacitância Cd e carga na polarização dipolar Qd; 

• capacitância Cs e carga na polarização estrutural Qs; 

Sabemos que a carga que um capacitor possui no vácuo, Qo e a carga 

eletrônica que resulta da polarização eletrônica Qe sempre estão 

presentes. Já as polarizações iônica, estrutural e dipolar, são 

dependentes do tipo de material dielétrico que se esta utilizando. 

A equação 

𝜀 = 1 + 4𝜋𝑘𝑒 + 4𝜋𝑘𝑑 + 4𝜋𝑘𝑠 
 

é conhecido como constante dielétrica e ke, kd e ks são conhecidos como 

suscetibilidades elétricas. Elas são originadas nas polarizações 

eletrônica, dipolar e estrutural, respectivamente. 

 

3.1.4 – Materiais Magnéticos 
 

Como já vimos anteriormente, os materiais podem ser divididos em 

ferromagnético, diamagnéticos e paramagnéticos. Os materiais 

ferromagnéticos são caracterizados por uma magnetização espontânea. 

Essa magnetização não exige que sejam originadas por campos 

magnéticos exteriores. Nesses materiais, a temperatura é importante, 

pois na temperatura crítica o material pode passar de ferromagnético 

para diamagnético. 

Os materiais diamagnéticos, tem sua permeabilidade magnética menor 

que 1 e, quando submetidos a um campo magnético tem os seus elétrons 

sendo ajustados enquanto giram em torno do seu eixo. Durante esse 



ajuste libera, durante o processo, um momento magnético que se dirige 

de forma contrária ao campo magnético que é aplicado. Isso provoca um 

enfraquecimento do próprio campo. 

Já os materiais paramagnéticos possuem uma permeabilidade magnética 

em torno da unidade.  

 

3.2 RESISTÊNCIA ELÉTRICA 
 

3.2.1 - Definição 
 

Como já vimos anteriormente, todos os materiais elétricos oferecem uma 

maior ou menor dificuldade à circulação de uma corrente elétrica. 

Entretanto, mesmo os materiais condutores possuem uma determinada 

capacidade de se opor a passagem de uma corrente elétrica. Essa 

oposição a passagem da corrente elétrica é conhecida como 

RESISTÊNCIA ELÉTRICA e ela existe porque todos os materiais possuem 

uma determinada RESISTIVIDADE ELÉTRICA. 

No ano de 1827, o físico e matemático alemão, Georg Simon Ohm, 

publicou os resultados dos seus estudos sobre as relações entre 

corrente, tensão e resistência dos materiais. O resultado desses estudos, 

passou a ser conhecido como LEI DE OHM. Poucos anos antes, Alexandre 

Volta havia desenvolvido a bateria eletrolítica e os estudos sobre os 

efeitos da eletricidade eram novos. 

Enquanto era professor em uma escola em Colônia, Ohm aproveitava o 

tempo livre e os laboratórios da escola para fazer seus estudos sobre 

circuitos elétricos. Ao concluir os estudos, publicou o trabalho 

denominado “O circuito galvânico investigado matematicamente” onde 

mostrava que uma corrente elétrica que percorria um fio condutor era 

proporcional a diferença de potêncial aplicada a esse condutor, 

diretamente proporcional a sua seção transversal e inversamente 

proporcional ao seu comprimento. 

O grande elemento inspirador do trabalho de Ohm foi um trabalho 

publicado por Fourier sobre condução de calor. Fourier descobriu que a 

condução de calor é proporcional entre dois pontos, é proporcional a 

diferença de temperatura entre eles e a condutividade térmica do meio 

que os separa. Baseado nessa descoberta, Ohm, por analogia, iniciou o 

estudo sobre a corrente elétrica. 

Essa proporcionalidade entre a corrente e a diferença de potêncial, que 

podemos observar em alguns tipos de material é conhecida como a 

PRIMEIRA LEI DE OHM. Todos os materiais que apresentam essa 

proporcionalidade são denominados de materiais ôhmicos. 

Essa relação indica o quanto de tensão deve ser aplicado a cada diferente 

material ôhmico para que a corrente seja mantida a mesma, ou seja, 



quanto maior for a dificuldade oferecida por um determinado material, a 

passagem da corrente elétrica, tanto maior deverá ser a tensão aplicada 

a ele, para que um determinado valor de corrente seja estabelecido. 

Como já dissemos, em seus experimentos, Ohm determinou a relação 

entre a seção transversal do condutor, seu comprimento e sua 

resistência. Entretanto ele determinou também que cada material 

necessitava de um coeficiente para garantir um mesmo comportamento 

dessa relação. Ele determinou que esse coeficiente era a resistividade de 

cada material () e concluiu que a resistência de um determinado material 

elétrico pode ser determinada pela equação: 

 

𝑅 = 𝜌
𝐿

𝐴
 

 

onde: R é a resistência do material () 

             é a resistividade desse material ( m/mm2) 

            L é o comprimento do condutor (m) 

            A é a seção do condutor (mm2) 

 

A partir daí Ohm definiu a relação entre a tensão, a corrente e a 

resistência a partir da equação 

 

𝑅 =  
𝑉

𝐼
 

 

onde: R é a resistência () 

            V é a voltagem (V) 

             I é a corrente (A) 

 

 

Tabela 12 - Resistividade de alguns materiais 

 

Se igualarmos as duas equações teremos: 

 

𝑉

𝐼
= 𝜌

𝐿

𝐴
 



 

Rearranjando a equação teremos: 

𝑉

𝐿
= 𝜌

𝐼

𝐴
 

  

Mas o elemento V/L é o campo elétrico que esta atuando sobre o condutor, 

enquanto a relação I/A é denominada de densidade de corrente, que pode 

ser simbolizado J. Sendo assim, 

 

𝐸 = 𝜌𝐽 
 

Na realidade, não se utiliza a fórmula nessa configuração, na realidade 

utilizamos a fórmula em função da condutividade e, portanto 

 

𝐽 = 𝜎𝐸 
 

 

3.2.2 - O modelo de Drude 
 

A lei de Ohm já estava sendo utilizada, o elétron havia sido descoberto no 

final do século XIX, já estava determinado que era o elétron o responsável 

pelos fenômenos elétricos que estavam sendo estudados. Entretanto era 

necessário explicar a relação entre o elétron e os fenômenos elétricos e 

as leis que regiam essas relações. Quem fez essas descobertas foi Paul 

Drude no ano de 1900. 

Nos capítulos anteriormente estudados já verificamos que o potêncial 

elétrico em um condutor é o mesmo em toda a extensão do condutor, ou 

seja, o material se encontra em equilíbrio eletrostático. A conclusão disso 

é simples, em um contador eletrostaticamente carregado, não há 

diferença de potêncial entre dois pontos quaisquer. Como em um 

condutor, os elétrons da camada de valência são fracamente ligados ao 

núcleo, podemos verificar que, devido a energia térmica, esses elétrons 

estão livres para se moverem aleatoriamente ao longo do condutor e, 

nessa condição esses elétrons recebem o nome de ELÉTRONS DE 

CONDUÇÃO. 

Quando submetido a um campo elétrico, surge uma força sobre os 

elétrons livres e nesse caso, além do movimento aleatório originado pelo 

gradiente térmico do material, surge também um movimento ordenado na 

direção do campo. 

Ao ser submetido ao campo elétrico, o condutor não está mais em 

equilíbrio eletrostático. 



Teoricamente, nessas condições, o condutor submetido a essas 

condições, teria a velocidade de deslocamento dessas cargas 

aumentando indefinidamente. Entretanto, os elétrons em movimento 

enfrentam colisões entre eles e os íons de fundo, mantendo a velocidade 

de deslocamento dentro de determinados limites. 

Podemos explicar esse fenômeno a partir de uma análise microscópica 

que é conhecida como modelo de Drude. 

O modelo de Drude, analisa esses fenômenos a partir das seguintes 

hipóteses: 

1. Não há interação elétron-elétron ou elétron-íon no intervalo entre 

as colisões; 

2. As colisões ocorrem de forma abruptamente e os íons não se 

movem; 

3. Existe um tempo médio entre as colisões (∆t); 

4. Após cada colisão, o elétron perde a “memória” sobre sua 

velocidade e trajetória. 

Vamos imaginar que um condutor, que possua um comprimento L esteja 

submetido a uma diferença de potêncial V. Ao aplicarmos uma tensão V a 

esse condutor fazemos com que um campo elétrico de intensidade E = V/L 

no condutor. Sendo assim, se selecionarmos um elétron de condução 

qualquer veremos que o mesmo está submetido a uma força elétrica que 

é dada por F = -eE. Esse elétron será acelerado até uma velocidade v 

durante um tempo ∆t. Podemos representar esse efeito através da 

equação de variação de velocidade atingida é: 

 

𝑚
∆𝑣

∆𝑡
= −𝑒𝐸 ⇒ ∆𝑣 = −

𝑒𝐸∆𝑡

𝑚
 

 

Em um condutor percorrido por uma corrente, a quantidade de carga que 

passa através da seção transversal desse condutor pode ser escrita 

como: 

 

∆𝑄 = 𝑛(−𝑒)𝐴𝑣𝑚∆𝑡 
 

 

onde: n é a densidade volumétrica dos elétrons de condução (C/m3) 

            e é a carga do elétron (C) 

            A é a seção transversal do condutor (m2) 

            vm é a velocidade média de deslocamento dos elétrons (m/s) 

            ∆t é o tempo percorrido (s) 

Desse modo, a corrente elétrica que flui através do condutor pode ser 

escrita da seguinte maneira: 



𝐼 =
∆𝑄

∆𝑡
= −𝑛𝑒𝐴𝑣𝑚 

 

e a velocidade média que o elétron atinge é dada por: 

 

|𝑣𝑚| =
𝐼

𝑛𝑒𝐴
 

 

Esse valor médio da velocidade, na verdade é a velocidade de arraste dos 

elétrons e não a média das velocidades individuais de cada elétron, cujos 

valores são determinados pela agitação térmica. 

Essa velocidade individual, devido a agitação térmica pode ser estimada 

através do Teorema da Equipartição da Energia, estudado em Física 

Estatística. Esse teorema estabelece o grau de liberdade de translação 

dos elétrons contribui com 𝑘𝐵𝑇/2 para a energia térmica dos mesmos. 

Nesse valor apresentado temos kB é a constante de Boltzman (1,38064852 

× 10-23 𝑚2𝑘𝑔 𝑠2𝐾⁄ ) e T é a temperatura.  

Se igualarmos a energia cinética média dos elétrons com a energia 

térmica teremos: 

 

1

2
𝑚𝑒〈𝑣

2〉 =
2

3
𝑘𝐵𝑇 

 

onde 〈𝑣2〉 é a média do quadrado das velocidades dos elétrons 

            me é a massa do elétron 

 

𝑣𝑅𝑀𝑆 = √〈𝑣2〉 = √
3𝑘𝐵𝑇

𝑚𝑒
 

O valor de vRMS é conhecido como valor quadrático médio da velocidade 

dos elétrons ou, em inglês, root mean square. 

A velocidade de um elétron após a colisão tem direção aleatória, mas o 

que realmente importa é o comportamento coletivo dos elétrons. Desse 

modo, se fizermos a média das velocidades para todos os elétrons, 

veremos que a velocidade resultante é nula, ou seja, vi = 0, ou seja: 

∆𝑣 = 𝑣𝑓 − 𝑣𝑖 = 𝑣𝑓 

 

𝑣𝑚 =
𝑣𝑓 + 𝑣𝑖

2
=

𝑣𝑓

2
 

 



As equações mostram que a variação da velocidade sofrida por um 

elétron é o dobro da velocidade média. Sendo assim, podemos escrever: 

 

−2
𝐼

𝑛𝑒𝐴
= −

𝑒𝐸∆𝑡

𝑚
 

 

Além das grandezas já mencionadas sobre a resistência, temos também 

o chamado caminho médio livre (l). Essa grandeza representa a distância 

percorrida pelos elétrons entre duas colisões sucessivas. Como já 

dissemos, o tempo médio entre as colisões é ∆T e a velocidade média dos 

elétrons dada por vf e, portanto, o caminho médio livre será calculado por: 

 

𝑙 = 𝑣𝑓∆𝑡 =
2𝑣𝑓𝑚𝐼

𝑛𝑒2𝐴𝐸
 

 

A equação acima mostra que a diferença de potêncial é proporcional à 

corrente, confirmando a primeira lei de Ohm. Como a resistência é dada 

pela razão entre tensão e corrente, então teremos: 

 

𝑅 =
𝑉

𝐼
=

2𝑚

𝑛𝑒2∆𝑡

∆𝐿

𝐴
 

 

Como podemos ver a resistência é diretamente proporcional ao 

comprimento do condutor e inversamente proporcional à seção 

transversal do mesmo, o que confirma a lei de Ohm. 

Sendo assim, podemos afirmar que a resistividade do material é dada por: 

 

𝜌 =
2𝑚

𝑛𝑒2∆𝑡
 

 

Como vimos o modelo de Drude fornece a expressão para a resistividade 

dos materiais elétricos, que se trata de uma grandeza macroscópica, cuja 

a dependência é apenas de grandezas microscópicas que são, a massa 

do elétron, sua carga, a densidade de elétrons livres e o tempo médio 

entre colisões. Essa análise também é válida para condução iônica e para 

regiões com falta de elétrons. 

 

3.2.3 - Efeito Joule e Potência Elétrica 
 

Quando um condutor é percorrido por uma corrente elétrica dissipa toda 

a energia retida pela resistência é dissipada sob a forma térmica. 



Esse efeito térmico, que recebe o nome de efeito joule, ocorre devido ao 

choque dos elétrons livres contra os átomos dos condutores. Esses 

átomos, ao receberem energia vibram com mais intensidade. Desse 

modo, quanto maior for a vibração desses átomos, maior será a 

temperatura que o condutor irá atingir. 

Dependendo da utilização que queremos fazer do material elétrico, essa 

dissipação de calor pode ser, ou não, interessante. Em casos como 

chuveiros elétricos, torradeiras, cafeteiras e outros equipamentos desse 

tipo, esse efeito é interessante.  

Por outro lado, em circuitos eletrônicos, onde o funcionamento e a 

velocidade de processamento estão associados à temperatura do 

material, o efeito Joule é totalmente indesejado e dispositivos de 

resfriamento são necessários nesses casos. 

Qualquer máquina ou equipamento elétrico, a potência é definida como o 

quociente entre a energia que é transformada pelo tempo corresponde. 

 

𝑃 =
𝐸

𝑡
 

 

No sistema internacional, a energia tem como unidade o Joule, e o tempo 

é dado em segundos. Desse modo, a unidade de potência é dada pela 

unidade J/s ou, a unidade mais utilizada que é o Watt (w). 

A potência é o resultado do produto da corrente que circula em um 

condutor, pela tensão que alimenta esse condutor, assim 

 

𝑃 = 𝑉. 𝐼 
 

Entretanto, como sabemos a tensão V é o produto da corrente pela 

resistência, desse modo: 

 

𝑉 = 𝑅. 𝐼 
 

Substituindo essa equação na equação da potência, teremos: 

 

𝑃 = 𝑅. 𝐼. 𝐼 ⇒ 𝑃 = 𝑅. 𝐼2 
 

Por outro lado, sabemos que: 

 

𝐼 =
𝑉

𝑅
 

 



E, novamente, substituindo essa equação na equação da potência, 

teremos: 

 

𝑃 = 𝑉.
𝑉

𝑅
⟹ 𝑃 =

𝑉2

𝑅
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 79 - Grafico com as relações entre Tensão, Corrente, Resistência e Potência 

 

3.3.4 - Tipos e usos dos Resistores 
 

A grande pergunta que devemos fazer é. Para que servem os resistores? 

Na prática, os resistores servem para limitar a intensidade de corrente 

elétrica através de determinados componentes, ou dividir um valor de 

tensão de alimentação. 

Existem duas formas básicas de representar um resistor. Podemos fazê-

lo através de um retângulo ou através de uma linha em zig-zag. A 

representação de retângulo com terminais é uma representação 

simbólica para os resistores de valores fixos tanto na Europa como no 

Reino Unido, já a representação em "linha quebrada" (zig-zag) é usada 

nas Américas e Japão. No Brasil, qualquer uma das duas formas são 

aceitas. 

Outro uso para os resistores é a possibilidade de utilizados como 

transdutores. Transdutores são componentes capazes de realizar 

conversão de uma forma de energia em outra. Alguns exemplos são os 

microfones, interruptores e Resistores Dependentes da Luz ou LDRs, que 

são exemplos de transdutores de entrada, ou seja, transformam formas 

de energia como a mecânica em um sinal elétrico. O outro tipo de 

transdutor é representado por alto-falantes, lâmpadas de filamento, relés, 

P V

R I

R x I

P x R

P
I

V x I

V2

R

R x I2

P
R

V
R

P
V

V
I

P
V2

P

I2



"buzzers" e também os LEDs, são exemplos de transdutores de saída. 

Transformam sinais elétricos em outras formas de energia. 

 

 

 

   

 
Figura 80 - Representações gráficas de um resistor 

Existem várias formas e construções dos resistores. Cada forma obedece 

alguns critérios das necessidades dos seus usos. 

 

 

 

 

 

 

 

 

 
Figura 81 - Tipos de resistores 

Veremos, a seguir, esses tipos de construção. 

 

3.3.4.a – Resistores de Valor Fixo 

 

Resistores de valor fixo, são dispositivos, como o próprio nome diz, tem 

seu valor fixado durante a fabricação. Existem dois tipos de materiais 

utilizados para confecção desses componentes. O primeiro é o resistor 

de fio, onde se utiliza um fio de uma liga resistiva conhecida como 

Constantan.  

A liga de Constantan é composta por cobre (entre 53% e 57%), Níquel 

(entre 43% e 45%), Manganês (entre 0,5% e 1,2%) e Ferro (<0,5%). Sua 

resistividade é de 49x10-6 .cm. 

 

 

 

 

 

 

 

 
Figura 82 - Construção de resistor de fio 



O outro material é o resistor de carbono. Esse tipo de resistor, muito 

utilizado na eletrônica, tem em sua construção a deposição de uma fina 

película de carbono sobre um tubo de cerâmica. Eles também são 

conhecidos como resistores de filme. O filme resistivo é enrolado em 

hélice por fora desse tubo. Posteriormente são instalados os terminais e 

o resistor é recoberto por uma camada isolante. Depois que a camada 

isolante seca, são pintadas faixas coloridas que identificam o resistor. 

 

 

 

 

 

 

 
Figura 83 - Construção interna de um resistor de carbono 

Esse tipo de resistor é de fácil fabricação e barato. Os valores comerciais 

apresentam uma precisão entre 5% e 10% dos valores apresentados no 

código de cores. 

Existem resistores de precisão maior, entre 1% e 2%. Eles são construídos 

de filme metálico ou óxido metálico que apresentam uma maior precisão 

na sua confecção. 

 

3.3.4.b – Identificação dos Resistores 

 

Dependendo do tipo de resistor, o valor ôhmico de sua resistência é 

apresentado de forma diferente. 

Os resistores de fio têm seu valor e sua precisão impressos no corpo do 

dispositivo e é de fácil leitura. 

Os resistores de carbono, por serem muito pequenos, não permitem a 

impressão dos valores de resistência no seu corpo. Sendo assim é 

necessário que se utilize uma outra forma de representação do valor da 

resistência e da tolerância desse resistor. Para isso utilizamos um 

sistema de código de cores, que é uma codificação internacional. 

 

 

 

 

 

 
Figura 84 - Representação da disposição das cores em um resistor comum. 

 

 

 



 

 
Figura 85 – Representação da disposição de cores de um resistor de precisão 

 

Cor 
Nominal 

1 

Nominal 

2 
Multiplicador Tolerância 

Sem codificação     ±20% 

Prateado    × 0.01 ±10% 

Dourado     × 0.1 ±5% 

Preto   0 × 1.0  

Castanho  1 1 × 10 ±1% 

Vermelho  2 2 × 100 ±2% 

Laranja   3 3 × 1 K  

Amarelo    4 4 × 10 K  

Verde   5 5 × 100 K  

Azul   6 6 × 1 M  

Violeta   7 7 × 10 M  

Cinza  8 8   

Branco  9 9   

 
Figura 86 - Tabela do código de cores para resistores comuns 

Cor 
Nomina

l 1 

Nomina

l 2 

Nomina

l 3 

Multiplicado

r 
Tolerânci

a 

Sem 
codificaçã

o 
   

 
   

Prateado     × 0.01   

Dourado      × 0.1 ±5% 

Preto   0 0 × 1.0  

Castanho  1 1 1 × 10 ±1% 

Vermelho  2 2 2 × 100 ±2% 

Laranja   3 3 3 × 1 K  

Amarelo    4 4 4 × 10 K  

Verde   5 5 5 × 100 K ±0,5% 

Azul   6 6 6 × 1 M  

Violeta   7 7 7 × 10 M  

Cinza  8 8 8   

Branco  9 9 9   
Figura 87 - Tabela do código de cores para resistores de precisão 

3.3.4.c – Potência Dissipada pelos Resistores 

 



Dependendo do tipo de utilização que daremos ao resistor é necessário 

que ele seja capaz de suportar uma maior ou menos potência que será 

dissipada pela circulação de corrente. 

Os resistores de fio são capazes de atingir potências maiores pois sua 

construção é mais robusta. Comercialmente eles podem atingir potências 

de 100W, 50W, 20W, 10W e 5 W. 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 88 - Resistores de fio de várias potências 

Os resistores de filme suportam potências menores e sua capacidade 

está relacionada ao tamanho do componente, conforme mostra a 

ilustração abaixo. Esses resistores podem atingir até 2W. Para casos 

onde o componente vai trabalhar próximo a sua potência nominal, é 

interessante utilizar um dissipador de calor. 

 

 

 

 

 

 

 

 

 

 
Figura 89 - Tamanhos padrão dos resistores e um dissipador de calor para esses componentes 

 

3.3.4.d – Resistores Variáveis e Resistores Ajustáveis 

 

Além dos resistores fixos, existe um outro grupo de resistores cujo valor 

de resistência pode ser alterado e ajustado de acordo com a necessidade 

do projeto. Esse tipo de resistor existe para casos em que são 

necessários valores diferentes dos valores comerciais de resistores fixos, 



ou quando se necessita de uma variação de valor da resistência de 

acordo com o momento.  

Um exemplo desse segundo caso é o ajuste do volume de saída de um 

amplificador de áudio. 

Os resistores ajustáveis são utilizados quando o valor da resistência 

pode, ou deve ser continuamente ajustada. Por exemplo, volume de áudio, 

valor da intensidade luminosa e outras. Esses resistores recebem um 

nome específico, são conhecidos como POTENCIÔMETROS. 

Construtivamente é um dispositivo que possui um elemento móvel que 

desliza sobre uma trilha de carbono depositada no corpo do 

potenciômetro. O deslocamento do cursor sobre a trilha varia a 

resistência entre o centro do cursor e uma das extremidades do 

potenciômetro. 

 

 

 

 

 

 

 

 

 
Figura 90 - Esquema construtivo de um potenciômetro e vista externa 

Outra forma de resistor é o resistor ajustável. Esse tipo de resistor é 

utilizado para circuitos onde o valore de resistência desejado não é um 

valor comercial. Nesse tipo de resistor o valor é ajustado durante a 

montagem e não é mais alterada. 

Construtivamente ela é muito similar ao potenciômetro, diferenciando 

somente a sua estrutura física externa. 

 

 

 

 

 

 

 

 

 
Figura 91 - Construção interna de um trimpot e duas formas construtivas 

 

3.3.4.e – Resistores Especiais 

 



Existem ainda dois tipos de resistores especiais cuja resistência varia de 

acordo com características especiais.  

O primeiro tipo de resistor especial é um NTC cujo nome é a abreviação 

de Negative Temperature Coefficient , é um dispositivo não linear cuja 

resistência varia de acordo com a variação da temperatura. São 

construídos a partir de um óxido semicondutor que pode ser, Fe3O4 (óxido 

de ferro)+Zn2TiO4 (óxido de titânio) ou CoO (óxido de cobalto) + Li2O (óxido 

de lítio) 

 

 

 

 

 

 

 
Figura 92 - NTC e simbologia para NTC e PTC 

 

 

 

 

 

 

 

 

 

 

 
Figura 93 - Curva caracteristica de um NTC 

O valor da resistência em um NTC pode ser calculado por: 

 

𝑅 = 𝐴. 𝑒𝐵 𝑇⁄  
 

Onde: R – resistência () 

             e – número de Euler (2,718) 

             B – Constante do material no NTC em oK3 

             T – temperatura do NTC em oK 

             A – constante a uma dada Temperatura (retirada do gráfico abaixo) 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 94 - Gráfico que relaciona a razão R25/Rt de um NTC à temperatura ambiente de 25 oC 

Por outro lado, podemos obter os valores de A e B. Para isso é necessário 

medir o valor da resistência R do NTC em dois valores quaisquer de 

temperaturas. 

Da equação do NTC temos: 

 

𝑅1 = 𝐴. 𝑒𝐵 𝑇1⁄  

𝑅2 = 𝐴. 𝑒𝐵 𝑇2⁄  
 

Se dividirmos a resistência R2/R1, teremos: 

 

𝑅1

𝑅2
= 𝑒𝐵(1 𝑇1⁄ −1 𝑇2⁄ ) ⟹ log

𝑅1

𝑅2
= 𝐵 (

1

𝑇1
−

1

𝑇2
) log 𝑒 

onde: 

 

𝐵 = (
1

log 𝑒
) . (

log 𝑅1 − log𝑅2

1
𝑇1

− 
1
𝑇2

) 

 

Podemos calcular o valor de B através da fórmula: 

 



𝐵 =
log𝑅1 − log𝑅2

log 𝑒 (
1
𝑇1

−
1
𝑇2

)
 

 

 

Para calcular o coeficiente de temperatura T pela relação 

 

𝛼𝑇 = −
𝐵

𝑇2
 

 

Além do resistor que varia com a temperatura, temos resistores que 

variam sua resistência com a luminosidade e são conhecidos como LDR 

(Ligth Dependent Resistor). Ele é um dispositivo construído basicamente 

com sulfeto de cádmio (CdS) ou seleneto de cádmio (CdSe), sendo 

considerados semicondutores que diminuem sua resistência com o 

aumento da intensidade da luz. 

Para determinar a resistência de um LDR em uma determinada 

luminosidade temos a seguinte equação 

 

𝑅𝐿𝐷𝑅 = 𝑅𝑒𝑠𝑐𝑢𝑟𝑜 × 𝐿−𝑎 
 

onde: RLDR Resistência do LDR () 

            Rescuro Resistência do LDR sem presença de luminosidade () 

            L Luminosidade incidente sobre o LDR (lux) 

            a Constante do material usado no LDR (/lux) 

 

 

 

 

 

 

 
Figura 95 - LDR e seus simbolos esquemáticos 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 96 - Curva de resistência pela luminosidade de um LDR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 97 - Curva de resposta da sensibilidade do LDR pelo comprimento de onda. 

 

 

3.2.5 - Associação de Resistores 
 

Resistor é um dispositivo elétrico qualquer, cuja função seja inserir em 

um circuito uma determinada dificuldade à passagem de corrente 

elétrica. O chuveiro elétrico, promove o aquecimento da água através da 

resistência que fornece a passagem de corrente elétrica. Como veremos 

mais adiante, essa resistência, ao ser percorrida por uma corrente, 

dissipa energia sob a forma de calor. Essa mesma característica é 



utilizada em fornos elétricos, ferros elétricos e outros aparelhos de 

aquecimento. 

Os resistores podem ser associados em série, em paralelo ou em 

associações mistas e, cada uma dessas disposições possui 

características especificas que vamos analisar a seguir. 

 

3.2.5.a Associação em série 

 

Um conjunto de resistores está associado em série quando todos os 

resistores que compõem o circuito são percorridos pelo mesmo valor de 

corrente elétrica. Para que os resistores estejam associados em série 

basta que os resistores sejam ligados um em seguida do outro, conforme 

mostra a figura abaixo. 

 

 

 

                                                                      

 

 

 

 

 

 
Figura 98 - Associação série de resistores 

Para conhecermos o comportamento dessa associação de resistores 

frente a tensão que alimenta o mesmo, será necessário encontrar o que 

denominamos de RESISTÊNCIA EQUIVALENTE.  

No caso da associação em série a resistência equivalente é obtida da 

soma de todas as resistências em série, desse modo: 

 

𝑅𝑒𝑞 = 𝑅1 + 𝑅2 + ⋯+ 𝑅𝑛 

  

Em cada resistor irá passar o mesmo valor de corrente I e cada resistor 

ficará com uma pequena parcela da tensão que alimenta todo o circuito. 

Desse modo, a queda de tensão em cada resistor será dada por: 

 

𝑉𝑅𝑛
= 𝑅𝑛 × 𝐼 

 

Do mesmo modo, como já mencionamos, cada resistor irá dissipar uma 

potência, sob a forma de calor, que será proporcional a sua resistência. 

Desse modo 

 

V

R1 R2 R3

R4

R5

R R R 



𝑃𝑅𝑛
= 𝑉𝑅𝑛

× 𝐼 

 

𝑃𝑅𝑛
=

𝑉𝑅𝑛

2

𝑅𝑛
⟹ 𝑅𝑛 =

𝑉𝑅𝑛

2

𝑃𝑅𝑛

 

 

Baseados nessas equações podemos determinar a potência total 

dissipada por uma associação em série. 

 

𝑉𝑒𝑞 × 𝐼 = 𝑉1 × 𝐼 + 𝑉2 × 𝐼 + 𝑉3 × 𝐼 + ⋯+ 𝑉𝑛 × 𝐼  
 

𝑉𝑒𝑞 × 𝐼 = 𝐼 × (𝑉1 + 𝑉2 + 𝑉3 + ⋯+ 𝑉𝑛) 

 

𝑉𝑒𝑞 =
𝐼 × (𝑉1 + 𝑉2 + 𝑉3 + ⋯+ 𝑉𝑛)

𝐼
 

 

𝑉𝑒𝑞 = 𝑉1 + 𝑉2 + 𝑉3 + ⋯+ 𝑉𝑛 

 

Mas 

 

𝑃𝑒𝑞 = 𝑉𝑒𝑞 × 𝐼 

 

𝑃𝑒𝑞 = (𝑉1 + 𝑉2 + 𝑉3 + ⋯+ 𝑉𝑛)𝐼 

 

𝑃𝑒𝑞 = 𝑉1𝐼 + 𝑉2𝐼 + 𝑉3𝐼 + ⋯+ 𝑉𝑛𝐼 

 

𝑃𝑒𝑞 = 𝑃1 + 𝑃2 + 𝑃3 + ⋯+ 𝑃𝑛 

 

A associação em série é denominada DIVISOR DE TENSÃO. 

 

3.2.5.b Associação em paralelo 
 

Na associação em paralelo a tensão de alimentação é igual em todos os 

resistores e a corrente se divide de forma proporcional aos valores das 

resistências associadas. 

 

 

 

 



 

 

 

 
Figura 99 - Circuito paralelo 

 

1

𝑅𝑒𝑞
=

1

𝑅1
+

1

𝑅2
+

1

𝑅3
+ ⋯+

1

𝑅𝑛
 

 

Para o caso de somente dois resistores estarem associados, teremos: 

 

1

𝑅𝑒𝑞
=

1

𝑅1
+

1

𝑅2
⟹ 𝑅𝑒𝑞 =

1

1
𝑅1

+
1
𝑅2

 

 

Fazendo o mínimo múltiplo comum entre os dois denominadores teremos: 

 

𝑅𝑒𝑞 =
1

𝑅2 + 𝑅1
𝑅1 × 𝑅2

⟹ 𝑅𝑒𝑞 =
𝑅1 × 𝑅2

𝑅1 + 𝑅2
 

 

Analisando as equações para encontrar a relação das correntes e 

potência teremos: 

 

1

𝑅𝑒𝑞
=

1

𝑅1
+

1

𝑅2
+

1

𝑅3
+ ⋯+

1

𝑅𝑛
 

 

1

𝑉
𝐼𝑒𝑞

=
1

𝑉
𝐼𝑅1

+
1

𝑉
𝐼𝑅2

+
1

𝑉
𝐼𝑅3

+ ⋯+
1

𝑉
𝐼𝑅𝑛

 

 

𝐼𝑒𝑞

𝑉
=

𝐼1
𝑉

+
𝐼2
𝑉

+
𝐼3
𝑉

+ ⋯+
𝐼𝑛
𝑉

⟹ 𝐼𝑒𝑞

=
𝑉(𝐼𝑅1

+ 𝐼𝑅2
+ 𝐼𝑅3

+ ⋯+ 𝐼𝑅𝑛

𝑉
 

 

𝐼𝑒𝑞 = 𝐼𝑅1
+ 𝐼𝑅2

+ 𝐼𝑅3
+ ⋯+ 𝐼𝑅𝑛

 

 

V R1 R2 R3 R4



Considerando a potência teremos: 

 

𝑃𝑒𝑞 = 𝑉. 𝐼𝑒𝑞 

 

𝑃𝑒𝑞 = 𝑉(𝐼𝑅1
+ 𝐼𝑅2

+ 𝐼𝑅3
+ ⋯+ 𝐼𝑅𝑛

) 

 

𝑃𝑒𝑞 = 𝑉𝐼𝑅1
+ 𝑉𝐼𝑅2

+ 𝑉𝐼𝑅3
+ ⋯+ 𝑉𝐼𝑅𝑛

 

 

𝑃𝑒𝑞 = 𝑃𝑅1
+ 𝑃𝑅2

+ 𝑃𝑅3
+ ⋯+ 𝑃𝑅𝑛

 

 
Como podemos ver, assim como no circuito série, a potência total no 

circuito paralelo, também é resultado da soma de todas as potências 

parciais. 

 

3.2.5.c Associação Mista 

 

A associação mista de resistores é a mais comum das ligações de 

resistores. Nela encontramos resistores associados em série e em 

paralelo e existem várias formas de resolução desse tipo de circuito. 

. 

  

 

 

 

 

 

 
Figura 100 - associação mista de resistores 

Como já dissemos, esse tipo de circuito permite uma série de formas de 

resolução. A primeira, e mais simples, é fácil de realizar em circuitos com 

pouco componentes. 

Esse método consiste em reduzir o circuito toda a uma só resistência 

equivalente. Com o valor da resistência equivalente encontramos a 

corrente inicial que será a corrente total do circuito e depois começamos 

a retornar ao circuito anterior. 

No caso do circuito da figura 91, em primeiro lugar resolveríamos a 

associação em série de R3, R4, R5. De posse desse resultado, que 

chamaremos de RT1, resolvemos o circuito paralelo entre RT1 e R2. 

Chamaremos o resultado dessa segunda associação de RT2. Esse 

resultado é associado em série com os resistores R1 e R6. Teremos, por 

R2

R3

R4

R5R 

V

R1



fim, o Resistor Equivalente do circuito. Conforme mostra o diagrama a 

seguir. 

 

 

 

 

 

 

 

 

Encontrado o resistor equivalente, aplicamos a lei de Ohm e encontramos 

a corrente total do circuito. 

Com essa corrente total, que chamaremos de It, encontramos a queda de 

tensão sobre o resistor RT2 que será igual a queda de tensão no resistor 

R2.  

Como R2 está em paralelo com o resistor equivalente RT1 podemos utilizar 

esse valor de tensão para encontrar a corrente sobre R3, R4, R5 e a análise 

está concluída. 

Como podemos ver pela descrição, para circuitos com muitos resistores 

esse método apresenta muita complexidade e muito trabalho. Para isso 

utilizamos outros métodos que simplificam significativamente o resultado. 

 

3.2.6 - Leis de Kirchhoff 
 

As leis de Kirchhoff são leis utilizadas para solução de problemas com 

circuitos mais complexos. Esses circuitos podem ter sua complexidade 

devido a 3 fatores: 

• Grande número de resistores; 

• Grande número de resistores e outros componentes; 

• Mais de uma fonte de alimentação. 

As leis de Kirchhoff são duas. A primeira lei é conhecida como Lei dos Nós 

e a segunda lei é conhecida como Lei das Malhas. 

 

3.2.6.a - Primeira Lei de Kirchhoff – A Lei dos Nós 
 

A primeira lei diz que a soma de todas as correntes que chegam em um nó 

é igual a soma de todas as correntes que saem desse mesmo nó, ou seja: 

 

∑𝐼𝑖𝑛 = ∑𝐼𝑜𝑢𝑡 

 

Essa lei é uma consequência da conservação da carga total existente no 

circuito. Isso confirma que nenhuma carga é acumulada em um nó 

Associação 

Série 

R3,R4,R5 =RT1 
Associação 

Paralelo 

RT1, R2=RT2 

Associação 

Série 

RT2, R1,R5 = Req 

Figura 101 - Sequencia para encontrar o resistor equivalente do circuito da figura 80 



elétrico. Definimos nó como um ponto onde 3 ou mais componentes 

elétricos se juntam.  

Imaginemos o circuito abaixo: 

 

 

 

 

 

 

 

 
Figura 102 - Representação de nós  

 

O ponto de encontro dos resistores R1, R2 e R3 é um nó, e nele, temos 

correntes que chegam e que saem desse nó e, portanto, a soma de todas 

é igual a zero. Do mesmo modo teremos esse resultado no nó 

representado pela união dos resistores R2, R5 e R6. 

 

3.2.6.b - Segunda Lei de Kirchhoff – A Lei das Malhas 

 

A lei das malhas diz que o somatório de todas as Forças Eletromotrizes 

(f.e.m) em uma malha qualquer, é igual as quedas de tensão de todos os 

componentes dessa malha. 

 

∑𝑓. 𝑒.𝑚 = ∑𝑅𝑛. 𝐼𝑛 

 

Vamos analisar o circuito abaixo. 

 

 

 

 

 

 

 

 

 

 

 
Figura 103 - Representação de malha 

 

Nesse circuito existe 3 malhas possíveis. Nem sempre é necessário 

utilizar todas. 

R2

R3

R4

R5R 

V

R1

R2

R3

R4

R5R 

V

R1



A primeira malha é constituída da fonte V e dos resistores R1, R2 e R6. A 

segunda malha é composta pelos resistores R2, R3, R4 e R5. Finalmente a 

terceira malha é composta pela fonte V e os resistores R1, R3, R4, R5 e R6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Capítulo IV 

CAPACITORES 
 

 

 

 

 

 

4.1 CAPACITORES EM CORRENTE CONTÍNUA 
 

4.1.1 - Definição e Histórico 

 

Uma das principais descobertas ligadas a eletricidade, ocorrida no 

século XVIII foi feita por Von Musschenbroek, na cidade de Leiden, na 

Holanda que foi realizada a partir de um experimento realizado 

anteriormente por dois estudiosos da Pomerânia, Andreas Cunaeus e 

Ewald Jürgen Von Kleist. O experimento de Von Musschenbroek consistia 

de uma garrafa cheia de água que foi conectada a uma máquina 

eletrostática. Em seguida ele aproximou a outro objeto e verificou o 

surgimento de uma grande faísca.  

Posteriormente esse experimento foi aperfeiçoado com a colocação de 

uma chapa metálica no interior da garrafa, encostada na parte interior do 

vidro e outra chapa metálica na parte externa da garrafa. A chapa interna 

é ligada ao exterior através de um fio que é conectado na chapa interior. 

Esse foi o primeiro protótipo do capacitor modernos. 

Um capacitor é um dispositivo muito utilizado em eletroeletrônico que é 

utilizado para armazenar energia elétrica sob a forma de campo elétrico 

que existe no seu interior. 

Consideremos um gerador de cargas elétricas ou corpo carregado que é 

conectado a uma esfera condutora com o raio R. Ambos estão imersos em 

um meio cuja constante eletrostática é k.  

 

 

 

 

 

 

Figura 104 - Experimento para mostrar o funcionamento do capacitor 

r

Gerador de

Cargas

Esfera

Condutora

Meio k

“Em todo o espaço há energia...é(só) uma questão de 

tempo até que os homens tenham êxito em associar 

seus mecanismos ao aproveitamento desta energia.” 

Nikola Tesla 

 



O condutor que liga a esfera até o gerador de cargas fará com que as 

cargas geradas sejam levadas para a esfera condutora carregando-a com 

uma carga Q. Pelo que já vimos anteriormente, sabemos que o potêncial 

elétrico formado na superfície de uma esfera condutora carregada será 

dado pela equação. 

 

V = k
Q

R
 

 

onde: V – potêncial elétrico na superfície da esfera (Volts) 

            Q – quantidade de carga (Coulomb) 

             R – raio da esfera (metros) 

             k – constante eletrostática do meio (9 x 109 Nm2/C2 para o vácuo) 

 

Se trabalharmos a equação teremos: 

 

Q

V
=

R

k
 

 

Aumentando a quantidade de cargas Q na esfera, iremos verificar que o 

potêncial elétrico V aumenta na mesma proporção e isso nos permite 

realizar a seguinte relação matemática: 

 

𝑄1

𝑉1
=

𝑄1

𝑉1
= ⋯ =

𝑄1

𝑉1
=

𝑄1

𝑉1
=

𝑅

𝑘
= 𝑐𝑡𝑒 = 𝐶  

 

Essa constante C depende do raio da esfera e do meio ou da quantidade 

de carga Q e do potêncial elétrico V, é chamada Capacitância. 

Então podemos dizer que a capacitância é a expressão da habilidade de 

um dispositivo em armazenar cargas elétricas. 

A unidade de capacitância é o FARAD (F), que é a razão entre a 

quantidade de carga elétrica e a voltagem. 

 

 

 

 

 

 

 

 

 
Figura 105 - Esquema construtivo de um capacitor e sua simbologia 

Terminais

Condutores ou

Placas ou armaduras

Dielétrico

(isolante)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 106 - Tabela das constantes dielétricas de alguns materiais 

4.1.2 - Processo de Carga dos Capacitores 
 

Imagine um capacitor sendo ligado em uma fonte de alimentação através 

de uma chave do tipo Liga-Desliga. Gradativamente as duas placas do 

capacitor passarão a ficar carregadas. A placa ligada ao polo positivo da 

bateria ficará carregada positivamente e a placa ligada ao polo negativo 

ficará carregada negativamente. Como já vimos, considerando que as 

duas placas ficaram com a mesma quantidade de cargas, mas com sinais 

diferentes, surgirá entre elas um campo elétrico uniforme que é orientado 

da placa positiva para a placa negativa.  

Considerando que as cargas elétricas se encontram imersas em um 

campo elétrico, elas possuem potêncial elétrico e a diferença de potêncial 

entre as placas estabelece uma tensão elétrica no capacitor carregado. 

Esse é o motivo pelo qual dizemos que o capacitor armazena energia 

elétrica no seu campo elétrico. 
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Figura 107 - (1) Capacitor descarregado; (2) Chave fechada, capacitor carregando; (3) Capacitor 

carregado;  (4) Campo elétrico uniforme no interior do capacitor 

 

Vamos agora considerar o circuito abaixo: 

 

 

 

 

 

 

 

 

 

 
Figura 108 - Circuito RC em corrente contínua 

Enquanto a chave está aberta, não há corrente e, portanto, a tensão no 

capacitor e no resistor são nulos. 

Quando a chave é fechada, o capacitor está descarregado, sendo assim, 

toda a tensão da bateria estará sobre o resistor. Desse modo, podemos 

concluir que, no instante em que a chave é fechada, a corrente máxima 

do circuito será dada por: 

 

Io =
E

R
 

 

Essa corrente continuará fluindo no circuito enquanto o capacitor está 

sendo carregado. Durante esse processo a corrente irá diminuindo até 

chegar a zero. 

A tensão sobre o capacitor também irá diminuindo e, a cada instante de 

tempo ela terá o valor dado pela seguinte equação: 

VR = E. e−t RC⁄  

+
+
+
+
+
+
+
+
+
+
+
+
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onde: VR – Tensão no resistor (volt) 

            E – Tensão na fonte (volt) 

            e – 2,718 (constante) 

            t – tempo decorrido do momento do fechamento da chave até o 

instante que se deseja. 

 

Sabendo que um circuito série é um divisor de tensão, a tensão do 

capacitor será dada por: 

 

Vc = E − VR 
 

Logo: 

Vc = E − E. e−t RC⁄  
  

Desse modo: 

Vc = E(1 − e−t RC⁄ ) 
 

Com essa equação podemos calcular a tensão do capacitor em qualquer 

instante durante a carga do capacitor. O denominador RC é chamado 

CONSTANTE DE TEMPO do circuito. 

Essa constante de tempo será a mesma para a carga e para descarga do 

capacitor. 

Durante o processo de descarga do capacitor a tensão sobre o capacitor 

será dada por: 

 

Vc = Eo. e
−t RC⁄  

 

E a corrente será dada por 

 

I = Ioe
−t RC⁄  

 

A partir dessas equações conseguimos levantar as curvas de carga e 

descarga dos capacitores em corrente continua. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 
Figura 109 - Curva de carga e descarga de um capacitor. 

 

4.1.3 – Reatância Capacitiva 
 

Os capacitores apresentam grande resistência quando sofrem variações 

de tensão. A essa oposição damos o nome de REATÂNCIA CAPACITIVA. 

O valor da reatância capacitiva é dado por: 

 

𝑋𝑐 = −
1

2𝜋𝑓𝐶
 

 

Em corrente contínua, o capacitor se comporta como um circuito aberto. 

Em corrente alternada o capacitor se comporta com alta impedância, 

entretanto, como podemos ver na equação, para frequências muito altas 

o capacitor tem um comportamento que se aproxima de um curto circuito. 

4.1.3 - Associação de Capacitores 
 

Assim como os resistores, os capacitores podem ser associados em 

série, em paralelo ou em uma associação mista. 

 

4.1.3.a – Associação em Série 

 

Quando associamos capacitores em série temos: 

 

q1 = C1V1, q2 = C2V2 e q3 = C3V3 

q1 = q2 = q3 = qn 
 

Em uma associação em série 

 



V = V1 + V2 + ⋯+ Vn 
 

Logo 

 

V = q (
1

C1
+

1

C1
+ ⋯+

1

Cn
) 

 

Considerando que 

 

V =
q

Ceq
 

 

Então 

 

1

Ceq
=

1

C1
+

1

C2
+ ⋯+

1

Cn
  ⟹

1

Ceq
= ∑

1

Ci
i

 

 

4.1.3.b Associação em Paralelo 

 

Partido do mesmo pressuposto anterior, temos:  

 

q1 = C1V1, q2 = C2V2 e q3 = C3V3 

q1 = q2 = q3 = qn 
 

Mas em uma associação em série a carga total é igual a soma das cargas 

parciais, sendo assim: 

 

q = q1 + q2 + ⋯+ qn 
 

Como 

 

q = CeqV 

Então 

 

Ceq = (C1 + C2 + ⋯+ Cn) ⟹ Ceq = ∑Ci

i

 

 



4.1.3.c – Associação Mista 

 

Entre os capacitores, as associações mistas são resolvidas da mesma 

forma que as associações mistas de resistores. 

 

4.1.3 - Tipos de Capacitores 
 

Comercialmente existem diversos tipos de capacitores que são utilizados 

nas mais diversas aplicações. Para classificarmos os capacitores, 

geralmente o fazemos relacionando com o material que compõem seu 

dielétrico. 

Os tipos mais comuns encontrados no comércio são:  

• Capacitores Cerâmicos (disco Cerâmico, tipo “plate” e 

multicamadas); 

• Capacitores de Filme Plástico (de poliéster, policarbonato, 

polipropileno e poliestireno); 

• Capacitores Eletrolíticos de Alumínio; 

• Capacitores Eletrolíticos de Tântalo; 

• Capacitores Variáveis; 

• Capacitores de Mica. 

 

4.1.3.a – Capacitores de Disco Cerâmico 

  

Esse tipo de capacitor é construído com um dielétrico que é feito de 

material cerâmico. Para fabricar esses capacitores começa com uma 

determinada quantidade de pó de cerâmica que é colocado em uma 

prensa e comprimido na forma de pastilhas. Quando as pastilhas estão 

prontas elas recebem um tratamento térmico para consolidação da 

pastilha. Após esse processo, as pastilhas são impregnadas de prata que 

é pulverizada nas duas faces da pastilha. Elas formarão as duas placas do 

capacitor. Depois de pronto são soldados os terminais sobre as camadas 

de prata. Isso ocorre após um banho desengordurante para limpeza. 

Concluída essa etapa uma resina é impregnada para proteção e 

isolamento e o capacitor é levado à um forno pra endurecimento da 

resina. 

 

 

 

 

 

 

 
Figura 110 - Sequência das etapas de fabricação de um capacitor de cerâmica 



Os capacitores de disco cerâmico são componentes com valores de 

média e baixa capacitância, normalmente na ordem dos picofarads (10-12). 

Tem sua principal utilização em circuitos que operam em alta frequência. 

Isso ocorre porque o baixo fator de perda e alta estabilidade do valor de 

capacitância são importantes, e esses capacitores fornecem essas 

características. 

A identificação do valor de capacitância desses capacitores é, 

normalmente feita pela leitura direta no corpo do capacitor, bastando ler 

o número impresso no componente e multiplica-lo por 10-12. Esses 

números respeitam um código de 3 algarismos. O primeiro algarismo 

indica a unidade, o segundo indica a dezena e o terceiro indica o número 

de zeros que compõem o valor do componente. 

A tolerância do capacitor de cerâmica é expresso por uma letra que, 

normalmente, é impressa após o valor da capacitância.  

 

 

 

 

 

 

 

 

 

Figura 111 - Código para identificação da tolerância 

4.1.3.b – Capacitores de Disco Cerâmico “Plate” 

 

Esse tipo de capacitor cerâmico tem como principais vantagens e 

características o seu tamanho que é ultra reduzido, grande estabilidade 

no valor da capacitância, baixo custo e uma estreita faixa de tolerância 

que gira em torno de 2%. Na tabela abaixo temos uma representação 

resumida dos principais dados desse tipo de capacitor. A principal 

diferença em relação aos capacitores de cerâmica é o fato de que os tipo 

“plate” possuem placas retangulares de cobre e os cerâmicos 

convencionais possuem placas circulares de prata. 

 

 



 

Figura 112 - Tabela de características dos capacitores do tipo "plate" 

 

 

 

 

 

 

 

Figura 113 - Exemplos de capacitores tipo plate 

4.1.3.c – Capacitores Cerâmicos Multicamadas 

 

Esses capacitores são construídos a partir da superposição de finas 

camadas de material dielétrico cerâmico com placas de metal 

depositados entre as superfícies formando uma espécie de “sanduíche”. 

As camadas metálicas individuais são conectadas umas as outras através 

de um terminal metálico onde são soldados os terminais de capacitor, 

como mostra a figura abaixo. 

 

 

 

 

 

 

 

 

 

Figura 114 - Estrutura de um capacitor multicamada 

Eles apresentam baixas perdas, capacitância estável, alta resistência de 

isolação, alta capacitância e pequenas dimensões.  

 



4.1.3.d – Capacitores de Filme Plástico 

 

Esse tipo de capacitor possui um dielétrico que é uma lâmina de material 

plástico (poliéster, polipropileno, poliestireno, policarbonato). Sua 

capacitância é da ordem dos nanofarads (10-9). Tem como principais 

características a baixíssimas perdas no dielétrico, alta resistência de 

isolação, estabilidade da capacitância, baixa porosidade e, 

consequentemente, grande resistência a umidade. Os tipos são Poliester 

(MKT), prolipropileno (MKP), Poliestireno (MKS) e Policarbonato (MKC ou 

MAC). 

Existem dois tipos. Os não metalizados possuem dielétrico de filme 

plástico e armaduras de folhas de alumínio. O conjunto de armaduras 

mais o dielétrico podem ser bobinados ou sanfonados, fornecendo duas 

opções construtivas. Já os capacitores metalizados têm como 

característica marcante tem a propriedade de auto regeneração. O 

dielétrico desses tipos de capacitores consiste de filmes de plástico em 

cuja a superfície era depositada, através de um processo de vaporização, 

uma camada de alumínio que deixa esse filme plástico metalizado. Nesse 

caso, podemos bobinar o capacitor ou então dispor o conjunto em 

camadas. Através da deposição das superfícies laterais dos capacitores 

com o metal vaporizado obtemos um bom contato entre as armaduras e 

os terminais, assegurando baixa indutância e baixas perdas. Nesse tipo 

de capacitor, em caso de sobre tensão capaz de perfurar o filme plástico, 

a camada de alumínio que existe em torno do furo, por ser submetido a 

elevada temperatura, acaba se transformando em óxido de alumínio, que 

é isolante desfazendo o curto-circuito. Esse fenômeno é conhecido como 

auto regeneração. 

 

 

 

 

 

 

 

 

 

 

Figura 115 - Esquemas construtivos dos capacitores de filme plástico metalizado e não 
metalizado 



A leitura do valor do capacitor pode ser feito de forma direta com os 

valores impressos que aparecem da seguinte forma: o valor nominal (um 

número), a tolerância (em letra maiúscula) e a tensão nominal (um número 

com unidade, geralmente). Uma das principais características dessa 

representação é que quando o valor nominal for maior que 1, o valor está 

sendo indicado em picofarad (pF). No caso do valor indicado ser menor 

que 1, o valor estará expresso em microfarad (F). Quanto a tolerância, 

utilizamos a mesma tabela da figura 8. A outra forma de indicação do valor 

desse tipo de capacitor é o código com 5 faixas coloridas e a leitura deve 

ser feita conforme a figura abaixo. 

 

 

 

 

 

 

 

Figura 116 - Tabela de cores para capacitores de filme plástico 

4.1.3.e – Capacitores Eletrolíticos de Alumínio 

 

De um modo geral, todo o capacitor é constituído de duas armaduras e 

um dielétrico entre elas. Os capacitores eletrolíticos também possuem 

essa característica, entretanto se diferenciam dos demais pelo fato de 

que o terminal que corresponde ao cátodo está associado a um fluido 

condutor conhecido como eletrólito, e não a uma armadura metálica. O 

outro terminal, o ânodo, está ligado a uma folha de alumínio que teve sua 

superfície formada por um processo eletroquímico que forma uma 

camada de óxido de alumínio que servirá como dielétrico. Normalmente o 

núcleo é bobinado. Esse núcleo bobinado possui a folha de alumínio acima 

descrita e uma segunda folha de alumínio conhecida como folha de 

cátodo. Essa folha não é oxidada e tem a função de servir como eletrodo 

da substância líquida condutora. 

1 Algarismo

2 Algarismo

Número de  eros

Tolerância

Tensão Nominal



Ambas as folhas são separadas por algumas camadas de papel poroso 

que armazena o eletrólito. A principal característica desses capacitores 

é a alta capacitância específica e apresentam valores da ordem de 

microfarads (10-6). Como em qualquer outro capacitor, os capacitores 

eletrolíticos têm sua capacitância proporcional a áreas de suas placas e 

inversamente proporcional a distância entre elas. Nos capacitores 

eletrolíticos a distância entre as placas é determinada pela espessura ca 

camada de óxido que se forma na folha de ânodo. O óxido de alumínio é 

mais vantajoso que outros dielétricos pois pode ser obtido direto do filme 

de alumínio, além de ser capaz de suportar altas tensões elétricas. A 

distância máxima de afastamento entre as armaduras é de 0,7 mm 

enquanto a espessura da camada de papel gira em torno de 6 a 8 mm. O 

processo de cauterização eletroquímica torna a folha de alumínio rugosa, 

o que aumenta a superfície das placas. Isso ocorre porque, como o cátodo 

é um eletrólito ele preenche muito bem as reentrâncias da folha do ânodo. 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 117 - Aspectos construtivos de um capacitor eletrolítico 

 

 

 

 

 

Figura 118 - Superfície rugosa que surge após a cauterização eletroquímica 



Os capacitores eletrolíticos que são construídos dessa forma são 

polarizados, ou seja, o polo positivo deve ser ligado no ânodo e o polo 

negativo no cátodo. A ligação com polarização invertida inicia o processo 

eletrolítico que deposita uma camada de óxido sobre a folha de cátodo. 

Esse processo pode gerar gás e esse pode destruir ou explodir o 

capacitor. Existem alguns capacitores eletrolíticos que não são 

polarizados. Eles são conhecidos como bipolares. Esses capacitores são 

construídos substituindo a folha de cátodo, por uma segunda folha de 

ânodo, que é construída da mesma forma da primeira. Esse tipo de 

substituição permite que o capacitor funcione em corrente contínua, em 

qualquer polaridade e também funcione em corrente alternada. Esse tipo 

de capacitor necessita de até o dobro do volume de um capacitor 

polarizado de mesmo valor de capacitância e tensão.  

Os valores de capacitância vêm indicados no corpo do capacitor, bem 

como a polaridade, no caso dos capacitores polarizados. 

 

 

 

 

Figura 119 - Capacitor Eletrolítico Polarizado       Figura 120 - Capacitor Eletrolítico Não 
Polarizado 

 

4.1.3.f – Capacitores Eletrolíticos de Tântalo 

 

Esse tipo de capacitor utiliza óxido de tântalo como material isolante e 

também são polarizados devido a existência de um eletrólito. Esse tipo de 

capacitor é indicado especificamente para circuitos impressos e que 

requeiram baixa corrente de fuga e baixo fator de perdas. São 

capacitores que apresentam longa vida operacional, são muito 

compactos e elevada estabilidade nos parâmetros elétricos. Sua 

identificação é feita pelo valor impresso diretamente no corpo do 

capacitor, assim como a tensão nominal e a polaridade. 

 

 

 

 

 

 

 

 

 
Figura 121 - Aspecto construtivo de um capacitor de tântalo 



 

4.1.3.g – Capacitores Variáveis 

 

Existem determinados dispositivos eletrônicos cuja utilização necessita 

de variações em um valor de capacitância. Circuitos de sintonia de rádio 

é um exemplo. Para isso utilizamos capacitores variáveis, que são aqueles 

que permitem a variação de sua capacitância. 

Nesses capacitores o dielétrico é, normalmente, o ar ou então, o filme 

plástico e sua capacitância pode ser variada por meio de um eixo ou 

parafuso. Nesse eixo ou parafuso são fixadas placas ou grupo de placas 

móveis. Um segundo grupo de placas é fixo e montado sobre um material 

isolante do corpo ou chassi. Esse eixo ou parafuso, ao ser movimentado 

aproxima ou afasta as placas móveis das placas fixas fazendo com que a 

capacitância varie. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 122 - Tipos de capacitores variáveis 



Capítulo V 

CIRCUITOS ELÉTRICOS 

 
 

 

 

 

5.1 CIRCUITOS EM CORRENTE CONTÍNUA 
 

Definimos um circuito de Corrente Contínua C.C. como sendo aquele 

circuito em que todas as fontes de tensão têm sua força eletromotriz 

constante. 

Quando os circuitos possuem capacitores, existe uma pequena flutuação 

na corrente durante um período de tempo denominado transitório. Esse 

período transitório, que dura frações de segundos, se estabiliza quando 

os capacitores estão carregados, e a corrente passa a ser estável 

novamente. 

Para estudar um circuito de forma mais eficaz é interessante representa-

lo sob a forma de um diagrama de circuito. 

A figura abaixo mostra um circuito divisor de tensão onde os pontos A, B 

e C são os três terminais do potenciômetro. 

 

 

 

 

 

 

 

 

 

 

 
Figura 123 - Representação de um diagrama de circuito. 

 

5.1.1 Leis dos Circuitos 
 

A análise de um circuito elétrico consiste em calcular correntes e tensões 

em cada componente que constitui o circuito. Através desses valores 

podemos determinar a potência dissipada em cada componente do 

circuito. 

“Em todo o espaço há energia...é(só) uma questão de 

tempo até que os homens tenham êxito em associar 

seus mecanismos ao aproveitamento desta energia.” 

Nikola Tesla 

 

VR1

R2

R3

A

B

C



Como já comentamos anteriormente, existem várias formas de 

analisarmos um circuito elétrico. Entretanto, podemos lançar mão de uma 

técnica que é capaz de solucionar de forma mais simples e rápida 

qualquer tipo de circuito elétrico. Essas técnicas são conhecidas como 

Leis de Kirchhoff. 

 

5.1.1.a – Primeira Lei de Kirchhoff 

 

Como já vimos, a primeira lei de Kirchhoff é também conhecida como a lei 

dos nós e ela nos diz que o somatório de todas as correntes que fluem 

para um nó é igual ao somatório de todas as correntes que saem desse 

nó. Essa lei é válida sempre que as correntes são estacionárias, ou seja, 

que se mantenham constantes. Nesse caso a densidade da nuvem de 

cargas de condução permanece constante dentro do condutor, sem que 

ocorra acumulação de cargas em nenhum ponto do circuito. Sendo assim, 

toda a carga que entra em um condutor, por unidade de tempo, deverá 

sair por outros condutores. 

 

5.1.1.b – Segunda Lei de Kirchhoff 

 

A segunda lei, também conhecida como lei das malhas ou lei das tensões 

nos diz que a soma das diferenças de potêncial, em qualquer percurso 

fechado em um circuito é sempre nula. Esse percurso fechado é 

conhecido como malha. 

 

5.1.1.c – Analisando o Método das Malhas 

 

Como já vimos, em circuitos com várias resistências e somente uma fonte 

de alimentação, podemos dimensionar o circuito através do método de 

encontrar a resistência equivalente e, a partir dela, começar a determinar 

as correntes e as quedas de tensão nos componentes dos circuitos. 

Existem casos em que os circuitos possuem mais de uma fonte de 

alimentação e, nesses casos, é necessário utilizar as leis de Kirchhoff 

para solucionar o problema. 

Vamos analisar o caso do circuito abaixo. 
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As correntes são dispostas com seu sentido escolhido aleatoriamente, 

uma em cada malha. Depois de resolvido o problema, as correntes que se 

deslocarem em sentido contrário aos estipulados, apresentarão sinal 

negativo. 

Na análise, utilizaremos as duas leis de Kirchhoff para organizar o sistema 

de equações. 

A malha da corrente I1 terá a seguinte equação (pela segunda lei de 

Kirchhoff): 

 

𝑉 = 𝐼1𝑅4 + 𝐼1𝑅5 
 

A malha da corrente I2 será dada por: 

 

0 =  𝐼2𝑅1 + (𝐼2 − 𝐼3)𝑅2 + (𝐼2 − 𝐼1)𝑅4 
 

Finalmente na malha da corrente I3 teremos: 

 

0 = (𝐼2 − 𝐼3)𝑅2 + 𝐼3𝑅3 + (𝐼3 − 𝐼1)𝑅5 
 

Com essas três equações montamos um sistema. 

 

{

𝐼1𝑅4 + 𝐼1𝑅5 = 𝑉
𝐼2𝑅1 + 𝐼2𝑅2 − 𝐼3𝑅2 + 𝐼2𝑅4 − 𝐼1𝑅4 = 0
𝐼2𝑅2 − 𝐼3𝑅2 + 𝐼3𝑅3 + 𝐼3𝑅5 − 𝐼1𝑅5 = 0

 

 

Colocando as correntes em evidência temos: 

 

{

𝐼1(𝑅4 + 𝑅5) = 𝑉
𝐼2(𝑅1 + 𝑅2 + 𝑅4) − 𝐼3𝑅2 − 𝐼1𝑅4 = 0

𝐼2𝑅2 + 𝐼3(−𝑅2 + 𝑅3 + 𝑅5) − 𝐼1𝑅5 = 0
 

 

Agora basta montarmos um sistema de matrizes: 

 

[

(𝑅4 + 𝑅5) 0 0
−𝑅4 −𝑅2 (𝑅1 + 𝑅2 + 𝑅4)
−𝑅5 𝑅2 (−𝑅2 + 𝑅3 + 𝑅5

] [
𝐼1
𝐼2
𝐼3

] = [
𝑉
0
0
] 

 



Para calcularmos as correntes, utilizamos a lei de OHM. Desse modo 

teremos: 

 

 

[
𝐼1
𝐼2
𝐼3

] = [
𝑉
0
0
] ÷ [

(𝑅4 + 𝑅5) 0 0
−𝑅4 −𝑅2 (𝑅1 + 𝑅2 + 𝑅4)
−𝑅5 𝑅2 (−𝑅2 + 𝑅3 + 𝑅5)

] 

 

Assim teremos: 

 

𝐼1 = [

𝑉 0 0
0 −𝑅2 (𝑅1 + 𝑅2 + 𝑅4)
0 𝑅2 (−𝑅2 + 𝑅3 + 𝑅5)

] ÷ [

(𝑅4 + 𝑅5) 0 0

−𝑅4 −𝑅2 (𝑅1 + 𝑅2 + 𝑅4)
−𝑅5 𝑅2 (−𝑅2 + 𝑅3 + 𝑅5)

] 

 

𝐼2 = [

𝑉 (𝑅4 + 𝑅5) 0
0 −𝑅4 (𝑅1 + 𝑅2 + 𝑅4)
0 −𝑅5 (−𝑅2 + 𝑅3 + 𝑅5)

] ÷ [

(𝑅4 + 𝑅5) 0 0
−𝑅4 −𝑅2 (𝑅1 + 𝑅2 + 𝑅4)
−𝑅5 𝑅2 (−𝑅2 + 𝑅3 + 𝑅5)

] 

 

𝐼3 = [
𝑉 0 (𝑅4 + 𝑅5)
0 −𝑅2 −𝑅4

0 𝑅2 −𝑅5

] ÷ [

(𝑅4 + 𝑅5) 0 0
−𝑅4 −𝑅2 (𝑅1 + 𝑅2 + 𝑅4)
−𝑅5 𝑅2 (−𝑅2 + 𝑅3 + 𝑅5)

] 

 

5.1.2 Circuitos com Capacitores 

 

Como já vimos, a diferença de potêncial em um capacitor é diretamente 

proporcional à carga que está armazenada nas suas armaduras. Quando 

ligamos um capacitor que está sem carga, a diferença de potêncial em 

seus terminais é nula. Para o circuito, esse capacitor se comporta como 

um curto circuito. Nos instantes seguintes a carga do capacitor começa 

a aumentar e a diferença de potêncial em seus terminais começa a 

aumentar.  

Também já vimos que essa carga não pode aumentar indefinidamente ela 

vai até atingir um valor constante. Quando esse valor é atingido a corrente 

no capacitor é zero e ele passa a ser considerado um interruptor aberto 

que impossibilita a passagem de corrente. Como já foi dito, o período até 

a estabilização da carga do capacitor é denominado TRANSITÓRIO. 

Essa análise teórica, na prática não se verifica integralmente pois os 

capacitores possuem uma pequena corrente, mesmo com carga 

completa, que é denominada CORRENTE DE FUGA. 

 

 

 



Capítulo VI 

CORRENTE ALTERNADA 
 

 

 

 

 

6.1 CORRENTE ALTERNADA 
 

Vamos imaginar um circuito de corrente contínua, um circuito básico, 

com uma fonte, que pode ser química ou eletromecânica, e uma carga que 

pode ser uma lâmpada. Nesse tipo de circuito, a corrente flui a partir do 

terminal negativo da fonte, viaja pelo circuito, passa pela carga e retorna 

ao terminal positivo da fonte. Esse movimento de carga é conhecido como 

corrente elétrica e, nesse caso, é corrente continua. 

Agora vamos imaginar o mesmo circuito só que com uma pequena 

modificação, vamos substituir a fonte de energia de corrente contínua, 

por uma fonte de corrente alternada. Isso significa que a fonte esta 

constantemente trocando de polaridade. Desse modo, por um intervalo 

de tempo, a corrente flui em uma direção e, no intervalo seguinte, a 

corrente irá fluir na direção contrária. Esse ciclo se repete 

indefinidamente enquanto a fonte estiver ligada. Essa corrente é 

conhecida como Corrente Alternada.  

 

6.1.1 Fontes de Corrente Alternada 
 

Como já falamos, um condutor elétrico, quando corta um campo 

magnético, surge nesse uma corrente nesse condutor. Agora, vamos 

imaginar um gerador que possui uma bobina que será imersa em um 

campo magnético B e gira, imersa nesse campo, com uma frequência 

angular . Enquanto gira, o fluxo do campo magnético que atravessa a 

bobina é dado por:  

 

Φ𝐵 = 𝐴𝑛
⃗⃗⃗⃗  ⃗. 𝐵⃗ = 𝐴𝐵 cos(𝜃) = 𝐴𝐵 cos(𝜔𝑡 + 𝛿) 

Nessas condições, uma força eletromotriz  será induzida nas 

extremidades do anel, como é determinado pela lei de Faraday 

 

 

 “Lembre-se que as pessoas podem tirar tudo de 

você, menos seu conhecimento” 

Albert Einstein 



Nestas condições, uma força eletromotriz ε será induzida nas 

extremidades do anel, como determinado pela Lei de Faraday: 

𝜀(𝑡) = −
𝑑

𝑑𝑡
Φ𝐵 = −

𝑑

𝑑𝑡
𝐴𝐵𝑐𝑜𝑠(𝜔𝑡 + 𝛿) = 𝐴𝐵𝜔 sin(𝜔𝑡 + 𝛿) =

= 𝜀0 sin(𝜔𝑡 + 𝛿) 

O valor do ângulo de fase  é determinado pelas condições iniciais. Se na 

definição das condições iniciais delimitarmos o ângulo de fase como nulo, 

as operações matemáticas serão mais simplificadas, logo: 

𝜀(𝑡) = 𝜀0 sin(𝜔𝑡) 

A mudança da polaridade em uma fonte de corrente alternada é feita de 

forma suave e regular que se repete em uma sucessão de ciclos em uma 

forma senoidal. 

O sinal senoidal é obtido devido ao posicionamento do enrolamento em 

relação as linhas de campo magnético conforme mostra a figura abaixo 

 

 

 

 

 

 

 

 

 

Figura 124 - Geração de um sinal alternado 

As máquinas que geram corrente alternada, os geradores de C.A, 

também conhecidos como alternadores, são máquinas capazes de 

converter energia mecânica, gerada por uma máquina primária, em 

energia elétrica. Essa transformação se baseia nas leis de Faraday e 

Lenz, que já analisamos. O gerador elementar, monofásico, de corrente 

alternada é uma concepção de Michael Faraday, feita em 1831, na 

Inglaterra. Essa máquina consistia de uma espira que girava entre os 

polos de um imã. 

 

 

 



 

 

 

 

 

 

 

 

 

 

Figura 125 - Gerador de Faraday 

Nesse gerador monofásico elementar, a espira de fio girando dentro do 

campo magnético produz uma força eletromotriz induzida (fem). Os 

terminais da bobina são ligados ao circuito externo através de anéis 

coletores e escovas. Essas escovas, normalmente são pequenos blocos 

de grafite, que é um material condutor. Sem essas escovas não seria 

possível fazer com que a força eletromotriz alternada, fosse fornecida na 

saída do gerador. Tanto a corrente quanto a tensão, nesse tipo de 

gerador, mudam de direção, cada vez que a espira gira 180o e como já 

vimos ambas tem o formato de uma senoide. 

Os valores instantâneos da força eletromotriz podem ser calculados pela 

equação: 

 

𝑒 = 𝐵 × 𝑙 × 𝑣 × 𝑠𝑒𝑛(𝜃) 
 

onde: e – força eletromotriz induzida (volts) 

            B – indução do campo magnético (tesla) 

             l – comprimento do condutor (metros) 

             v – velocidade linear de deslocamento do condutor (m/s) 

              - ângulo entre  B e v 

 

Como a corrente e a tensão sofrem as mudanças de forma regular, elas 

possuem algumas características e propriedades básicas. 

 

Frequência – é a propriedade elementar de qualquer onda regular. Ela 

indica o número de vezes que um ciclo ocorre por unidade de tempo. No 

nosso caso, a unidade de tempo é o segundo. Sendo assim, a frequência 



determina quantos ciclos completos ocorrem em 1 segundo, e sua 

unidade é o Hertz. 

Período – é a medida do tempo que é necessário para que um ciclo seja 

completo. Desse modo, a unidade de tempo do período é o segundo e ele 

é o inverso da frequência.  

Comprimento de onda – Como uma onda se move fisicamente no espaço 

de forma simultânea com a sua evolução no tempo, pode ser interessante 

determinar o quanto uma onda se move no tempo em um ciclo. 

Obviamente esse valor depende da velocidade com que a onda se move. 

Se soubermos a frequência de uma onda podemos dividir a velocidade de 

propagação da luz (c = 3 x 108 m/s) pela frequência para obtermos o valor 

do comprimento de onda que será representado pela letra . Desse modo 

podemos dizer que 

 

𝜆 =
𝑐

𝑓
 

 

Amplitude –  A amplitude indica qual o máximo valor positivo e qual o 

máximo valor negativo que uma onda atinge, a partir de um referencial 

neutro. Em corrente alternada a amplitude de uma onda senoidal é o valor 

da função seno em seu máximo valor. Entretanto, para sistemas elétricos, 

não esse valor, denominado valor de pico, que nos interessa. O valor de 

referencia em uma tensão alternada é sempre o valor eficaz. O valor 

eficaz é a parcela da corrente ou tensão que realmente realiza trabalho 

elétrico, ou seja, é o valor que realiza o mesmo trabalho, que uma fonte de 

corrente continua realizaria. Esse valor eficaz é dado pela equação: 

 

𝑉𝑒𝑓 =
𝑉𝑝𝑖𝑐𝑜

√2
= 0,707𝑉𝑝𝑖𝑐𝑜 

 

6.1.2 Por quê utilizar corrente alternada? 
 

Como sabemos muitos equipamentos de hoje, por serem eletrônicos e, 

principalmente, digitais, funcionam com corrente continua e, 

consequentemente, podem funcionar com corrente continua ou corrente 

alternada (com uso de retificadores). Desse modo podemos perguntar, e 

por quê utilizar a corrente alternada? 

Existe um motivo simples para isso, o custo desse tipo de energia é mais 

baixo.  

Já sabemos que quando uma corrente percorre um condutor, devido a 

resistência que esse condutor possui à passagem dessa corrente, 

provoca uma perda de energia sob a forma de calor. Sabemos também 



que a potência é o produto da corrente, vezes a tensão sobre o circuito. 

Agora imaginemos uma cidade como sendo uma carga ligada a um 

sistema que consiste de usina – transmissão – distribuição, conforme o 

desenho. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 126 - Sistema de geração - transmissão - distribuição de energia 

A carga representada pela cidade, com todas as suas atividades 

produtivas e consumidores residenciais, exige alta potência para seu 

funcionamento.  

Agora imagine que todo esse sistema seja alimentado com, por exemplo, 

220 volts, em corrente contínua. Para atingirmos a potência necessária, 

a corrente transmitida pela linha seria muito alta o que provocaria uma 

alta perde de energia sob a forma de calor. Poderíamos então reduzir a 

corrente transmitida aumentando a tensão na linha (como de fato é feito 

na corrente alternada).  

Entretanto, é extremamente complexo e caro fazer essa operação em 

corrente continua. Já no caso da corrente alternada, um simples 

transformador de força faz essa conversão. 

Atualmente, a energia elétrica gerada nas usinas no mundo inteiro, gira 

em torno de algumas centenas ou milhares de volts, por unidade 

geradora, dependendo do tamanho do gerador.  

O que se faz nas usinas é transformar esses milhares de volts em dezenas 

ou centenas de milhares de volts, reduzindo a corrente para que a 

potência seja mantida. Com essa redução da corrente, reduzimos as 

perdas na transmissão. Isso significa que, boa parte dos recursos gastos 

na geração de energia, não são desperdiçados sob a forma de calor na 

perda dos condutores. 

Esse é o principal motivo para continuarmos utilizando a corrente 

alternada como forma de alimentação da maioria dos circuitos.  

 

 



Capítulo VII 

INDUTORES E INDUÇÃO ELETROMAGNÉTICA 
 

 

 

 

 

7.1 INDUTORES 
 

7.1.1 – Introdução 
 

Indutores, basicamente são fios enrolados em torno de um núcleo, que 

poderá ser magnético, tal como o ferro ou ferrite, ou não magnético como 

o ar. Eles são elementos capazes de armazenar energia na forma de 

campo magnético. 

Devido a forma da sua construção faz com que o campo magnético criado 

pela circulação de corrente, seja concentrado. Como resultado, a 

corrente que percorre o indutor se torna dependente do fluxo magnético 

gerado pela própria corrente. Podemos determinar o valor da indutância 

através da razão entre o fluxo magnético e a corrente, ou seja:  

 

L =
ϕ(t)

i(t)
 

 

onde:  é o fluxo em função do tempo (W - weber) 

            i é a corrente (A- amperes) 

            L é a indutância (H – henry) 

 

Assim como nos capacitores, um indutor é um elemento de circuito em 

que podemos aplicar, entre os seus terminais, uma diferença de 

potêncial. Analogamente ao que tratamos nos capacitores, o fluxo 

magnético total em um indutor que é formado por um número N de 

espiras, é proporcional a corrente elétrica que circula nessas espiras, ou 

seja: 

 

ΦB
T α i 

 

A constante que transforma essa proporcionalidade em uma igualdade é 

a indutância. É por esse motivo que temos: 

 

 “Não se pode ensinar nada a um homem; só é 

possível ajudá-lo a encontrar a coisa dentro de si” 

Galileu Galilei 



Φ𝐵
𝑇 = 𝐿. 𝑖 

   

Utilizando a Lei de Faraday, teremos que a diferença de potêncial no 

indutor será dado por: 

 

𝑉𝐿 =
𝜕Φ𝐵

𝑇

𝜕𝑡
 

 

ou seja: 

 

𝑉𝐿 = −𝐿
𝑑𝑖

𝑑𝑡
 

 

A forma como enrolamos a bobina, o material que utilizamos no núcleo e 
o número de espiras no enrolamento, determinam a indutância de um 
indutor. 
Já podemos concluir que: 

• O aumento da indutância L é diretamente proporcional ao aumento 
do número de espiras. A indutância aumenta com o quadrado do 
número de espiras. 

• A permeabilidade magnética relativa Kr do material age de forma 
diretamente proporcional a indutância. 

• Na medida em que a área A abrangida por cada espira aumenta, 
veremos que a indutância aumenta com o quadrado do diâmetro. 

• A indutância diminui conforme se aumenta o comprimento da 
bobina. 

 

𝐿 = 𝜇𝑟

𝑁2. 𝐴

𝑙
(1,26 × 10−6)  (𝐻) 

 

Toda a indutância, quando percorrida por uma corrente variável, 

apresenta uma oposição a essa variação da corrente. Essa oposição 

recebe o nome de Reatância Indutiva e sua unidade é o ohm (). 

A formula da reatância indutiva é: 

 

𝑋𝑙 = 2𝜋𝑓𝐿 
 

Os indutores podem ser associados de várias formas, assim como os 

capacitores e os resistores. Entretanto essas associações apresentam 

algumas peculiaridades. 

No caso da associação em série existem duas possibilidades: 



No primeiro caso, os indutores podem estar afastados um do outro de tal 

forma que não ocorra interação eletromagnética entre eles. Nesse caso, 

o valor da Indutância Resultante é dada por: 

 

𝐿𝑡 = 𝐿1 + 𝐿2 + ⋯+ 𝐿𝑛 
 

No segundo caso, os indutores são colocados em uma distância tal que 

ocorre interação eletromagnética entre eles. Para casos como esse 

devemos considerar o efeito da indutância mútua. Sendo assim: 

 

𝐿𝑡 = 𝐿1 + 𝐿2 + ⋯+ 𝐿𝑛 ± 𝑛𝐿𝑀 
 

No caso das associações em paralelo, a questão relativa , ou seja, não 

existem duas condições para tal associação: 

Para uma associação de vários indutores em paralelo, teremos: 

 

1

𝐿𝑡
=

1

𝐿1
+

1

𝐿2
+ ⋯+

1

𝐿𝑛
 

 

Para o caso de apenas dois indutores, teremos: 

 

𝐿𝑇 =
𝐿1. 𝐿2

𝐿1 + 𝐿2
 

 

 

7.1.2 Indutância Mútua 
 

Vamos considerar dois indutores concêntricos de raio R1 e R2 e por onde 

circulam uma corrente i1 e i2. Cada indutor tem um número de espiras N1 

e N2 e ambas com comprimento l. 

O campo que será criado no primeiro indutor será dado por: 

 

𝐵1 = 𝜇0

𝑁1

𝑙
𝑖1 

onde 0 < r < R1 

Desse modo, o fluxo 2 induzido pelo enrolamento 1  nas N2 espiras desse 

segundo enrolamento será dado por: 



Φ2(1) =  𝑁2 ∫𝐵1
⃗⃗⃗⃗ . 𝑑𝐴2

⃗⃗ ⃗⃗ = 𝑁2𝐵1(𝜋𝑅1
2) = 𝑁2 (𝜇0

𝑁1

𝑙
𝑖1) (𝜋𝑅1

2)

= 𝜇0𝑁1𝑁2

𝜋𝑅1
2

𝑙
𝑖1 

Desse modo: 

Φ1(2) = 𝐿12𝑖1 

𝐿21 = 𝜇0𝑁1𝑁2

𝜋𝑅1
2

𝑙
 

Denominamos a indutância L21 como INDUTÂNCIA MÚTUA. 

De forma similar teremos: 

 

𝐵2 = 𝜇0

𝑁2

𝑙
𝑖2 

 

onde 0 < r < R2 

Desse modo, o fluxo magnético 1(2) produzido por B2 sobre as espiras N1 

do solenoide 1 será dada por: 

 

Φ1(2) = 𝑁1 ∫𝐵2
⃗⃗ ⃗⃗ 𝑑𝐴1

⃗⃗ ⃗⃗ = 𝑁1𝐵2(𝜋𝑅2
2) = 𝜇0𝑁1𝑁2

𝜋𝑅2
2

𝑙
𝑖2 

 

E teremos: 

 

Φ1(2) = 𝐿12𝑖2 

𝐿12 = 𝜇0𝑁1𝑁2

𝜋𝑅2
2

𝑙
= 𝐿21 

 

7.1.3 Associação de Indutores 
 

 

 

7.1.4 Auto indutância 
 

Agora vamos imaginar que as duas bobinas acima descritas coincidam, 

ou seja, tenham o mesmo raio, sendo assim teremos: 

 



Φ = 𝜇0𝑁
2
𝜋𝑅2

𝑙
𝑖 

 

Desse modo, a autoindutância desse conjunto de bobinas é dada por: 

 

𝐿 = 𝜇0𝑁
2
𝜋𝑅2

𝑙
 

 

É fácil perceber que a autoindutância L é diretamente proporcional ao 

quadrado do número de espiras. Isso ocorre porque o fluxo em cada 

espira é proporcional a espira N, já que ele depende de todas as outras 

espiras e o fluxo total produz mais um N. 

A polaridade oposta que surge na bobina devido a autoindução é 

denominada FORÇA CONTRAELETROMOTRIZ (fcem). Sendo assim, 

podemos representar o circuito da seguinte forma: 

 

 

 

 

 

 

 

 

 

 

 
Figura 127 - Circuito RL com a representação da fcem 

Assim que surge a fcem teremos a tensão resultante dada por : 

 

𝑉𝑟𝑒𝑠 = 𝐸 − 𝑓𝑐𝑒𝑚 
 

e a corrente no circuito será dada por 

 

𝐼 =
𝐸 − 𝑓𝑐𝑒𝑚

𝑅
 

 

Essa fcem só existe enquanto o campo magnético, gerado na indutância, 

varia. Quando o campo magnético atinge o valor máximo, a corrente 

também atinge seu valor máximo e a fcem deixa de existir. 
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Figura 128 - Curva característica da corrente durante o período de carga do indutor. 

Quando o circuito é desligado (posição da chave em A), a concentração 

do campo irá induzir uma fcem no indutor, o que fará com que o 

decréscimo da corrente. 

 

  

 

 

 

 

 

 

 

 

 

 
Figura 129 - Curva característica de carga e descarga do indutor 

7.1.5 Circuitos RL 
 

Vamos analisar um circuito que contém um resistor e um indutor 

associados em série, conforme mostra a figura abaixo. 

 

 

 

 

 

 

 

 

 
Figura 130 - Circuito RL 
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Em primeiro lugar vamos colocar a chave S no ponto B. Nesse instante o 

circuito RL passa a ser alimentado e a corrente vai aumentando da 

seguinte forma: 

𝐸 − 𝑅𝑖 − 𝐿
𝑑𝑖

𝑑𝑡
= 0 

 

Podemos transformar a equação em 

 

𝐸

𝐿
=

𝑅

𝐿
𝑖 +

𝑑𝑖

𝑑𝑡
 

 

Se multiplicarmos os dois lados da equação por 𝑒𝑡𝑅 𝐿⁄ , teremos: 

 

𝑑

𝑑𝑡
(𝑖(𝑡)𝑒𝑡𝑅 𝐿⁄ ) =

𝐸

𝐿
𝑒𝑡𝑅 𝐿⁄  

 

Integrando teremos: 

 

𝑖(𝑡)𝑒𝑡𝑅 𝐿⁄ = ∫
𝐸

𝐿
𝑒𝑡𝑅 𝐿⁄ 𝑑𝑡 + 𝐾 =

𝐸

𝑅
𝑒𝑡𝑅 𝐿⁄ + 𝐾  

⟹ 𝑖(𝑡) =
𝐸

𝑅
+ 𝐾𝑒−𝑡𝑅 𝐿⁄  

 

Mas, i(0) = 0, então: 

 

0 = 𝑖(0) =
𝐸

𝑅
+ 𝐾 ⟹ 𝐾 = −

𝐸

𝑅
 

 

E a solução da equação fica: 

 

 

𝑖(𝑡) =
𝐸

𝑅
(1 − 𝑒−𝑡𝑅 𝐿⁄ ) 

 

Essa é a equação do comportamento da corrente para o circuito enquanto 

a corrente inicial sobe. 

Vamos agora analisar a partir do instante em que mudamos a chave do 

ponto B para o ponto A. Nesse instante, o circuito, que acumulou carga 

no indutor, passa a descarregar. 

A equação será: 



 

−𝑅𝑖 − 𝐿
𝑑𝑖

𝑑𝑡
= 0 

 

O sinal negativo surge por que a corrente nesse momento começa a 

circular no sentido contrário ao que circulava quando o circuito estava no 

processo de carga. 

O valor da corrente, agora, irá diminuindo e VL (tensão no indutor) tem um 

sentido contrário do fluxo magnético. E como a corrente está caindo, VL 

tem o sentido oposto ao tempo em que estava carregando. Mas 𝑑𝑖 𝑑𝑡⁄ < 0 

garante que isso ocorra. A solução para i(t) fica: 

 

𝑑𝑖

𝑑𝑡
+

𝑅

𝐿
𝑖 = 0 ⟹ 𝑖(𝑡) = 𝐾𝑒−𝑡𝑅 𝐿⁄  

 

Em 𝑖(0) = 𝐸 𝐿⁄ , então: 

 

𝑖(𝑡) =
𝐸

𝑅
𝑒−𝑡𝑅 𝐿⁄  

 

Sendo essa a equação do comportamento da corrente para o período de 

descarga. 

 

7.1.6 Energia do Campo Magnético do Indutor 
 

Vamos analisar o comportamento da energia que é armazenada no 

indutor. 

Consideremos o circuito RL série anteriormente analisado. Durante o 

tempo em que a corrente cresce no circuito temos: 

 

𝐸 − 𝑅𝑖 − 𝐿
𝑑𝑖

𝑑𝑡
= 0 

Se multiplicarmos toda essa equação por i  teremos: 

 

𝐸𝑖 = 𝑅𝑖2 + 𝐿𝑖
𝑑𝑖

𝑑𝑡
 

 

O primeiro termo da equação é a potência fornecida pela bateria, o 

segundo termo é a potência dissipada no resistor e o último termo é a 

potência armazenada no indutor. 

 



𝑑𝑈𝐵

𝑑𝑡
= 𝐿𝑖

𝑑𝑖

𝑑𝑡
=

𝐿

2

𝑑𝑖2

𝑑𝑡
=

𝑑

𝑑𝑡
(
𝐿𝑖2

2
) ⟹ 𝑈𝑏 =

𝐿𝑖2

2
 

 

Sendo assim, a densidade de energia magnética que um solenoide de 

comprimento l e área A armazena é dada por: 

 

𝑢𝐵 =
𝑈𝐵

𝑣𝑜𝑙
=

𝐿𝑖2
2⁄

𝐴. 𝑙
 

 

Mas, para um solenoide, temos: 

 

𝐿 = 𝜇0

𝑁2

𝑙
𝐴 

 

𝐵 = 𝜇0

𝑁

𝑙
𝑖 

 

E portanto: 

 

𝑢𝐵 =
𝐿𝑖2

2𝐴𝑙
= (𝜇0

𝑁2

𝑙
𝐴)

𝑖2

2𝐴𝑙
=

𝜇0𝑁
2𝑖2

2𝑙2
=

𝐵2

2𝜇0
 

 

Sendo essa a energia armazenada no indutor. 

 

 

 

7.1.7 Circuito LC 
 

Já estudamos o comportamento de capacitores e de indutores de forma 

individual ou associados com resistores. Vamos analisar agora o 

comportamento desses dois componentes juntos. 

 

 

 

 

 

 

 

 
Figura 131 - Circuito LC 



Para um circuito LC temos: 

 

  
 

Com o capacitor descarregado a corrente será dada por: 

 

𝑖 = −
𝑑𝑞

𝑑𝑡
 

 

Derivando essa equação teremos 

 

𝑑2𝑖

𝑑𝑡2
= −

𝑖

𝐿𝐶
= −𝜔0

2𝑖 

onde 𝜔0 =
1

√𝐿𝐶
 

 

E a solução da equação fica: 

 

𝑖(𝑡) = 𝐴. 𝑐𝑜𝑠(𝜔0𝑡 + 𝜑) 
 

 A carga q será dada por         

 

𝑞(𝑡) = −
𝐴

𝜔0
𝑠𝑒𝑛(𝜔0𝑡 + 𝜑) 

 

Se considerarmos os dois componentes como ideais, ou seja, sem perdas 

resistivas, e considerando ainda que não existem resistências no circuito, 

a corrente e as cargas ficam oscilando, transferindo energia do capacitor 

para o indutor e vice-versa. 

 

7.1.8 Correntes de Foucault 
 

Podemos obter correntes induzidas em fios condutores e condutores 

maciços, que estejam em movimento, em um campo elétrico ou 

atravessando um fluxo magnético variável. Dentro desses materiais 

condutores podemos encontrar, para uma mesma corrente, vários 

percursos fechados para a circulação. Em cada percurso fechado o fluxo 

magnético irá variar com o tempo. Desse modo as tensões fazem circular 

correntes induzidas no interior desses materiais condutores. 

Denominamos essas correntes de CORRENTES DE FOUCAULT. 

 



 

 

 

 
 

 

 

 

 

Figura 132 - Correntes parasitas induzidas no material condutor 

 

 

 

 

 

 

 

 

 

 

 

Podemos notar nas figuras acima que nos materiais maciços a corrente 

parasita resultante circula em torno do material como um todo. Essa 

corrente resultante só ocorre na periferia do material por que, nos pontos 

internos as pequenas correntes resultantes se anulam. Essas correntes 

podem atingir valores elevados e esse fenômeno provoca um 

aquecimento devido ao efeito Joule o que exige mais energia adicional da 

fonte de alimentação. Esse aquecimento indesejado é chamado de perdas 

de Foucault.  

Apesar desse efeito ser indesejado nos transformadores, ele é muito 

interessante nos fornos de indução. 

Nos transformadores, uma das formas de reduzir esse efeito é a utilização 

de núcleos laminados isolados o que reduz a circulação de correntes 

parasitas. 

 

7.1.9 Acoplamento Magnético 
 

Vamos imaginar dois indutores que são colocados muito próximos um do 

outro de tal forma que o fluxo magnético de ambos os indutores se 

entrelace. A esse fenômeno damos o nome de acoplamento magnético. 

Correntes Parasitas

I X X X I

Figura 134 - Corrente parasita em material 
maciço 

 

 

Figura 133 - Corrente parasita em 
material laminado 

 



Quando os dois indutores se encontram nessa situação, ocorre uma 

transferência de energia de um indutor para outro através do campo 

magnético. Com isso teremos uma variação na corrente e essa variação 

produz uma variação do fluxo induzindo uma tensão no outro indutor.  

 

ϕ1 = ϕ11 + ϕ12 
 

ϕ2 = ϕ22 + ϕ21 
 

 

 

 

 

 

 

 

 

 
Figura 135 - Acoplamento Magnético 

 

7.1.10 Coeficiente de Acoplamento 
 

Continuemos analisando as bobinas da figura 9. Vamos considera-las 

acopladas magneticamente através de um núcleo. Como já vimos o uso 

de um núcleo metálico facilita a concentração do fluxo magnético 

facilitando o acoplamento.  

Vamos imaginar então que a bobina da esquerda esteja alimentada por 

uma fonte de alimentação que varia no tempo V1(t) e que provoca a 

circulação de uma corrente variável no tempo I1(t) e um fluxo variável 11(t) 

no núcleo. A bobina 1 possui N1 espiras e uma indutância L1. Como os 

terminais da bobina 2, que possui N2 espiras e indutância L2 encontram-

se abertos. Desse modo, a corrente e o fluxo magnético gerados, são 

nulos.  

Com essas condições, apenas uma parte do fluxo magnético que é gerado 

na bobina 1 ira atravessar as espiras da bobina 2 criando o fluxo mútuo 

12(t). 

Nesse caso, definimos COEFICIENTE DE ACOPLAMENTO k, como sendo 

um número adicional dado pela relação entre o fluxo mútuo e o fluxo total 

e expressa o percentual do fluxo magnético mútuo existente entre os 

circuitos magneticamente acoplados. Desse modo: 

 

I1 

11 21 

I2 

22 12 



𝑘 =
𝜙12

𝜙1
=

𝜙21

𝜙2
< 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Capítulo VIII 

CIRCUITOS OPERANDO EM  

CORRENTE ALTERNADA 
 

 

 

 

 

8.1 ANÁLISE DE CIRCUITOS MONOFÁSICOS 
 

Vamos agora analisar o comportamento dos circuitos puramente 

resistivos, puramente indutivos, puramente capacitivos, e a associação 

resultante de dois ou mais desses componentes, quando submetidos à 

tensões alternadas. 

 

8.1.1 - Circuitos Puramente Resistivos 
 

Vamos imaginar a possibilidade de um circuito que contenha somente 

resistências ôhmicas. Nesse caso, de acordo com as Leis de Ohm, a 

corrente será sempre proporcional a tensão. No caso de aplicarmos uma 

tensão alternada a esse circuito puramente resistivo, a corrente também 

terá um sinal sinusoidal em fase com o sinal da tensão.  

Devemos lembrar que um sinal esta em fase quando os valores da tensão 

e da corrente crescem ou diminuem exatamente no mesmo instante, 

conforme mostra o gráfico abaixo. 

 

 

 

 

 

 

 

 

 

 

 
Figura 136 - Relação entre corrente e tensão em um circuito puramente resistivo 

Sob o ponto de vista de cálculos, apesar da tensão e da corrente serem 

representadas em função de t, ou seja, da frequência e do tempo, as 

equações são as mesmas da lei de ohm sem nenhum tipo de modificação. 

 “Lembre-se que as pessoas podem tirar tudo de 

você, menos seu conhecimento” 

Albert Einstein 

V 

I 



Fasorialmente podemos representar essa condição entre tensão e 

corrente como mostra a figura abaixo. 

 

 

 

 

8.1.2 – Circuitos Puramente Indutivos 
 

Como já vimos anteriormente um indutor, quando percorrido por uma 

corrente alternada, ou que varia no tempo, surge uma força eletromotriz. 

E como já vimos, essa força eletromotriz é expressa da seguinte forma: 

 

𝐸 = 𝐿
𝑑𝑖

𝑑𝑡
 

 

Onde L é a indutância da bobina. Então, como também já vimos, a variação 

da corrente em uma bobina, provoca o surgimento de uma força contra 

eletromotriz. Se imaginarmos que a corrente instantânea é expressa pela 

equação: 

 

𝑖 = 𝐼𝑚 . 𝑠𝑒𝑛(𝜔𝑡) 
 

Teremos, nos terminais do indutor a tensão dada pela equação: 

 

𝑢 = −𝑒 = 𝐿
𝑑𝑖

𝑑𝑡
= 𝐿

𝑑(𝐼𝑚 . 𝑠𝑒𝑛(𝜔𝑡))

𝜕𝑡
= 𝐼𝑚 . 𝜔. 𝐿. cos(𝜔𝑡) =

= 𝐼𝑚 . 𝜔. 𝐿. 𝑠𝑒𝑛(𝜔𝑡 + 90) 
 

E com isso confirmamos que existe uma defasagem entre a corrente e a 

tensão que, no caso de circuitos puramente indutivos, é de 90o. A 

representação fasorial dessa situação se encontra na figura abaixo. 

 

 

 

 

 

 

 

 
Figura 137 - Representação fasorial da relação entre corrente e tensão em um circuito 

puramente indutivo 
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Figura 138 - Representação gráfica temporal da defasagem entre tensão e corrente em um 

circuito puramente indutivo 

Se observarmos o gráfico acime veremos que quando a corrente é nula, 

a tensão é máxima (tanto positiva quanto negativamente), e quando a 

corrente atinge seu valor máximo a tensão se anula. 

A razão entre o valor máximo da tensão, dada por Um e o valor máximo da 

corrente Im em uma bobina é igual a L e, como já vimos, recebe o nome 

de REATÂNCIA INDUTIVA (XL): 

 

𝑋𝐿 = 𝜔𝐿 = 2𝜋𝑓𝐿 
Como podemos ver essa reatância indutiva, ao contrário da resistência, 

varia com a frequpência. Quanto maior for a frequência maior será a 

reatância indutiva. 

 

8.1.3 – Circuitos Puramente Capacitivos 
 

Já sabemos que a carga elétrica acumulada em um capacitor, em 

qualquer instante de tempo, é dada por: 

 

𝑄 = 𝐶. 𝑉 
 

Considerando que a corrente é definida como sendo a quantidade de 

carga elétrica que passa por um condutor por unidade de tempo, teremos: 

 

𝐼 =
𝑑𝑄

𝑑𝑡
 

 

Quando relacionamos a tensão e a corrente, em um capacitor de 

capacitância C, teremos: 

 



𝐼 = 𝐶
𝑑𝑉

𝑑𝑡
 

 

Da mesma forma que ocorre nos indutores, em um capacitor, quando a 

tensão varia, a sua corrente também varia. Novamente supondo a tensão 

instantânea seja expressa por: 

 

𝑢 = 𝑈𝑚. 𝑠𝑒𝑛(𝜔𝑡) 
 

A corrente que atravessa o capacitor é dada pela equação: 

 

𝑖 = 𝐶
𝑑𝑉

𝑑𝑡
= 𝐶

𝑑(𝑈𝑚 . 𝑠𝑒𝑛(𝜔𝑡))

𝑑𝑡
=  𝑈𝑚. 𝜔. 𝐶. cos(𝜔𝑡) =

= 𝑈𝑚 . 𝜔. 𝐶. 𝑠𝑒𝑛(𝜔𝑡 + 90𝑜) 
 

Nesse caso, verificamos que a tensão está atrasada em relação a 

corrente em 90o, conforme mostra a representação fasorial abaixo. 

 

 

 

 

 

 

 

 

 
Figura 139 - Diagrama fasorial da relação entre tensão e corrente em um circuito puramente 

capacitivo 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 140 - Grafico tensão corrente em um circuito puramente capacitivo. 
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De forma análoga ao circuito puramente indutivo, podemos notar que no 

circuito puramente capacitivo, quando a tensão atinge o valor zero, a 

corrente atinge seu valor máximo (negativo ou positivo). Do mesmo modo, 

quando a tensão atinge seu máximo positivo ou negativo, a corrente é 

zero. 

A razão entre o valor máximo da tensão (Um) e o valor máximo da corrente 

(Im) em um capacitor é 1/(C) e recebe o nome de REATÂNCIA 

CAPACITIVA (XC), logo: 

 

𝑋𝑐 =
1

𝜔𝐶
=

1

2𝜋𝑓𝐶
 

 

No caso das reatâncias capacitivas, o aumento da frequência ao qual o 

circuito é submetido, provoca uma redução nessa reatância. 

 

8.1.4 – Circuitos RL em Corrente Alternada. 
 

 

 

 

 

 

 

 

 
Figura 141 - Circuito RL submetido a tensão alternada 

Para analisar esse tipo de circuito, devemos admitir que o fio que constrói 

o indutor, tenha resistência nula (seja um condutor ideal). Da mesma 

forma iremos considerar que a resistência é uma resistência ideal, não 

apresentando nenhuma outra característica elétrica. 

Com essas considerações iniciais podemos afirmar que a tensão Vr está 

em fase com a corrente, ângulo de 0o e que a tensão VL está em um ângulo 

de 90o de defasagem. 

Se aplicarmos as leis de Kirchhoff, teremos: 

 

𝑉 = 𝑉𝑟 + 𝑉𝐿 
 

Considerando agora essa equação e as afirmações anteriores, podemos 

traçar um diagrama fasorial do comportamento das tensões e correntes 

no circuito 
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Figura 142 - Diagrama fasorial de um circuito RL em corrente alternada 

Sob o ponto de vista de análise temporal, a adição das duas tensões 

defasadas de 90o nos apresenta o gráfico abaixo. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 143 - Representação temporal da relação entre VR, VL e V 

No gráfico fasorial, é possível ver que o valor do modulo da tensão V é 

obtida com a aplicação do Teorema de Pitágoras. 

 

𝑉 = √𝑉𝐿
2 + 𝑉𝑅

2 

 

Entretanto: 

 

𝑉𝑅 = 𝑅. 𝐼 
 

𝑉𝐿 = 𝑋𝐿 . 𝐼 
 

A IMPEDÂNCIA (Z) do circuito é o resultado da associação da resistência 

ôhmica com a reatância indutiva e é dada por: 
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 
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𝑍 =
𝑉

𝐼
 

 

Como a corrente I, tem fase nula, podemos desenhar o triângulo da 

impedância conforme a figura abaixo. 

 

 

 

 

 

 

 

 

 
Figura 144 - Diagrama fasorial das impedâncias, reatâncias e resistências de um circuito RL 

Do mesmo modo que a tensão, podemos encontrar o valor da impedância 

do sistema executando o Teorema de Pitágoras para solucionar tal 

problema, logo: 

 

𝑍 = √𝑋𝐿
2 + 𝑅2 

 

É fácil notar que o ângulo  é igual para o triângulo das tensões quanto 

para o triângulo das resistências, sendo assim, podemos obter esse valor 

a partir da equação: 

 

Φ = arccos (
𝑅

𝑍
)   𝑜𝑢 Φ = 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑋𝐿

𝑅
) 

 

8.1.5 – Circuitos RC em Corrente Alternada 
 

 

 

 

 

 

 

 
Figura 145 - Circuito RC em corrente alternada 
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Vamos analisar agora o comportamento de um circuito RC submetido a 

uma tensão alternada. 

Nessa situação podemos dizer que a tensão VR sobre a resistência R está 

em fase com a corrente I e que a tensão Vc do capacitor está em 

defasagem de 90o com a corrente. 

Novamente aplicando a lei de Kirchhoff teremos: 

 

𝑉 = 𝑉𝑅 + 𝑉𝐶 
 

A representação fasorial dessa relação pode ser vista na figura a seguir: 

 

 

 

 

 

 

 

 

 

 

 
Figura 146 - Diagrama Fasorial de um Circuito RC submetido à Corrente Alternada 

 

 

 

 

 

 

 

 

 

 

 

Figura 147 - Diagrama de tempo da relação entre as tensões de um circuito RC em corrente 
alternada 
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Novamente podemos ver que a tensão resultante pode ser obtida pelo 

Teorema de Pitágoras. 

 

𝑉 = √𝑉𝑅
2 + 𝑉𝐶

2 

Novamente temos que: 

  

𝑉𝑅 = 𝑅. 𝐼 
  

𝑉𝐶 = 𝑋𝐶 . 𝐼 

 

Sendo assim, a impedância Z total do circuito será dada por:  

 

𝑍 =
𝑉

𝐼
 

 

Novamente, se desenvolvermos o diagrama fasorial da relação de 

resistências, reatâncias e impedâncias teremos: 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 148 - Diagrama fasorial das resistências, reatâncias e impedâncias em um circuito RC em 

corrente alternada 

 

O módulo da impedância será dado por: 

 

Z = √XC
2 + R2 

 

O ângulo de defasagem será dada por : 

 

 

 
XC

R



Φ = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑅

𝑍
)    𝑜𝑢  Φ = 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑋𝐶

𝑅
) 

 

8.1.6 – Circuitos RLC Série em Corrente Contínua 
 

 

 

 

 

 

 

 

 

 

 
Figura 149 - Circuito RLC série em corrente alternada 

 

Vamos analisar agora circuitos RLC série quando submetidos à correntes 

alternadas. Na verdade, esse tipo de circuito é o mais comum que existe 

já que praticamente todos os componentes eletroeletrônicos apresentam 

características de resistores, de indutores e de capacitores. O exemplo 

mais simples é o de uma resistência de chuveiro.  

 

 

 

 

 

 

 
Figura 150 - exemplo de resistências de chuveiro 

 

Como podemos ver nos exemplos de resistências de chuveiros 

apresentados acima, qualquer que seja a forma ela é sempre constituída 

de um fio, de alta resistência (resistor) enrolado sob a forma de uma 

bobina (indutor) e entre cada duas espiras dessa bobina ocorre um efeito 

de capacitância (capacitor). É óbvio que a principal função desse 

componente é oferecer resistência à passagem de corrente elétrica e, 

através do efeito Joule, produzir o aquecimento da água do banho. 

Entretanto, os efeitos de impedância capacitiva e indutiva também estão 

presentes no circuito, mesmo que de forma muito pequena quando 

comparados à resistência. 
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Em outros casos, tais como linhas de transmissão e distribuição de 

energia, esses parâmetros capacitivos e indutivos tem uma influência 

muito maior e, portanto, são consideráveis no sistema. 

Novamente utilizando a lei das malhas podemos dizer que: 

 

𝑉 = 𝑉𝐶 + 𝑉𝑅 + 𝑉𝐿 
  

Nesse caso da associação em série, surgem três possibilidades: 

 

1a O circuito é predominantemente indutivo, ou seja: 

 

𝑉𝐿 > 𝑉𝐶 , (𝑋𝐿 > 𝑋𝐶) 
 

Nesse caso, o diagrama fasorial resultante será: 

 

 

 

 

 

 

 

 

 

 

 
Figura 151 - Diagrama fasorial das tensões em um circuito RLC série com VL > VC (Indutivo) 

2a O circuito é predominantemente capacitivo, isto é: 

 

𝑉𝐿 < 𝑉𝐶 , (𝑋𝐿 < 𝑋𝐶) 
 

 

 

 

 

 

 

 

 

 

 
Figura 152 - Diagrama fasorial das tensões em um circuito RLC série com VL < VC (capacitivo) 
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3a Circuito com Ressonância, ou seja,  

 

𝑉𝐿 = 𝑉𝐶 , (𝑋𝐿 = 𝑋𝐶) 
 

Nesse caso, o diagrama fasorial será: 

 

 

 

 

 

 

 

 

 

 

 

 

Como podemos ver, no caso de ressonância, as tensões no capacitor e no 

indutor são de módulo igual, sinal contrário e, portanto, se anulam. Esse 

tipo de condição normalmente deve ser evitados, pois podem produzir  

valores de sobretensão elevados que são perigosos, para os 

equipamentos e para o pessoal que os opera.  

Entretanto, existem alguns casos em que a ressonância tem utilidade. 

Cada circuito RLC possui uma frequência de ressonância, nesses casos, 

XL = XC e essa frequência pode ser determinada por: 

 

𝑋𝐿 = 𝑋𝐶  ⇔ 2𝜋𝑓𝑟𝐿 =
1

2𝜋𝑓𝑟𝐶
 

𝑓𝑟 =
1

2𝜋√𝐿𝐶
 

 

8.1.7 – Circuitos RLC Paralelo em Corrente Alternada 
 

 

 

 

 

 

 
Figura 153 - Circuito RLC paralelo 
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Como já vimos anteriormente, em todos os circuitos elétricos existem 

características resistivas, indutivas e capacitivas. Isso ocorre mesmo 

que, em alguns casos, algumas dessas características possam ter valores 

tão pequenos que sejam desconsiderados. Para análise, vamos 

considerar que todos os componentes sejam ideais, ou seja, o resistor só 

tem resistência, o capacitor só tem capacitância e o indutor só tem 

indutância. 

Utilizando a Lei dos Nós, teremos: 

 

𝐼 = 𝐼𝑅 + 𝐼𝐿 + 𝐼𝐶  
 

Como estamos tratando das correntes, nesse caso iremos traçar o 

diagrama fasorial das correntes. 

 

 

 

 

 

 

 

 

 

 

 
Figura 154 - Diagrama fasorial das correntes do circuito RLC paralelo 

Para encontrarmos o valor de I basta aplicarmos novamente o Teorema 

de Pitágoras e assim teremos: 

 

𝐼 = √𝐼𝑅
2 + (𝐼𝐶 − 𝐼𝐿)

2 

 

O ângulo de defasagem entre as correntes é dado por: 

 

Φ = 𝑎𝑟𝑐𝑐𝑜𝑠
𝐼𝑅
𝐼

 

 

Do mesmo modo que a associação em série, os circuitos RLC em paralelo 

podem assumir uma de três condições diferentes: 

 

𝐼𝐿 > 𝐼𝐶  , (𝑋𝐿 > 𝑋𝐶) – Circuito Indutivo 

𝐼𝐿 < 𝐼𝐶 , (𝑋𝐿 < 𝑋𝐶) – Circuito Capacitivo 

𝐼𝐿 = 𝐼𝐶 , (𝑋𝐿 = 𝑋𝐶) – Circuito em Ressonância 

IR
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Da mesma forma como acontece com as tensões em um circuito 

ressonante em série, no caso do circuito em paralelo, as correntes IL e IC 

se anulam. Nos circuitos em série, a ressonância pode causar 

sobretensão, no caso dos circuitos em paralelo a ressonância pode 

causar sobrecorrente. 

Como XL = XC, a frequência de ressonância será dada da mesma forma que 

no circuito em série, desse modo: 

 

𝑓𝑟 =
1

2𝜋√𝐿𝐶
 

 

8.1.8 – Observações sobre Análise de Circuitos em Corrente 

Alternada 
 

As leis que governam a análise de circuitos em corrente alternada são as 

mesmas que foram analisadas em corrente continua. Desse modo, as leis 

de Kirchhoff, analisadas para corrente contínua, também valem para a 

corrente alternada. 

Entretanto, para corrente alternada, tanto as tensões quanto as correntes 

variam no tempo o que torna complexa a análise, tanto se formos 

trabalhar no domínio tempo ou com a representação gráfica vetorial. Uma 

forma de facilitar essa análise é utilizar a Transformada de Steinmetz, que 

nos permite atingir esse objetivo, principalmente em circuitos RLC com 

alto grau de complexidade. 

De forma similar às outras formas de transformada, Fourier, Laplace, Z e 

outras), as grandezas são transformadas para o domínio de Steinmetz, 

são complexas e permitem as operações simplificadas de adição, 

subtração, multiplicação e divisão na resolução de circuitos. 

No Apêndice I você poderá ter uma explicação mais aprofundada o 

conceito abrangido pela Transformada de Kirchhoff. 

 

8.2 – Potências Instantânea, Ativa, Reativa e Aparente 

8.2.1 – Potência Instantânea 
 

Vamos analisar um circuito que é alimentado por uma tensão: 

 

𝑣 = 𝑉𝑚 . 𝑠𝑒𝑛(𝜔𝑡) 
 

E, consequentemente é percorrido pela corrente 

 

𝑖 = 𝐼𝑚 . 𝑠𝑒𝑛(𝜔𝑡 + Φ) 



 

Então dizemos que a potência instantânea é a potência dissipada em cada 

instante de tempo e é resultado do produto da tensão V pela corrente I 

naquele instante de tempo. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 155 - Gráfico da Tensão, Corrente e Potência Instantânea 

Como podemos notar, a potência será sempre positiva o que significa que 

o circuito está sempre recebendo energia e que está sendo consumida 

pela resistência do circuito. 

 

8.2.2 – Potência Ativa 
 

Como podemos ver no gráfico anterior, existem instante de tempo em que 

a potência instantânea é nula e outras em que a potência é máxima. Mas 

em termos de funcionamento de circuitos, o que nos interessa é o 

chamado, VALOR MÉDIO dessa potência.  

Por definição, o valor médio de qualquer função variável no tempo, 

representa a média de todos os valores instantâneos. Entretanto, se 

calcularmos o valor médio para um ciclo completo, teremos como 

resultado, um valor nulo, pois o valor, em módulo, obtido para o semiciclo 

positivo será igual ao valor em módulo do semiciclo negativo, entretanto 

terão sinais trocados e se anulam. O que fazemos é sempre calcular o 

valor médio para um dos semiciclos. 

A potência média é calculada por: 

 

𝑃 = 𝑉. 𝐼 
 

A POTÊNCIA ATIVA é medida diretamente em wattímetros e é calculada 

por: 

 

V 

I 

Pinst 



𝑃 = 𝑅. 𝐼2 = 𝑉. 𝐼𝑐𝑜𝑠(Φ) 
 

8.2.3 – Potência Reativa 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 156 - Gráfico da Potência Reativa 

É fácil observar, ao olhar o gráfico, que a potência alterna entre positiva 

e negativa, com o dobro da frequência da tensão e da corrente. Se a 

potência instantânea sobre a carga é positiva, essa carga está 

consumindo energia da fonte de alimentação. Nos períodos em que a 

potência instantânea é negativa sobre a carga, essa passa a fornecer a 

energia para a fonte de alimentação. 

No caso de a carga ser indutiva, essa receberá e fornecerá energia, de 

forma alternada, sendo o valor médio nulo, ou seja, a energia recebida é 

igual a energia que é devolvida. 

Se tentarmos medir essa potência com um wattímetro ele indicará um 

valor nulo, ou seja, P = 0 W. 

Apesar da potência não estar sendo consumida ela circula, sob a forma 

de corrente elétrica. Essa potência que corresponde a esta energia 

oscilante recebe o nome de Potência Reativa, e é representada por Q. 

No caso de um circuito puramente indutivo a potência reativa é calculada 

por: 

 

𝑄 = 𝑋𝐿 . 𝐼
2 

 

Mas circuitos puramente indutivos são teóricos, na prática, os circuitos 

apresentam um misto de características, sendo assim, o ângulo de 

defasagem é diferente de 90o, sendo assim: 

 

V 

I 
Q 



𝑄 = 𝑉. 𝐼𝑠𝑒𝑛(Φ) 
 

Onde V e I são a tensão e a corrente nesse circuito e  é o ângulo de 

defasagem entre a tensão e a corrente. Essa potência é medida por um 

VARIMETRO e o valor é dado e Volt-Ampére Reativo (Var). 

 

8.2.4 – Potência Aparente 
 

A potência aparente é a potência aparentemente consumida em um 

circuito CA. Essa potência é representada por S é se mede em Volt-

Ampére (VA) e pode ser determinado pela seguinte expressão: 

 

𝑆 = 𝑉. 𝐼 

 

A representação fasorial está apresentado abaixo. 

 

 

 

 

 

 

 

 

 
Figura 157 - Diagrama Fasorial de Potências 

 

Como se trata de um triângulo retângulo, podemos encontrar a potência 

S, através do Teorema de Pitágoras. 

 

𝑆 = √𝑃2 + 𝑄2 
 

8.2.5 - Fator de Potência 
 

Como já vimos, somente a potência ativa é consumida. Mas ela não existe 

sozinha na corrente alternada, pois temos também a potência reativa e 

essa potência representa um gasto para quem produz, transmite e 

distribui essa energia. Isso ocorre, como já vimos, pelo Efeito Joule e, por 

conseguinte, depende da intensidade de corrente que percorre os 

condutores. 

Por esse motivo, as companhias de energia elétrica não se interessam 

que essas potências reativas sejam mínimas, ou seja, que a potência 

ativa, seja o mais próximo possível da potência aparente. 

P

Q
S



Se dividirmos a potência real pela potência aparente, teremos: 

 

𝑃

𝑆
=

𝑉. 𝐼. cos (Φ)

𝑉. 𝐼
= cos (Φ) 

 

Essa relação entre a potência real e a potência aparente é conhecida 

como FATOR DE POTÊNCIA. 

A existência de fatores de potência com valores inferiores a 1 em 

instalações elétricas ocorrem devido à um excesso de cargas indutivas, 

normalmente motores elétricos e outros tipos de cargas. 

Alguns dos inconvenientes desse baixo fator de potência são: 

- Para o produtor de energias, o gerador é caracterizado por uma tensão 

e uma corrente, ou seja, pela potência aparente S = V.I. Como o gerador 

é uma máquina elétrica a potência ativa que ele vai produzir depende da 

defasagem () apresentado pela carga. Desse modo, quanto mais baixo o 

fator de potência, maior terá que ser a capacidade de geração do 

gerador. 

Com isso, o transformador de transmissão também deverá ter uma 

capacidade maior, onerando o custo de construção da usina e sua 

operação, já que parte da energia produzida é perdida. 

- Para as empresas que transmitem e distribuem a energia elétrica, temos 

dois efeitos. Nas linhas de transmissão dimensionada para uma 

determinada potência aparente, o baixo fator de potência da carga, faz 

com que o investimento na construção da linha de transmissão foi em vão. 

Pois a linha deverá transmitir uma energia aquém da sua capacidade e o 

consumidor receberá uma energia de baixa qualidade. 

Já no caso da distribuição, a corrente é mais elevada, pois a tensão é mais 

baixa, sendo assim, a corrente será maior e, consequentemente, há um 

aumento das perdas por efeito Joule. Além disso, todos os sistemas de 

proteção, devem ser superdimensionados. 

- Para os consumidores, se forem consumidores industriais, o baixo fator 

de potência exige sistemas superdimensionados de proteção, 

transformação e medição. Para todos os tipos de consumidores, há um 

aumento do consumo de energia sem que seja uma energia aproveitável, 

aumentando as contas de luz. 

Além disso, segundo a legislação, fatores de potência inferiores a 0,92, 

geram, além da conta de luz, uma multa ao consumidor. 

 

8.2.6 – Correção do Fator de Potência 
 

Sempre que o fator de potência é muito baixo devemos promover a 

correção do fator de potência. Como a redução do fator de potência é 

originada pelo excedente de cargas indutivas no sistema, a forma de 



corrigir esse fator de potência é agregar capacitores em paralelo com o 

sistema para regularizar o fator de potência do mesmo. 

 

 

 

 

 

 

 

 

 

 

 
Figura 158 - Circuito RL com capacitor de correção de fator de potência 

 

 

 

 

 

 

 

 

 
Figura 159 - Diagrama Fasorial das Correntes 

Na realidade, a associação do capacitor em paralelo, não anula a 

componente indutiva do circuito é isso não ocorre porque a potência 

aparente sempre varia e, em segundo lugar, porque a sobre 

compensação de uma instalação, pode provocar o aparecimento de 

sobretensões na linha. 

Para corrigir o Fator de Potência devemos seguir uma sequencia simples 

de passos, como veremos a seguir: 

1o - Determine a impedância: 

 

𝑍 = √𝑃2 + 𝑄2 
 

2o – Encontre o ângulo de defasagem: 

 

𝑇𝑎𝑛Φ =
𝑃

𝑄
 

 

3o – Encontre a corrente total: 
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𝐼 =
𝑉

𝑍
 

 

4o – Calcule a potência aparente: 

 

𝑆 =
𝑉2

𝑍
 

 

5o – Calcule a potência real: 

 

𝑃 = 𝐼2. 𝑅 
 

 

6o – Calcule o fator de potência: 

 

𝑓𝑝 =
𝑃

𝑆
 

 

Se o fator de potência calculado for menor que 0,92, ou seja: 

 

𝑓𝑃 < 0,92 
 

Significa que a potência reativa é maior que zero, ou seja, é indutiva. 

 

𝑄 > 0 
 

Desse modo devemos encontrar o valor do capacitor, ou banco de 

capacitores que faça a correção desse fator de potência. Isso significa 

que esse capacitor ou banco de capacitores deve produzir uma potência 

reativa menor que zero, o que fará com que essa potência reativa inferior 

a zero contrabalance a potência reativa maior que zero, aproximando o 

fator de potência de 1. 

O fator de potência encontrado é resultado, da impedância do circuito, 

cujo módulo é dado por: 

 

𝑍 = √𝑅2 + 𝑋2 
 

Como conhecemos a resistência e a impedância do circuito devemos 

lembrar que, sob a forma retangular é representado da seguinte forma: 

 



𝑍 = 𝑅 + 𝑗𝑋 
Mas  

 

𝑋 = 𝑋𝐿 − 𝑋𝐶 
 

Para que tenhamos um fator de potência próximo a 1 devemos prever que: 

 

𝑋 = 𝑋𝐿 − 𝑋𝐶 = 0 

 

Logo 

 

𝑋𝐿 = 𝑋𝐶 
 

Sendo assim devemos igualar o valor de X, da equação de impedância 

com o valor de XC, ou seja: 

 

𝑋𝐶 = 𝑋 
 

Considerando que: 

 

𝑋𝐶 =
1

𝜔𝐶
= 𝑋 

 

𝑋𝐶 =
1

2𝜋𝑓𝐶
 

 

𝐶 =
1

2𝜋𝑓𝑋𝑐
 

 

Na verdade, na prática não tentamos fazer XC = XL e isso por que nesse 

momento enfrentamos um segundo problema.  

Como vimos na realização do processo calculado, tentamos fazer XC = XL, 

apesar disso ser possível, devemos lembrar dois aspectos importantes: 

1o - Os bancos de capacitores são de alto custo. Sendo assim, quanto 

maior for o valor da capacitância de correção, maior será o custo do 

banco de capacitores; 

2o – A legislação que estipula um valor mínimo para o fator de potência 

indutiva é a mesma que controla o efeito contrário, ou seja, um fator de 

potência capacitivo, o que ocorre conforme as cargas indutivas vão 

sendo desligadas em determinados períodos do dia. Por esse motivo os 



bancos de capacitores devem ser automáticos, ou seja, devem ser 

capazes de acompanhar as variações da carga indutiva, o que aumenta 

mais ainda o custo do banco de capacitores. 

Devido ao exposto acima, devemos procurar atingir um valor do fator de 

potência levemente superior ao valor de 0,92, de acordo com a 

disponibilidade econômica. 

 

8.3 Sistemas Trifásicos 
 

8.3.1 - Vantagens dos Sistemas Trifásicos 
 

Quando comparamos os sistemas trifásicos com os sistemas 

monofásicos, notamos algumas vantagens do primeiro sobre o segundo: 

• Um gerador trifásico tem uma potência 50% maior que um gerador 

monofásico que tenha o mesmo volume e tenha custado o mesmo 

preço; 

• O somatório das seções dos condutores que transportam uma 

determinada potência em um sistema trifásico é menor que o 

somatório da seção dos condutores monofásicos que transportam 

a mesma potência, possua as mesmas perdas e tenha a mesma 

tensão de alimentação; 

• A capacidade de produzir campos magnéticos girantes, que 

possuem os sistemas trifásicos, permite a utilização de motores 

assíncronos, aparelhos simples que são robustos e econômicos e 

que tem o maior percentual de uso no mercado de tração elétrica 

industrial; 

• Partido de sistemas trifásicos é possível obter alimentações 

monofásicas, enquanto o contrário não é possível. 

 

8.3.2 – Geração Trifásica 
 

Já vimos como um gerador monofásico produz energia elétrica, vamos 

ver agora como é gerada a energia trifásica. 

 

 

 

 

 

 

 

 
Figura 160 - Representação esquemática de um gerador trifásico 

S
N

v
1



Note que, construtivamente um gerador trifásico possui três bobinas 

dispostas há 120 graus uma da outra. Quando o rotor gira, induz, através 

do seu campo magnético, uma Força Eletromotriz sinusoidal. Essa f.e.m 

tem uma amplitude máxima e os picos de cada fase estão deslocadas 120o 

uma da outra. Isso significa que cada fase começa seu ciclo, há 1/3 do 

período da anterior, ou seja: 

 

v1 = Vm. sen(ωt) 

v2 = Vm. sen(ωt − 1200) 

v3 = Vm. sen(ωt − 2400) = Vm. sen(ωt + 120o) 
 

O gráfico abaixo apresenta as curvas relativas as 3 fases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 161 - Representação temporal das 3 fases 

A representação vetorial das três fases está apresentada abaixo. 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 162 - Diagrama Fasorial Trifásico 
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8.3.3 – Sistemas Trifásicos Equilibrados 
 

Vamos imaginar um sistema trifásico (representamos 3) que está 

alimentando uma determinada carga caracterizada por três receptores 

independentes. Nesse caso, utilizaremos 6 fios (um par para cada 

receptor). Se as cargas tiverem a mesma impedância, então as correntes 

I1 (fase 1), I2 (fase 2), I3 (fase 3), são de valor eficaz idênticos defasados de 

120o uma da outra.  

Nesse caso dizemos que o sistema está EQUILIBRADO. Dizemos isso por 

que, a soma das três correntes é sempre nula. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 163 - Vetores de corrente 

 

Como podemos ver na figura acima, a corrente IR12 é a corrente resultante 

da soma dos vetores de corrente I1 e I2. Como é possível ver também, essa 

corrente IR12 tem o mesmo módulo da corrente I3, mas com sinal contrário. 

Sendo assim, esses dois vetores se anulam, comprovando que a soma de 

três vetores de mesma intensidade, defasados de 120o, é igual a zero. 

 

8.3.4 – Ligação Estrela 
 

 

 

 

 

 

 

 

 
Figura 164 - Ligação em Estrela 
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Se pegarmos os terminais x, y e z, do gerador e unirmos em um ponto 

teremos o que é conhecido como LIGAÇÃO EM ESTRELA. O ponto comum 

desses três enrolamentos é denominado NEUTRO que, nesse caso, 

substitui os três condutores de retorno do exemplo anterior. Como já 

vimos, no caso do sistema estar balanceado, a corrente no neutro será 

nula. 

Essa forma de ligação exige 4 condutores (3 condutores de fase e 1 

condutor neutro). Os condutores de fase recebem os nomes R, S e T. 

Normalmente esse tipo de ligação é utilizado, nos sistemas de 

distribuição de energia, para alimentação na baixa tensão (220v ou 110v, 

dependendo do consumidor). 

Nesse caso, as cargas são alimentadas por TENSÕES DE FASE e essas 

tensões são dadas por: 

 

𝑣𝑥𝑢 = 𝑉𝑝. 𝑠𝑒𝑛(𝜔𝑡) ou 𝑣𝑥𝑢 = 𝑉𝐹⌊0
𝑜 = 𝑉𝐹 

𝑣𝑦𝑣 = 𝑉𝑝. 𝑠𝑒𝑛(𝜔𝑡 − 120𝑜) ou   

                                                𝑣𝑦𝑣 = 𝑉𝐹⌊−1200 = 𝑉𝐹 (−
1

2
− 𝑗

√3

2
) 

𝑣𝑧𝑤 = 𝑉𝑝. 𝑠𝑒𝑛(𝜔𝑡 + 120𝑜) ou 

                                                𝑣𝑧𝑤 = 𝑉𝐹⌊120𝑜 = 𝑉𝐹 (−
1

2
+ 𝑗

√3

2
) 

 

Porém, quando as cargas não são balanceadas (o caso mais comum), as 

tensões entre duas fases, que são chamadas TENSÕES DE LINHA, e são 

dadas por: 

 

𝑣𝑅𝑆 = 𝑣𝑥𝑢 − 𝑣𝑦𝑣 = 𝑉𝐹 − 𝑉𝐹 (−
1

2
− 𝑗

√3

2
) = 𝑉𝐹 (

3

2
+ 𝑗

√3

2
)

= √3𝑉𝐹 (
√3

2
+ 𝑗

1

2
) 

Portanto    

                    𝑣𝑅𝑆 = √3𝑉𝐹⌊30𝑜 
 

𝑣𝑆𝑇 = 𝑣𝑦𝑣 − 𝑣𝑧𝑤 = 𝑉𝐹 (−
1

2
− 𝑗

√3

2
) − 𝑉𝐹 (−

1

2
+ 𝑗

√3

2
)

= 𝑉𝐹(−𝑗√3) = −𝑗√3𝑉𝐹 

Portanto 



                𝑣𝑆𝑇 = √3𝑉𝐹⌊−90𝑜  

𝑣𝑇𝑅 = 𝑣𝑧𝑤 − 𝑣𝑥𝑢 = 𝑉𝐹 (−
1

2
+ 𝑗

√3

2
) − 𝑉𝐹 = 𝑉𝐹 (−

3

2
+ 𝑗

√3

2
)

= −√3𝑉𝐹 (−
√3

2
+ 𝑗

1

2
) 

 

Portanto 

𝑣𝑇𝑅 = √3𝑉𝐹⌊150𝑜 
 

Com isso, concluímos que: 

 

𝑉𝐿 = √3𝑉𝐹 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 165 - Diagrama Fasorial com Carga Balanceada em Sistemas Estrela. 
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8.3.5 – Ligação Triângulo 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 166 - Ligação Triângulo ou Delta 

 

Nesse tipo de ligação, VAB, VBC, VCA correspondem às tensões de fase e as 

tensões de linha. Isso significa que: 

 

𝑉𝐿 = 𝑉𝐹 
 

Entretanto, diferentemente da ligação estrela, na ligação triângulo as 

correntes de fase iAB,iBC,iCA, são diferentes das correntes de linha iA, iB, iC 

que podem ser calculadas da seguinte forma: 

 

𝐼𝐴 = 𝑖𝐴𝐵 − 𝑖𝐶𝐴 

𝐼𝐵 = 𝑖𝐵𝐶 − 𝑖𝐴𝐵 

𝐼𝐶 = 𝑖𝐶𝐴 − 𝑖𝐵𝐶 
 

No caso de carga balanceada, as defasagens entre a tensão e a corrente 

em cada uma das fases é igual. Isso significa que: 

 

Φ𝐴 = Φ𝐵 = Φ𝐶 = Φ 
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Figura 167 - Diagrama Fasorial para Carga Balanceada em um Sistema Triângulo 

Da mesma forma como no sistema em estrela, no caso do sistema em 

triângulo, quando as cargas não estão balanceadas, ou seja, A ≠ B ≠ C, 

as tensões de linha e de fase podem ser escritas como: 

 

𝑣𝐴𝐵 = 𝑉𝑃. 𝑠𝑒𝑛(𝜔𝑡) ou 𝑣𝐴𝐵 = 𝑉𝐿⌊0
𝑜 = 𝑉𝐿 

𝑣𝐵𝐶 = 𝑉𝑃. 𝑠𝑒𝑛(𝜔𝑡 − 120𝑜) ou 

                                                               𝑣𝐵𝐶 = 𝑉𝐿⌊−120𝑜 = 𝑉𝐿 (−
1

2
− 𝑗

√3

2
) 

𝑣𝐶𝐴 = 𝑉𝑃. 𝑠𝑒𝑛(𝜔𝑡 + 120𝑜) ou 

                                                                𝑣𝐶𝐴 = 𝑉𝐿⌊120𝑜 = 𝑉𝐿 (−
1

2
+ 𝑗

√3

2
) 

 

A relação entre os módulos das tensões de linha e de fase é determinada 

exatamente da mesma forma como ocorre com as tensões no sistema 

estrela, portanto: 

 

𝑖𝐿 = √3. 𝑖𝐹 
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8.3.6 – Potência em Sistemas Trifásicos 
 

Como já vimos, nos sistemas monofásicos, a potência ativa é dada por: 

 

𝑃 = 𝑉𝐼𝑐𝑜𝑠Φ   [𝑊] 
 

Onde V e I são a tensão e a corrente eficazes, respectivamente.  é o 

ângulo entre elas. Pois bem, em um sistema trifásico balanceado as 

potências em cada uma das fases é igual as demais. Desse modo, a 

potência ativa total será a soma das potências de cada uma das fases, ou 

seja: 

 

𝑃 = 3. 𝑉𝐹 . 𝐼𝐹 . 𝑐𝑜𝑠Φ 
 

Sendo VF e IF são os valores eficazes. 

Na ligação em estrela, sabemos que a corrente de fase é igual a corrente 

de linha (IF = IL). Também sabemos que: 

 

𝑉𝐹 =
𝑉𝐿

√3
 

 

Se substituirmos essas duas igualdades na equação da potência, 

teremos: 

 

𝑃 = 3.
𝑉𝐿

√3
𝐼𝐿𝑐𝑜𝑠Φ 

 

Operando a divisão teremos: 

 

𝑃 = √3𝑉𝐿 . 𝐼𝐿 . 𝑐𝑜𝑠Φ 
 

Para o caso do sistema em triângulo, a potência será dada por: 

 

𝑃 = 3.
𝐼𝐿

√3
𝑉𝐿 . cosΦ 

 

Novamente aplicando a divisão teremos: 

 

𝑃 = √3𝐼𝐿 . 𝑉𝐿 . 𝑐𝑜𝑠Φ 
 



Observando as duas equações (estrela e triângulo), vemos que a equação 

é a mesma para ambos os casos. Entretanto essas potências são 

diferentes. 

Se utilizarmos o mesmo raciocínio podemos determinar as potências 

reativa total e aparente total. 

No caso da potência reativa total em sistemas trifásicos, ela pode ser 

calculada por: 

 

𝑃𝑅 = 3. 𝑉𝐹 . 𝐼𝐹 . 𝑠𝑒𝑛Φ [𝑉𝐴𝑅] 
Ou ainda 

𝑃𝑅 = √3. 𝑉𝐿 . 𝐼𝐿 . 𝑠𝑒𝑛Φ [𝑉𝐴𝑅] 
 

Para potência aparente total, teremos: 

 

𝑃𝐴 = 3. 𝑉𝐹 . 𝐼𝐹      [𝑉𝐴] 
Ou ainda 

𝑃𝐴 = √3. 𝑉𝐿 . 𝐼𝐿      [𝑉𝐴] 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Capítulo IX 

ELETRODINÂMICA 
 

 

 

 

 

 

 

 

9.1 CORRENTE DE DESLOCAMENTO 
 

Já vimos que a Lei Ampére relaciona a densidade da corrente em um 

ponto qualquer com o rotacional do campo magnético que ela produz. 

Sendo assim: 

 

𝐽 =
1

𝜇0
∇⃗⃗ × 𝐵⃗  

 

Também já vimos que a divergência do rotacional de um campo vetorial 

qualquer é sempre zero. Sendo assim, a equação anterior, obviamente 

implicará que a densidade de corrente, em qualquer ponto, será nula. 

Entretanto, como também já vimos, isso esta em contradição com o 

princípio fundamental que define a conservação da carga elétrica.  

Como você deve lembrar, que a equação que expressa a conservação da 

carga elétrica, na sua forma diferencial é: 

 

∇⃗⃗ . 𝐽 +
𝑑𝑝

𝑑𝑡
= 0 

 

Desse modo, a Lei de Ampére só é válida para o caso de correntes 

estacionárias. Nesses casos, como sabemos, não ocorrem variações na 

carga volumétrica em qualquer ponto. É, portanto, necessário encontrar 

uma fórmula que seja mais geral para o rotacional do campo 𝐵⃗  que seja 

capaz de reproduzir a Lei de Ampére para os casos particulares das 

ondas estacionárias. Para fazer isso, vamos começar com a equação da 

continuidade.  

Vamos então utilizar a carga volumétrica na equação da conservação da 

carga elétrica e utilizaremos a Lei de Gauss. Com isso obtemos: 

 

 “Todas as ciências matemáticas são baseadas nas 

relações entre as leis físicas e as leis dos números, de 

modo que o objetivo da ciência exata é reduzir os 

problemas da natureza à determinação das 

quantidades por operações com números” 

James Clerk Maxwell 



∇⃗⃗ (𝐽 + 𝜖0

𝑑𝐸⃗ 

𝑑𝑡
) = 0 

 

Devemos lembrar que o termo entre parênteses é o campo vetorial 𝐹  cujo 

divergente é igual a zero. Sendo assim: 

 

𝐽 + 𝜖0

𝑑𝐸⃗ 

𝑑𝑡
= 𝐹  

 

Para o caso particular onde a derivada do campo elétrico é zero, teremos 

que a densidade de corrente será igual ao campo 𝐹 . Nesse caso, para que 

a Lei de Ampére seja válida, é necessário que: 

 

𝐹 =
1

𝜇0
∇⃗⃗ × 𝐵⃗  

 

Nesse caso, a divergência é nula como se fazia necessário. Isso ocorre 

por que a divergência do rotacional de qualquer campo, como já vimos, é 

sempre nula. As duas últimas equações nos permitem chegar a Lei de 

Ampére-Maxwell. 

 

∇⃗⃗ × 𝐵⃗ = 𝜇0𝐽 + 𝜇0𝜖0

𝑑𝐸⃗ 

𝑑𝑡
 

 

Quando o sistema está em presença de correntes não estacionárias, a 

variação de carga elétrica em alguns pontos traz como consequência o 

aparecimento de campos elétricos variáveis que introduzem na equação 

um termo adicional. 

 

𝐽𝐷⃗⃗  ⃗ = 𝜖0

𝑑𝐸⃗ 

𝑑𝑡
 

 

Esse termo é conhecido como DENSIDADE DE CORRENTE DE 

DESLOCAMENTO. 

Para obtermos a forma integral da equação de Ampére-Maxwell 

multiplicamos 𝑑𝐴 , e integramos sobre uma superfície S. 

 



∬(∇⃗⃗ × 𝐵⃗ )

𝑆

. 𝑑𝐴 = 𝜇0 ∬𝐽 . 𝑑𝐴 

𝑆

+ 𝜇0𝜖0

𝑑

𝑑𝑡
∬𝐸⃗ . 𝑑𝐴 

𝑆

 

 

Usando o teorema de Stokes podemos escrever a integral do lado 

esquerdo como uma integral de linha. A integral do vetor 𝐽 , que se 

encontra na equação do lado direito representa a corrente que percorre 

a curva C e a integral de 𝐸⃗  representa o fluxo elétrico . Sendo assim, o 

resultado que obteremos é semelhante a Lei de Ampére, entretanto, tem 

uma corrente modificada: 

 

∮ 𝐵⃗ . 𝑑𝑟 = 𝜇0(𝐼𝐶 + 𝐼𝐷)

𝐶

 

 

Onde:  C é a curva fronteira da integral; 

              IC é a corrente através da superfície S 

              ID é a corrente de deslocamento. 

 

Essa corrente de deslocamento é definhada por: 

 

𝐼𝐷 = 𝜖0

𝑑Φ

𝑑𝑡
 

 

9.2 EQUAÇÕES DE MAXWELL 
 

Nos primeiros capítulos desse livro já vimos as equações que são a base 

da eletrostática e do magnetismo. Além disso sabemos que no caso de 

campos não estáticos, devemos modificar as equações básicas, pois 

nesse caso, os campos elétrico e magnético já não são independentes. 

A equação de Ampére-Maxwell, possui uma constante (𝜇0𝜖0) que pode ser 

determinada a partir da constante de Coulomb e da constante magnética. 

 

 

𝜇0𝜖0 =
𝑘𝑚

𝑘
=

1

9 × 1016

𝑠2

𝑚2
=

1

𝑐2
 

 

 

c é a velocidade da luz no vácuo (c = 3 x 108 m/s).  

Constante magnética 

Constante de Coulomb 



Como a luz é uma onda eletromagnética, não é estranho a relação entre 

as constantes eletromagnéticas e a velocidade da luz. 

Os campos, elétrico (𝐸⃗ ) e magnético (𝐵⃗ ) são definidos por 4 equações 

básicas que definem as divergentes e os rotacionais. Essas equações 

são: 

 

Lei de Gauss                              ∇⃗⃗ . 𝐸⃗ =
𝜌

𝜖0
 

Lei da Faraday                                  ∇⃗⃗ × 𝐸⃗ = −
𝑑𝐵⃗ 

𝑑𝑡
 

 

Equação de Ampére Maxwell       ∇⃗⃗ . B⃗⃗ = 0 
 

Lei de Ampére Maxwell                  ∇⃗⃗ × B⃗⃗ = μ0J +
1

C2

dE⃗⃗ 

dt
 

 

Essas quatro equações, derivadas das respectivas leis, são conhecidas 

como LEIS DE MAXWELL e definem os campos 𝐸⃗  e 𝐵⃗  em qualquer ponto, 

em qualquer meio somente em função da carga volumétrica e da 

densidade de corrente. 

A densidade de corrente, por sua vez, depende da quantidade de cargas 

em movimento. Isso é determinado a partir das leis da mecânica e levando 

em consideração que a força eletromagnética sobre uma partícula com 

carga q é definida como sendo a Força de Lorentz: 

 

F⃗ = q(E⃗⃗ + v⃗ × B⃗⃗ ) 

 

É fácil entender que seria quase impraticável resolver o problema se 

fossemos considerar todas as cargas e correntes que existem dentro de 

um condutor. Entretanto, vamos trabalhar com uma ordem de grandeza 

das distâncias entre átomos que é muitas vezes maior que o tamanho do 

próprio átomo. Justamente por causa disso, torna-se mais interessante, 

incluir os campos das cargas e as correntes polarizadas que existem nos 

átomos em dois novos campos, denominados, 𝐷⃗⃗  e 𝐻⃗⃗ . Em função desses 

dois campos (que analisaremos com mais calma no Apêndice II). Por 

enquanto, vamos aceitar que as equações de Maxwell, em função desses 

dois campos ficam: 

 

∇⃗⃗ . 𝐷⃗⃗ = 𝜌0 

 



∇⃗⃗ × 𝐸⃗ = −
𝑑𝐵⃗ 

𝑑𝑡
 

 

∇⃗⃗ . B⃗⃗ = 0 

 

∇⃗⃗ × H⃗⃗ = 𝐽0⃗⃗⃗  +
dD⃗⃗ 

dt
 

 

Nessas equações: 0 é uma carga volumétrica “livre” (não inclui as cargas 

polarizadas nos átomos) 

                                    𝐽0⃗⃗⃗   é a densidade de corrente “livre” (não incluindo as 

correntes de polarização) 

                                    𝐷⃗⃗  é o chamado Deslocamento Elétrico 

                                    𝐻⃗⃗  é o campo magnético do meio. 

 

É interessante constatar que as quatro últimas equações apresentadas, 

são as equações de Maxwell para análises macroscópicas. Quando 

vamos resolver é necessário fazer uma relação entre o deslocamento 

elétrico (D⃗⃗ ) e o campo magnético do meio (H⃗⃗ ), com o campo elétrico (E⃗⃗ ) e 

o campo magnético (B⃗⃗ ). 

Para analisarmos as equações o mais simples é a análise feita em um meio 

que seja isotrópico e linear. Nesse caso, os campos 𝐷⃗⃗  e 𝐻⃗⃗  são paralelos e 

diretamente proporcionais a 𝐸⃗  e 𝐵⃗ . 

 

D⃗⃗ = ϵE⃗⃗                      B⃗⃗ = μH⃗⃗  
 

Nesse caso, 𝜖 é a permissividade elétrica do meio; 

                          é a permeabilidade magnética. 

 

As equações de Maxwell também podem ser representadas sob a forma 

de integral. Desse modo, se integrarmos sobre uma superfície fechada S 

e aplicarmos o segundo teorema da divergência a integral ao longo de 

uma curva fechada C e aplicarmos o teorema de Stokes, teremos: 

 

∯𝐷⃗⃗ . 𝑑𝐴 

𝑆

= 𝑞0 

 



∮ 𝐸⃗ . 𝑑𝑟 

𝐶

= −∬
𝑑𝐵⃗ 

𝑑𝑡
. 𝑑𝐴 

𝑆𝐶

 

 

∯𝐵⃗ . 𝑑𝐴 

𝑆

= 0 

 

∮ 𝐻⃗⃗ 

𝐶

. 𝑑𝑟 = 𝐼0 + ∬
𝑑𝐷⃗⃗ 

𝑑𝑡
𝑆𝐶

. 𝑑𝐴  

 

Essas equações são validas em qualquer superfície fechada (S), curva 

fechada (C) e superfície S delimitada por C (SC). Essas são as equações 

básicas da eletrodinâmica. 

 

9.3 TRANSFORMAÇÃO DE GALILEU DO CAMPO 

ELETROMAGNÉTICO 
 

A derivada da equação ∇⃗⃗ × B⃗⃗ = μ0J +
1

C2

dE⃗⃗ 

dt
 indica que pode existir um campo 

magnético sem que existam correntes, por que a variação do campo 

elétrico em função do tempo é também uma fonte do campo magnético. 

Essa variação temporal do campo elétrico pode ocorrer por causa das 

variações nas suas fontes ou simplesmente devido a um deslocamento 

global das fontes. 

Se analisarmos o deslocamento das fontes, no referencial em movimento 

com as fontes não existe variação do campo elétrico em função do tempo 

e, por conseguinte, o campo magnético não pode ser igual ao do 

referencial em movimento. 

Vamos considerar uma distribuição de carga (t) que é fixa em um 

referencial R’. Essa carga se desloca com uma velocidade 𝑣 . No 

referencial R’, não existe corrente, sendo assim, de acordo com a 

equação ∇⃗⃗ × B⃗⃗ = μ0J +
1

C2

dE⃗⃗ 

dt
, o rotacional do campo magnético (𝐵⃗ ) será igual 

a derivada do campo elétrico em função do tempo, dividida pela 

velocidade da luz ao quadrado. Sendo assim, a derivada do campo 

elétrico 𝐸′⃗⃗  ⃗, quando em movimento, é calculada aplicando a derivada 

convectiva ao campo 𝐸⃗ . 

 



∇⃗⃗ × 𝐵′⃗⃗  ⃗ =
1

𝑐2

𝑑𝐸′⃗⃗  ⃗

𝑑𝑡
=

1

𝑐2

𝑑𝐸⃗ 

𝑑𝑡
+

𝑣 

𝑐2
(∇⃗⃗ . 𝐸⃗ ) −

1

𝑐2
∇⃗⃗ × (𝑣 × 𝐸⃗ ) 

 

Se utilizarmos a lei de Gauss, teremos que o termo 𝑣 (∇⃗⃗ . 𝐸⃗ ) será igual a 

𝜌𝑣 
𝜖0

⁄ . Nesse caso, o produto 𝜌𝑣  é a densidade de corrente e 𝐽  e a 

constante 𝜖0 e c2 = 1 𝜇0
⁄ . 

 

∇⃗⃗ × 𝐵′⃗⃗  ⃗ =
1

𝑐2

𝑑𝐸′⃗⃗  ⃗

𝑑𝑡
+ 𝜇0𝐽 −

1

𝑐2
∇⃗⃗ × (𝑣 × 𝐸⃗ ) 

 

Se utilizarmos a lei de Ampére-Maxwell, podemos substituir os dois 

primeiros termos que estão no lado direito da equação pelo rotacional do 

campo magnético 𝐵⃗ . Sendo assim obtemos: 

 

∇⃗⃗ × 𝐵′⃗⃗  ⃗ = ∇⃗⃗ × (𝐵⃗ −
1

𝑐2
𝑣 × 𝐸⃗ ) 

 

Então: 

 

𝐵′⃗⃗  ⃗ = 𝐵⃗ −
1

𝑐2
𝑣 × 𝐸⃗ + 𝐶  

 

𝐶  é um campo com rotacional igual a zero. 

Essa relação ao qual chegamos é válida para qualquer velocidade 𝑣 , mas 

devemos atentar que para o caso específico em que 𝑣 = 0, ambos os 

campos 𝐵⃗  e 𝐵′⃗⃗  ⃗ deverão ser iguais. Isso significa que 𝐶 = 0. 

Dessa forma iremos obter o campo magnético 𝐵⃗ ′ em função dos campos 

elétrico 𝐸⃗  e magnético 𝐵⃗ . Esses dois campos, associados a equação 

                                                           

                                                               𝐸′⃗⃗  ⃗ = 𝐸⃗ + 𝑣 × 𝐵⃗   
 

Constituem o que denominamos de TRANSFORMAÇÃO DE GALILEU do 

campo eletromagnético. 

Sendo assim teremos: 

 

 

 

 



 

 

 

 

 
Equação 1 – Transformação de Galileu do campo Eletromagnético 

Note que essas duas equações relacionam os campos 𝐸′⃗⃗  ⃗ e 𝐵′⃗⃗  ⃗ no 

referencial em movimento em qualquer ponto 𝑟  e qualquer instante t. 

Vamos aqui lançar um conceito. A ideia de “laboratório”, que irá se 

distinguir do conceito “referencial em movimento”. As equações de 

Maxwell variam em relação à transformação entre referenciais inerciais. 

Para poder entender o que dissemos acima, vamos definir o mesmo 

sistema de eixos coordenados para os dois referenciais. Chamaremos o 

referencial R (laboratório) e R’ (referencial em movimento). Vamos 

também determinar um instante inicial t = 0. Desse modo, se selecionamos 

um instante t qualquer, diremos que a origem do referencial R’ está nas 

coordenadas 𝑡𝑣  que é relativa ao referencial R e a relação entre a posição 

de uma partícula nos dois referenciais, será dada pela transformação de 

Galileu: 

 

𝑟′⃗⃗ = 𝑟 − 𝑣 𝑡 
 

A transformação reversa dessa equação será 𝑟 = 𝑟′⃗⃗ + 𝑣 𝑡. Essa equação 

que tem a forma da transformação de Galileu por que a velocidade de R, 

relativa a R’, será −𝑣 .   

Desse modo, o tratamento dado para R e R’ é idêntico e é completamente 

arbitrária a escolha do referencial que definimos como laboratório. Se 

derivarmos a equação acima, teremos a derivada da velocidade e da 

aceleração. Essas duas derivadas também não irão permitir a distinção 

entre os referenciais inerciais. 

Quando fazemos a transformação de Galileu do campo eletromagnético, 

já não possuímos uma situação de simetria. Sendo assim, se quisermos 

obter a transformação inversa, devemos substituir 𝐵⃗  e 𝐸⃗  nas equações da 

transformação de Galileu e teremos: 

 

𝐸′⃗⃗  ⃗ = 𝐸⃗ + 𝑣 × (𝐵′⃗⃗⃗⃗ +
1

𝑐2
𝑣 × 𝐸⃗ ) = 𝐸⃗ + 𝑣 × 𝐵⃗ + 𝛽 (𝛽 . 𝐸⃗ ) − 𝛽2𝐸⃗  

𝐵′⃗⃗  ⃗ = 𝐵⃗ −
𝑣

𝑐2
× (𝐸′⃗⃗⃗⃗ − 𝑣 × 𝐵⃗ ) = 𝐵⃗ −

1

𝑐2
𝑣 × 𝐸′⃗⃗⃗⃗ + 𝛽 (𝛽 . 𝐵⃗ ) − 𝛽2𝐵⃗  

 

Definimos 𝛽 = 𝑣 
𝑐⁄  

𝐸′⃗⃗  ⃗ = 𝐸⃗ + 𝑣 × 𝐵⃗  

𝐵′⃗⃗  ⃗ = 𝐵⃗ −
1

𝑐2
𝑣 × 𝐸⃗ + 𝐶  

 



Também podemos eliminar (𝛽 . 𝐵⃗ ) e (𝛽 . 𝐸⃗ ) por que realizando uma 

multiplicação escalar das equações de transformação de Galileu por 𝛽  

vamos obter as seguintes equações: 

 

𝛽 . 𝐸′⃗⃗  ⃗ = 𝛽 . 𝐸⃗  

𝛽 . 𝐵′⃗⃗  ⃗ = 𝛽 . 𝐵⃗  
 

Se substituirmos essas duas igualdades nas equações acima teremos: 

 

𝐸⃗ = 𝛾2 (𝐸′⃗⃗  ⃗ − 𝑣 × 𝐵′⃗⃗  ⃗) − 𝛾2𝛽 (𝛽 . 𝐸′⃗⃗  ⃗) 

𝐵⃗ = 𝛾2 (𝐵′⃗⃗⃗⃗ +
1

𝑐2
𝑣 × 𝐸′⃗⃗  ⃗) − 𝛾2𝛽 (𝛽 . 𝐵′⃗⃗  ⃗) 

 

Nessas fórmulas  é conhecido como FATOR DE DILATAÇÃO DE 

LORENTZ e é definida por: 

 

𝛾2 =
1

1 − 𝛽2
 

 

Nesse caso a transformada inversa não tem a mesma forma da 

transformação inicial. Isso pode ser comprovado se analisarmos, por 

exemplo, um campo magnético que seja nulo no referencial R. Se 

passarmos esse campo magnético para o referencial R’, irá surgir um 

campo elétrico 𝐸′⃗⃗  ⃗ que será igual ao campo elétrico 𝐸⃗ . Entretanto se o 

movimento fosse contrário, ou seja, o campo magnético estivesse 

originalmente no referencial R’ e fosse nulo, ao passa-lo para o referencial 

R verificaríamos o surgimento de um campo elétrico 𝐸⃗  que seria diferente 

do campo 𝐸′⃗⃗  ⃗. 

Na verdade, a diferença entre os valores dos dois campos é muito 

pequena. Isso ocorre por que as velocidades que normalmente 

trabalhamos, o valor de  será muitas vezes menor que 1 e o valor de  é 

praticamente 1. Para esse caso, a transformada inversa apresenta a 

mesma forma da inicial. 

A situação fica mais complexa quando nossas análises se aproximam da 

velocidade da luz. Em princípio seria fácil descobrir qual seria o 

verdadeiro referencial R, local em que as equações de Maxwell são 

exatas. Com a simples medida da velocidade da luz no vácuo e sua 

respectiva comparação com c.  



Esse meio hipotético que constitui o referencial R e por onde se propaga 

o campo eletromagnético, recebeu o nome de “éter”. O final do século XIX, 

principalmente suas últimas quatro décadas, testemunharam vários 

experimentos de ótica para a descoberta da velocidade da Terra no éter. 

Esses experimentos chegaram a sugerir que o éter era material e poderia 

ser arrastado parcialmente por objetos, incluindo a Terra. 

Os responsáveis pela derrocada total do conceito de éter foram 

Michelson e Morley com o seu interferômetro que é um instrumento capaz 

variações mínimas na velocidade de propagação da luz em diferentes 

direções. 

O funcionamento desse equipamento é, de certa forma, muito simples. 

Um feixe de luz é separado em duas partes em um espelho 

semitransparente (EST). Os dois feixes resultantes dessa separação são 

refletidos em dois outros espelhos E1 e E2 e atingem um anteparo A. Nesse 

ponto são observadas as franjas de interferência entre esses feixes. As 

faixas mais claras aparecerão nos pontos onde a diferença entre os 

percursos dos dois feixes for múltiplo inteiro do comprimento de onda e 

produzem uma interferência construtiva. 

Se deslocarmos o espelho E1 ou o espelho E2 iremos provocar uma 

modificação no tempo de demora de um dos feixes que chega em A e, com 

isso, produziremos um deslocamento nas franjas de interferência. Se a 

velocidade da luz variasse com a direção, o movimento dos espelhos do 

interferômetro seria possível alterar os tempos de chegada dos dois 

feixes e, com isso, deslocar as franjas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Equação 2 - Interferómetro de Michelson e Morley 

 

 

 

Fonte de luz
EST

E
1

E2

A



Michelson e Morley em seu experimento mostraram que a velocidade da 

luz solar não varia com a direção, uma vez que durante a experiência eles 

não observaram nenhuma variação na posição das franjas. Mas foi 

Hendrik Lorentz que conseguiu explicar de forma mais substancial o 

resultado do experimento. Ele explicou a invariância da velocidade da luz. 

Para isso, ele admitiu que os corpos em movimento no éter sofrem uma 

contração igual a 1/ na direção do movimento. Ele explicou que essa 

contração se dá devido a uma modificação da transformação de Galileu 

que, nesse caso, passaria a ser substituída pela transformação de 

Lorentz. Desse jeito as transformadas dos campos eletromagnéticos são 

idênticas em qualquer referencial. 

A consolidação dessas teorias veio com Albert Einstein, em 1905, quando 

publicou a sua Teoria da Relatividade. Com essa teoria ela conseguiu 

compatibilizar as equações de Maxwell com a inexistência de referenciais 

absolutos. 

Devemos lembrar que um dos postulados fundamentais da teoria da 

relatividade é a invariância da velocidade da luz no vácuo. Os resultados 

desse estudo são extremamente surpreendentes e, ao mesmo tempo, se 

mostram irreconciliáveis com a mecânica clássica, e o mais interessante 

é que no caso do eletromagnetismo, as equações de Maxwell e a 

invariância da carga permanecem válidas, mesmo com as questões do 

relativismo. 

 

9.4 ENERGIA DO CAMPO ELETROMAGNÉTICO 
 

No estudo do campo eletrostático, concluímos que esse campo tem 

associado a si uma energia potêncial. Pois bem, da mesma forma, no caso 

de um campo eletromagnético dinâmico existe uma energia associada. Se 

quisermos determinar a força que age sobre um pequeno volume dV, cuja 

carga volumétrica é determinada por 𝜌(𝑟 , 𝑡), e se desloca com uma 

velocidade 𝑣  dentro de campos eletromagnéticos 𝐸⃗ (𝑟 , 𝑡) e 𝐵⃗ (𝑟 , 𝑡), 

utilizaremos a equação: 

 

𝑑𝐹 = 𝜌(𝐸⃗ + 𝑣 × 𝐵⃗ )𝑑𝑉 

 

Essa força irá realizar um trabalho durante o intervalo de tempo, descrito 

por dt que será igual a d𝐹 . 𝑑𝑟 . A potência fornecida será dada por:  

 

𝑑𝑃 = 𝑑𝐹 . 𝑣  
 

A partir dessa equação teremos: 

 



𝑑𝑃 = 𝑑𝐹 . 𝑣 = 𝜌(𝐸⃗ . 𝑣 )𝑑𝑉 = (𝐸⃗ . 𝐽 )𝑑𝑉 

 

Como pode ser visto, o campo magnético não entra explicitamente na 

equação. Isso ocorre por que a força magnética, na realidade, não realiza 

trabalho. Entretanto, a potência depende, de forma implícita, do campo 

magnético, isso por que, as variações desse campo, influem diretamente 

no campo elétrico. 

A potência fornecida em uma região R será o resultado de uma integral de 

volume da equação anterior. Se utilizarmos a lei de Ampére-Maxwell, 

podemos descrever a densidade de corrente em função dos campos 

magnético e elétrico, assim: 

 

𝑃 = ∭𝐸⃗ (∇⃗⃗ × 𝐻⃗⃗ −
𝜕𝐷⃗⃗ 

𝜕𝑡
) 𝑑𝑉

𝑅

 

 

Podemos agora reescrever a equação acima utilizando a identidade 

vetorial ∇⃗⃗ . (𝐸⃗ × 𝐻⃗⃗ ) = 𝐻⃗⃗ . (∇⃗⃗ × 𝐸⃗ ) − 𝐸⃗ . (∇⃗⃗ × 𝐻) e  a lei de Faraday e obteremos: 

 

𝑃 = ∭[−𝐻⃗⃗ .
𝜕𝐵⃗ 

𝜕𝑡
− 𝐸⃗ .

𝜕𝐷⃗⃗ 

𝜕𝑡
− ∇⃗⃗ . (𝐸⃗ × 𝐻⃗⃗ )] 𝑑𝑉

𝑅

 

 

A equação possui três termos. O último representa um fluxo que passa 

através da fronteira da região R. Esse termo pode ser escrito como a 

integral da superfície se utilizamos o teorema da divergência. 

Se utilizarmos os conceitos D⃗⃗ = ϵE⃗⃗   e  B⃗⃗ = μH⃗⃗ , no caso de um meio linear, 

veremos que o deslocamento elétrico e o campo magnético, estão 

relacionados com o campo elétrico e a indução magnética. O produto 

escalar de qualquer vetor com a sua derivada é igual a metade da 

derivada do quadrado do seu módulo. 

Desse modo, a equação anterior pode ser escrita como: 

 

𝑃 = ∭[−
1

2𝜇

𝜕𝐵2

𝜕𝑡
−

𝜖

2

𝜕𝐸2

𝜕𝑡
] 𝑑𝑉 −

1

𝜇
∯(𝐸⃗ × 𝐵⃗ ). 𝑑𝐴 

𝑆𝑅

 

𝑃 = −
𝜕

𝜕𝑡
∭𝑢. 𝑑𝑉

𝑉

− ∯𝑆 . 𝑑𝐴 

𝑆

 



Na equação anterior u é energia eletromagnética volumétrica e pode ser 

definida pela equação: 

 

𝑢 ≡
1

2𝜇
𝐵2 +

𝜖

2
𝐸2 

 

O outro elemento introduzido na equação 𝑆 , é conhecido como vetor de 

Poynting e será definido pela equação: 

 

𝑆 ≡
1

𝜇
𝐸⃗ × 𝐵⃗  

 

A potência instantânea P representa a energia mecânica que o sistema 

fornece por unidade de tempo. Essa energia será igual a diminuição de 

energia eletromagnética na região R. 

Desse modo na equação da potência, a integral de volume de u representa 

a energia eletromagnética total que se encontra dentro da região R. A 

integral fechada de 𝑆  é o fluxo de energia eletromagnética. 

A energia mecânica ou energia eletromagnética dentro do volume V são 

diretamente afetados pela variação do fluxo de energia eletromagnética. 

Já o vetor de Poynting representa a densidade de fluxo de energia 

eletromagnética, ou seja, é a energia eletromagnética transferida por 

unidade de área e por unidade de tempo. Sua direção e sentido indicam a 

direção e sentido de transferência da energia. 

 

9.5 POTÊNCIA VETORIAL  
 

Como já vimos, podemos representar o campo eletrostático em função do 

seu potêncial eletrostático. Uma das condições necessárias para a 

definição do potêncial é o fato de que o campo eletrostático é 

conservativo. 

Quando submetido a condições não estáticas, como o rotacional do 

campo não é nulo, o campo elétrico deixa de ser conservativo. Apesar 

disso ainda é possível definir potênciais eletromagnéticos através da 

análise que faremos a seguir. 

Primeiro vamos relembrar do Cálculo Vetorial que, qualquer campo 

vetorial 𝐹  é capaz de verificar a seguinte propriedade: 

 

∇⃗⃗ . (∇⃗⃗ × 𝐹 ) = 0 

 



Note que essa propriedade, juntamente com a terceira equação de 

Maxwell ( ∇⃗⃗ . 𝐵⃗ = 0) indicam que podemos escrever a equação do campo 

magnético como: 

 

𝐵⃗ = ∇⃗⃗ × 𝐴  
Onde: 𝐴  – campo vetorial que recebe o nome de POTÊNCIAL VETORIAL. 

Entretanto existem algumas questões sobre essa equação quer devem 

ser analisadas. 

Se observarmos bem, o rotacional de 𝐴  é, na verdade, uma combinação 

das derivadas quem compõe 𝐴 , no entanto, existem várias funções cujas 

derivadas são iguais. O que torna a definição de potêncial vetorial, uma 

definição arbitrada. 

Vamos imaginar que exista um vetor 𝐴  e um outro vetor 𝐴′⃗⃗  ⃗ representem 

dois campos que possuam o mesmo rotacional 𝐵⃗ , sendo assim: 

 

∇⃗⃗ × 𝐴 = ∇⃗⃗ × 𝐴′⃗⃗  ⃗ ⇒ ∇⃗⃗ × 𝐴 − ∇⃗⃗ × 𝐴′⃗⃗  ⃗ = ∇⃗⃗ × (𝐴′⃗⃗  ⃗ − 𝐴 ) 

 

Nesse caso, a diferença entre 𝐴  e 𝐴′⃗⃗  ⃗ é um campo conservativo e podemos 

determinar se calcularmos o gradiente de um campo escalar . 

 

𝐴′⃗⃗  ⃗ = 𝐴 + ∇⃗⃗ 𝜙 
 

Anteriormente vimos que a mesma coisa ocorria no caso eletrostático 

onde podíamos somar uma constante arbitrária ao potêncial e isso não 

modificava o campo elétrico. O potêncial foi definido de forma única, com 

a definição de um ponto onde deveria ser nulo.  

Mas essa solução só é válida para 𝐴′⃗⃗  ⃗, no caso do potêncial 𝐴  a definição 

do ponto onde esse potêncial é nulo, não é o bastante, obrigatoriamente 

devemos escolher um valor arbitrário para a divergência desse 𝐴 . Isso 

ocorre por que, para definir um campo vetorial, necessitamos do 

rotacional e do divergente desse campo. 

Se tomarmos a equação que definiu o potêncial vetorial e substituirmos 

na segunda equação de Maxwell teremos: 

 

∇⃗⃗ × (𝐸⃗ +
𝜕𝐴 

𝜕𝑡
) = 0 

 



Rotacionais do gradiente de qualquer campo escalar são sempre zero e 

isso implica a existência de um campo escalar, que nos denominamos de 

potêncial escalar V, de tal forma que: 

 

𝐸⃗ +
𝜕𝐴 

𝜕𝑡
= −∇⃗⃗ 𝑉 

 

Isolando o campo elétrico teremos: 

 

𝐸⃗ = −∇⃗⃗ 𝑉 −
𝜕𝐴 

𝜕𝑡
 

 

Dessa forma, ainda podemos definir o potêncial escalar V. Entretanto, 

nesse caso, o campo elétrico irá depender tanto do potêncial escalar 

quanto do potêncial vetorial. 

Quando o sistema é estático, temos uma derivada do potêncial vetorial em 

função do tempo, cujo resultado é zero. Sendo assim, o campo elétrico 

será igual ao gradiente do potêncial escalar, com sinal negativo. 

Vamos voltar a equação que relaciona os vetores 𝐴  e 𝐴′⃗⃗  ⃗. Ao adicionarmos 

o termo ∇⃗⃗ 𝜙 no potêncial A⃗⃗  nós não iremos alterar o campo magnético. 

Entretanto, segundo a equação acima o campo elétrico irá se reduzir em 

∇⃗⃗ (
𝜕𝜙

𝜕𝑡
⁄ ).  

Como já sabemos, para que o campo elétrico seja bem definido, é 

necessário que operemos uma alteração de 𝐴  e 𝐴′⃗⃗  ⃗ e, ao mesmo tempo, 

ocorra uma alteração do potêncial escalar V, para: 

 

𝑉′ = 𝑉 −
𝜕𝜙

𝜕𝑡
 

 

Com isso, a segunda e a terceira ficam garantidas através da definição 

dada de potêncial escalar e potêncial vetorial. Nesse caso, em função dos 

potênciais, escreveremos a primeira e a quarta equação de Maxwell 

como: 

 

∇⃗⃗ . (∇⃗⃗ 𝑉) +
𝜕

𝜕𝑡
∇⃗⃗ . 𝐴 = −

𝜌

𝜖0
          (𝑎) 

∇⃗⃗ . (∇⃗⃗ × 𝐴 ) = 𝜇0𝐽 −
1

𝑐2
(∇⃗⃗ 

𝜕𝑉

𝜕𝑡
+

𝜕2𝐴 

𝜕𝑡2
)           (𝑏) 

 



Note que mesmo com as duas equações temos a liberdade de escolher de 

forma arbitrária a divergência de 𝐴  ; qualquer escolha que façamos para 

o divergente (∇⃗⃗ . 𝐴 ) denominaremos esse de CALIBRAÇÃO. A calibração 

de Coulomb, ∇⃗⃗ . 𝐴 = 0, é a mais simples que pode ser escolhida. 

Substituindo essa calibração na equação (a), acima, transformarmos 

essa na equação de Poisson da eletrostática.  

Já a equação (b) envolve dois potências, que são, V e 𝐴  , o que torna a 

utilização da calibração mais complicada. Para isso, utilizamos o fato de 

que a calibração permite que se possa dividir V e 𝐴  em duas equações de 

mesma estrutura. Essa é chamada de Calibração de Lorentz: 

 

∇⃗⃗ . 𝐴 = −
1

𝑐2

𝜕𝑉

𝜕𝑡
 

 

Na equação (b), o segundo e o terceiro termo somem e podemos escrever 

as equações (a) e (b) da seguinte forma: 

 

∇2𝑉 −
1

𝑐2

𝜕2𝑉

𝜕𝑡2
= −

𝜌

𝜖0
 

 

∇2𝐴 −
1

𝑐2

𝜕2𝐴 

𝜕𝑡2
= −𝜇0𝐽  

 

Dessa forma, as duas equações apresentam uma simetria melhor. Além 

disso, apresentam a vantagem de ser uma única equação capaz de ser 

aplicada a campos diferentes, pois a solução matemática é semelhante 

nos dois casos. 

Para o caso de regiões onde não existam cargas ou correntes, os termos 

que se encontram no lado direito das equações tem resultado nulo e, com 

isso, obtemos as chamadas EQUAÇÕES DE ONDA. 

 

 

 

 

 

 

 

 

 

 

 



Capítulo X 

ESTUDO DAS ONDAS ELETROMAGNÉTICAS 
 

 

 

 

 

 

 

 

10.1 ONDAS ELETROMAGNÉTICAS 
 

Como já estudamos, em qualquer espaço onde não existam cargas ou 

correntes, podemos escrever as equações de Maxwell da seguinte forma: 

 

∇⃗⃗ . 𝐸⃗ = 0 

∇⃗⃗ × 𝐸⃗ = −
𝜕𝐵⃗ 

𝜕𝑡
 

∇⃗⃗ . 𝐵⃗ = 0 

∇⃗⃗ × 𝐵⃗ =
1

𝑐2

𝜕𝐸⃗ 

𝜕𝑡
 

 

Essas equações possuem várias soluções e a mais simples será 𝐸⃗ = 𝐵⃗ = 0 

para qualquer ponto. Entretanto, sabemos que um campo pode ser nulo 

em um referencial que esteja em movimento e diferente de zero em um 

outro referencial que não esteja em movimento. Sendo assim essa 

consideração nos faz questionar; haverá uma situação em que as 

soluções triviais 𝐸⃗ = 𝐵⃗ = 0 ocorram em um determinado referencial e não 

ocorram no referencial de laboratório? 

Vamos testar as prováveis respostas a essa questão utilizando as 

equações de transformação dos campos. Faremos isso igualando os 

campos do referencial R’ a zero. 

 

𝐸⃗ = −𝑣 × 𝐵⃗  

𝐵⃗ =
1

𝑐2
𝑣 × 𝐸⃗  

 

 “Não penso que as ondas de rádio que 

descobri vão ter alguma aplicação prática” 

Heinrich Hertz 

“Em todo o espaço há energia...é (só) uma 

questão de tempo até que os homens tenham 

êxito em associar seus mecanismos ao 

aproveitamento desta energia.” 

Nikola Tesla 



Na primeira equação, como sabemos de Cálculo Vetorial, implica que o 

campo elétrico 𝐸⃗  é perpendicular ao campo magnético 𝐵⃗  e também 

perpendicular a 𝑣 . Desse modo, esses três vetores definem um sistema 

de coordenadas cartesianas. Nesse caso, o eixo x aponta o campo 

elétrico, o eixo y aponta o eixo do campo magnético e o eixo z aponta a 

velocidade do referencial R’ (𝑣 ). 

O fato dos três vetores serem perpendiculares podemos analisar as 

equações anteriores através das seguintes relações entre os módulos: 

 

𝐸 = 𝑣𝐵 

𝑐2𝐵 = 𝑣𝐸 
 

Ao analisarmos essas igualdades podemos afirmar que a velocidade do 

referencial R’ é igual a velocidade da luz. Podemos afirmar também que o 

modulo do campo elétrico é igual a velocidade da luz (c) multiplicada pelo 

campo de indução magnética, ou seja: 

 

𝐸 = 𝑐𝐵 
 

Como já vimos anteriormente vimos que a existência de campos elétricos 

e magnéticos que não sejam paralelos, ocasiona o surgimento de uma 

densidade de fluxo de energia eletromagnética que é dado pelo vetor de 

Poynting, ou seja: 

 

𝑆 =
1

𝜇0
𝐸⃗ × 𝐵⃗ = 𝑐𝜖0𝐸

2𝑣̂ 

 

Nessa equação 𝑣 é o versor na direção e sentido de propagação da onda. 

Ele se situa perpendicular aos campos pela regra da mão direita. A 

consequência disso é que irão existir soluções não triviais no vazio. Essas 

soluções são chamadas ONDAS ELETROMAGNETICAS. Nessas ondas, os 

campos elétrico e magnético são cruzados, para cada ponto analisado, e 

transportam a energia eletromagnética na direção perpendicular a esses 

campos, que é a direção de propagação da onda. 

Enquanto a onda eletromagnética se propaga no vazio, em cada ponto por 

onde ela passa, existirá uma energia que será dada pela equação: 

 

𝑢 ≡
𝜖0

2
(𝑐2𝐵2 + 𝐸2) = 𝜖0𝐸0 

 



Note que essa equação foi definida no capítulo anterior como sendo a 

energia eletromagnética volumétrica, entretanto, substituímos  por 0 e 

𝜖 por 𝜖0. 

Embora a equação 𝐸 = 𝑐𝐵 mostre que em uma onda eletromagnética, o 

campo magnético seja muitas vezes menor que o campo elétrico, ambas 

as ondas contribuem da mesma forma para a energia. 

 

10.2 EQUAÇÃO DA ONDA ELETROMAGNÉTICA 
 

Agora vamos utilizar as equações de Maxwell, citadas no início desse 

capítulo, e encontraremos a forma explicita dos campos em uma onda 

eletromagnética. Essa expressão será obtida em função do tempo e da 

posição. 

Em primeiro lugar vamos analisar a segunda e a quarta equação de 

Maxwell. Os rotacionais dessas duas equações são: 

 

∇⃗⃗ × (∇⃗⃗ × 𝐸⃗ ) = −
𝜕

𝜕𝑡
∇⃗⃗ × 𝐵⃗  

 

∇⃗⃗ × (∇⃗⃗ × 𝐵⃗ ) =
1

𝑐2

𝜕

𝜕𝑡
∇⃗⃗ × 𝐸⃗  

  

Se aplicarmos a propriedade do rotacional de um rotacional no lado 

esquerdo das duas equações e utilizarmos o lado direito das duas 

equações para obter: 

 

∇⃗⃗ (∇⃗⃗ . 𝐸⃗ ) − ∇2𝐸⃗ = −
1

𝑐2

𝜕2𝐸⃗ 

𝜕𝑡2
 

 

∇⃗⃗ (∇⃗⃗ . 𝐵⃗ ) − ∇2𝐵⃗ = −
1

𝑐2

𝜕2𝐵⃗ 

𝜕𝑡2
 

 

Agora vamos trabalhar com a primeira e a terceira equação de Maxwell. 

Delas sabemos que o divergente dos dois campos é nulo, o que nos leva a 

EQUAÇÃO DA ONDA para os campos elétrico e magnético. 

 

∇2𝐸⃗ =
1

𝑐2

𝜕2𝐸⃗ 

𝜕𝑡2
 

 



∇2𝐸⃗ =
1

𝑐2

𝜕2𝐸⃗ 

𝜕𝑡2
 

 

Como podemos observar essas duas equações tem a mesma forma 

matemática e também possuem soluções que são semelhantes. Essas 

equações de onda aparecem em várias áreas da Física e da Engenharia e 

já haviam sido objeto de estudos de d’Alembert e outros matemáticos, 

mesmo antes de Maxwell.  

É importante observar que essa são somente duas das quatro equações 

de Maxwell, sendo assim é necessário utilizar as outras duas equações 

para calcular um dos campos em função do outro. Desse modo só 

necessitaremos solucionar uma das equações de onda. 

A equação de onda é linear, na verdade uma combinação linear de 

soluções, chamadas FUNÇÕES DE ONDA, é também uma solução. Isso 

significa que duas ondas sobrepostas originam uma terceira onda que é 

o resultado da soma das funções das duas ondas iniciais. 

 

10.3 ONDAS PLANAS 
 

Já sabemos que o campo elétrico e o campo magnético são 

perpendiculares entre si e perpendiculares na direção da propagação da 

onda eletromagnética. Entretanto, a direção dos campos não são 

obrigatoriamente as mesmas em pontos diferentes. 

Para os casos onde os campos têm sempre a mesma direção dizemos que 

se trata de uma ONDA PLANA POLARIZADA, e a direção de polarização é 

a direção do campo elétrico. 

Vamos analisar uma onda plana que seja polarizada na direção de 𝑗̂ que 

se propaga na direção do eixo z. Dessa forma teremos: 

 

𝐸⃗ = 𝐸𝑗̂ 
 

𝐵⃗ = 𝐵𝑘̂ 
 

Se analisarmos a primeira e a terceira equação de Maxwell veremos que 

o divergente de cada uma dessas equações tem que ser nulo. 

 

𝜕𝐸

𝜕𝑦
= 0       

𝜕𝐵

𝜕𝑧
= 0 

 

É interessante observar que o campo elétrico E não depende da variável 

y e o campo magnético B não depende da variável z. Por outro lado, como 



em qualquer ponto temos que o módulo do campo elétrico será 𝐸 = 𝑐𝐵, 

então confirmamos que nem o campo elétrico e nem o campo magnético 

podem depender de y ou z, respectivamente. Desse modo, o campo 

elétrico será função de x e t no eixo y e o campo magnético será função 

de x e t no eixo z, ou seja: 

 

𝐸⃗ = 𝐸(𝑥, 𝑡)𝑗 ̂
 

𝐵⃗ = 𝐵(𝑥, 𝑡)𝑘̂ 
 

Substituindo o campo elétrico na equação de onda teremos os dois lados 

da equação na direção 𝑗̂ e obteremos a equação escalar de onda escalar. 

 

𝜕2𝐸

𝜕𝑥2
=

1

𝑐2

𝜕2𝐸 

𝜕𝑡2
 

 

Vamos utilizar agora um operador que atua sobre a função 𝐸(𝑥, 𝑡), para 

encontrar a solução da equação acima. 

 

(
𝜕2

𝜕𝑥2
−

1

𝑐2

𝜕2

𝜕𝑡2
)𝐸 = 0 

 

Podemos então fatorar o operador e teremos: 

 

(
𝜕

𝜕𝑥
+

1

𝑐

𝜕

𝜕𝑡
) (

𝜕

𝜕𝑥
−

1

𝑐

𝜕

𝜕𝑡
) 𝐸 = 0 

 

Nesse caso a ordem dos operadores é indiferente. Como se trata de uma 

multiplicação, para que a equação se verifique é necessário que: 

 

(
𝜕

𝜕𝑥
+

1

𝑐

𝜕

𝜕𝑡
) 𝐸 = 0 

ou 

(
𝜕

𝜕𝑥
−

1

𝑐

𝜕

𝜕𝑡
) 𝐸 = 0 

 

Vamos então analisar a primeira condição: 

 



𝜕𝐸

𝜕𝑥
+

1

𝑐

𝜕𝐸

𝜕𝑡
= 0 

 

Note que o lado esquerdo da equação tem a mesma forma da derivada 

convectiva, onde a velocidade, no caso dessa análise é na direção de 𝑖̂ e 

o seu módulo é igual a c. Como já vimos, a derivada convectiva é a 

variação do campo E, no referencial R’ que acompanha o movimento da 

onda, com a velocidade c na direção de 𝑟̂, ou seja: 

 

𝑑𝐸

𝑑𝑡
= 0 

 

e essa condição irá acontecer ao longo das retas 𝑥′ = 𝑥 − 𝑐𝑡. 

Isso significa que para cada valor que x’ pode assumir teremos um ponto 

correspondente que esta em R’ e que se desloca na direção positiva do 

eixo x e descreve uma trajetória que é retilínea e se encontra no domínio 

(x,t) da função E. 

Ao longo de todas essas retas características teremos a derivada de E 

com valor nulo. Desse modo o valor de E é constante. Na figura abaixo 

podemos ver esse efeito. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 168 - Onda plana com propagação na direção positiva do eixo x 

Alterando as características o valor constante de E ao longo da reta 

característica também pode ficar diferente. Ora, se a função f(x’) esta 

representando todos os valores de E nas mais diferentes características, 

então o valor de E para qualquer ponto do domínio será dado por: 

 

𝐸(𝑥, 𝑡) = 𝑓(𝑥 − 𝑐𝑡) 
 



Nessa equação f pode ser uma função qualquer que corresponde ao valor 

de E ao longo do eixo x, no instante inicial t = 0. Essa é a representação da 

onda que se propaga no eixo x, no sentido positivo. 

Agora vamos analisar a segunda equação. Ela possui uma solução 

idêntica a primeira, o que a diferencia é o fato de que agora a onda se 

propaga no sentido negativo do eixo x. Isso conduz a funções que 

apresentam a forma g(x+ct).  

Podemos dizer que a forma geral das ondas planas que se propagam na 

direção do eixo x e uma sobreposição de duas ondas, uma que se propaga 

no sentido positivo e outra que se propaga no sentido negativo, 

respectivamente, função de x – ct e função de x + ct. 

 

𝐸(𝑥, 𝑡) = 𝑓(𝑥 − 𝑐𝑡) + 𝑔(𝑥 + 𝑐𝑡) 
 

Essas duas funções podem ser determinadas a partir das chamadas 

condições de fronteira. Uma das regiões de fronteira está no instante 

inicial 𝑡 = 𝑜 nesse ponto teremos: 

 

𝐸(𝑥, 0) = 𝑓(𝑥) + 𝑔(𝑥) 
 

A figura abaixo mostra o que ocorre com os campos elétrico e magnético 

de uma onda plana em um determinado instante de tempo t. Se 

observarmos um segundo instante de tempo t + t veremos um gráfico 

semelhante com um deslocamento a uma distância ct no eixo x e sentido 

positivo. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 169 - Campo de ondas eletromagnéticas planas com propagação no eixo x e sentido 

positivo 

Até agora consideramos apenas as ondas de polarização linear onde os 

campos 𝐸⃗  tem sempre a mesma direção. No entanto, existem também 



ondas planas com campos que rodam, com polarizações circulares ou 

elípticas. 

 

10.4 ONDAS HARMÔNICAS 
 

Ondas com periodicidade são um caso importante de ser estudado. Elas 

são ondas que se repetem em intervalos determinados de tempo. Uma 

onda periódica é o resultado de um conjunto de funções seno e funções 

cosseno, que possuem frequências diferentes. Quando a função de onda, 

que analisamos na seção anterior, é uma função seno ou cosseno, ela é 

denominada ONDA HARMÔNICA ou ONDA MONOCROMÁTICA. 

Vamos imaginar uma função sinusoidal, que possua um período  cuja 

função é dada por: 

 

sin (
2𝜋

𝜆
𝑢 + 𝜑0) 

 

Se u assumir, por exemplo, o valor (y – ct), a função irá corresponder a 

uma onda plana que se propaga na direção 𝑗̂. No caso da onda estar 

polarizada na direção de 𝑖̂, o campo elétrico será dado por: 

 

𝐸⃗ = 𝐸0 sin [
2𝜋

𝜆
(𝑦 − 𝑐𝑡) + 𝜑0] 𝑖 ̂

 

A constante Eo define a amplitude do campo elétrico. O ângulo  é 

chamado FASE e é dado por: 

𝜑 = [
2𝜋(𝑦 − 𝑐𝑡)

𝜆 + 𝜑0
] 

 

E a constante 0 é chamada de FASE INICIAL. Se dois pontos tem a mesma 

fase, em qualquer instante de tempo, dizermos que eles estão em fase.  

recebe o nome de COMPRIMENTO DE ONDA, e mede a distância entre 

dois pontos consecutivos que estejam em fase, na direção da propagação 

da onda. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

O campo E oscila sinusoidalmente e o PERÍODO T é o tempo que leva para 

que a onda complete um ciclo. Para esse período ser constante, durante 

cada oscilação é necessário que a onda se desloque em um comprimento 

de onda  mantendo uma velocidade constante c, consequentemente 

teremos: 

 

T =
λ

c
 

 

A FREQUÊNCIA indica o número de ciclos completos em uma unidade de 

tempo. Ela é dada pela equação: 

 

𝑓 =
1

𝑇
 

 

E a frequência angular, que indica o aumento, por unidade de tempo, em 

radianos, da fase em um ponto qualquer. 

 

𝜔 = 2𝜋𝑓 =
2𝜋

𝑇
 

  

Da mesma forma como medimos a distância entre dois pontos em fase 

com o comprimento de onda , o número de pontos que se encontram em 

fase, dividido pela unidade de comprimento. Essa medida é conhecida 

como NÚMERO DE ONDA. Se multiplicarmos 2 pelo número de onda, 

estaremos determinando o aumento de fase por unidade de comprimento. 

Denominamos esse número como NÚMERO DE ONDA ANGULAR. 

 

y1 

y2 

𝑇

2
 

T 

Figura 170 - Campo elétrico de uma onda eletromagnética harmônica, plana e polarizada (a) 
em função do tempo e (b) em função da posição 

(a) 
(b) 

Eo 

E1 

Eo 

E1 



𝑘 =
2𝜋

𝜆
 

 

Podemos então calcular a onda harmônica, a partir da frequência angular 

e do número de onda angular. 

 

𝐸⃗ = 𝐸0 sin(𝑘𝑦 − 𝜔𝑡 + 𝜑0)𝑖̂ 
 

Sabemos que o comprimento de onda e o período estão relacionados, 

desse modo a frequência angular e o número de onda angular devem 

obedecer a seguinte relação: 

 

𝑐 =
𝜔

𝑘
 

  

Podemos encontrar ondas harmônicas que estão se propagando em 

qualquer direção que seja diferente da direção do eixo y. Costumamos 

definir o VETOR DE PROPAGAÇÃO 𝑘⃗  utilizando o módulo que é igual ao 

número da onda angular k e na direção de propagação da onda. 

Na equação da onda harmônica y é a projeção da posição 𝑟  de um ponto, 

na direção de propagação 𝑗̂, desse modo ky deve ser substituído por k que 

será multiplicado pela projeção do vetor 𝑟  na direção da propagação, ou 

seja 𝑘⃗ . 𝑟  e, com isso, temos uma fórmula mais geral para a onda harmônica 

plana: 

 

𝐸⃗ = 𝐸0 sin(𝑘⃗ . 𝑟 − 𝜔𝑡 + 𝜑0)𝑝̂ 

 

Denominamos 𝑝̂ como sendo o VERSOR DE POLARIZAÇÃO que irá definir 

a direção do campo elétrico que poderá ser qualquer direção 

perpendicular ao vetor de propagação 𝑘⃗ . 

Como já vimos, a sobreposição de duas ondas harmônicas planas irá 

originar uma nova onda eletromagnética plana, porque a equação de 

onda é linear. Essa sobreposição permite a construção de onda planas 

mais complexas que não precisam ser, necessariamente, harmônicas. A 

utilização de séries de Fourier permite a obtenção de uma onda periódica 

que é obtida da sobreposição das ondas harmônicas. 

 

10.5 ONDAS ESFÉRICAS 
 

Podemos considerar as ondas planas como simples aproximação que é 

válida dentro de uma pequena região quando comparada a distância da 



fonte. Isso ocorre porque a onda eletromagnética real se propaga em 

várias direções e a aproximação é feita para uma só direção. 

Se temos uma fonte produzindo uma onda eletromagnética, nós podemos 

considera-la como sendo uma fonte pontual. Para fontes pontuais a 

propagação ocorre sob a forma radial cuja origem é a fonte. Desse modo, 

o vetor de polarização estará sobre 𝜃 e 𝜙̂.  

Para entendermos, vamos considerar uma onda que em cada ponto está 

polarizada na direção 𝜙̂, a formula geral do campo elétrico será: 

 

𝐸⃗ = 𝐸(𝑟, 𝜃, 𝜙, 𝑡)𝜙̂ 
 

 Se a fonte for capaz de emitir em todas as direções de forma igual, será 

considerada isotrópica e, com isso, teremos uma simetria esférica. Nesse 

caso, a função de onda irá depender apenas da distância do ponto 

escolhido até a origem r e do tempo t. 

Utilizando a expressão do Laplaciano para vetores com simetria esférica, 

obteremos: 

 

∇2𝐸(𝑟, 𝑡)𝜙̂ =
1

𝑟

𝜕2

𝜕𝑟2
[𝑟𝐸(𝑟, 𝑡)]𝜙̂ 

 

A partir da equação de onda, já analisada, temos a seguinte implicação 

 

1

𝑟

𝜕2(𝑟𝐸)

𝜕𝑟2
=

1

𝑐2

𝜕2𝐸

𝜕𝑡2
 

 

Se multiplicarmos ambos os lados dessa equação por r, considerando que 

as variáveis r e t são independentes, teremos a equação da onda plana 

para a função rE: 

 

𝜕2(𝑟𝐸)

𝜕𝑟2
=

1

𝑐2

𝜕2𝑟𝐸

𝜕𝑡2
 

 

Note que rE deverá ser uma onda plana cuja função que a define é f(r,t) 

que se propaga na direção radial: 

 

𝐸(𝑟, 𝑡) =
1

𝑟
𝑓(𝑟 ± 𝑐𝑡) 

 



Na equação, sinal positivo corresponde a ondas que se propagam na 

direção da origem. No entanto, como considerávamos as ondas com 

origem da fonte, devemos somente considerar o sinal negativo. 

Desse modo, o sinal negativo na função 𝑓(𝑟 ± 𝑐𝑡) 𝑟⁄  representa que a onda 

se propaga se afastando da fonte. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 171 - Função de onda esférica em três instantes de tempo diferentes 

 

Todos os pontos que estão em fase formam esferas concêntricas, cujos 

centros coincidem na origem da onda. Elas são chamadas FRENTES DE 

ONDA. 

Utilizamos a lei de Faraday para calcular o campo magnético, 

considerando que o campo elétrico está na direção 𝜙̂, desse modo o seu 

rotacional, em coordenadas esféricas, será: 

 

∇⃗⃗ × 𝐸⃗ =
1

𝑟

𝜕(𝑟𝐸)

𝜕𝑟
𝜃 =

1

𝑟
𝑓′(𝑟 − 𝑐𝑡)𝜃 

 

Se integrarmos em função de t e multiplicarmos por -1, obteremos a 

equação do campo magnético. 

 

𝐵⃗ =
1

𝑐𝑟
𝑓(𝑟 − 𝑐𝑡)𝜃 

 

Já sabemos que os campos elétricos são perpendiculares e, nesse caso, 

seu produto vetorial tem a direção radial. 

Já sabemos também que o módulo do campo magnético é c vezes menor 

do que o módulo do campo elétrico. Além disso a onda poderia estar 

polarizada na direção do versor 𝜃 ou em qualquer outra direção que seja 

perpendicular à direção radial. 

1

𝑟
𝑓(𝑟 − 𝑐𝑡) 

∝
1

𝑟
 

t1 

t2 

t3 



Se a função f for sinusoidal, teremos a formação de uma onda esférica 

harmônica, sendo a formula geral da equação dada por: 

 

𝐸(𝑟, 𝑡) =
𝐸0

𝑟
sin(𝑘𝑟 − 𝜔𝑡 + 𝜑0) 

 

A amplitude da onda irá diminuir a medida que r aumenta. 

 

10.6 INTENSIDADE DAS ONDAS MAGNÉTICAS 
 

Definimos a densidade de fluxo energético de uma onda  com sendo a 

energia que é transportada por uma onda, em uma superfície normal a 

sua direção de propagação dividida pela unidade de área e pela unidade 

de tempo. Uma medida que podemos utilizar como referência é o valor do 

fluxo energético da luz solar que entra na atmosfera da terra. Esse valor 

é, aproximadamente 1.4 kW/m2. 

Para as ondas eletromagnéticas, o fluxo de energia dividido pela unidade 

de área é igual ao módulo do vetor de Poynting, então: 

 

𝜙 = 𝑐𝜖0𝐸
2 

 

Essa equação nos apresenta um valor instantâneo, isso por que, o campo 

elétrico é variável, nesse caso, uma onda periódica. Sendo uma onda 

periódica possui um valor médio que será dado por: 

 

𝐸2̅̅̅̅ =
1

𝑇
∫ 𝐸2𝑑𝑡

𝑇

0

 

 

Considerando que a onda é harmônica e plana, então utilizaremos a 

identidade trigonométrica   

 

𝑠𝑖𝑛2𝛼 =
1 − cos 2𝛼

2
 

 

 para aplicarmos na equação de campo elétrico. Sendo assim teremos: 

 

𝐸2̅̅̅̅ =
𝐸0

2

2𝑇
∫[1 − cos 2(𝑘⃗ . 𝑟 − 𝜔𝑡 + 𝜑0)]𝑑𝑡

𝑇

0

 



No entanto, a função cosseno tem seu período igual a 2T, o que faz com 

que dentro dos limites de integração 0 e T, sua integral seja nula, então: 

 

𝐸2̅̅̅̅ =
𝐸0

2

2
 

 

Assim teremos a densidade média de fluxo energético como diretamente 

proporcional ao quadrado da amplitude do campo elétrico. 

 

𝜙̅ =
𝜖0

2
𝑐𝐸0

2 

 

O fluxo energético, também denominado, potência radiante, e, é a 

energia total emitida por unidade de tempo. 

Para uma fonte pontual, que emita uma onda esférica, se a densidade de 

fluxo energético for , situado a uma distancia r, teremos um fluxo 

energético dado por: 

 

Φ𝑒 = 4𝜋𝑟2𝜙̅ 
 

Ao diminuirmos o ângulo sólido () da onda que é emitida por uma fonte 

pontual, veremos que a sua intensidade aumente devido a concentração 

da radiação. 

Desse modo definimos INTENSIDADE de uma onda como sendo a razão 

entre o fluxo energético e a unidade de ângulo solido. 

 

𝐼 =
Φ𝑒

Ω
 

 

Para o caso de fontes isotrópicas, teremos um ângulo sólido que é de 4. 

Se associarmos com a equação do fluxo energético, teremos a seguinte 

equação: 

 

𝐼 =  𝑟2𝜙 
 

Para calcularmos a densidade média de fluxo energético utilizamos uma 

forma análoga ao que utilizamos na solução da onda plana. Para fazer isso 

iremos substituir E0 por E0/r
2, então: 

 

𝜙 =
𝜖0

2𝑟2
𝑐𝐸0

2 

 



E a intensidade também será diretamente proporcional ao quadrado da 

amplitude do campo elétrico. 

 

𝐼 =
𝜖0

2
𝑐𝐸0

2 

 

 

10.7 ESPECTROS ELETROMAGNÉTICOS 
 

Uma das características das ondas harmônicas é o fato de que seus 

comprimentos de onda  e suas frequências f não podem variar de forma 

independente, pois como já vimos f =c. 

Além disso, as amplitudes dos campos elétrico e magnético também não 

variam de forma independente pois se relacionam na relação E0/B0 = 0. 

A partir da frequência ou do comprimento de onda temos como classificar 

uma determinada onda dentro de um ESPECTRO ELETROMAGNÉTICO. 

Com essa classificação podemos caracterizar as propriedades de uma 

onda.  

A figura abaixo apresenta o espectro eletromagnético das ondas com  e 

f conhecidas. Entretanto é possível que existam ondas com comprimentos 

e frequências que variem do 0 ao . 
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Uma forma de produzir ondas eletromagnéticas basta produzirmos 

aceleração das cargas em um condutor, normalmente uma antena. Outra 

é a radiação de corpo negro que é emitida por sistemas termodinâmicos 

em temperaturas que são maiores que o zero absoluto. Além dessas duas 

temos as transições entre níveis de energia em sistemas quânticos como 

átomos ou núcleos. 

Podemos observar que conforme a frequência aumenta, o comprimento 

da onda diminui e os mecanismos de emissão são sistemas menores. Do 

mesmo modo, uma interação de onda eletromagnética é maior com 

objetos que possuem tamanhos da ordem de grandeza . 

Devido a isso, ondas de radar não conseguem penetrar em objetos muito 

pequenos. Por outro lado, por outro lado, o raio X é capaz de atravessar 

com facilidade as células e a radiação e a radiação gama, cujo 

comprimento de onda é menor e consegue penetrar nos cromossomos, 

sendo capaz de alterar o conteúdo genético. 

Outra característica das ondas eletromagnéticas é o fato de que elas não 

apresentam uma frequência definida como no caso das ondas 

harmônicas, pois elas são resultado de um conjunto, ou soma, de um 

conjunto de ondas harmônicas, cada uma com uma frequência particular. 

O exemplo mais conhecido vem da descoberta de Isaac Newton, sobre a 

decomposição da luz. Em seu experimento ele fez a luz visível (branca), 

atravessar um prisma e verificou que a luz branca era composta por 7 

cores distintas. A figura abaixo mostra o efeito do experimento. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figura 172 - Experimento de decomposição da luz visível 

Existem ainda algumas outras constatações em relação as ondas 

eletromagnéticas. Quanto maior for a frequência da onda, maior será a 

permissividade elétrica, significando que a luz terá uma velocidade menor 

para frequências mais altas. O índice de refração, que sabemos ser 

inversamente proporcional a velocidade do meio por onde se desloca a 

luz, é diretamente proporcional ao valor da frequência. 



Um dos usos científicos dessa propriedade de decomposição da cor é a 

possibilidade de determinarmos a composição química da fonte. Em um 

espectrômetro uma luz atravessa uma superfície padrão e a amostra, ao 

mesmo tempo. Cada uma irá gerar um espectro de cores, a partir da 

comparação é possível determinar os elementos químicos que compõe a 

amostra. Outra forma de realizarmos essa análise é procedendo a queima 

da amostra que em sua chama, irá apresentar as cores relativas aos 

elementos químicos que a compõe. 

 

 

 

 

 

 

(a)                            (b)                           (c)                             (d) 

 

 

 

 

 

                     (e)                             (f)                            (g)                           (h) 

 
Figura 173 - Exemplos de fotometria de chama para alguns elementos (a) cloreto de sódio, (b) 
cloreto de estrôncio, (c) cloreto de magnésio, (d) cloreto de alumínio, (e) cloreto de cálcio, (f) 

cloreto de cobre, (g) cloreto de manganês, (h) cloreto de lítio 

 

No processo apresentado acima, há uma emissão de luz visível através da 

queima do material. No outro processo, como já mencionamos, é um 

processo de absorção onde a luz passa pelo material analisado. As faixas 

absorvidas pelo espectro aparecem de forma escura caracterizando 

assim a composição química. 
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                                   (e)                                                                    (f) 

 

 

                                   (g)                                                                    (h) 



 

 

(i)                                                            (j) 

 

 

                                    (k)                                                                  (l) 

 

 

                                   (m)                                                                         (n) 
Figura 174 - Exemplos de emissão de espectro (a) césio, (b) rubídio, (c)  índio, (d) tálio, (e) lítio, (f) 

estrôncio, (g) cálcio, (h) sódio, (i) bário, (j) molibdênio, (k) boro, (l) fósforo, (m) zinco, (n) telúrio 

Esse processor de espectroscopia permite inclusive analisar a 

composição química dos planetas e estrelas. 

 

 

10.8 ONDAS ELETROMAGNÉTICAS EM MEIOS 

MATERIAIS                        
 

Até agora estudamos a propagação de ondas eletromagnéticas no vazio. 

Quando tratamos das ondas em meios materiais, substituímos as 

equações de Maxwell, pelas equações utilizadas em meios 

macroscópicos. Vamos considerar que o meio seja isotrópico e linear e 

que não existem cargas e nem correntes livres. Nesse caso, obteremos 

um sistema de equações do seguinte tipo: 

 

∇⃗⃗ . 𝐸⃗ = 0 

∇⃗⃗ × 𝐸⃗ = −
𝜕𝐵⃗ 

𝜕𝑡
 

∇⃗⃗ . 𝐵⃗ = 0 

∇⃗⃗ × 𝐵⃗ =
1

𝑐2

𝜕𝐸⃗ 

𝜕𝑡
 

 

Que são as equações de Maxwell adaptadas para o meio macroscópico, 

conforme vimos no início do capítulo. 

Como já vimos: 

 

𝑐 =
1

√𝜖0𝜇0

 

  



No caso das equações acima vamos substituir 𝜖0 por 𝜖 (a permissividade 

elétrica do material), e 0 por  (a permeabilidade magnética do material). 

Isso ocorre por que as ondas eletromagnéticas já não se propagam mais 

na velocidade da luz e a nova equação de velocidade é dada por: 

 

𝑣 =
1

√𝜖𝜇
 

 

No caso de materiais condutores, os elétrons atenuam qualquer campo 

elétrico externo de forma muito rápida. Isso impede a propagação de 

ondas eletromagnéticas. Com exceção dos materiais ferromagnéticos, a 

permeabilidade magnética dos demais materiais é muito próxima de 0 e, 

portanto, a velocidade das ondas eletromagnéticas é dada por: 

 

𝑣 ≈
1

√𝜖𝜇0

= 𝑐√
𝜖0

𝜖
=

𝑐

√𝑘
 

 

K é a constante dielétrica conforme vimos ao estudar o conceito e a 

equação de permissividade elétrica. Mas também já vimos que a 

constante dielétrica tem uma forte dependência da frequência. Mesmo 

nas frequências muito baixa vamos acabar encontrando um valor de K 

que é diferente dos valores estáticos medidos no capacitor. Essa 

dependência de K em relação a frequência é que vai determinar as 

diferentes velocidades para as diferentes componentes harmônica. E isso 

é que dá origem a DISPERSÃO. 

Como já vimos enquanto estudávamos as ondas eletromagnéticas no 

espaço vazio são transversais. Isso significa que os campo elétrico e o 

campo magnético são perpendiculares. Vamos agora estudar o 

comportamento das ondas eletromagnéticas em meios materiais, 

tentando verificar a existência de outras soluções para as equações de 

Maxwell, nessas condições. Para isso vamos utilizar o método da 

Transformada de Fourier que é muito semelhante a Transformada de 

Laplace.  

No caso do uso da Transformada de Fourier de um campo vetorial, ela irá  

outro campo vetorial que é definido da seguinte forma: 

 

𝔉{𝐹 } = ∫∭𝐹 (𝑡, 𝑟 )𝑒𝑖(𝑘⃗ .𝑟 −𝜔𝑡)𝑑𝑉𝑑𝑡 

 

A integral, calculada no tempo tem um intervalo de um período T = 2/, 

No caso do volume de integração, temos um paralelepípedo com arestas 



que tem o mesmo tamanho dos comprimentos de onda (x, y, z), que tem 

como definição os valores, 2/kx, 2/ky, 2/kz, respectivamente. É 

importante observar que a função F{𝐹 } não depende das variáveis (t,𝑟 ). 

Entretanto, essa função depende da frequência angular () e do vetor de 

propagação (𝑘⃗ ). Sendo assim, a transformada do divergente do vetor 𝐹  

será dada por: 

 

∫∭∇⃗⃗ . 𝐹 𝑒𝑖(𝑘⃗ .𝑟 −𝜔𝑡)𝑑𝑉𝑑𝑡 

 

Aplicando a propriedade distributiva no divergente, teremos: 

 

∇⃗⃗ . (𝑓𝐹 ) = ∇⃗⃗ 𝑓. 𝐹 + 𝑓∇⃗⃗ . 𝐹  

 

Considerando que o gradiente de uma função exponencial é a própria 

função que é multiplicada por i𝑘⃗ , então teremos: 

 

∫∭[∇⃗⃗ . (𝑒𝑖(𝑘⃗ .𝑟 −𝜔𝑡)𝐹 ) − 𝑖𝑘⃗ . 𝐹 𝑒𝑖(𝑘⃗ .𝑟 −𝜔𝑡)] 𝑑𝑉𝑑𝑡 

 

Segundo o teorema do divergente, a primeira integral de volume pode ser 

escrita como o produto do fluxo de 𝐹  vezes a função exponencial. Esse 

produto ocorre através do paralelepípedo com as arestas x, y, z e seu 

valor é nulo porque 𝐹  e o exponencial são funções periódicas. 

O tratamento da segunda integral será feito escrevendo o produto da 

constante -i𝑘⃗  vezes a transformada de Fourier do campo 𝐹 . Desse modo a 

transformada do divergente será dada por: 

 

∇⃗⃗ . 𝐹 → −𝑖𝑘⃗ . 𝔉{𝐹 } 
 

Da mesma maneira é possível provar que as transformadas do rotacional 

e da derivada em função do tempo, de 𝐹  são: 

 

∇⃗⃗ × 𝐹 → −𝑖𝑘⃗ × 𝔉{𝐹 } 
 

𝜕𝐹 

𝜕𝑡
→ 𝑖𝜔𝔉{𝐹 } 

 



E com isso é possível determinar as Transformadas de Fourier para as 

equações de Maxwell para situações em que não existam cargas ou 

correntes livres. 

 

𝑘⃗ . 𝔉{𝐷⃗⃗ } = 0 

 

𝑘⃗ × 𝔉{𝐸⃗ } = 𝜔. 𝔉{𝐵⃗ } 
 

𝑘⃗ . 𝔉{𝐵⃗ } = 0 

 

𝑘⃗ × 𝔉{𝐻⃗⃗ } = −𝜔𝔉{𝐷⃗⃗ } 
 

A primeira e a terceira equação mostram que o deslocamento elétrico 𝐷⃗⃗  

e o campo magnético 𝐵⃗  são perpendiculares ao vetor de propagação, 

lembrando que é direção que cada componente harmônico do campo é a 

mesma direção da sua correspondente Transformada de Fourier. Nos 

casos anteriormente estudados da propagação no vazio, vimos que o 

deslocamento elétrico é igual ao campo elétrico 𝐸⃗ e, consequentemente, 

essas ondas são ondas transversais. No caso dos meios materiais, a 

segunda e a quarta equação podem receber valores que tornam as 

soluções de em que 𝐸⃗  ou 𝐻⃗⃗  oscilam na direção do vetor de propagação 𝑘⃗  

se o campo 𝐵⃗  for zero. Para esse caso sabemos que o vetor de Poynting 

será zero e as ondas não irão transportar energia. Esse tipo de onda 

recebe o nome de onda eletromagnética longitudinal ou estática. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




