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Resumo 
 
 

DA ROSA, Wellington Luiz de Oliveira. Materiais dentários bioativos: Estado da 
arte e prospecção tecnológica. 2015. 122f. Dissertação (Mestrado em 

Odontologia) – Programa de Pós-Graduação em Odontologia. Universidade Federal 

de Pelotas, Pelotas, 2016. 

 

 

Materiais bioativos são capazes de promover uma resposta fisiológica induzida e 

programada nos tecidos vivos, organismos ou células. O complexo dentino-pulpar 

possui uma série de moléculas biologicamente ativas em sua composição, como os 

fatores de crescimento transformadores-β1 (TGF-β1) e as proteínas morfogenéticas 

ósseas-7 (BMP-7), que atuam em eventos de reparo e regeneração dental. A melhor 

compreensão dessas proteínas pode permitir explorar novos tratamentos com 

materiais destinados a terapias biologicamente ativas. Esse trabalho visou 

inicialmente analisar o estado da arte e da técnica dos tratamentos para polpa vital 

de modo a avaliar os avanços recentes e as perspectivas futuras no setor.  A busca 

na literatura foi conduzida nas bases de dados de artigos (PubMed, Lilacs, IBECS, 

BBO, Web of Science, Scopus, SciELO and The Cochrane Library) e de patentes 

(no sistema Questel Orbit, USPTO, EPO, JPO, INPI e Patentscope). Foram 

analisados 799 documentos referentes à materiais para proteção do complexo 

dentino-pulpar, que mostraram que os cimentos de hidróxido de cálcio e mineral 

trióxido agregado (MTA) foram os mais estudados ao longo dos anos. Avanços 

recentes nos materiais derivados do MTA (cimento de silicato de cálcio, aluminato 

de cálcio, fosfato de cálcio) e nos materiais bioativos contendo proteínas dentárias 

apresentaram resultados promissores que poderiam melhorar os tratamentos para 

polpa vital no futuro. Além disso, foi feita uma revisão sistemática nas bases de 

artigos com o propósito de avaliar a eficácia do uso de moléculas dentinárias 

bioativas nos tratamentos para polpa vital. Um total de 32 experimentos em animais 

foram incluídos na análise. De maneira geral, o uso de moléculas bioativas 

potencializou a formação de dentina terciária no capeamento pulpar direto e indireto, 

promovendo uma menor resposta inflamatória inicial. Os materiais bioativos 

apresentararam potencial aplicação para novas abordagens terapêuticas com foco 

nos processos de reparo e regeneração do órgão dental.  

 

 

Palavras-chave: capeamento da polpa dentária; fatores de crescimento 

transformadores; agentes de capeamento da polpa dentária; materiais dentários.
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Abstract 

 

 

DA ROSA, Wellington Luiz de Oliveira. Materiais dentários bioativos: Estado da 
arte e prospecção tecnológica. 2016. 122f. Dissertation (Master degree in 

Dentistry). Graduate Program in Dentistry. Federal University of Pelotas, Pelotas, 

2016. 

 
 

Bioactive materials are able to promote an induced and programmed physiological 

response in living tissue, cells or organisms. The dentin-pulp complex has a number 

of biologically active molecules in its composition, such as transforming growth 

factor-β1 (TGF-β1) and bone morphogenetic protein-7 (BMP-7) that acts in repair 

and regeneration events of teeth. A better understanding of dentin matrix proteins 

may allow exploring new treatments with materials for biologically based therapies. 

Initially, this study aimed to analyze the state of the art and technique of treatments 

for vital pulp in order to assess the recent advances and future prospects in the 

sector. A literature search was conducted in papers (PubMed, Lilacs, IBECS, BBO, 

Web of Science, Scopus, SciELO and The Cochrane Library) and patents databases 

(Questel Orbit, USPTO, EPO, JPO, the INPI and Patentscope). It was analyzed 799 

documents related to materials for dentin-pulp complex protection, which showed 

that calcium hydroxide cement and mineral trioxide aggregate (MTA) have been the 

most studied over the years. Recent advances in MTA derived materials (calcium 

silicate, calcium aluminate, calcium phosphate cements) and bioactive materials 

containing proteins showed promising results that could improve treatments for vital 

pulp in the near future. In addition, a systematic review was conducted to evaluate 

the efficacy of deliver bioactive dentin molecules in vital pulp treatments. A total of 32 

animal experiments were included in the analysis. In general, the use of bioactive 

proteins potentiated tertiary dentin formation in direct and indirect pulp capping, 

promoting a lower initial inflammatory response. Bioactive materials showed potential 

use for new therapeutic approaches focused on repair and regeneration processes of 

dental organ. 

 

 

Key-words: dental pulp capping; transforming growth factor; pulp capping agents; 

dental materials.  
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1 Introdução 

A odontologia conservadora tem como objetivo prevenir danos ao complexo 

dentino-pulpar por meio da preservação dos tecidos dentais. Essa abordagem foi 

possível a partir do melhor entendimento da fisiologia dos tecidos dentários, bem 

como o surgimento de novas técnicas e materiais biocompatíveis e biologicamente 

ativos (RICKETTS, 2001, SCHWENDICKE; STOLPE, 2014, THOMPSON et al., 

2008). Os materiais bioativos são descritos como aqueles que promovem uma 

resposta biológica nos tecidos vivos, organismos ou células, tais como a indução da 

formação de tecidos, como o pulpar ou dentinário (ANUSAVICE; SHEN; RAWLS, 

2013). O cimento de hidróxido de cálcio e o mineral trióxido trióxido agregado (MTA) 

seriam considerados bioativos por estimularem a formação de dentina terciária 

(TOMSON et al., 2007). Nesse contexto, recentes avanços têm emergido a fim de 

desenvolver biomateriais que estimulem a mais benéfica resposta tecidual de 

interesse no indíviduo, de maneira a potencializar a bioatividade e a 

biocompatibilidade, sem acarretar em efeitos danosos aos tecidos orais (SMITH et 

al., 2016). 

Apesar da odontologia conservadora e minimamente invasiva ser atualmente 

preconizada, a exposição da polpa pode ocorrer por injúrias de origem cariosa ou 

traumática, ou decorrente de acidentes durante preparos cavitários para o 

tratamento restaurador (SMITH, et al., 2016). A proteção da polpa pode ser 

necessária especialmente em casos de capeamento pulpar direto (quando há 

exposição pulpar), capeamento pulpar indireto (em casos em que não há exposição 

pulpar, mas há proximidade com a polpa) e pulpotomia (com a remoção parcial ou 

total de tecido pulpar coronário) (MIYASHITA et al., 2007). Um material de proteção 

pulpar ideal é descrito como aquele capaz de se aderir à estrutura dental, manter um 

selamento marginal eficiente, ser resistente à infiltração bacteriana, insolúvel aos 

fluidos teciduais, dimensionalmente estável, não reabsorvível, radiopaco, 

biocompatível. Além disso, deve ser bioativo, sendo capaz de estimular o tecido 

pulpar remanescente a manter a função e vitalidade da polpa (CAMILLERI; PITT 

FORD, 2006, ROBERTS et al., 2008, TORABINEJAD; PARIROKH, 2010).  

Uma série de materiais têm sido usados para proteção da polpa, como o 
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cimento de hidróxido de cálcio e, mais recentemente, o MTA. O hidróxido de cálcio, 

apesar do longo histórico de sucesso clínico, não se adere aos substratos dentários, 

não permite um vedamento eficiente, e as formulações autoativadas são solúveis e 

sujeitas a dissolução ao longo do tempo (BARRIESHI-NUSAIR; QUDEIMAT, 2006, 

MARQUES; WESSELINK; SHEMESH, 2015). Por outro lado, o MTA apresenta 

biocompatibilidade, estabilidade a longo prazo e é também capaz de induzir a 

formação de dentina terciária. No entanto, a descoloração dos dentes, 

especialmente para dentes anteriores, a maior citotoxicidade imediatamente após 

manipulação, o maior pH durante a presa, a dificuldade de manipulação, e o elevado 

custo são suas principais desvantagens (BOGEN; KIM; BAKLAND, 2008, HILTON, 

2009, TAWIL; DUGGAN; GALICIA, 2015). Atualmente, nenhum agente para 

proteção da polpa é capaz de satisfazer todos os requisitos de um material ideal 

(ROBERTS, et al., 2008). 
O mecanismo de proteção pulpar após a aplicação de materiais capeadores 

envolve constituintes da matriz dentinária capazes de responder às injúrias por 

deposição de tecido mineralizado, com formação de dentina terciária ou esclerose 

dentinária (obliteração dos túbulos dentinários) (MIYASHITA, et al., 2007). De um 

modo geral, a matriz dentinária é um reservatório de moléculas secretadas pelos 

odontoblastos e fibroblastos da polpa (SMITH et al., 2012). Essas moléculas atuam 

como estimuladores e/ou inibidores em eventos que envolvem a modulação do 

desenvolvimento embriogênico, a diferenciação celular, a imunorregulação, o 

processo de reparo e regeneração tecidual. Os principais componentes presentes 

nessa matriz estão sumarizados na Tabela 1 (GOLDBERG; SMITH, 2004, PIVA; 

SILVA; NOR, 2014, SMITH, et al., 2012). 

A incorporação de moléculas biologicamente ativas em materiais 

odontológicos pode possibilitar tratamentos mais biológicos com a indução de 

eventos que envolvem o reparo ou a regeneração de tecidos de interesse, como a 

formação de dentina terciária, a esclerose dentinária (mineralização intratubular), o 

controle do processo inflamatório, a formação de tecido mineralizado. Por causa 

disso, os materiais bioativos poderão representar novas alternativas de tratamentos 

para capeamento pulpar, pulpotomia, reparo de lesões de furca e perfurações, retro-

obturação, apicigênese ou apicificação, hipersensibilidade dentinária, reabsorção 

radicular, reparo e regeneração óssea, entre outros. 
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Tabela 1 – Relação das principais moléculas bioativas presentes na matriz 

dentinárias com os respectivos efeitos no complexo dentino-pulpar* 

*Adaptado de Smith et al. (2012), Piva et al. (2014) e Smith et al. (2016) 

Devido a isso, a presente dissertação está dividida em dois capítulos que 

abordam o estado da arte e da técnica de materiais bioativos na odontologia.  

 

1.2 Objetivos 
O objetivo do primeiro capítulo foi avaliar o estado atual e as perspectivas 

futuras de desenvolvimento de materiais para proteção do complexo dentino-pulpar, 

como os materiais bioativos. No segundo capítulo, foi analisado estudos em animais 

para avaliar a eficácia do uso de proteínas dentinárias bioativas em tratamentos para 

polpa vital. 

Proteínas Funções principais 
TGF-β1 Capacidade de estimular processos de regeneração dentinária, 

com propriedades anti-inflamatórias e está envolvido na 

formação de dentina terciária 

BMP-7 

(OP-1) 

Capacidade de estimular processos de regeneração dentinária, 

está envolvido na formação de dentina terciária 

IGF-1 Envolvido na morfogênese dentária e diferenciação dos 

odontoblastos durante a embriogênese 

FGF-2 Envolvido na morfogênese dentária e diferenciação dos 

odontoblastos durante a embriogênese 

BMP-2 Capacidade de estimular processos de regeneração dentinária, 

diferenciação de odontoblastos e a atividade da fosfatase alcalina 

DMP-1 Envolvido nos processos de mineralização dentinária e síntese 

de interleucinas (IL-6 e IL-8) a partir de fibroblastos da polpa 

DPP Envolvido no processo de mineralização dentinária 

DSP Envolvido na morfogênese dentária e capacidade de promover 

crescimento, migração e diferenciação odontoblástica 

PDGF Capacidade de estimular a angiogênese e modular diferenciação 

odontoblástica 

VEGF Capacidade de estimular a angiogênese 

EGF Envolvido na diferenciação neurogênica de células-tronco da 

polpa dentária 
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Abstract 
 
The aim of this systematic review was to analyze the current trends and future 

perspectives of dental pulp capping materials through an analysis of scientific and 

technological data. This study is reported in accordance with the PRISMA Statement. 

Eight papers databases were screened: PubMed (MedLine), Lilacs, IBECS, BBO, 

Web of Science, Scopus, SciELO and The Cochrane Library. Additionally, the search 

of patent applications was conducted in Questel Orbit (Paris, France), USPTO, EPO, 

JPO, INPI and Patentscope. A total of 716 papers and 83 patents were included. 

Calcium hydroxide was the main type of material studied, especially for direct pulp 

capping, followed by MTA. Patents related to adhesives or resins increased from 

1998 e 2008, while in the last years it was observed a major increase in bioactive 

materials (containing bioactive proteins), MTA and MTA derived materials (calcium 

silicate, calcium phosphate and calcium aluminate based cements). It was possible 

to obtain a scientific and technological overview of pulp capping materials. MTA have 

showed favorable results in vital pulp therapy that seems to surpass the 

disadvantages of calcium hydroxide. Recent advances in bioactive and MTA derived 

materials have showed promising results that could improve biomaterials used in vital 

pulp treatments. 

 

Keywords: Dental pulp capping; Pulp capping agents; Pulpotomy; Dental materials; 

Review. 
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1 Introduction 

Conservative dentistry aims to promote preservation of the tooth structure in 

an effort to avoid damage to dentin-pulp complex. Therefore, there are several 

techniques available for the management of teeth affected by caries or traumatic 

injuries in order to preserve pulp vitality, such as direct and indirect pulp capping [1, 

2]. According to the American Association of Endodontists (AAE), dental pulp 

capping is defined as a treatment of an vital pulp by using biomaterials that enhance 

the formation of tertiary dentin and consequently maintenance of tooth vitality.  

Dental pulp capping involves the application of a protective material to the remaining 

thin layer of dentin over a nearly exposed pulp (indirect capping), over an exposed 

pulp (direct capping) or over a partially removed coronal pulp tissue (pulpotomy) [3]. 

The morbidity associated with non-treating pulp often requiring either root canal 

treatment or tooth extraction with further replacement, which could require multiple 

appointments, considerable expenses and it is less cost-effective [4, 5]. 

Vital pulp therapy has been practiced for more than 200 years. The first 

procedure described was the application of a cap of lead foil to an exposed pulp 

performed by Pfaff in 1756 [6, 7]. About 100 years later, materials containing calcium 

hydroxide for treating exposed pulp were first described. However, the use of calcium 

hydroxide gained importance only after publication of Hermann in 1930, and since 

then, this material has been one of the most commonly employed in vital pulp 

therapy [7, 8]. In the last decades, mineral trioxide aggregate (MTA), a Portland 

cement-based formulation, has gained attention in dentistry. It was first described in 

the literature in 1993 initially as dental root-end filling material [9, 10]. Only in 1998, 

MTA received approval for clinical use by the U.S. and Drug Administration (FDA), 

and it is until nowadays indicated for vital pulp therapy (direct/indirect pulp capping, 

pulpotomy) [11, 12]. 

In order to find an ideal pulp capping agent, over the years other biomaterials 

have been suggested in the literature, such as zinc oxide and eugenol cement, glass 

ionomer cement, dental bonding agents, formocresol, ferric sulfate, resin composites 

and MTA derived materials, such as calcium silicate, calcium phosphate and calcium 

aluminate based cements [2, 9, 11, 12]. Moreover, an ideal pulp capping should 

adhere to tooth substrate, maintain a sufficient seal, be insoluble in tissue fluids, 

dimensionally stable, non-resorbable, nontoxic, noncarcinogenic, nongenotoxic, 

radiopaque, and exhibit biocompatibility and bioactivity [9, 10, 13]. Unfortunately, 
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none of available biomaterials have been able to satisfy the total requirements of an 

ideal one [13]. 

Thus, since the evolution of dentistry, various dental materials have been 

developed to obtain maximum benefit from them generating the most beneficial 

tissue response [14, 15]. With the better understanding of dentin-pulp complex repair 

and regeneration process, the advances of biomaterials to maintain pulp vitality using 

minimal invasive dentistry has emerged [16]. Thus, the aim of this sistematic review 

was to analyze the scientific and technological information related to dental pulp 

capping materials in order to obtain the state of the art of this area. Additionaly, we 

aimed to verify the current trends and future perspectives in the development of new 

biomaterials for vital pulp treatments. 

 

2 Methods  

The report from this systematic review was adapted from the Preferred 

Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement 

[17]. 

 

2.1 Electronic searches  

The reviewers performed the literature search until November of 2015. Eight 

papers databases were selected to conduct the search: PubMed (MedLine), Web of 

Science, The Cochrane Library, Scopus, Scielo, Ibecs, Lilacs, BBO, and Lilacs. 

Additionally, the search and analysis of patent applications was conducted by the 

online system Questel Orbit (Paris, France), which allows the patent search over 80 

authorities. Other patents databases screened were USPTO (United States Patents 

and Trademark Office), EPO (European Patent Office), JPO (Japan Patent Office), 

INPI (National Institute of Intellectual Property of Brazil) and Patentscope. Search 

strategy used in PubMed (MedLine) was adapted for other databases (Table 1).  

Furthermore, a preliminary patent search was performed to identify relevant 

International Patent Classification (IPC) in order to optimize the patent search 

process. The aim of identifying these codes was to create a specific tool for patent 

search, and the following codes were crossed with the search terms to enhance the 

retrieval of relevant patents: A61K (preparations for medical, dental, or toilet 

purposes); A61K 6/02 (use of preparations for artificial teeth, for filling or for capping 

teeth) and A61C 5/00 (filling or capping teeth). The papers were imported to the 
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software Endnote X7 (Thompson Reuters, USA) to remove duplicates. 

 

2.2 Screening and study selection  

Studies and patents were initially analyzed through a screening of titles and 

abstracts. Reviewers selected only studies and patents related do dental pulp 

capping materials in accordance with the eligibility criteria (Table 2). There was no 

limit of publication year. Documents that appearing to meet the inclusion criteria or 

had insufficient data in the title and abstract to make a clear decision were selected 

for full analysis. Any disagreement regarding the inclusion of studies was resolved 

through discussion and consensus. Thus, only documents that fulfilled all of the 

eligibility criteria were admitted. 

 

2.3 Data extraction  

The scientific and technological data of interest were tabulated by reviewers 

(ARC, TMS, LCM, ADG), and another reviewer revised all data (WLOR). The 

following data from included studies were tabulated: type of study (in vitro, clinical 

and/or animal study), year of publication, country of corresponding author, vital pulp 

treatment (direct/indirect pulp capping, pulpotomy), type of material evaluated. The 

type of teeth evaluated by clinical studies was also analyzed (permanent/primary 

teeth). Moreover, the characteristics of the included patents, such as priority and 

publication year, priority and deposit country, type of depositor (personal, university, 

company, public foundation) and type of material patented were also tabulated in 

order to obtain the technological information. The materials were classified according 

to their main compositions, as described in Table 3. 

 

3 Results  

3.1 Documents selection  

Figure 1 represents the document selection process. Of the 4149 papers 

initially select from all databases, 1956 were excluded after title and/or abstract 

examination.  Thirty-seven articles were eliminated because they not evaluated the 

materials as pulp capping agents (23 studies) or they were literature reviews (14 

studies). A total of 716 papers were included in the qualitative analysis.  

Furthermore, from 367 patents initially identified from all databases, 216 were 

excluded since they were not related to pulp capping materials. Seventeen patents 
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were further excluded because were related to root canal sealers (5 patents) or were 

not related to pulp capping agents (12). Eighty-three patents could be included in the 

analysis of technological data.  In this systematic review, a total of 799 documents 

were included in scientific and technological analysis. 

 

3.2 Descriptive analysis  

Figure 2 summarizes the vital pulp treatments related to the respective main 

biomaterials studied. Out of the studies included, 24% were in vitro, 38% animal 

experiments and 38% clinical trials. Scientific production of pulp capping materials 

related to different treatment protocols are represented in Figure 3. The number of 

papers published was higher than patents deposited or published annually in almost 

all period analyzed (Figure 3a). Moreover, animal experiments were predominant in 

direct pulp capping analysis, while clinical studies were the main study design to 

indirect pulp capping and pulpotomy. On the other hand, permanent teeth were 

evaluated by clinical studies mainly in direct pulp capping, while for pulpotomy and 

indirect pulp capping, primary teeth were the most analyzed (Figure 3b). The United 

States and Japan were the main countries with patents deposited related to pulp 

capping materials, respectively with 25 and 22 patents (Figure 4), and were also the 

main origin countries of patents related to this area. Besides, Brazil (24%), United 

States (15%) and Japan (8%) had the majority of papers published in this research 

field. 

Figure 5 represents the main type of biomaterial studied and patented. 

Regarding annual technological production, calcium hydroxide based materials were 

the most patented for a long time in the past (Figure 5a). Patents related to 

adhesives or resins as pulp capping agents increased especially from 1998 e 2008. 

While in the last decade, it was observed a major increase in bioactive materials 

(containing bioactive proteins), MTA and MTA derived materials (calcium silicate, 

calcium aluminate, calcium phosphate based cements). Calcium hydroxide was the 

biomaterial most studied, followed by MTA (Figure 5b). While for indirect pulp 

capping, the majority of studies evaluated calcium hydroxide and adhesives/resins. 

Meanwhile for pulpotomy, many studies were related to calcium hydroxide, 

formocresol and MTA. Additionally, the main patent depositors were companies 

(36%) and universities (33%). The personal deposit represented 26% of all patents 

deposited, and public foundations the last 8%. 
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4 Discussion 

This review allowed to map the knowledge available of pulp capping 

materials through a scientific and technological analysis. There was a gradual 

increase in studies and patents related to these biomaterials over the years, which 

reflects the constant evolution in treatments in this research field. Besides, patent is 

an important source of technological information [18, 19], and the scientific and 

technological scenario observed was different as regarding the main types of 

materials studied and patented, which means that only the search and analysis of 

papers might show a limited overview of this area. Furthermore, within each vital pulp 

therapy, several biomaterials were found, which will be hereafter discussed in order 

to present their current trends, recent advances and future perspectives. 

 

4.1 Current trends in vital pulp treatments 

4.1.1 Indirect pulp capping 

There are different clinical procedures to preserve pulp vitality in teeth with 

deep caries: with total carious tissue removal or partial caries removal, either at the 

same appointment (complete caries excavation) or in one or more treatment steps 

(stepwise excavation) [20]. The complete removal of all carious substrate is no longer 

seen as mandatory, and in recent years indirect pulp capping with partial caries 

removal has been advocated in studies [21, 22]. The preservation of carious dentin 

along the pulpal floor is the goal of contemporary conservative dentistry based on 

retaining healthy tooth tissues. By leaving the deepest layer of carious dentin 

undisturbed, the risk of pulp exposure and post-operative pulpal symptoms is 

significantly reduced, and favourable clinical results have been reported with the 

remineralization of residual dentin [8, 20-22]. Moreover, a biological barrier is formed 

protecting the pulp from external irritations, being an adequate marginal seal critical 

to inhibit bacteria infiltration [23, 24].  

Calcium hydroxide was also the main material evaluated in indirect pulp 

capping, probably because its important biological and antimicrobial properties. 

Adittionaly, it has the longest track record of clinical success [4]. It has been believed 

that calcium hydroxide’s high alkalinity causes irritation of the pulp tissue when in 

contact, which could stimulate repair process through the release of bioactive 

molecules sequestered within dentin [25]. There are a variety of proteins into dentin 
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matrix [26-28], and especially two of them, bone morphogenic protein-7 (BMP-7) and 

transforming growth factor-β1 (TBF-β1), have been show the ability to stimulate 

tertiary dentin formation [28-30]. Despite the wide use of calcium hydroxide, this 

material provides a poor seal, does not adhere to tooth substrates, and the self-cure 

formulations are soluble [6, 31]. Besides, this material has no adhesion to dentin and 

to composite resins used in restorative procedures, and as a consequence  may 

occur solubilization over time in a cavity not properly sealed [31]. It is reported that 

the presence of a liner (i.e. calcium hydroxide cement, glass ionomer cement, zinc 

oxide and eugenol) could influence the longevity of restorations [32]. Therefore, 

adhesive properties are an important factor to considerate in vital pulp capping, once 

the adequate seal with a restorative material is imperative to pulp protection.  

To overcome calcium hydroxide disadvantages, dental adhesive systems 

were suggested for use as a potential pulp capping about 20 years ago [33], which 

probably have led to a further increase in patent deposition observed especially from 

1998 to 2008. Although adhesion to teeth substrates could improve cavity seal with 

restorative materials, the sound dentin is not the substrate most frequently found in 

clinical situations in deep carious lesions, but sclerotic, caries-infected or caries-

affected dentin [34]. It is reported that the bond strength of adhesives to caries-

affected dentin is lower than that to sound dentin [35-37]. Furthermore, the 

components of adhesive systems have been shown to be cytotoxic to pulp cells, and 

they are not currently reccomended to direct pulp capping [38-40]. It must be taken 

into consideration that these effects are dependent of how deep the carious lesion is, 

which could affect the clinical sucess of this treatment [8]. There is still no consensus 

on how much carious teeth substrates needs to be removed [20]. Furthermore, the 

therapy of deep cavitated lesions should require less focus on complete carious 

removal than on adequate seal with restorations [20, 41, 42]. 

 

4.1.2 Direct pulp capping 

Direct pulp capping treatment has been suggested when occurs pulp 

exposure due to caries, traumas or accidents during cavity preparation, without the 

presence of irreversible pulp inflamation [4, 43, 44]. The biomaterial used should 

have some fundamental properties to maintain tooth vitality, such as stimulate tertiary 

dentin formation, provide an adequate bacterial seal and then promote pulp healing 

[4]. Our review demonstrated that calcium hydroxide based materials and MTA were 
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the two most studied materials in pulp exposures. Furthermore, it is important to 

emphasize that the outcome of these treatment not depends only on the biomaterial 

applied, but also on the type of pulp exposure (carious or mechanical), the length of 

follow-up [45], the area of pulp to which the capping material is applied (coronally or 

cervically) [46], the time elapsed to placement of a definitive restoration [45], the 

presence of bacteria infection [46], as well as the age of the patients [7]. It is reported 

that a tooth can present better prognosis if the initial exposure is due to mechanical 

reasons rather than caries [46, 47]. Besides, one critical principle that is the key to 

pulp vitality is the placement of a well-sealed restoration [4, 45, 48-51]. 

In direct pulp capping, calcium hydroxide has been considered the “gold 

standard” for years, due its excellent antibacterial effect, and the ability to induce 

tertiary dentin formation as previously mentioned. In recent years, MTA has been 

investigated as a material for direct pulp capping, and it has been shown promising 

results in clinical trials [44, 52]. The major benefits include good biocompatibility, 

radiopacity, sealing ability, low solubility, stability for long-term, prevention of bacterial 

infiltration, and the dentinogenic and osteogenic potentials [12]. Besides, MTA could 

reduce inflammation, hyperemia and necrosis levels of pulp [6, 53], and could also 

solubilize bioactive proteins involved in tooth repair process [54]. However, MTA 

presents disadvantages such as discoloration [55], which is critical in anterior teeth; 

the presence of toxic elements (i.e. arsenic) in the material composition [56], higher 

cytotoxicity in its freshly mixed state [57], long setting time [58], high pH during 

setting [59], and difficult handling characteristics [60]. Moreover, MTA has a 

considerable high cost [6],  and about one gram of its powder costs the same as 24 

grams of calcium hydroxide based material [4]. However, a recent study showed that 

MTA was more cost-effective than calcium hydroxide for direct pulp capping once 

expensive retreatments  can be avoided with its use [61].  

The main MTA components are tricalcium silicate, dicalcium silicate, 

tricalcium aluminate [62, 63]. The most reactive phase of MTA is tricalcium silicate 

which comprises about 68% of the Portland cement component [59]. Calcium 

hydroxide is the main reaction product of MTA hydration with water [10, 12, 62], 

which probably it is responsible to its similar effects to calcium hydroxide in vital pulp. 

During the setting process, MTA has an initial pH of 10.2, which increases to up to 

12.5 during the first few hours [58] and it is comparable with the alkalinity achieved 

by calcium hydroxide [64]. Nowadays, MTA is the current reference control 
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recommended by ISO 7450 (2008) [65] or ANSI/ADA no. 41 [66]. Moreover, recent 

studies have demonstrated that MTA presented higher clinical success rates than 

calcium hydroxide in direct pulp capping [44, 52]. MTA presented a overall success 

rates of 80.5% compared to 59% of calcium hydroxide in up to 123 months [44], and 

it seems to be currently the best indicated biomaterial to this therapy.  

 

 

4.1.3 Pulpotomy 

In the presence of pulpal inflammation, teeth can be clinically managed either 

by an attempt to preserve the tissue in cases of reversible pulpitis, or remove it and 

seal the root canal in irreversible pulpitis. Considerable controversy exists on this 

issue, and pulpotomy should be considered to treat few affected teeth in which the 

pulp exposure occurred through sound dentin or through carious lesions in symptom-

free teeth [8, 16, 31, 67]. Pulpotomy consists of the surgical amputation of coronally 

inflamed pulp [67], and the surface of the remanescent radicular pulp may be treated 

with a medicament or pulp capping agent in a tentative to maintain vitality [68].  

Furthermore, pulpotomy is a widely accepted treatment for pulp exposures in 

immature teeth to ensure continued root development, which require an special 

clinical care [69, 70]. For them, the apexogenesis consists in continuing the root 

formation and apical closure in vital teeth. Unlike apexification, vital pulp therapy with 

pulpotomy allows the development a normal thickness of dentin and root length, 

which leads to apical closure, stronger root structure, and a greater structural 

integrity [70, 71]. The loss of tooth vitality before complete root formation leaves a 

weak root with thin dentin walls more susceptible to fracture. Therefore, pulpotomy 

was mainly observed in studies with primary teeth, and it is in fact commonly 

indicated to these acutely inflamed teeth [72], once dental pulp in young subjects is 

more able to recover from injuries. Besides, studies have demonstrated that in teeth 

with complex crown fractures, the exposed pulp can maintained its vitality for up to 7 

days, and only a partial removal of the most superficial pulp inflamed can be an 

adequate treatment [73].  

Some clinicians are reluctant in indicate pulpotomy due technical difficulties, 

once proper assessment of the affected tooth using radiographic evaluation and vital 

pulp testing is critical in determining an accurate diagnosis. Previous studies reported 

that even the concomitant presence of all three classical signs of pulp necrosis, 
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coronal discoloration, loss of pulp sensitivity and periapical radiolucency, can in rare 

cases be followed by pulp repair [73, 74]. Furthermore, immature teeth are frequently 

associated with child patients, and pulp testing in these subjects is a complex and 

subjective procedure [73]. The radiographic interpretation of the periapical area may 

be also mistaken by the unmineralized radiolucent zone around dental papilla [74, 

75]. 

The main biomaterials that have been evaluated for pulpotomy include 

formocresol, ferric sulfate, zinc oxide and eugenol, calcium hydroxide, MTA. Their 

clinical success have differed from each pulp capping depending on biological 

compatibility, healing capabilities, cytotoxicity, histological response and repair 

potential [67]. Hence, the need arises to develop a pulpotomy biomaterial that 

potentiates the natural pulp healing process, is biocompatible, and is cost-effective.  

Despite the long history of calcium hydroxide in vital pulp therapy, the issue 

is still controversial for pulpotomy in primary teeth, due its caustic actions [31]. There 

have been attempts to find other materials that permit tertiary dentin formation 

without the detrimental effects of calcium hydroxide [31], and one of biomaterials 

most commonly used for pulpotomy was formocresol. This pulp capping agent was 

introduced in 1904 by Buckley for the treatment of the putrescent pulp in animal 

teeth. Later, he introduced a commercial formula that consisted of 19% 

formaldehyde, 35% cresol and glycerin in distilled water [67]. Although formocresol 

has long been considered the gold standard in pulpotomy, researchers have been 

questioning its use due to possible toxic effects [76]. 

Other biomaterial evaluated was ferric sulphate, which has been used as a 

coagulative and a hemostatic agent [77, 78]. The agglutination of blood proteins 

result from the reaction of blood with ferric and sulphate ions, as well as with the 

acidic pH of the material [79]. It was reported that ferric sulphate could prevent 

problems arising�from clot formation after the removal of the coronal pulp and 

produce a local and reversible inflammatory response [80]. A systematic review 

reported that primary molar teeth with pulp exposure by caries or trauma subjected to 

pulpotomies followed by ferric sulfate application presented a clinical success rate 

ranging from 78% to 100%, with similar clinical and radiographic success to 

formocresol [78]. 

MTA was also recently indicated for pulpotomy, and showed favorable pulpal 

responses for both permanent and primary teeth. In permanent teeth, MTA 
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demonstrated satisfactory treatment outcomes in studies with pulpotomy after caries 

exposed pulp [31, 81, 82]. However, a study reported that the incidence of 

unfavourable outcomes up to 2 years tended to be higher in teeth with larger pulp 

exposure areas [81]. Besides, a systematic review demonstrated that MTA as a 

pulpotomy agent had a favorable success rate in treating carious exposure of 

permanent teeth with closed root apices [16]. In primary teeth, MTA presented 

clinical success superior to formocresol [31, 83-85].  Besides, when comparing all 

main materials used for pulpotomy of primary teeth, a recent meta-analysis 

demonstrated that the success rate of MTA (94.6%) was superior than formocresol 

(87.4%), ferric sulphate (86.6%) and calcium hydroxide (60.5%) [72]. Although MTA 

presented some drawbacks previously mentioned, it seems to be the best current 

treatment option for pulpotomy in primary and permanent teeth. 

 

4.2 Recent advances and future perspectives in vital pulp therapy 

There is a need to discover a pulp capping material that potentiates the 

natural pulp healing process, is biocompatible and overcome the benefits of actual 

biomaterials already available in the market. In an endeavor to develop products that 

satisfied the ideal pulp capping agent criteria, the composition of materials continues 

to change as the manufacturers try to improve their efficacy. We also included patent 

data in our analysis as source of technological information, which demonstrated a 

divergence between the main countries with studies and patents related to pulp 

capping materials. The scientific production in this area is not being properly followed 

by the technological prospecting. Many studies were focused in evaluating already 

available pulp capping materials than in develop and improve them. The trend 

observed in technological data suggest that while in the past the focus was in 

calcium hydroxide based cements, and after in adhesive or resin, in the last years it 

seems that MTA and bioactive materials has gained attention. Although the high cost 

is an important disadvantage of MTA, its cost tends to decrease with time. Besides, 

this material seems to be the currently “gold standard” to vital pulp therapy.  

The countries with high numbers of deposited patents were also the United 

States and Japan, which probably reflects the most important markets for this 

technology. Considering that the main depositors of patents were companies, the 

results also suggest the need for an approximate relationship between the university 

and the industry to improve the integration between scientific and technological 
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knowledge. There are potential areas to be explored with new innovative pulp 

capping materials that could disrupt existing business models and provide new better 

treatment options for patients.  

In this context, new MTA derived materials have been suggested in recent 

years as pulp capping agents, which must change the current scenario of pulp 

capping agents long dominated by calcium hydroxide.  Among them, calcium 

hydroxide based cements are mainly composed of dicalcium and tricalcium silicates 

with minor modifications in the MTA formulation [11, 86]. These material have 

improved properties of MTA, such as good sealing correlated to expansion, the ability 

to set in the presence of fluids [58, 87, 88], the release of ions as calcium [89] and 

good biological properties [86, 90-92]. The addition of calcium chloride resulted in a 

cement with a lower setting time and good biocompatibility [93-95]. Moreover, 

attempts at replacing the Portland cement component of MTA with tricalcium silicate 

resulted in a biomaterial with improved physical properties [96]. The most studied 

calcium silicate based cement was Biodentine (Septodont, France), and due its good 

physical properties can also be used as a temporary restorative material. Similar 

outcomes regarding tertiary dentin formation and inflammatory response between 

Biodentine and MTA were demonstrated in an animal experiment [97], in an ex-vivo 

study with human teeth [98], and in a recent clinical trial when used for pulpotomies 

of primary molars after 12 months [76]. Moreover, when used for indirect pulp 

capping, Biodentine showed similar clinical results to a glass ionomer cement (Fuji 

IX, GC Corporation, USA) after 12 months of follow-up [99].  

Another MTA derived material developed was a calcium aluminate based 

cement, as EndoBinder (Binderware, Brazil), which preserve the properties and 

clinical applications of MTA without some of its negative characteristics [100, 101]. Its 

components allows control of impurities such as iron oxide [102], that promotes tooth 

discoloration, and free magnesium oxide and calcium oxide, which may be 

responsible for an undesirable expansion of the material in contact with moisture 

[103]. Animal experiments demonstrated that these cements presented tissue 

compatibility that allow mineralized tertiary dentin formation after pulpotomy with 

similar morphology and integrity to those formed with MTA [97, 104-106]. Moreover, 

EndoBinder was biocompatible when tested in rat subcutaneous tissue [101]. 

However, further research is needed to evaluate the potential clinical benefits of 

these new biomaterial in vital pulp therapies.  
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Calcium phosphate based materials also emerged in recent years: as 

calcium enriched mixture (CEM) cement. This cement was first introduced by Asgary 

et al. in 2006 [107], and it is similar to MTA, but with better physical properties. When 

the CEM is mixed with water-based solution, it forms calcium and phosphate 

enriched mixture [14]. Mixed CEM cement then forms hydroxyapatite not only in 

simulated body tissue fluid but also in normal saline solution; the latter of which is 

unlike MTA [108]. The properties of bio-ceramics are very advantageous to material 

sciences, once CEM cement has antibacterial effect comparable to calcium 

hydroxide and superior to MTA [109], and sealing ability similar to MTA [110]. The 

biologic response of the pulpal tissue to MTA and CEM cement has been shown to 

be similar in animal studies [111]. Besides, its biocompatibility, osseo conductivity 

property, ability to form hermetic seal, chemical bond to the tooth structure, 

insolubility in tissue fluids, good radiopacity and easy handling characteristics have 

led to the widespread use of these materials in recent years [14]. A recent 

randomized clinical trial showed that vital pulp therapy with CEM was a reliable 

technique for treatment of permanent molar teeth with pulpitis after 5 years of follow-

up [112]. 

There has been growing optimism about the use of a biologic approach for 

dental pulp treatments via the stimulation and formation of biological tissue. The 

knowledge about the repair and regenerative process in dentin-pulp complex is being 

more exploited by researches, which have demonstrated that repair mechanism may 

be due to the release of bioactive molecules from dentin matrix, including bone-

morphogenetic protein (BMP) and transforming growth factor-Beta-1 (TBF-β1) [25, 

28, 29, 113].  

Pulp capping agents containing bioactive proteins were evaluated with the 

available commercially Emdogain (Straumann, Switzerland). The biomaterial is an 

injectable gel solution comprising enamel matrix proteins (amelogenin), water and a 

carrier (propylene glycol alginate) [114]. Moreover, enamel matrix proteins acts in 

cementogenesis and in the development of the periodontal attachment apparatus 

[115, 116]. These material present multiple applications, and has been mainly 

indicated in periodontics with favorable results when applied in periodontal defects  

[114]. Emdogain was suggested as a possible pulp capping material due the 

presence of amelogenin on its composition, which is involved in the growth and 

maturation of dental pulp cells during odontogenesis [117]. A more pronounced 
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tertiary dentin formation was reported in pulps of animals treated with amelogenin 

when compared with those treated with calcium hydroxide [118-121]. Furthermore, a 

randomized clinical trial in exposed human pulps reported that postoperative pain 

symptoms were less frequent after Emdogain application than calcium hydroxide 

cements [122]. However, Emdogain presented poor sealing qualities and it was 

ineffective in producing tertiary dentin formation in the trial. To obtain an adequate 

seal, an animal experiment evaluated MTA application in conjunction with Emdogain, 

that produced a better quality of tertiary dentin formation when compared with the 

use of calcium hydroxide [123]. Nevertheless, clinical trials that evaluated Emdogain 

for direct pulp capping in primary teeth [124] and pulpotomy in permanent teeth [125] 

failed to demonstrate improvement in tertiary dentin formation. It is not clear if 

components of Emdogain regulate pulp repair or regenerative process, and probably 

are dentin matrix proteins more involved in tertiary dentin formation.  

On the other hand, many animal experiments with dentin matrix proteins 

demonstrated their potential benefits in vital pulp therapy, such as direct [126, 127] 

and indirect pulp capping [128, 129], as well as in pulpotomy [130]. However, the 

high cost of these biomaterials are yet a imperative drawback that compromises its 

popularization. Patent data also showed that the protection of materials containg 

bioactive proteins are growing in recent years, and it was claimed its use in 

microspheres, hydrogels, delivery systems, scaffolds [131-134]. Novel dental material 

containing these proteins opens promising treatment options, and both basic and 

clinical research toward reaching this goal is needed. Hence, the need arises to 

discover a biomaterial that potentiates the natural pulp healing process and is cost-

effective. In the future, it is becoming evident that these novel therapeutic 

approaches will gain attention in dentistry, being able to promote the repair or 

regenerative process through a defined interaction between bioactive materials and 

tooth substrates. 

 

Conclusions 

Based on this systematic review it was possible to obtain a scientific and 

technological overview of pulp capping agents. Although calcium hydroxide was the 

biomaterial most studied over time with favorable clinical outcomes, the current 

literature suggests MTA presents superior performance for direct pulp capping and 

pulpotomy. Meanwhile, recent advances in MTA derived materials (calcium silicate, 
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calcium phosphate, calcium aluminate based cements) and bioactive materials 

containing dentin proteins have showed promising results that could improve vital 

pulp treatments in the near future. 
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Tables and Figures 

 
Table 1 – Search strategy used in PubMed (MedLine) 

 

 

 

  

 Search terms 
#4  Search #1 AND #2 AND #3 

#3  

 

“Pulp Capping and Pulpectomy Agents”[Mesh] OR “Pulp Capping and 
Pulpectomy Agents” OR “Mineral Trioxide Aggregate” OR “MTA Cement” OR 
“MTA Aggregate” OR “aggregate ProRoot” OR “Pulp Capping Agent” OR “Pulp 
Capping Agents” OR “Agent, Pulp Capping” OR “Agents, Pulp Capping” OR 
“Capping Agent, Pulp” OR “Capping Agents, Pulp” OR “Pulp Capping Agent” OR 
“Agents, Pulpectomy” OR “Pulpectomy Agent” OR “Calcium Hydroxide” OR 
“Hydroxide, Calcium” OR “Mineral Trioxide Aggregate” OR “Cavity Linings, 
Dental” OR “Lining, Dental Cavity” OR “Linings, Dental Cavity” OR “Cavity 
Lining, Dental” OR “Dental Cavity Linings” OR “Varnish, Cavity” OR “Cavity 
Varnish” OR “Cavity Varnishes” OR “Varnishes, Cavity” OR “Cavity Lining 
Varnish” OR “Varnish, Cavity Lining” OR “Cavity Lining Varnishes” OR 
“Varnishes, Cavity Lining” OR “Cavity Liner, Dental” OR “Cavity Liners, Dental” 
OR “Liner, Dental Cavity” OR “Dental Cavity Liners” OR “Liners, Dental Cavity” 
OR “Dental Cavity Liner” OR “Theracal” OR “Biodentine” OR “Emdogain” OR 
“MTA” 

#2 

 

“Dental Pulp Capping” [Mesh] OR “Dental Pulp Capping” OR “Pulp Capping, 
Dental” OR “Pulp Capping” OR “Capping, Pulp” OR “Cappings, Pulp” OR “Pulp 
Cappings” OR “Capping, Dental Pulp” OR “Cappings, Dental Pulp” OR “Dental 
Pulp Cappings” OR “Pulp Cappings, Dental” OR “Pulpotomy” OR “Dental Pulp 
Exposure” OR “Exposure, Dental Pulp” OR “Pulp Exposure, Dental” OR “Pulp 
Exposures”  

#1 “Dental Materials”[Mesh] OR “Dental Materials” OR “Materials, Dental” OR 
“Dental Material” OR “Material, Dental” OR “Oral medicine” OR “Medicine, Oral” 
OR “Dentistry” OR “Odontology” OR “Biomaterials”  
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Table 2 - Eligibility criteria 
 
 
	
	
	
	
	
	
	
	
	
	
	

Inclusion criteria Exclusion criteria 

§ Studies that evaluated pulp 
capping agents to vital pulp 
therapy 

§ Patents related to dental 
materials and protection of 
dentin-pulp complex 

§ Studies that evaluated only techniques and 
not materials to vital pulp therapy 

§ Review articles, case reports, case series, 
thesis and dissertations 

§ Studies published in a language other than 
English, Spanish or Portuguese 
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Table 3 – Classification of main pulp capping materials identified in the literature 
Material Main indications General composition Commercial example 

Calcium hydroxide Direct/indirect pulp capping, 
pulpotomy 

Base paste: titanium dioxide,  calcium tungstate 
1,3-butylene glycol disalicylate 
Catalyst paste:  calcium hydroxide, zinc oxide, 
zinc stearate, ethyl toluene sulphonamide 

Dycal* (Dentsply, United 
States), Life (Kerr, United 
States)  

Mineral trioxide 
aggregate (MTA) 

Direct/indirect pulp capping, 
pulpotomy, root perforation and 
resorption, retro-end 
apicoectomy 

Powder: tricalcium silicate, dicalcium silicate, 
tricalcium aluminate. 
Liquid: distilled water 

MTA Angelus* (Angelus, 
Brazil), MTA ProRoot 
(Dentsply,  United States) 

Calcium silicate based Direct/indirect pulp capping, 
pulpotomy,  root perforation 
and resorption, retro-end 
apicoectomy 

Powder: tricalcium silicate, dicalcium silicate,  
calcium carbonate,  zirconium dioxide 

Liquid: water, calcium chloride,  modified 
polycarboxylate (superplasticizing agent) 

Biodentine* (Septodont, 
France), TheraCal LC (Bisco,  
United States),  Tech 
Biosealer capping (Isasan, 
Italy) 

Calcium phosphate 
based 

Direct/indirect pulp capping, 
pulpotomy,  root perforation 
and resorption, retro-end 
apicoectomy 

Powder: calcium compounds such as calcium 
oxide, calcium phosphate, calcium carbonate, 
calcium silicate, calcium sulfate, calcium 
hydroxide,  calcium chloride 

Liquid:  distilled water 

Calcium Enriched Mixture 
(CEM) Cement* 
(BioniqueDent, Iran) 

 

Calcium aluminate 
cement 

Direct/indirect pulp capping, 
pulpotomy,  root perforation 
and resorption, retro-end 
apicoectomy 

Powder:  aluminum oxide,  calcium oxide,  silicon 
dioxide,  magnesium oxide,  iron oxid, bismuth 
oxide 

Liquid: distilled water 

Endobinder* (Binderware, 
Brazil) 

 

Adhesive systems Indirect pulp capping Primer: 10-methacryloyloxydecyl dihydrogen 
phosphate (MDP), dimetacrylate monomer, 
hydroxyethyl methacrylate (HEMA), silica, N,N-
diethanol-p-toluidine, canforoquinone 

Bond:  Hydroxy ethyl methacrylate (HEMA), 
dimetacrylate monomer,  bisphenol A glycidyl 

Clearfil SE Bond* (Kuraray 
Medical, Japan), Optibond S 
(Kerr,  United States), 
Prime&Bond 2.1 (Dentsply,  
United States) 
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* Material with general composition informed 
  

methacrylate (Bis-GMA),  N,N-diethanol-p-
toluidine  silica, canforoquinone  

Zinc oxide and eugenol Indirect pulp capping Powder:  zinc oxide, poly-methyl methacrylate 
(PMMA) pigment. 

Liquid: eugenol, acetic acid 

IRM* (Dentsply,  United 
States), Temp Bond (Kerr, 
United States), Relix Tempo 
(3M ESPE, United States) 

Formocresol Pulpotomy Formaldehyde, ortho-cresol, gliceryn, ethyl 
alcohol 

 

Buckley’s Formocresol* 
(Sultan Healthcare, United 
States) 

Ferric sulphate Pulpotomy Ferric sulphate, silica,  aqueous vehicle ViscoStat* (Ultradent, United 
States),  Astringedent 
(Ultradent,  United States) 

Bioactive materials 
(containg bioactive 
proteins) 

Direct/indirect pulp capping, 
pulpotomy 

Enamel matrix proteins, water, propylene glycol 
alginate. 

Emdogain* (Straumann,  
Switzerland) 
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FIGURE 1 - Search flow (adapted from the PRISMA statement) [17]
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FIGURE 2 – Vital pulp treatments and main pulp capping materials studied for each therapy 
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FIGURE 3 – Studies and patents related to pulp capping materials (a) annual evolution of the 
scientific (papers published) and technological production (patents deposited and later 
published) (1970-2015); (b) number of studies related to type of study (clinical or animal 
study), pulp treatment (indirect or direct pulp capping, pulpotomy) and type of teeth 
(permanent or primary) 
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FIGURE 4 – Scientific and technological production of pulp capping materials in the world. Main countries with patents deposited: 
United States (25 patents), Japan (22 patents), China (7 patents), Australia (6 patents) and Germany (6 patents); and main origin of 
papers (according to corresponding authors) and patents (priority countries) 
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FIGURE 5 – Scientific and technological production of pulp capping materials: (a) annual 
production (cumulative) of main type of pulp capping materials patented (1980-2015); and 
(b) type of material evaluated according to pulp treatments  
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Abstract 

Objectives: Systematically review the literature of animal studies to evaluate the 

efficacy to deliver bioactive dentin proteins for vital pulp therapy strategies. Methods: 

This study is reported in accordance with the PRISMA Statement. Two reviewers 

independently conducted a literature search in eight databases: PubMed (MedLine), 

Lilacs, IBECS, BBO, Web of Science, Scopus, SciELO and The Cochrane Library. It 

was included animal experiments in which bioactive dentin proteins were applied 

directly or indirectly to the pulp tissue. Data regarding the characteristics of proteins 

evaluated, the delivery systems used and the main findings from each study were 

tabulated in order to assess the outcomes of interest (tertiary dentin formation, 

inflammatory response, intratubular mineralization). Results: A total of 3019 studies 

were initially identified. After screening, 32 papers fulfilled selection criteria and were 

included in the qualitative analysis. Direct pulp capping was the most evaluated 

therapy with bioactive dentin proteins. Besides, the most studied proteins were BMP-

7, TGF-β1 and soluble dentin matrix proteins extracted. In general, bioactive proteins 

enhanced tertiary dentin formation in direct and indirect pulp capping, and promoted 

a initial lower inflammatory response. However, for pulpotomy the bioactive materials 

did not demonstrated diferences from control in the outcomes evaluated. 

Significance: There are potential areas to be explored for novel therapeutic 

approaches to dental tissue repair and regeneration with bioactive materials. There is 

evidence in the literature that suggest bioactive dentin molecules could be able to 

improve tertiary dentin formation with less initial inflammatory response in direct and 

indirect pulp therapy.  

 

Keywords: Dental pulp capping, transforming growth factors, bone morphogenetic 

protein, review. 

  



 54 

1. Introduction 

The dentin–pulp complex is able to respond to injuries (e.g. caries, traumatic 

injury, cavity preparation, restorative procedures) by hard tissue deposition in teeth 

[1, 2]. The mechanism involves dentin matrix constituents, which can induce 

odontoblast-like cell differentiation and tertiary dentin formation [3, 4]. Broadly 

speaking, dentin extracellular matrix (ECM) contains a reservoir of bioactive proteins 

sequestered within dentin and predentin, including growth factors, cytokines, 

chemokines, and matrix molecules, which regulate signal transduction between cells 

and function as stimulators and/or inhibitors of proliferation and differentiation [5, 6]. 

The knowledge that dentin is not an inert and passive tissue, as previously believed, 

but a reservoir of bioactive molecules that can be recruited on demand enabled a 

major discovery in the field of dental pulp tissue repair and regeneration [7]. 

In this context, repair and regeneration process of dentin-pulp complex 

comprise a cascade of cellular and molecular events with matrigenic, angiogenic, 

and neurogenic outcomes [6]. The non-collagenous proteins (NCPs) presented in 

ECM includes bioactive molecules such as family members of transforming growth 

factor-β (TGF-β) superfamily: TGF-β (isoforms TGF-β1, -β2, -β3), bone 

morphogenetic protein (BMP-2, BMP-3, BMP-4, BMP-5, BMP-6, BMP-7/OP-1), 

insulin-like growth factor-1 and 2 (IGF-1 and -2), fibroblast growth factor-2 (FGF-2), 

adrenomedullin, dentin sialoprotein (DSP), derntin phosphoprotein (DPP), bone 

sialoprotein (BSP), dentin matrix protein-1 (DMP-1), matrix extracellular 

phosphoglycoprotein (MEPE), platelet-derived growth factor (PDGF), vascular 

endothelial growth factor (VEGF) [5-8]. This diverse group of molecules reflects the 

complexity of the cellular signaling events capable of induce tooth repair and 

regeneration [6]. 

Thus, advances to understand the applicability of bioactive dentin proteins 

are emerging side by side with the development of new drug delivery systems and 

biologically based therapies with bioactive materials. The paradigm of dentin as a 

bioactive matrix allows us to exploit a new concept in pulp therapy based on 

stimulation and upregulation of teeth substrates [5, 9, 10]. In this context, more 

biocompatible dental materials can be developed, which could perform a desirable 

function without eliciting any undesirable local or systemic effects, and generating the 

most appropriate tissue response, optimizing the clinically relevant performance of 

the therapy [11]. It has been reported that dental materials such as calcium hydroxide 
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cements and mineral trioxide aggregate (MTA), which are commonly used in vital 

pulp therapy (e.g. indirect pulp capping, direct pulp capping, partial or full pulpotomy) 

[12, 13], could be able to solubilize bioactive components sequestered within dentin 

and, consequently, induce dentin bridge formation [14, 15]. Better treatment 

strategies to many dental diseases could be benefit with using bioactive proteins in 

dental materials, such as caries disease, traumatic lesions of dental tissues, pulp 

exposures, pulpitis, apexogenesis, dentin sensitivity, being its full implications in pulp 

biology to be yet determined. In the near future, novel therapeutic approaches can 

enable to promote biological treatments through a defined and targeted interaction 

between dental tissue and bioactive molecules. 

Thereby, the aim of this study was systematically review the literature of 

animal experiments to evaluate the efficacy of using bioactive proteins in therapeutic 

approaches to dental tissue repair and regeneration. Additionally, we aimed to 

analyze the cellular and molecular mechanisms involved in the cascade of biological 

events of dentin-pulp complex for novel biologically based therapies. The hypothesis 

tested was that these molecules would potentiate the tertiary dentin formation and 

the intratubular mineralization, as well as to decrease the inflammatory response. 

 

2. Materials and methods 

This systematic review is reported according to the Preferred Reporting 

Items for Systematic Reviews and Meta-Analysis (PRISMA Statement) [16]. To 

formulate the question in evidence-based practice, it was used the following PICO: 

Population: animals submitted to biologically based therapies; Intervention: use of 

bioactive dentin proteins; Comparison: treatment without bioactive molecules; 

Outcome: tertiary dentin bridge formation, inflammatory process, intratubular 

mineralization. The research question was:  Does the use of bioactive dentin 

proteins improve morphological outcomes on vital pulp treatments? 

 

2.1. Search strategies 

The literature search was carried out by two independent reviewers (WLOR 

and TMS) until October of 2015. Eight databases were screened: Pubmed 

(MedLine), Lilacs, Ibecs, Web of Science, BBO, Scopus, SciELO and The Cochrane 

Library - using the search strategy initially developed for PubMed (MedLine) and 

adapted for use in other databases (Table 1). Terms related to bioactive dentin 
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proteins and vital pulp treatments were crossed in order to optimize the retrieval of 

relevant documents. The references cited in the included papers were also 

handsearched to identify other potentially relevant articles. After the identification of 

studies in databases, they were imported into Endnote X7.4 software (Thompson 

Reuters, USA) to remove duplicates. 

2.2. Study selection 

Two review authors independently assessed the titles and abstracts of all  

documents. The studies were analyzed according to the selection criteria (Fig. 1). It 

was performed a pilot search in clinical trials using bioactive dentin proteins, however 

no record was retrieved. Thus, our review included only animal experiments in which 

bioactive proteins were applied directly or indirectly at the pulp. Full copies of all of 

the potentially relevant studies were identified. Those appearing to meet the inclusion 

criteria or for which there were insufficient data in the title and abstract to make a 

clear decision were selected for full analysis. The full-text papers were assessed 

independently and in duplicate by two reviewers. Any disagreement regarding the 

inclusion of studies was resolved through discussion and consensus or by a third 

reviewer (AFS). Only papers that fulfilled all of the eligibility criteria were admitted. 

2.3. Data extraction  

The data were extracted using a standardized form in Microsoft Office Excel 

2016 software (Microsoft Corporation, USA). If there was some information missing, 

the authors of the included papers were contacted via e-mail to retrieve any missing 

data. The reviewers tabulated the following data of all included studies: type and 

number of animals, number of teeth evaluated, type of vital pulp therapy, follow-up 

period (Table 2). The characteristics of the included studies, such as bioactive 

molecules evaluated, protein dilution, carriers and delivery systems used were also 

analyzed (Table 3). Besides, evaluation methods and main findings from each 

included study were tabulated in order to assess the outcomes of interest: tertiary 

dentin formation, inflammatory response, and intratubular mineralization. 

 

2.4. Quality assessment 

The methodological quality of each included study was independently 

assessed by the two reviewers based on the SYRCLE’s risk of bias tool for animal 

studies [17]. The studies were evaluated to provide a framework for judging the 
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studies methodological quality according to the description of the following 

information: random sequence generation (selection bias), baseline characteristics 

(selection bias), blinding of outcome assessment (detection bias), incomplete 

outcome data (attrition bias), selective reporting (reporting bias) and other bias. Each 

component was graded at low, unclear or high risk of bias in the software RevMan 

5.2 (The Cochrane Collaboration, Denmark).  

 

3. Results 

3.1. Search strategy 

Fig. 2 is a flowchart that summarizes the article selection process according 

to the PRISMA Statement [16]. A total of 3019 potentially relevant records were 

identified from all databases. After the title and abstract examination, 1990 studies 

were excluded once they did not meet the eligibility criteria. Of the 42 documents 

retained for detailed review, 10 studies could not be able to be included: in 4 studies 

the treatment was implanted intrapulpally [2, 18-20]; 4 were review articles [10, 21-

23]; 2 studies not evaluated proteins effects after vital pulp capping treatment [24, 

25]. A total of 32 studies fulfilled all of the selection criteria and were included in the 

qualitative analysis. 

 

3.2. Descriptive analysis 

Thirty-two animal studies evaluating the effects of bioactive proteins in vital 

pulp teeth were published between 1990 and 2015 (Table 2). Six different animals 

were used in the studies design: most of them evaluated rats (12 studies), followed 

by dogs (9), ferrets (5), monkeys (4), goats (1) and mini pigs (1). Regarding vital pulp 

therapies, direct pulp capping was the most evaluated (24 studies), and 4 studies 

were with indirect pulp capping. The other 4 animal experiments evaluated 

pulpotomy. Follow-ups varied from 14 days to 6 months. Besides, the majority of pulp 

exposures were performed with sterile burs, and some studies the procedure was 

followed by tip of a steel probe or dental explorer. Moreover, different materials were 

used to cover the cavities, and the most common were glass ionomer cements and 

zinc-oxide-eugenol cement.  

Regarding the bioactive proteins evaluated (Table 3), BMP-7 (bone 

morphogenetic protein-7), TGF-β1 (transforming growth factor-β1) and soluble dentin 

matrix proteins extracted from rabbit’s teeth were the most studied, respectively, by 
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16, 6 and 4 animal experiments. Other proteins investigated were DMP-1 (dentin 

matrix protein-1), BSP (bone sialoprotein), EGF (epidermal growth factor), FGF-2 

(fibroblast growth factor-2), IGF-1 (insulin-like growth factor-1), IGF-2 (insulin-like 

growth factor-2), PDGF-BB (pratelet-derived growth factor BB), BMP-2 (bone 

morphogenetic protein-2) and DPP (dentin phosphophoryn). Commonly, bioactive 

molecules were dissolved in reagents such as phosphate-buffered saline (PBS) [26-

28], pyrogen-free water [29], sodium acetate [30], serum albumin [31, 32], acetic acid 

[33]. Although some proteins were applied in vivo in lyophilized form [1, 34-36], a lot 

of studies used carriers to the proteins, such as collagen [28-30, 37-47], gelatin [27, 

48, 49], agarose [26], sodium alginate [33], chitosan [50]. The use of microspheres of 

gelatin hydrogel [27, 28], chitosan [50] and polylactic-co-glycolic acid (PLGA) [32] 

were also investigated to the controlled release of these molecules. Moreover, 

calcium hydroxide was the most common commercial control used. Fig. 3 represents 

the main principal carriers identified in the literature and main outcomes observed 

after their application in vital pulp therapy. 

The main methods used to analyze the effects of biologically based therapies 

were qualitative (morphological) and quantitative (histomorphometric) evaluations. 

Some studies used radiographic analysis or immunohistochemical evaluation for 

DSP (dentin sialoprotein) [26, 28, 33, 51] and DMP-1 (dentin matrix protein-1) [26, 

27, 37]. In general, BMP-7, TGF-β1 and soluble dentin matrix proteins extracted 

enhanced tertiary dentin formation in direct pulp capping, and promoted a lower 

inflammatory response (Table 4). For indirect pulp capping (Table 5), a higher 

deposition of tertiary dentin matrix was observed after application of TGF-β1 [31] and 

soluble dentin matrix proteins extracted [34, 35], and to a lesser extent, BMP-7 [31]. 

Intratubular mineralization was also evaluated by only one study [31] that 

demonstrated TGF-β1 was able to induced mineralization with indirect pulp 

therapy. Moreover, after pulpotomy (Table 6), BMP-7 and BMP-2 was not able to 

induce tertiary dentin formation [29, 52], especially in studies with reversible pulpits 

induced [43, 44].  

 

3.3. Risk of bias 

Regarding the assessment of risk of bias, Fig. 4 summarizes the information 

used to assess methodological quality of the studies. The studies scored particularly 

poorly on the following items: random sequence generation (selection bias), blinding 
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of outcome assessment (detection bias) and other bias. A low risk of bias was related 

to baseline characteristics (selection bias), incomplete outcome data (attrition bias), 

selective reporting (reporting bias). 

 

4. Discussion 

Through this review it was possible to demonstrate that bioactive dentin 

matrix proteins could be able to potentiate the tertiary dentin formation with less initial 

inflammatory response in direct and indirect pulp capping. In dentin–pulp complex, 

repair and regeneration process reflects the natural wound healing responses seen 

in many of the body’s tissues [5]. In this context, dentin matrix components are 

involved in the cascade of biological events that may stimulate pulpal progenitor/stem 

cells proliferation to expand their cell population prior to differentiation into 

odontoblast-like cells, as well as providing chemotactic attraction of these cells to 

sites of injury in order to promote deposition of tertiary dentin [1, 3, 5]. Although 

animal experiments with bioactive dentin proteins presented heterogeneity, there is 

evidence in the literature that suggests the use of bioactive molecules in biologically 

based therapies can be effective in direct and indirect pulp capping, with potential to 

be exploited for novel therapeutic approaches to dental tissue repair and 

regeneration. 

However, the hypothesis was partially accepted, once for pulpotomy 

bioactive dentin proteins failed to induce dentin bridge formation. Only four studies 

are available in the literature with pulpotomy, and further research should be 

conducted with other bioactive molecules, once only BMP-7 and BMP-2 was 

evaluated. Besides, in two studies [43, 44] dental pulps inflammation was induced by 

direct injection of a solution with Salmonella typhimurium lipopolysaccharide (LPS; 

Sigma Chemical, USA). However, this microorganism is not related to dental caries 

progression, and a model that stimulate dental caries in vivo (as the widely accepted 

proposed by Bowen [53, 54]) could be important to assess the biological effects of 

these bioactive materials in inflamed pulps due to caries. Besides, it could be 

necessary that the immune response precedes reparative or regenerative events, 

and the removal of invading cariogenic bacteria and ensuing inflammatory processes 

could be deleterious to the dentin-pulp complex, which in turn compromise tissue 

repair [5]. 

Although our complete understanding of dental tissues interactions is limited, 
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dental pulp contains stem cells within niches, which provide a microenvironment 

responsible for maintaining these cells in their undifferentiated state, and could be 

stimulated by many bioactive proteins [6]. The literature demonstrated that bone 

morphogenetic proteins (BMP-2, -4 and -7) induce tertiary dentin formation in vivo in 

direct pulp capping. Only one study reported that MTA showed significantly more 

complete dentin bridge formation compared with BMP-7, however the follow-up was 

of just 2 weeks [51]. These proteins are a family of signaling molecules involved in 

the formation of many tissues and organs including bones and teeth [43, 55, 56]. 

Furthermore, it was previously demonstrated that pulp fibroblasts express the BMP 

receptors BMPR-IA, -IB, ActR-1 and BMPR-II mRNA transcripts [57], and dentin, like 

bone, contains BMP activity [43]. Other studies also reported that BMP-7 can 

mediate epithelial-mesenchymal interactions during the initiation phase of 

odontogenesis and morphogenesis [58], which demonstrated that this protein can 

maximize results from biollogicaly based therapies. These molecules stimulate a 

broad range of different outcomes in dental tissues, and the knowledge of this 

complex mechanism is fundamental to scientists optimize new therapeutic 

approaches. 

Another important bioactive dentin protein extensively studied was 

transforming growth factor-β1 (TGF-β1), which is a complex molecule with multiple 

effects in dental tissues [59]. Other studies reported that the protein can induce up-

regulation of dentin matrix by odontoblasts and the odontoblast-like cell differentiation 

in vitro [60]. Besides, TGF-β1 is able to induce the dental pulp stem-cell mediated 

mineralization [61], the dentin intratubular mineralization in vivo and it is a 

physiological regulator of osteoblast differentiation [62]. Other proteins that also 

induced deposition of mineralized tissue in teeth from animal studies were epidermal 

growth factor (EGF), insulin-like growth factor-1 and -2 (IGF-1 and-2), pratelet-

derived growth factor BB (PDGF-BB), bone sialoprotein (BSP), fibroblast growth 

factor-2 (FGF-2), dentin phosphophoryn (DPP) and dentin matrix protein-1 (DMP-1). 

DMP-1 plays an essential role in dentin mineralization [63], and it is reported to be 

involved in the inflammatory process activating the synthesis of interleukin-6 and -8 

(IL-6 and -8) from pulp fibroblasts [64]. Besides, in vitro studies showed that 

fibroblast growth factor-2 (FGF-2) also up-regulates chemokines [65], and induced 

cellularization and revascularization of human teeth implanted into the dorsum of rats 

[66]. Further research is needed to evaluate the efficacy of using these different 
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dentin matrix molecules, and the interactions between them in bioactive materials.  

Although studies usually evaluated the effects of a single bioactive protein, it 

may not be the action of only one growth factor responsible for induction of 

odontoblast-like cell differentiation, once the process involves the interaction of many 

proteins that are likely to be key to dentin-pulp complex repair and regeneration[5]. 

Four studies [1, 34-36] evaluated soluble dentin matrix proteins extracted from 

rabbits teeth, which probably better represents the pool of bioactive molecules 

necessary to create the adequate microenvironment to repair or regenerative events 

in teeth. The detailed process employed to the extraction of non-collagenous proteins 

was first described by Smith et al. [36]. It has been reported that this lyophilized pool 

should be directly used to induce tertiary dentinogenesis as the chemotactic and 

other factors necessary for morphogenic activity are lost when this preparation is 

submitted to further purification [36]. All studies showed a significant deposition of 

tertiary dentin matrix in direct [36] or indirect pulp capping [1, 34, 35] after application 

of these protein pool, which it was also higher than the commercially available pulp 

capping agent calcium hydroxide [1]. It was also reported that some specimens 

presented dentin deposition with similar appearance to sound dentin [34]. However, 

the understanding of protein pool present in dentin-pulp complex is still very limited; 

and could provide a powerful means to extract the complex cocktail of bioactive 

proteins able to stimulate natural repair or regenerative processes [6]. Besides, the 

extraction of bioactive dentin proteins can be a low cost method when compared to 

using recombinant growth factors, which can be exploited by novel therapies and 

dental materials focused on hard tissue engineering approaches, especially 

regenerative dentistry.  

In this context, regenerative dentistry has increase in the last decades 

through tissue engineering, which involves the use of progenitor cells capable of 

tissue regeneration when seeded in biodegradable scaffolds and exposed to 

bioactive molecules [7, 67, 68]. Although none included studies used progenitor cells 

in experimental pulp capping agents, the main goal of the proposed treatments 

involves a strategy of recruitment and stimulation of progenitor pulp cells, which is 

similar to tissue engineering goal. Furthermore, the translation of biologically based 

therapies into routine clinical use faces significant challenges. For example, bioactive 

materials need to release its molecules in the active form, and some proteins are 

susceptible to degradation at high temperature or pH of setting reaction. Besides, the 
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interaction between dental materials in contact with tooth tissue is influenced by 

many factors, including the composition of the material, the acidity or alkalinity, the 

chemistry and concentration of its components or degradation products, the 

presence of microorganisms, as well as the ability of the tissue to respond to 

bioactive materials [69]. Thus, the preservation of biological activity of these 

materials in clinical applications is still a challenge considering storage and molecule 

delivery at desired release kinetics and active form (bioactivity). Moreover different 

clinical treatments require the optimization of ideal release rate capable of providing 

a spatial and temporal control of these proteins over repair and regeneration. 

There are many ways to control release kinetics of bioactive molecules, and 

the carriers used by animal studies included collagen [28-30, 37-47], gelatin [27, 48, 

49], agarose [26], sodium alginate [33] and chitosan [50]. The optimization of how 

much proteins is ideal goes hand in hand with the definition of how quickly it should 

be released and for how long [7]. Although few studies are currently available in the 

literature, the combination of these molecules and drug delivery systems has 

attracted attention because of the potential benefits of controlled release of proteins. 

The use of material with multiple layers has recently been reported for direct pulp 

capping [50], which tested in vivo a chitosan membrane loaded with microspheres 

containing TGF-β1. Additionally, there are other reports in the literature of gelatin 

hydrogel [28] and polylactic-co-glycolic acid (PLGA) microspheres [32] with 

encapsulation of biactive molecules, and all studies demonstrated an improvement in 

protein release in pulp capping treatments. The development of new strategies for 

controlled release of these proteins can be critical to maximize their effects at shorter 

and longer time periods [7]. Some recent studies have also show other potentially 

drug delivery systems to these bioactive materials, such as poly-2-hydroxyethyl 

methacrylate (polyHEMA)-based hydrogel [70], tricalcium phosphate microsphere–

hydrogel composite [71], porous silk fibroin scaffolds [72] and biodegradable polymer 

matrix of lactide and glycolide [73]. Further research could also aim to use bioactive 

proteins combined with other agents (e.g., antibiotics, inhibitors of inflammation), 

which could improve the action of bioactive dental materials.  

The formation, quality, and thickness of tertiary dentin brigde, as well as the 

presence of inflammatory cells and preservation of the pulp are commonly used as 

evaluation criteria after vital pulp therapy in many investigations on animal teeth [74-

79]. The included studies also presented heterogeneity regarding these different 
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evaluation methods to assess the efficacy of bioactive materials, such as 

morphological, histomorphometric, immunohistochemical and radiographic 

evaluation. Besides, it was observed variation regarding different follow-up periods 

and commercial controls. Only two studies [51, 52] used mineral trioxide aggregate 

(MTA) as commercial control compared to bioactive materials in direct pulp capping, 

while the majority used calcium hydroxide. Besides, one study presented the shorter 

follow-up period among included animal experiments, of up to 2 weeks, and 

demonstrated that MTA capped pulps presented more complete dentin bridge 

formation compared with BMP-7 group in pulpotomy [51]. Although calcium 

hydroxide remains the gold standard in vital pulp therapy, further research should be 

conducted to compare the bioactive proteins with different commercial controls, as 

MTA, which recently has been reported to present better long-term results after direct 

pulp capping compared with calcium hydroxide [12, 13], and it is the commercial 

reference recommended by normatives ISO 7450 (2008) or ANSI/ADA no. 41 [80, 

81]. 

Although there is no consensus about the most adequate follow-up to 

analyze morphological outcomes in teeth, it is important to assess their short and 

long-term effects, which can differ regarding the outcomes of interest. For example, 

while it is important to analyze inflammatory response at short-term, for tertiary dentin 

formation a higher follow-up is necessary. In general, the deposition of tertiary dentin 

was assessed by the majority of animal studies, and only 5 studies [26, 28, 33, 37, 

51] performed immunohistochemical analysis with the antibodies for DSP (dentin 

sialoprotein) and DMP-1 (dentin matrix protein-1). However, primary odontoblasts 

express a profile of molecular markers that is not unique to these cells, as nestin, 

dentin sialophosphoprotein (DSPP), DMP-1, and matrix extracellular 

phosphoglycoprotein, among other markers [6]. DSP is a cleaved product from dentin 

sialophosphoprotein (DSPP) and are mainly expressed by odontoblasts [5], while 

DMP-1 is expressed in differentiating odontoblasts [82] and is essential for 

mineralization and maturation of predentin to dentin during dentinogenesis [83, 84]. 

The expression of these two proteins are strongly linked with the biological effects 

expected after using bioactive materials in vital pulp therapy, which makes them an 

important histological marker for research in this area. However, other identification 

criteria such as cellular morphology and matrix morphology can increase confidence 

of identifying the odontoblast phenotype. The morphology of these cells varies 
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through its life cycle [85, 86], and a simple molecular characterization is not 

necessarily a robust means of identifying its phenotype [6]. 

In support of the inducer potential of the dentin matrix components, it is 

interesting to note that molecules previously shown to be key of tertiary dentin 

formation were also able to control the inflammatory process [5, 87, 88]. It is reported 

that some dentin matrix proteins promote the migration and pro-inflammatory 

activation of immune system cells when they are released from their matrix-

immobilized state. Molecules such as TGF-β1 and adrenomedullin (ADM) have well-

know anti-inflammatory properties, and the modulation and resolution of the immune 

and inflammatory response within the dentin–pulp complex may favour repair [5].  

Furthermore, intratubular mineralization was assesses by scanning electron 

microscopy (SEM) for only one study [31], which evaluated the effects of 4 different 

growth factors (TGF-β1, IGF-1, FGF-2, BMP-7) indirectly applied over dental pulp. It 

was demonstrated that TGF-β1 significantly improved intratubular mineralization after 

8 weeks, and it could be one of the main factors involved in dentin sclerosis. The 

upregulation of odontoblasts can lead to focal secretion of new matrix at the dentin-

pulp interface and possibly, intratubularly. This can contribute to the histological 

appearance of dentin sclerosis at the injury site with a decrease in dentin 

permeability [1, 89].  The understanding of the physiological mechanism involved in 

obliteration of dentin tubules can allow exploiting new opportunities for biologically 

based therapies in dentistry, e.g. for dentin hypersensitivity, which occurs after dentin 

receive stimuli that lead to the movement of fluid within dentin tubules [90]. 

Although this is the best currently available evidence that demonstrates a 

benefit in using bioactive dentin proteins in vital pulp therapy, only animal studies are 

nowadays available in the literature and the strength of clinical inference is not 

strong. One limitation of this review was the degree of scientific evidence obtained 

and the quality level of the studies found. The included studies also showed 

heterogeneity regarding the type of bioactive molecule used and the treatment 

protocol, which precluded a direct comparison. Besides, the quality of the included 

studies emphasized the need for further well-designed, randomized and controlled 

animal studies to highlight the benefits of using bioactive materials in vital pulp 

therapy. Factors such as random sequence generation, sample size calculation, 

blinding the outcome assessment, and use of different evaluation methods could 

improve the quality of studies in this research field. Besides, it is important to follow 
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adequate normative in animal experiments for pulp capping evaluations, as ISO 7450 

(2008) or ANSI/ADA no. 41) [80, 81], which it was not reported by any included 

study. In general, it is recommended that the study design have at least 10 teeth 

containing test material and 5 control teeth for each time period, to use a minimum of 

two non-rodent mammals of one species, to use MTA as reference control, and to 

evaluate the results at the time point of 25±5 and 70±5 days. Furthermore, although 

only two studies included were published after the publication of ARRIVE guidelines 

(Animal Research: Reporting of In Vivo Experiments) [91], following the standard in 

report of animal studies may improve studies quality and facilitate the comparison 

between different treatments in future systematic reviews. 

Finally, biologically based therapies have long been important in dentistry 

and offer significant promise for future advances in materials and technological 

innovations. Bioactive dentin proteins act upon numerous cell types through cell 

surface receptors, and some factors must be taken into consideration that could 

influence treatments to vital pulp with these molecules. Their effects vary depending 

on their dose, state of activation, differentiation stage of target cells, and interplay 

with other bioactive molecules and extracellular matrix [3, 31]. Moreover, the high 

cost of biomaterials containing dentin matrix proteins may be a market entry barrier 

for bioactive materials. Dentin protein extraction at low cost may be an important 

alternative source of molecules in the future. Furthermore, this research field is 

inherently interdisciplinary, in particular relating to biomaterials, tissue engineering, 

and molecular and cellular biology. The understanding of the molecular mechanisms 

to control tooth repair and regeneration offers exciting opportunities to develop dental 

materials focused on novel biological treatment strategies [7]. Although these are 

rather substantial challenges, it is becoming evident that the successful development 

of bioactive materials has long-lasting benefits that surpass potential risks.  

 

5. Conclusions 

There is evidence in the literature that suggest dentin bioactive molecules 

could be able to improve tertiary dentin formation with initial less inflammatory 

response in vital pulp treatments. Furthermore, these molecules are of potential use 

for novel therapeutic approaches with bioactive materials not only in tissue repair but 

also in regeneration. 
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Tables  
 

 
Table 1 – Search strategy used in PubMed (MEDLINE) 

 
	

 Search terms 
#3  Search #1 AND #2 

#2  
 

“Dentin matrix protein” OR “protein, dentin matrix” OR "Transforming Growth Factors"[Mesh] OR  
"Transforming Growth Factors” OR “Bioactive protein” OR “proteins, bioactive” OR “bioactive 
proteins” OR “Bone Morphogenetic Protein 7” OR “Osteogenic Protein-1” OR “Osteogenic Protein 
1” OR “BMP-7” OR “Bone Morphogenetic Proteins” OR “Morphogenetic Proteins, Bone” OR “Bone 
Morphogenetic Protein” OR “Morphogenetic Protein, Bone” OR “Factors, Transforming Growth” OR 
“Growth Factors, Transforming” OR “Transforming Growth Factor” OR “Factor, Transforming 
Growth” OR “Growth Factor, Transforming” OR “Transforming Growth Factor beta1” OR 
“Transforming Growth Factor beta I” OR “TGF-beta1” OR “TGF-beta-1” OR “TGF beta 1” OR 
“Transforming Growth Factor beta 1 Latency Associated Peptide” OR “TGF-beta1 Latency-
Associated Protein” OR “Latency-Associated Protein, TGF-beta1” OR “TGF beta1 Latency 
Associated Protein” OR “TGF-beta1LAP” OR “TGF beta1LAP” OR “Transforming Growth Factor 
beta2” OR “TGF-beta2” OR “TGF-beta-2” OR “Transforming Growth Factor beta 2 Latency 
Associated Peptide” OR “TGF-beta2LAP” OR “TGF beta2LAP” OR “TGF-beta2 Latency-
Associated Protein” OR “Latency-Associated Protein, TGF-beta2” OR “TGF beta2 Latency 
Associated Protein” OR “Insulin-Like Growth Factor I” OR “Insulin-Like Somatomedin Peptide I” OR 
“Insulin Like Somatomedin Peptide” OR “Somatomedin C” OR “IGF-I-smc” OR “IGF-1” OR “IGF-I” 
OR “Insulin Like Growth Factor I” OR “dentin sialophosphoprotein” OR “dentin phosphoprotein, 
human” OR “dentin matrix protein” OR “dentin sialoprotein, human” OR “DSPP protein, human” OR 
“dentin sialophosphoprotein, human” OR “dentin matrix protein 3, human” OR “dentin 
phosphophoryn protein, human” OR “dentin phosphoprotein” OR “dentin phosphophoryn” OR 
“dentin sialoprotein” OR “Osteopontin” OR “Sialoprotein 1” OR “Secreted Phosphoprotein 1” OR 
“Bone Sialoprotein 1” OR “Sialoprotein 1, Bone” OR “Bone Sialoprotein I” OR “Sialoprotein I, Bone” 
OR “Uropontin” OR “Fibroblast Growth Factor 2” OR “Basic Fibroblast Growth Factor” OR “FGF-2” 
OR “FGF 2” OR “FGF2” OR “Fibroblast Growth Factor, Basic” OR “Fibroblast Growth Factor-2” OR 
“EGF Family of Proteins” OR “Proteins EGF Family” OR “Epidermal Growth Factors” OR “EGF 
Receptor Ligands” OR “Ligands, EGF Receptor” OR “Receptor Ligands, EGF” OR “Epidermal 
Growth Factor-Like Proteins” OR “Epidermal Growth Factor Like Proteins” 

#1 
 

"Dental Pulp"[Mesh] OR “Dental Pulp” OR “Pulp, Dental” OR “Pulps, Dental” OR “Dental Pulps” OR 
“Dental Pulp Diseases” OR “Pulp Diseases, Dental” OR “Diseases, Dental Pulp” OR “Pulp Disease, 
Dental” OR “Dental Pulp Disease” OR “Disease, Dental Pulp” OR “Dental Pulp Exposure” OR 
“Exposure, Dental Pulp” OR “Pulp Exposure, Dental” OR “Pulpitis” OR “Inflammation, Endodontic” 
OR “Endodontic Inflammation” OR “Endodontic Inflammations” OR “Inflammations, Endodontic” 
OR “Apexogenesis” OR “Apexogeneses” OR “Dental Pulp Capping” OR “Pulp Capping, Dental” OR 
“Pulp Capping” OR “Capping, Pulp” OR “Cappings, Pulp” OR “Pulp Cappings” OR “Capping, Dental 
Pulp” OR “Cappings, Dental Pulp” OR “Dental Pulp Cappings” OR “Pulp Cappings, Dental” OR 
“Pulp Capping Agents” OR “Pulp Capping Agents” OR “Agent, Pulp Capping” OR “Agents, Pulp 
Capping” OR “Capping Agent, Pulp” OR “Capping Agents, Pulp” OR “Pulp Capping Agent” 



	
 Table 2 - Demographic and main study design data of included studies 

Author Year Country Animal Number of 
animals 

Number of teeth 
(total per 

protein group) 
Treatment 
evaluated Pulp exposure Restoration Follow-up 

Almushayt 
[37] 

2006 United 
States 

Rats 24 30 (10) Direct Pulp 
Capping 

Induced with sterile 
burs followed by tip of 
a sterile dental 
explorer 

- 14 and 28 
days  

Andelin 
[51] 

2003 United 
States 

Rats - 35 (10)* Direct Pulp 
Capping 

Induced with sterile 
burs 

MTA (ProRoot MTA, 
Dentsply, USA) 

14 days 

Bezerra da 
Silva [29] 

2008 Brazil Dogs 6 60 Pulpotomy Induced with sterile 
burs 

Resin-modified glass 
ionomer cement (Vitremer, 
3M ESPE, USA) 

7 and 70 
days 

Chaussain 
[26] 

2009 France Rats 16 - (-) Direct Pulp 
Capping 

Induced with round 
bur and tip of a steel 
probe 

Glass ionomer cement (GC 
Fuji II, GC Corportion, 
Japan) 

7, 15 and 30 
days 

Duque [1] 2006 Brazil Monkeys 4 18 (6) Indirect Pulp 
Capping 

No exposure Dental amalgam*** 180 days 

Gao [92] 1995 China Dogs 2 40 (-) Direct Pulp 
Capping 

Induced with sterile 
burs 

Zinc phosphate cement 
followed by composite 
resin*** 

14 and 28 
days 

Goldberg 
[48] 

2001 France Rats - - (-) Direct Pulp 
Capping 

Induced with sterile 
burs followed by tip of 
a steel probe 

Glass ionomer cement  (Fuji 
IX, GC Corporation, Japan) 

8, 14, and 28 
days 

Hu [30] 1998 United 
States 

Rats >50 95 (-) Direct Pulp 
Capping 

Induced with sterile 
burs followed by tip of 
a sterile dental 
explorer 

Dental amalgam*** 14 and 21 
days 

Ishimatsu 
[27] 

2009 Japan Rats 30 60 (6) Direct Pulp 
Capping 

Induced with sterile 
burs 

Alfa-TCP Cement (New 
apatite liner,  Dentsply, 
Japan)  

7 and 21 
days 

Jepsen 
[38] 

1997 Germany Miniature 
pigs 

4 16 (8)* Direct Pulp 
Capping 

Induced with sterile 
burs 

Zinc-oxide-eugenol 
cement*** 

35 days 

Kalyva [31] 2010 Greece Dogs 8 - (-) Indirect Pulp 
Capping 

No exposure Dental amalgam*** 21 and 60 
days 



	
Kikuch [28] 2007 Greece Dogs 8 - (-) Direct Pulp 

Capping 
Induced with sterile 
burs 

Alfa-TCP Cement (New 
apatite liner, Dentsply, 
Japan) and adhesive resin 
(Super-Bond C&B, Sun 
Medical Co, Japan) 

1, 3, 5, 14 
and 21 days 

Ko [52] 2010 Korea Rats 32 64 (16) Pulpotomy Induced with sterile 
burs 

Glass ionomer cement (Fuji 
II LC, GC Corporation, 
Japan) 

14 and 50 
days  

Koike [39] 2014 Japan Rats - 63 (21) Direct Pulp 
Capping 

Induced with sterile 
burs 

Glass ionomer cement (Hy-
bond Glasionomer CX, 
Shofu, Japan) and 
composite resin (Unifilflow, 
GC, Japan) 

7, 14 and 21 
days 

Li [50] 2014 China Dogs 6 48 (10)* Direct Pulp 
Capping 

Induced with sterile 
burs 

Resin-modified glass 
ionomer cement (GC Fuji, 
Japan) 

10 and 60 
days 

Li Zhimei 
[40] 

2007 Singapore Monkeys 9 36 (15)* Direct Pulp 
Capping 

Induced with sterile 
burs 

Intermediate Restorative 
Material (IRM, Dentsply, 
USA) 

42 and 90 
days 

Lovschall 
[93] 

2001 Denmark Rats 68 71 (9)* Direct Pulp 
Capping 

Induced with sterile 
burs 

Intermediate Restorative 
Material (IRM, Dentsply, 
USA) 

3, 7 and 28 
days 

Nakashima 
[94] 

1990 Japan Dogs 5 - (-) Direct Pulp 
Capping 

Induced with sterile 
burs 

Zinc phosphate cement  
(Elite cement, GC Dental, 
Japan) 

7, 15, 30 and 
60 days 

Nakashima  
[42] 

1994 Japan Dogs 3 18 (6) Direct Pulp 
Capping 

Induced with sterile 
burs 

Zinc phosphate and a 
composite resin*** 

70 days 

Nakashima 
[41] 

1994 Japan Dogs 2 12 (4) Direct Pulp 
Capping 

Induced with sterile 
burs 

Zinc phosphate cement  
(Elite cement, GC Dental, 
Japan) 

60 days 

Oliva-
Rodriguez 
[33] 

2011 Mexico Rats 48 96 (12) Direct Pulp 
Capping 

Induced with sterile 
burs followed by tip of 
a steel probe 

Glass ionomer cement 
(Vitrebond, 3M Espe, USA) 

14 and 28 
days 

Rutherford 
[46] 

1993 United 
States 

Monkeys 4 30 (15)* Direct Pulp 
Capping 

Induced with sterile 
burs 

Temp-Bond NE (Kerr, USA) 42 days 

Rutherford 
[45] 

1994 United 
States 

Monkeys 4 58 (50)* Direct Pulp 
Capping 

Induced with sterile 
burs 

Ketac Silver (3M ESPE, 
USA) and dental amalgam 
(Kerr, USA) 

30, 60, 120 
and 180 days  



	

*Control group with number of teeth different of intervention groups; ** Number of teeth respectively for BMP-7 (bone morphogenetic protein-7) and BSP (bone sialoprotein) 
group; *** Commercial manufacture non-informed; - Data not reported 

Rutherford 
[44] 

2000 United 
States 

Ferrets 15 60 (8) Pulpotomy 
with pulpitis 

induced 

- Glass ionomer cement (3M 
ESPE, USA) 

30 days 

Rutherford 
[43] 

2001 United 
States 

Ferrets 3 12 (4) Pulpotomy 
with pulpitis 

induced 

- - 30 days  

Six [49] 2002 France Rats 48 96 (12;18)** Direct Pulp 
Capping 

Induced with sterile 
burs followed by tip of 
a steel probe 

Glass ionomer cement (Fuji 
IX, GC Corporation, Japan) 

8, 15 and 30 
days 

Six [47] 2002 France Rats 29 58 (34)* Direct Pulp 
Capping 

Induced with sterile 
burs followed by tip of 
a steel probe 

Glass ionomer cement (GC 
Fuji II, GC Corporation, 
Japan) 

8 and 28 
days 

Smith [36] 1990 United 
Kingdom 

Ferrets 10 40 (15)* Direct Pulp 
Capping 

Induced with sterile 
burs followed by tip of 
a steel probe 

Zinc-oxide-eugenol cement 
(Kalzinol, Dentsply, USA) 

14 and 28 
days 

Smith [34] 1994 United 
Kingdom 

Ferrets 15 45 (35)* Indirect Pulp 
Capping 

No exposure Zinc-oxide-eugenol cement 
(Kalzinol, Dentsply, USA) 

2, 5, 14, 28 
and 90 days 

Smith [35] 2001 United 
Kingdom 

Ferrets 15 45 (35)* Indirect Pulp 
Capping 

No exposure Zinc-oxide-eugenol cement 
(Kalzinol, Dentsply, USA) 

2, 5, 14, 28 
and 90 days 

Suwa [95] 1993 Japan Dogs 4 - (-) Direct Pulp 
Capping 

Induced with sterile 
burs 

- 14, 21, 30 
and 60 days 

Zhang [32] 2008 Netherlands Goats 24 24 (6) Direct Pulp 
Capping 

Induced with sterile 
burs 

Glass ionomer cement*** 90 days  



	
Table 3 – Dentin matrix proteins, dilution, carrier and controls used 

Author Proteins Protein dilution Carrier Controls 

Almushayt [37] DMP-1  (recombinant dentin matrix protein-1)* - Collagen membrane NC: collagen membrane;  
CC: calcium hydroxide (Dycal, 
Dentsply, USA) 

Andelin [51] BMP-7 (recombinant bone morphogenetic protein-7, 
Creative Biomolecules, USA) 

BMP-7 placed  directly on exposed 
pulps 

- NC: pulp exposure without treatment;  
CC: MTA (Pro Root MTA, Dentsply, 
USA) 

Bezerra da Silva 
[29] 

BMP-7 (recombinant human bone morphogenetic 
protein-7, ProSpec Tany TechnoGene Ltd, Israel) 

BMP-7 and collagen solubilized in 
pyrogen-free water (Milli-Q 
Ultrapure Water Purification, 
Millipore, Billerica, Mass) 

BMP-7 and 
recombinant human-
like collagen 
(rhCollagen) in 
pyrogen-free water and 
lyophilized 

NC: collagen;  
CC: calcium hydroxide powder 
(Calcium Hydroxide zur Analyse, 
Merck, Darmstadt, Germany) and 
zinc oxide and Eugenol Cement 
(IRM, Dentsply, USA) 

Chaussain [26] DMP-1  (dentin matrix protein-1)* DMP-1  dissolved in phosphate-
buffered saline (PBS) solution 

Affi-gel agarose beads 
(Bio-Rad, USA) soaked 
in a solution of DMP-1 

NC: buffer soaked beads without 
proteins 

Duque [1] Soluble dentin matrix proteins extracted from rabbits 
teeth 

Lyophilized aliquots of proteins (Not 
dissolved) 
 

Proteins introduced as 
lyophilized aliquots 

NC:  no proteins applied followed by 
resin-modified glass-ionomer cement 
(Vitrebond, 3M ESPE, USA); 
CC: calcium hydroxide (Dycal, 
Dentsply, USA) 

Gao [92] BMP (bone morphogenetic protein)  extracted from 
young bovine bones 

BMP mixed in guanidinium chloride 
(GuHCl) and adding ceramic dentin 
(CD) 

Ceramic dentin (CD) NC: Ceramic dentin (CD) without 
BMP;  

Goldberg [48] BSP (bone sialoprotein) and BMP-7 (bone 
morphogenetic protein-7)* 

BMP-7 mixed with  collagen Gelatin NC: Carrier without bioactive 
substance;  
CC: calcium hydroxide* 

Hu [30] EGF (mouse epidermal growth factor, Sigma-Aldrich, 
USA); FGF (human recombinant fibroblast growth 
factor, Sigma-Aldrich, USA); IGF-2 (human 
recombinant insulin-like growth factor-2, Boehringer, 
Germany);  PDGF-BB (human recombinant platelet-
derived growth factor BB, Upstate Biotechnology, 
USA); TGF-β1 (human recombinant transforming 
growth factor-β1, Upstate Biotechnology, USA) 

Proteins dissolved in sterile water 
or sodium acetate 

Sterile absorbable 
collagen membrane 
BioMend (Calcitek, 
USA) 

NC: collagen control;  
CC: calcium hydroxide (Dycal, 
Dentsply, USA) 

Ishimatsu [27] FGF-2 (human recombinant fibroblast growth factor-
2, Kaken Pharmaceutical Co, Japan)  

FGF-2 dissolved in PBS 
(phosphate buffered saline) 

Gelatin hydrogel 
microspheres 
incorporating FGF-2 in  

NC: gelatin hydrogel without proteins 



	
 phosphate-buffered 

saline (PBS) 

Jepsen [38] BMP-7 (human recombinant  bone morphogenetic 
protein-7)* 

BMP-7 mixed with collagen carrier 
matrix  

Collagen carrier matrix  
moistened with saline 

NC: collagen matrix moistened with 
saline at 3 mg/tooth;  
CC: calcium hydroxide (Calxyl,OCO-
Präparat GMBH, Germany) 

Kalyva [31] TGF-β1 (recombinant human transforming growth 
factor-β1, Sigma Aldrich, USA); IGF-1 (recombinant 
human insulin-like growth factor-1, R&D systems,  
Germany); FGF-2 (recombinant human fibroblast 
growth factor, R&D Systems, Germany); BMP-7  
(recombinant human bone morphogenetic protein-7, 
R&D Systems, Germany) 

Proteins dissolved in solutions 
containing dog serum albumin 
(DSA) in PBS (phosphate buffered 
saline) 

Dog serum albumin 
(DSA) and phosphate-
buffered saline (PBS) 

NC: anti-TGF-β1 and TGFβ1 + Anti-
TGFβ1 
 

Kikuch [28] FGF-2 (human fibroblast growth factor-2 , Kaken 
Pharmaceutical Co., Japan) 

FGF-2 dissolved in  PBS 
(phosphate buffered saline) and 
dropped onto freeze-dried gelatin 
hydrogel microspheres 

Gelatin hydrogel 
microspheres with 
FGF-2 were mixed with 
small pieces of 
collagen sponge 

NC: mixture of collagen sponge 
without FGF-2 gelatin hydrogel 
microspheres; 
 

Ko [52] BMP-2 (recombinant human bone morphogenetic 
protein-2, R&D Systems, USA) 

BMP-2 placed  directly on exposed 
pulps and covered with MTA 

- CC: MTA (ProRoot, Dentsply, USA) 

Koike [39] DPP (dentin phosphophoryn)  extracted from molar 
teeth from young porcine 

DPP was cross-linked to porcine-
derived type I atelocollagen  brils 
with divinylsulfone (Sigma 
Chemical, St. Louis, MO, USA) 

Type I atelocollagen 
fibrils (Collagen 
sponge, Nitta Gelatin, 
Japan) 

NC: Type I Atelocollagen without 
proteins; 
CC: calcium hydroxide (Multi-Cal, 
Pulpdent, USA) 

Li [50] TGF-β1 (transforming growth factor-β1)* Dry microspheres were placed into  
acetic buffer solution containing 
TGF-β1 

A chitosan bilayer 
membrane consisting 
of dense film on one 
side and a 
macroporous spong on 
the other side loaded 
with chitosan 
microspheres 
containing TGF-β1 

NC: membrane without proteins;  
CC: calcium hydroxide (Dycal, 
Dentsply, USA) 

Li Zhimei [40] aFGF  (acidic fibroblast growth factor, Biosource, 
USA) 

aFGF carried on the  collagen 
membrane 

Sterile bioabsorbable 
type-I collagen 
membrane (Biomend, 
Calcitek, Carlsbad, 
USA) 

NC: membrane without proteins; 
CC: calcium hydroxide (Calasept; 
Nordiska Dental, Angelholm, 
Sweden) 



	
Lovschall [93] IGF-1 (recombinant human insulin-like growth factor-

1, Pharmacia AB, Sweden) 
IGF-1 in solution (Pharmacia AB, 
Sweden) 

Fresh gel with proteins 
or saline prepared  by 
means of a 
methylcellulose (Sigma 
Aldrich, USA)  

NC: gel with physiological sterile 
saline;  
CC: calcium hydroxide (Dycal, 
Dentsply, USA) 

Nakashima [94] BMP extracted from canine bone matrix Crude BMP (Not dissolved) Proteins introduced as 
crude BMP 

NC:  canine serum albumin (Sigma, 
St Louis, USA)  

Nakashima  [42] TGF-β1 (transforming growth factor-β1), BMP-2 and 
4 (recombinant human bone morphogenetic protein-2 
and 4)* 

Proteins mixed with acid-soluble 
type I collagen (Cellmatrix Type LA, 
Nitta Gelatin Corp., Japan)  

Collagen matrix 
(Cellmatrix Type LA, 
Nitta Gelatin Corp., 
Japan). 

NC: collagen carrier without proteins 

Nakashima [41] BMP-2 and 4 (recombinant human bone 
morphogenetic protein-2 and 4)* 

BMP-2 and BMP-4 added to the 
carriers 

Inactivated dentin 
matrix powder, 
chondroitin 6-sulfate 
sodium salt (Seikagaku 
Kogyo Co., Japan) and  
acid-soluble type 1 rat 
tail tendon collagen 

NC: collagen carrier without proteins 

Oliva-Rodriguez 
[33] 

TGF-β1 (transforming growth factor-β1) and 
lyophilized BMP-7 (bone morphogenetic protein-7)* 

Proteins mixed with sodium 
alginate (Sigma-Aldrich, USA). 
TGF-β1 solution contained Tris–
acetate, EDTA and glycerol, and 
lyophilized BMP-7 was 
reconstituted in acetic acid 

Biopolymers of sodium 
alginate that include 
BMP-7 and TGF-β1 

NC: Pulp exposure without 
treatment; 
CC: calcium hydroxide* 

Rutherford [46] BMP-7 (bone morphogenetic protein-7, Creative 
BioMolecules, USA) 

BMP-7 combined with the collagen 
carrier matrix and drying under 
vacuum  

Collagen matrix NC: collagen carrier without proteins; 
CC: calcium hydroxide (Dycal, 
Dentsply, USA) 

Rutherford [45] BMP-7 (bone morphogenetic protein-7, Creative 
BioMolecules, USA) 

BMP-7 combined with the collagen 
carrier matrix and drying under 
vacuum  

Collagen matrix NC: collagen carrier without proteins 

Rutherford [44] BMP-7 (bone morphogenetic protein-7)* BMP-7 combined with the collagen 
carrier (Creative BioMolecules, 
Hopkinton, USA) 

Collagen matrix 
(Creative 
BioMolecules, 
Hopkinton, USA) 

NC: collagen carrier without proteins 

Rutherford [43] BMP-7 (bone morphogenetic protein-7)* BMP- 7 suspended in a type I 
collagen thermoset hydrogel (RD 
Bioscience, USA) 

Collagen thermoset 
hydrogel (RD 
Bioscience, USA) 

NC:  carrier with virus-free 
 

Six [49] BSP (bone sialoprotein) and BMP-7 (bone 
morphogenetic protein-7)* 

BSP covalently crosslinked to 
gelatin; and  BMP-7 in polyglycol 

Gelatin for BSP and 
polyglycol for BMP-7 

NC: gelatin or polyglycol without 
proteins;  
CC: calcium hydroxide* 



	

* Commercial manufacture non-informed; - Data not reported; NC: negative control; PC: positive control; CC: commercial control  

Six [47] BMP-7  (recombinant human bone morphogenetic 
protein-7)* 

BMP-7 combined with the collagen 
carrier  

Collagen matrix  NC: collagen carrier without proteins; 
CC: calcium hydroxide powder 
(Sigma–Aldrich, L’Isle d’Abeau 
Chesnes, St Quentin Fallavier, 
France) 

Smith [36] Soluble dentin matrix proteins extracted from rabbits 
teeth 

Lyophilized aliquots of proteins (Not 
dissolved) 

Proteins introduced as 
lyophilized aliquots  

NC: Rabbit albumin (Sigma Aldrich, 
USA) with omission of proteins 

Smith [34] Soluble dentin matrix proteins  extracted from rabbits 
teeth 

Lyophilized aliquots of proteins (Not 
dissolved) 

Proteins introduced as 
lyophilized aliquots 

NC: Rabbit albumin (Sigma Aldrich, 
USA) or omission of proteins 

Smith [35] Soluble dentin matrix proteins extracted from rabbits 
teeth 

Lyophilized aliquots of proteins (Not 
dissolved) 

Proteins introduced as 
lyophilized aliquots 

NC: omission of proteins 

Suwa [95] BMP (partially purified bone morphogenetic protein) 
extracted from bovine bone 

BMP redissolved in guanidinium 
chloride (GuHCl), to which porous 
HAP was added. Complex 
HAP/BMP was lyophilized 

Porous HAP 
(Hydroxyapatite) 
combined with BMP 

NC: hydroxiapatite alone 

Zhang [32] TGF-β1 (transforming growth factor-β1)* PLGA microparticles submerged in 
BSA/PBS solutions (bovine serum 
albumin/phosphate-buffered saline 
solution) with TGF-β1. The complex 
was lyophilized. 

Polylactic-co-glycolic 
acid (PLGA) 
microspheres 

NC: PLGA microspheres without 
proteins and none capping material 



	
Table 4 – Evaluation methods and main findings from included studies with direct pulp capping 

Study Evaluation methods Main findings 

Almushayt [37] Morphological and 
immunohistochemical 
evaluation (antibodies for 
DMP-1), confocal scanning 
laser microscopy 

DMP-1 was able to induce dentin brigde formation after 4 weeks and could act as a morphogen on 
undifferentiated mesenchymal cells present in the dentin-pulp complex. Besides, inflamation was also reduced 
after DMP-1 application.  

Andelin [51] Morphological and 
immunohistochemical 
evaluation (antibodies for 
DSP) 

Pulps capped with MTA formed hard tissue that demonstrated significantly more immunostaining for DSP 
compared with BMP-7 and also showed significantly more complete bridge formation. Besides, MTA 
demonstrated a hard tissue that was bone-like in appearance and devoid of DSP staining. 

Chaussain [26] Morphological and 
immunohistochemical 
evaluation (antibodies for 
DSP and DMP-1) 

At day 15, a continuous tertiary dentin bridge was observed after DMP-1 treatment, and a poorly organized 
reparative structure was observed in the control group without proteins. In the DMP-1 group, the cells 
associated with the bridge and located at the opposite side of the injury, presented a polarized morphology and 
were organized as a palisade, with a basal location of the nucleus, probably representing odontoblasts. These 
polarized cells were positively labeled for DSP and DMP-1. The corresponding cells in the control group were 
not polarized and showed a faint immunostaining for either DSP or DMP-1. 

Gao [92] Morphological evaluation Some osteodentinal matrix was formed after 2 weeks in BMP and ceramic dentin group. At 4 weeks, the 
dentinal bridge was complete. When ceramic dentin without BMP was used, there was minimal bone-like matrix 
formed. 

Goldberg [48] Morphological and 
histomorphometric 
evaluation 

BSP induced homogeneous and well-mineralized tertiary dentin at 28 days, while BMP-7 gave tertiary dentin of 
the osteodentin type in the coronal part of the pulp at the same period. Both proteins were superior to CH in 
their mineralization-inducing properties, and displayed larger areas of mineralization containing fewer pulp 
tissue inclusions. 

Hu [30] Morphological evaluation At 21 days groups with TGF-β1 showed significantly improved soft and hard tissue healing compared with the 
procedure control. Tertiary dentin bridges contained abundant short reparative dentinal tubules that were not 
observed in any of the other treatment groups. 

Ishimatsu [27] Morphological and 
immunohistochemical 
evaluation (antibodies for 
DMP-1) 

The dosage of released FGF-2 presented an influence on the structure of mineralized tissue regenerated in 
dentin defects. The controlled release of high doses of FGF-2 from gelatin hydrogels induced DMP-1 positive 
calcified particles in the proliferating pulp, while a moderate dose of FGF-2 induced DMP-1 positive dentinal 
bridge on the surface of the proliferating pulp.  

Jepsen [38] Morphological and 
histomorphometric 
evaluation 

Teeth treated with BMP-7 presented substantial amounts of hard tissue formation (osteodentin and tubular 
dentin) after 35 days, which led to a complete bridging of the defects.  Control with collagen matrix alone failed 
to form complete dentin bridges, and less dentin formation was seen at CH group.  

Kikuch [28] Morphological and 
immunohistochemical 
evaluation (antibody for 
DSP) 

Induction of dentin formation was distinctly different between the two types of FGF-2 release. The noncontrolled 
release of free FGF-2 from collagen sponge induced excessive tertiary dentin formation; and its controlled 
release from gelatin hydrogels induced the formation of dentin-like particles with dentin defects above exposed 
pulp. The group with gelatin hydrogel microspheres incorporating FGF-2 showed intense DSP signals in pulp 



	
cells and calcified particles.  

Koike [39] Morphological and 
histomorphometric 
evaluation 

The tertiary dentin formation induced by DPP with collagen composite was more rapid than by CH, and the 
compactness of tertiary dentin formed was much superior to CH. DPP showed high covering ability of exposed 
pulp, and led to slight pulp inflammation at the beginning whereas CH formed necrotic layer and induced severe 
inflammation in pulp tissue at 1 week. 

Li [50] Morphological evaluation After 10 days, mild to moderate pulp inflamation was observed in all groups, with no dentin bridge formation. At 
60 days, pulp inflammation disappeared, but there was no tertiary dentin bridge in the group with no pulp-
capping material. Chitosan membranes with TGF in microspheres generated tertiray dentin 3-6 times thicker 
than that with CH or membrane without proteins. 

Li Zhimei [40] Morphological evaluation After 13 weeks, both aFGF with collagen carrier group and the collagen carrier group produced significantly 
better hard tissue barrier than earlier timing at 6 weeks. However, these two groups did not induce significantly 
these tissue barrier cmpared to that produced by CH paste. 

Lovschall [93] Morphological evaluation On day 3, identical inflammatory responses in the upper pulp were observed in molars with IGF-1 gel or control 
gel. After 28 days, complete dentin bridging and tubular dentin formation were observed more frequently and 
closer to the test substance containing IGF-I. The tertiary dentin response to capping with IGF-1 was similar to 
that after the use of CH. 

Nakashima [94] Morphological evaluation The remaining pulp showed little sign of inflammation after 1 week of BMP implantation. Besides, after 8 weeks 
tertiary dentin filled more than half of the cavity. In control, a little osteodentin and no tubular dentin were seen 
after 8 weeks. 

Nakashima  [42] Morphological evaluation BMP-2 and -4 induced tertiaty dentin formation when combined with collagen matrix. In teeth implanted with 
TGF-β1, little pulp tissue proliferation was demonstranting, suggesting a possible inhibitory effect of TGF-β1 in 
pulp regeneration.  
 

Nakashima [41] Morphological evaluation BMP-2 and -4 induced a large amount of dentin. After 2 months, pulp was filed with tubular dentin in the lower 
part and osteodentin in the upper part. Besides, BMP-2 and -4 induced differentiation of adult pulp cells into 
odontoblasts.  
 

Oliva-Rodriguez [33] Morphological and 
immunohistochemical 
evaluation (antibody for 
DSP) 

The group with encapsulated BMP-7 showed an increased DSP immunostaining after 14 days and did not find 
any significant difference with the immunostaining observed for CH treatment. Groups with TGF-β1 did not 
show significant difference with CH. Besides, treatment with both factors BMP-7 and TGF-β1 showed higher 
DSP immunostaining in comparison with CH.  

Rutherford [46] Morphological and 
histomorphometric 
evaluation 

Substantially more new dentin was present in teeth treated with BMP-7/collagen than in those treated with CH, 
and the amount of tertiary dentin formed was proportional to the amount of BMP-7/collagen. No tertiary dentin 
was formed in collagen carrier or untreated teeth. 

Rutherford [45] Morphological and 
histomorphometric 
evaluation 

It was showed that the use of BMP-7 maintained radicular pulp vitality, the tertiary dentin was formed, and 
mineralization was nearly 75% complete after 1 month and more than 95% after 4 months. 



	

CH: calcium hydroxide; MTA: mineral trioxide aggregate; BMP-2: bone morphogenetic protein-2; BMP-4: bone morphogenetic protein-4; BMP-7: bone morphogenetic 
protein-7; BSP: bone sialoprotein; DMP-1: dentin matrix protein-1; DSP: dentin sialoprotein; DPP: dentin phosphophoryn; FGF-2: fibroblast growth factor-2; TGF: 
transforming growth factor-β1 
 
 
  

Six [49] Morphological evaluation BSP stimulated the recruitment of cells which produced an homogeneous atubular dentin-like structure after 1 
month, as well as BMP-7 that induced the formation of osteodentin in the coronal pulp and the radicular part of 
the pulp was totally filled by a mineralized material. 

Six [47] Morphological evaluation After 8 days, all groups showed varying inflammation, from mild of severe. At 28 days the collagen carrier group 
displayed irregular osteodentin formation. In most BMP-7 treated specimens, the initial inflammation has 
resolved at 8 days and at 28 days heterogeneous mineralization or osteodentin filled the mesial coronal pulp.  

Smith [36] Morphological evaluation A strong tertiary response was observed after implantion of pool from dentin matrix proteins extracted, 
characterized by the presence of newly formed dentin after 28 days. The reparative response was 
characterized by its intensity within a comparatively short time period and also by the low grade or complete 
absence of any localized inflammatory response. Minimal or absent tissue response was observe in controls. 

Suwa [95] Morphological evaluation A thin and necrotic layer was found on the surface of the exposed pulp after 2 weeks of capping with 
hidroxyapatite and BMP complex.  After 3 weeks, regular dentin was induced in the pulp, and many dentin 
tubules in the shape of normal dentin were observed. After 4 weeks, the rate of dentin formation increased, and 
a dentin bridge composed of osteodentin without any dentin tubules was formed. By 8 weeks, the osteodentin 
bridge had calcified. In the control group with HA alone, a dentin bridge was not found by 8 weeks.  

Zhang [32] Morphological evaluation New dentin formation was seen in all specimens with TGF-β1, except the negative controls. The composite with 
400ng of TGF-β1 was able to trigger resident stem cells in the pulp to differentiate into odontoblast-like cells and 
to induce the formation of tertiary dentin.  



	
Table 5 – Evaluation methods and main findings from included studies with indirect pulp capping 

CH: calcium hydroxide; BMP-2: bone morphogenetic protein-2; TGF: transforming growth factor-β1 
 
 
 

Study Evaluation methods Main findings 

Duque [1] Morphological evaluation Soluble dentin matrix proteins extracted stimulated higher deposition of tertiary dentin matrix than CH. No 
inflammatory pulpal response was observed for all experimental and control groups.  

Kalyva [31] Morphological and 
histomorphometric 
evaluation, and scanning 
electron microscopy (SEM) 
examination 

The group treated with TGF-β1 and, to a lesser extent, the one treated with BMP-7 showed significantly greater 
tertiary dentin formation and intratubular mineralization over 8-week period when compared with the control and the 
other experimental groups. No significant differences was observed between groups in reduction in dentin 
permeability after treatment. 

Smith [34] Morphological evaluation After 14 days there was significant deposition of tertiary dentin by the odontoblasts beneath the cavity in all teeth 
without pulp exposure, and this response increased in a non-linear manner with time of implantation. Controls 
cavities showed no evidence of tertiary dentin deposition. In some specimens tertiary dentin had a similar 
appearance to that of the sound dentin after 90 days. 

Smith [35] Morphological and 
histomorphometric 
evaluation 

Restored cavities without pulp exposures with two lyophilized preparations of dentin matrix components increased 
the mean area of tertiary dentin secreted by 433 and 578%, and the numbers of odontoblasts remained stable. 
Minimal tertiary dentin area was observed after 2 and 7 days post-surgery, and maximal dentin brigde formation 
was observed after 90 days. 



	
 
Table 6 – Evaluation methods and main findings from included studies pulpotomy 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CH: calcium hydroxide; BMP-2: bone morphogenetic protein-2; BMP-7: bone morphogenetic protein-7 
 
 
 
 
 
 

Study Evaluation methods Main findings 

Bezerra da Silva [29] Radiographic evaluation BMP-7 with collagen after pulpotomy did not induce mineralized tissue deposition, leading to the formation of 
radiographically visible periapical lesions. CH group showed dentin bridge formation, intact lamina dura and no 
periapical bone rarefaction.  

Ko [52] Morphological evaluation At 2 weeks, no complete dentin bridge was formed in any group. After 7 weeks, inflammation was reduced and 
dentin bridge formation was nearly complete after MTA or BMP-2 use. The pulp reaction to BMP-2 was not 
significantly better than use of MTA alone.  

Rutherford [44] Morphological evaluation A single application of a therapeutic dressing comprising BMP-7 and a bovine bone-derived collagen carrier 
failed to induce tertiary dentin formation in an animal model of reversible pulpitis after one month.  

Rutherford [43] Morphological evaluation BMP-7 failed to produce tertiary dentin after one month in inflamed dental pulps 
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Fig. 1 – Eligibility criteria	
	
	 	

Eligibility Criteria 

Inclusion Criteria Exclusion Criteria 

§ Studies that evaluated the use of dentin 
bioactive proteins in the treatment of 
vital pulp teeth 

§ Animal studies with radiographic or 
morphological evaluations 

§ Review articles, in vitro studies, in situ 
studies, clinical trials, pilot studies, 
case series or case reports 

§ Studies published in a language other 
than English 
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Fig. 2 - Search flow (as described in the PRISMA statement) [16] 

	
	
	
	



	

 
Fig. 3 - Representation of main carriers identified in the literature for bioactive dentin proteins and the main outcomes observed after their 
application in vital pulp therapy 
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Fig. 4 - Review authors' judgements about each risk of bias item presented as 
percentages across all included studies 
	
	



 

 

 
5 Considerações finais 

Uma alteração na tendência do desenvolvimento de materiais para proteção 

pulpar foi observada nos últimos anos a partir da análise científico-tecnológica inicial. 

Anteriormente, essa área era dominada pelo cimento de hidróxido de cálcio e, mais 

recentemente, pelo mineral trióxido agregago (MTA). Contudo, os materiais 

derivados do MTA, como cimento de silicato de cálcio, aluminato de cálcio, fosfato 

de cálcio; bem como os materiais bioativos, têm ganhado atenção com a proposta 

de superar as desvantagens dos materiais tradicionais. Adicionalmente, foi 

demonstrado que o uso de moléculas bioativas poderia potencializar o efeito de 

formação de dentina terciária e mineralização intratubular. Contudo, os desafios de 

encontrar um biomaterial que potencialize os efeitos de reparo e regeneração 

tecidual, seja biocompatível e apresente custo-benefício ainda persistem. Além 

disso, os efeitos dessas proteínas variaram de acordo com diversos fatores, entre 

eles a dose de aplicação, o estágio de ativação, a taxa de liberação e o controle da 

temperatura. Tais dificuldades ainda precisam ser superadas para que seja possível 

explorar novas abordagens terapêuticas para variadas patologias orais, como cárie, 

reabsorção radicular, sensibilidade dentinária, entre outros. Dessa maneira, o uso de 

materiais bioativos poderá permitir promover uma resposta fisiológica induzida e 

programada em tratamentos para odontologia reparativa ou regenerativa. 
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Apêndice A – Nota da Dissertação 
 

  Materiais dentários com propriedades bioativas 
 

Dental materials with bioactive properties 
 
A presente dissertação de mestrado visou analisar materiais para odontologia que 

estimulam processos de reparo ou regeneração dos dentes, bem como desenvolver 

novos materiais bioativos. A partir da análise de revisões sistemáticas foi possível 

obter um panorama do atual estado da arte e da técnica em tratamentos para polpa 

vital. Além disso, foi avaliado a eficácia do uso de proteínas dentinárias no processo 

de reparo dentinário, bem como os efeitos morfológicos da aplicação dessas 

moléculas para proteção do complexo dentino-pulpar de animais. A utilização de 

materiais bioativos pode permitir explorar tratamentos mais biológicos na 

odontologia com foco nos processos de reparo e regeneração do órgão dental. 
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