
UNIVERSIDADE FEDERAL DE PELOTAS
Centro de Desenvolvimento Tecnológico

Programa de Pós-Graduação em Computação

Dissertação

An Evaluation of Memory Controllers for Non-Volatile Memories

Giovane de Oliveira Torres

Pelotas, 2018

Giovane de Oliveira Torres

An Evaluation of Memory Controllers for Non-Volatile Memories

Dissertação apresentada ao Programa
de Pós-Graduação em Computação da
Universidade Federal de Pelotas, como
requisito parcial à obtenção do título de
Mestre em Ciência da Computação

Advisor: Prof. Dr. Maurício Lima Pilla
Coadvisor: Prof. Dr. Laércio Lima Pilla

Pelotas, 2018

Universidade Federal de Pelotas / Sistema de Bibliotecas
Catalogação na Publicação

T693a Torres, Giovane de Oliveira
TorAn evaluation of memory controllers for non-volatile
memories / Giovane de Oliveira Torres ; Maurício Lima Pilla,
orientador ; Laércio Lima Pilla, coorientador. — Pelotas,
2018.
Tor77 f. : il.

TorDissertação (Mestrado) — Programa de Pós-Graduação
em Computação, Centro de Desenvolvimento Tecnológico,
Universidade Federal de Pelotas, 2018.

Tor1. Memory hieararchies. 2. Computer architectures. 3.
Non-volatile memories. I. Pilla, Maurício Lima, orient. II.
Pilla, Laércio Lima, coorient. III. Título.

CDD : 005

Elaborada por Maria Inez Figueiredo Figas Machado CRB: 10/1612

AGRADECIMENTOS

É nesta parte da dissertação que preciso agradecer às pessoas que tornaram
possível, direta ou indiretamente a realização deste trabalho, pelos mais diferentes
motivos. Por mais que eu acredite que seja impossível conseguir resumir em algu-
mas palavras meus mais sinceros agradecimentos, acho importante ainda deixar reg-
istradas algumas palavras aqui neste espaço.

O primeiro agradecimento é para a família, especialmente aos meus pais, pelo su-
porte durante o tempo de mestrado. Ao meu pai, o agradecimento por tudo – não há
outra palavra melhor para agradecer, por que senão seria uma longa lista de agrade-
cimentos! À minha mãe (in memoriam), que durante nosso tempo de convivência, me
deixou diversos ensinamentos que procuro sempre carregar pra minha vida.

Um agradecimento ao meu orientador, Prof. Pilla, que me teve como bolsista du-
rante o tempo do mestrado (e antes já haviam sido quatro na graduação), com quem
tive a oportunidade de aprender diversos assuntos. Outro agradecimento ao meu co-
orientador, Prof. Laércio, pelas diversas ajudas nas várias etapas durante o mestrado.
Mais um agradecimento aos demais professores do curso, por ensinamentos, conver-
sas e outras coisas.

Muitíssimo obrigado ao LUPS, o laboratório que continuei meus estudos para fazer
o mestrado, que embora às vezes tenha sido um lugar com diversos problemas para
trabalhar, me propiciou boas experiências. Indepentente disso, foi lá que desenvolvi o
trabalho escrito nesta dissertação; conheci pessoas incríveis; fiz amizade com algu-
mas poucas pessoas, que me ajudaram demais, além de proporcionar boas histórias,
risadas e outras coisas, tanto em atividades dentro quanto fora da faculdade – e estes,
vocês sabem quem são, não é mesmo, seus aleatórios?

Mais um agradecimento é necessário, à todas as pessoas que tive a oportunidade
de conhecer neste período. Cada um, mesmo não sabendo, me ensinou alguma coisa
diferente. A quem eu conheci e foi construída uma amizade neste período, um outro
muito obrigado: por ajudas, conversas, e outras tantas coisas feitas. E aos amigos
que eu já tinha antes de começar o mestrado, e que ainda continuam sendo meus
amigos, vai um grande agradecimento, por todos os tipos de atividades feitas que,
sem dúvidas, foram extremamente importantes para mim.

É vivendo que se aprende.
— FERNANDO BENINI

ABSTRACT

TORRES, Giovane de Oliveira. An Evaluation of Memory Controllers for Non-
Volatile Memories. 2018. 77 f. Dissertação (Mestrado em Ciência da Computação)
– Programa de Pós-Graduação em Computação, Centro de Desenvolvimento Tec-
nológico, Universidade Federal de Pelotas, Pelotas, 2018.

Many demands which include performance and energy consumption are present
in current computational systems. In this context, actual memory technologies
are critical components which affect directly both performance and energy cost
of a system. Thus, memory needs improvements since they could be reaching
its scalability limit. One of the alternatives to improve memory subsystems is the
use of non-volatile memories (NVMs). These memories have overall low energy
consumption and better scalability when comparing with volatile memories. However,
NVMs still have issues which need to be overcome in order to allow large-scale use.
Those issues include costly write operations (both on latency and energy) and lower
material endurance if compared to current memory technologies. Parallel to that,
one difficulty to adopt NVMs as main memories in computational systems is related
to providing a proper scheduling of memory operations – as it should cope with the
particular characteristics of NVMs. With that issues in mind, this work presents a
memory controller implementation – in addition to that, a runtime analysis of memory
operations in NVM-based systems is performed. To implement a memory controller,
we use Gem5 and NVMain simulators, since their combination could reach runtime
evaluations that this work aims. Then, the implemented controller was tested by
running applications from MediaBench and MiBench benchmark set. With that, the
controller was analyzed under different configurations. Tests were performed using the
three most well-known and studied NVMs (PCRAM – Phase Change Random Access
Memory, RRAM – Resistive Random Access Memory and STT-RAM – Spin Transfer
Torque Random Access Memory). The main observations that could be highlighted
in this work were: (i) while running the benchmarks in isolation, the time spent in
serving memory requests is very low, not surpassing 2% of the total execution time of
any application tested, (ii) when running the memory controller under different NVM
technologies, latencies of read and write operations in overall were mostly impacted
by the different type of memories used, (iii) when using queues with variable sizes to
hold memory requests, it made negligible difference in overall performance, due to
applications having small busy periods, i.e., generating and serving a small number
of memory requests in detriment of other operations. Lastly, a comparison between
the implemented memory controller and NVMain default memory controllers was
performed, which pointed out that in the majority of the studied cases, the proposed

memory controller may need extra techniques to get better performance.

Keywords: memory hieararchies; computer architectures; non-volatile memories

RESUMO

TORRES, Giovane de Oliveira. Uma Avaliação de Controladoras de Memória para
Memórias não Voláteis. 2018. 77 f. Dissertação (Mestrado em Ciência da Compu-
tação) – Programa de Pós-Graduação em Computação, Centro de Desenvolvimento
Tecnológico, Universidade Federal de Pelotas, Pelotas, 2018.

Existem atualmente diversas demandas nas questões de desempenho e consumo
energético em sistemas computacionais. Dentro deste contexto, as tecnologias de me-
mórias usadas atualmente são consideradas componentes críticos que afetam direta-
mente tanto desempenho quanto consumo energético dentro em um sistema. Com
isto, existe a necessidade de que memórias apresentem melhorias, já que estas tal-
vez estejam chegando no seu limite de escalabilidade. Uma das alternativas para
melhorar o subsistema de memória é o uso de memórias não voláteis (NVMs). Estas
memórias têm em geral baixo consumo energético e melhor escalabilidade ao compa-
rar com tecnologias voláteis. Porém, NVMs apresentam problemas que precisam ser
superados para que estas possam ser utilizadas em larga escala. Estes problemas
remetem ao alto custo de operações de escrita em memória tanto em latência quanto
em consumo energético, além de durabilidade do material usado nas NVMs sendo
inferior se comparado à tecnologias de memória atuais. Paralelo a isto, uma das difi-
culdades para adotar uma NVM como memória principal em sistemas computacionais
também inclui dificuldades em propor um escalonamento de operações de memórias,
já que torna-se necessário lidar com as características de NVMs. Com estes pro-
blemas em mente, esse trabalho apresenta uma implementação de controladora de
memória, juntamente com uma análise em tempo de execução em sistemas basea-
dos em NVMs. Para implementação de uma controladora de memória, são utilizados
os simuladores Gem5 e NVMain, visto que a combinação destas atende ao desejo
do trabalho de efetuar avaliações em tempo de execução. Com isto, a controladora
implementada passou por testes com aplicações do conjunto de benchmarks Media-
Bench e MiBench. Assim, a controladora foi analisada sobre diferentes configurações.
Testes foram feitos usando as três tecnologias de NVMs mais conhecidas e estua-
das (PCRAM – Phase Change Random Access Memory, RRAM – Resistive Random
Access Memory e STT-RAM – Spin Transfer Torque Random Access Memory). As
principais observações feitas por este trabalho foram: (i) executando os benchmarks
isoladamente, o tempo gasto em atender requsições de memória foi baixo, não supe-
rando 2% do tempo total de execução de qualquer aplicação, (ii) ao executar a con-
troladora de memória com diferentes NVMs, as latências de operações de memória
foram impactadas fortemente pelo tipo de tecnologia utilizada, (iii) ao utilizar diferen-

tes tamanhos de filas para atender requisições de memórias, o impacto causado por
esta variação foi considerado desprezível, já que as aplicações executadas geraram e
atenderam poucas operações de memórias em detrimento de outras operações. Por
fim, uma análise de desempenho da controladora implementada com as controladoras
de memória fornecidas pelo NVMain, sendo observado que na maioria dos casos a
controladora proposta e avaliada talvez necessite de inclusão de outras técnicas para
a extração de melhor desempenho.

Palavras-Chave: hierarquias de memória; arquitetura de computadores; memórias
não voĺáteis

LIST OF FIGURES

1 Basic STT-RAM cell structure (MEENA et al., 2014) 19
2 Conceptual view of the MTJ structure (ZHOU et al., 2009) 20
3 Example of a basic PCM cell structure (NUMONYX, 2007) 21
4 Time and current intensity necessary for each memory operation in

a PCM cell (WANG; WU, 2009) . 22
5 Basic structure of an RRAM cell (PAN et al., 2014) 23
6 Relation between current and voltage on different switching modes

of RRAM (WONG et al., 2012) . 24

7 The busy automaton (DASARI; NELIS; MOSSE, 2013) 29
8 The idle automaton (DASARI; NELIS; MOSSE, 2013) 29

9 Overview of NVMain Architecture: one memory controller for one
memory channel (POREMBA; ZHANG; XIE, 2015) 34

10 Diagram to check if a memory request can be issued based on the
request queue capacity (IsIssuable method) 36

11 Diagram that checks if a memory request will be issued
(IssueCommand method) . 37

12 Diagram that schedules requests and turn them into operations
(Cycle method) . 38

13 Total of read main memory requests performed in each benchmark,
where the number of read requests ≤ 50,000 45

14 Total of main memory requests performed in each benchmark,
where the number of read requests > 50,000 46

15 Latencies of memory operations with a PCRAM as main memory . . 48
16 Latencies of memory operations with an RRAM as main memory . . 50
17 Latencies of memory operations with an STT-RAM as main memory 52
18 Averages of read and write latencies for each NVM as main memory 53
19 Percentage of time spent in busy state during benchmark executions 54
20 Average number of requests in memory controller queues while on

busy state . 56
21 Latencies of read memory operations with PCRAM as main memory

in multiple memory controllers . 59
22 Latencies of write memory operations with PCRAM as main memory

on multiple memory controllers . 60
23 Latencies of read memory operations with RRAM as main memory

in multiple memory controllers . 61

24 Latencies of write memory operations with RRAM as main memory
on multiple memory controllers . 62

25 Latencies of read memory operations with STT-RAM as main mem-
ory in multiple memory controllers 63

26 Latencies of write memory operations with STT-RAM as main mem-
ory on multiple memory controllers 64

27 Latencies of memory operations in different NVM technologies and
memory controllers . 65

LIST OF TABLES

1 Comparing NVM and current volatile memories (CHI; LEE; XIE,
2014; ENDOH et al., 2016; LEE, 2016) 25

2 Notations in busy and idle automata 28

3 Internal parameters used in custom memory controller 35
4 Notations used in the diagrams of the memory controller 36

5 Benchmark compiled and executed status 42
6 Changes in input data of applications from MediaBench and MiBench 43

LIST OF ABBREVIATIONS AND ACRONYMS

BL Base Line

DRAM Dynamic Random Access Memory

FCFS First Come First Served

FRFCFS First Ready First Come First Served

FRFCFS-WQF First Ready First Come First Served with Write Queue

FERAM Ferroelectric Random Access Memory

HRS High Resistance State

LRS Low Resistance State

MIM Metal-Insulator-Metal

MTJ Magnetic Tunnel Junction

MRAM Magnetic Random Access Memory

NVM Non-Volatile Memory

PCM Pulse-code modulation

PCRAM Phase Change Random Access Memory

RRAM Resistive Random Access Memory

SL Source Line

SRAM Static Random Access Memory

STT-RAM Spin Torque Transfer Random Access Memory

WL Word Line

CONTENTS

1 INTRODUCTION . 14

2 NON-VOLATILE MEMORIES . 18
2.1 STT-RAM . 18
2.2 PCRAM . 20
2.3 RRAM . 22
2.4 Discussion . 24
2.5 Conclusion . 25

3 MEMORY OPERATION SCHEDULING . 26
3.1 Analysis of memory requests timing mechanism 27
3.2 Conclusion . 30

4 MEMORY CONTROLLER FOR NON-VOLATILE MEMORIES 32
4.1 Main Contribution . 32
4.2 NVMain and Gem5 . 33
4.3 Memory Controller Implementation . 34
4.4 Conclusion . 39

5 RESULTS . 40
5.1 Simulation configurations . 40
5.2 Benchmark checking and manipulation 41
5.3 Benchmark memory profiling . 44
5.4 Memory controller Evaluation . 46
5.4.1 Evaluating impact of different technologies of NVM as main memory . . 46
5.4.2 Evaluating length of busy periods . 54
5.4.3 Evaluating use of queues . 55
5.4.4 Additional remarks . 56
5.5 Comparison between different memory controllers 57
5.5.1 PCRAM . 58
5.5.2 RRAM . 60
5.5.3 STT-RAM . 62
5.5.4 Overall Analysis . 64
5.6 Conclusion . 66

6 CONCLUSION . 67
6.1 Future work . 68

REFERENCES . 70

1 INTRODUCTION

Nowadays, there is a constant need for more computational power. In this context, it
is always important to find technological innovations that allow upgrades in both perfor-
mance and energy consumption. One of the areas that is the target of those updates is
the current memory technologies, due to multiple reasons: (i) memories are reaching
their scalability limit (POREMBA; XIE, 2012; YOUNG; NAIR; QURESHI, 2015; OUKID;
KETTLER; WILLHALM, 2017), (ii) due to the way memories are constructed, leakage
current is becoming more of a problem (WANG; ALZATE; AMIRI, 2013; LI et al., 2015;
AWAD et al., 2016) and (iii) memory is considered to be a critical component in com-
putational systems (PEREZ; DE ROSE, 2010; ZOU et al., 2015; POURSHIRAZI; ZHU,
2016). With that considered, in order to allow progress in computational systems, it is
essential that memories also get improvements.

One possibility to perform upgrades in memories lies in the replacement of current
memory technologies used – those being DRAM (Dynamic Random Access Mem-
ory) and SRAM (Static Random Access Memory) – by non-volatile memories (NVMs).
These memories can provide low energy consumption, as well as better scalability and
higher density by memory cell (MEENA et al., 2014; YOUNG; NAIR; QURESHI, 2015;
ZHAO et al., 2015). The non-volatility feature of memory allows data to be retained
for a long period of time, which varies accordingly to the material used in a memory
cell. On the other hand, this does not occur in volatile memories, where refresh oper-
ations are necessary to retain data. When performing continuous refreshes over time,
the cost to maintain data in memory cells grows. However, NVMs also have issues
that must be overcome so that they could be used in large scale. One of the biggest
problems are related to NVM endurance: Due to the material used to make NVM cells,
they have lower endurance if compared with volatile technologies. Also, both energy
consumption and time spent to perform write operations in NVM cells are considered
highly costly (MEENA et al., 2014).

In this work, three NVMs were studied: PCRAM (Phase Change Random Access
Memory), STT-RAM (Spin Transfer Torque Random Access Memory) and RRAM (Re-
sistive Random Access Memory). These specific memories were picked according

15

to a study done on NVMs which analyzed that most NVM related work discusses
these three memories (MITTAL; VETTER, 2016). In addition to that, these NVMs have
the potential for building high-density and power-efficient memory systems, thanks to
enhanced scalability and non-volatility properties (YOUNG; NAIR; QURESHI, 2015).
NVMs are applicable for a multitude of different computational areas, showing promis-
ing results. These include: embedded systems (WANG; ALZATE; AMIRI, 2013;
CHANG et al., 2014), real-time systems (DASARI; NELIS; MOSSE, 2013; ZHANG
et al., 2013), systems with NVMs as main memory (KÜLTÜRSAY et al., 2013; CHI;
LEE; XIE, 2014; ZHANG et al., 2016), hybrid memory architectures (WANG et al.,
2014), among others.

The studied NVMs can be inserted at different parts of a memory architecture.
PCRAM is considered to be a future candidate for replacing DRAM as main mem-
ory (LI et al., 2014; ARJOMAND et al., 2017), plus large PCRAM chips are already
available (CHUNG et al., 2011; CHOI et al., 2012). On the other hand, RRAM is tested
mainly in cache memories (KOTRA et al., 2016; LI et al., 2017), and STT-RAM has
most studies focused also in cache memories (YAZDANSHENAS et al., 2014; KIM;
KIM; LEE, 2017). When developing large chips, these memories also present issues
regarding reliability, (KANG et al., 2015; MUTLU; SUBRAMANIAN, 2015). Neverthe-
less, there is work showing that using both STT-RAM and RRAM as main memories
show promising results (KÜLTÜRSAY et al., 2013; CHI et al., 2016).

One of the key challenges to improve performance of memories resides in attending
read and write instructions in the best instance of time possible. Memory scheduling
tends to be a complex problem, due to having to cope with multiple issues (MARTINEZ;
IPEK, 2009; KIM et al., 2010; GOOSSENS et al., 2016). In some categories of sys-
tems, such as real-time systems, a set of memory operations needs to complete within
a fixed deadline (FUJITA, 2014), however that may come with more costs with hardware
mechanisms, which leads to more energy consumption. Hence the use of an NVM as
a main memory in computational systems is seen as an alternative to improve energy
consumption. When dealing with systems with NVM as main memories, a reasonable
number of memory operations may not accomplish their deadlines, which can result
in unacceptable delays in execution times of memory operations (DASARI; NELIS;
MOSSE, 2013). With these exposed problems, memory controller scheduling policies
may need to mitigate these issues (ZHOU et al., 2011; DASARI; NELIS; MOSSE, 2013;
HU et al., 2014), by taking into account the natural issues found in NVMs – those being
asymmetry of read and write operations, plus limited write endurance.

Considering the importance of memory operation scheduling and the use of NVMs,
this work explains one of its main contributions: The implementation of a memory con-
troller aware of NVM issues. This controller was based on the work of Dasari, Nelis
and Mosse (2013) – in that work, a memory controller was proposed and a static anal-

16

ysis with traces of already-run benchmarks was performed. Here, the implementation
extends the idea to implement the memory controller in a general-purpose simulator,
so that it can evaluate the potential performance of memory controller during runtime.
In order to do that, two tools were used: NVMain and Gem5, where the first one sim-
ulates NVMs, while the second one is a general-purpose simulator. These tools were
chosen since their combination allows the runtime analysis this work aims. The main
contribution of this work is the behavioral analysis of a different memory controller im-
plementation, plus an evaluation its potential performance.

To provide results for this work, applications were chosen to run over the modified
simulator. For this, the sets of benchmarks MediaBench and MiBench were chosen.
The first result presented on this work tested the memory controller over three distinct
NVMs as main memories (PCRAM, STT-RAM and RRAM), where it was seen that
write memory latencies had expected results accordingly to each NVM used. On the
other hand, read latencies suffered from great variations, according to the NVM and
benchmark simulated. Then, both periods of benchmarks were analyzed – these pe-
riods were based on the concept of busy and idle states of the implemented memory
controller, where the first one is designed to attend memory requests, while the other
one waits for memory requests to come. Performed analysis show that the mean of
time spent in busy periods was small, not surpassing 2% of the total execution time.
Additionally, the use of queues in the implemented memory controller was analyzed,
showing that queues were in overall underused, accompanying the low time spent in
busy periods. On average, applications do not keep more than one request in queue
when the memory controller is active, which was probably a consequence of bench-
marks running in isolation – hence, this not allow the generation of a large number of
memory requests. Even though this occurred, it was possible to detect benchmarks
which generated bursts of memory operations, which could potentially put more pres-
sure under the memory controller buffers in a full-system simulation.

The implemented controller was compared with already-established controllers pro-
vided by NVMain – results were presented evaluating performance on latencies of
read/write operations. Regarding write memory operation latencies, when simulating
with PCRAM as main memory, the custom memory controller matched these latencies
of NVMain memory controllers. On the other hand, in RRAM and STT-RAM simula-
tions write latencies tended to be worse if comparing with already-implemented mem-
ory controllers. When evaluating read latencies, on overall the results presented many
variations, depending directly of the executed benchmark. This work then concludes
that (i) the proposed controller may need improvements or consider other memory
scheduling techniques so that better performance can be extracted and (ii) the con-
troller may be used in hybrid memory systems in order to extract the best features
each technology of memory can offer.

17

This work is organized as follows: Chapter 2 makes a brief study of current NVM
technologies which are considered by this work (PCRAM, STT-RAM and RRAM), de-
picting their individual features. Chapter 3 explains the importance of memory schedul-
ing, linking with NVM-based systems. Also, this Chapter exposes a schema for a
memory controller, where the implementation is based. Chapter 4 summarizes the
main contribution of this work, explaining how it was done, exposing the tools used
and how the memory controller implementation was performed. Chapter 5 exhibits the
main results reached by this work, and lastly, Chapter 6 explains the main conclusions
achieved, also presenting potential future work.

2 NON-VOLATILE MEMORIES

NVMs are memory technologies that feature the potential to retain data for long pe-
riods without needing constant refresh operations as seen in volatile memories. NVM
technologies work due to the materials used as memory cells because they have the
possibility to change their state by applying an electric current.

These technologies hold potential to both consume very low power and provide
much higher density than current volatile technologies such as DRAM and SRAM.
However, NVMs have some issues that need to be overcome, which include poor write
endurance (being several orders of magnitude lower than conventional memories) and
high latency and energy costs when performing write operations (MITTAL; VETTER,
2016).

The NVM technologies studied for this work are presented in the following Sections:
STT-RAM in Section 2.1, PCRAM in Section 2.2 and RRAM in Section 2.3. Then,
Section 2.4 makes a short discussion of the three non-volatile technologies. Lastly,
Section 2.5 concludes this Chapter.

2.1 STT-RAM

STT-RAM (Spin Transfer Torque Random Access Memory) is an NVM that is listed
to be a future candidate to replace SRAM (THOMAS et al., 2014; ZHAN et al., 2016),
which is mostly used as cache memories, even though some related work shows that
it could be used as main memory (KÜLTÜRSAY et al., 2013; EWAIS et al., 2016).
STT-RAM is considered to be an improvement over MRAM (Magnetic Random Ac-
cess Memory), as STT-RAMs exert the base platform established by MRAMs to enable
highly scalable memory, smaller cell sizes and better read and write latencies (MEENA
et al., 2014).

An STT-RAM cell is composed of two magnetic storage devices that are different
from each other. The first device has fixed magnetic orientation, while the second one
holds the possibility to change its orientation. Both devices are also called ferromag-
netic layers, where the first one is called reference layer and the second one is defined

19

as free layer (ZHOU et al., 2009). A third device is also placed between these two lay-
ers, which is called tunnel barrier layer. The grouping of the three layers is defined as
the magnetic tunnel junction (MTJ), which is the key element to store information. The
effect known as spin transfer torque occurs when a relatively strong electric current
is applied in the MTJ that can flip the free layer magnetic orientation, which happens
when an electron with a misaligned spin passes into a magnetized material – that mis-
match gives rise to a torque between the electron and the magnet (COALMON, 2009).
Figure 1 depicts an example of a basic STT-RAM cell structure. Besides the MTJ, the
STT-RAM cell includes a bit line (BL) and a source line (SL). Depending of the cur-
rent applied over these lines, it performs different memory operations. The word line
(WL) is used to connect multiple memory cells, allowing to read an entire row of cells.
Lastly, the transistor placed below the MTJ is used to allow the memory operations in
a STT-RAM cell.

Source Line

Word Line

Transistor

MTJ

Bit Line

Figure 1 – Basic STT-RAM cell structure (MEENA et al., 2014)

In order to represent a bit value (logical 0 and logical 1), the magnetization differ-
ence of the reference layer and free layer is used – which is translated into a resistance
difference in the MTJ. When the magnetic field of the free layer and reference layer is
parallel, the MTJ resistance is low and can be interpreted as the logical zero. How-
ever, when these two layers have opposite magnetic orientations the MTJ resistance
becomes high, thus the logical one can be represented. Figure 2 shows a conceptual
view of the MTJ and its possible magnetic orientations.

In order to do operations in STT-RAM cells, an NMOS is connected to the WL
to allow selection of a row of cells. Thereafter, a voltage is applied between the bit
line BL and source line SL. Depending of the voltage applied, a different operation is
performed (ZHOU et al., 2009):

• Read: A small voltage is applied between BL and SL. The amount of current that
flows through the cell depends of the resistance of MTJ, which may be low or

20

Reference layer

Free layer

Logical 0
Low resistance

Logical 1
High resistance

Figure 2 – Conceptual view of the MTJ structure (ZHOU et al., 2009)

high depending of the magnetic orientation of the free and reference layers. The
resistance is sensed by an amplifier to output the value stored in the cell;

• Write (Reset): A larger, positive voltage is applied between SL and BL, creating
a current flow from SL to BL;

• Write (Set): A larger but negative voltage is applied between SL and BL, creating
a current flow in the opposite direction.

The advantages of using STT-RAM are the same as described in general NVMs:
low power consumption and smaller cell sizes. When comparing STT-RAM to a con-
ventional technology such as SRAM, it could certainly achieve 4 times greater den-
sity (ZHOU et al., 2009; ZHANG et al., 2015), but it is possible that it can reach even
higher densities (KANG, 2010; YAKOPCIC; HASAN; TAHA, 2015).

However, STT-RAMs present issues regarding the asymmetry in latencies and en-
ergy consumption in read and write operations in memory cells. When performing
a read operation, both latency and energy consumption are comparable to a SRAM
cell read. That does not occur in a write operation, where the latency and energy
consumption are much higher when comparing to the same SRAM cell (KÜLTÜRSAY
et al., 2013).

2.2 PCRAM

Phase-Change Random Access Memory (PCRAM) is other type of NVM that is
also considered as a technology for future memories (OIKE et al., 2015; BURR et al.,
2016), which is seen as an alternative to the main memory of a computer architecture
that offers better density per cell if compared to conventional memories (DU et al.,
2013);

PCRAM cells are composed of two electrodes separated by a resistor, plus a
phase change material – which is commonly a chalcogenide (RAOUX et al., 2014;
PIROVANO, 2018). The Ge2Sb2Te5 composite (Germanium-Antimony-Tellurium) is the
most commonly used (MENG et al., 2016; BURR et al., 2016), although there is related

21

work that study various doping elements in the Sb2Te5 composite that can use titanium,
aluminum, gallium, among other metals.

The phase change material layer is responsible for information storage in PCRAM,
and it can be in two different states: amorphous and crystalline. By using these
two distinct states it is possible to represent the two logical values of a bit, because
each state holds a different resistance which differentiates from the other one. The
amorphous state has high resistance, and it is used to represent logical 0, while the
crystalline one has low resistance and it represents logical 1. Figure 3 depicts an
example of a PCM cell. A layer of phase change material is placed between both
electrodes. The lower electrode has a heat-resistant element (resistor) which makes
contact with the chalcogenide layer.

Superior eletrode

Chalcogenide

Resistor

Inferior eletrode

Figure 3 – Example of a basic PCM cell structure (NUMONYX, 2007)

The action of applying a current in the junction of resistor and chalcogenide denotes
that an operation over a memory cell is going to be performed. Both intensity and
time of an electric current define which memory operation will occur. This is shown in
Figure 4, which summarizes the time and current intensity necessary to do read and
write (set and reset) operations.

Each memory operation has well-defined parameters of time and current intensities.
Below, every operation is explained:

• Read: A current of small intensity and time is applied, so that the phase change
material is not changed in process. Then the material resistance is measured,
which is different according to the current cell state;

• Reset: In this case a short time but intense current must be applied. Due to abrupt
interruption of the current, the phase change material resistance increases – and
by quickly stopping heat generation, the material turns into an amorphous state;

• Set: A current with longer time and moderate intensity is applied. By reducing
the current, the material will reduce its resistance as well. The phase change
material will also cool down slowly, turning into a crystalline state.

22

C
ur

re
nt

Time

I R
E
S
E
T IRESET_MIN

I S
E
T

ISET_MIN

TRESET_MIN TSET_MIN

Reset Pulse

Set Pulse

Read Pulse

Figure 4 – Time and current intensity necessary for each memory operation in a PCM
cell (WANG; WU, 2009)

Advantages found in PCRAMs can also be seen in those offered by NVMs, which
include high scalability and lower energy consumption. PCRAM is also affected by the
main problems found on non-volatile technologies, thus performing a write operation
in a memory cell is costly on both energy consumption and time. As seen in Fig-
ure 4, the maximum time spent in a memory operation is defined by the set operation –
and energy consumption peak occurs when a reset operation is done. Constant write
operations in PCRAMs tend to deteriorate the phase change material more quickly if
compared with conventional technologies – the write endurance of PCRAMs is orders
of magnitude lower than DRAMs and SRAMs.

2.3 RRAM

The Resistive Random Access Memory (RRAM) is pointed to be another future
candidate for general-purpose memory due to some of its features. Those include (i)
excellent potential to miniaturization – its cell size can reach 4F 2 (where F stands for
line width), (ii) possibility to replace DRAM as main memory, (iii) and natural integration
to 3D memories (ZHOU; KIM; LU, 2014; PAN et al., 2014; SONG et al., 2017).

A RRAM cell is usually composed of a device with an isolating or semiconductor
material layer placed between two conductive metals – this structure is called Metal-
Insulator-Metal (MIM). Figure 5 shows an example of a RRAM cell. The middle layer
of an MIM is used as storage of memory information, while top and bottom layers are
used as electrodes.

The middle layer of an MIM is commonly made of an oxide due to its natural feature
of undergoing resistance change effects. In particular, metal oxides are the most stud-
ied alloys in related work (MEENA et al., 2014; IELMINI, 2016). On the other hand,
the materials of electrode layers studied are quite varied, since its range can start

23

Bottom eletrode

Insulator/Semi-conductor
Conducting filament

Top eletrode

Figure 5 – Basic structure of an RRAM cell (PAN et al., 2014)

from pure elements that could be used up to complex alloys, and even some kinds of
oxides (PAN et al., 2014).

In order to perform memory operations over RRAM cells, current must be applied
in one of the electrodes. Similar to what occurs in a PCRAM, current intensity is the
key to determine what operation will be run.

• Read: A small intensity current is applied, which needs to be little enough so it
does not change the state of insulator layer. With that current, it is possible to get
the material resistance and thus getting its value stored;

• Set: A current with more intensity than one used to read from a cell is applied –
which needs to be intense enough to reduce to turn the insulator layer resistance
into a low resistance state (LRS);

• Reset: In this case, the current needs to be sufficiently intense to increase resis-
tance to switch the insulator layer resistance to a high resistance state (HRS).

Another important aspect that must be analyzed on metal-oxide RRAMs relates to
switching modes. These can be split in two general modes called unipolar and bipo-
lar. Figure 6 shows a schema explaining how write operations are performed depend-
ing of switching modes. Unipolar switching means the switching direction depends on
only the amplitude of an applied voltage, and it does not depend on the polarity. Thus,
both write operations can occur at the same polarity. On the other hand, bipolar switch-
ing means the switching direction depends of the polarity of an applied voltage, which
means the set operation can only occur at one polarity, and reset operation must occur
at the reverse polarity.

Even though RRAMs are candidates to be largely used future memories, there are
several issues that need to be addressed. As seen in previous NVMs, high latency
and energy consumption of write operations and low material endurance are problems
seen in RRAM cells. Studies on increasing reliability and maintenance of the materials

24

C
ur

re
nt

Voltage

Reset

HRS

Set

LRS

(a) Unipolar

C
ur

re
nt

Voltage

Reset

HRS

Set

LRS

(b) Bipolar

Figure 6 – Relation between current and voltage on different switching modes of
RRAM (WONG et al., 2012)

used in RRAMs are essential to their future (MEENA et al., 2014). One of the main
issues to adopt the use of commercial RRAMs is the lack of a thorough understanding
of the switching mechanisms: the effect of switching states is hard to locate (because
of the tiny device) and it is of random nature (PAN et al., 2014). Also, write endurance
problem tends to be one of the long-term challenges to allow RRAMs to be used as
large-scale memories (AKINAGA; SHIMA, 2012).

2.4 Discussion

With all of the features presented by each NVM, they are promising candidates to
replace actual technologies. The features presented by NVMs allow them to be used
in many different situations, which is seen in the diversity of related work (MITTAL;
VETTER; LI, 2015; MITTAL; VETTER, 2016). The studied memories on this work are
composed of different materials implies in unequal characteristics and different ways
of performing read and write operations in each NVM. Table 1 shows electrical and
physical features of both presented NVMs and actual volatile technologies.

Memory cell sizes are usually measured by the F unit, where it represents the
minimum feature size accessible by lithography (IELMINI, 2016). Cell sizes are also
measured considering the use of single-level cells (SLC) – which means that each
memory cell can represent two different states: logical zero (false) and logical one
(true). This description is necessary because NVMs have the possibility to store more
than simply two different states in a single memory cell, which can be achieved by using
multi-level cells (MLC). This feature greatly increases the storage capacity of memories
with the penalty of increased write and read latencies (DONG; XIE, 2011; KHWA et al.,

25

Table 1 – Comparing NVM and current volatile memories (CHI; LEE; XIE, 2014; EN-
DOH et al., 2016; LEE, 2016)

PCRAM STT-RAM RRAM DRAM SRAM
Minimal cell size (SLC) (F 2) 4 6 4 6 160
Write latency (ns) ≈ 100 < 10 ≈ 50 20− 50 ≤ 2
Read latency (ns) 5 5 5 20− 50 ≤ 2
Operation voltage (V) 1.5− 1.8 0.8− 1.8 3.3− 6.5 1.35− 1.65 0.6− 1.1
Write current (A) 10−4 10−5 10−4 10−5 10−5

Retention (years) > 10 > 10 > 10 - -
Endurance (no. of writes) ≤ 109 ≤ 1012 ≤ 106 1015 1015

2015).
The values described in Table 1 present many variations, since different related

work shows different values. Firstly, PCRAM and RRAM cells could be developed
under the smallest sizes. On the other hand, performing a write operation in these
memories is costly in terms of energy and specially time. Also, RRAM is classified
as a more recent technology (ENDOH et al., 2016) which has the main issue of its
endurance – it is inferior in comparison with other NVMs.

As pointed out and seen in the table, all NVMs suffer from poor write endurance. Re-
garding energy costs, STT-RAM cells have power consumption values which are com-
parable to DRAM cells. Thus, in comparison with other non-volatile technologies, STT-
RAM shows the best overall electrical/physical features, and it meets features that can
replace both main and cache memories (KÜLTÜRSAY et al., 2013; YAZDANSHENAS
et al., 2014).

Many solutions have been proposed in order to mitigate the issues found on dif-
ferent NVMs (DASARI; NELIS; MOSSE, 2013; MITTAL; VETTER; LI, 2015; MITTAL;
VETTER, 2016), which include (i) addition of volatile technology buffers (DRAM and
SRAM), (ii) relaxing retention of NVMs, (iii) adopting helpful mechanisms to analyze
memory scheduling operations taking in account the asymmetry of read and write op-
eration latencies, (iv) compiler-oriented techniques, among other techniques.

2.5 Conclusion

This chapter presented an overview of NVMs. Three main non-volatile technolo-
gies (the NVMs that are most promising future memories) were depicted, showing
their unique features, strong and weak points. Lastly, a brief discussion was done in
the sense of comparison between these NVMs plus DRAM and SRAM, highlighting
the issues presented by non-volatile technologies. Lastly, some solutions proposed to
mitigate NVM problems were cited, based on studied related work.

3 MEMORY OPERATION SCHEDULING

One of the key challenges to get better performance from actual memory tech-
nologies resides in serving read and write memory instructions in the best instance
of time possible. Scheduling is considered to be a complex problem, since it needs
to cope with various issues, which include (MARTINEZ; IPEK, 2009; KIM et al., 2010;
GOOSSENS et al., 2016):

• Requiring circumventing access scheduling constraints;

• Prioritizing memory requests properly;

• Avoiding conflicts over memory chip devices, such as banks, row-buffers and
buses;

• Efficiently deal with changes in application states, i.e., they do not generate mem-
ory operations all the time.

These issues occur over all categories of memory controllers considering actual
technologies. When considering using an NVM as main memory, problems found in
these memories are also issues that need to be considered by memory controllers –
those include asymmetry of read and write operations, plus limited write endurance.

In order to approach these problems, some related work have proposed memory
controller scheduling policies and designs that mitigate these issues, thus making it
more feasible to adopt an NVM as main memory (ZHOU et al., 2011; HU et al., 2014).
Other solutions include increasing of cache sizes which absorb more writes and reads
that would be done over the main memories. Other solutions include the adoption of
hybrid architectures, i.e., by using an NVM as main memory, there may be additional
buffers (usually with current technologies) used to mitigate the impact of write opera-
tions.

Other possible solutions include the programming of memory controllers that are
aware of the particular characteristics of each NVM. Thus, these controllers may

27

perform different scheduling decisions when dealing with unequal operations (read-
s/writes). When modifying memory controllers considering the use of current technolo-
gies, fixed latencies for both write and read operations are assumed – a method that
is appropriate in DRAM-based-systems (DASARI; NELIS; MOSSE, 2013). However,
on NVM-based systems, memory write operations are more costly on both time and
energy. Hence, better timing control of scheduling memory operations may make it
feasible to adopt NVM as a main memory in real-time systems. These type of systems
have strict timing requirements, which include meeting operational deadlines (BURNS
et al., 2015; KUMAR; KARSAI, 2015). In addition, NVMs could be also used in em-
bedded systems, since they are usually have energy constraints (SALEHI; EJLALI,
2015). Therefore, better arrangement of memory requests is seen as an option to
aid NVM-based systems. Dasari, Nelis and Mosse (2013) proposed a mechanism to
help analysis of memory requests timing, which has a primary objective of estimating
tight timing for memory requests taking in account of the asymmetry of read and write
operations. This method is better detailed in the section below.

3.1 Analysis of memory requests timing mechanism

The proposed method of memory requests timing goals to make it practical to de-
ploy real-time applications over PCRAM main memory based systems, taking in ac-
count the differences between latencies on read and write operations (DASARI; NELIS;
MOSSE, 2013). In order to perform a better and more detailed analysis, some con-
straints on evaluated tasks (which are simply sets of one or more memory requests)
have been imposed. Those include:

• Tasks cannot migrate from one core to another, in case of multiple core architec-
tures;

• Tasks have a fixed level of priority;

• Once a task is dispatched, it must complete its execution without being inter-
rupted or preempted;

• If a task is designed to run at a certain time, even though it completes its execution
earlier, the core remains idle until that time – no matter if other jobs are waiting
execution.

Including these constraints over the sets of memory requests, some limitations on
individual memory operation requests were also forced.

• Read requests: Once a read request has been issued by a single core, that core
cannot issue a new read request until it receives the response of the previous
request;

28

• Write requests:

– Once a write request is issued, it is directed to write buffers, so that a task
can proceed without waiting for the operation finishing;

– If the write queue is not full, the controller serves pending read requests – in
the case of having only write requests waiting to be issued, those are also
served;

– When the write queue is full, all pending requests are sorted according to
priority (includes both writes and reads) – and then the controller serves
them until the write queue is not full.

The imposed restraints over both read and write operations dictate the logic to the
scheduling mechanism that is proposed. With that rationale, the memory controller
can have two different states, being called the busy and the idle periods. These states
can be visualized in two automata: In the busy automaton (shown in Figure 7), the
algorithm iterates as long as memory requests can be generated. When no further
requests can be generated, the algorithm switches to the idle automaton (depicted in
Figure 8), where it waits for a memory request to be generated so that it can switch
back to the busy automaton. Additionally, Table 2 contains all notations used in both
automata.

Table 2 – Notations in busy and idle automata

Notation Meaning
wqcap Write queue capacity
wqlen Number of slots used in write queue
inRd Number of incoming read and write requests,

respectivelyinWr
k Iteration index and the current time respectivelycurtime
BPk Current time after the kth iteration in busy period

and idle period, respectivelyIDk

StartBusy(w) Stores the time at which the wth busy period
starts and ends, respectivelyEndBusy(w)

StartIdle(w) Stores the time at which the wth idle period
starts and ends, respectivelyEndIdle(w)

LengthBusy(w) Length of the wth busy and idle period,
respectivelyLengthIdle(w)

TR Upper bounds on the time to serve a read and a
write request by the memory moduleTW

The flowchart shown in Figure 7 models the controller when in busy period, where
at least one read or write request needs to be issued. Once the busy period starts, the
moment this happens is stored. After that, the main iteration of this period begins: It is

29

k = 0, BPk = curtime = 0, wqlen = wqcap
inRd = NHR(TW), w = 0

inWr = NHW(TW), StartBusy(w) = 0
Start here

k = 0, BPk = curtime
StartBusy(w) = curtime

wqlen + inWr
< wqcap?

inWr = inWr - (wqcap -wqlen + 1)
BPk+1 = BPk + inRd*TR + inWr * TW

wqlen = wqcap - 1

wqlen += inWr
BPk+1 = BPk + inRd*TR

inRd = NHR(BPk+1) - NHR(BPk)
inWr = NHW(BPk+1) - NHW(BPk)

inRd > 0 or
inWr > 0 ?

curtime = curtime + BPk+1

EndBusy(w) = curtime
LengthBusy(w) = BPk+1 - BP0

k++

From the idle period
(Get inRd and inWr)

No (write queue full) Yes (write queue not full)

Service high priority
reads and writes

Store writes
in write queue
and service

high priority reads

Compute new incoming requests

Any incoming requests?

Yes

No

Move to the wth

idle period
(send curtime)

Figure 7 – The busy automaton (DASARI; NELIS; MOSSE, 2013)

k = 0
ID0 = curtime

StartIdle(w) = curtime

From the wth busy period,
(get curtime)

IDk+1 = IDk + TW
inRd = NHR(IDk+1) - NHR(IDk)
inWr = NHW(IDk+1) - NHW(IDk)

Compute incoming
high priority requests

inRd > 0 or
inWr > 0 ?

No

Yes

Any incoming
requests?

LenghtIdle(w) = IDk - ID0

EndIdle(w) = curtime = IDk

wqlen = wqcap
w++

Go to w+1th busy period
Send in inRd and inWr

k++

Figure 8 – The idle automaton (DASARI; NELIS; MOSSE, 2013)

checked if the write queue is full, including the arriving of one or more incoming write
requests. Two independent actions can be done depending on the condition:

• Write queue not full: The controller simply deals with pending read requests.
This branch of the algorithm prioritizes read over write operations;

30

• Write queue full: The controller will serve both read and write pending requests
according to their priority – once the write queue has available slots, the controller
switches back to the reads-over-writes schema.

Taking either action, the algorithm then computes if there are any more incoming
read or write memory requests. Once again, two actions can occur:

• Any incoming memory requests arrived: The controller simply increments the
iteration of the busy period, and returns back to the main iteration of the algorithm;

• No incoming memory requests arrived: This denotes the end of the busy pe-
riod. Some variables are set here, which include the time the busy period ends,
and how long the busy period was.

When the busy period ends, then the algorithm switches to idle period, where its
flowchart is seen in Figure 8.

The idle period automaton has a simple iteration. Firstly, the start of the period
is stored (this occurs at the same time the busy period ends). Then, the main loop
of the automaton starts, where it checks for any incoming memory requests. Two
independent actions can occur depending on the condition:

• Any incoming memory requests arrived: This denotes the end of the idle pe-
riod. Some variables are set here, which include the time the idle period ends,
and how long the idle period was.

• No incoming memory requests arrived: The controller simply increments the
iteration of the idle period, and returns back to check if any memory requests
have arrived.

In short, the memory controller implementing this algorithm works by switching its
state from busy to idle, and vice-versa – trying to schedule memory requests as they
come, taking in account the discrepancy of write and read latencies. All of the working
logic of this memory controller is essential and dictates the logic to the implementation
presented on this work, which is explained in the next chapter.

3.2 Conclusion

This chapter showed the importance of memory controllers in computing systems,
citing their main issues. Assuming the use of a NVM as a main memory, new problems
in memory controllers arose – which makes scheduling of memory requests being
more challenging due to natural characteristics found in NVMs.

31

An explanation on a method that proposes a memory controller aware of the NVM
issues (specially the increased latency when performing a memory write operation)
was done. This method is the base to the development of this work, as it will be seen
in the next chapter.

4 MEMORY CONTROLLER FOR NON-VOLATILE MEMO-
RIES

Based on both subjects studied, NVMs and scheduling of memory operations, this
work shows an implementation of a memory controller in simulation for NVM-based
systems. In order to do this, a controller was implemented and tested considering pre-
vious analyses of memory controllers and NVMs. This Chapter explains the main con-
tribution of this work (Section 4.1), then showing how it was done: Section 4.2 shows
the tools used for this work (NVMain and Gem5) and Section 4.3 explains the imple-
mentation of a memory controller directed for NVMs. Lastly, Section 4.4 concludes the
Chapter.

4.1 Main Contribution

Previous analysis show that taking the NVM characteristics in account could reach
better results. However, these studies were done based on memory operation traces
of applications, which means the analysis were done following two steps:

1. Applications were run in order to generate traces of memory operations, keeping
track of its type (read or write) and instance of time that it executed;

2. Based on the type and time of operation, a static analysis over the traces was
done so that it could be possible to evaluate where it was possible to get im-
provements in memory operations.

Hence, it was important to extend that analysis to the runtime, i.e., letting memory
controller decide the scheduling while an application is being executed. By implement-
ing a memory controller, it was possible to perform the runtime analysis which previous
work (DASARI; NELIS; MOSSE, 2013) did not have. With dynamic analysis, it was
possible to evaluate the behavior of the controller as the requests arrived – allowing for
more realistic results on simulations.

Additionally, with three different NVMs studied, the implemented memory controller
had to be tested with different non-volatile technologies. Each NVM has its particu-

33

lar characteristics, hence the impact of memory controllers in a specific NVM can be
different if comparing with another NVM.

Different behavioral analyses of the implemented memory controller were done.
The evaluated features included (i) time spent in generating memory requests, (ii) use
of memory request queues, (iii) latencies of read operations considering different non-
volatile technologies and (iv) comparison with NVMain default memory controllers.

4.2 NVMain and Gem5

To make this work feasible, two tools were used. An NVM simulator was necessary
in order to implement the different memory controller that is being proposed. For this,
NVMain (POREMBA; XIE, 2012) was chosen. The Gem5 (BINKERT et al., 2011)
simulator was also chosen to aid the development of the work, because NVMain can
be used in conjunction with Gem5 to provide closer to full system simulation.

The NVMain simulator (POREMBA; XIE, 2012) is a tool that is introduced to help
the community on the modeling of both commodity DRAMs but also emerging memory
technologies, which include NVMs. It is an architectural-level simulator for both types
of main memory, which can model energy plus cycle-accurate operation of DRAMs
and NVMs – including hybrid designs. It is considered more of a higher-level simulator,
since it is more interested in the set of cells that compose the main memory, which is
the hierarchy of columns, rows, banks, ranks and channels.

This tool was programmed using C++, and it has its source code available in an
online repository (POREMBA, 2012), which can be given permission to get if one con-
tacts the author (POREMBA, 2015). The current version of NVMain (2.0) added more
features to support both main memory simulations, which include fine-grained memory
bank model, MLC support, more flexible address translation and hooks to encourage
users to explore new memory system designs (POREMBA; ZHANG; XIE, 2015).

The reasons to choose NVMain as the NVM simulator include its continuous
updates over the years that keeps itself up-to-date with technology improvements.
NVMain also has well documented code, and it is flexible enough to implement dif-
ferent memory controllers, hierarchies, prefetchers, and other memory objects used in
the tool. Another key factor to choose NVMain resides in its possibility to merge itself
with the general-purpose simulator Gem5, where it can provide closer to full system
simulation – by using only NVMain itself, it is only feasible to perform trace simulations.

Gem5 (BINKERT et al., 2011) is a general-purpose simulator which merges some
aspects of two tools: M5 and GEMS simulators – as both tools were used in many
previous publications. Gem5 aims to be a community tool focused on architectural
modeling, providing flexibility on different CPU, memory and interconnect models.

This tool is implemented mostly under the C++ language, with some parts pro-

34

grammed using Python. The source code of Gem5 is also freely available on an online
repository. (BINKERT, 2012). Besides the integration with NVMain as an important
factor to choose Gem5, its constant updates and fixes are also significant to pick this
tool. Gem5 is also used in a myriad of published work, which makes itself relevant to
the academia.

4.3 Memory Controller Implementation

With the chosen tools, a memory controller was coded in order to evaluate it, and
then comparing with already implemented NVMain memory controllers to check its
performance. Firstly, an understanding of the NVMain architecture is presented. An
overview of the high-level design of NVMain is shown in Figure 9. Each box presented
in the figure represents a memory base object, which represents either functions or
classes in the source code of NVMain. In order to develop a different memory request
scheduler, the boxes with thicker borders are considered to be the key objects.

Figure 9 – Overview of NVMain Architecture: one memory controller for one memory
channel (POREMBA; ZHANG; XIE, 2015)

In the NVMain source code context, Memory Controller is a base class with pre-
implemented methods, called MemoryController. This class also extends from a
superclass called NVMObject, which portrays a memory base object. In order to
create a new memory controller, it is necessary to create a new class based on
MemoryController. NVMain already comes with some main memory controllers for
testing purposes, which are based on the simple schema of FCFS (First come first
served) algorithm, which shows the basic idea of how a memory controller can deal
with memory requests.

35

The first important step to set up a new memory controller is its internal variables.
Table 3 shows the variables used in the implementation. Variable state determines
what state is the memory controller, working like the two possible states a memory
controller can have in the mechanism explained in Section 3.1. – when busy, it is
in a state where memory requests are being generated, which means there is still a
memory request waiting in a queue to be issued. When the state is idle, the memory
controller does not have requests in a queue. When a state changes, the instance of
time of this event is registered, using the variables startBusy, endBusy, startIdle
and endIdle. Their variable types are paired with the one used to register instances
of time (in NVMain they are called cycles), so an unsigned, 64-bit integer is used.

Table 3 – Internal parameters used in custom memory controller

Type Variable Purpose
bool state Controls what state memory controller is (Busy

or idle).
uint64_t startBusy Instance of time that the busy state started.
uint64_t endBusy Instance of time that the busy state ended.
uint64_t startIdle Instance of time that the idle state started.
uint64_t endIdle Instance of time that the idle state ended.
int queueNumber How many queues memory controller has. This

is always 3.
int writeQueueSize Maximum size of write request queue, in slots.
int readQueueSize Maximum size of read request queue, in slots.
int extraQueueSize Maximum size of extra request queue, in slots.

By default, this is the sum of writeQueueSize
and readQueueSize

Variable queueNumber has a constant value – it is always 3, since it denotes how
many queues are used in the memory controller. There are read and write queues,
which simply are reserved to keep read and write memory requests respectively. In
addition, there is an extra queue that is able to receive both read and write requests,
only used when the write queue becomes full. The role of this queue will be discussed
in detail further.

The next step of implementation is the definition of the working logic of the mem-
ory controller. In this work, some diagrams were drawn in order to show this logic,
using some notations to show the actions the controller takes. Table 4 summarizes all
notations used on Figures 10–12.

The next step of implementation is based off from already established memory
controllers – a method called IsIssuable. This method simply receives a memory
request and returns a boolean value that indicates whether the request can be issued
or not. Figure 10 shows a diagram of the IsIssuable method. If the request that
arrives is a read from memory, it checks if the read queue is not full. In case this is

36

Table 4 – Notations used in the diagrams of the memory controller

Notation Description
mr A main memory request
qr Queue used to hold read main memory requests
qw Queue used to hold write main memory requests

enqueue(qx, mr) Method to enqueue a main memory request in a queue,
where x = {r,w}

state The state the controller is currently in. Can be busy or idle
qe Extra queue which is used when qw is full

findRequest(qx) A method that tries to retrieve a memory request from a
queue, where x = {r,w,e}

true, the request can be issued. However, when that queue is full, it cannot accept
more requests, thus returning false. The same logic works for the arrival of a write
request – it checks for the write queue instead. This method is implemented here
since the base method IsIssuable from MemoryController always returns true, i.e., a
memory request can be always issued. However, since memory requests need to be
put in a queue, it may be already full. Thus, this method can inform that the memory
request cannot be issued.

mr = read?

Input: mr

True False

Start here

qw = full? qr = full?
False False

Output: Can not
issue mr (false)

Output: Can
issue mr (true)

True True

Figure 10 – Diagram to check if a memory request can be issued based on the request
queue capacity (IsIssuable method)

When a request can be issued, it has to be put in its respective queue so that
the scheduler can organize what memory requests will turn into operations. Method
IssueCommand is responsible for these actions, and its diagram is depicted in Fig-
ure 11. The first action taken by IssueCommand is call the previously explained method
IsIssuable in order to check if a memory request can be issued. If it cannot be issued,
then the methods stop its execution. Else, the controller is ready to put a request in its

37

respective queue, depending of the type of the request.

mr = read?

Input: mr Start here

enqueue(qr, mr)

True False

IsIssuable?

enqueue(qw, mr)

state = idle?

state = busy

True

False

False

True
Output: Can not
issue mr (false)

Output: Issued and
enqueued mr (true)

Figure 11 – Diagram that checks if a memory request will be issued (IssueCommand
method)

Additionally, here the memory controller can change its state. This can occur when
the controller is in idle state, which represents no memory requests being generated.
However, if this method is called and a memory request was enqueued, it is necessary
to change the state to the busy one. The instance of time this occurred is registered
– where the busy state started and the idle state ended. After changing the state,
IssueCommand ends its execution successfully.

The next implemented method, named Cycle is also extended from the
MemoryController class, and it looks for enqueued memory requests. Its diagram
is shown in Figure 12. The first step of this method is to check if the extra queue is not
empty, which is always true when the controller receives the first main memory request.
In this case, the controller will then check if the write queue is full of requests – firstly,
it is assumed that this case does not occur. Considering that, the controller then tries
to get a request from the read queue. If not possible, the code then tries to retrieve a
memory request from the write queue. Thus, the scheduler prioritizes read requests
over write requests.

Eventually, when attending many read requests the write queue may be filled with
requests. When this occurs, all stored write requests have to be attended. In this case,
the method called queueTransfer is executed. This takes all requests from both read
and write queues to the extra queue, following this procedure:

38

1. All requests from both write and read queues are removed from their respective
queues;

2. These requests are sorted by priority. It is considered that a request which arrived
earlier in a queue has a higher priority than another request that was enqueued
later;

3. The sorted requests are put in the extra queue, ending the method execution.

The last case that can attend a memory request occurs when there is at least one
request that can be retrieved from the extra queue. The extra queue gets the priority
over all other queues, since it represents the attending of all requests when the write
queue is full.

qe = not empty?

mr = findRequest(qe)

True False

Start here

qw = full? queueTransfer
True

mr = findRequest(qr)
= valid request ?

False

mr = findRequest(qw)

False

mr = valid
request? True

issueCommand

True

state = busy,
queues =

empty?

False

state = idle
True

False

Figure 12 – Diagram that schedules requests and turn them into operations (Cycle
method)

In any of the cases explained before, the algorithm will try to get a memory request
using the method findRequest, which can store either a valid memory request or a
null value. After trying to retrieve a memory request from any queue, the controller will
check if the request gotten is valid or not. If it is valid, then the next step is to turn it into a
memory operation, which is done by calling an already implemented MemoryController

method called IssueMemoryCommands.
Lastly, after performing the memory operation the controller may change its state.

This is possible whenever the controller is in busy state and all queues are empty. This

39

means no memory requests were generated to be scheduled, so the state is changed
to the idle one. The time of this event is registered, denoting the start of idle state and
the end of busy state. Finally, Cycle ends its execution.

Considering the work logic of the implemented memory controller, the code for it
was developed and inserted in NVMain. It is important to point that any technology
of memory can be simulated using this controller. This is possible since in order to
perform an execution using a certain memory technology, a configuration file describing
the memory needs to be specified. In addition to that, NVMain already comes with
examples of memory technologies that can be executed.

4.4 Conclusion

This Chapter pointed the need of expanding timing analysis of memory requests in
systems with an NVM as a main memory – runtime analysis is preferred over static
analysis. The Chapter explained the main contribution of this work, and how it was
reached – which was possible to use NVMain and Gem5 tools were chosen, since
they can work together to reach the desired results.

Additionally, this chapter presented how the analysis of Section 3.1 could be trans-
lated in a practical environment – which was possible to do by coding a custom memory
controller in NVMain, so that it could be attached to Gem5, turning it possible to perform
a runtime behavior analysis.

5 RESULTS

This Chapter shows the main results reached by this work. With the modifications
performed to include the implemented memory controller, both simulators were con-
figured. This is explained in Section 5.1. Then, a set of applications were chosen to
run in the simulator. For this job, two sets of benchmarks were picked: MiBench (LEE;
POTKONJAK; MANGIONE-SMITH, 1997) and MediaBench (GUTHAUS et al., 2001).
Applications were tested and selected to evaluations of the memory controller. In addi-
tion to that, some changes in the input data were performed to reflect more realistic and
stressful executions – this is explained in Section 5.2. Then, a profiling of the chosen
benchmarks was done and explained in Section 5.3. In Section 5.4 the behavioral anal-
yses of the implemented memory controller were exposed. Section 5.5 compares the
implemented memory controller with NVMain default memory controllers, and lastly,
Section 5.6 concludes the Chapter.

5.1 Simulation configurations

In order to obtain results, it is important to highlight the configurations of the tools.
On Gem5, one of the configuration relates to memory hierarchy. For all simulations it
was considered the use of two levels of cache, reflecting default configurations found on
Gem5. Firstly, the L1 cache is composed of two caches: a 32KB cache for instructions,
plus a 32KB cache for data. Then, there is a L2 cache with 2MB. The CPU used
on simulation was the TimingSimpleCPU, which reflects a simple model of a CPU,
which uses timing memory accesses. This model connects the CPU to the cache,
defining the necessary functions to handle memory accesses, which allowed to perform
a better merge with NVMain memory system. Furthermore, Gem5 was compiled using
the fast option, which allowed for code optimization and better performance and the
instruction set architecture (ISA) x86 was used.

With NVMain, parameters regarding the main memory system were set. For each
NVM technology, the original configuration files for each memory (PCRAM, RRAM and
STT-RAM) were used. However, some changes in the general memory system config-

41

uration were done regarding the main memory schema. All NVMs followed the same
schema found in the PCRAM configuration file – this was done in order to allow tests
under the same memory system configuration, preserving its natural characteristics,
which include device timing parameters and energy parameters. These parameters
were extracted from (CHOI et al., 2012) (PCRAM), (KAWAHARA et al., 2012) (RRAM)
and (EVERSPIN, 2015) (STT-RAM).

The implemented memory controller also had parameters which needed to be de-
fined in order to perform tests. Since the memory controller is based on memory re-
quests queues, they needed to have limited sizes. Observing the already implemented
memory controllers on NVMain, the default queues could hold 16 requests – a value
maintained in the implemented memory controller for both read and write queues. For
the extra queue, it was used a queue which could hold 32 requests, as it can potentially
hold all requests from both write and read queues due to the scheduling used in the
memory controller.

5.2 Benchmark checking and manipulation

Firstly, a check-up of the applications of both sets of benchmarks was done – Ta-
ble 5 summarized each application status, pointing out if the application could be com-
piled and executed. Applications that occurred in both sets of benchmarks (cases of
adpcm, ghostscript, jpeg and pgp) were only shown in the MediaBench bench-
mark set. Some of the benchmarks have multiple execution stages, which are either
decode/encode (decodification/codification stages) or a specific process (Applications
mesa and susan have three different forms of execution, each one with a specific func-
tionality). The majority of benchmarks executed normally, with some exceptions that
need to be pointed out:

• ghostscript had some incompatibilities with some library files, which were
fixed on compilation. However, it gives a segmentation fault error when running.
This probably occurred due to the use of old libraries that are no longer sup-
ported;

• pgp gave errors when compiling auxiliary assembly files, which probably occurred
because these files had 32-bit assembly instructions (a 64-bit architecture is used
to compile benchmarks);

• ispell also compiled correctly, however it runs in an endless loop;

• lame also compiled without errors, but it gives a segmentation fault error;

• tiff applications (tiff2bw, tiff2rgba, tiffdither and tiffmedian) had

42

compilation problems in the tiff library, which is shared by all those applica-
tions.

The impediments to run properly these specific benchmarks probably occurred due
to using versions of C libraries, which were used to compile and execute correctly on
32-bit architectures. When compiling applications to a 64-bit architecture, the use of
more recent libraries likely lead to errors on applications. Because of these errors,
these benchmarks were excluded from the analysis presented by this work.

Table 5 – Benchmark compiled and executed status

Benchmark set Application Stages Compiled Executed

MediaBench

adpcm decode,encode yes yes
epic decode,encode yes yes
g721 decode,encode yes yes
ghostscript - yes no
gsm decode,encode yes yes
jpeg decode,encode yes yes
mesa mipmap,osdemo,texgen yes yes
mpeg2 decode,encode yes yes
pegwit decode,encode yes yes
pgp decode,encode no -
rasta - yes yes

MiBench

basicmath - yes yes
blowfish decode,encode yes yes
bitcount - yes yes
crc - yes yes
dijkstra - yes yes
fft decode,encode yes yes
ispell - yes no
lame - yes no
mad - yes yes
patricia - yes yes
quicksort - yes yes
rijndael decode,encode yes yes
rsynth - yes yes
sha - yes yes
sphinx - yes yes
stringsearch - yes yes
susan corners,edges,smoothing yes yes
tiff2bw - no -
tiff2rgba - no -
tiffdither - no -
tiffmedian - no -
typeset - yes yes

In the runnable benchmarks, in order to reflect more stressful and real-world appli-
cations, some of the inputs used in applications were changed, making the benchmark
data sets larger. When running applications with original data sets, it was noted that

43

Table 6 – Changes in input data of applications from MediaBench and MiBench

Benchmark Input type Old Input Changed input
adpcm

.pcm file Part of Bill Clinton’s
Speech (295,0 KB)

Die Walküre, by
Richard Wagner
(107,2 MB)

crc
g721
gsm
epic .pgm fle Lena image, size 256x256

(65,0 KB)
A 1280x1024
wallpaper (1,3 MB)

susan An office image, size
384x288 (110,7 KB)

jpeg .ppm file A image with a rose, size
227x149 (101,5 KB)

A 1280x1024 wallpa-
per (3,9 MB)

mpeg2 .m2v file A 4-frame video (34,9 KB) A video with 20 sec-
onds of length (1,3
MB)

mad .mp3 file A 30-second part of Now
I Know Why You Wanna
Hate Me, by Limp Bizkit
(381,6 KB)

Die Walküre, by
Richard Wagner (8,6
MB)

blowfish

.txt file

Kurt Vonnegut’s
commencement address
at MIT in 1997, replicated
1408 times (3,2 MB)

Moby Dick by
Herman Melville,
replicated 10 times
(12,5 MB)

rijndael
sha
pegwit A simulation statistics file

(91,5 KB)
rsynth Part of an article by Jeff

Stark about David Hal-
berstam’s opinion about
"Apocalypse Now" (3,3
KB)

quicksort A vector with 50,000 ele-
ments (1,6 MB)

A vector with
1,000,000 elements
(5,3 MB)

dijkstra A totally-conected graph
with 100 vertexes

A totally-conected
graph with 1000
vertexes

fft parameters Waves = 8, Length of Sinu-
soids = 32768

Waves = 16, Length
of Sinusoids =
131072

44

cache memory absorbed most of memory requests. By making the data sets larger,
more main memory requests could be generated, thus making the analysis of the im-
pact of a different main memory controller feasible. In addition, when performing exe-
cutions with memory hierarchies having smaller cache sizes, the time spent on the sim-
ulations increased, turning them impracticable. Table 6 summarizes all changes done
in the original input data provided by the benchmarks. Applications that could not be
executed did not have its data changed, since they would not enter in the simulations.
Benchmarks sphinx and patricia did not had data changed since in test-runs they
already generated a large number of memory requests, which were enough to per-
form analysis on main memory requests. rasta did not have its data changed due to
technical difficulties to find proper input files.

5.3 Benchmark memory profiling

This work initially performed a memory profiling of applications that were executed
from the sets of benchmarks, according to Table 5. Applications were simulated so that
it could be possible to analyze patterns of generated memory requests.

Figures 13 and 14 show how many main memory requests were generated during
the execution of an individual benchmark. Two charts were used to show data since the
quantity of main memory requests generated greatly differs, depending on benchmark
nature. The Y-axis shows how many main memory requests were generated during
the execution of a benchmark, whereas the X-axis is used for the application names.
In the case of a benchmark had multiple stages, an additional suffix was used. This is
indicated by a hyphen and the initial letter of the stage, e.g., stage edges of benchmark
susan is shown in the charts as susan-e.

In Figure 13 it is shown all applications that had 50,000 or less main memory read
requests. The write requests were excluded from this chart since no application was
capable of generate at least 1,000 write requests – they would not be visually notice-
able. It is important to observe that even using larger inputs in these benchmarks, it
was not possible to generate more main memory requests. In this context, a notable
benchmark that needs to be highlighted is dijkstra, since it is a memory-intensive
application that calculates all shortest distances of all nodes in a graph. It could not
generate more than 30,000 main memory requests, even though it was the benchmark
that generated the biggest quantity of memory requests (3.5 × 109) – however most of
them were directed to the cache memories (≈ 99.999%). Other applications have the
same pattern, which include all of those involving cryptography (blowfish, pegwit,
rijndael and sha) and PCM (Pulse-code modulation) file benchmarks (adpcm, crc,
g721 and gsm).

Regarding basicmath and bitcount, they are not memory-intensive bench-

45

marks: While the first tests mathematical calculations that include cubic function solv-
ing, integer square root and angle conversions, the second one tests the bit manipula-
tion abilities of a processor, counting the number of bits in an array of integers, by using
five different methods – thus, even increasing the amount of data to process, it will not
have a significant impact on memory accesses. Applications mad, stringsearch
and rsynth also have this similar pattern.

In short, the benchmarks shown here can be considered less representative about
memory profiling, due to the low generation of main memory requests. Some applica-
tions did not even generate a single main memory write request, which occurred due
to how the simulation dealt with memory requests. Benchmarks were executed in iso-
lation, hence the dispute for hardware resources was non-existent. As the simulation
starts, all memories are empty. Thus, the application begins using the fastest memory
available. As a consequence of that, many memory requests do not even come to the
main memory.

ad
pc
m-
d

ad
pc
m-
e

ba
si
cm
at
h

bi
tc
ou
nt

bl
ow
fi
sh
-d

bl
ow
fi
sh
-e cr

c

di
jk
st
ra

g7
21
-d

g7
21
-e
gs
m-
d
gs
m-
e

ma
d

mp
eg
2-
d

mp
eg
2-
e

pe
gw
it
-d

pe
gw
it
-e
ra
st
a

ri
jn
da
el
-d

ri
jn
da
el
-e

rs
yn
th sh

a

st
ri
ng
se
ar
ch

0

1

2

3

4
·104

M
ai

n
m

em
or

y
ge

ne
ra

te
d

re
ad

re
qu

es
ts

Figure 13 – Total of read main memory requests performed in each benchmark, where
the number of read requests ≤ 50,000

Figure 14 has data of all benchmarks with more than 50,000 main memory read
requests. In this case, applications with either original or bigger data inputs could
generate a considerable amount of main memory requests. Considering the case of
sphinx, the original large data set was used, and it reached the biggest amount of
both read and write main memory requests. This occurred because of a combination
of two factors: Firstly, it is an application that generated a great number of memory
requests (8.1 × 108). Secondly, it was one of the benchmarks that had more cache
misses, leading to more requests directed to main memory.

Regarding both stages of benchmark epic, they appear in this chart due to being

46

ep
ic
-d

ep
ic
-e

ff
t-
d

ff
t-
e

jp
eg
-d

jp
eg
-e

me
sa
-m

me
sa
-o

me
sa
-t

pa
tr
ic
ia

qu
ic
ks
or
t

sp
hi
nx

su
sa
n-
c

su
sa
n-
e

su
sa
n-
s

ty
pe
se
t

0

0.5

1

1.5

2
·106

M
ai

n
m

em
or

y
ge

ne
ra

te
d

re
qu

es
ts

Read requests
Write requests

Figure 14 – Total of main memory requests performed in each benchmark, where the
number of read requests > 50,000

the executions that had the biggest cache miss rates, leading to substantial increases
in main memory requests. On epic decode, ≈ 3.71% of generated memory requests
were directed to main memory, whereas on epic encode this value was ≈ 2.78%.
The changes in the input data set also were a key factor to the increase in the overall
number of memory requests (Original input was a 320x240 image, which was replaced
by a 1280x1024 image). The remaining image manipulation applications (jpeg, mesa
and susan) have the same pattern occurred in epic.

The remaining benchmark executions had a pattern that is similar to the one de-
tected on image manipulation applications. On both patricia and typeset the orig-
inal data inputs used generated reasonable main memory requests – however, both
fft and quicksort benchmarks are memory-intensive ones, but the high number of
generated main memory requests was helped by the increase of the application inputs.

5.4 Memory controller Evaluation

Knowing the behavior of main memory requests in benchmarks, the next results
look to comprehend how the implemented memory controller behaves in the simulated
executions.

5.4.1 Evaluating impact of different technologies of NVM as main memory

Firstly, an analysis was done by testing all benchmarks running over different NVMs
as a main memory, using the implemented memory controller. These evaluations show

47

the average read and write latency of benchmarks using these NVM technologies as
main memories. The latency includes all time spent in a main memory request: It
starts counting when the memory request is generated, and it ends when the memory
operation is performed.

5.4.1.1 PCRAM

Firstly, a PCRAM was used as main memory in benchmark simulation. The average
of read and write latencies were calculated for each application, which is depicted in
Figure 15. However, due to a notable difference in latencies presented in the simulated
benchmarks, they were split in two groups: Figure 15a show only read latencies of
benchmarks which did not generated any main memory write requests. On the other
hand, Figure 15b displays both read and write latencies of applications that generated
main memory write requests.

Figure 15a shows that read latencies vary from 20 to 50ns – which is a high value
when considering current PCRAM read latencies of around 5ns. This can be explained
because the PCRAM configuration file provided by NVMain is based off from an older
article (CHOI et al., 2012), and therefore, it could have a lower read latency, which is
not given by the paper.

In Figure 15b, both read and write latencies are shown. Some applications had
read latencies similar to the ones shown in Figure 15a – cases of dijkstra, jpeg
encode, mad, rasta and stringsearch. This is directly related to the relatively
low number of generated memory requests. However, as mainly main memory write
requests grow (and so the length of busy periods), the read latencies also increases
when using the implemented controller – For example both stages of fft, the average
of read latencies surpasses 100ns, which is considered to be a high latency for a read
operation. On the other hand, benchmarks that generated less requests had similar
average read latencies as applications with no main memory write requests. This
occurred due to the high interference that write requests put over read requests. While
a write operation to the main memory is being executed, one or more read requests
can arrive to the controller. These read requests must wait for the write operation to
finish so that they can be attended. Since a write operation is more time consuming
than a read one, reads that are waiting for a write operation to finish needs more time
to complete its execution.

Regarding average write latencies, it is observed that all simulated benchmarks
had very similar results. The benchmark with best overall average write latency was
stringsearch – 126.97ns – while the application with worst value was quicksort

– 128.85ns. This means the range (difference between highest and lowest values of
a sample) of write latencies did not surpass 2ns. The less variable values on write
latencies can be explained: write main memory requests could be only influenced if a

48

ad
pc
m-
d

ad
pc
m-
e

ba
si
cm
at
h

bi
tc
ou
nt

bl
ow
fi
sh
-d

bl
ow
fi
sh
-e cr

c

g7
21
-d

g7
21
-e

gs
m-
d
gs
m-
e

pe
gw
it
-d

pe
gw
it
-e

ri
jn
da
el
-d

ri
jn
da
el
-e

rs
yn
th sh

a
0

20

40

La
te

nc
y

(n
s)

(a) Latencies of read memory operations in benchmarks with no main memory write requests

di
jk
st
ra

ep
ic
-d

ep
ic
-e
ff
t-
d
ff
t-
e

jp
eg
-d

jp
eg
-e ma

d

me
sa
-m

me
sa
-o

me
sa
-t

pa
tr
ic
ia

qu
ic
ks
or
t
ra
st
a

sp
hi
nx

st
ri
ng
se
ar
ch

su
sa
n-
c

su
sa
n-
e

su
sa
n-
s

ty
pe
se
t

0

50

100

150

La
te

nc
y

(n
s)

Average read latencies
Average write latencies

(b) Latencies of read and write memory operations in benchmarks with generated main memory
write requests

Figure 15 – Latencies of memory operations with a PCRAM as main memory

49

longer burst of read requests occurred, which did not happened. In this scenario, since
read requests have priority to be attended over write ones, the controller would deal
primarily with reads. Write requests then would spent more time on the queue, which
would increase their latency.

5.4.1.2 RRAM

The next simulations were executed using an RRAM as a main memory. Following
the same logic shown in the evaluation of PCRAM, Figure 16 shows calculated average
of read and write latencies for each application, splitting in two charts, where Figure 16a
show only read latencies of benchmarks which did not generated any main memory
write requests. On the other hand, Figure 16b displays both read and write latencies
of applications that generated main memory write requests.

Analyzing Figure 16a, it is seen that benchmarks with no main memory write re-
quests follow the same pattern as the PCRAM simulations – their average read laten-
cies do not surpass 50ns. In this case, the RRAM configuration file provided by NVMain
is based off from (KAWAHARA et al., 2012). However, in this case it is specified that
the RRAM cell read latency is confirmed to be 25ns. The higher read latencies may be
caused due to two factors: an overhead caused by the implemented memory controller,
plus the physical memory size: While the memory shown in the article has a capacity
of 8 Mb, the configuration file describes a 4 GB memory. Accessing a cell in memories
with higher capacities tend to be slower than performing a memory operation in smaller
memory chips.

In Figure 16b, the remaining benchmark simulations with both read and write la-
tencies are shown. Benchmarks with less generated main memory requests tend
to have better overall read latencies. On dijkstra, the average read latency hit
around 21.6ns, a value lower than expected. This probably occurred due to use
of internal buffers which gave speed-ups on memory operations. jpeg-e, mad

and stringsearch also had average read latencies consistent with the one given
by (KAWAHARA et al., 2012).

As more main memory requests are generated, average read latencies increase,
but in a smaller scale if we compare with results seen in PCRAM simulations. The
worst cases continue occurring in both stages of fft, however, their average read
latencies just above 65.8ns. Depending on the benchmark simulated, read latencies
still present variations, which can be explained by the same factor which was shown
in PCRAM simulations: the interference of write requests on read requests. By using
the implemented memory controller, this interference occurs independently of memory
technology, as it is related to how the scheduling of memory operations is done. The
notable difference comparing PCRAM and RRAM simulations is that the variation seen
in read latencies occurred in a smaller scale.

50

ad
pc
m-
d

ad
pc
m-
e

ba
si
cm
at
h

bi
tc
ou
nt

bl
ow
fi
sh
-d

bl
ow
fi
sh
-e cr

c

g7
21
-d

g7
21
-e

gs
m-
d
gs
m-
e

pe
gw
it
-d

pe
gw
it
-e

ri
jn
da
el
-d

ri
jn
da
el
-e

rs
yn
th sh

a
0

20

40

La
te

nc
y

(n
s)

(a) Latencies of read memory operations in benchmarks with no main memory write requests

di
jk
st
ra

ep
ic
-d

ep
ic
-e
ff
t-
d
ff
t-
e

jp
eg
-d

jp
eg
-e ma

d

me
sa
-m

me
sa
-o

me
sa
-t

pa
tr
ic
ia

qu
ic
ks
or
t
ra
st
a

sp
hi
nx

st
ri
ng
se
ar
ch

su
sa
n-
c

su
sa
n-
e

su
sa
n-
s

ty
pe
se
t

0

20

40

60

80

La
te

nc
y

(n
s)

Average read latencies
Average write latencies

(b) Latencies of read and write memory operations in benchmarks with generated main memory
write requests

Figure 16 – Latencies of memory operations with an RRAM as main memory

51

Concerning write latencies, the same logic seen in PCRAM applies on RRAM as
well: They all had very similar results, with few to none variations between the ap-
plication runs. This happened for the same reasons pointed in the PCRAM analysis:
write requests did not suffer from situations which could potentially occur, due to not
occurring bursts of memory requests that could fill the write buffer. The difference here
resides in the average of all simulated benchmarks, which was ≈ 71ns, a smaller value
if compared to PCRAM. This difference can be explained by the technology, since an
RRAM is considered to have better write latencies when comparing to a PCRAM.

5.4.1.3 STT-RAM

The last NVM technology that was simulated was STT-RAM. Using the same orga-
nization seen in both previous NVM simulations (PCRAM and RRAM), Figure 17 has
two charts with calculated average of read and write latencies for each benchmark.
The first chart, shown in Figure 17a contains only average read latencies for applica-
tions that did not generate any main memory write requests. In Figure 17b shows both
average read and write latencies in benchmarks that generated main memory write
requests.

In Figure 17a, no surprises can be seen in the pattern of benchmarks with no main
memory write requests: It is similar to previous NVM simulations. The key difference
here is the technology used: With STT-RAM, applications do not have latencies higher
than 31ns. In this particular case, according to the datasheet that is used as base
for the NVMain STT-RAM configuration file, the read latency of an STT-RAM cell is
35ns (EVERSPIN, 2015). That means simulated benchmarks had better performance
in read latencies than expected, which can be explained by two factors: (i) the use
of memory buffers, and (ii) incorrect specifications in the configuration file of the STT-
RAM presented by NVMain. Both reasons reflect the same behavior of what occurred
on RRAM.

Remaining benchmark simulations with both read and write latencies are shown in
Figure 17b. The impact caused by writes over reads still exists, but in a lower scale.
The lower impact occurred due to the technology used: writes still interfere on reads,
but since a write operation in a STT-RAM cell has lower latency when comparing with
PCRAM and RRAM, this interference is also lower. For example, the worst average
read latency values, found in both stages of fft, did not surpass 50ns, while the best
average read latency (dijkstra) was ≈ 21ns.

Regarding write latencies, the same pattern found in both PCRAM and RRAM also
occurs when using STT-RAM as main memory. On STT-RAM, memory requests also
did not suffered from possible scenarios of interference. Hence, these latencies had
very few variations between benchmark runs, with an average value of ≈ 53.04ns.

52

ad
pc
m-
d

ad
pc
m-
e

ba
si
cm
at
h

bi
tc
ou
nt

bl
ow
fi
sh
-d

bl
ow
fi
sh
-e cr

c

g7
21
-d

g7
21
-e

gs
m-
d
gs
m-
e

pe
gw
it
-d

pe
gw
it
-e

ri
jn
da
el
-d

ri
jn
da
el
-e

rs
yn
th sh

a
0

10

20

30

40

La
te

nc
y

(n
s)

(a) Latencies of read memory operations in benchmarks with no main memory write requests

di
jk
st
ra

ep
ic
-d

ep
ic
-e
ff
t-
d
ff
t-
e

jp
eg
-d

jp
eg
-e ma

d

me
sa
-m

me
sa
-o

me
sa
-t

pa
tr
ic
ia

qu
ic
ks
or
t
ra
st
a

sp
hi
nx

st
ri
ng
se
ar
ch

su
sa
n-
c

su
sa
n-
e

su
sa
n-
s

ty
pe
se
t

0

20

40

60

La
te

nc
y

(n
s)

Average read latencies
Average write latencies

(b) Latencies of read and write memory operations in benchmarks with generated main memory
write requests

Figure 17 – Latencies of memory operations with an STT-RAM as main memory

53

5.4.1.4 Overall analysis

Regarding different NVM technologies, lastly, Figure 18 summarizes all NVM anal-
ysis in a single chart, where it is shown the average of all read and write latencies
of executed benchmarks, grouped by the NVM used as main memory in simulation.
The error bars in the chart represent standard deviation. Additionally, it is important to
highlight that each average was calculated differently:

PC
RAM

RRAM

ST
T-R

AM
0

50

100

150

La
te

nc
y

(n
s)

Average read latency Average write latency

Figure 18 – Averages of read and write latencies for each NVM as main memory

• Read latency average: All applications executed were considered in order to cal-
culate it;

• Write latency average: Benchmarks which did not generate main memory write
requests did not entered in the calculation of the average.

The chart tells it is not clear which NVM holds on overall the best read latency, due
to great variation presented on all simulations.By using the t test with a 95% confidence
interval and comparing the means presented on the chart, it was noted that all read
latency means do not have significant differences. Thus, in theory, all NVMs can have
the potential to have similar latencies when perform read memory operation. However,
it seems the implemented memory controller can meddle on read operations. On the
other hand, the average write latencies had very small standard deviations, leading to
see that STT-RAM performs the fastest write operations comparing with the other two
technologies simulated – which could be checked both on simulation using the different
memory controller and NVM review on this work.

54

5.4.2 Evaluating length of busy periods

Looking into the algorithm used to attend memory requests, an analysis of busy
periods over the execution of the benchmarks was presented. Figure 19 presents the
percentage of each busy period in a benchmark run – i.e., during all the execution
of an application, it was observed how much time the memory controller in the busy
state, which translates into generating and attending memory requests. Assuming the
memory controller starts with no memory requests: As soon as a memory request
arrives in the memory controller, this denotes the start of a busy period. When a
memory request is turned into an operation and there are no requests on queue waiting
to be attended, this denotes the end of a busy period. This value, (pbusy) was calculated
using the equation shown in (1), where cbusy is how many cycles during a benchmark
run were spent in the busy state, and cidle is how many cycles in a benchmark execution
were spent in the idle state.

pbusy =
cbusy

cbusy + cidle
× 100% (1)

For this experiment, it is presented an analysis using the STT-RAM main memory
configuration was used alongside with the implemented memory controller. The rea-
son to choose this NVM was previous results, with the best overall write latencies. In
those simulations, many benchmarks had busy periods with very small values, with
percentages less than 0.1% – those were excluded from this chart. It is perceptible
that almost all benchmarks shown in this chart also appear in Figure 14 – with that, it
is possible to point out that benchmarks that generate more memory requests in the
shortest periods of time. However, due to the simulated architecture and cache mem-
ory reducing greatly the quantity of main memory requests, on average the time spent
in busy state is small, not surpassing 2% of the total time.

ep
ic
-d

ep
ic
-e
ff
t-
d
ff
t-
e

jp
eg
-d

jp
eg
-e

me
sa
-m

me
sa
-o

me
sa
-t

pa
tr
ic
ia

qu
ic
ks
or
t
ra
st
a

sp
hi
nx

st
ri
ng
se
ar
ch

su
sa
n-
c

su
sa
n-
e

ty
pe
se
t0%

0.5%

1%

1.5%

2%

T
im

e
sp

en
t

on
bu

sy
st

at
e

Figure 19 – Percentage of time spent in busy state during benchmark executions

Benchmark sphinx is a case to be highlighted. Even though it was shown that

55

it is the application that generated most main memory requests (both read and write
ones), it is only the benchmark with the 10th longer period spent in busy state. This
occurred because at the same time it generated a great number of memory requests, it
also executed a large number of other instructions (branches, integer and floating point
ones) – thus, the busy periods of the benchmark run were spread out alongside it.

With similar logic, it is seen why quicksort has the longest busy period: It gen-
erated a considerably large amount of main memory requests, however, the number
of seconds simulated in quicksort was 1.63 seconds – in comparison, sphinx had
5.5 as the number of seconds simulated.

5.4.3 Evaluating use of queues

One key factor of the implemented memory controller is the presence of three differ-
ent queues to store memory requests, due to how it was coded (one for read requests,
other for write requests, and the extra queue – used when the write queue is full). Thus,
it becomes important to evaluate how queues are used in the controller.

This analysis was directed towards the use of queues during the execution of the
benchmarks. Figure 20 shows, on average, how many requests were present in queue
while the state of execution in the memory controller was the busy one. This analysis
was performed once again using the STT-RAM main memory configuration. Values
that are exhibited in chart were calculated using Equation 2, where q represents a
specific queue (read, write or extra), rq represents how many requests are being stored
in queue q in a specific cycle, and cb is the total of cycles spent in the busy state. In
short, this does an average of how many requests are being kept in queues while the
application is in busy state. Calculation was done considering only the busy state since
the way the controller was implemented, no memory requests are attended in the idle
state.

mq =

∑cbusy
i=0 rq
cbusy

(2)

In this evaluation, there were some benchmarks which did not generate enough
main memory requests in order to perform any analysis over it and thus they were
excluded from this chart. All of these benchmarks had the pattern of generating one
main memory request where as soon as it was queued, it was immediately attended.
Hence, when applying Equation 2, mq resulted in value 1 in these cases.

The applications shown in Figure 20 are, not coincidentally, the ones which had the
biggest quantities of generated main memory requests – more requests to schedule,
more requests which need to be queued. The low values of the average of requests
(mq ≤ 1) in queue occur due to benchmarks running in isolation, since they do not
have to share multiple resources at the same time. It is believed that within a full-

56

system simulation, more requests would have to be generated, occupying more slots
in queues.

It is also important to highlight the use of the extra queue. In all tests run, only two
benchmarks made use of it, cases of quicksort and sphinx. This was a conse-
quence of the large number of generated main memory write requests. Since the use
of extra queue triggers when write queue becomes full, these applications were more
prone to occupy all slots of the write queue. The explanation for quicksort having
the largest occupation of extra queue is explained due to more write requests being
generated in a smaller period of time – the same logic that explains why it has also the
longest busy period.

ep
ic
-d

ep
ic
-e

ff
t-
d
ff
t-
e

jp
eg
-d

jp
eg
-e

me
sa
-m

me
sa
-o

me
sa
-t

pa
tr
ic
ia

qu
ic
ks
or
t

sp
hi
nx

su
sa
n-
c

su
sa
n-
e

su
sa
n-
s

ty
pe
se
t

0

0.2

0.4

0.6

0.8

N
um

be
r

of
re

qu
es

ts

Requests on read queue Requests on write queue Requests on extra queue

Figure 20 – Average number of requests in memory controller queues while on busy
state

5.4.4 Additional remarks

With all presented behavioral analysis over the implemented memory controller,
some extra considerations may be exposed. As it was noted, analysis over busy peri-
ods and queue use were done considering only the use of STT-RAM as a main mem-
ory, and fixed request queue sizes. It could be possible to perform analysis considering
mixed configurations on different aspects of the memory controller. Below, some tests
that were discarded from this work are explained:

• Impact of different NVMs in busy period length: Even though the absolute lengths
of busy periods vary according to different NVMs used (due to different latencies
when performing memory operations), its percentages which are calculated con-
sidering the total benchmark simulation time had negligible differences.

• Impact of different queue sizes: Some tests were done considering the use of
smaller and bigger queues, having the default queue sizes as base (16 requests
in read/write queues, 32 in the extra queue). By using powers of 2, simulations

57

were performed where the read/write queue sizes ranged from 4 to 128. Since all
but two simulated benchmarks did not make use of the extra queue, even using
4-request read/write queues, this study was discarded. This occurred due to low
generation of memory requests, which is backed up by results explained in 5.4.3
since it did not have enough applications to make a representative analysis.

5.5 Comparison between different memory controllers

After the behavioral analysis of the implemented memory controller, a comparison
was performed with other memory controllers – all provided by NVMain. This was done
in order to check the overall simulated performance of the implemented controller.

The implemented memory controller was compared with three different controllers
already given by NVMain. All of the simulated controllers were tested using the studied
NVM technologies as a main memory. The chosen controllers were:

• FCFS (First-come First-served): After each read or write is issued, the page is
closed. The oldest request is attended first. It uses a unique queue that can hold
both write and read requests;

• FRFCFS (First-ready First-come First-served): Prioritizes starved requests, then
row buffer hits, and then tries oldest requests. The queue used can also hold
both write and read requests;

• FRFCFS-WQF: (First-ready First-come First-served with Write Queue): Works
similarly to FRFCFS. However, it uses two separated queues, where one is used
to attend read requests, while the other one serves write requests. Write requests
are attended when the write queue becomes full, emptying it so that it can keep
more requests.

NVMain also includes additional memory controllers which were not considered to
be included in this simulation, since they are not suitable for working as main memory
controllers. The only memory controller which could be evaluated would be Perfect-
Memory, which would simulate a theoretical memory system with the smallest latency
and energy cost possible. This controller could be used as the upper bound of perfor-
mance. However, the current version of PerfectMemory does not execute properly – a
segmentation fault results from the execution of any simulation.

All benchmarks were executed using the four memory controllers (FCFS, FRFCFS,
FRFCFS-WQF and the implemented by this work) under the three different configura-
tions of NVM (PCRAM, STT-RAM and RRAM). For the next charts, the Y-axis repre-
sents the latency in nanoseconds of a memory operation, whereas the X-axis shows
the simulated benchmarks. Each bar represents a different memory controller used

58

in a simulation. The controller implemented by this work is labeled as Custom, while
other controllers are labeled by their acronyms.

5.5.1 PCRAM

Figure 21 presents the average of read latencies over different memory controllers
using a PCRAM as main memory. The chart is split in two charts, where Figure 21a
shows benchmarks that did not generate main memory write requests, whereas Fig-
ure 21b displays benchmarks that generated main memory write requests.

It is seen that in benchmarks with no main memory write operations, the memory
controller used made negligible difference. This occurred since all applications shown
in Figure 21a did not generate a large number of main memory requests (≤ 50, 000),
which translates into less work for the memory controller during the execution of these
applications. Hence, the average read latency of these benchmarks depends directly
by their nature.

When analyzing applications that have generated at least one main mem-
ory request, similar read latencies occur on benchmarks dijkstra, mad and
stringsearch. These applications also have generated a lower number of mem-
ory requests, which explains the same pattern found on previous benchmarks. When
observing remaining applications (which are the ones that generated more memory
requests), the FRFCFS-WQF controller had the fastest read latencies. FRFCFS-WQF
has a special buffer that stores write requests and serves them when the queue is full,
which helped the boost in read latencies, since they do not depend of possible write
requests to finish, as it occurs in the Custom controller. The remaining controllers had
similar average read latencies, meaning that using the Custom controller with two dif-
ferent buffers for reads and writes had similar performance as controllers with unified
request buffers (FCFS and FRFCFS).

Figure 22 shows the average of write latencies over memory controller using
PCRAM as main memory. When evaluating all controllers but FRFCFS-WQF, they
had very similar write latencies, which is a similar behavior found in the previous anal-
ysis of read latencies. This means that even by using a different memory operation
scheduling for the Custom controller, it does not make a difference when comparing
with both FCFS and FRFCS controllers.

On the other hand, FRFCFS-WQF reached the slowest write latencies in all appli-
cations simulated. This occurs due to a trade-off effect: with the use of a write request
queue, an improvement on read latencies over all controllers was observed. However,
this comes with the cost with a increase on write latency.

By using FRFCFS-WQF as the memory controller, it is observed that the applica-
tions had an overall better performance when comparing to other controllers. Since in
all simulated benchmarks the number of read operations is greater than the number

59

ad
pc
m-
d

ad
pc
m-
e

ba
si
cm
at
h

bi
tc
ou
nt

bl
ow
fi
sh
-d

bl
ow
fi
sh
-e cr

c

g7
21
-d

g7
21
-e

gs
m-
d
gs
m-
e

pe
gw
it
-d

pe
gw
it
-e

ri
jn
da
el
-d

ri
jn
da
el
-e

rs
yn
th sh

a
0

10

20

30

40

50

Av
er

ag
e

re
ad

la
te

nc
y

(n
s)

FCFS FRFCFS FRFCFS-WQF Custom

(a) Latencies of read memory operations in benchmarks that did not generate main memory
write requests

di
jk
st
ra

ep
ic
-d

ep
ic
-e
ff
t-
d
ff
t-
e

jp
eg
-d

jp
eg
-e ma

d

me
sa
-m

me
sa
-o

me
sa
-t

pa
tr
ic
ia

qu
ic
ks
or
t
ra
st
a

sp
hi
nx

st
ri
ng
se
ar
ch

su
sa
n-
c

su
sa
n-
e

su
sa
n-
s

ty
pe
se
t

0

20

40

60

80

100

Av
er

ag
e

re
ad

la
te

nc
y

(n
s)

FCFS FRFCFS FRFCFS-WQF Custom

(b) Latencies of read memory operations in benchmarks that generated main memory write
requests

Figure 21 – Latencies of read memory operations with PCRAM as main memory in
multiple memory controllers

60

of write operations, this strategy helped on the overall performance of the benchmark
when using the FRFCFS-WQF controller.

di
jk
st
ra

ep
ic
-d

ep
ic
-e
ff
t-
d
ff
t-
e

jp
eg
-d

jp
eg
-e ma

d

me
sa
-m

me
sa
-o

me
sa
-t

pa
tr
ic
ia

qu
ic
ks
or
t
ra
st
a

sp
hi
nx

st
ri
ng
se
ar
ch

su
sa
n-
c

su
sa
n-
e

su
sa
n-
s

ty
pe
se
t

0

50

100

150

200

Av
er

ag
e

w
ri

te
la

te
nc

y
(n
s)

FCFS FRFCFS FRFCFS-WQF Custom

Figure 22 – Latencies of write memory operations with PCRAM as main memory on
multiple memory controllers

5.5.2 RRAM

The next analysis of different memory controllers was done using an RRAM as
main memory. Figure 23 presents the average of read latencies over different memory
controllers. This Figure is also split in two charts, where Figure 23a shows bench-
marks with did not generate main memory write requests, whereas Figure 23b displays
benchmarks that generated main memory write requests.

On benchmarks shown in Figure 23a, there are differences on the patterns when
comparing with PCRAM. In this case, it can be observed that both controllers FRFCFS
and FRFCFS-WQF had similar latencies in all benchmarks simulated. These can be
explained due to the absence of write main memory requests, as these controllers
have different policies for those types of requests. In addition to that, both FRFCFS and
FRFCFS-WQF prioritize row-buffer hits, which occurred on RRAM more frequently than
on PCRAM, whereas controllers FCFS and Custom prioritizes only oldest requests on
queue.

When analyzing Figure 23b, the worst read latencies occur in both FCFS and Cus-
tom. In benchmarks dijkstra and mad, read latencies when simulating Custom
controller reaches values close to FRFCFS and FRFCFS-WQF, which occurred due
to being applications that generated a small number of main memory requests – this

61

same behavior occurred on PCRAM simulations.

ad
pc
m-
d

ad
pc
m-
e

ba
si
cm
at
h

bi
tc
ou
nt

bl
ow
fi
sh
-d

bl
ow
fi
sh
-e cr

c

g7
21
-d

g7
21
-e

gs
m-
d
gs
m-
e

pe
gw
it
-d

pe
gw
it
-e

ri
jn
da
el
-d

ri
jn
da
el
-e

rs
yn
th sh

a
0

10

20

30

40

50

Av
er

ag
e

re
ad

la
te

nc
y

(n
s)

FCFS FRFCFS FRFCFS-WQF Custom

(a) Latencies of read memory operations in benchmarks that did not generate main memory
write requests

di
jk
st
ra

ep
ic
-d

ep
ic
-e
ff
t-
d
ff
t-
e

jp
eg
-d

jp
eg
-e ma

d

me
sa
-m

me
sa
-o

me
sa
-t

pa
tr
ic
ia

qu
ic
ks
or
t
ra
st
a

sp
hi
nx

st
ri
ng
se
ar
ch

su
sa
n-
c

su
sa
n-
e

su
sa
n-
s

ty
pe
se
t

0

20

40

60

Av
er

ag
e

re
ad

la
te

nc
y

(n
s)

FCFS FRFCFS FRFCFS-WQF Custom

(b) Latencies of read memory operations in benchmarks that generated main memory write
requests

Figure 23 – Latencies of read memory operations with RRAM as main memory in mul-
tiple memory controllers

In addition, the impact of FRFCFS-WQF on RRAM read latencies which was more
evident in PCRAM appears on some applications here. Applications that generated
more memory requests tend to be more impacted by FRFCFS-WQF, reducing read

62

latencies in comparison with FRFCFS. This can be seen specially on all stages of
benchmark mesa – from FRFCFS-WQF to FRFCFS, a read latency reduction of ≈ 8ns

can be seen.
Figure 24 shows the average of write latencies over memory controller using RRAM

as main memory. In this case, Custom controller reached the slowest latencies in all
simulated benchmarks, with an average value of 70.9ns. Regarding other controllers,
no pattern could be observed, since the results showed variable values depending on
each benchmark simulated.

di
jk
st
ra

ep
ic
-d

ep
ic
-e
ff
t-
d
ff
t-
e

jp
eg
-d

jp
eg
-e ma

d

me
sa
-m

me
sa
-o

me
sa
-t

pa
tr
ic
ia

qu
ic
ks
or
t
ra
st
a

sp
hi
nx

st
ri
ng
se
ar
ch

su
sa
n-
c

su
sa
n-
e

su
sa
n-
s

ty
pe
se
t

0

20

40

60

80

Av
er

ag
e

w
ri

te
la

te
nc

y
(n
s)

FCFS FRFCFS FRFCFS-WQF Custom

Figure 24 – Latencies of write memory operations with RRAM as main memory on
multiple memory controllers

5.5.3 STT-RAM

The last evaluation of different memory controllers was done using an STT-RAM as
main memory. Figure 25 presents the average of read latencies over different memory
controllers. The chart is also split in two, where Figure 25a shows benchmarks that did
not generate main memory write requests, whereas Figure 25b displays benchmarks
that generated main memory write requests.

In Figure 25a, the default controllers of NVMain had similar latencies on all applica-
tions with no main memory write requests. Since the simulated benchmarks generate
less than 50,000 memory requests, the impact of the memory controller used is negli-
gible – a small but notable variation is only observed when using the Custom memory
controller.

This same pattern is seen on benchmarks that generated a small number of mem-

63

ad
pc
m-
d

ad
pc
m-
e

ba
si
cm
at
h

bi
tc
ou
nt

bl
ow
fi
sh
-d

bl
ow
fi
sh
-e cr

c

g7
21
-d

g7
21
-e

gs
m-
d
gs
m-
e

pe
gw
it
-d

pe
gw
it
-e

ri
jn
da
el
-d

ri
jn
da
el
-e

rs
yn
th sh

a
0

10

20

30

40

Av
er

ag
e

re
ad

la
te

nc
y

(n
s)

FCFS FRFCFS FRFCFS-WQF Custom

(a) Latencies of read memory operations in benchmarks that did not generate main memory
write requests

di
jk
st
ra

ep
ic
-d

ep
ic
-e
ff
t-
d
ff
t-
e

jp
eg
-d

jp
eg
-e ma

d

me
sa
-m

me
sa
-o

me
sa
-t

pa
tr
ic
ia

qu
ic
ks
or
t
ra
st
a

sp
hi
nx

st
ri
ng
se
ar
ch

su
sa
n-
c

su
sa
n-
e

su
sa
n-
s

ty
pe
se
t

0

20

40

60

Av
er

ag
e

re
ad

la
te

nc
y

(n
s)

FCFS FRFCFS FRFCFS-WQF Custom

(b) Latencies of read memory operations in benchmarks that generated main memory write
requests

Figure 25 – Latencies of read memory operations with STT-RAM as main memory in
multiple memory controllers

64

ory requests in Figure 25b (dijkstra, mad and stringsearch). In benchmarks that
generated more main memory requests, the Custom controller reached the worst read
latencies, while the other controllers had similar latencies – best results occurred on
FCFS or FRFCFS-WQF, depending on the benchmark.

Figure 26 shows the average of write latencies over different memory controllers
using STT-RAM as a main memory. In this case, FCFS and FRFCFS had similar
results independently of the application simulated, and they reached the fastest write
latencies. When simulating either FRFCFS-WQF or Custom controllers, slower write
latencies occurred. This could be a consequence of the specific treatment for write
operations on both controllers – STT-RAM was the technology that had the smallest
gap between read and write latencies.

di
jk
st
ra

ep
ic
-d

ep
ic
-e
ff
t-
d
ff
t-
e

jp
eg
-d

jp
eg
-e ma

d

me
sa
-m

me
sa
-o

me
sa
-t

pa
tr
ic
ia

qu
ic
ks
or
t
ra
st
a

sp
hi
nx

st
ri
ng
se
ar
ch

su
sa
n-
c

su
sa
n-
e

su
sa
n-
s

ty
pe
se
t

0

20

40

60

80

Av
er

ag
e

w
ri

te
la

te
nc

y
(n
s)

FCFS FRFCFS FRFCFS-WQF Custom

Figure 26 – Latencies of write memory operations with STT-RAM as main memory on
multiple memory controllers

5.5.4 Overall Analysis

Lastly, Figure 27 presents the average of both read and write total latencies over
different memory controllers, considering the use of different NVMs. In Figure 27a, it is
shown the calculated average of all read memory operation latencies over all simulated
applications, while in Figure 27b the average of write memory operation latencies of
remaining applications (which generated at least one main memory write request) is
shown.

In overall, read latencies in any NVM/memory controller had very variable values
between applications, as it can be seen by its calculated standard deviations and pre-

65

PC
RAM

RRAM

ST
T-R

AM
0

20

40

60

80
La

te
nc

y
(n
s)

FCFS FRFCFS
FRFCFS-WQF Custom

(a) Average read latencies

PC
RAM

RRAM

ST
T-R

AM
0

50

100

150

200

La
te

nc
y

(n
s)

FCFS FRFCFS
FRFCFS-WQF Custom

(b) Average write latencies

Figure 27 – Latencies of memory operations in different NVM technologies and mem-
ory controllers

vious charts. On PCRAM, the FRFCFS-WQF controller scheduling policy helped to
boost read latencies of many benchmarks in detriment of write latencies. However,
on average no controller can be defined as the best – by running a t test with a 95%
confidence interval and comparing the means presented on the chart, it was observed
that all PCRAM read latency means do not have significant differences.

As seen previously, the Custom memory controller interfered in read latencies, in-
dependently of the NVM used as main memory. This variation is seen in a minor
scale when simulating RRAM with both FRFCFS and FRFCFS-WQF, and the already
established memory controllers in STT-RAM. Hence, the addition of more scheduling
techniques to the Custom Controller can help boost read latencies and reduce their
variations between benchmarks which got worsened when comparing with other mem-
ory controllers.

Regarding write latencies, it is seem that in PCRAM the Custom memory controller
have at least matched the best overall results, which are found in FCFS and FRFCFS.
It also surpassed FRFCFS-WQF, that was the worst average write latency – which
occurred due to the scheduling that attended read requests more quickly. On the other
hand, when observing RRAM and STT-RAM latencies, it did not achieve best latencies.
However, it is remarkable that average write latencies along the benchmark runs were
more uniform than in already established controllers, with small standard deviations in
the implemented memory controller.

66

5.6 Conclusion

This chapter presented all results obtained from multiple experiments performed by
this work. In order to extract results, sets of applications were chosen, being Media-
Bench and MiBench. Sanity checks were performed to ensure that benchmarks could
be compiled and executed. Then, a profiling of memory requests on benchmarks which
could be executed was done.

Then, a behavioral analysis on the implemented memory controller was done, by
evaluating length of busy periods, tests over different NVMs and use of queues. A
comparison between the implemented controller and NVMain default controllers was
performed, where both read and write latencies were analyzed. This comparison was
done considering each benchmark simulated. A final analysis was done calculating
the average and standard deviation of all benchmarks on each NVM and each mem-
ory controller – in this case, also both read and write latencies were the comparison
factors.

6 CONCLUSION

This work proposed a evaluation of different memory controllers directed to NVMs.
In order to cope with asymmetry of write and read memory of NVMs, it is important
to schedule memory requests properly. In order to do that, firstly a study over NVM
and memory controllers was performed. This was done in a sense of knowing current
NVMs which were most studied on the academia, and how memory controllers could
aid to extract best performance from NVM-based systems. With that considered, an
implementation of a memory controller using an already-proposed scheduling policy
was showed in this work.

For the purpose of implement the controller, it was decided to use two tools: Gem5
and NVMain, which are, respectively, a general-purpose simulator and a NVM simula-
tor. They were chosen since the combination of both tools can provide cycle-accurate
and near-full-system simulation. With tools chosen, a different memory controller was
implemented in NVMain memory-system. Its algorithms were detailed as they were
coded inside the memory simulator.

After coding the controller into NVMain, the next step of this work was to perform its
evaluation. For this part, sets of benchmarks were chosen to run and test the custom
controller, which were MediaBench and MiBench. Their applications were tested and
got their data inputs expanded in order to generate more main memory operations,
which allowed to perform analysis over them. With that, a benchmark profiling was
done over memory request generations, finding out what applications generated small
or big quantities of memory requests.

Then, a behavioral analysis of the memory controller was done. Firstly, the mem-
ory controller was tested using three different NVMs as main memories, being those
PCRAM, RRAM and STT-RAM. The tests run had expected results accordingly to the
distinct NVM technologies used, even though read latencies had great variations be-
tween benchmark executions. Afterwards, an evaluation of the busy periods of the
benchmarks in the memory controller was performed, where the main result found
was that on simulated benchmarks, the average of time spent in busy state was small,
which did not surpass 2% of the total execution time. Thus, the time spent attending

68

and generating memory requests was considered small in executed benchmarks.
Another analysis presented by this work was regarding the use of queues in the

implemented memory controller, one of its key elements. Simulations run showed that
queues were, in overall, underused. In average, the applications do not keep more than
one request in queue when the memory controller is active. This probably happened
due to benchmarks running in isolation, which did not let generation of large number
of memory requests, and that resource sharing was nonessential. Additional analysis
were also done: When simulating NVMs, the length of busy periods in executed bench-
marks had negligible differences; Simulation of queues with different capacities made
no difference, since queues in average were underused, as already observed.

Lastly, a comparison between the implemented memory controller with already-
established controllers provided by NVMain. The results were done evaluating perfor-
mance on latencies of read and write operations, which are important factors of NVMs.
In overall, read latencies in tested memory controllers had very variable results, while
write latencies tended to more uniform values, independently of the benchmark exe-
cuted.

When using the custom memory controller with STT-RAM as main memory, write la-
tencies reached the best results, matching the latencies of already-established NVMain
controllers. While that STT-RAM showed on overall the best write latencies, it is impor-
tant to point that using it on main memory requires larger chips – and bigger STT-RAM
chips have worse properties when comparing with smaller chips. For instance, this
impact seen on both STT-RAM and RRAM is less seen on the developing of large
PCRAM chips.

On other cases, this work concludes that the custom controller may need improve-
ments or consider other memory scheduling techniques in order to obtain better per-
formance. Other possibility lies in the adoption of hybrid architectures, which combines
both volatile and non-volatile technologies to compose a memory system, which can
potentially lead to extract the better features that each type of memory can offer.

6.1 Future work

There are plenty of future work to do starting from this work. One may include the
evaluation of a full-system simulation using the powerful emulation of Gem5, combining
it with NVMain main memory subsystem. This could extend this work, since all of
the presented analysis here was done with benchmarks running in isolation. In order
to do that, many other challenges and variables will need to be considered, turning
this evaluation a more powerful and complex one. With the full-system simulation, an
operational system needs to be present in the executions, which can potentially insert
more pressure on the main memory controller. In addition to that, more processes will

69

have to dispute for resources, which may reflect a more realistic scenario.
This analysis could be extended to use test with other sets of benchmarks. These

could be aimed to test a specific type of applications, e.g., image and multimedia ap-
plications. Other tests can be performed with applications that have different intentions
– for example, general-purpose benchmarks, such as SPEC-CPU (SPEC, 2017). In
a similar context, other evaluations can be accomplished by testing other emerging
memory technologies which show promising results. Analysis could be performed in
the sense of evaluating the impact of different memory controllers on different emerg-
ing technologies, which can include 3D memories (HOUDT, 2017), racetrack memo-
ries (ZHANG et al., 2016), among others.

Since the use of NVMs on memory systems show issues, another possibility lies
in the adoption of hybrid architectures. These combine the use of both memory tech-
nologies (volatile and non-volatile) in a memory system so that it can extract the best
of each type of memory. The development of a memory controller in a hybrid system
must be efficient and adaptive to different scenarios, e.g., it should detect when it is
more advantageous to use a non-volatile memory instead of a volatile one.

Other possible future work includes the improvement of memory controller directed
to NVMs. Related work shows different ways of dealing with memory operations (spe-
cially write ones), which could aid the controller implemented here in order to obtain an
overall better performance. Examples of helpful techniques can include write cancel-
lation and write pausing (QURESHI; FRANCESCHINI; LASTRAS-MONTAÑO, 2010)
and increasing of write concurrency in multiple banks of a memory (LAI et al., 2015).

70

REFERENCES

AKINAGA, H.; SHIMA, H. ReRAM technology; challenges and prospects. IEICE Elec-
tronics Express, Tokyo, Japan, v.9, n.8, p.795–807, 2012.

ARJOMAND, M. et al. HL-PCM: MLC PCM Main Memory with Accelerated Read. IEEE
Transactions on Parallel and Distributed Systems, New York, NY, USA, v.28, n.11,
p.3188–3200, Nov 2017.

AWAD, A. et al. Silent Shredder: Zero-Cost Shredding for Secure Non-Volatile Main
Memory Controllers. SIGOPS Oper. Syst. Rev., New York, NY, USA, v.50, n.2, p.263–
276, March 2016.

BINKERT, N. public/gem5 – Git at google. 2012, Available at:
<https://gem5.googlesource.com/public/gem5>. Access on: March, 2018.

BINKERT, N. et al. The Gem5 Simulator. SIGARCH Comput. Archit. News, New York,
NY, USA, v.39, n.2, p.1–7, Aug. 2011.

BURNS, A.; GUTIéRREZ, M.; RIVAS, M. A.; HARBOUR, M. G. A Deadline-Floor In-
heritance Protocol for EDF Scheduled Embedded Real-Time Systems with Resource
Sharing. IEEE Transactions on Computers, New York, NY, USA, v.64, n.5, p.1241–
1253, May 2015.

BURR, G. W. et al. Recent Progress in Phase-Change Memory Technology. IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, New York,
NY, USA, v.6, n.2, p.146–162, June 2016.

CHANG, C. W.; YANG, C. Y.; CHANG, Y. H.; KUO, T. W. Booting Time Minimization
for Real-Time Embedded Systems with Non-Volatile Memory. IEEE Transactions on
Computers, New York, NY, USA, v.63, n.4, p.847–859, April 2014.

CHI, P. et al. PRIME: A Novel Processing-in-memory Architecture for Neural Network
Computation in ReRAM-based Main Memory. SIGARCH Comput. Archit. News, New
York, NY, USA, v.44, n.3, p.27–39, June 2016.

71

CHI, P.; LEE, W.-C.; XIE, Y. Making B+-tree Efficient in PCM-based Main Memory.
In: INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN,
2014, La Jolla, California, USA. Proceedings. . . ACM, 2014. p.69–74. (ISLPED ’14).

CHOI, Y. et al. A 20nm 1.8V 8Gb PRAM with 40MB/s program bandwidth. In: IEEE IN-
TERNATIONAL SOLID-STATE CIRCUITS CONFERENCE, 2012, San Francisco, CA,
USA. Proceedings. . . IEEE, 2012. p.46–48.

CHUNG, H. et al. A 58nm 1.8V 1Gb PRAM with 6.4MB/s program BW. In: IEEE INTER-
NATIONAL SOLID-STATE CIRCUITS CONFERENCE, 2011., 2011, San Francisco,
CA, USA. Proceedings. . . IEEE, 2011. p.500–502.

COALMON, B. Theory of Spin Transfer Torque. 2009. Available at:
<https://www.nist.gov/programs-projects/theory-spin-transfer-torque>. Access on:
March, 2018.

DASARI, D.; NELIS, V.; MOSSE, D. Timing analysis of PCM main memory in mul-
ticore systems. In: IEEE 19TH INTERNATIONAL CONFERENCE ON EMBEDDED
AND REAL-TIME COMPUTING SYSTEMS AND APPLICATIONS, 2013, Taipei, Tai-
wan. Proceedings. . . IEEE, 2013. p.52–61.

DONG, X.; XIE, Y. AdaMS: Adaptive MLC/SLC phase-change memory design for
file storage. In: ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE
(ASP-DAC 2011), 16., 2011, Yokohama, Japan. Proceedings. . . IEEE, 2011. p.31–36.

DU, Y. et al. Bit Mapping for Balanced PCM Cell Programming. In: INTERNATIONAL
SYMPOSIUM ON COMPUTER ARCHITECTURE, 2013, Tel-Aviv, Israel. Proceed-
ings. . . ACM, 2013. p.428–439. (ISCA ’13).

ENDOH, T. et al. An Overview of Nonvolatile Emerging Memories – Spintronics for
Working Memories. IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, New York, NY, USA, v.6, n.2, p.109–119, June 2016.

EVERSPIN. Datasheet: MR2A16A Family. 2015.

EWAIS, M. A.; OMRAN, M. A.; RAAFAT, A.; ALKABANI, Y. A virtual memory archi-
tecture to enhance STT-RAM performance as main memory. In: IEEE CANADIAN
CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2016,
Vancouver, Canada. Proceedings. . . IEEE, 2016. p.1–6.

FUJITA, M. Highly-Pipelined and Energy-Saved Computing with Arrays of Non-Volatile
Memories. In: INTERNATIONAL CONFERENCE ON INTERDISCIPLINARY AD-
VANCES IN APPLIED COMPUTING, 2014, Amritapuri, India. Proceedings. . . ACM,
2014. p.46:1–46:6. (ICONIAAC ’14).

72

GOOSSENS, S.; CHANDRASEKAR, K.; AKESSON, B.; GOOSSENS, K. Memory
Controllers for Mixed-Time-Criticality Systems: Architectures, Methodologies and
Trade-offs. New York, NY, USA: Springer, 2016.

GUTHAUS, M. R. et al. MiBench: A free, commercially representative embedded
benchmark suite. In: FOURTH ANNUAL IEEE INTERNATIONAL WORKSHOP ON
WORKLOAD CHARACTERIZATION. WWC-4 (CAT. NO.01EX538), 2001, Austin, TX,
USA. Proceedings. . . IEEE, 2001. p.3–14.

HOUDT, J. V. 3D Memories and Ferroelectrics. In: IEEE INTERNATIONAL MEMORY
WORKSHOP (IMW), 2017., 2017, Monterey, CA, USA. Proceedings. . . IEEE, 2017.
p.1–3.

HU, J. et al. Scheduling to Optimize Cache Utilization for Non-Volatile Main Memo-
ries. IEEE Transactions on Computers, New York, NY, USA, v.63, n.8, p.2039–2051,
Aug 2014.

IELMINI, D. Resistive switching memories based on metal oxides: mechanisms, reli-
ability and scaling. Semiconductor Science and Technology, Bristol, UK, v.31, n.6,
p.063002, 2016.

KANG, S. H. Embedded stt-mram for mobile applications: Enabling advanced chip
architectures. In: NON-VOLATILE MEMORIES WORKSHOP, 2010, San Diego, CA,
USA. Proceedings. . . CMRR, 2010.

KANG, W. et al. Yield and Reliability Improvement Techniques for Emerging Nonvolatile
STT-MRAM. IEEE Journal on Emerging and Selected Topics in Circuits and Sys-
tems, New York, NY, USA, v.5, n.1, p.28–39, March 2015.

KAWAHARA, A. et al. An 8Mb multi-layered cross-point ReRAM macro with 443MB/s
write throughput. In: IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFER-
ENCE, 2012, San Francisco, CA, USA. Proceedings. . . IEEE, 2012. p.432–434.

KHWA, W. S. et al. A Procedure to Reduce Cell Variation in Phase Change Memory
for Improving Multi-Level-Cell Performances. In: IEEE INTERNATIONAL MEMORY
WORKSHOP (IMW), 2015, San Francisco, CA, USA. Proceedings. . . IEEE, 2015.
p.1–4.

KIM, H.; KIM, S.; LEE, J. Write-Amount-Aware Management Policies for STT-RAM
Caches. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, New
York, NY, USA, v.25, n.4, p.1588–1592, April 2017.

KIM, Y.; HAN, D.; MUTLU, O.; HARCHOL-BALTER, M. ATLAS: A scalable and high-
performance scheduling algorithm for multiple memory controllers. In: HPCA - 16 2010

73

THE SIXTEENTH INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE COM-
PUTER ARCHITECTURE, 2010, Bangalore, India. Proceedings. . . IEEE, 2010. p.1–
12.

KOTRA, J. B. et al. Re-NUCA: A Practical NUCA Architecture for ReRAM based last-
level caches. In: PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM, 2016
IEEE INTERNATIONAL, 2016, Chicago, IL, USA. Proceedings. . . IEEE, 2016. p.576–
585.

KÜLTÜRSAY, E.; KANDEMIR, M.; SIVASUBRAMANIAM, A.; MUTLU, O. Evaluating
STT-RAM as an energy-efficient main memory alternative. In: PERFORMANCE ANAL-
YSIS OF SYSTEMS AND SOFTWARE (ISPASS), 2013 IEEE INTERNATIONAL SYM-
POSIUM ON, 2013, Austin, TX, USA. Proceedings. . . IEEE, 2013. p.256–267.

KUMAR, P. S.; KARSAI, G. Integrated Analysis of Temporal Behavior of Component-
Based Distributed Real-Time Embedded Systems. In: IEEE INTERNATIONAL
SYMPOSIUM ON OBJECT/COMPONENT/SERVICE-ORIENTED REAL-TIME DIS-
TRIBUTED COMPUTING WORKSHOPS, 2015., 2015. Proceedings. . . IEEE, 2015.
p.50–57.

LAI, C. H.; YU, S. C.; YANG, C. L.; LI, H. P. Fine-grained write scheduling for
PCM performance improvement under write power budget. In: IEEE/ACM INTERNA-
TIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN (ISLPED),
2015, Rome, Italy. Proceedings. . . IEEE, 2015. p.19–24.

LEE, C.; POTKONJAK, M.; MANGIONE-SMITH, W. H. MediaBench: a tool for evalu-
ating and synthesizing multimedia and communications systems. In: ANNUAL INTER-
NATIONAL SYMPOSIUM ON MICROARCHITECTURE, 30., 1997, Research Triangle
Park, NC, USA. Proceedings. . . IEEE, 1997. p.330–335.

LEE, S. H. Technology scaling challenges and opportunities of memory devices. In:
IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2016, Monterey,
CA, USA. Proceedings. . . IEEE, 2016. p.1.1.1–1.1.8.

LI, B.; SHAN, S.; HU, Y.; LI, X. Partial-SET: Write speedup of PCM main memory.
In: DESIGN, AUTOMATION TEST IN EUROPE CONFERENCE EXHIBITION (DATE),
2014., 2014, Dresden, Germany. Proceedings. . . IEEE, 2014. p.1–4.

LI, H. H. et al. Looking Ahead for Resistive Memory Technology: A broad perspective
on ReRAM technology for future storage and computing. IEEE Consumer Electronics
Magazine, New York, NY, USA, v.6, n.1, p.94–103, Jan 2017.

LI, Q. et al. Compiler-Assisted Refresh Minimization for Volatile STT-RAM Cache. IEEE
Transactions on Computers, New York, NY, USA, v.64, n.8, p.2169–2181, Aug 2015.

74

MARTINEZ, J. F.; IPEK, E. Dynamic Multicore Resource Management: A Machine
Learning Approach. IEEE Micro, New York, NY, USA, v.29, n.5, p.8–17, Sep 2009.

MEENA, J. S.; SZE, S. M.; CHAND, U.; TSENG, T.-Y. Overview of emerging nonvolatile
memory technologies. Nanoscale research letters, New York, NY, USA, v.9, n.1, p.1,
2014.

MENG, Y. et al. Uniform silicon carbide doped Sb 2 Te nanomaterial for high temper-
ature and high speed PCM applications. Journal of Alloys and Compounds, Lau-
sanne, Switzerland, v.664, p.591–594, 2016.

MITTAL, S.; VETTER, J. S. A Survey of Software Techniques for Using Non-Volatile
Memories for Storage and Main Memory Systems. IEEE Transactions on Parallel
and Distributed Systems, New York, NY, USA, v.27, n.5, p.1537–1550, May 2016.

MITTAL, S.; VETTER, J. S.; LI, D. A Survey Of Architectural Approaches for Managing
Embedded DRAM and Non-Volatile On-Chip Caches. IEEE Transactions on Parallel
and Distributed Systems, New York, NY, USA, v.26, n.6, p.1524–1537, June 2015.

MUTLU, O.; SUBRAMANIAN, L. Research problems and opportunities in memory sys-
tems. Supercomputing frontiers and innovations, Chelyabinsk, Russia, v.1, n.3,
p.19–55, 2015.

NUMONYX. The Basics of Phase Change Memory Technology. 2007. Available
at: <http://signallake.com/innovation/PhaseChangeMemory.pdf>. Access on: March,
2018.

OIKE, H. et al. Phase-change memory function of correlated electrons in organic con-
ductors. Physical Review B, Ridge, NY, USA, v.91, n.4, p.041101, 2015.

OUKID, I.; KETTLER, R.; WILLHALM, T. Storage class memory and databases: Op-
portunities and challenges. it-Information Technology, Berlin, Germany, v.3, n.59,
p.109–115, March 2017.

PAN, F. et al. Recent progress in resistive random access memories: materials, switch-
ing mechanisms, and performance. Materials Science and Engineering: R: Reports,
Lausanne, Switzerland, v.83, p.1–59, 2014.

PEREZ, T.; DE ROSE, C. Non-Volatile Memory: Emerging Technologies And Their
Impacts on Memory Systems (TR-060). Porto Alegre, Brazil: Technical report, Facul-
dade de Informática, Pontifıcia Universidade Católica do Rio Grande do Sul (PUCRS),
2010.

PIROVANO, A. An Introduction on Phase-Change Memories. In: Phase Change Mem-
ory. New York, NY, USA: Springer, 2018. p.1–10.

75

POREMBA, M. mrp5060 / nvmain. 2012, Available at:
<https://bitbucket.org/mrp5060/nvmain/overview>. Access on: March, 2018.

POREMBA, M. NVMain Wiki Main/Home Page. 2015, Available at:
<http://wiki.nvmain.org/>. Access on: March, 2018.

POREMBA, M.; XIE, Y. NVMain: An Architectural-Level Main Memory Simulator for
Emerging Non-volatile Memories. In: IEEE COMPUTER SOCIETY ANNUAL SYMPO-
SIUM ON VLSI, 2012, Amherst, MA, USA. Proceedings. . . IEEE, 2012. p.392–397.

POREMBA, M.; ZHANG, T.; XIE, Y. NVMain 2.0: A User-Friendly Memory Simulator
to Model (Non-)Volatile Memory Systems. IEEE Computer Architecture Letters, New
York, NY, USA, v.14, n.2, p.140–143, July 2015.

POURSHIRAZI, B.; ZHU, Z. Refree: A Refresh-Free Hybrid DRAM/PCM Main Memory
System. In: IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING
SYMPOSIUM (IPDPS), 2016, Chicago, IL, USA. Proceedings. . . IEEE, 2016. p.566–
575.

QURESHI, M. K.; FRANCESCHINI, M. M.; LASTRAS-MONTAÑO, L. A. Improving read
performance of Phase Change Memories via Write Cancellation and Write Pausing.
In: HPCA - 16 2010 THE SIXTEENTH INTERNATIONAL SYMPOSIUM ON HIGH-
PERFORMANCE COMPUTER ARCHITECTURE, 2010, Bangalore, India. Proceed-
ings. . . IEEE, 2010. p.1–11.

RAOUX, S.; XIONG, F.; WUTTIG, M.; POP, E. Phase change materials and phase
change memory. MRS bulletin, Cambridge, UK, v.39, n.8, p.703–710, 2014.

SALEHI, M.; EJLALI, A. A Hardware Platform for Evaluating Low-Energy Multiproces-
sor Embedded Systems Based on COTS Devices. IEEE Transactions on Industrial
Electronics, New York, NY, USA, v.62, n.2, p.1262–1269, Feb 2015.

SONG, B.; LI, Q.; LIU, H.; LIU, H. Exploration of selector characteristic based on elec-
tron tunneling for RRAM array application. IEICE Electronics Express, Tokyo, Japan,
v.14, n.17, p.20170739–20170739, 2017.

SPEC. Standard Performance Evaluation Corporation. 2017. Available at:
<https://www.spec.org/cpu2017/>. Access on: May, 2018.

THOMAS, L. et al. Perpendicular spin transfer torque magnetic random access mem-
ories with high spin torque efficiency and thermal stability for embedded applications.
Journal of Applied Physics, Melville, NY, USA, v.115, n.17, p.172615, 2014.

76

WANG, F.; WU, X. Non-volatile Memory Devices Based on Chalcogenide Materials. In:
INFORMATION TECHNOLOGY: NEW GENERATIONS, INTERNATIONAL CONFER-
ENCE ON, 2009, Los Alamitos, CA, USA. Proceedings. . . IEEE, 2009. p.5–9.

WANG, K.; ALZATE, J.; AMIRI, P. K. Low-power non-volatile spintronic memory: STT-
RAM and beyond. Journal of Physics D: Applied Physics, Philadelphia, PA, USA,
v.46, n.7, p.074003, 2013.

WANG, Z. et al. Adaptive placement and migration policy for an STT-RAM-based hybrid
cache. In: IEEE 20TH INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE
COMPUTER ARCHITECTURE (HPCA), 2014, Orlando, FL, USA. Proceedings. . .
IEEE, 2014. p.13–24.

WONG, H. S. P. et al. Metal-Oxide RRAM. Proceedings of the IEEE, New York, NY,
USA, v.100, n.6, p.1951–1970, June 2012.

YAKOPCIC, C.; HASAN, R.; TAHA, T. M. Hybrid crossbar architecture for a memristor
based cache. Microelectronics Journal, Lausanne, Switzerland, v.46, n.11, p.1020 –
1032, 2015.

YAZDANSHENAS, S.; PIRBASTI, M. R.; FAZELI, M.; PATOOGHY, A. Coding last level
STT-RAM cache for high endurance and low power. IEEE computer architecture let-
ters, Washington, DC, USA, v.13, n.2, p.73–76, 2014.

YOUNG, V.; NAIR, P. J.; QURESHI, M. K. DEUCE: Write-Efficient Encryption for Non-
Volatile Memories. SIGARCH Comput. Archit. News, New York, NY, USA, v.43, n.1,
p.33–44, Mar. 2015.

ZHAN, J. et al. OSCAR: Orchestrating STT-RAM cache traffic for heterogeneous CPU-
GPU architectures. In: ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MI-
CROARCHITECTURE (MICRO), 49., 2016, Taipei, Taiwan. Proceedings. . . IEEE,
2016. p.1–13.

ZHANG, H.; XIAO, N.; LIU, F.; CHEN, Z. Leader: Accelerating ReRAM-based main
memory by leveraging access latency discrepancy in crossbar arrays. In: DESIGN,
AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE), 2016,
Dresden, Germany. Proceedings. . . IEEE, 2016. p.756–761.

ZHANG, Y. et al. ADAMS: asymmetric differential STT-RAM cell structure for reli-
able and high-performance applications. In: INTERNATIONAL CONFERENCE ON
COMPUTER-AIDED DESIGN, 2013, San Jose, CA, USA. Proceedings. . . IEEE
Press, 2013. p.9–16.

77

ZHANG, Y. et al. Read Performance: The Newest Barrier in Scaled STT-RAM. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, New York, NY, USA,
v.23, n.6, p.1170–1174, June 2015.

ZHANG, Y. et al. Perspectives of Racetrack Memory for Large-Capacity On-Chip Mem-
ory: From Device to System. IEEE Transactions on Circuits and Systems I: Regular
Papers, New York, NY, v.63, n.5, p.629–638, May 2016.

ZHAO, J.; XU, C.; CHI, P.; XIE, Y. Memory and storage system design with non-
volatile memory technologies. IPSJ Transactions on System LSI Design Method-
ology, Tokyo, Japan, v.8, n.0, p.2–11, 2015.

ZHOU, J.; KIM, K. H.; LU, W. Crossbar RRAM Arrays: Selector Device Requirements
During Read Operation. IEEE Transactions on Electron Devices, New York, NY,
USA, v.61, n.5, p.1369–1376, May 2014.

ZHOU, M. et al. Real-Time Scheduling for Phase Change Main Memory Systems. In:
IEEE 10TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY
IN COMPUTING AND COMMUNICATIONS, 2011, Changsha, China. Proceedings. . .
IEEE, 2011. p.991–998.

ZHOU, P.; ZHAO, B.; YANG, J.; ZHANG, Y. Energy reduction for STT-RAM using early
write termination. In: INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DE-
SIGN, 2009, San Jose, CA, USA. Proceedings. . . ACM, 2009. p.264–268.

ZOU, Q. et al. Heterogeneous architecture design with emerging 3D and non-volatile
memory technologies. In: THE 20TH ASIA AND SOUTH PACIFIC DESIGN AUTOMA-
TION CONFERENCE, 2015, Chiba, Japan. Proceedings. . . IEEE, 2015. p.785–790.

	Introduction
	Non-Volatile Memories
	STT-RAM
	PCRAM
	RRAM
	Discussion
	Conclusion

	Memory operation scheduling
	Analysis of memory requests timing mechanism
	Conclusion

	Memory Controller for Non-Volatile Memories
	Main Contribution
	NVMain and Gem5
	Memory Controller Implementation
	Conclusion

	Results
	Simulation configurations
	Benchmark checking and manipulation
	Benchmark memory profiling
	Memory controller Evaluation
	Evaluating impact of different technologies of NVM as main memory
	Evaluating length of busy periods
	Evaluating use of queues
	Additional remarks

	Comparison between different memory controllers
	PCRAM
	RRAM
	STT-RAM
	Overall Analysis

	Conclusion

	Conclusion
	Future work

	References

