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Resumo 

 
 

BRAUNER, Katielle Valente. Métodos de envelhecimento da interface adesiva 
para testes de adesão à dentina. 2019. 118f. Tese (Doutorado em Odontologia) – 
Programa de Pós-Graduação em Odontologia. Universidade Federal de Pelotas, 
Pelotas, 2019. 
 
 
O objetivo deste trabalho foi avaliar o efeito da degradação da interface resina-
dentina, medida pela diminuição da resistência de união (RU) após diferentes 
métodos disponíveis para simulação de envelhecimento acelerado. O trabalho foi 
dividido em dois estudos: (1) uma revisão sistemática e meta-análise da literatura; e 
(2) um experimento in vitro. O primeiro estudo foi descrito de acordo com o PRISMA 
buscando avaliar se os diferentes métodos e protocolos de envelhecimento 
acelerado são efetivos na diminuição da resistência de união à dentina utilizando 
resina composta direta. Foi identificado que a ciclagem térmica teve efeito 
significativo na maioria dos protocolos utilizados para o envelhecimento da interface. 
Ciclagem mecânica e termomecânica, pressão pulpar, armazenamento de NaOCl e 
ciclagem térmica + armazenamento estático foram capazes de promover a 
diminuição da RU. O armazenamento em enzima só foi capaz de diminuir a RU em 
períodos de pelo menos 3 meses; e os protocolos de ciclagem de pH e desafio 
cariogênico avaliados não foram capazes de promover a diminuição da RU. Já o 
segundo estudo testou 5 das metodologias disponíveis em laboratório 
(termociclagem, ciclagem mecânica, ciclagem mecânica com Rub&Roll, desafio 
cariogênico e 5 semans de armazenamento em água) avaliando a resistência de 
uião à microtração. Para esse experimento foram utilizados dois tipos de adesivo 
(convencional e autocondicionante) e o grupo controle permaneceu em água (37ºC) 
por 24 horas. Foi observado que 14 dias de desafio cariogênico foram capazes de 
reduzir a RU do sistema adesivo convencional e a ciclagem mecânica do 
autocondicionante. Com esta tese podemos concluir que muitos métodos de 
envelhecimento acelerado podem ser efetivos na degradação da interface, porém 
diversos parâmetros devem ser considerados como tempo de envelhecimento, 
condições de armazenagem e material utilizado. 
 
Palavras-chave: envelhecimento, dentina; resistência de união;
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Abstract 

 
 

BRAUNER, Katielle Valente. Aging methods for dentin bond strength tests. 2019. 
118p. Thesis (PhD in Dentistry). Graduate Program in Dentistry. Federal University of 
Pelotas, Pelotas, 2019. 

 
 

The aim of this study was to evaluate the effect of degradation of resin-dentin 
interface, measured by the decrease of the bond strength (BS) after different 
available methods for simulation of accelerated aging. The work was divided into two 
studies: (1) a systematic review and meta-analysis of the literature; and (2) an in vitro 
experiment. The first study was described according to PRISMA to investigate 
whether the different accelerated aging methods and protocols are effective in 
reducing bond strength to dentin using direct composite resin. It was identified that 
the thermal cycling had a significant effect in most of the protocols used for the aging 
of the interface. Mechanical and thermomechanical cycling, pulpal pressure, NaOCl 
storage and thermal cycling + static storage were able to promote the decrease of 
BS. Enzyme storage was only able to decrease the BS in periods of at least 3 
months; and the pH cycling and cariogenic challenge protocols evaluated were not 
able to promote the decrease of the BS. The second study tested 5 of the available 
methodologies in the laboratory (thermal cycling, mechanical cycling, mechanical 
cycling with Rub & Roll, cariogenic challenge and 5 weeks of storage in water) and 
evaluated microtensile bond strength. Two types of adhesive were used for this 
experiment (etch-and-rinse and self-etch) and the control group remained in water 
(37 C) for 24 hours. It was observed that 14 days of cariogenic challenge were able 
to reduce the BS of the etch-and-rinse adhesive system and the mechanical cycling 
of the self-etch. With this thesis we can conclude that many methods of accelerated 
aging can be effective in the degradation of interface, however, many parameters 
should be considered as aging time, storage conditions and material used. 
 
Key-words: aging, dentin, bond strength. 
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1 Introdução 

 

Fratura e cárie secundária são as maiores razões de falhas em uma 

restauração, o que torna sua longevidade, motivo de investigações em estudos de 

odontologia, principalmente por o sucesso/falha dessas restaurações dependerem 

de vários fatores relacionados ao paciente, idade, operador e material utilizado. 

Ainda assim, independentemente desses fatores, os eventos que ocorrem na 

cavidade bucal durante a função dentária promovem a contínua degradação ou 

envelhecimento dos materiais restauradores. Esse envelhecimento é um processo 

que pode levar ao surgimento de defeitos em restaurações tais como:  

manchamento superficial e marginal, aumento da porosidade superficial, degradação 

da interface adesiva e fraturas, tendo como consequência em certos casos a 

necessidade de substituição (DEMARCO et al., 2012, 2017; OPDAM et al., 2014). 

Existem inúmeros eventos que ocorrem na cavidade bucal, geralmente 

combinando fatores físicos e químicos. Fatores físicos incluem as forças oclusais 

mastigatórias e os esforços repetitivos de expansão e contração associados a 

mudanças de temperatura no ambiente oral (AKIN et al., 2012; DE MUNCK et al., 

2005). Já os fatores químicos desafiam as estruturas dentárias e materiais 

restauradores através da saliva, fluido dentinário, bebidas, alimentos e bactérias que 

atuam na superfície ou degradam fibrilas de colágeno desprotegidas e os 

componentes adesivos na interface dente-restauração (KHAMVERDI; REZAEI-

SOUFI; ROSTAMZADEH, 2015; TASCHNER et al., 2014). 

A simulação do envelhecimento na cavidade bucal é considerada essencial 

para avaliar materiais odontológicos em laboratório e avaliar a previsibilidade da 

adesão dentinária a longo prazo (SKOVRON et al., 2010). Na tentativa de simular os 

eventos que ocorrem clinicamente na cavidade bucal, várias metodologias têm sido 

utilizadas. O armazenamento de água é o procedimento mais utilizado para o 

envelhecimento das amostras em testes de durabilidade das interfaces de radesivos 

dentinários (SAURO et al., 2009; TOLEDANO et al., 2013; VIDAL et al., 2013), no 

entanto, a redução nos valores de resistência de união normalmente requer um 
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período de 6 meses ou mais (GARBUI et al., 2012; SABOIA et al., 2009; SAURO et 

al., 2009).  

Os ciclos térmicos e mecânicos são difundidos na literatura, geralmente 

realizados através de equipamentos específicos que simulam mudanças de 

temperatura e/ou eventos de carga ou mastigação (DANESHKAZEMI et al., 2015, 

2013; ULKER et al., 2010). Embora comumente utilizados, não há consenso sobre 

qual é o melhor protocolo para envelhecer as interfaces adesivas. Além disso, a 

literatura apresenta vários outros métodos destinados a envelhecer essas interfaces, 

incluindo desafios químicos e cariogênicos através do armazenamento em saliva 

artificial, enzimas, hipoclorito de sódio e ciclagem de pH. Em outros casos, com o 

intuito de aproximar os estudos da realidade das condições desafiadoras do 

ambiente bucal, estudos in situ são realizados armazenando-se os espécimes em 

dispositivos intra-orais (HASS et al., 2016; SIMOES et al., 2014). 

Outro problema das investigações in vitro em longo prazo sobre a ligação 

resina-dentina é que não apenas o método, mas também o protocolo de 

envelhecimento pode variar entre os estudos. Por exemplo, estudos usando ciclos 

térmicos para desafiar a interface adesiva podem usar de 100 a 100.000 ciclos 

térmicos e, portanto, uma comparação direta entre eles pode não ser viável 

(FUKUOKA et al., 2011; HARIRI et al., 2012; YOSHIHARA et al., 2015). Além disso, 

protocolos de ciclos térmicos mais longos também exporão as interfaces por mais 

tempo aos efeitos da degradação da água, portanto a influência das mudanças de 

temperatura pode ser superestimada. O mesmo cenário pode ser observado para 

outros métodos de envelhecimento. 

Obter uma compreensão mais profunda sobre o mecanismo de adesão à 

dentina leva a resultados clínicos mais favoráveis, aumentando a durabilidade dos 

procedimentos preventivos e restauradores. Mas, quando se trata de 

envelhecimento acelerado, ainda existe uma lacuna em quais metodologias e 

protocolos são efetivos. Baseado nisso os objetivos da presente tese foram:  

1. Revisar sistematicamente a literatura sobre o efeito da degradação da 

interface resina-dentina, medida pela diminuição da resistência de união 

após diferentes métodos disponíveis para simulação de envelhecimento 

acelerado. 
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2. Avaliar a resistência de união à microtração de um adesivo convencional 

e um autocondicionante após diferentes métodos de envelhecimento 

acelerado. 
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Abrstract 

 

Objectives. Many methods for simulating the aging of dentin-bond composites are 

commonly used in dentistry, but there is still a gap in which methods are actually 

capable of affecting bond strength. This systematic review aimed to evaluate the 

degradation effect of the resin-dentin interface, measured by decreasing bond 

strength (BS) after different in vitro and in situ methods available for simulation of 

accelerated aging of direct composite resin to dentin. Data. The database search for 

studies that made accelerated aging retrieved 11,001 eligible studies. After 

deduplication, 8,003 records were examined by the titles/abstracts; 7,806 studies 

were excluded and 197 articles were assessed for full-text reading. In total, 133 

articles met inclusion criteria and were included in the study. Sources. The databases 

analyzed were MEDLINE/PubMed, ISI Web of Science, and Scopus. Study selection. 

Papers were selected if they presented an evaluation of (micro)tensile or 

(micro)shear bond strength to artificially age dentin bonded to composites. Groups 

were compared to non-aged bonded dentin interface. Only studies written in English 

were included. Studies or groups that performed only static aging were excluded. 

Conclusions. Thermal cycling had significative effect in most of protocols used for 

aging the interface. Mechanical and thermomechanical cycling, pulpal pressure, 

NaOCl storage and Thermal cycling + static storage were able to promote the 

decrease of BS. Enzyme storage was only able to decrease BS in periods of at least 

3 months; and the evaluated pH cycling and cariogenic challenge protocols were not 

able to promote the decrease of BS. 

 

Keywords: Aging; Bond Strength; Dentin; Composites; in vitro; 
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Highlights 

Many methods to accelerated aging are commonly used. 

Different methods of accelerated aging were able to promote the decrease of BS.  

Thermal cycling was the most found method in studies that made accelerated aging. 
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1. Introduction 

The resin-dentin interface in adhesive restorations is susceptible to failure over 

time [1]. There are numerous events that occur in the oral cavity, usually combining 

physical and chemical factors. Physical factors include the occlusal masticatory 

forces and repetitive expansion and contraction stresses associated with changes in 

temperature within the mouth [2,3]. Chemical factors challenge the dental structures 

and restorative materials through components in saliva, dentinal fluid, beverages, 

food and bacteria metabolites that act on the surfaces or degrading unprotected 

collagen fibrils and the adhesive components at the bonded interfaces [4,5]. 

The simulation of aging in the oral cavity is considered essential to evaluate 

dental materials in the laboratory and assess the predictability of the dentin bonding 

in the long term [6]. In an attempt to simulate the events that occur clinically in the 

oral cavity, several methodologies have been used. Thermal and mechanical cycling 

are widespread in the literature, usually performed through specific equipment that 

simulate temperature changes and/or loading or chewing events. Although commonly 

used, there is no consensus on which is the best protocol to age adhesive interfaces. 

In addition, the literature presents several other methods designed to age bonded 

interfaces, including chemical and cariogenic challenges through storage in artificial 

saliva, enzymes, sodium hypochlorite and pH cycling solution. In other cases, in an 

endeavor to bring the studies closer to the reality of the challenging conditions of the 

oral environment, in situ studies are carried out by storing the specimens in intraoral 

devices [7,8] 

Another problem of long-term in vitro investigations on resin-dentin bonding is 

that not only the aging method but also the aging protocol may vary among studies. 

For instance, studies using thermal cycling to challenge the adhesive interface may 
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use from 100 to 100,000 thermal cycles and, therefore, a direct comparison among 

them may not be feasible [9–11]. In addition, longer thermal cycling protocols will 

also expose the interfaces longer to water degradation effects, thus the influence of 

the temperature changes could be overestimated. The same scenario may be 

observed for other aging methods.  

Obtaining a deeper understanding about the mechanism of adhesion to dentin 

can leads to more favorable clinical results, increasing the durability of restorative 

procedures. But when it comes to accelerated aging there is still a gap concerning 

which protocol to apply and for how long. Based on this, this systematic review aimed 

to evaluate the degradation effect of the resin-dentin interface, measured by 

decreasing bond strength (BS) after different in vitro and in situ methods available for 

simulation of accelerated aging. 

 

2. Materials and Methods 

This systematic review was carried out according to the guidelines of 

Cochrane Handbook for Systematic Reviews of Interventions [12] and followed the 

four-phase flow diagram based on the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) Statement [13]. To formulate the research 

question, the following PICOT was established: “Population”: direct resin composites 

bonded to dentin; Intervention: artificial aging of the bonded dentin interface; 

Comparison: non-aged bonded dentin interface; Outcome: BS to dentin; Type of 

study: in vitro or in situ. The research question was: Which accelerated aging 

methods are able to degrade the dentin BS? 

 

2.1. Search Strategies 
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Studies were identified through Medline/PubMed, Scopus, and Web of 

Science databases. The last search was carried out in November 2017 without date 

restrictions. The following search strategy was used in PubMed and adapted to the 

other databases: (aging*) AND (material* OR adhes*) AND (dentin*) AND (bond 

strength*) (Table 1). Literature search results were de-duplicated using EndNote X7 

software (Thomson Reuters, New York, NY, USA).  

 

2.2. Study Selection 

Two independent reviewers initially screened the titles of all identified 

documents. The studies were analyzed according to the selection criteria described 

in Table 2. If the title indicated possible inclusion, the abstract was evaluated. After 

the abstracts were carefully appraised, manuscripts considered eligible (or in case of 

doubt) were selected for full-text reading. Discrepancies were resolved by discussion 

with a third reviewer. The references cited in the included papers were also checked 

to identify other potentially relevant articles. 

 

2.3. Data Collection 

A standardized outline was used for data extraction based on the 

characteristics of studies and groups tested: sample size, aging protocol, BS test, 

number of cycles or time of aging, material used, and conclusion. Dentin BS means 

and standard deviations were also extracted. The authors of the studies were 

contacted in case of missing or any unpublished data; these studies were only 

included if the authors provided the missing information. In case the authors did not 

reply and the data were presented in graphs, WEBPLOTDIGITIZER (version 3.10, 
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http://arohatgi.info/WebPlotDigitizer/) was used for conversion of plots into numerical 

values. 

 

2.4. Assessment of Risk of Bias 

The risk of bias was assessed based on previous studies [14–16] and The 

Cochrane Collaboration’s tool for assessing risk of bias [17]. The following 

parameters were considered: teeth randomization, materials used according to 

manufacturers’ instructions, sample size calculation, and blinding of the operator of 

the testing machine. The reporting or not of each item was evaluated as high, low, or 

unclear risk of bias. Assessment of risk of bias was conducted using Review 

Manager 5.3 software (Copenhagen: The Nordic Cochrane Centre, The Cochrane 

Collaboration, 2014) by two researchers. 

 

2.5. Data Analysis 

Characteristics of the studies were summarized descriptively and a random 

effects meta-analysis was conducted to calculate pooled mean difference between 

the control and aging protocols. Analyses were initially carried out separately for self-

etch and etch-and-rinse adhesives; however, as the adhesive systems presented 

similar results, the adhesives were not separated in the final analyses. As a post hoc 

decision, subgroups analyses were carried out to explore the influence of time and 

number of cycles in each aging method according to the included studies (Table 3). 

Multiple groups compared to a single control from the same study were analyzed 

according to the Cochrane guideline formula for combining groups [12] in order to 

obtain single values of sample size, mean and standard deviation. P<0.05 was 

considered statistically significant. Statistical heterogeneity was considered using I2 
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test (>75% indicates high heterogeneity). The analyses were conducted using 

Review Manager 5.3 software (Copenhagen: The Nordic Cochrane Centre, The 

Cochrane Collaboration, 2014). 

 

3. Results 

 

3.1. Search Strategy 

A total of 11,001 potentially relevant records were identified from all the 

databases, of which 2,998 were duplicates. No additional studies were identified as 

relevant after a search of the reference lists. Figure 1 shows a flowchart summarizing 

the article selection process according to the PRISMA Statement. After the title and 

abstract examination, 7,805 studies were excluded. From the 197 studies assessed 

in full, 64 studies were excluded because they did not meet the eligibility criteria or 

the study was not found. Details of articles selection and reasons for exclusions are 

also shown in Figure 1.  A total of 133 studies fulfilled all of the selection criteria and 

were included in the quantitative and qualitative analysis.  

 

3.2. Risk of Bias of the Included Studies 

 Concerning the quality assessment (Figure 2), most of the studies performed 

tooth randomization and used the materials according to the manufacturer's 

instructions. However, only two studies performed a sample size calculation [21,43]. 

and one study performed the BS test with a blind operator [135]. 
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For all types of aging protocols, a qualitative analysis is presented (Tables 4 to 

13). 

 

3.3. Thermocycling 

Figures 3 to 6 show the results of the meta-analysis of the studies that tested 

thermocycling. For this analyzes, 65 studies were evaluated and the results were 

divided into six subgroups. The only subgroup that did not show significant effect 

favoring this aging method was 501 to 3,000 cycles (P = 0.45). The global analysis 

favored the thermal cycling (P < 0.00001). 

 

3.4. Mechanical Cycling 

Figure 7 shows the results of the meta-analysis of the studies that tested 

mechanical cycling. For this analysis, 18 studies were evaluated and the results were 

divided into three subgroups. The effect size increased proportionally to the number 

of mechanical cycles, but all subgroup analyses favored the aging condition (P < 

0.00001). 

 

3.5. Thermomechanical Cycling  

The third meta-analysis present results in Figure 8 of the studies that tested 

thermomechanical cycling, eleven studies were divided into three subgroup analysis. 

The effect size was bigger in the subgroup tested with more cycles. The global 

analyses favored the thermomechanical cycling (P < 0.00001). 

 

3.6. Static Storage and Thermocycling 
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Figure 9 shows the only meta-analysis that evaluated the association of aging 

between thermocycling and storage in water or artificial saliva. For this analysis eight 

studies were evaluated and the obtained response favored this type of aging protocol 

(P < 0.02). 

 

3.7. Pulpal Pressure  

The subgroup analysis presented in Figure 10 evaluated pulpal pressure as an 

interface aging and seventeen studies were divided into three subgroups. All 

subgroups were satisfactory (P < 0.00001), but the one that had the biggest effect 

was the one that evaluated the BS after 1 week to 3 months under pulp pressure. 

 

3.8. NaOCl and Enzyme Storage 

Figures 11 and 12 represent NaOCl and enzyme storage, for these, seventeen 

studies with NaOCl and five with enzyme were analyzed separately. NaOCL storage 

presented significant results for the two subgroups tested and a decrease of BS in 

the groups tested with longer storage times. (P < 0.00001). On the other hand, 

studies that made enzyme storage were divided into three subgroups and the only 

one that presented favorable results to this method of aging was the storage for 12 

weeks (P < 0.00001). 

 

3.9. Cariogenic Challenge and pH Cycling 

Figures 13 and 14 show meta-analysis of aging with cariogenic challenge and 

pH cycling, two and three studies were found respectively for each. For both groups 

there was no significant effect (P = 0.14) and (P = 0.10) respectively.  
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3.10. In Situ 

Figure 15 shows the only meta-analysis that evaluated in situ studies. For this, 

two studies were found and results showed a significant reduction of BS (P 

<0.00001). The effect size was -9.58, 95% CI between -11.67 and -7.48 and I2 = 

29%. 

 

4. Discussion 

 

This review found several studies that used in vitro or in situ aging from the 

most elaborate to the simplest protocols to accelerate the degradation of the dentin-

restoration interface. It was noted that there is no established standard for these 

types of evaluations because most studies consider different numbers of cycles, 

times, strength and temperature even using the same type of aging (eg mechanical 

cycling). For this reason, we tried to divide analyzes into subgroups, whenever 

possible, so that we could have the best possible evidence. Still, this is the first time 

almost all aging protocols are tested and results points toward a positive effect of 

almost all tested protocols, except for cariogenic challenge and Ph cycling. 

An important issue to be discussed is that there was a high I² level. When we 

speak of heterogeneity in a meta-analysis, our intention is generally to understand 

the substantive implications of this heterogeneity in the findings. Although there is a 

common belief that the I² statistic provides this information, it does not, it is a kind of 

bridge between the observed effect and the actual effect and in fact it is the 

proportion of total variation in the point estimates that is attributable to between-study 

heterogeneity [142,143]. In this review, the included studies show a huge variation 

between methodologies, 98.5% of which are in vitro, which already tend to have 
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methodological variations from study to study, and this is what the I² shows. 

However, when we analyze the results of different types of aging, they are able to 

show a global view, where we can see not only the methods of artificial aging that 

have been used over the years, but also whether they have been working or not. 

The assessment by the bias risk instrument showed a high prevalence of 

unclear judgment, which indicates that problems in the reporting of studies may be 

an aggravating factor in the results. This factor may be related mainly to a lack of 

consensus guidelines or guidance on how to conduct and report studies in the in vitro 

dental literature, and this factor also seems to be related to the high heterogeneity 

found in the meta-analyzes. 

Thermal cycling was undoubtedly the most used option for studies evaluating 

BS before and after accelerated aging. This method subjected the specimens to 

extreme temperatures to simulate intraoral conditions by generating repetitive 

contraction and expansion tensions between the dental substrate and the restoration 

[2]. This review evaluated 65 studies that performed thermal cycling, among them, 

were evaluated from 100 to 100,000 cycles. The subgroups were analyzed according 

to the number of cycles and the only subgroup that did not present difference when 

compared to the control was 500 - 3,000 cycles, the other 5 subgroups all decreased 

the BS after aging, including the subgroup that evaluated up to 500 cycles. Thermal 

cycles has been used for a long time and is therefore indicated in ISO standard TR 

11405 (1994) suggesting 500 cycles as a suitable artificial aging test. In 1999 Gale 

and Darvell [144] established a relationship between 10,000 cycles of thermal cycling 

and a period of one year, which has been commonly used according to our findings. 

The use of mechanical load cycling has been studied due to the potential 

capability of simulating mastication. Clinical studies showed that bonded interfaces 
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are subject to some cyclic loading due parafunctional habits and masticatory 

function, and this can change with the size, position of the restoration and individual 

risk of the patient [145,146], and all influence of occlusal forces on the performance 

of restorations explains the relevance of this methodology. Our results have found a 

directly proportional correlation of the number of cycles versus interface degradation. 

When it comes to studies on thermomechanical cycling that bind thermal 

cycles with mechanical or static aging in water with thermal cycling, it becomes more 

difficult to establish a protocol based on the predetermined studies, since they have a 

lot of methodological variety. For these, they were grouped in subgroups with the one 

that demonstrated more variation between the studies, in thermomechanical cycling 

the thermal cycles seemed to be more similar between the studies, since none used 

more than 1,000 cycles, reason why the subgroups were analyzed according to the 

mechanical cycles and the results corroborated with studies showing that the higher 

the number of cycles, the lower the adhesive resistance [31,84,95]. For studies that 

evaluated static aging + thermocycling, in all studies the specimens were submitted 

to 6 or 12 months of water and due to the low variability of cycles we chose to group 

all of them into a universal analysis which favored aging by associating the two 

methods. We could observe that the association of accelerated aging methods is a 

common practice and seeks to mimic different events that occur in the buccal 

environment [5,18]. 

Besides the impacts of the occlusal load and the impacts suffered by extreme 

temperatures, the dental structures are also influenced by chemical factors, such as 

pH oscillations and in addition biofilm accumulation and cariogenic challenge are 

conditions to which the oral environment is daily exposed [134,135]. The cariogenic 

challenge in both studies were carried out by intercalating culture medium with and 



27 
 
 

without sucrose between 3 and 14 days. The pH cycling of the studies evaluated was 

done by alternating demineralising and remineralising immersions for 10 and 15 days 

[73,87,133]. Both analyzes have not been shown to be effective for the accelerated 

aging of the interface, however, few and short-term studies have been included in 

these analyzes, which impairs the result. 

The use of an aqueous solution of sodium hypochlorite (NaOCl) as storage 

medium has been proposed as suitable for assessing bond durability and its relation 

with storage time has already been observed showing that the decrease was directly 

related to the storage period like in this review [116,120,147]. Dentin is a substrate 

composed of organic and inorganic components and its organic phase is represented 

by a structure rich in collagen, these structures are subject to degradation by 

proteolytic enzymes. This method has been used in many studies and the most used 

protocols are storage for three or five hours, both presenting drastic reductions of BS. 

Previous studies have shown BS reductions comparable to six-month storage in 

artificial saliva [78,126], which leads us to think that the use of an aqueous solution 

NaOCl as storage medium seems to be a very powerful model, able to promote fast 

adhesive interface degradation, however, this model may be considered too 

aggressive and less related to the natural events that occurs into the mouth when 

compared with the other ageing methods assessed. Additionally, enzymatic 

hydrolysis of adhesive resins by salivary enzymes is recognized as a plausible 

degradative mechanism. Enzymes that are activated in the low-pH environment of 

the mouth are responsible for the progressive breakdown of collagen matrices in 

resin-sparse regions at the bottom of bonding interfaces [130]. Storage in different 

enzyme types has been reported in different studies over the years and this review 
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has identified that only the 3 months period seems to decrease dentin BS 

significantly. 

Pulpal pressure creates difficulties and limitations for dentine sealing and 

restoration stability, the aim of this methodology is simulate the hydrostatic pressure 

that enhances water sorption leading to plasticization of polymer chains and 

increases collagen degradation [77,102]. Consequently, the BS was reduced for 

several bonding agents using this methodology [77,123]. In this review, three 

subgroups were analyzed: after 24h, after 3 months and after 6 months or more. 

Although all presented a statistically significant difference, the period that presented 

the biggest effect was the intermediate up to 3 months. 

In situ models with cariogenic challenges are useful methods to age the resin–

dentin interfaces [7,148]. However, as they depend on approval by a local Ethics 

Committee it requires much more time and costs, which makes in situ and in vivo 

studies more difficult than laboratory evaluations [2]. Only two studies were included 

in the meta-analysis, both of them aged the interface for 14 days and obtained 

favorable results for the degradation of the adhesive union after the experimental 

period [7,8]. 

Although water storage is the most popular method of artificial aging 

[96,123,134], it takes a long time to get results that can be obtained in days or weeks 

with other methods [78,120,123]. This review did not compare water storage but 

showed that different methods and protocols - from the easiest to hugely complex - 

can mimic events that occur in the mouth and bring challenging results to BS to 

dentin. 

An important factor when it comes to microtensile is the conformation of the 

aged specimen, some studies age the entire block of the restoration and then section 
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the samples on sticks; and others age the stick directly. Exposure of the entire block 

of restoration requires longer periods to identify the differences [149], although it may 

resemble a more realistic clinical situation in terms of hydrolytic degradation. On the 

other hand, the hydrolytic effect in smaller resin-dentin samples directly exposed to 

water can be obtained in shorter periods.[150–153] Some methods analyzed do not 

allow the direct aging of the toothpick as mechanical cycling and pulpal pressure, but 

when it is a question of thermal cycling, there is a lot of variation between studies 

when it comes to opting for direct or indirect aging. 

Due to the large number of included studies and their heterogeneities, 

analyzes between methods were not performed, but taken together, the results of 

this review show that several aging methodologies are able to promote the 

degradation of the adhesive dentin-resin interface, and still is not possible to point out 

a single best method for this purpose. The overall results show that the choice of 

aging parameters is important considering what challenges are wanted to be brought 

to the interface. Considering the capability of methods to degrade the adhesive 

interface, researchers can select faster and efficient methods to simulate aging in in 

vitro research. 

 

5. Conclusions 

Within the limitations of this review it was possible to observe: 

Thermal cycling was unable to decrease BS when used when used with less than 3.1 

cycles; 

Thermal cycling combined with storage, mechanical and thermomechanical cycling, 

pulpal pressure, storage in NaOCl were able to promote the decrease of BS; 

In situ studies were able to promote the decrease of BS; 
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Enzyme storage was only able to promote the decrease of BS in periods of at least 3 

months; 

The evaluated pH cycling and cariogenic challenge protocols were not able to 

promote the decrease of BS. 
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Figures 

 

Figure 1. Search flow (as described in the PRISMA statement) 

 

Figure 2. Risk of bias graph: review authors' judgements about each risk of bias item 
presented as percentages across all included studies. 
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Figure 3. Meta-analysis considering the subgrups: up 500 and 501 to 3k cycles of 

thermal cycling.  
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Figure 4. Meta-analysis considering the subgroup of 3,1 up to 5k cycles of thermal cycling. 
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 Figure 5. Meta-analysis considering the subgroup of 5,1 up to 10k cycles of thermal cycling. 
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Figure 6. Meta-analysis considering the subgrups: 15k to 100k cycles of thermal cycling. 
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Figure 7. Metanalysis considering mechanical cycling. The analyzes were separated into 

three subgroups all favoring aging through mechanical cycles. 

 

 
 
 
 



55 
 
 

 

 

Figure 8. Meta-analysis considering thermomechanical cycling. The analyzes were 

separated into three subgroups divided by mechanical cycles. All subgroups favored aging 

through thermomechanical cycles. 
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Figure 9. Mata-analysis considering the association of thermal cycling and storage as an 

aging method. The union of the methods showed favorable results as a way of aging the 

interface. 
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Figure 10. Mata-analysis considering pulpal pressure. All subgroups favored aging through 

pulpal pressure. 
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Figure 11. Meta-analysis considering NaOCl storage. The analyzes were separated into two 

subgroups both favoring aging and increasing with the time of storage. 
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Figure 12. Meta-analysis considering Enzyme storage. The analyzes were separated into 

three subgroups and the only one that presented favorable results to this method of aging 

was the storage for 12 weeks. 

 

 

Figure 13. Meta-analysis considering cariogenic challenge. This method did not show 

favorable results as a way of aging the interface. 

 

Figure 14. Meta-analysis considering pH cycling. This method did not show favorable results 

as a way of aging the interface. 
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Figure 15. Meta-analysis considering in situ studies. This method showed favorable results 

as a way of aging the interface. 
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Table 1.  Search strategy used in PubMed (MedLine) 

Search Search Terms 

#5 Search #1 AND #2 AND #3 AND #4 

#4 

Aging OR Longevity OR Storage OR "pH Cycling" OR Thermal OR "Thermal 

cycling" OR Degradation OR "in situ" OR Fatigue OR "Mechanical Loading" 

OR "Mechanical" OR "Load" 

#3 

Composite OR Composites OR "Adhes*" OR "Dental Adhesive" OR "Dental 

Adhesives" OR "Adhesive, Dental" OR "Adhesives, Dental" OR "Adhesive 

Bonding" OR Resin OR "Composite Resins"[Mesh] OR "Composite Resins" 

OR "Resins, Composites" OR ("Dental materials"[Mesh] OR "Dental 

materials" OR "Materials, Dental" OR "Dental Material" OR "Material, dental" 

OR Dentistry 

#2 

"Micro Shear" OR Shear OR "Shear Strength"[Mesh] OR "Shear Strength" 

OR "Strength, Shear" OR Microtensile OR Tensile OR "Tensile Strength" OR 

"Bond Strength" OR "Bond Test" 

#1 Teeth OR Tooth OR "Dentin"[Mesh] OR Dentin OR Dentine 
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Table 2. Inclusion and Exclusion Criteria 

PICO Inclusion criteria  Exclusion criteria  

Population 
▪ Studies with direct resin composites 

bonded to human dentin 

▪ Papers that were not in English 

Studies or groups with: 

▪ Bovine substrate 

▪ Carious dentin 

Intervention 
▪ Artificial aging of the bonded dentin 

interface 

▪ Aging methods or protocols used in only one 

study, making it impossible to compare 

Studies or groups that: 

▪ Have undergone any previous treatments on 

dentin (eg application of fluoride) 

▪ Performed only static aging through storage in 

water or artificial saliva 

Comparison ▪ Non-aged bonded dentin interface 

Studies that: 

▪ Did not make clear the storage time of control 

▪ Control time was bigger than 3 weeks 

Outcome 

Studies investigating: 

▪ (micro)tensile or (micro)shear bond 

strength to dentin 

▪ Studies with not available data or impossible to 

extract 

Type of studies ▪ In vitro or in situ ▪ In vivo studies 
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Table 3. Division of subgroups tested according to time/number of cycles in each aging method 

(meta-analysis) 

Aging method Subgroups 

Thermal cycling 

Up to 500 cycles [9,18–24] 

501 - 3,000 cycles [9,18,25–35] 

3,001 - 5,000 cycles [25,26,36–52] 

5,001 - 10,000 cycles [3,9,37,51,53–74] 

15,000 - 100,000 cycles [10,11,55,78] 

Mechanical cycling 

Up to 100,000 cycles [25,31,68,79–88] 

100,001 - 250,000 cycles [50,89,90] 

250,001 - 750,000 cycles [31,84,90–92] 

Thermomechanical cycling 

Up to 100,000 mechanichal cycles [25,31,68,84,93–96] 

100,001 - 250,000 mechanichal cycles [31,84,97] 

250,001 - 500,000 mechanichal cycles [95,98,99] 

Pulpal Pressure 

24h [100–106] 

1 week – 3 weeks [50,103,107] 

6 months – 2 years [100,108–115] 

NaOCl storage 
1 – 3 hours [53,73,78,116–123] 

4 – 6 hours [4,79,82,88,116,120,124–127] 

Enzyme storage 

Up to 1 week [128–130] 

4 weeks [129,131] 

12 weeks [128,132] 

pH cycling 10 – 15 cycles [73,87,133] 

in situ 14 days [7,8] 

Cariogenic challenge 3 – 14 days [134,135] 

Thermocycling/storage 2,500 – 24,000 cycles / 6 – 12 months [5,18,136–141] 
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Table 4. Qualitative analysis of studies that performed thermal cycling 

Author (year) n Adhesive 
Number 

of cycles 

Type of 

aging 

Bond 

Strenth 

test 

Conclusion 

Akin, G. E., et al. (2012) 20 Sticks 

Clearfil S3 

AdheSE One 

Adper Easy One 

10,000 Block µTBS Thermal cycling for 10,000 cycles had no significant bond strength reduction. 

Amaral, F. L. B., et al. (2008) 100 Sticks Adper Single Bond 2 
500 

2,000 
Block µTBS Thermal cycling for 500 and 2,000 cycles had no significant bond strength reduction. 

Baracco, B., et al. (2013) 28-49 Sticks 

Adper Scotchbond 1 XT 

XP Bond 

Adper Scotchbond SE 

Filtek Silorane Adhesive System 

G-Bond 

Xeno V 

Bond Force 

5,000 Block µTBS Thermal cycling for 5,000 cycles resulted in a significant bond strength reduction.  

Benetti, A. R., et al. (2007) 8 cylinders AdheSE 6,000 Block SBS Thermal cycling for 6,000 cycles resulted in a significant bond strength reduction. 

Berry, E. A. and J. M. Powers 

(1994) 
5 teeth Tenure  1,000 Block TBS Thermal cycling for 1,000 cycles had no significant bond strength reduction. 

Brueckner, C., et al. (2017) 10 cylinders Adper Prompt-L-Pop 1,500 Block SBS Thermal cycling for 1,500 cycles resulted in a significant bond strength reduction. 

Bumrungruan, C. and R. 

Sakoolnamarka (2016) 
30 cylinders 

OptiBond FL 

OptiBond all-in-one 
5,000 Block SBS Thermal cycling for 5,000 cycles had no significant bond strength reduction. 

Chang, Y. E. and D. H. Shin 

(2010) 
15-18 Sticks Adper Single Bond 2 10,000 Block µTBS Thermal cycling for 10,000 cycles resulted in a significant bond strength reduction. 

Charlton, D. G. and B. K. Moore 

(1991) 
10 cylinders 

Imperva-Bond 

Prisma 3 
2,500 Block SBS 

The shear bond strengths of both dentin bonding agents at 2 weeks (2,500 cycles) were 

significantly higher than at 5 minutes. 

Chen, C., et al. (2015) 40 Sticks 

Prime&Bond Elect 

Scotchbond Universal 

All-Bond Universal 

Clearfil Universal Bond 

Futurabond U 

10,000 Block µTBS 
Thermal cycling for 10,000 cycles showed no bond strength reduction in universal adhesives 

applied in self-etching mode with the exception of Futurabond U. 

Chiang, Y. S., et al. (2013) 12 Sticks Scotchbond Multi-Purpose 5,000 Stick µTBS Thermal cycling for 5,000 cycles resulted in a significant bond strength reduction.  

Daneshkazemi, A., et al. (2015) 12 Sticks Adper Single Bond 2 1,000 Stick µTBS Thermal cycling for 1,000 cycles resulted in a significant bond strength reduction. 

Daneshmehr, L., et al. (2013) 16 cylinders 

Bond Force 

FL-Bond II 

Scotch Bond Multi Purpose 

10,000 Block SBS Thermal cycling for 1,000 cycles resulted in a significant bond strength reduction. 

De Munck, J., et al. (2005) ~12 Sticks 

OptiBond FL 

Clearfil Protect Bond 

iBOND 

20,000 
Block/ 

Stick 
µTBS Thermal cycling for 20,000 had no significant bond strength reduction. 

Deng, D., et al. (2013) 15 Sticks 
Adper Single Bond 2 

G-Bond 
5,000 Stick µTBS Thermal cycling with water for 5,000 cycles resulted in a significant bond strength reduction. 
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Deng, D., et al. (2014) 45 Sticks 
Adper Single Bond 2 

G-Bond 
10,000 Stick µTBS Thermal cycling for 10,000 cycles resulted in a significant bond strength reduction. 

Donmez, N., et al. (2015) 15 Sticks 
Single Bond Universal 

All-Bond Universal 
1,000 Block µTBS 

Thermal cycling for 1,000 cycles resulted in a significant bond strength reduction for Single 

Bond Universal, while All-Bond Universal was not affected.  

El-Damanhoury, H. M. and M. 

Gaintantzopoulou (2015) 
32 Sticks 

Adper Easy Bond 

Clearfil S3 

iBOND 

5,000 Block µTBS Thermal cycling for 5,000 cycles resulted in a significant bond strength reduction 

El-Deeb, H. A., et al. (2016) 28 Sticks 

Adper Scotchbond Multi-Purpose 

Clearfil S3 Bond 

Clearfil SE Bond 

10,000 Stick µTBS Thermal cycling for 10,000 cycles resulted in a significant bond strength reduction. 

Feitosa, V. P., et al. (2012) b 22 Sticks 
P90 System adhesive 

Clearfil SE Bond 
5,000 Block µTBS Thermal cycling for 5,000 cycles had no effect on dentin bond strength. 

Fritz, U., et al. (1997) 10 cylinders Gluma CPS Bonding 2,000 Block SBS Thermal cycling for 2,000 cycles had no effect on dentin bond strength. 

Fukuoka, A., et al. (2011) 12-19 Sticks 

Clearfil S3 Bond 

G-Bond 

Absolute 

100,000 Stick µTBS Thermal cycling for 100,000 cycles resulted in a significant bond strength reduction. 

Gan, J., et al. (2017) 50 Sticks Adper Single Bond 2 10,000 Stick µTBS Thermal cycling for 10,000 cycles resulted in a significant bond strength reduction. 

Guan, R., et al. (2016) 20 Sticks 

Clearfil SE Bond 

Optibond XTR 

Scotchbond Universal 

5,000 

10,000 
Stick µTBS Thermal cycling for 5,000 and 10,000 cycles had no effect on dentin bond strength. 

Gunaydin, Z., et al. (2016) 15 Sticks 

Adper Single Bond 2 

Clearfil SE Bond 

Clearfil S3 

Adper Prompt-L-Pop 

5,000 Block µTBS Thermal cycling for 5,000 cycles resulted in a significant bond strength reduction. 

Guo, J., et al. (2017) 30 Sticks Adper Single Bond 2 10,000 Stick µTBS Thermal cycling for 10,000 cycles resulted in a significant bond strength reduction. 

Han, G. J., et al. (2014) 14-20 Sticks 
Adper Scotchbond Multi-Purpose 

Plus 
5,000 Stick µTBS Thermal cycling for 5,000 cycles had no effect on dentin bond strength. 

Hariri, I., et al. (2012) 16 cylinders Adper Single Bond 

100 

500 

2,000 

10,000 

Block SBS Significant bond strength decrease was detected at 2,000 and 10,000 thermal cycles. 

Hasegawa, T., et al. (1995) 15 cylinders Scotchbond Multi-Purpose 500 Block SBS Thermal cycling for 500 cycles had no effect on dentin bond strength. 

Inoue, S., et al. (2005) 11-17 Sticks 

Clearfil SE Bond 

Unifil Bond 

Clearfil Liner Bond II 

10,000 

20,000 

30,000 

50,000 

100,000 

Stick µTBS 
Clearfil SE Bond remained stable regardless of the number of cycles tested. Already the 

others significantly decayed only with long-term thermal cycling. 

Irmak, O., et al. (2017) ~42 Sticks 
Single Bond Universal 

Clearfil Universal Bond 
10,000 Block µTBS Thermal cycling for 10,000 cycles had no effect on dentin bond strength. 

Karadas, M. and I. Caglar (2017) 15 cylinders 
Clearfil S3 Bond 

Clearfil SE Bond 
15,000 Block SBS 

Thermal cycling for 15,000 cycles resulted in a significant bond strength reduction for all deep-

dentin groups. However, for superficial-dentin groups, thermal cycling had no effect on bond 

strength. 
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Khoroushi, M. and E. Rafiei 

(2013) 
12 cylinders 

Clearfil Protect Bond 

Beautibond 
3,000 Block SBS Thermal cycling for 2,000 cycles had no effect on dentin bond strength. 

Kim, Y. H. and D. H. Shin (2012) 5-10 Sticks 
Contax 

Adper Single Bond 2 
10,000 Block µTBS Thermal cycling for 10,000 cycles resulted in a significant bond strength reduction.  

Korkmaz, Y., et al. (2010) 12 cylinders 
Adper SE Plus 

Adper Single Bond 2 
500 Block SBS Thermal cycling for 500 cycles had no effect on coronal dentin bond strength. 

Lino Carracho, A. J., et al. 

(1991) 
10 cylinders 

Scotchbond Dual Cure 

Scotchbond 2 

Mirage Bond 

200 Block SBS 
Thermal cycling for 200 cycles significantly decreased the dentin bond strength of Scotchbond 

Dual Cure and Scotchbond 2, but not that of Mirage Bond. 

Lohbauer, U., et al. (2008) 20 Sticks G-Bond 10,000 Block µTBS Thermal cycling for 10,000 cycles resulted in a significant bond strength reduction. 

Matsui, N., et al. (2015) 35-36 Sticks 
Clearfil SE Bond 

Experimental adhesive 

5,000 

10,000 
Stick µTBS 

Thermal cycling for 5,000 e 10,000 cycles resulted in a significant bond strength reduction in 

comercial adhesive. In Experimental adhesive thermal cycling had no effect on bond strength. 

Mine, A., et al. (2012) 20 Sticks 
cmf | adhesive system 

XP Bond 
20,000 Block µTBS Thermal cycling for 20,000 cycles had no effect on dentin bond strength. 

Nakata, T., et al. (2007) 16 Sticks 
Imparva Fluoro Bond 

SI  

1,000 

2,000 

3,000 

Stick µTBS 
The bond strength of Imperva Fluoro Bond after 2,000 times of thermal cycling was 

significantly decreased, whereas SI showed no significant differences even after 3000 cycles. 

Nikaido, T., et al. (2002) b 11-19 Sticks Cleafil linerbond 2V 2,000 Block µTBS Thermal cycling for 2,000 cycles had no effect on dentin bond strength. 

Oilo, G. and S. Olsson (1990) 10 teeth 

Gluma Dentin Bond 

Scotchbond (Dual) 

Scotchbond II 

Tenure 

5,000 Block TBS 
Thermal cycling for 5,000 cycles significantly decreased the dentin bond strength of 

Scotchbond (Dual), Scotchbond 2 and Tenure, but not that of Gluma Dentin Bond. 

Omar, H., et al. (2007) 25 Sticks 

Scotchbond Multi-Purpose 

Clearfil SE Bond 

Xeno IV 

3,000 Stick µTBS 
Thermal cycling for 3,000 cycles only had effect on Scotchbond Multi-Purpose. In the others, 

thermal cycling had no effect on bond strength. 

Ozel-Bektas, O., et al. (2011) 20 Sticks 

G-Bond 

AdheSE 

Prime & Bond NT 

10,000 Block µTBS 
Thermal cycling for 10,000 cycles only had effect on G-Bond. In the others, thermal cycling 

had no effect on bond strength. 

Perdigao, J., et al. (2011) 
81-122 

Sticks 

Adper Single Bond Plus 

Ambar 

Excite 

20,000 Block µTBS 
Thermal cycling for 20,000 cycles only had effect on Excite. In the others, thermal cycling had 

no effect on bond strength. 

Price, R. B., et al. (2003) 20 cylinders Single Bond 5,000 Block SBS 
Thermal cycling for 5,000 cycles only had effect on high C-factor group. For low C-factor 

group, thermal cycling had no effect on bond strength. 

Retief, D. H., et al. (1990) 15 cylinders 

Original Tenure 

First modification of Tenure 

Second modification of Tenure 

250 Block SBS Thermal cycling for 250 cycles had no effect on dentin bond strength. 

Rüttermann, S., et al. (2013) 10 cylinders 
Clearfil SE Bond 

Optibond FL 
500 Block SBS Thermal cycling for 500 cycles had no effect on human dentin bond strength. 

Sampaio, P. C., et al. (2011) 20-28 Sticks Adper Single Bond 2 5,000 Block µTBS Thermal cycling for 5,000 cycles had no effect on dentin bond strength 

Sangwichit, K., et al. (2016) 10-15 Sticks 

Optibond FL 

Adper Scotchbond Multi-Purpose 

Optibond Solo Plus 

Adper Single Bond 2 

10,000 Block µTBS 
Thermal cycling for 10,000 cycles only had effect on Optibond FL, Adper Scotchbond Multi-

Purpose, Optibond Solo Plus. In the others, thermal cycling had no effect on bond strength. 
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Clearfil SE Bond 

Adper SE Plus 

Clearfil S3 Bond 

Adper Easy Bond 

Shakya, V. K., et al. (2015) 15 cylinders 

Adper Easy Bond 

Beautibond 

Xeno IV 

500 Block SBS 
Thermal cycling for 500 cycles only had effect on Beautibond and Xeno IV. For Adper Easy 

Bond thermal cycling had no effect on bond strength. 

Smisson, D. C., et al. (2005) 15 cylinders Prime and Bond NT 9,000 Block SBS Thermal cycling for 9,000 cycles had no effect on dentin bond strength 

Tezvergil, A., et al. (2003) 10 cylinders ScotchBond Multi-Purpose 6,000 Block SBS Thermal cycling for 6,000 cycles had no effect on dentin bond strength 

Tezvergil, A., et al. (2005) 20 cylinders ScotchBond Multi-Purpose 6,000 Block SBS Thermal cycling for 6,000 cycles had no effect on dentin bond strength 

Ulker, M., et al. (2010) 20 Sticks 

Clearfil Tri-S Bond 

Hybrid Bond 

G-Bond 

Adper Prompt L-Pop 

AdheSE Bond 

Clearfil Protect Bond 

Clearfil SE Bond 

Optibond Self-etch 

10,000 Block µTBS Thermal cycling for 10,000 cycles had no effect on dentin bond strength 

Wagner, A., et al. (2014) 
18-104 

Sticks 

Futurabond U 

All Bond Universal 

Scotchbond Universal 

Futurabond M 

Futurabond DC 

5,000 Block µTBS 
Thermal cycling for 5,000 cycles had no deleteterious effect on the bonding efficacy of 

Universal Adhesives. 

Wang, R., et al. (2017) 15 Sticks 

Clearfil SE Bond 

Scotchbond Universal 

Optibond XTR 

Adper Easy Bond 

5,000 Stick µTBS 

Thermal cycling for 5,000 cycles only had effect on Adper Easy Bond. In the others, thermal 

cycling had no effect on bond strength. 

 

Xie, B., et al. (2002) 27-43 Sticks 
Prime & Bond NT 

Prime-One Mirage 
2,400 Block µTBS Thermal cycling for 2,400 cycles only had effect on Prime-One Mirage. 

Yang, H. Y., et al. (2016) 50 Sticks Adper Single Bond 2 10,000 Stick µTBS 

Thermal cycling for 10,000 cycles only had effect on convencional technique. The results 

showed that the combined use of epigallocatechin-3-gallate and ethanol–wet bonding improve 

immediate dentin bond strength and bond stability 

Yoshihara, K., et al. (2015) 21-26 Sticks 

Clearfil SE Bond (experimental 

primer) 

 

100,000 Stick µTBS 
Thermal cycling for 100,000 cycles only had effect on two experimental primers. In the other, 

thermal cycling had no effect on bond strength. 

Yu, H. H., et al. (2017) 80 Sticks Adper Single Bond 2 
5,000 

 
Stick µTBS 

Thermal cycling for 10,000 cycles only had effect on convencional technique. 

Epigallocatechin-3-O-(3-O-methyl)-gallate at a concentration of 400 g/mL may be a more 

promising method to improve the long-term use of resinous restorations. 

 

Zanatta, R. F., et al. (2017) 10 cylinders 
Clearfil SE Bond 

OptiBond FL 
10,000 Block SBS Thermal cycling for 10,000 cycles had no effect on dentin bond strength 

Zhang, L., et al. (2014) 50 cylinders 
Adper Single Bond 2 

Clearfil S3 Bond 
5,000 Block SBS 

Deep dentin showed more significant resin-dentin bond degradation than superficial dentin 

after thermal cycling for 5,000 cycles. 
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Zhou, L., et al. (2015) 35 Sticks 

Xeno V 

G-Bond 

S3 Bond 

10,000 Block µTBS Thermal cycling for 10,000 cycles resulted in a significant bond strength reduction. 

Zhuge, R. S., et al. (2017) 13 Sticks Single Bond 2 10,000 Stick µTBS 

Thermal cycling for 10,000 cycles resulted in a significant bond strength reduction, and 

subpressure offered a reliable interfacial morphology, improved the shortand long-term 

bonding strength 

 

 

Table 5. Qualitative analysis of studies that performed mechanical cycling 

Author (year) n Adhesive 
Number 

of cycles 
Strenth 

Bond 

Strenth 

test 

Conclusion 

Aguilera, F. S., et al. (2012) 25-30 Sticks 

Adper Single Bond 

Clearfil Se Bond 

One-Up Bond F 

5,000 90N µTBS Mechanical cycling for 5,000 cycles had no effect on bond strength. 

Belli, S., et al. (2009) 15-20 Sticks 

Clearfil S3 Bond 

G Bond 

Adhese One 

Danville Experimental 

Prelude Total-Etch 

50,000 50N µTBS Mechanical cycling for 50,000 cycles resulted in a significant bond strength reduction. 

Bravis, T., et al. (2012) 21-28 Sticks 
G-Bond 

Optibond Solo Plus 
250,000 80N µTBS 

Mechanical cycling for 250,000 cycles resulted in a significant bond strength reduction for 

Optibond Solo Plus, however, not for G-Bond. 

Daneshkazemi, A., et al. (2015) 12 Sticks Adper Single Bond 2 

50,000 

100,000 

500,000 

90N µTBS 
Mechanical cycling for 50,000, 100,000 and 500,000 cycles resulted in a significant bond 

strength reduction. 

Daneshkazemi, A. R., et al. 

(2013) 
12 Sticks Clearfil Se Bond 

50,000 

100,000 

500,000 

125N µTBS 

It can be concluded that, an increase in the mechanical load cycling, leads to a decrease in the 

value of microTBS but the minimum mechanical load cycles to make significant changes is 

100K. 

Deng, S., et al. (2016) 16 cylinders All-bond 2 40,000 70N SBS Mechanical cycling for 40,000 cycles resulted in a significant bond strength reduction. 

Farias, D. C. S., et al. (2016) 45 Sticks 

Scotchbond Universal 

All-Bond Universal 

Optibond Fl 

Adper Single Bond Plus 

Clearfil Se Bond 

Adper Prompt L-Pop 

50,000 50N µTBS 
Mechanical cycling for 50,000 had no deleterious effect on μTBS with the exception of Adper 

Prompt L-Pop. 
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Feitosa, V. P., et al. (2012) b 22 Sticks 
P90 System Adhesive 

Clearfil Se Bond 

200,000 

 
50N µTBS 

Mechanical cycling for 200,000 resulted in bonding degradation in a short-term period in resin–

bonded dentin created using two-step/self-etch adhesives. 

Kawai, T., et al. (2016)  21 Sticks Scotchbond Universal 300,000 157N µTBS 
Mechanical cycling for 300,000 cycles resulted in a significant bond strength reduction only for 

the group restored with Filtek Supreme Ultra Universal Restorative 

Marquezan, M., et al. (2010) 45 Sticks Adper Single Bond 2 50,000 90N µTBS Mechanical cycling for 50,000 cycles had no effect on bond strength 

Montagner, A. F., et al. (2016) 50-75 Sticks 
Adper Scotchbond 1xt 

Clearfil Se Bond 

250,000 

500000 

750,000 

30N µTBS 
Rub&Roll (Mechanical load) device was able to promote mechanical cycling on samples and an 

increased number of load cycles resulted in decreased µTBS values. 

Montagner, A. F., et al. (2017) 55-72 Sticks 
Adper Scotchbond 1xt  

Clearfil Se Bond 
750,000 30N µTBS Mechanical cycling for 750,000 cycles resulted in a significant bond strength reduction. 

Monticelli, F., et al. (2007) 39-42 Sticks G-Bond 
5,000 

50,000 

90N 

250N 
µTBS Mechanical cycling for 5,000 or 50,000 cycles had no effect on bond strength 

Nikaido, T., et al. (2002) b 11-19 Sticks Cleafil Linerbond 2v 50,000 50N µTBS Mechanical cycling for 50,000 cycles had no effect on bond strength 

Osorio, R., et al. (2005) b 30 Sticks Clearfil Se Bond 5,000 90N µTBS 
Mechanical cycling for 5,000 cycles had no effect on bond strength using convencional 

technique. 

Toledano, M., et al. (2006) b 35-40 Sticks 

Single Bond 

Prime&Bond 

Prime&Bond Xp 

Clearfil Se Bond 

Etch&Prime 3.0 

5,000 90N µTBS 

After mechanical cycling for 5,000, µTBS decreased in all groups except for Prime&Bond XP. 

Specimens bonded with Etch&Prime 3.0 resulted in premature failures and µTBS could not be 

measured. 

Toledano, M., et al. (2017) 18 Sticks Adper Single Bond Plus 100,000 49N µTBS Mechanical cycling for 100,000 cycles had no effect on bond strength. 

Ulker, M., et al. (2010) 20 Sticks 

Clearfil Tri-S Bond 

Hybrid Bond 

G-Bond 

Adper Prompt L-Pop 

Adhese Bond 

Clearfil Protect Bond 

Clearfil Se Bond 

Optibond Self-Etch 

100,000 50N µTBS Mechanical cycling for 100,000 cycles resulted in a significant bond strength reduction. 
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Table 6. Qualitative analysis of studies that performed thermomechanical cycling 

Author (year) n Adhesive 

Number of 

Mechanical 

cycles 

Number of 

Thermal cycles  

Mechanical 

strength 

Bond 

Strenth 

test 

Conclusion 

Aggarwal, V., et al. 

(2011) 
10 sticks 

Adper Easy One  

Single Bond 
150,000 5,000 60N µTBS 

Thermomechanical cycling for 150,000/5,000 cycles resulted in a significant bond 

strength reduction. 

Daneshkazemi, A., 

et al. (2015) 
12 Sticks Adper Single Bond 2 

50,000 

100,000 

500,000 

1,000 
90N 

 
µTBS 

Simultaneous application of thermal and mechanical load cycling decreases the 

value of microTBS 

Daneshkazemi, A. 

R., et al. (2013) 
12 Sticks Clearfil Se Bond 

50,000 

100,000 

500,000 

125 

625 

1250 

125N µTBS 
Thermomechanical cycling for 50,000/125, 100,000/625 and 500,000/1250 cycles 

resulted in a significant bond strength reduction. 

Frankenberger, R., 

et al. (2005) 
20 sticks 

Syntac 

Clearfil SE Bond 

Xeno III 

iBOND 

100 

1,000 

1,0000 

100,000 

3 

25 

250 

2,500 

20N µTBS 
The bond strengths of all the adhesives decreased with increasing of 

thermomechanical cycles 

Huang, X. Q., et al. 

(2017) 
80 sticks G-premio bond 240,000 10,000 NI µTBS 

Thermomechanical cycling for 240,000/10,000 cycles resulted in a significant bond 

strength reduction. 

Lodovici, E., et al. 

(2009) 
~30 sticks 

Scotchbond Multi-Purpose 

Clearfil SE Bond 
500,000 1,000  10 KgF µTBS Thermomechanical cycling for 500,000/1,000 cycles had no effect on bond 

strength using convencional technique. 

Nikaido, T., et al. 

(2002) a 
14-20 sticks 

Clearfil SE Bond 

Single Bond 
50,000 625 50N µTBS Thermomechanical cycling for 50,000/625 cycles had no effect on bond strength. 

Nikaido, T., et al. 

(2002) b 
11-19 Sticks Cleafil Linerbond 2v 

50,000 (Flattened 

dentin surface) 

10,000 (Class I) 

50,000 (Class I) 

100,000 (Class I) 

2,000 (Flattened 

dentin surface) 

125 (Class I) 

625 (Class I) 

1,250 (Class I) 

50N µTBS 
On Flattened dentin Thermomechanical cycling for 50,000/2,000 cycles had no 

effect on bond strength. However, in class I cavity from 50,000/625 cycles there 

was a significant decrease in bond strength. 

Rego, H. M. C., et 

al. (2016) 
90 sticks Adper Single Bond 2 

666 

120,000 

33 

5,000 
NI* µTBS 

Thermomechanical cyclic for 666/33 cycles had no effect on bond strength. 

However, 120,000/5000 cycles had a significant decrease in bond strength. 

Ulker, M., et al. 

(2010) 
20 Sticks 

Clearfil Tri-S Bond 

Hybrid Bond 

G-Bond 

Adper Prompt L-Pop 

Adhese Bond 

Clearfil Protect Bond 

Clearfil Se Bond 

Optibond Self-Etch 

100,000 10,000 50N µTBS Thermomechanical cycling for 100,000/10,000 cycles resulted in a significant bond 

strength reduction. 

Vidal, C. M. P., et 

al. (2013) 
24 sticks Adper Single Bond Plus 500,000 3,000 50N µTBS 

Thermomechanical cycling for 500,000/3,000 cycles had no effect on bond 

strength. 

* NI – Not informed 
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Table 7. Qualitative analysis of studies that performed Static storage + Thermal cycling 

Author (year) n Adhesive Cycles 
Storage 

time 

Bond Strenth 

test 
Conclusion 

Amaral, F. L. B., et al. (2008) 100 Sticks Adper SingleBond 2 12,000 6 months µTBS 
Thermal cycling for 12,000 cycles ally to 6 months water storage resulted in a 

significant bond strength reduction. 

Duarte Jr, S., et al. (2009) 33-52 Sticks 
LS System Adhesive 

Adper Single Bond plus 
20,000 6 months µTBS 

Thermal cycling for 20,000 cycles ally to 6 months water storage had no effect on 

dentin bond strength. Aging of Adper Single Bond plus resulted in premature failures 

and µTBS could not be measured. 

Ebrahimi, M., et al. (2017) 10 cylinders 
Adper Single Bond 

Clearfil SE Bond 
1,000  3 months SBS 

Thermal cycling for 1,000 cycles ally to 3 months water storage only had significant 

bond strength reduction for Adper Single Bond. 

Galafassi, D., et al. (2013) 40 Sticks 

Clearfil SE Bond 

Single Bond 2 

XP Bond 

12,000 6 months  µTBS Thermal cycling for 12,000 cycles ally to 6 months water storage had no effect on 

dentin bond strength. 

Galafassi, D., et al. (2014) 40 Sticks SingleBond 2 
12,000 

24,000 

6 months 

12 months 
µTBS 

Thermal cycling for 12,000 cycles ally to 6 months and 24,000 cycles ally to 12 months 

saliva storage had no effect on dentin bond strength. 

Khamverdi, Z., et al. (2015) 12 Sticks  
Clearfil SE Bond 

Silorane Adhesive 
2,500 6 months  µTBS 

Thermal cycling for 2,500 cycles ally to 6 months water storage only had significant 

bond strength reduction for Clearfil SE Bond. 

Mousavinasab, S. M., et al. (2009) 8 cylinders 

Scotch Bond Multi Purpose 

Adper Single Bond 

Clearfil SE Bond 

Prompt L-Pop 

Prompt L-Pop plus Margin Bond 

3,000  3 months SBS 
Thermal cycling for 3,000 cycles ally to 3 months water storage only had significant 

bond strength reduction for Adper Single Bond and Prompt L-Pop. 

Shafiei, F., et al. (2013) 10 cylinders 
 Clearfil SE Bond 

 Clearfil Protect Bond 
1,000 6 months SBS 

Thermal cycling for 1,000 cycles ally to 6 months water storage resulted in a significant 

bond strength reduction. 

 

Table 8. Qualitative analysis of studies that performed pulpal pressure  

Author (year) n Adhesive Time 
Bond Strenth 

test 
Conclusion 

Abdalla, A. I., et al. (2008) 20 sticks 

Scotchbond 1 

Clearfil SE bond 

Hybrid Bond 

Futurabond NR 

AdheSE Bond 

24 hours 

6 months 
µTBS 

None of the tested adhesives showed bond strength reduction when applied to dentin supplied with 

water pressure. After 6 months of pulpal pressure, Scotchbond 1, Clearfil SE Bond and AdheSE 

Bond showed significant reduction in bond strength. In contrast, Futurabond NR and Hybrid Bond 

were not significantly affected.  



72 
 
 

Abuna, G., et al. (2016) ~100 sticks 5 Experimental adhesives 6 months µTBS Pulpal pressure for 6 months only had effect on three experimental adhesives. In the others, pulpal 

pressure had no effect on bond strength. 

Belli, R., et al. (2010) 30 sticks 

Adper Single Bond 2 

Clearfil SE Bond 

Adper Easy Bond 

Adper Scotchbond SE 

Clearfil S3 Bond 

Adhese One Vivapen 

1 year µTBS Pulpal pressure for 1 year had no effect on bond strength. 

El-Deeb, H. A., et al. (2013) 24 sticks 

Adper Single Bond 2 

Clearfil SE Bond 

AdheSE One 

AdheSE One F 

6 months µTBS 
Pulpal pressure for 6 months only had effect for Adper Adper SingleBond 2and Clearfil SE Bond. In 

AdheSEe One and AdheSE One F, pulpal pressure had no effect on bond strength. 

El-Deeb, H. A., et al. (2015) 24 sticks 
Adper Single Bond 2 

Clearfil SE Bond 

Adper Easy one 

1 year µTBS Pulpal pressure for 1 year resulted in a significant bond strength reduction. 

Feitosa, V. P., et al. (2014) b 40-50 sticks 

Silorane Adhesive  

Adper Easy Bond 

G-Bond Plus 

24 hours µTBS Pulpal pressure for 24 hours only had effect for Adper Easy Bond. In Silorane Adhesive and G-

Bond Plus, pulpal pressure had no effect on bond strength. 

Feitosa, V. P., et al. (2012) a 40 sticks 

Clearfil S3 Bond 

Adper Single Bond 2 

Clearfil SE Bond 

6 months 

1 year 
µTBS 

Pulpal pressure for 6 months and 1 year only had effect for Clearfil S3 Bond and Adper Single 

Bond 2. In Clearfil SE Bond, pulpal pressure had no effect on bond strength. 

Feitosa, V. P., et al. (2012) b 22 sticks 
P90 System adhesive 

Clearfil SE Bond 
1 week µTBS Pulpal pressure for 1week had no effect on bond strength. 

Feitosa, V. P., et al. (2013)  30 sticks 

Clearfil S3 Bond 

Adper Easy Bond 

G-Bond Plus 

24 hours µTBS 
Pulpal pressure for 24 hours only had effect for Clearfil S3 Bond and Adper Easy Bond. In G-Bond 

Plus, pulpal pressure had no effect on bond strength. 

Gotti, V. B., et al. (2015) 61 sticks 

Adper Single Bond 2 

Clearfil SE Bond 

Adper Easy one 

6 months µTBS 
Pulpal pressure for 6 months only had effect for Adper Single Bond 2. In Clearfil SE Bond and 

Adper Easy One, pulpal pressure had no effect on bond strength. 

Hosaka, K., et al. (2007) a 13 sticks 

One-Up Bond F 

Clearfil S3 Bond 

Clearfil Protect Bond 

Clearfil SE Bond 

24 hours µTBS 
Pulpal pressure for 24 hours only had effect for One-Up Bond F and Clearfil S3 Bond. In Clearfil 

SE Bond and Clearfil Protect Bond, pulpal pressure had no effect on bond strength. 

Hosaka, K., et al. (2007) b 13-17 sticks 
One-Up Bond F 

Fluoro Bond Shake One 

24 hours 

1 month 

3 months 

µTBS 
Using One-Up Bond F, pulpal Pressure for 24h, 1 and 3 months decreased bond strength values, 

however, using Fluoro Bond Shake One, pulpal pressure only had effect when tested for 1 and 3 

months. 

Mobarak, E. H. (2011) 20 cylinders Clearfil SE Bond 2 years SBS Pulpal pressure for 2 years resulted in a significant bond strength reduction. 

Nagi, S. M. (2015) 24 sticks 
Adper Easy One  

Bond 1 SF 
6 months µTBS 

Pulpal pressure for 6 months only had effect for Adper Easy One. In Bond 1 SF, pulpal pressure 

had no effect on bond strength. 

Nakajima, M., et al. (2006) 10-16 sticks Clearfil SE Bond 
1 week 

1 month 
µTBS Pulpal pressure for 1 week and 1 months resulted in a significant bond strength reduction. 
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Prati, C., et al. (1991) 6-10 cylinders 
Clearfil Photo-Bond 

Scotchbond 2 
24 hours SBS Pulpal pressure for 24 hours resulted in a significant bond strength reduction for Scotchbond 2 and 

a significant bond strength increase for Clearfil Photo-Bond. 

Tao, L., et al. (1991) 10 cylinders Gluma 24 hours SBS 
Pulpal pressure for 24 hours resulted in a significant bond strength reduction for deep dentin, 

however, in superficial dentin had no effect on bond strength. 

 

Table 9. Qualitative analysis of studies that performed NaOCl storage 

Author (year) n Adhesive Time % 
Bond Strenth 

test 
Conclusion 

Apolonio, F. M., et al. (2015) 42-49 sticks 

Adper Scothbond Multi -Purpose  

Adper Scotchbond 2 

Clearfil SE bond 

Adper Scothbond SE Plus 

1 hour 10  µTBS NaOCl storage for 1 hour resulted in a significant bond strength reduction. 

Barros, L. O., et al. (2013) 27-42 sticks 
Adper Single Bond 2 

XP Bond 
1 hour 10  µTBS NaOCl storage for 1 hour resulted in a significant bond strength reduction. 

De Munck, J., et al. (2007) 9-11 sticks G-Bond 1 hour 10  µTBS NaOCl storage for 1 hour resulted in a significant bond strength reduction. 

Deng, D., et al. (2014) 45 Sticks 
Adper Single Bond 2 

G-Bond 
1 hour 10  µTBS NaOCl storage for 1 hour resulted in a significant bond strength reduction. 

Erhardt, M. C., et al. (2011) 28-32 Sticks 
Single Bond 

Clearfil SE Bond 
5 hours 10  µTBS NaOCl storage for 5 hours resulted in a significant bond strength reduction. 

Gan, J., et al. (2017) 50 sticks Adper Single Bond 2 1 hour 10  µTBS NaOCl storage for 1 hour resulted in a significant bond strength reduction. 

Garbui, B. U., et al. (2012) 83-100 sticks Adper Single Bond 2 

1 hour 

3 hours 

5 hours 

10 µTBS NaOCl storage for 1, 3 and 5 hours resulted in a significant bond strength reduction. 

Kim, D. S., et al. (2011) 20 sticks Adper Single Bond 2 1 hour 10  µTBS NaOCl storage for 1 hour resulted in a significant bond strength reduction. 

Li, F., et al. (2012) 40 sticks 

Adper SingleBond 2 

Prime & Bond NT 

Gluma Comfort Bond 

2 hours 10 µTBS NaOCl storage for 2 hours resulted in a significant bond strength reduction. 

Monticelli, F., et al. (2007) 39-42 sticks G-Bond 5 hours 10  µTBS NaOCl storage for 5 hours resulted in a significant bond strength reduction. 

Osorio, R., et al. (2005) 30 sticks 
Adper Single Bond  

Clearfil SE Bond 
5 hours 10  µTBS NaOCl storage for 5 hours resulted in a significant bond strength reduction. 
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Osorio, R., et al. (2005) b 30 sticks Clearfil SE Bond 5 hours 10  µTBS NaOCl storage for 5 hours resulted in a significant bond strength reduction. 

Sauro, S., et al. (2009) 30 sticks 
Scotchbond 1 XT 

Optibond Solo Plus 
1.5 hours 12 µTBS NaOCl storage for 1.5 hours resulted in a significant bond strength reduction. 

Toledano, M., et al. (2006) a 39-42 sticks 

Clearfil SE Bond 

Single Bond 

Prime&Bond XP 

Prime&Bond NT 

Etch&Prime 3.0 

5 hours 10  µTBS 

NaOCl storage for 5 hours resulted in a significant bond strength reduction. 

* For Etch&Prime 3.0, no µTBS data could be obtained due to premature failure of all the 

specimens during sticks preparation. 

 

Table 10. Qualitative analysis of studies that performed enzyme storage  

Author (year) n Adhesive Enzyme type 
Storage 

time 

Bond Strenth 

test 
Conclusion 

Armstrong, S. R., et al. (2006) 20 sticks Scotchbond Multi-Purpose 
Collagenase  

Esterase 

24 hours 

12 weeks 
µTBS Enzymatic challenge only had significant bond strength reduction for 12 weeks group. 

Chiaraputt, S., et al. (2011) 15 sticks 

Adper Single Bond 2 

Clearfil SE Bond 

Clearfil tri-S Bond 

G-Bond 

Collagenase  

Acetylcholinesterase 
12 weeks µTBS Enzymatic challenge for 12 weeks had significant bond strength reduction for all 

adhesives with the exception of G-Bond.  

Hechler, B., et al. (2012) 
15 – 18 

sticks 
Experimental adhesive Collagenase 

1 week 

4 weeks 
µTBS 

Enzymatic challenge for 4 weeks had significant bond strength reduction, but for 1 

week the bond strength values were higher than control. 

Jung, Y. J., et al. (2009) 
30 – 36 

sticks 

Single Bond 2 

Clearfil SE bond 

Collagenase  

Esterase 
4 weeks µTBS 

Enzymatic challenge for 4 weeks had significant bond strength reduction for Single 

Bond 2, but not for Clearfil SE Bond. 

Liu, R. R., et al. (2014) 40 sticks  Adper Single Bond 2 
Collagenase type I  

Collagenase type II 

24 hours  

5 days 
µTBS 

Enzymatic challenge for 24 hours and 5 days resulted in a significant bond strength 

reduction for both collagenases types. 
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Table 11. Qualitative analysis of studies that performed cariogenic challenge   

Author (year) n Adhesive Time 
Bond Strenth 

test 
Conclusion 

Borges, F. B., et al. (2014) 20 sticks Single Bond 2 

3 days 

5 days 

10 days 

µTBS Cariogenic challenge under protocols of 3, 5 and 10 days had no effect on bond strength 

Montagner, A. F., et al. (2015) 30 sticks Single Bond 2 14 days µTBS Cariogenic challenge under the protocol of 14 days had no effect on bond strength 

 

Table 12. Qualitative analysis of studies that performed pH cycling   

Author (year) n Adhesive Time 
Bond Strenth 

test 
Conclusion 

Deng, D., et al. (2014) 45 sticks 
Adper SingleBond 2 

G-Bond 
15 days µTBS pH cycling under protocol of 15 days resulted in a significant bond strength reduction. 

Marquezan, M., et al. (2011) 45 sticks Adper SingleBond 2 14 days µTBS pH cycling under protocol of 10 days had no effect on bond strength 

Pedrosa, V. O., et al. (2012) 30-35 Sticks 

Clearfil Protect Bond 

Clearfil SE Bond 

One-up Bond-F 

15 days µTBS pH cycling under protocol of 15 days had no effect on bond strength 

 

Table 13. Qualitative analysis of studies that performed in situ model 

Author (year) n Adhesive Time 
Bond Strenth 

test 
Conclusion 

Hass, V., et al. (2016) 
10 volunteers 

75 sticks 
Single Bond Plus 14 days µTBS 

In situ model under the protocol of 14 days of cariogenic oral environment resulted in a significant 

bond strength reduction. 

Simoes, D. M., et al. (2014) 
9 volunteers 

36 sticks 
All Bond 3 14 days µTBS 

In situ model under the protocol of 14 days of cariogenic oral environment had no effect on bond 

strength. 
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   Abstract 

This study evaluated the microtensile bond strength (µTBS) of an etch-and-rinse 

adhesive and a self-etch adhesive after aging with different methods. Thirty-six third 

molars were divided according to the adhesive systems: self-etch or etch-and-rinse; 

and aging method: water storage for 5 weeks, 10,000 thermal cycles, 250,000 axial 

mechanical cycles, 250,000 Rub&Roll mechanical cycles or cariogenic challenge 

under 14 days; the control group remained in water at 37°C for 24 h. After aging, the 

teeth were sectioned on sticks to microtensile test. The µTBS values were submitted 

to two-way ANOVA and Tukey’s post hoc test (p < 0.05). The µTBS of the etch-and-

rinse adhesive was significantly decreased after 14 days only by cariogenic challenge 

(p=0.02). However, the µTBS of the self-etching adhesive was solely reduced by 

mechanical cycling (p=0.04). Thermal cycling, Rub & Roll and 5 weeks water storage 

were unable to affect µTBS of both tested adhesives (p>0.05). Failures in all groups 

were predominantly adhesive. In conclusion, the µTBS of adhesives to dentine was 

not affected by the mostly used ageing methods, thermal cycling and short-term 

water storage.  

 

Keywords: Dentin; Adhesives; Microtensile bond strength; Aging; Adhesives. 
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1. Introduction 
 

Dentin is the most common and challenging substrate when it comes to 

adhesion [1,2]. Although the longevity and success of restorations depends on a 

number of factors, the search for the best adhesive techniques seems to be endless 

[3–5], since tooth-restoration stability is one of the most important aspects in dentistry 

and an unstable adhesive interface can result in many negative effects that can lead 

to failure of the restoration over time [5–7]. 

The aging of restorations can lead to defects such as superficial and marginal 

staining, increased surface porosity, degradation of the adhesive interface and 

fractures, resulting in the need of replacement of the restorations [3,5]. Many 

laboratory studies test the performance of dentin adhesives systems focused on its 

relationship with clinical performance [8,9]. Therefore, aging processes resembling 

those taking place in the oral environment were introduced in laboratory testing 

procedures [10,11]. 

Water storage is the most used procedure for specimen aging in durability 

tests of dentin-resin interfaces [12–16]. However, reduction in bond strength values 

normally requires a period of 6 months or more [12,17,18]. Thus, comparative studies 

of methods able to shorten this period are used. Thermal and mechanical cycling are 

already widely used for bond strength tests, mainly because they simulate common 

conditions in the oral cavity [11,13,14]. Changes of temperatures in thermal cycling 

may accelerate hydrolysis of non-protected collagen and generate repetitive 

contraction/expansion stresses at the tooth–material interface [1,11] and the use of 

mechanical cycling attempts to simulate fatigue and wear events that challenge the 

bond strength over time [15]. On the other hand, the cariogenic challenge is a 
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condition that the oral environment is exposed daily and a small number of studies 

have evaluated its effects on the longevity of restorations [16,19]. 

To understand how the adhesion will behave in the long-term is a very 

important issue in restorative dentistry. However, there is a huge amount of aging 

methods and protocols described in the literature, and very few studies designed to 

compare these methods under standardized conditions. Based on this, the objective 

of this study was to evaluate the microtensile bond strength (µTBS) of an etch-and-

rinse adhesive and a self-etch adhesive using different aging methods: control (24h), 

water for 5 weeks (5w), thermocycling (TC), axial mechanical cycling (MC), Rub&Roll 

mechanical cycling (RRMC) and cariogenic challenge (CC). The hypothesis tested 

was that all aging methods would result in decrease of µTBS, on both adhesives 

tested. 

2. Materials and Methods 

2.1. Study design 

This in vitro study involved a 2 × 6 factorial design. The research factors were: 

type of adhesive (self-etch and etch-and-rinse) and type of accelerated aging (5-

weeks water storage, thermal cycling, mechanical cycling, Rub&Roll mechanical 

cycling and cariogenic challenge). The response variable was microtensile bond 

strength to dentin. 

2.2. Tooth preparation 

Thirty-six third molars were obtained from the Tooth bank/UNOESC (Faculdade do 

Oeste de Santa Catarina – Joacaba/SC), and approved by the Local Ethics 

Committee, 1.634.704). The teeth were stored in 0.5% aqueous chloramine solution 

at 4°C until their use. The occlusal surface of the teeth was sectioned transversally to 

remove occlusal enamel and to expose the dentin. The cuts were obtained using 
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precision rotating machine at 200 rpm (Isomet 1000; Buehler, Lake Bluff, IL, USA) 

with watercooled diamond saw. Dentin surfaces were polished with #600 silicon 

carbide sandpaper in a circular polishing machine (Arotec PL 4, São Paulo, SP, 

Brazil).  

The samples were randomly allocated into 2 groups according to the adhesive 

system used: Scotchbond Multi-Purpose and Single Bond Universal (3M ESPE 

Dental Products, St Paul, MN, USA). The bonding procedures followed 

manufacturer's instructions (Table 1). Immediately after adhesive system application 

the bonding procedure was performed by one previously trained operator. Each 

composite resin horizontal increment (3 increments) was light cured for 20 s using a 

LED light unit (Radii-Call; SDI, Bayswater, VI, Australia) with irradiance of 650 

mW/cm2. The samples were stored in distilled water at 37°C for 24 h.  

2.3. Aging Conditions 

The samples were again randomly divided in new 6 groups about aging methods 

(Table 2). For each aging method the samples were prepared according to the need 

of each protocol, respecting the bonding and restoration procedures mentioned 

previously. With the exception of the control group the other five groups remained in 

water during the same time independent of the protocol (5 weeks).  

2.3.1. Thermal Cycling 

This group was subjected to 10,000 intermittent thermal cycles between water baths 

at 5 and 55°C (dwell time 30 s) [20]. The time of cycling was 7 days, after that, the 

specimens stayed in water at 37°C until completing 5 weeks. 

2.3.2. Mechanical Cycling 

In this group teeth were prepared by embedding each root into plastic cylinders with 

self-cured acrylic resin (Jet Classico, Sao Paulo, SP, Brazil) and by using a polyether 
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impression material (Impregum Soft, 3M ESPE Dental Products, St Paul, MN, USA) 

to simulate the periodontal ligament [21]. Each sample (plastic cylinder plus tooth) 

was submitted to mechanical load testing, which was performed using a piston (6 mm 

in diameter) in a fatigue simulator (Biocycle V2; Biopdi, Sao Carlos, SP, Brazil) with 

the regimen of: 250,000 cycles [22], 1 Hz, 100 N at 37°C . The time of cycling was 10 

days; after that, the specimens stayed in water at 37°C until completing 5 weeks. 

2.3.3. Rub&Roll Mechanical Cycling 

In this group teeth were embedded in acrylic resin resulting in samples of 16 mm in 

height × 14 mm width × 10 mm length. Samples were mounted into the Rub&Roll 

device and mechanical loading was applied by the rotation movement of the inner 

cylinder [23]. In this study, samples were loaded at 20 rpm, and ±30 N. Mechanical 

loading took place in distilled water, which was weekly changed. The time of cycling 

was 20 days; after that, the specimens stayed in water at 37°C until completing 5 

weeks. 

2.3.4. Biofilm Aging 

In this group teeth were protected with nail varnish except for the adhesive interface 

and sterilized with UV radiation. In the microcosm model, biofilm was formed on 

samples in cell tissue culture plates with the saliva inoculum obtained from a healthy 

adult volunteer that refrained oral hygiene for 24 h prior to saliva collection. Defined 

medium enriched with mucin (DMM) was carried out according to a previously 

described protocol of [24]. Saliva was inoculated onto the teeth in each well (0.1 mL). 

After 1 h, 1.8 mL of previously prepared DMM was added in each well. Teeth 

received DMM with and without 1% sucrose during 6 and 18 h respectively and were 

daily replaced. Biofilms were formed independently on the samples. The micro-wells 
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were incubated in anaerobic condition under controlled temperature (37ºC) for 14 

days. Next, the specimens stayed in water at 37°C until completing 5 weeks. 

2.4. Microtensile bond strength test 

After each aging procedure, teeth from each group were longitudinally sectioned in 

both “x” and “y” directions across the bonded interface with a low-speed diamond 

saw (ISOMET 1000; Buheler, Lake Bluff, IL, USA). Resin–dentin sticks (n = 15-20) 

with a cross-sectional area of approximately 1.0 mm2 were fixed with cyanoacrylate 

resin (Super Bonder Gel, Loctite, São Paulo, Brazil) to the grips of a microtensile 

device and tested on a mechanical testing machine (DL500; EMIC, São José dos 

Pinhais, PR, Brazil) at a crosshead speed of 0.5 mm/min until failure.  

2.5. Mode of failure analysis 

Fractured specimens were observed under 40× magnification using a 

stereomicroscope to determine the failure mode as: apparently interfacial (AI fracture 

occurred within the adhesive interface, between the dentin and composite); cohesive 

in composite (CC - fracture occurred at the resin-based composite portion) or mixed 

failures (M - designates a mixture of adhesive and cohesive failure within the same 

fractured surface). Some sticks were selected and both parts of debonded 

specimens were dehydrated in silica gel, mounted on stubs, gold-sputter coated and 

observed in Scanning Electron Microscopy (SEM) (Inspect S50, FEI Company, 

Amsterdam, Netherlands) operated at 20 kV. 

2.6. Statistical analysis 

The µTBS values were obtained in MPa and data were submitted to two-way ANOVA 

using SigmaPlot version 12 (Systat Software Inc., San Jose, CA, USA). Pre-testing 

failures were included in the calculation of mean µTBS as 0 MPa. All pairwise 

multiple comparison procedures were performed using the Tukey method (p < 0.05). 
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3. Results 

There was no statistically significant difference between the adhesives 

(p=0.99). The µTBS of the etch-and-rinse adhesive was significantly decreased after 

14 days of cariogenic challenge (p=0.02) (Table 3). On the other hand, when we 

aged the adhesive interface bonded with self-etching, the only method capable of 

significantly reducing µTBS was mechanical cycling (p=0.04). Thermal cycling, five 

weeks water storage and Rub&Roll mechanical cycles were not able to reduce µTBS 

in this study for any tested adhesive (p>0.05).  

Three types of failure were observed: mixed failure, interfacial failure, and 

cohesive failure occurring in resin composite (Table 4). Most of the post-test 

specimens consisted of interfacial failure. Groups tested with mechanical load 

presented similar or equal numbers of mixed and adhesive failures. For all groups, 

few failures occurred in resin and the representative scanning electron micrographs 

of the most occurred fractures can be observer in Figure 1. 

 

4. Discussion 

The present study was the first to investigate the influence of aging as applied 

by five different methods on adhesive bond strength of restored teeth and the results 

demonstrate that some methods result in a decreased µTBS, but most of the 

protocols mostly used in literature did not affect the microtensile bond strength. 

Therefore, the null-hypothesis was partially rejected.  

The methodologies tested were chosen by simulating different events that 

occur in the oral cavity such as chewing and occlusal wear, expansion and 

contraction associated with temperature changes [1,25], as well as challenges in 

dental structures and restorative materials through bacteria acting on the surface by 
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degrading unprotected collagen fibrils and adhesive components at the tooth-

restoration interface [26,27]. 

Thermal cycling is commonly used for many years in dental laboratory testing 

and addresses a method of aging through repetitive contractions and expansions 

between the dental substrate and the restoration [28]. The relationship of 10,000 

cycles with one year of clinical service has already been reported in the literature 

[1,29], that protocol is one of the most used in the literature as well as the immersion 

time for 30s in temperatures of 5 to 55ºC [11]. In this study 10,000 cycles were tested 

and the decrease in bond strength was not significant when compared to the control 

group for none of the adhesives tested, but this finding corroborates with other 

studies [25,30,31].  

When we considering mechanical cycling the goal is to challenge the 

restorations to loads that simulate chewing and one year of clinical service was 

reported to be simulated by 240,000 mechanical cycles [15]. In this study two 

methodologies were performed using mechanical load, with the traditional 

mechanical cycling a perpendicular force was applied through a metal piston directly 

in the restoration. For the group restored with self-etch adhesive the bond strength 

was significantly lower whereas for the etch-and-rinse there was no difference. The 

decrease in µTBS of self-etching adhesives after no more than 250,000 cycles has 

been reported in other studies [31,32]. The cycling performed on Rub&Roll is through 

the application of different forces similar to wear, few studies have been performed 

using this equipment and none with these classifications of adhesive. In another 

study [33], 250,000 cycles were able to decrease the bond strength of Adper 

Scotchbond 1XT and Clearfil SE Bond but in ours the values were similar to that of 

the control for both adhesives, however in this other study the cycling was 
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uninterrupted, and in ours, only 8 hours of cycling per day were performed, which 

leads us to think that the parameters used in each experiment can directly influence 

the results. 

Biofilm accumulation and cariogenic challenge are crucial factors and very 

related to the longevity of restorations, mainly because one of the major causes of 

failure is secondary caries. An unexplored method to simulate these events is the 

biofilm storage and the cariogenic challenge through biofilm with and without 

sucrose, however it is a more laborious methodology because it involves 

microbiology and few studies have done it [16,19,34]. No studies evaluated self-

etching adhesives after 14 days of cariogenic challenge, but the only one that 

evaluated this period with etch-and-rinse adhesives found a difference between the 

aged interface and the control like in our study, where Scotchbond Multi-purpose 

presented significantly lower values after CC. 

All the methods tested were standardized so that at the end of the aging 

process the specimens had stayed the same time in water. After each aging protocol 

the teeth were kept in water until completing the remaining time for 5 weeks. The 

purpose of this was to equate the hydrolysis that the interface undergoes after the 

aging methods and other studies can be done by testing longer or challenging 

protocols.  

All protocols involve water or culture medium, which may lead to a bigger or 

lesser degradation not only by the number of cycles but also by the time that the 

chemical bonds that occur in the adhesion process are exposed to hydrolytic 

degradation. Generally, when the studies involve cycling, the total duration of the 

aging process is not usually reported in the paper, although it is a determining factor 
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in the results because we can do 15,000 cycles in a week or a month, depending on 

how many cycles we will do per day. 

5. Conclusion 

Thermal cycling, Rub & Roll and 5 weeks water storage were not able to affect 

µTBS in this study. Cariogenic challenge for 14 days was able to reduce the bond 

strength of the Scotchbond Multi-purpose and Mechanical cycling of Single Bond 

Universal. 
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Tables 

 
 

Table 1. Manufacturer, Composition, and Application Procedure of the Adhesive Systems 

Adhesive  Composition Application Procedure 

Adper Scothbond Multi-purpose  

(3M – ESPE, St. Paul, MN, 

USA) 

Etching agent: 35% phosphoric acid 
Apply. Wait 15 s. Rinse for 15 s. Dry 

with absorbent paper. 

Primer: Polyalkenoic acid copolymer 

HEMA, water 
Apply, then gently air-dry for 5 s 

Bond:  Bis-GMA, HEMA, tertiary 

amines, photo-initiator 
Apply, then light-cure for 10 s 

Single Bond Universal  

(3M – ESPE, St. Paul, MN, 

USA) 

10-MDP, HEMA, silane, dimethacrylate 

resins, VitrebondTM copolymer, filler, 

ethanol, water, initiators 

Apply and rub for 20 s.  Gently air-

dry for 5s. Light-cure for 10 s. 

10-MDP: 10-methacryloyloxydecyl dihydrogen phosphate; HEMA: 2-hydroxyethyl methacrylate; Bis-GMA: bisphenol A glycidyl 

methacrylate; 

 

Table 2. Accelerated aging methods and protocols 

Aging Method Protocol 

Control (water) 24 hours, 37ºC 

Water Storage  5 weeks, 37ºC 

Thermal Cycling 10,000 cycles, 5-55ºC (dwell time 30 s) 

Mechanical Cycling 250,000 cycles, 1 Hz, 100 N at 37°C 

Rub&Roll Mechanical Cycling 250,000 cycles, 20 rpm, 30N at room temperature 

Cariogenic Challenge 14 days under biofilm with and without sucrose at 37ºC 
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Table 3. Microtensile bond strength in MPa, standard deviations. (±SD) 

 

Materials 

Aging methods 

24-h 
5 weeks water 

storage 

Thermal 

cycling 
Rub&Roll  

Mechanical 

cycling 

Cariogenic 

challenge 

Scotchbond 

Multi-purpose 
29.7 ±12.1a 33.0  ±10.8a 25.2  ±7.7a 22.3  ±12.4a 24.5  ±14.4a 20.5  ±11.9b 

Single Bond 

Universal 
32.4  ±10.7a 30.8  ±14.9a 24.6  ±10.8a 23.6  ±11.2a 19.8  ±11.5b 24.2  ±11.9a 

Different letters mean statistically significant difference among the aging methods for each adhesive (row). There was no 

statistically significant difference between the adhesives. 

Table 4. Percentage of mode of failure (%) and pre-testing failures [PTF]  using 

different adhesive system and aging conditions.  

Aging methods 

Scotchbond Multi-purpose Single Bond Universal 

AI M CC PTF AI M CC PTF 

24-h 61 33 6 3 60 35 5 0 

5 weeks water storage 63 26 11 1 65 30 5 0 

Thermal cycling 52 29 19 1 59 29 12 1 

Rub&Roll 47 41 12 3 41 53 6 1 

Mechanical cycling 47 40 13 3 47 47 6 3 

Cariogenic challenge 63 31 6 4 59 35 6 3 

AI - Apparently interfacial; M – Mixed; CC: Cohesive in composite 
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Figure 

 

 
 
Figure 1. Representative scanning electron micrographs of the most occurred fractures (×2,000). (A) 
With the presence of dentin tubules with resin tags inside them, it can be assumed that fracture 
occurred at the base of the hybrid layer; (B) Failure occurred exclusively in resin; (C) Mixed failure 
involving adhesive and dentin. 
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6 Considerações finais  

  

Esta tese se propôs a testar e comparar diferentes métodos de 

envelhecimento acelerado usados para testes de adesão à dentina. Como citado 

anteriormente, muitos métodos são amplamente usados em diferentes estudos em 

odontologia, porém, poucos critérios são avaliados na hora da escolha do método e 

protocolo. Poucos estudos se propõem a comparar diferentes métodos de 

envelhecimento, e mesmo quando comparam mais de um tipo, acabam deixando 

esse fator em segundo plano e se atentando primeiramente a diferentes 

tratamentos, materiais e métodos de aplicação.  Quando comparamos os estudos 

disponíveis na literatura pudemos perceber que muitos testes e protocolos parecem, 

em geral, funcionar para envelhecer a interface adesiva. Alguns métodos são 

comumente aplicados como termociclagem, ciclagem mecânica e armazenamento 

em NaOCl, já outros como desafio cariogênico, ciclagem de pH e protocolos in situ, 

nem tanto.  

Desafio cariogênico foi uma das únicas metodologias que não foi efetiva nas 

comparações da nossa revisão sistemática, porém, em nosso estudo in vitro ela 

mostrou reduzir a resistência de união significativamente quando comparada ao 

controle. Dois estudos foram incluídos na revisão sistemática, um testando 3, 5 e 10 

dias de desafio cariogênico o qual não apresentou resultados significativos para 

nenhum dos tempos, e outro testando 14 dias o qual reduziu significativamente os 

valores de resistência de união e corroborou com nossos achados in vitro por termos 

usado o mesmo tempo de protocolo. Comparando esses resultados podemos inferir 

que o desafio cariogênico pode ser efetivo, desde que testado por no mínimo duas 

semanas.  

Muitos resultados são controversos na literatura, o que se deve por os 

resultados não dependerem só do método e protocolo de envelhecimento, mas 

também do material utilizado e parâmetros adotados na metodologia. Quando se 

trata de microtração, em alguns métodos os dentes restaurados podem ser 

envelhecidos para porterior corte dos palitos ou o envelhecimento pode ocorrer 
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diretamente nos palitos, o que pode potencializar o efeito do envelhecimento. A falta 

de normativas específicas para este tipo de teste dificulta a comparação dos 

estudos, porém nesta tese buscamos respostas e panoramas globais que possam 

nortear os pesquisadores neste tema que é amplamente utilizado e pouco discutido 

em odontologia.    
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Apêndice A – Nota da tese 

Nota da tese 

 

Métodos de envelhecimento da interface adesiva para testes de adesão à 

dentina 

Aging methods for dentin bond strength tests 

 

Dentes restaurados são desafiados diariamente através da mastigação, dieta, 

doenças e até mesmo pela própria saliva. Na tentativa de mimetizar esses 

processos de forma acelerada em laboratório, muitas metodologias são 

empregadas, porém, pouco padronizadas. A presente tese avaliou diferentes 

métodos existentes para simular esses eventos que ocorrem clinicamente. Foram 

discutidos diversos fatores como tempo de protocolo, número de ciclos de 

simulação, parâmetros utilizados nos testes. Através dos estudos desenvolvidos, 

métodos e protocolos foram sumarizados na tentativa de avaliar os protocolos que 

podem ser efetivos para acelerarem o processo de envelhecimento da ligação 

dente-material em laboratório. Com esta tese podemos concluir que muitos métodos 

de envelhecimento acelerado podem ser efetivos na degradação da interface, porém 

muitos parâmetros devem ser considerados como tempo de envelhecimento, 

condições de armazenagem e material utilizado. 
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relacionados à biologia oral e por isso ingressou no doutorado direto em 2015 no 

Programa de Pós-graduação em Odontologia da Universidade Federal de Pelotas na 

área de concentração em Materiais Odontológicos. Tem orientação desde a 

graduação pelo Prof. Dr. Maximiliano Sergio Cenci com o qual desenvolveu 

pesquisas relacionadas à cariologia e envelhecimento acelerado de materiais 

odontológicos. Está tendo seu doutorado co-orientado pela Profa. Dra. Tatiana 

Pereira Cenci e pelo Prof. Dr. Rafael Ratto de Moraes. 
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Anexo A – Parecer do Comitê de Ética em Pesquisa 
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Anexo B - Declaração de doação de dentes humanos – Banco de Dentes 

Humanos/Universidade do Oeste de Santa catarina 
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