UNIVERSIDADE FEDERAL DE PELOTAS
Centro de Desenvolvimento Techolégico
Programa de Pés-Graduacao em Computacao

R A A A A
A5 pRAS™

Dissertacao

An Energy-Efficient Hardware Design for the 3D-HEVC Motion Estimation
Adopting Reuse Strategies for Data and Operations

Murilo Roschildt Perleberg

Pelotas, 2020

Murilo Roschildt Perleberg

An Energy-Efficient Hardware Design for the 3D-HEVC Motion Estimation
Adopting Reuse Strategies for Data and Operations

Dissertacao apresentada ao Programa de Pés-
Graduacdo em Computacdo do Centro de De-
senvolvimento Tecnoldgico da Universidade Fed-
eral de Pelotas, como requisito parcial a obtencao
do titulo de Mestre em Ciéncia da Computacao.

Advisor: Prof. Dr. Marcelo Schiavon Porto
Coadvisors: Prof. Dr. Luciano Volcan Agostini

Prof. Dr. Vladimir Afonso

Pelotas, 2020

Universidade Federal de Pelotas / Sistema de Bibliotecas
Catalogacao na Publicacao

P426a Perleberg, Murilo Roschildt

An energy-efficient hardware design for the 3D-HEVC
motion estimation adopting reuse strategies for data and
operations / Murilo Roschildt Perleberg ; Marcelo Schiavon
Porto, orientador ; Luciano Volcan Agostini, Vladimir
Afonso, coorientadores. — Pelotas, 2020.

88 f. il

Dissertacao (Mestrado) — Programa de Pds-Graduacao
em Computacao, Centro de Desenvolvimento Tecnolégico,
Universidade Federal de Pelotas, 2020.

1. Hardware design. 2. Motion estimation. 3. 3D-HEVC.
4. Operations reuse. 5. Data reuse. |. Porto, Marcelo
Schiavon, orient. Il. Agostini, Luciano Volcan, coorient. lll.
Afonso, Vladimir, coorient. IV. Titulo.

CDD : 005

Elaborada por Maria Inez Figueiredo Figas Machado CRB: 10/1612

Murilo Roschildt Perleberg

An Energy-Efficient Hardware Design for the 3D-HEVC Motion Estimation
Adopting Reuse Strategies for Data and Operations

Dissertacao aprovada, como requisito parcial, para obtengcao do grau de Mestre em
Ciéncia da Computacao, Programa de P6s-Graduacdo em Computacao, Centro de
Desenvolvimento Tecnolégico, Universidade Federal de Pelotas.

Data da Defesa: 6 de abril de 2020

Banca Examinadora:
Prof. Dr. Marcelo Schiavon Porto (orientador)
Doutor em Computacgao pela Universidade Federal do Rio Grande do Sul, Brasil.

Prof. Dr. Leomar Soares da Rosa Jr.
Doutor em Microeletronica pela Universidade Federal do Rio Grande do Sul, Brasil.

Prof. Dr. Felipe Martin Sampaio
Doutor em Computacgao pela Universidade Federal do Rio Grande do Sul, Brasil.

Prof. Dr. Sergio Bampi
Doutor em Engenharia Eletrica Microeletronica pela Stanford University, Estados
Unidos.

AGRADECIMENTOS

Agradecgo aos meus pais, Marilene Roschildt Perleberg e Almiro Perleberg, e tam-
bém aos demais familiares, por toda a motivagdo para que eu mantivesse o foco
nos estudos apds a graduacao, além de sempre me apoiaram e acreditaram no meu
sucesso.

Agradego imensamente a minha namorada e companheira, Analice Megiato da
Silva, por estar comigo tanto nos momentos felizes como também por ter me aguen-
tado nos diversos momentos conturbados do mestrado.

Agradeco aos meus orientadores, Marcelo Porto, Luciano Agostini, Vladimir
Afonso, e também ao professor Bruno Zatt, por todo o auxilio e idéias compartilhadas
que possibilitaram o desenvolvimento deste trabalho.

Ainda, agradeco aos diversos amigos e colegas de grupo, tanto do ViTech como do
GACI, por toda a ajuda e conhecimento compartilhado, além dos diversos momentos
de descontracao que guardo na memoéria. Vocés sao fera piazada! #12

Follow the party.
— GAUCHO PROVERB

ABSTRACT

PERLEBERG, Murilo Roschildt. An Energy-Efficient Hardware Design for the 3D-
HEVC Motion Estimation Adopting Reuse Strategies for Data and Operations.
Advisor: Marcelo Schiavon Porto. 2020. 88 f. Dissertation (Masters in Computer
Science) — Technology Development Center, Federal University of Pelotas, Pelotas,
2020.

Currently, there is a growing demand for video streaming through the internet,
and also a crescent number of portable devices capable of capture and reproduce
those videos. Moreover, the 3D videos allow an improved user experience when
compared with traditional videos, since in the 3D videos the scene is simultaneously
captured from different points of view. However, due to the amount of data required to
represent digital videos, compression techniques are mandatory, which are a series
of tools responsible for reducing the redundancies present in video data. In the
3D-High Efficiency Video Coding (3D-HEVC) standard, the most complex tool is the
Motion Estimation (ME), while it is also responsible for a huge part of the compression
efficiency of this standard. The ME is divided in Integer ME (IME), which performs
the comparison a block from the frame being encoded with several candidate blocks
from already encoded frames, searching for the candidate block most similar with
the block being encoded, and the Fractional ME (FME), which performs a refinement
around the candidate result of the IME. By default, the 3D-HEVC adopts the Test
Zone Search (TZS) algorithm to select the candidates to be evaluated in the IME,
since the TZS evaluates a reduced number of candidates without result in huge
losses in image quality when compared with a full search algorithm, which compares
all possible candidate blocks. Also, in 3D-HEVC the IME was applied in up to 24
different block sizes. This implies several redundant operations, where parts from
a specific candidate can be compared with part of the block being encoded several
times, besides a huge memory communication to perform the processing of several
block sizes of each candidate block. Aiming at reducing these operation redundancies,
it is possible to reuse the operations performed to small block sizes to compose the
result of higher block sizes. This strategy also allows data reuse, since it reduces the
memory access needed to obtain the samples to process all block sizes. There have
only a few works on literature proposing hardware architectures for the IME of the
3D-HEVC standard. Between the IME works of other video coding standards, only a
few presents solutions considering data and operations reuse strategies and a fast
algorithm as TZS. Therefore, this work presents an IME hardware design adopting
the TZS algorithm, with support to all block sizes supported by 3D-HEVC standard
and with operations and data reuse strategies to take advantage of already processed

operations and reduce the memory communication. The 3D-HEVC IME algorithm was
modified aiming at an efficient hardware implementation, and the evaluations show
that these modifications present an increase of 9.016% in the BD-rate metric. The
developed IME architecture was synthesized for an ASIC with TSMC 40nm standard
cells technology, and the results show that the hardware requires 269 K gates, while
dissipates 108.48 mW when processing 3 views from different cameras, where each
view is composed by the video of the two channels (Texture and Depth Maps) with
FHD 1920x1080p resolution with 30 frames per second. The synthesis results have
also indicated that the IME hardware design can process up to 3 views with UHD
3840x2160p resolution with 60 frames per second. Moreover, an FME architecture
was also presented, which is able to evaluate all possible 48 fractional blocks around
the IME result.

Keywords: Hardware Design. Motion Estimation. 3D-HEVC. Operations Reuse. Data
Reuse.

RESUMO

PERLEBERG, Murilo Roschildt. Uma arquitetura de Hardware Energéticamente
Eficiente para a Estimacao de Movimento do padrao 3D-HEVC Adotando Es-
tratégias de Reuso de Dados e de Operacoes. Advisor: Marcelo Schiavon Porto.
2020. 88 f. Dissertation (Masters in Computer Science) — Technology Development
Center, Federal University of Pelotas, Pelotas, 2020.

Atualmente existe uma grande demanda por streaming de videos digitais através da
internet, além de um crescente numero de dispositivos méveis capazes de gravar e
reproduzir estes videos. Além disso, videos em 3 Dimensdes (3D) permitem ainda
uma experiéncia maior do usuario se comparado com os videos tradicionais, visto que
nos videos 3D a cena é capturada de pontos de vista diferentes. Contudo, devido a
grande quantidade de dados necessarios para representar os videos digitais, técnicas
de compressao se tornam obrigatérias, as quais sdo uma série de ferramentas
responsaveis por reduzir as redundancias presentes nos dados dos videos. No
padrao 3D-High Efficiency Video Coding (3D-HEVC), a etapa mais complexa é a
Estimacdo de Movimento (ME), a qual é também a etapa responsavel por grande
parte da eficiéncia de compressdo deste padrdo. A ME é divida em Estimacéo de
Movimento Inteira (IME), a qual realiza a comparacdo de um bloco do quadro que
esta sendo codificado com diversos blocos candidatos de quadros ja codificados em
busca do bloco candidato mais similar ao bloco sendo codificado, e a Estimacao
de Movimento Fracionaria (FME), a qual realiza um refinamento sobre o candidato
resultante da IME. Por padréo, o 3D-HEVC utiliza o algoritmo Test Zone Search (TZS)
para escolher os candidatos a serem avaliados pela IME, visto que o TZS realiza a
avaliagdo de um numero reduzido de candidatos sem resultar em grandes perdas na
qualidade da imagem quando comparado com o algoritmo de busca completa, que
avalia todos os blocos possiveis. Além disso, no 3D-HEVC a ME pode ser aplicada
sobre blocos de até 24 diferentes tamanhos. Isso implica na ocorréncia de diversas
operagdes redundantes, onde uma parte de um dos blocos candidatos pode ser
comparada com uma parte do bloco sendo codificado inUmeras vezes, além de uma
enorme comunicacdo com a memdaria para realizar o processamento dos diferentes
tamanhos de bloco de cada bloco candidato. Visando a redugdo das operacdes
redundantes, € possivel reutilizar as operagdes realizadas em blocos pequenos para
compor o resultado dos blocos maiores. Esta estratégia também permite o reuso de
dados, visto que serd reduzindo o numero de acessos a memdria necessarios para
obter as amostras de todos os tamanhos de bloco. Existem apenas poucos trabalhos
na literatura propondo arquiteturas de hardware para a IME do padrao 3D-HEVC. Dos
trabalhos de IME para outros padrdes de codificacdo, apenas poucos apresentam

solucdes considerando estratégias de reuso de dados e operacbes e um algoritmo
rapido como o TZS. Portanto, este trabalho apresenta uma arquitetura de IME
adotando o algoritmo TZS, com suporte a todos os tamanhos de bloco suportados
pelo 3D-HEVC e utilizando estratégias de reuso de operagdes para obter vantagem
das operacgdes ja processados. O algoritmo de IME do 3D-HEVC foi alterado visando
uma implementacao de hardware eficiente, e experimentos mostraram que essas
modificagcdes apresentam um aumento de 9,016% na métrica BD-rate. A arquitetura
de IME desenvolvida foi sintetizada para ASIC utilizando a biblioteca de células padrao
de 40nm da TSMC, e os resultados mostraram que a arquitetura requer 269 K gates,
enquanto dissipa 108,48 mW quando processa 3 vistas de diferentes cameras, sendo
cada vista é composta pelo video dos 2 canais (textura e mapas de profundidade)
com resolucao de FHD 1920x1080p com 30 quadros por segundo. Os resultados
de sintese também mostraram que a arquitetura de IME é capaz de processar até 3
vistas com resolugdo UHD 3840x2160p e com uma taxa de mostragem de 60 quadros
por segundo. Além disso, uma arquitetura de FME também €& apresentada, capaz de
avaliar todos os 48 possiveis blocos fracionarios ao redor do resultado da IME.

Keywords: Arquitetura de Hardware. Estimagdo de Movimento. 3D-HEVC. Reuso de
Operacdes. Reuso de Dados.

Figure 1
Figure 2

Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Figure 14

Figure 15

Figure 16
Figure 17
Figure 18

Figure 19

Figure 20
Figure 21
Figure 22

Figure 23

Figure 24
Figure 25
Figure 26
Figure 27

LIST OF FIGURES

Sequence of frames that compose a digital video
MVD Format where different views can be used to represent the
SAME SCENE . . . v v v i e e e e e e e e e
DIBR process to generate intermediary texture views
Sequence of Access Units to be encoded
Normal CodingOrders
Flexible Coding Orders
Encoding flow of 3D-HEVC standard
Example of the splitting of one CTU
Motion Estimation Processing.
Disparity Estimation Processing
Neighboring blocks information available for AMVP
Flowchart of TZS steps
Expansive diamond scheme adopted by TZS algorithm to selects
the candidate blocks for evaluation
Fractional samples around a 8z8 block size. Blue samples represent
the integer 828 block, while gray and white samples represent the
fractional samples generated at half and quarter position
Input samples (yellow squares) required for generating the fractional
samples (greenandredsquares)
FME algorithm assuming that the best half block is the block 40 . . .
Encoding time portions of predictionsteps
Accumulated encoding time portions of prediction steps

TZS processing: Candidates from the First Search and from the first
Refinement

The complete ME architecture
Finite State Machine that process the TZS algorithm
Scheme for obtaining the Absolute Difference between Reference
and CurrentBlocks
Scheme that join the Absolute Difference between two neighboring
samples to obtain the SAD of 4z4 sub-blocks
Composing diagram of the SAD values from larger PU sizes
Block diagram of one Assess Unit
Schedule from the processing of SAD values
Redundancy that can occur in the interpolation when two IME vec-
tors are similar

Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34

Figure 35
Figure 36

Figure 37

Figure 38
Figure 39

Figure 40

Figure 41

Fractional sample distribution around the integer sample
Architecture of the InterpolationUnit
Architecture of the Clipoperation
Block diagram of the Evaluation Unit
The architecture of a SAD Tree with four samplesrange
The architecture of one Accumulator Unit
The architecture to process 49 SAD values and its respective motion
vectors
Architecture of the Decide Two Unit
Timeline of the best case of the IME Processing in a SA of 1922192
samples
Timeline of the worst case of the IME Processing in a SA of 1922192
samples e
Timeline from the FME Processing in a SA of 1922192 samples . . .
Timeline from the Complete ME Architecture when processing FHD
1080p videos at 30 fps considering 3 views in the MVD format . . .
Timeline from the IME Unit disregarding the FME processing when
processing FHD 1080p videos at 30 fps considering 3 views in the
MVDformat.
Memory scheme required for the developed architecture

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10

Table 11

Table 12

LIST OF TABLES

Reccomended video sequences according to Common Test Condi-
tionsdocument L
BD-Rate Increase according to the video sequence from adopting
hardware constraints in 1L experiment
BD-Rate Increase according to the video sequence of the TZS mod-
ifications in 2L experimento
BD-Rate Increase according to the video sequence from the TZS
Master-Slave algorithm in 3L experiment
BD-Rate Increase according to the video sequence from adopting a
Full Splitting mode in 4L experiment
BD-Rate Increase from disabling the FME according to the video
SEAUENCE . .« & v v v e e e e e e e e e e
BD-Rate Increase from evaluating all fractional blocks according to
thevideosequence

Synthesis results according to each synthesis performed and target
frequency
Comparative results for IME encoding tool considering only the pro-
cessing of texturechannel
Synthesis results of the complete ME architecture to the target res-
olution
Comparative results for ME encoding tool when processing only the
Texture channel
Results and related works for encoding tools of 3D-HEVC

LIST OF ABBREVIATIONS AND ACRONYMS

3D Tree Dimension

3D-HEVC 3D-High Efficiency Video Coding
AU Access Units

AMVP Advanced Motion Vector Prediction
BV Base View

BD Bjontegaard Difference

BMA Block Matching Algorithm

CTU Coding Tree Unit

CU Coding Unit

CTC Common Test Conditions

DV Dependent Views

DIBR Depth-Image-Based Rendering
DE Disparity Estimation

FSM Finite State Machine

FCO Flexible Coding Order

FME Fractional Motion Estimation
fps frames per second

FHD Full High-Definition

FS Full Search

HEVC High Efficiency Video Coding
IME Integer Motion Estimation

JCT-VC Joint Collaborative Team on Video Coding

JCT-3V Joint Collaborative Team on Video Coding Extension Development
MSE Mean Squared Error

MSB Most Significant Bit

ME Motion Estimation

MPEG
MVD
NCO
PU
QP
RD
SAO
SA
SR
SAD
SATD
TZS
UHD
VCEG

Moving Picture Experts Group
Multiview Video plus Depth
Normal Coding Order
Prediction Unit

Quantization Parameter
Rate-Distortion

Sample Adaptive Offset
Search Area

Search Range

Sum of Absolute Differences
Sum of Absolute Transformed Differences
Test Zone Search

Ultra High-Definition

Video Coding Experts Group

CONTENTS

1 INTRODUCTION i e e e e e e e e e e e 18
2 BASIC CONCEPTS ANDMOTIVATION 21
21 Digital Videos 21
2.2 3D-High Efficiency VideoCoding 22
2.2.1 3D-HEVC Characteristicsand Features 23
222 3D-HEVC EncodingProcess 26
2.3 Motion Estimation Algorithms 30
2.3.1 Integer Motion Estimation 32
2.3.2 Fractional Motion Estimation 35
24 Complexity Analysis 37
25 RelatedWorks 39
2.6 Main Motivation 41
3 SOFTWAREEVALUATIONS e e e e e e e e e 45
31 ExperimentalSetup 45
3.2 Hardware-Oriented Constraints Evaluation 46
3.2.1 ME Hardware Constraints (1L) 47
3.22 TZS Hardware Constraints (2L), 47
3.23 TZSMaster-Slave (BL) 49
3.24 Full Splitting (4L) 51
3.2.5 Modified Approach forthe FME (5L) 53
3.3 Experiments Conclusions 54
4 PROPOSED MOTION ESTIMATION HARDWARE ARCHITECTURE 56
4.1 Integer Motion Estimation 57
4.1.1 Test Zone Search Implementation. 58
412 SADTables e 60
4.2 Fractional Motion Estimation 62
421 InterpolationUnit 63
422 EvaluationUnit 65
4.3 IME and FME Synchronism 70
44 Memory Management 72
441 IntegerMEUnit 73
442 FractionalMEUnit 73

443 Complete MEUnit 73

5 RESULTS AND COMPARISONS ittt e e 76

5.1 IME Unit Results and Comparisons 76
5.2 Complete ME Results and Comparisons 79
6 CONCLUSION. e e e e e 83
REFERENCES it e e e e e e e e e e e ens 84

APPENDIX A LIST OF PUBLICATIONS DURING THIS MASTERS DEGREE 88

1 INTRODUCTION

Nowadays, the Three Dimension (3D) contents given by virtual reality glasses,
video games, and movies, allows an increase in the experience of the spectator when
compared with traditional 2D videos. Considering high-resolution 3D videos, the huge
amount of data needed to represent them requires the employment of several video
coding techniques. Even so, the applications and devices with support for digital videos
usually require dedicated hardware to implement the compression techniques and ob-
tain real-time processing.

The compression techniques available to be applied for video encoding are defined
by a video coding standard. The encoding tools apply those compression techniques,
which exploit some kind of redundancy present in the video data, thus reducing the
amount of data required to store it. Among the current video coding standards, the 3D-
High Efficiency Video Coding (3D-HEVC) (ITU-T, 2013) was developed by the experts
of the Joint Collaborative Team on Video Coding Extension Development (JCT-3V) in
2015 (HEVC, 2020) to be a 3D extension of the High Efficiency Video Coding (HEVC)
standard (ITU-T, 2013). The HEVC has emerged in 2013 (JCT-VC, 2020a) being devel-
oped by the experts of the Joint Collaborative Team on Video Coding (JCT-VC), aiming
to obtain high efficiency in the compression while maintaining high image quality at the
cost of using high complexity algorithms.

The 3D-HEVC was developed to efficiently encode the characteristics of 3D videos.
For that, the 3D-HEVC maintains the same encoding tools of HEVC to encode each
video sequence (TECH et al., 2016) (JCT-VC, 2020a) (JCT-3V, 2020), while it intro-
duces several new encoding tools and adopts the Multiview Video plus Depth (MVD)
format (TECH et al., 2016) to enhance the coding efficiency. In the MVD format, several
views can be used to represent the same video scene (see Section 2.2.1). Each view
was captured from a different point of view of the scene, and each one is composed
of two channels, which are the texture and the depth map. These two channels are
captured and encoded for each view while a Depth-Image-Based Rendering (DIBR)
process (FEHN, 2004) can generate intermediary texture views (which were not cap-
tured by any camera) by using the information of the two channels at the decoder side.

19

The DIBR process allows the capture, processing and transmission of a reduced num-
ber of views on the encoder side, aiming at obtaining a higher number of views at the
decoder side (see Section 2.2.1).

To encode each frame (or channel) of a view, the 3D-HEVC adopts the same parti-
tioning scheme used by the HEVC standard (TECH et al., 2016). This scheme divides
each frame into square-shaped blocks called Coding Tree Unit (CTU), which has the
maximum size of 64264 samples. Then, each CTU is divided into one or more square-
shaped blocks known as Coding Unit (CU). Finally, each CU is divided into Prediction
Unit (PU), which size can vary from 4x4 to 64264 samples. The PUs are the units eval-
uated by the prediction steps of the video encoders. These divisions occur based on
the result of the encoding tool over a specific PU size, aiming to obtain the best encod-
ing efficiency based on the Rate-Distortion (RD) cost (JCT-3V, 2020) calculation. After
calculating the RD cost for different PU sizes, the CTU is encoded using the different
PU sizes and prediction modes that present the smaller RD cost (consequently, the
one that requires fewer bits to be encoded with minimum image distortion).

Most of the computational complexity of video encoders is to evaluate all possible
PU sizes. The 3D-HEVC has a total of 24 possible PU sizes to be evaluated in the Mo-
tion Estimation (ME) tool, while only seven PU sizes were evaluated in the H.264/AVC
(WIEGAND et al., 2003). This significant amount of PU sizes supported by 3D-HEVC
was responsible for a huge part of prediction tools complexity. Therefore, it results that
the ME tool is the most complex prediction tool of the 3D-HEVC standard, while it was
also the prediction tool more present in a video encoding (see Section 2.4).

The ME is applied to each PU, and it allows the PU representation by using the
information of a block from a reference frame. For that, the ME searches in the refer-
ence frame a block most similar to the PU being encoded, being this search performed
into two stages. The first stage applied to each PU is the Integer Motion Estimation
(IME), which is responsible for applying a Block Matching Algorithm (BMA) to defines
several candidate blocks from reference frames to be evaluated. After this evaluation,
the most similar candidate block among the comparisons is determined. The second
stage is the Fractional Motion Estimation (FME), which is applied over the candidate
determined by the IME to refine that block, improving the encoding efficiency.

There are several works in the literature proposing dedicated hardware architec-
tures for one of the two ME stage, disregard the other stage (MEDHAT; SHALABY;
SAYED, 2015) (FAN et al., 2018) (LIAO; SHEN; TSENG, 2019) (GU et al., 2019)
(AFONSO et al., 2016a). Also, there are only a few works proposing hardware archi-
tectures for both ME steps (PERLEBERG et al., 2018) (XU et al., 2018) (PASTUSZAK;
TROCHIMIUK, 2016). However, considering the ME of the 3D-HEVC context, only
AFONSO et al. (2019) presents an architecture that encapsulates ME and Disparity
Estimation (DE) tool. This DE tool shares several similarities with the ME tool (see

Section 2.2.2.2). Thus, this work proposes a hardware solution for the ME tool. It
presents several hardware-friendly simplifications in the IME stage which allow obtain-
ing a low-power and high-throughput architecture capable of dealing with all PU sizes
supported by 3D-HEVC.

Since the FME performs a refinement after the IME processing, the RD cost pro-
cess depends on the FME processing to decide between the several PU sizes and pre-
diction modes supported by 3D-HEVC. Therefore, this work also presents a hardware
architecture for the FME capable of processing all PU sizes supported by 3D-HEVC.
Although, the FME presented is a primary architecture that will be optimized in future
works. The FME was implemented only to explore all potential of the developed IME
architecture considering the encoding efficiency, since only the IME cannot explore all
features supported for the ME tool of 3D-HEVC, thus requiring the FME to explore the
fractional candidates and reaches the maximum encoding efficiency.

There are three main contributions of this Master’s dissertation work:

» The development of energy-efficient hardware design for the IME tool of the 3D-
HEVC encoding standard was presented. The architecture was developed to pro-
cess all PU sizes supported on 3D-HEVC standard in parallel, thus the developed
IME architecture has reached a high throughput, being capable of processing up
to 5 views of Ultra High-Definition (UHD) 2160p videos at 60 frames per second.

* It presents a strategy that allows the reuse of operations and data already pro-
cessed. This strategy allows an efficient evaluation of the candidate blocks con-
sidering all PU sizes since only the smallest PU size must be fully processed, and
its results are used to compose the processing of all other higher PU sizes.

» Presents a Test Zone Search (TZS) Master-Slave algorithm among all PU sizes,
which performs that all PU sizes will evaluate the same candidates for a better
exploration of the reuse strategies. In this algorithm, the TZS for 64264 PUs was
applied firstly, and then its decisions of which candidates should be evaluated is
adopted for all smaller PU sizes.

The organization of this work is given as follows: The chapter 2 explains the major
concepts of the 3D-HEVC video coding standard, focused on the operation of ME,
presenting all content needed to understand this work. After, the chapter 3 shows the
evaluations performed to define the developed architecture, while the chapter 4 shows
in detail the developed architecture. At chapter 5, the obtained results are presented
and compared with related work results. Finally, the chapter 6 shows the conclusions
of this work.

2 BASIC CONCEPTS AND MOTIVATION

This chapter presents the basic concepts of the contextualization of this work, in-
cluding the basic concepts of digital videos, the Tree Dimension (3D) video encoding
process, and the algorithm of encoding tools. This chapter also presents the complexity
analysis that justifies the development of an Integer Motion Estimation (IME) architec-
ture due to its computational complexity and its importance between the other encod-
ing tools of 3D-High Efficiency Video Coding (3D-HEVC), the related works proposing
hardware architectures for the ME tool and the 3D-HEVC, and also the main motiva-
tions of the adopted strategy among the number of operations and memory require-
ments of the IME tool.

2.1 Digital Videos

A digital video is a sequence of independent images that were captured with a
determinate time interval between each image. If these images are viewed with an
adequate rate of frames per second, they provide motion sensations to the spectator.
A small video sequence can be seen in Figure 1, which presents a set of images that
composes a digital video.

Figure 1 — Sequence of frames that compose a digital video

In a digital video, each one of the images is called a frame, and each frame is
composed of a determinate number of pixels. The pixels are the smaller elements of
a digital video, being generally composed of a combination of three samples. These

22

three samples represent the luminance and chrominance information and are used to
compose the color seen by the spectator (MIANO, 1999).

There are different metrics to represent the amount of information present in a digi-
tal video. One of them is the spatial resolution, which represents the number of pixels
in the height and width of each frame of the video. Since each frame is composed of a
determinate number of pixels, the more pixels a frame has, the more information can
be represented in a frame, which can result in better video quality due to the increase
of details of each frame (PORTO, 2012).

Another metric to classify a digital video is the temporal resolution, which measures
the rate that the frames were captured and/or presented. To obtain a motion sensation,
a minimum of 24 to 30 frames per second (fps) must be adopted, and higher values
result in less sudden movements of the objects seen by the spectator. Therefore, the
visual quality can be related to fps, since higher frame rate indicates more information
that can be presented in one second.

To increase the user experience while the spectators watch a video, stereo Tree
Dimension (3D) contents emerged bringing the viewing of the scene from two or more
different points of view (KAUFF et al., 2007) (TECH et al., 2016). For this, two or
more camera devices were adopted to capture the scene, which can later be explored
in different ways, as using one view for each eye of the spectator or even given the
desired angle selection (TOSHIBA, 2020).

However, there is a huge amount of redundancy in video data, since that in normal
situations spatial neighbor samples from a frame could be equal or very similar, and
since two temporal neighbor frames could share its information, differing only according
to the movement of the scene (AGOSTINI, 2007). Moreover, the 3D contents have
even more redundancies considering that the cameras will capture the same objects
from the scene (TECH et al., 2016). Therefore, video compression techniques must
be adopted to efficiently exploit these redundancies and reduce the amount of data
required to represent a video.

Different video encoding tools can be used to encode digital videos. A video en-
coding standard defines a set of available tools. Therefore, the next sections explain
in detail the operation of the available encoding tools for the video coding standard
addressed in this work.

2.2 3D-High Efficiency Video Coding

Among the current video coding standards, the High Efficiency Video Coding
(HEVC) was emerged in 2013 by the Joint Collaborative Team on Video Coding (JCT-
VC), a joint of experts from the ISO/IEC Moving Picture Experts Group (MPEG) and the
ITU-T Video Coding Experts Group (VCEG) organizations (JCT-VC, 2020b). The JCT-

23

VC was created in 2010 aiming to develop a new video coding standard able to reach
half the video file size when compared with the previous state-of-the-art standard, the
H.264/AVC (WIEGAND et al., 2003) while maintaining the visual quality.

To encode 3D contents, the 3D-HEVC emerged in 2015 by the Joint Collaborative
Team on 3D Video Coding Extension Development (JCT-3V), a joint of experts from the
same organizations of the HEVC, the MPEG and VCEG. The 3D-HEVC was created as
a 3D extension for the HEVC. Therefore, it shared several encoding tools from HEVC,
while it adopts some new techniques to efficiently encode the characteristics present
on 3D videos.

The next subsections present the characteristics and features of the 3D-HEVC, the
encoding process of the 3D-HEVC, and also the coding tool covered in this work.

2.2.1 3D-HEVC Characteristics and Features

As mentioned before, digital videos are a sequence of frames captured in sequence,
traditionally by an independent camera. The 3D-HEVC allows the efficient encoding of
3D videos that uses the MultiView Video plus Depth (MVD) format (TECH et al., 2016)
(KAUFF et al., 2007).

In the MVD format, different views are used to represent a scene, being each view
captured in parallel by different cameras (KAUFF et al., 2007). Moreover, in the MVD
format, each view is composed of the Texture channel (Normal image captured from
each view) and also a Depth Map. The Depth Map represents the distance between
the camera and each object captured from the scene from a specific point of view.
The MVD format is represented in Figure 2. The Figure presents the Texture (Colored
image) and also the Depth Map represented in Gray-scale, where the clearest samples
represent the objects closest to the camera. Moreover, Figure 2 presents three different
views captured of the same scene, being each one composed of both Texture and by
the Depth Map. Also, it should be noted that each of those three views was captured
from a different angle of the scene.

From the two captured channels, only the Texture is presented to the spectator,
while the Depth Maps were used at the decoder side by the Depth-Image-Based Ren-
dering (DIBR) process (FEHN, 2004). The DIBR process allows generating intermedi-
ary Texture views between two views, as represented in Figure 3. Briefly, based on the
depth map of two original views, the DIBR process knows if an object was visible or
occluded in the intermediary point of view, so deciding the texture of which view should
be used to compose the texture of the intermediary view (FEHN, 2004).

Therefore, the MVD format and DIBR process allow reducing the amount of data
manipulated by the encoder and consequently transmitted into the bitstream, since by
using it, a reduced number of views can be adopted at the encoder side, while obtaining
several intermediary views at the decoder side.

24

Texture Depth Map

Original Views

Figure 2 - MVD Format where different views can be used to represent the same scene

Original Views

View 1 Vlew 1 25 Vlew 1 5 Vlew 1 75 Vlew 2 Vlew 2. 25 View 2.5 View 2. 75 View 3
Synthetic Views Synthetic Views

Obtained Views

& J

Figure 3 — DIBR process to generate intermediary texture views

To encode the Texture and Depth Maps channels from all views, the 3D-HEVC
adopts sets of Access Units (AU) (TECH et al., 2016). Each AU encapsulates the
information from all views that belongs to the same time instant (TECH et al., 2016).
An encoding sequence of several AUs is presented in Figure 4, where the red arrows
represent the encoding order of the two channels from each view. As can be seen,
only after finish the encoding of one AU the next AU were encoded.

From Figure 4, it can also be seen that the first view encoded from each AU is called
Base View (BV) since it is encoded independently of the information of neighboring
views in the same AU. The other views of each AU are called Dependent Views (DV)
since they can explore the information of already encoded views from the same AU.

The experiments of this work consider two coding orders to be adopted on DV from
each AU, being the Normal Coding Order (NCO), adopted by default by 3D-HEVC
(JCT-3V, 2020), and also the Flexible Coding Order (FCO) (GOPALAKRISHNA; HAN-
NUKSELA; GABBOUJ, 2013). These two encoding orders are represented in Figure

25

Access
Unit O

Access
Unit 1

Other
Access
Unit

Access
Unit N-1

Figure 4 — Sequence of Access Units to be encoded
Source: Adapted from AFONSO (2019).

5 and Figure 6, respectively, where the green arrows indicate the order in which the
channels will be encoded. While in the NCO the Texture channel from DV is encoded
firstly than its respective Depth Map, in the FCO the Depth Map is encoded firstly than
its respective Texture channel.

Figure 6 — Flexible Coding Orders

As mentioned before, the DV channels can be encoded by using the information
of other views. The Blue arrows in Figures 5 and 6 depict the dependency between
different frames of each AU, by representing which neighboring frames are available
to encode each frame. This information to be explored in other views is based on the
disparity information of the scene. In the NCO, the disparity information is derived from

26

motion information of neighboring blocks of the block being encoded. Although, by
encoding the depth map before the texture in the DV, the texture can be encoded by
using the disparity estimation precisely obtained by the depth map information, thus
improving the encoding efficiency according to GOPALAKRISHNA; HANNUKSELA;
GABBOUJ (2013).

2.2.2 3D-HEVC Encoding Process

The 3D-HEVC is a block-based hybrid video coding standard, where each frame to
be encoded is divided into blocks of samples. To be encoded, each of those blocks of
samples passes through a series of encoding tools, as represented in Figure 7, which
presents the 3D-HEVC encoding flow and its main tools.

Current Frame

(Original)
»(— Residual a| Entropy
'O_’ Coding | Coding —>
Inter-Frames Prediction A
Motion
Estimation
Motion |
Compensation
Disparity 3
Estimation
Intra-Frame
Current Frame > ~ra o
(Reconstructed) Prediction
I Inverse
Filters Residual |¢—
Coding

Figure 7 — Encoding flow of 3D-HEVC standard

As can be seen in Figure 7, each frame is partitioned in several small blocks to
be encoded and evaluated by the next encoding tools. The next tools used to encode
each block are the prediction tools, residual coding, and entropy coding, which will be
explained in the next subsections. The inverse residual coding and the filters were
used to generate the reconstructed frame, which was required by the prediction tools.

2.2.2.1 Partitioning scheme

The 3D-HEVC inherits the partitioning scheme used by the HEVC standard to en-
code each frame (TECH et al., 2016). This scheme divides each frame into smaller
square-shaped blocks called Coding Tree Unit (CTU) (SZE; BUDAGAVI; SULLIVAN,
2014), the basic processing unit of 3D-HEVC. By default, the CTUs are defined with its
maximum size of 64264 samples (JCT-3V, 2020).

After, each CTU is divided into one or four square-shaped units called Coding Unit

27

(CU). If it splits into four CUs, then each CU can be further divided into one or four CUs
(SZE; BUDAGAVI; SULLIVAN, 2014) (JCT-3V, 2020). This split process continues until
the CU reaches the 8x8 block size. Therefore, the CUs can assume the size of 64264,
32232, 16216, or 8z8 samples. Typically, higher CUs were adopted for homogeneous
regions of the CTU, while smaller CUs were adopted for regions with several details.
Figure 8 presents an example of the splitting process of one CTU in several CUs, where
the numbers indicate the coding order of the CUs.

10 11
12113

14

15 16

3 4 5 6 10 11 12 13

Figure 8 — Example of the splitting of one CTU
Source: Adapted from SZE; BUDAGAVI; SULLIVAN (2014).

Finally, each CU is further divided into smaller blocks called Prediction Unit (PU),
where the prediction tool signaled by its respective CU is evaluated (SZE; BUDAGAVI;
SULLIVAN, 2014). These PUs can have three different shapes according to width
and height size of PU: They can be Square, where the width equals to the height;
Symmetric, where one size is half of another; or Asymmetric, where one size is a
quarter of the other. To reach the best efficiency, the 3D-HEVC reference software
(3D-HTM) (JCT-3V, 2020) starts evaluating the higher PU sizes. Based on the trade-
off between compression and image quality, the encoded decides if the smaller PU
sizes will be evaluated (SZE; BUDAGAVI; SULLIVAN, 2014).

2.2.2.2 Prediction Tools

The Prediction tools are adopted to represent the current PU being processed us-
ing the information of previous processed blocks (AGOSTINI, 2007) (PORTO, 2012).
Therefore, the prediction output is the predicted block, generated using the samples
from already processed blocks. There is two class of prediction tools, being the intra-
frame prediction and inter-frames prediction (AGOSTINI, 2007).

The intra-frame prediction tools are responsible for reducing the spatial redundancy
individually present on each frame (AGOSTINI, 2007). It evaluates several different
ways to represent the current PU using the information of neighboring already pro-
cessed blocks of the same frame (TECH et al., 2016) (JCT-3V, 2020) (ITU-T, 2013).

28

The inter-frames prediction tools are responsible for reducing the temporal redun-
dancy between different frames. These tools search for similar information in two dif-
ferent frames, thus representing the PUs from the frame being encoded using the in-
formation of frames previously processed (AGOSTINI, 2007). The 3D-HEVC has two
main inter-prediction modes, being the Motion Estimation (ME) and the Disparity Esti-
mation (DE) (TECH et al., 2016).

The ME is used to represent the current PU using information from temporal neigh-
boring frames (PORTO, 2012). Its processing is represented in Figure 9. The ME
searches for redundancies of the current PU in candidate blocks from a reference
frame, by searching the candidate block most similar to the current PU. After that can-
didate block is found, the ME result is the vector that represents the location of that
candidate block. After, the obtained vector is passed to the Motion Compensation,
which will reconstruct the current PU using the information from the ME result.

otion
\ectof rames
search * pefererc®
Aved -

Current
Block

Figure 9 — Motion Estimation Processing
Source: Adapted from PORTO (2012).

The DE has several similarities with the ME tool (JCT-3V, 2020). It also is used
to represent the current PU using the information of candidates from other frames.
However, in the DE tool, the reference frames belong to a neighboring view that was
captured at the same time instant but with another camera, while the reference frame
from the ME tool belongs to the same view but from a different time instant (TECH
et al., 2016). The DE processing was represented in Figure 10, where can be seen
that the reference frame belongs to another view. The vector obtained from the DE tool
is also passed to a Disparity Compensation to reconstruct the current PU using the
reference frame information.

As it will be presented in section 2.4, the ME is the most complex encoding tool of
the 3D-HEVC, while it was the most important tool in the 3D-HEVC due to its impact
on the encoding efficiency. Therefore, the ME is the focus of this work, and so it will be
presented in detail in the next subsection.

29

mes

2
Re{ere“oe i

View+1

Figure 10 — Disparity Estimation Processing

2.2.2.3 Residual Coding

After representing the current PU using information from samples already pro-
cessed, the 3D-HEVC encoder obtains a residue block, as can be observed in Figure
7. The residue block is the difference between the reconstructed PU and the original
PU (AGOSTINI, 2007). This residue block is then encoded by the residual coding.

The residual coding was composed of two tools, being Transform and Quantization
(SZE; BUDAGAVI; SULLIVAN, 2014). The first is the Transform tool, which will trans-
form the residual block from the spatial domain to the frequencies domain, generating
a transform block that typically has its main information in the top-left region of the
block (SZE; BUDAGAVI; SULLIVAN, 2014). After the Transform, the Quantization tool
was used to removing the frequencies that were imperceptible to the human eye, so re-
ducing the amount of data required to represent the transform block (SZE; BUDAGAVI;
SULLIVAN, 2014). The amount of information to be removed is given by a Quantization
Parameter (QP) value.

2.2.2.4 Entropy Coding

The last step from the encoding flow is the Entropy coding (TECH et al., 2016) (SZE;
BUDAGAVI; SULLIVAN, 2014). This step is used to compress the block output of the
Residual coding and also the lateral information required to decode the information
(partitioning from each CTU, intra mode adopted, the motion/disparity vector resulting
from the prediction tool, among others (SZE; BUDAGAVI; SULLIVAN, 2014)). It uses
statistical properties of the data to be encoded to change the data representation so
that the symbols that have more probability to appear are represented using a lower
number of bits. After the Entropy coding, the resulting bits are ready to be stored and
transmitted.

30

2.2.2.5 |Inverse Residual Coding

As mentioned before, the Quantization tool removes the frequencies that were im-
perceptible to the human eyes, thus resulting in small losses in the image quality. These
losses need to be considered in the reference frames used by the prediction tools.
Therefore, the current block needs to be decoded. For that, the 3D-HEVC has Inverse
Residual coding, which applies an Inverse Quantization and an Inverse Transform that
perform the transform of the block from the frequencies domain to the spatial domain
(SZE; BUDAGAVI; SULLIVAN, 2014), so obtaining again the residue block, but without
the irrelevant frequencies. These residues are summed with the predicted block, thus
composing the reconstructed block.

2.2.2.6 |In-loop Filters

The 3D-HEVC has two in-loop filters to be applied after obtaining the reconstructed
block (TECH et al., 2016) (SZE; BUDAGAVI; SULLIVAN, 2014). These filters were
used to improve the visual quality by reducing visual artifacts that can appear in each
frame due to the different encoding tools available on 3D-HEVC. While the Deblocking
filter is used to remove discontinuities that can occur in different blocks boundaries, the
Sample Adaptive Offset (SAO) is used to attenuate ringing artifacts and changes in
sample intensity of the frame.

2.3 Motion Estimation Algorithms

As mentioned before, the ME is responsible for representing the current PU using
the information from reference frames, by using only the location of a similar block in
the reference frame and the difference between the current PU and the most similar
block (AGOSTINI, 2007). The 3D-HEVC allows the selection of one between different
reference frames to be used to predict the current PU. It also allows the adoption of
two reference frames to simultaneously predict a block, being this technique called bi-
prediction (TECH et al., 2016) (SZE; BUDAGAVI; SULLIVAN, 2014). In this case, the
current block was represented by using the weighted average of the best candidate of
each reference frame (SZE; BUDAGAVI; SULLIVAN, 2014).

To search and select the most similar candidate block to represent the current PU,
the location of the Search Area (SA) in the reference frames needs to be defined firstly,
where the candidate blocks will be selected for evaluation. The SA size is defined
according to the Search Range (SR). By default, the 3D-HEVC adopt the SR as pm 64
samples, which represents a SA of 192x192 samples.

On the 3D-HEVC standard the SA can be located centered in the collocated block,
or even defined by adopting the Advanced Motion Vector Prediction (AMVP) algorithm
(LIN et al., 2013). The AMVP uses heuristics to inherit the motion vector of some

31

neighboring blocks (LIN et al., 2013), as the blocks represented around the current
block in Figure 11. In Figure 11, the brown candidates represent spatial neighboring
blocks, while the blue candidates represent temporal neighboring blocks. These mo-
tion vectors were used to define the direction of the SA location, thus resulting in the
probable region to find the most similar candidate.

Figure 11 — Neighboring blocks information available for AMVP
Source: Adapted from LIN et al. (2013).

After defining the SA location, the ME step evaluates the similarity between the
candidate blocks of the SA and the current block. For that, a similarity criterion must be
adopted, which computes the difference level between two blocks. There are different
available similarity criterion, as the Mean Squared Error (MSE), the Sum of Absolute
Differences (SAD), and the Sum of Absolute Transformed Differences (SATD).

The SAD is the criterion commonly adopted for hardware implementations since it
has low complexity and, therefore, can be implemented only with an adder and sub-
tractor operators, while another criterion can require multiplier operators. The Equation
(1) represents the SAD value computing, where C, R, x, and y variables represent the
current PU sample, candidate block sample, horizontal position, and vertical position,
respectively. As can be seen, it obtains the difference between every sample from the
current PU to the candidate block sample at the same position. After, it obtains the
absolute value of every difference. Finally, it accumulates all absolute values obtained,
thus generating the SAD value of the evaluated candidate.

PUheigh,t PUwidth

SAD = Y > |Cuy — Ray)| (1)
y=0 =0

The SATD is similar to the SAD, but on SATD the differences are transformed before
accumulating all values, as given by (2). The W denotes the transformed differences,
computed by (3), where C' — R represents the matrix of differences between the cur-

32

rent and the candidate block. The H and HT of (3) represent the transform matrix its
transposed, respectively. An example of a 44 transform matrix can be seen on (4).

PUheigh,t PUwz’dth

SATD= Y Y Wy (2)
y=0 =0
W=H-(C-R)-H" (3)
11 1 1
1 -1 1 -1
gl (4)
211 1 1 1
1 -1 -1 1|

The selecting of candidate blocks from reference frames to be evaluated is per-
formed with two consecutive steps on 3D-HEVC, being the IME, and the Fractional
Motion Estimation (FME) steps (SZE; BUDAGAVI; SULLIVAN, 2014) (JCT-3V, 2020).
The IME applies a Block Matching Algorithm (BMA) to define the heuristics of what
candidates of the SA will be evaluated, resulting in the location of a candidate block of
the SA. The FME was responsible for refining this candidate by generating new blocks
at fractional positions around it, so one of those new blocks can be even more similar
to the current PU.

To decide between the different possible prediction modes to be used to represent
each PU, the 3D-HEVC computes the Rate-Distortion (RD) cost (SZE; BUDAGAVI;
SULLIVAN, 2014), which is a value that measures the image distortion of the evaluated
prediction mode, and the number of bits required to represent that prediction mode.
Due to its high cost, several candidates of ME were evaluated only by using the SAD
criterion, and the complete RD-cost was only computed at the end of ME processing.

In the next subsections, two subsections explain in detail the algorithms of the two
ME steps.

2.3.1 Integer Motion Estimation

As previously mentioned, there are different BMA that can be adopted to select
the candidate blocks to be evaluated. By default, the 3D-HEVC adopts the Test Zone
Search (TZS) algorithm (JCT-3V, 2020) (LI et al., 2014), since it drastically reduces the
encoding complexity to find the most similar candidate, while maintaining a high com-
pression efficiency when compared with a Full Search (FS) algorithm, which compares
all possible blocks from SA. Figure 12 presents the flowchart of the four TZS steps,
which was the Prediction, First Search, Raster, and Refinement.

As can be seen in Figure 12, firstly the Predictor and First Search steps were ap-

33

Raster

Distance .
> iRaster Refinement

Prediction

First Search

Figure 12 — Flowchart of TZS steps

plied. Then, if the distance between the start point and the result found in these steps
is greater than an iRaster constant, the Raster Step is applied (JCT-3V, 2020). If that
distance is smaller than iRaster constant, the Raster is avoided so the Refinement is
applied. These four steps are performed as follows.

2.3.1.1 Predictor Step

The Predictor if the first step of TZS, used to set the start position for the evaluations
performed by the next steps (JCT-3V, 2020). Similarly to the AMVP, the Predictor
evaluates the candidates given by movement information of neighboring blocks, so the
best evaluated are used as the start point, thus the TZS can converge to the best result
quickly, reducing the ME complexity.

The TZS evaluates the candidates related of up to six different Predictors to find
the best start point, being that each Predictor evaluates the motion vector of different
neighboring blocks (JCT-3V, 2020):

* Predictor Median: Average of the motion vector from neighboring blocks

Predictor Left: motion vector from the left neighboring block

Predictor Upper: motion vector from the upper neighboring block

Predictor Upper-Right: motion vector from the upper-right neighboring block

Predictor Zero: motion vector from the collocated block

Predictor 2Nx2N: motion vector from the highest PU of current CTU

2.3.1.2 First Search Step

The First Search adopts an expansive scheme search to selects the candidate
blocks of the SA to be evaluated (JCT-3V, 2020). Figure 13 presents the diamond
scheme followed by this step, being the start position located in the center of the fig-
ure. It should be noted that 3D-HEVC adopts the diamond scheme by default, but a

34

squared scheme can also be used (JCT-3V, 2020). Each colored square represents
the first sample of a candidate to be evaluated. The scheme was expansive since it
starts evaluating the four candidates with one sample of distance to the start position,
and after that, it expands to evaluate more distant candidates, until reaching a stop
condition that ends the First Search processing.

64 -8 6 -4 2 0 2 4 6 8 64
64 [[T T T T T MTTTTITTTI[] B Start Point

i : i art Poin
s m = “ais |
-] | 1st Expansion
4] H B 2nd Expansion
=2] [

L L M 3rd Expansion
o W - e P
2]] M 4th Expansion
4 H]
6] L] B 5th Expansion
s : :

+ 1 H F v [7th E ansi

: : : Xpansion
64 1T T T T T T T T [TTTTTTT]-[] P

Figure 13 — Expansive diamond scheme adopted by TZS algorithm to selects the can-
didate blocks for evaluation

The second, third and fourth expansion levels evaluate the eight blocks located at
two, four, and eight samples of distance from the start position, respectively, and these
expansions were represented by brown, green, and purple colors on Figure 13. In the
next expansion levels, 16 candidates were evaluated on each level. These candidates
are distant by 16, 32, and 64 samples from the start position (JCT-3V, 2020).

In a default SA of 1922192 samples, the First Search selects up to 76 candidate
blocks for evaluation, where the last expansion performed is distant of 64 samples
from the start position. However, the First Search has one stop condition that can end
the First Search processing without evaluating all expansions. It occurs if the algorithm
expands three consecutive times without finding a best result than the obtained in pre-
vious expansions. In both cases, the location of the best candidate evaluated defines
the next TZS steps.

2.3.1.3 Raster Step

Briefly, the Raster Step is a sub-sampled Full Search, performed according to the
distance of the First Search result to the Predictor result (JCT-3V, 2020). This step
assumes that the Predictor Result was not good and thus it has the objective of redirect
the search to a new position in the SA where the Refinement Step can find a better

35

result.

Therefore, as mentioned before, the Raster only occurs if this distance is greatest
than an iRaster constant. If that distance is smaller, then the Raster is avoided and
only the Refinement Step is applied. The 3D-HTM (JCT-3V, 2020) defines the iRaster
constant as five.

The sub-sampled FS algorithm of the Raster Step is similar to the FS algorithm.
It evaluates the candidates in the whole SA. However, the algorithm is sub-sampled
since only one at every iRaster samples is evaluated. Therefore, considering a SR of
pm 64 samples, the Raster Step can evaluate 625 candidates.

2.3.1.4 Refinement Step

The Refinement Step is responsible for refining the best result found by the pre-
viously performed steps. This refinement performs an iteration with a similar process
than the First Search step, i.e., it adopts the same heuristics present in Figure 13 to
perform the expansions, which evaluates up to 76 candidates in one iteration (JCT-3V,
2020) considering the default SA of 1922192 samples.

The conditions of Refinement to stop the expansions were similar to the First
Search. However, when a condition occurs, the Refinement starts a new iteration,
which was a new Refinement around the best candidate of previous refinement (JCT-
3V, 2020). In other words, the Refinement was recursive, since while an iteration can
find a better candidate than the result of previous iterations, a new iteration around the
best candidate found was started. The TZS only ends when the Refinement performs
an iteration without finding a better candidate than the result of the previous iterations.
Due to this recursion, the computational effort to the TZS finish and result in the best
evaluated candidate is uncertain.

Finally, considering the number of candidates evaluates by each of the four TZS
steps, searching the most similar block can require the evaluation of up to 1011 candi-
dates considering the execution of the Raster Step and four Refinement iterations and
the adoption of a SA of 1922192 samples. Then, after the TZS ends its processing,
the best candidate evaluated are passed to the next operation, the Fractional Motion
Estimation.

2.3.2 Fractional Motion Estimation

The FME performs a refinement in the candidate block result of the IME. This re-
finement assumes that the movement of the scene is not always limited by integer
samples, thus the IME candidate being slightly shifted to a side being even more simi-
lar to the current block. For that, the FME was performed in two steps, the Interpolation,
and the Evaluation steps.

Interpolation is the step responsible for generating new fractional samples between

36

the IME candidate and its neighbor. It adopts the use of interpolation filters (ITU-T,
2013) to generate new samples at half and quarter positions around the IME candidate.
These new samples are represented in Figure 14, which presents the new samples
generated around an 8z8 block size. In Figure 14, the blue squares are the integer
samples of the IME candidate block, the gray squares are the samples at half position,
and the white squares represent the samples at quarter positions.

| | | | o | o
RN e
] RSN RSN RN
5 T 5 O A O I

] |] | o | o
RN NSRS YRR
] == == [EEEENEC NS
] = HEEEE EEEESES NSNS
BRSNS
SRS EN RSN NSRS N R
(o TR OWEOPE OO OREOPE PR OP O]
I e
RN NN
[EENESESESENES NSNS EN NSNS NS
(0o [o [[(o [[[

Figure 14 — Fractional samples around a 8z8 block size. Blue samples represent the
integer 8x8 block, while gray and white samples represent the fractional samples gen-
erated at half and quarter position

For generating these new samples, the 3D-HEVC interpolation filters require eight
integer samples displaced horizontal or vertical according to the target fractional po-
sition, as represented in Figure 15. In Figure 15-(a), the eight integer yellow samples
are used to interpolate the three green fractional samples, while in Figure 15-(b), the
eight integer yellow samples are used to interpolate the three red fractional samples. It
should be noted that generating the samples next to the block limits requires up to four
integer samples located outside of the input block (AFONSO et al., 2016b).

The Evaluation step is responsible for grouping these new interpolated samples to
generate the new fractional blocks, and after evaluating these new blocks against the
current block. In the total, 48 new fractional blocks can be generated around the IME
candidate (JCT-3V, 2020), as represented in Figure 16-(a), where the samples 1 to 48
represent the first sample of each one of those 48 new fractional blocks.

For evaluating these fractional blocks, the 3D-HTM (JCT-3V, 2020) adopts the same
algorithm as the HEVC reference software (JCT-VC, 2020a), where only 16 of the 48
blocks were generated and evaluated. Firstly, only the half sample positions were
interpolated, thus generating eight half blocks, which was evaluated against the current
block. After, the best block evaluated (Including the original IME candidate) defines the

37

(a) (b)

Figure 15 — Input samples (yellow squares) required for generating the fractional sam-
ples (green and red squares)

location of eight quarter blocks to be evaluated, which were generated around this best
block. This algorithm was represented on Figure 16, where the eight half samples
evaluated firstly was the gray squared, and the eight quarter samples evaluated are
the yellow squared, which assumes that the best half block is the block 40.

o
o
]
m

W AR
1]2]3lals5]6|7 | _Jia:
ol AN R e

o | o [l 12 84| rEmEzEREEEiEaaza
15|16 17 [18]19 |20 21 %;@%% et
[i = i O

2 1 B B ERR
| S
28|20[30|31(32|33 (34| EEEEEEEEEEREEEEES
35 [36] 37|38 39 [40 41 Ezﬁ;El i
,:[L] I ul L :j:l:l:,

42(43(44|45(46(47 |48 CENNARRRRRARARARR

(a) (b)

Figure 16 — FME algorithm assuming that the best half block is the block 40
Source: Adapted from AFONSO et al. (2016a).

These fractional blocks are very similar to each other. Therefore, to perform a
more precise comparison between these fractional blocks, the 3D-HTM (JCT-3V, 2020)
adopts the SATD similarity criterion (See section 2.3) on FME processing.

2.4 Complexity Analysis

The several encoding tools available on 3D-HEVC can efficiently encode 3D con-
tents that adopt the MVD format. These encoding tools are highly complex to be
computed, mainly due to the total number of block sizes supported by 3D-HEVC. Al-
though, the evaluation of the best prediction mode to encode each block is mandatory
to achieve the best trade-off between compression efficiency and image distortion.

38

To analyze the cost of the 3D-HEVC encoding tools, AFONSO (2019) has evaluated
the time consumed by different encoding tools of this standard. Its evaluation was per-
formed considering the Random-Access (RA) configuration (MULLER; VETRO, 2014),
considering two video sequences (Balloons and Undo_Dancer) and two Quantization
Parameters (QP) values (30 and 39) as specified in Common Test Conditions (CTC)
document (MULLER; VETRO, 2014).

Figure 17 presents the encoding time of the prediction tools of 3D-HEVC, consider-
ing both texture and depth map channels. As can be seen, the encoding time required
by the texture channel (51.1%) is similar to the encoding time required by the depth
map channel (48.9%). Although, the amount of time required by the prediction tools
has several differences through these two channels. To encode the texture channel,
the inter-frames prediction tools require a half of the encoding time, being the ME the
most costly inter-frames prediction tool by requiring 40.95% of the time, while the DE
requires 10.58%, and other encoding tools (intra-frame prediction, residual coding, and
entropy coding) uses the rest of the encoding time. To encode the depth map channel,
the inter-frames prediction tools require only a small part of the encoding time, where
the ME requires 6.33% of the encoding time, while the DE requires only 2.29%. The
other encoding tools use the rest of the encoding time.

Total Encoding Time Depth Maps

Texture

51.1%

Figure 17 — Encoding time portions of prediction steps
Source: Adapted from AFONSO (2019).

Similar results can be obtained considering both channels, texture, and depth maps,
where the ME tool requires a high portion of the total encoding time. This can be seen
in Figure 18, which presents the encoding time of prediction steps considering both
channels. As can be seen in Figure 18, while the ME requires 23.45% of the encoding
time, the Intra-prediction tools require 12.52%, about half of the ME time. Finally, the
DE tool requires only 6.39%, and the other encoding tools (residual and entropy coding)
require 57.64% of the total encoding time.

While the ME is the prediction tool that requires a high computational time, it has
also huge importance in video encoding. According to (AFONSO, 2019), when con-
sidering the NCO, the ME was the encoding tool used to represent more than 80% of
the Inter-frames predicted samples. When considering the FCO, the ME was used to
represent more than 90% of the Inter-frames predicted samples.

39

Others DE
57.64% ‘ 6.39%

Figure 18 — Accumulated encoding time portions of prediction steps
Source: Adapted from AFONSO (2019).

Therefore, as presented, there are a huge number of operations performed by the
ME tool to find the most similar block in a reference frame. These several operations
are responsible for the high time demanding of video encoding. Thus, the applications
which require the encoding of 3D-videos in real-time have to adopt dedicated hardware
devices to efficiently perform these operations of the ME encoding tool with a desirable
throughput.

2.5 Related Works

There are several works on literature proposing hardware architectures for different
tools of different video encoding standards. There are a few works proposing hardware
architecture for the 3D-HEVC. The works UCKER et al. (2018), SANCHEZ et al. (2018),
SANCHEZ; MARCON; AGOSTINI (2017), AMISH; BOURENNANE (2019) proposes
hardware architectures for the Intra-Prediction tools of 3D-HEVC. There also are some
works on literature proposing hardware solutions for the DE tool, as AFONSO et al.
(2018), PERLEBERG et al. (2018) and PERLEBERG et al. (2019). The DE shares
several similarities with the ME tool. Therefore, any solution for the DE tool can also
be used to perform the ME context. For that processing, it must only be selected as
reference the frames from the same view of the frame being encoded. However, the
algorithm used on these works was specifically developed for the DE tool, thus they
were not effective in the ME context, which can result in a high impact in encoding
efficiency.

However, only AFONSO et al. (2019) presents a hardware architecture for the ME
tool by proposing a complete solution for both ME and DE tools. It has different mod-
ules for each encoding tool, being that each module specifically performs the BMA
algorithm. Moreover, AFONSO et al. (2019) can only deal with two PU sizes. The
results of its proposed algorithm show an average impact of 23.22% in the encoding
efficiency considering all evaluated sequences. Its synthesis results show that the de-
veloped hardware requires 40,888 K NAND-2 Gates, with a power dissipation of 6.447
W when processing three views of Full High-Definition (FHD) 1920x1080p video at 30
fps.

40

In order to achieve a more complete comparison in the results of the developed
hardware, hardware architectures targeting the ME of the HEVC was also selected
for comparison. Although, it should be noted that only values related to the hardware
results (as the power dissipation and resources required) can be compared since the
ME of both HEVC and 3D-HEVC was pretty similar. Other results, as the impact in
compression efficiency, cannot be compared.

The works MEDHAT; SHALABY; SAYED (2015), FAN et al. (2018), LIAO; SHEN;
TSENG (2019) and GU et al. (2019) presents Hardware Architectures for the IME tool
of HEVC. The work of MEDHAT; SHALABY; SAYED (2015). The work MEDHAT; SHA-
LABY; SAYED (2015) presents a hardware design for the IME focusing on an ASIC de-
sign, which implements the FS algorithm. It can process all PU sizes supported by the
HEVC and its architecture is able to process Ultra High-Definition (UHD) 384022160p
videos at 30 fps. Although, the work MEDHAT; SHALABY; SAYED (2015) does not
present power analysis or the impact of its strategy regarding the compression effi-
ciency. The work FAN et al. (2018) the authors propose an algorithm similar to the Test
Zone Search for the IME and its architecture, comparing much more blocks on the First
Search, but with only one Refinement Step. It uses two SRAM memories and a data
reuse scheme to ensure the throughput of UHD 2160p videos at 30 fps. Whereas the
work FAN et al. (2018) presents power results and partially measures the impact of its
strategy in terms of compression. Also, FAN et al. (2018) does not report the impact of
not using bidirectional prediction in its evaluations.

The work LIAO; SHEN; TSENG (2019) proposes an IME algorithm that adapts the
SA of the FS algorithm, thus evaluating 96% fewer candidate blocks than using the
original SA. Its developed hardware is able to process UHD 2160p videos at 60 fps. The
work GU et al. (2019) also proposes an IME algorithm that can use different patterns of
search with a reduced SA. The developed hardware reaches the best throughput when
using the diamond pattern, being able to process at UHD 2160p videos at 139 fps for
the square-shaped PU sizes. However, the power results of the hardware proposed by
both LIAO; SHEN; TSENG (2019) and GU et al. (2019) were not provided. Moreover,
both these works consider processing only one reference frame, thus it cannot use
bidirectional prediction, and the impact of it was not measured on its evaluations.

The work AFONSO et al. (2016a) presents a Hardware Architecture for the FME
of HEVC. Its architecture performs the interpolation and comparison of all fractional
blocks around an 8z8 IME result. It can only perform the processing of the four square-
shaped PU sizes of HEVC, by inheriting the results of 828 PU size. Its synthesis results
show that the proposed hardware can reach the throughput needed to process UHD
2160p videos at 60 fps.

The work PERLEBERG et al. (2018), XU et al. (2018), PASTUSZAK; TROCHIMIUK
(2016) presents Hardware Architecture for the complete ME tool of HEVC. On PER-

41

LEBERG et al. (2018) a hardware architecture for the complete ME was developed,
able to process the four square-shaped PU sizes supported by HEVC. It adopts several
independent modules, being that each of those modules was specifically developed to
performs the IME according to a modified TZS algorithm and evaluate all fractional
blocks to only one PU size. The proposed architecture is able to process 768024320p
videos at 53 fps. The work XU et al. (2018) proposes an IME algorithm that uses three
stages of a sub-sampled FS, being that in each stage the SA was reduced and also the
sub-sampling. Its developed hardware sequentially performs both IME and FME. The
IME was performed to all PU sizes supported by HEVC. However, it does not mention
which IME result will be processed by the FME unit, and how many PU sizes were
supported by the FME unit. lts synthesis results show that the proposed architecture
is able to process UHD 2160p videos at 30 fps while supporting bi-prediction.

2.6 Main Motivation

As previously mentioned, the ME is the encoding tool that requires most of the
encoding time and was responsible for encoding a significant part of inter-predicted
samples. The critical part of the ME is on the IME tool, due to the high dependency
of the decisions of TZS steps among the several candidates evaluated. To be applied,
the IME demands a huge computational effort considering the number of operations
to be performed and also a significant memory communication to obtain the sample
information, as follows.

As previously mentioned, processing the TZS for a PU can require the evaluation
of up to 1011 candidates, and this processing requires computing the similarity crite-
rion value for each candidate. As can be seen on Equation (1) (on Section 2.3), the
complexity of one SAD operation are defined according to the PU size. Therefore, in
this work the complexity to compute one SAD value will be represented in terms of the
number of SAD operations for 44 sub-blocks. As an example, the cost for computing
the SAD of a 824 PU is approximated the same as the computing 2 SAD values of two
neighboring 4x4 sub-blocks. Then, considering the PU Height and Width, the Equation
(5) results in the number of SAD operations for 4x4 sub-blocks to compute its SAD
value.

c(PUneights PUuwidtn) = (PUheight/4) * (PUwiatn/4) (5)

Considering the encoding of a CTU through the IME encoding tool, the 3D-HEVC
has the support of up to 24 different PU sizes to be evaluated. Moreover, should be
noted that a CTU can be divided into N PUs with the same size, being N given by
Equation (6). Although, it can be obtained by Equation (7) that the cost for processing
all PUs with the same size is the same as computing 256 SAD operations for 4x4

42
sub-blocks, considering any of the 24 PU sizes.

N(PUneight; PUidtn) = (64/PUpcignt) * (64/PUidsn) (6)

j(PUhez’ghta PUwidth) = N(PUheighb PUwz’dth) * C<PUheight; PUwidth) (7)

Therefore, considering that in the 3D-HTM all 24 PU sizes are evaluated sequen-
tially and independently (without operations reuse techniques) and that the TZS can
evaluate up to 1011 candidates, the processing of the IME tool to the current CTU re-
quires the processing of up to 6,211,584 SAD values of 424 sub-blocks. This value is
given by K value on Equation (8), which considers the 24 PU sizes to be evaluated, the
1011 candidates to be evaluated by the TZS algorithm, and the 256 SAD operations to
evaluate all PUs with the same size.

K = 24 % 1011 % 256 (8)

Similarly than the number of SAD operations, it could be observed by Equation (1)
(on Section 2.3) that the SAD operation requires the samples from the current block and
from the candidate block. Thus, the number of samples requested from the memory to
compute the SAD operation also depends on the PU size, as given by V on Equation

(9).

V(PUneight; PUwidth) = 2 % PUpcight ¥ PUyiden (9)

Moreover, similarly than the number of SAD operations, since a CTU can be divided
in several PUs with the same size, the number of samples requested from the memory
to process one candidate through all PUs with the same size is given by G on Equation
(10), considering any PU size supported on IME of 3D-HEVC.

G(PUheighta PUwidth) = N(PUheighta PUwidth) * V(PUheighta PUwidth) (1 0)

Therefore, considering that the TZS can evaluate up to 1011 candidates and that
the evaluation of 24 PU sizes will be performed independently, the processing of the
current CTU through the IME tool can request up to 198,770,688 samples from the
memory. This value is given by H value on Equation (11), which considers the 24
different PU sizes supported on IME, the 1011 candidates to be evaluated by the TZS
algorithm, and the number of samples requested from the memory to process one
candidate through all PUs with the same size.

H = 2451011 % G(PUpeight; PUwiarn) (11)

43

Finally, to encode 3 views of an FHD 1080p resolution video with 30 fps in real-
time can request an unfeasible memory communication of 18.25TB/s as given by P on
Equation (12), which considers the memory communication to process each CTU, that
each FHD 1080p frame has 510 CTUs, the two channels to be encoded (Texture and
Depth Map), the 3 views from different cameras, the temporal resolution, and that each
sample has 8 bits (MULLER; VETRO, 2014).

P=Hx510%x2%x3%x30%8 (12)

Thus, can be seen that computing the IME tool to one CTU requires the pro-
cessing of up to 6,211,584 SAD values of 4z4 sub-blocks, while it can request up
to 198,770,688 samples from the memory. Aiming the development of hardware archi-
tectures for the IME, the computational effort and memory communication should be
as lower as possible.

As can be seen on Equation (8) and (11), one strategy to reduce the amount of
SAD operations and the memory communication to process a CTU is by reducing the
number PU sizes supported on IME, as performed by several works on literature (LIAO;
SHEN; TSENG, 2019) (GU et al., 2019) (AFONSO et al., 2016a) (PERLEBERG et al.,
2018) (XU et al., 2018) (AFONSO et al., 2019). Other strategies to reduce ME com-
plexity is by perform several simplifications in the IME algorithm, by applying several
modifications in the TZS algorithm to reduce the number of candidates evaluated (GU
et al., 2019) (FAN et al., 2018) (PERLEBERG et al., 2018) (PASTUSZAK; TROCHIM-
IUK, 2016) (AFONSO et al., 2019), or even by reducing the size of the SA (MEDHAT;
SHALABY; SAYED, 2015) (LIAO; SHEN; TSENG, 2017) (GU et al., 2019) (XU et al.,
2018). However, these strategies can result in a high decrease in the compression
efficiency of the 3D-HEVC standard.

Another strategy is to adopt reuse strategies, which were adopted in this paper.
Considering the different PU sizes supported by the 3D-HEVC standard, there are
several redundancies in the SAD operations performed by the TZS algorithm. As an
example, considering the same candidate, the SAD of an 828 PU is computed similarly
than the SAD of the four 424 PUs, but accumulating all four SADs to compose the SAD
of the 828 PU. Considering the TZS algorithm, several candidates can be evaluated
similarly several times when processing different PU sizes, mainly the candidates from
Prediction Step, from First Search and Raster Step. Thus, by knowing in advance which
candidates will be evaluated by different PU sizes, operations reuse strategies could
be adopted to compute firstly the SAD of smaller PUs, and then just join the SAD of
two small neighboring PUs to compose the SAD of higher PUs. These strategies also
reduce memory communication, since any data will be requested from the memory for
computing the higher PU sizes.

If all candidates are shared between the 24 PU sizes, the reuse strategies allow
that only the smallest PU size needs to be completely processed, and its results can
be used to compose the results of higher PUs. So, the complete processing of only
one PU size can represent a reduction in both the number of SAD operations and the
number of memory communication of up to 95.83%.

Therefore, the hardware architecture of this work explores strategies of reusing SAD
operations by using the SAD of smaller PUs to compute the SAD of higher PUs. To
know which candidates of the TZS will be repeatedly evaluated by different PU sizes,
the TZS of all PU sizes was synchronized, thus all PU sizes evaluate the same candi-
dates. In the sequence, the next chapter presents the hardware-oriented constraints
applied in the IME to allow the development of the IME architecture with those reuse
strategies and the impact of those constraints in the encoding efficiency.

3 SOFTWARE EVALUATIONS

As previously mentioned, the ME is the encoding tool that requires most of encoder
complexity. To obtain a high-throughput hardware design capable to deal with three
views of a FHD 1080p video at 30 fps, this tool must be simplified by applying hardware-
oriented constraints or even modifying its algorithm to allow efficient resources usage.
Therefore, this chapter presents the constraints and their impact in the encoding ef-
ficiency considering the use of the 3D-HTM, the reference software of the 3D-HEVC
(JCT-3V, 2020). The first section presents the setup and conditions adopted to perform
the experiments, while the second section presents each experiment performed and its
respective results.

3.1 Experimental Setup

To evaluate the impact of the modifications in the encoding efficiency, the exper-
iments were performed using the 3D-HTM software in version 16.2 (JCT-3V, 2020).
These experiments consider the 3D-HEVC Common Test Conditions (CTC) (MULLER;
VETRO, 2014), which was recommended by the JCT-3V.

The CTC document defines eight 3D videos sequences to be evaluated, and spe-
cific details of each sequence can be seen in Table 1. The CTC defines three se-
quences with 10242768 resolution (Balloons, Kendo, Newspaper), and five sequences
with 192021088 resolution (GT_Fly, Poznan_Hall2, Poznan_Street, Undo_Dancer, Sha
rk). It should be noted that each sequence has a different frame rate, varying from 25
to 30 fps. Moreover, between 200 and 300 AUs were encoded from each video se-
quence, as recommended by the CTC document (MULLER; VETRO, 2014). Each AU
contains all texture pictures and their respective depth maps of the same time instant.

Table 1 also presents the index of the views to be encoded, being that each view is
composed by the texture channel plus its respective depth-map channel.

The CTC document also defines the QP values to be used in the experiments,
where different QPs are used for the texture and the depth maps. For the texture view,
it defines the use of 25, 30, 35 and 40 values. The QPs for the depth maps is pre-

46

Table 1 — Reccomended video sequences according to Common Test Conditions doc-

ument
Resolution Sequence ARG LI HEEEE Views
(fps) Units

Balloons 30 300 3-1-5

1024x768 Kendo 30 300 3-1-5
Newspaper 30 300 4-2-6

GT_Fly 25 250 5-9-1

Poznan_Hall2 25 200 6-7-5

1920x1088 | b5 nan_Street 25 250 4-5-3
Undo_Dancer 25 250 5-1-9

Shark 30 300 5-1-9

defined according to the QP of the texture view. Therefore, the four texture QPs result
in the QP values 34, 39, 42 and 45 for the depth, respectively.

The results of the experiments performed in this chapter considers the metric Bjon-
tegaard Difference bit rate (BD-rate) metric (BJONTEGAARD, 2008). This BD-rate
metric processes the results of all four QP sets, resulting in the percentage variation in
the bit rate to obtain the same objective image quality when compared with a baseline
experiment - in this work, compared with the original algorithm of 3D-HTM software in
version 16.2. Therefore, higher values of BD-rate indicate a decrease in the compres-
sion efficiency, since it represents a higher bit rate, while smaller or negative values of
BD-rate indicate a increase in compression efficiency, since it represents a smaller bit
rate.

Two evaluations were performed to each experiment proposed on the next section,
one of them considering the RA temporal configuration with the NCO configuration,
and the other one running on the RA configuration with the FCO configuration.

3.2 Hardware-Oriented Constraints Evaluation

The hardware constraints experiments were divided into five incremental levels of
experiments. The first four levels are composed of hardware-oriented constraints in
the ME algorithm, while the last one adopts a different approach for the FME. Each of
those five levels is described in the next subsections.

47

3.2.1 ME Hardware Constraints (1L)

The first level (1L) of the experiments was conducted to set some hardware con-
straints in the ME algorithm of the 3D-HTM, aiming to obtain a hardware-friendly im-
plementation of the algorithm. This first experiment includes four modifications: 1) As
mentioned before, the 3D-HTM supports bi-directional prediction with several reference
frames for each direction, which increases the ME computational effort and memory
requirements. In this first experiment, the bi-directional prediction was disabled, the
search was limited to only one reference frame. 2) Also, since the 3D-HTM adopts the
SATD similarity criterion over the FME encoding tool, which also demands a high com-
putational effort, the SAD was adopted instead of the SATD for the FME. 3) Moreover,
as previously explained, the AMVP algorithm is adopted by the 3D-HTM to predict the
position of the IME Search Area, which could result in arbitrary memory access. Thus,
in this first experiment, the AMVP was disabled. 4) In addition, there are different pre-
dictors of the TZS algorithm that can be used. In order to break the dependency of the
neighboring block previously evaluated, only the Zero predictor was used in the TZS. In
other words, the search was always performed around the collocated block, resulting
in regular memory access.

Table 2 presents the impact in the encoding efficiency in terms of the BD-rate value
of the 1L considering both NCO and FCO. In general, the accumulated results show
an average BD-rate increase of 6.385% in the NCO and an average BD-rate increase
of 6.313% in the FCO. Also, it is possible to observe in both encoding orders that these
constraints show a higher impact in higher resolutions, probably due to the modifica-
tions in the SA and TZS predictors.

3.2.2 TZS Hardware Constraints (2L)

The second level (2L) of the experiments is incremental to the 1L experiment while
it was focused on modifying the TZS steps in order to reduce its high complexity and
aiming to turn them hardware-friendly. Although the TZS has a better performance
when compared with the Full Search algorithm, it still can evaluate up to 1011 can-
didate blocks considering the case presented in Section 2.3.1.4. Moreover, the TZS
algorithm has a high dependency due to the number of decisions related to it.

Therefore, there are three modifications performed in the TZS algorithm: 1) The
Raster is the TZS step that requires the higher number of candidates to be processed.
In order to reduce the Raster complexity, the Search Range was reduced to half of its
original size, so the Raster is applied in only 25% of its normal size, which is sufficient
since this reduced SA contemplates 62.3% of the best candidates found by the Raster
using the original SA considering the HEVC standard (Goncalves et al., 2018). Thus,
when the Raster were applied, only 169 candidates are evaluated. 2) The First Search
has some dependencies on its processing due to its stop conditions, which difficult its

48

Table 2 — BD-Rate Increase according to the video sequence from adopting hardware
constraints in 1L experiment

Experiment Resolution Sequence NCO FCO
Balloons 4.535% 4.501%
1024x768 Kendo 5.283% 4.961%
Newspaper 3.187% 3.160%
GT_Fly 14.332% 14.202%
1L Poznan_Hall2 4.523% 4.486%
(Hardware 1920x1088 | Poznan_Street 3.728% 3.516%
Constraints) Undo_Dancer 5.916% 5.918%
Shark 9.572% 9.758%
Average 1024x768 4.335% 4.207%
Average 1920x1088 7.614% 7.576%
Average 6.385% 6.313%

parallelism. Therefore, the stop conditions of the First Search (presented in Section
2.3.1.2) were removed, so the search always expands to the limit of the SA, evaluating
all 76 candidates of the expansive diamond search. This change was also performed
to supply the impact of the Raster constraint, thus allowing a small increase in the
encoding efficiency. 3) The Refinement step from the TZS has a problem to be imple-
mented in hardware since the refinement could be performed in several consecutive
iterations while a better candidate is found. Moreover, all those iterations cannot be
performed in parallel due to the dependency between iterations. Since any algorithm
to be hardware-implemented must comply with time constraints, the 2L experiment
also considers limiting the refinement step to the maximum of seven consecutive re-
finements.

These modifications ensure that the TZS algorithm will be restricted to the evalu-
ation of less than 778 candidate blocks (worst case). Table 3 presents the impact in
the encoding efficiency in terms of the BD-rate value of the 2L experiment. As can be
seen, these modifications presented an increase of 6.401% and 6.266% on average
considering the NCO and FCO schemes, respectively. Compared with the average of
1L experiments, the 2L experiment was reached an average increase of only 0.016%
and 0.047%, respectively.

Moreover, it should be noted that in the 10242768 videos, the 2L modifications
present a small improvement in encoding efficiency than 1L experiments, on both en-
coding orders. This probably occurs because in the 192021088 videos the movement

49

Table 3 — BD-Rate Increase according to the video sequence of the TZS modifications
in 2L experiment

Experiment Resolution Sequence NCO FCO
Balloons 4.420% 4.334%
1024x768 Kendo 5.070% 4.771%
Newspaper 3.085% 3.047%
GT_Fly 15.004% 14.628%
2L Poznan_Hall2 4.254% 4.184%
(TZS 1920x1088 | Poznan_Street 4.206% 3.986%
Constraints) Undo_Dancer 5.530% 5.547%
+ 1L Shark 9.636% 9.628%
Average 1024x768 4.192% 4.051%
Average 1920x1088 7.726% 7.595%
Average 6.401% 6.266%
1L Average 1024x768 4.335% 4.207%
(Previous Average 1920x1088 7.614% 7.576%
Experiment) Average 6.385% 6.313%

is higher and thus it suffers a greater impact due to the limitations in the Raster step,
while in 10242768 videos the movement is smoother, thus the limitations in the Raster
step does not affect its performance, while the modifications in the First Search helps
in increasing the encoding efficiency.

3.2.3 TZS Master-Slave (3L)

The third level (3L) of the experiments increments the 2L experiment by attaching
the TZS decisions of a specific PU size for all other evaluated PU sizes. By default,
the TZS decisions are applied according to the SAD value of the evaluated candidates,
which depends on the processed PU size. Thus, different decisions could be performed
to different PU sizes. As an example, the 64264 PU can decide to perform the Raster
step, while all smaller PUs from the same CTU goes straight from the First Search to
refining a different candidate. Therefore, it was impossible to reuse SAD processing
between different PU sizes.

The 3L solves this problem by applying the same TZS decisions to all PU sizes by
using a Master-Slave TZS algorithm. The TZS Master is the one applied to the 64264
PU, which stores all decisions of which candidates will be evaluated. The Slave was
the TZS applied to all smaller PUs of the same CTU, which applies the same decisions

50

of the Master TZS.

An example of a TZS processing for a 64264 PU was represented in Figure 19.
In Figure, the green squares represent the first sample of each candidate evaluated
in the First Search, while the yellow squares represent the candidates evaluated in
a Refinement step centered in the position [4,4], the best result of the First Search.
Finally, the red square represents the location of the best candidate evaluated for the
64264 PU.

[-16
[|| -12
[| || || -8
|] | [-4
| | || /0]
[|| [4
[[| || 8
[|| 12
y
|| 16V
-16 12 -8 -4 0 4 8 12 16
g

Figure 19 — TZS processing: Candidates from the First Search and from the first Re-
finement

Figure 19 represents the execution of the TZS for the 64264 PUs. Although, in the
TZS Master-Slave algorithm all smaller PU sizes will evaluate the same candidates
represented in Figure 19. This means that the smaller PU sizes will lose their inde-
pendence. By applying the First Search from Figure 19 to 828 PUs, even if all 828
PUs result in Refining a candidate different than the [4,4], the Refinement to be applied
must be in the same location of the refinement applied for the 64264 PU.

Although, by applying the Master-Slave TZS, all PU sizes will evaluate the same
candidates, ensuring the possibility to apply techniques for data reuse of different PU
sizes. It should be noted that although all PU sizes will evaluate the same candidates,
it does not restrict all PU sizes resulting in the same candidate. So, neighboring PUs
from a CTU can result in motion vectors that are related to different candidates. As an
example, the 64264 PU result in the vector [4,4], while some 8z8 PUs result in the vector
[-2,0] evaluated in the First Search, and some 8z8 PUs result in vector [6,6] evaluated
in the Refinement.

51

Table 4 present the results of the proposed Master-Slave TZS. It is possible to ob-
serve that the 3L results in an average increase of 9.628% and 9.502% in the BD-rate
value considering both NCO and FCO schemes, respectively. Moreover, comparing
with the results of the previous experiment, an increase of 3.227% and 3.236% was
obtained in NCO and FCO schemes, respectively. This increase is mainly due to re-
moving the independence of TZS in smaller PU sizes, which has for evaluation only

the same candidates evaluated by the TZS in 64264 PU size.

Table 4 — BD-Rate Increase according to the video sequence from the TZS Master-

Slave algorithm in 3L experiment

Experiment Resolution Sequence NCO FCO
Balloons 6.608% 6.461%
1024x768 Kendo 7.501% 7.113%
Newspaper 3.982% 4.025%
GT_Fly 23.047% 22.873%
3L Poznan_Hall2 6.074% 6.103%
(Master- 1920x1088 | Poznan_Street 6.034% 5.848%
Slave TZS) Undo_Dancer 7.511% 7.419%
+2L Shark 16.269% 16.174%
Average 1024x768 6.030% 5.866%
Average 1920x1088 11.787% 11.683%
Average 9.628% 9.502%
2L
(Previous Average 6.401% 6.266%
Experiment)

3.2.4 Full Splitting (4L)

The fourth level (4L) of the experiments was focused on enabling a feature of the
hardware implementation while maintaining the modifications of previous experiments.
By adopting the Master-Slave TZS from the 3L experiment, the TZS from all PU sizes
will evaluate the same candidates. In the hardware design, the processing of each
candidate can be implemented with data reuse techniques to process all PU sizes in
parallel at a low cost, by computing the similarity value of the smallest PU sizes firstly
and, after, accumulating these similarity values to compose the result of higher PU
sizes.

However, by default, the 3D-HTM software adopts the RD cost to define the pre-

52

diction tool and the partition scheme to used on each CTU. This scheme applies the
TZS algorithm on the higher PU sizes firstly, while skipping the evaluation of smaller
PU sizes when some conditions are reached to reduce run-time.

Therefore, in order to evaluate the gains on the encoding efficiency of evaluating all
PU sizes supported by the 3D-HEVC (a feature that will be supported by the developed
hardware due to the adoption of data reuse techniques), the 4L experiment performs
the evaluation of all PU sizes to each TZS candidate.

The obtained results of grouping the techniques proposed in the four levels of ex-
periments are presented in Table 5. In Table 5 can be observed an average impact
of 9.061% and 8.823% in terms of BD-rate value considering both NCO and FCO, re-
spectively. Compared with the results of the 3L experiment, the evaluation of all PU
sizes to each candidate resulted in a small reduction of 0.612% in the NCO scheme,
and of 0.679% in the FCO scheme, which represents a small gain in terms of com-
pression efficiency, since by evaluating all PU sizes, the encoder has more possibilities
to represent the movement of smaller objects present inside a CTU, while the original
partitioning algorithm can interrupt the evaluation of smaller PUs according to the RD
cost.

Table 5 — BD-Rate Increase according to the video sequence from adopting a Full
Splitting mode in 4L experiment

Experiment Resolution Sequence NCO FCO
Balloons 5.980% 5.814%
1024x768 Kendo 6.988% 6.670%
Newspaper 3.943% 3.690%
GT_Fly 21.761% 21.491%
4L Poznan_Hall2 5.184% 5.115%
(Full 1920x1088 | Poznan_Street 5.722% 5.511%
Splitting) Undo_Dancer 7.083% 6.960%
+3L Shark 15.469% 15.335%
Average 1024x768 5.637% 5.392%
Average 1920x1088 11.044% 10.883%
Average 9.016% 8.823%
3L
(Previous Average 9.628% 9.502%
Experiment)

53

3.2.5 Modified Approach for the FME (5L)

This work was focused on a hardware solution for the IME tool, being all experi-
ments around it. However, the result of the IME tool is the input of the FME tool, since
traditionally each PU is processed by either the IME and after by the FME to conclude
the motion estimation process. Therefore, an IME implementation must consider how
the FME will be performed. So, the fifth level (5L) of experiments was necessary to
complement the result of the 4L experiment by evaluating the encoding efficiency of
two opposite approaches of the FME encoding tool.

The first approach is to evaluate the impact in the encoding efficiency of disabling
the FME tool, the worst case among the encoding efficiency. It assumes that no hard-
ware for the FME will be implemented, so the vector result of the IME will be used as
the final result for the ME. The impact in the encoding efficiency of disabling the FME
is presented in Table 6. By disabling the FME resulted in a BD-rate increase of 17.93%
in the NCO, and a BD-rate increase of 17.712% in the FCO scheme, on average.
When compared with the 4L experiment, disabling the FME resulted in a degradation
of 8.914% and 8.889% in the encoding efficiency (on average) considering both NCO
and FCO, respectively.

Table 6 — BD-Rate Increase from disabling the FME according to the video sequence

Experiment Resolution Sequence NCO FCO
Balloons 14.879% 14.855%
1024x768 Kendo 15.244% 14.749%
Newspaper 7.417% 7.129%
GT_Fly 38.702% 38.436%
5L Poznan_Hall2 12.177% 12.189%
(Disabling 1920x1088 | Poznan_Street 8.632% 8.360%
FME) Undo_Dancer 19.634% 19.455%
+4L Shark 26.757% 26.525%
Average 1024x768 12.513% 12.244%
Average 1920x1088 21.180% 20.993%
Average 17.930% 17.712%
4L
(Previous Average 9.016% 8.823%
Experiment)

By default, the 3D-HTM software evaluates only a set of 16 fractional blocks ac-
cording to its similarity result. However, the fractional blocks share several fractional

54

samples. So, after interpolating these new samples, it is necessary to just group these
samples to compose each fractional block to be evaluated, which can be easily per-
formed in an FME implementation at a low cost (assuming that the higher cost is related
to the interpolation filters).

Therefore, the second approach assumes that all fractional samples will be gener-
ated and used to compose all possible fractional blocks to all PU sizes supported, the
best case for the FME since this can result in a small improvement in the encoding ef-
ficiency. The obtained results of evaluating all possible fractional blocks to all PU sizes
are presented in Table 7. Evaluating all 48 fractional blocks resulted in an average of
8.945% and 8.766% in the BD-rate metric in the NCO and FCO schemes, respectively.
Also, compared with the 4L experiment that adopts the original FME algorithm, this
indicates a small gain of 0.071% and 0.057% in both NCO and FCO, respectively.

Table 7 — BD-Rate Increase from evaluating all fractional blocks according to the video

sequence
Experiment Resolution Sequence NCO FCO
Balloons 5.961% 5.862%
1024x768 Kendo 6.890% 6.568%
Newspaper 3.847% 3.708%
GT_Fly 21.590% 21.344%
5L Poznan_Hall2 5.166% 5.082%
(All fractional 1920x1088 | Poznan_Street 5.726% 5.407%
blocks) Undo_Dancer 6.964% 6.873%
+4L Shark 15.414% 15.288%
Average 1024x768 5.566% 5.379%
Average 1920x1088 10.972% 10.799%
Average 8.945% 8.766%
4L
(Previous Average 9.016% 8.823%
Experiment)

3.3 Experiments Conclusions

The evaluation results allow the development of efficient hardware design for the
IME tool. The TZS dependency was reduced by limiting its steps, and also regular
memory access was obtained by disabling the algorithms that could move the SA away.

Moreover, since the TZS from all PU sizes will evaluate the same candidates, it is
possible to explore operations reuse techniques to process higher PU sizes based on
the result of lower PU sizes, which also reduces in up to 95.83% the number of SAD
operations and the memory communication needed to request the samples of larger
PU sizes.

According to the evaluation results, if only the IME was developed, disregarding
the FME, it is expected degradation of 17.93% in the encoding efficiency in terms of
BD-rate metric if using the NCO scheme, and degradation of 17.712% in the encoding
efficiency if using the FCO scheme. Meantime, if an FME that processes all fractional
blocks were integrated with the developed IME, a degradation of 8.945% in the encod-
ing efficiency is expected if considering the NCO scheme. In the FCO scheme, an FME
that processes all fractional blocks being integrated with the developed IME results in
a degradation of 8.766% in the encoding efficiency.

Although these results seem to represent a high impact in the encoding efficiency,
they are acceptable when considering all hardware-oriented constraints adopted that
allows the development of hardware with reduced complexity and regular memory ac-
cess. Moreover, the main related work presenting a hardware architecture for the ME
tool of the 3D-HEVC standard (AFONSO et al., 2019) reaches a BD-rate impact of up
to 23.2%.

Thus, based on these results, the next chapter presents the development of the
proposed architecture with the hardware-oriented constraints presented in this chapter,
and also adopting data and operations reuse strategies provided by the TZS Master-
Slave and from evaluating all partitioning to reduce the memory communication and
the number of operations performed.

4 PROPOSED MOTION ESTIMATION HARDWARE ARCHI-
TECTURE

This chapter presents in detail the developed architecture, which was divided into
four sections. The first section presents in detail the developed IME architecture, while
the second section presents a solution for an FME architecture. After, the third section
explains the synchronism between the IME and the FME Units, while the last one
discusses memory management.

The developed architecture presents a solution to perform in parallel the whole Mo-
tion Estimation algorithm. The IME Unit was developed with the constrains previously
defined in order to adopt data reuse strategies to compute the SAD value from all PU
sizes efficiently, by composing the SAD from all PU sizes based on the SAD value
from smaller PU sizes. Also, the FME solution integrated into this ME hardware was
designed to avoid redundancy in the operations when generating the fractional candi-
dates, that can occur if two or more IME motion vectors are similar. In this FME the
SA was interpolated once, and all fractional blocks that depend on the interpolated
samples were computed in parallel.

Figure 20 presents the complete architecture. It was divided into three main mod-
ules, being two modules for the IME, and one module for the FME. The first module
applies the Test Zone Search algorithm by selecting the candidates from the SA to be
evaluated. It is also responsible for computing the SAD value from sub-blocks of the
candidate being evaluated.

The second one is a SAD Table module, which is responsible for accumulating the
SAD of the sub-blocks to obtain the SAD value of higher PUs, so it computes the SAD
from all PUs sizes supported by the 3D-HEVC. This module also stores the SAD value
and the respective motion vector from the candidates with the smallest SAD value of
each partition scheme. The SAD Table feeds the IME Unit with the SAD value from the
64264 PU, so the TZS control can decide the next candidate to be evaluated.

The last module is the FME module, which implements the interpolation filters de-
fined by the 3D-HEVC to generate the Fractional blocks. It generates and evaluates
the fractional blocks indicated by the motion vectors from the best partition scheme.

IME Unit
. 14b
C?/r;cgg)arte f TZS Control f
20b
Candidate 16x,64B
Samples 1 SAD Calculator ||
Sub-Blocks 4x4
Current / 64x12b
Block 16%64B
SAD Table Unit
—— Current Candidate Current Best
> SADs4x4 SADs4x8 PUs4x8
[Join — SADs8x8 PUs8x8
SADs8x8 SADs8x16 PUs8x16
[Join — SADs16x8 PUs16x8
SADs8x16 SADs16x16—>[Assessl> PUs16x16
SADs16x16 SADs16x32—[Assessl> PUs16x32
[Join — SADs32x16 —[Assessl—> PUs32x16
SADs16x32 SADs32x32 —>[Assessl> PUs32x32
SADs32x32 [Join }— SADs32x64 —[Assessl> PUs32x64
SADs64x32—{Assessl> PUs64x32
SAD32x64 SADs64x64 —[Assessl> PUs64x64
Best Best
SADs \Vectors
FME Unit
; 4b 593 SADs from 12b to 20b
Region Index h ! 593x14b
Line/Column FME Control
8’b L Best
Line/Column , EvaluationlUnit (x593)1 | °°°'®
S I : Interpolator : Best
ampies 728 64B ’-> SADS
O ,
Current ik
Block

Figure 20 — The complete ME architecture

57

The next two sections explain in detail these modules, while the third section
presents the timing analysis and operation considering all these three modules. Fi-
nally, the fourth section presents the memory requirements of the designed hardware.

4.1 Integer Motion Estimation

The IME module is composed of two Units. The first one is the TZS Unit, which
is responsible for the decisions related to the TZS algorithm and for computing the
SAD value of small 424 sub-blocks. The second unit is the SAD Tables, which is re-
sponsible for composing the SAD value of all block sizes supported by the 3D-HEVC
by accumulating the SAD value from the small sub-blocks and also for evaluating the
best candidate to each block size. The next two subsections explain these two units in

detail.

58

4.1.1 Test Zone Search Implementation

The TZS adopts the same modifications presented in Chapter 3. In other words,
TZS uses only the zero predictor, the first search always expands to the whole search
range, the search range in the raster step was reduced from the half, and also the
consecutive refinements were limited to seven.

The control unit is mainly composed of a Finite State Machine (FSM) that adopts the
TZS algorithm to individually selects the candidate blocks to be evaluated. This state
machine is similar to the one presented in Figure 21, where each square represents a
different state. In this figure, the states represented by red squares are responsible for
individually selects all candidate blocks relative to each TZS step before passing to the
next state. The states represented by blue dotted squares are responsible for waiting
for the results of all candidates of its relative step (due to the pipeline stages of the
architecture, as will be better explained in the sequence), and decides the next step to
be applied based on the vector relative of the candidate with the smallest SAD value.

‘ Start » Preditor

Wait L Wait
Preditor . First Search :

First Search

Distance >
iRaster

Wait C o Wait
: Refinement Raster

3 Expansions W/O
_ Better Result

'
'
'

Figure 21 — Finite State Machine that process the TZS algorithm

The samples of the selected candidate are passed from the memory to the pro-
cessing unit. The samples of the whole candidate could be passed to the processing
unit at once. However, the architecture was developed to receives the samples of 1/4
of the candidate block at each clock cycle. This means that the control unit selects a
new candidate to be processed at every four clock cycles.

The Sub-block Calculator starts by computing the absolute difference between the
samples of the current block and the input samples of the candidate block being pro-
cessed, as represented in Figure 22.

59

ﬂisamples i 16 samples /1/6 samples i
\
A\ \\
il
|
| \

)
\ [
\

es

ﬁ sampl
/l

[

(

\

6 samples

F
e

6 samples

/
/

[. J :x\, H .
N J E\,,, /]
—"/ : i
_\\,,,/ |
Absolute
! Difference
Reference Current
Block Block

Figure 22 — Scheme for obtaining the Absolute Difference between Reference and
Current Blocks

After obtaining the absolute differences, the values are accumulated together with
the differences of the neighboring samples until it results in the SAD value of 4z4 sub-
blocks. This can be better understand in Figure 23, that presents the absolute dif-
ference between each sample of the candidate block, obtained by subtracting each
sample of the current block by the correlated sample of the candidate block.

64 values

2 Absolute
© Difference
|+
32 values
5 SADs 2x1
l+
32 values
3 SADs 2x2
l+
16 values
3 SADs 4x2
l+
16 values
£ Output
2 64 SADs 4x4

Figure 23 — Scheme that join the Absolute Difference between two neighboring sam-
ples to obtain the SAD of 424 sub-blocks

After that, the results of the 64 sub-blocks of 4z4 samples are passed to the SAD
tables, which will accumulate the value of the several sub-blocks to compute the SAD

60

value of the whole 64264 candidate block, as will be presented in the next subsection.
In the sequence, the SAD of the whole 64264 block is passed to the control unit, that
will process this result to take the decisions of the algorithm, as can be seen in Figure
20. In other words, this means that the control unit stores the vector related to the
candidate block with the smallest SAD value of each TZS step. So, after the IME Unit
processes all candidate blocks from a TZS step, the vector of the best candidate block
will decide the next TZS step to be applied, and the center location of that TZS step (if
applicable).

4.1.2 SAD Tables

The SAD Tables are responsible for accumulating the SAD value from smaller 4x4
sub-blocks to compose the SAD value from all PU sizes. A diagram with an example of
the processing of this unit can be seen in Figure 24. The left side of the Figure repre-
sents the accumulation from the SADs of neighboring 424 PUs to compose the SADs
of 8x4 and 428 PUs. A similar accumulation occurs to compose the SADs of larger
PU sizes. These accumulations were divided into several pipeline stages, so only one
adder operation was performed sequentially in each stage. Also, the processing of PUs
with height higher than 16 samples requires the adoption of some registers to store the
partial SAD value. These registers were necessary since the processing is performed
on 16 lines per clock cycle, so partial SAD values need to be stored until computing
the SAD of the rest of the block.

SAD Accumulation SAD Evalution
SADs 4x4 SADs 8x4
4444 8 8
b _[Accumulate . . MR Best 8x4 SADs
3 ”| Neighbors v > | ASSESS | Best 8x4 Vectors
SADs 4x8
4444
Best 4x8 SADs

Neighbors

Accumulate © >
> — wH =~ > | ASSess |Best 4x8 Vectors,

Figure 24 — Composing diagram of the SAD values from larger PU sizes

In the right side of the diagram from Figure 24, it is possible to observe the adoption
of the Assess Unit, which is responsible for comparing the result from all candidates,
while storing the Vector and SAD from the best candidate. The architecture of this
Assess Unit can be seen in Figure 25. As can be seen, the SAD from the current
candidate compared with the best SAD from previous candidates. The signal of this
comparison is used to define which value will be stored. So, after the TZS algorithm
ends its processing, the register from the several Assess Units has stored the best

61

vector related to the candidate with the smallest SAD to all possible partitions. Thus,
these vectors are then passed by the next Unit, the FME Unit, to be processed.

Assess Unit

Best 8x4 Vectors

Vector 0
Current [

SAD = isE

Current
1 Best 8x4 SADs
0

Figure 25 — Block diagram of one Assess Unit

In Figure 26, it is possible to observe a timeline from the processing of several PU
sizes supported by SAD Table based on accumulating the SADs from the 4x4 sub-
blocks given as input. Although Figure 26 shows only the partitions required to obtain
the SAD from the 64264 block, any other partition size not presented in this figure can
also be computed following the same scheme.

Input
4x4 1 \k 2 3 4 1 2 3 4 1 2 3 4 1 2
4x8 1\, 2 3 4 1 2 3 4 1 2 3 4 1
8x8 1 2 8 4 1 2 3 4 1 2 3 4
8x16 \F 1 2 3 4 1 2 3 4 1 2 3
16x16 LIRS RSN RN 1 2 3 4 1 2
16x32 cp 16x16 2 cp 16x16 4 1 2 3 4 1
32x32 stores the /- i 2 4 1 2 3 4
32x64 16x16 SAD b 32x32 =7 1 2 3
64x64 sum the stored with] f 4 1 2
output the next 16x16 SAD /
stores the !)
32x32 SAD sum the stored with
the next 32x32 SAD >
0 ! 2 3 4 5 6 7 8 9 10 " 12 Clock Cycles

Figure 26 — Schedule from the processing of SAD values

As can be seen in Figure 26 it takes four clock cycles to obtain the SADs from 4z4
sub-blocks of the first candidate (cycles 0 to 3). Then, by accumulating neighboring
SADs from a 4x4 sub-block, the 428 SADs from the same candidate could be computed
(cycles 1 to 4). By accumulating the neighboring 428 SADs, the 828 SADs from the
same candidate could be computed (cycles 2 to 5). And so on, until computing the
16216 SADs (cycles 4 to 7).

However, since the IME process 16 lines per clock cycle, PUs with height higher
than 16 samples requires the storing of the SAD from a smaller PU, to be further added
with the SAD from another region of the smaller PU. For example, as represented by
the red arrows in Figure 26, the 16232 PU requires the storage of the 16216 SAD from

62

the first region on cycle 5, to be further added with the 16216 SAD from the second
region on cycle 6. Similarly, the 32264 PU requires the storage of the 32232 SAD from
the second region on cycle 8, to be further added with the 32232 SAD from the fourth
region on cycle 10. Finally, the SAD from the 64264 block size is only computed after
the 32264 block size is computed, eight cycles after the last region of the candidate are
given as input.

The SADs computed for all PU sizes are processed by the Access Units as previ-
ously represented in Figure 24, which will result in the SAD and the Vector related of
the best candidate evaluated to each partition. These results of the Assess Units are
ready for being used by the RD cost processing in the next steps of the encoder. How-
ever, this work also aims an integration to an FME, since the 3D-HEVC has support
for fractional motion vectors through the FME processing. Therefore, the next section
presents a possible FME unit to be integrated with the IME presented above. This FME
will process those results given by the Access Units, performing a refinement around
the region pointed by each vector as already explained in Section 2.3.2.

4.2 Fractional Motion Estimation

The FME architecture is divided into two units. The first one is the Interpolation Unit,
which is responsible for generating the new samples at fractional positions using the in-
teger samples from the SA. The second unit is the Evaluation Unit, which is responsible
for evaluating all fractional blocks generated around the IME vectors. These fractional
blocks are composed of the new samples at fractional positions from the Interpolation
Unit. The next two topics from this subsection explain in detail the architecture of these
two units.

Different strategies could be adopted for FME processing: 1) Interpolate only the
locations pointed by an IME result vector, which can result in several redundancies in
the interpolation process if two IME vectors are pointed to similar regions of the SA.
This redundancy was represented in Figure 27, where two 828 blocks to be interpolated
are represented by blue and yellow squares, while the redundancy is represented by
green squares, since those samples will be interpolated for both blocks. 2) Firstly inter-
polate the whole SA and store the fractional blocks interpolated, and after evaluates the
fractional blocks composed by the interpolated samples. This solves the redundancy
problem of FME, but it requires a huge number of registers to store the interpolated
samples of the whole SA.

Although, the adopted strategy for the FME of this work is to evaluate all fractional
blocks to all 24 PU sizes that are dependent on a specific fractional sample, in parallel,
as soon as this specific sample is interpolated. This strategy of evaluating all fractional
blocks to all PU sizes is based on the idea of obtaining the best encoding efficiency of

63

Figure 27 — Redundancy that can occur in the interpolation when two IME vectors are
similar

the ME tool since the developed IME hardware will result in the motion vectors to all 24
PU sizes. However, the adopted strategy is not a practical solution for real applications
due to the high number of hardware resources needed to evaluate all fractional blocks
in parallel. Therefore, in the next works in the future, the adopted FME strategy will be
better explored, as by adopting some registers to reduce the parallelism of the FME,
or by limiting the PU sizes supported for fractional blocks.

4.2.1 Interpolation Unit

As mentioned before, the Interpolation Unit is responsible for generating the new
samples at fractional positions by using the Integer samples from the SA. For this, the
SA from 1922192 samples was divided into nine regions from 64264 samples, so each
region is processed sequentially. Thus, the interpolation filters were reused to perform
the interpolation of the whole SA.

From each region of the SA, a set of samples composed of a whole line or col-
umn from the current region is selected to be interpolated. As previously explained in
Section 2.3.2, three fractional samples could be generated between each two integer
neighboring samples. Thus, to process all 64 input samples in parallel, the interpola-
tion is performed by 64 + 1 sets of filters, similar to the ones developed by AFONSO
et al. (2016b). Each set of filters was composed of three types of filters, depending on
the position of the fractional sample to be computed. One filter computes the sample at
half position, and the other two filters compute the samples at quarter positions. This
results in a total of 3 x (64 + 1) interpolation filters. Specific details of the development
of those filters could be found on AFONSO et al. (2016b).

Figure 28 represents the position of the new fractional samples to be computed. As
can be seen, these new samples can be categorized into horizontal, vertical, and even
diagonal samples, related to the position of the integer sample. So, the processing was
also divided into these three categories.

Figure 29 presents the architecture of the Interpolation Unit, where the selection of

64

B Integer Samples

i

e|f J | EHorizontal Frac. Samples
i|j|k

P | q | I | ODiagonal Frac. Samples

OVertical Frac. Samples

= e Y o B

Figure 28 — Fractional sample distribution around the integer sample
Source: Adapted from AFONSO et al. (2016a).

the input samples to be interpolated, the horizontal buffer, and also a Clip operation
can be seen. Firstly, the interpolation starts by processing the horizontal fractional
samples. So, all samples from the current region of the SA were selected as input,
one line at each clock cycle. Then, the selected line is passed to the 64 + 1 sets of
interpolation filters, to generate the new fractional samples.

Line/Column

Samples
72B
Interpolated
Samples
192 B

Fractional
Buffer
(No Clip)

Figure 29 — Architecture of the Interpolation Unit
Source: Adapted from AFONSO et al. (2016a).

For the diagonal processing, the horizontal buffer must store the horizontal frac-
tional samples, and also the horizontal fractional samples of upper and bottom
edges (see section 2.3.2). Thus, for the horizontal buffer, an internal buffer with
3% (64 + 1)x(64 + 8) registers are required to store all these horizontal samples.

Also, the outputs of the filters are connected to the Clip operation, the last step
of the Interpolation Unit. This Clip operation ensures that all samples that compose
the new fractional blocks have 8 bits, that is, samples with value less than zero are
converted to zero, while samples with values higher than 255 are converted to 255. The
values between 0 and 255 are unchanged. The architecture from the Clip operation
is presented in Figure 30, where the results from the three higher significant bits of
the input define the conversion. Finally, after the Clip operation, the new interpolated
samples are used to compose the new fractional blocks to be compared with the current
block in the Evaluation Unit, as will be explained in the next subsection.

65

Input[10..0] ++ & Input[7..0] 0‘!\‘ Output
55

2
Input[10]

1
\ Input[9]
1 Input[8]

1

Figure 30 — Architecture of the Clip operation

After interpolating the horizontal fractional samples from all lines of the current re-
gion of the SA, the processing passes to the vertical fractional samples. The pro-
cessing of the vertical samples is similar to the processing of the horizontal samples.
Although, the region of the SA is processed column by column. Every selected column
is interpolated using the interpolation filters and, after, the new samples are connected
to the clip operation, to be processed by the Evaluation Unit.

Finally, after the processing of all columns from the current region of the SA, the
processing of the diagonal fractional samples is performed. For this, the horizontal
samples stored on the horizontal buffer are selected from the internal multiplexer to be
used from the interpolation filters. Since there are three categories of diagonal samples
(as can be seen in Figure 28), the processing of the diagonal samples is done three
times, but selecting different samples from the horizontal buffer.

After the diagonal fractional samples are processed, the Interpolation Unit ends the
processing of the current region. Then, it idles some clock cycles (exact value in the
sequence). Only after the Evaluation Unit ends the generation and comparison of the
new fractional blocks, the Interpolation Unit starts the processing of the next region
from the SA by repeating its processing.

4.2.2 Evaluation Unit

The Evaluation Unit is responsible for processing the IME vectors and the interpo-
lated samples. It composes the fractional blocks related to the IME vector and, then,
applies the similarity criterion over these fractional blocks.

Naturally, it is expected that one Evaluation Unit could process more than one IME
vector, mainly if those vectors are related to different regions of the SA. However, as
previously mentioned, the ME architecture was developed with data reuse techniques
to avoid redundancy in the processing. By the exception of the horizontal samples,
any other interpolated sample is stored in order to improve the processing. So, as
soon as the Interpolation Unit processes a line or column of fractional samples, the
similarity value from all dependent blocks (fractional blocks composed by the generated
fractional samples) must be processed at the same time.

Moreover, it is impossible to implement an Evaluation Unit able to be reused for

66

processing different blocks. Considering that all IME vectors can be extremely similar
to each other, all fractional blocks must be composed and evaluated at the same time
when the interpolation filters finish the interpolation of the associated samples. There-
fore, the FME Unit requires a total of 593 Evaluation Units from different sizes, being
that each Evaluation Unit is responsible for processing only one IME vector.

The architecture from the Evaluation Unit is presented in Figure 31, where each
unit has 12 SAD Processing Units, 48 registers to store the SAD from all 48 fractional
blocks, and a comparator that results in the vector relative to the block with the smallest
SAD value. The internal buffer that stores the current block can also be seen in Figure.

Evaluation Unit (x593)

SAD Processing (x12) -
Interpolated 64B | | SAD/Vector 0
Samples ' Split | SAD/Vector 1 . Best
T [} SAD/Vector2 | 2 Vectors

64B SAD | Accumulator > o

Current °7 R _ Tree . : S

Block ' o Split - : : £
Ny SAD/Vector 47, 8 Best
14b SADs

Best Vectors |

/
Best SADs 12b té) 20b

H, V, D1, D2, D3

Figure 31 — Block diagram of the Evaluation Unit

A total of 12 SAD Processing Units are required due to a total of 48 fractional blocks
that can be processed. Although the Processing of the Horizontal and Vertical frac-
tional blocks requires six SAD Processing Units each, the processing of the Diagonal
fractional blocks requires twice the SAD Processing Units. This occurs because the
diagonal fractional samples require to be evaluated considering two side-neighboring
integer samples.

As can be seen in Figure 31, the SAD Processing Unit has three main modules,
which were the Block Split, the SAD Tree, and the Accumulator. The SAD Processing
Unit receives as input the line or column composed by the interpolated fractional sam-
ples, and it has also access to the internal buffer to obtain the samples from the current
block. So, these input samples pass by the Block Split, responsible for selecting only
the interpolated samples and current block samples related to the block pointed by the
IME vector. The Split was necessary since the interpolated samples received by this
unit are a line or column from a complete region of the SA, while the block pointed
by the IME vector can be related to a block that occupies two different regions of the
SA, so only the samples related of this block will be selected for comparison with the
samples of the current block.

After the selection of the samples to be compared, the SAD value is computed. As
can be seen in Figure 31, the SAD Tree is responsible for computing the SAD value

67

from the line or column being interpolated firstly. After the SAD Tree computation, an
Accumulator stores the SAD value from the current line and accumulates it with the
SAD value from the next lines. After processing all lines, the SAD value is stored to be
further compared with the SAD from other fractional blocks.

Figure 32 presents the architecture of a SAD Tree with four samples range, which
can obtain the SAD value of a line or column with a maximum of four samples. The SAD
Tree of Figure has two pipeline registers, that perform only one arithmetic operation in
each pipeline stage. The SAD Trees with a higher sample range, which can process
higher lines or columns, have more input samples and consequently more consecutive
arithmetic operators. Therefore, it requires the adoption of more pipeline registers to
maintain a high throughput.

8
1
—0,
8
1
—0
Cs 9 8 SAD,
(abs}—=—1
R
3 8 0—0
Valid, 9
8
1
—1o

A\
8 Pipeline
Valid, A Register
Pipeline
Register

Figure 32 — The architecture of a SAD Tree with four samples range

As will be mentioned before, there are some cases when the SAD Trees do not
receive the total number of samples. In this case, some SAD Tree inputs must not be
considered in the output value. So, an array containing several valid bits were required
as input by the SAD Tree, which can also be seen in Figure 32. This array is used to
indicate what input samples are the valid ones and must be considered in the output
value.

Since the SAD Trees compute only the SAD value of one line or column at each
clock cycle, each Evaluation Unit requires an accumulator to store the SAD Tree output
until all fractional block is processed. The architecture of one Accumulator is presented
in Figure 33, where each Accumulator has a multiplexer, an adder, and a register. The

68

multiplexer is responsible for resetting the accumulated value, or even, it allows the
sum of the stored value with the SAD Tree output value. The registers store the adder
output value. So, the Accumulator is restarted whenever a new block starts to be
processed, and it keeps accumulating its input values until the processing of all lines
of the fractional block being processed.

SAD,,

m

A
Control w
D

4+ N

SAD,yr

Figure 33 — The architecture of one Accumulator Unit
Source: Adapted from AFONSO et al. (2016a).

When the Interpolation Unit ends the processing of any region, the Accumulator
output has the SAD value from the block pointed to the IME vector, if the IME vector
was pointed to that region. Thus, the Accumulator output is stored in one of the 48
registers from the Evaluation Unit. An exception can occur in this processing when the
block pointed by the IME vector belongs to more than one region from the SA. In this
case, the result from the Accumulator is the SAD value from the part of the IME vector
block that belongs to the current region being processed. This way, the Accumulator
output must be added with the respective value from one of the 48 registers at the end
of the processing of each region. Therefore, these registers have the complete SAD
value from the IME vector block at the end of the processing of all SA.

As can be seen in Figure 31, all 48 registers are connected to the SAD Comparator,
which is enabled after the interpolation of all regions from the SA. This SAD Compara-
tor is responsible for comparing all SAD values, aiming to result in the motion vector
of the fractional block with the smallest SAD value. This unit also receives the SAD
value and its motion vector from the best IME candidate. Thus, the SAD Comparator
can also compare the best IME block with the best fractional block. The architecture
of a SAD Comparator is presented in Figure 34. It has several Decide Two Units that
compares the SAD values two by two. Between each sequential comparison, pipeline
registers are adopted, aiming to reach higher throughput.

The Decide Two Units were adopted to evaluate two SAD values and decide what
is the smallest one. The architecture of this Decide Two Unit can be seen in Figure 35.

69

Block,
Block,

Block,
Block,

:-mnd Vector of
Best Candidate

Block,,
Block,,
IME
Candidate
Pipeline
Register
Pipeline
Register

Figure 34 — The architecture to process 49 SAD values and its respective motion vec-
tors

This architecture performs a subtraction between the two SAD values, and so the Most
Significant Bit (MSB) of the result indicates what is the smallest one. Then, the MSB is
used as a control signal of two multiplexers: one selects the smallest SAD value, while
the other selects the motion vector associated of the smallest SAD value.

Vector,

Best

Vector, Vector

Figure 35 — Architecture of the Decide Two Unit
Source: Adapted from AFONSO et al. (2016a).

As mentioned before, the Evaluation Unit was specialized in processing only one
PU size. The main difference between the units from different PU sizes is the bit width
of the connections between the units, and also the SAD Tree Units, which must process
a different number of samples in parallel. For the square-shaped PU sizes, the range of
the SAD trees is equal to both width and height. However, for the non-square-shaped
PU sizes, the range of the SAD trees are defined by its highest side, aka, the highest
value between the width value and the height value.

70

This way, for processing a PU where the width is higher than the height, as the
processing of an 8z4 PU, an SAD Tree with eight samples range is required. When
processing this PU line by line, the complete SAD Tree is used, while when processing
this PU column by column, half of the SAD Tree is disabled using clock-gating tech-
niques, which also helps to save power dissipation.

4.3 IME and FME Synchronism

This subsection explains in details the synchronism between the IME and the FME
modules, and how the several CTUs from a video sequence are processed.

Figure 36 presents the timeline of the IME Unit schedule considering its best sce-
nario in a SA of 1922192 samples and a CTU size of 64264 samples. In this case, the
TZS processing requires 337 clock cycles, assuming that although the First Search is
performed, the best result is the co-located block evaluated at the Predictor step. Thus,
the Raster and the Refinement steps won’t have been executed.

Best case

337

Figure 36 — Timeline of the best case of the IME Processing in a SA of 1922192 samples

By another side, the Figure 37 presents the timeline of the IME Unit considering its
worst scenario, where the TZS processing requires 3237 clock cycles to process a SA
of 1922192 samples and a CTU size of 64264 samples. This case assumes that the
Raster step is performed after the First Search, and seven Refinements are performed
so that every Refinement has found a better result than the previous Refinement.

316 I 316 I 316 I 316 I 316 I 316 I 316

3237

Figure 37 — Timeline of the worst case of the IME Processing in a SA of 1922192
samples

Figure 38 shows the timeline from the FME processing. As can be seen, the FME
always requires 3680 clock cycles to process the whole SA, where FME spends 408
clock cycles to process each region of the SA, plus one cycle between regions to reset
the necessary modules from the FME. On the bottom of the Figure, the distribution

71

of these 408 clock cycles between the FME Units among the five groups of fractional
samples can be seen. To interpolate the group of Horizontal, Vertical and Diagonal
samples, the Interpolation Unit requires 72, 64, and 65 clock cycles, respectively. Since
the interpolation filters have three pipeline registers, the Evaluation Unit idles by three
clock cycles before the processing starts. Moreover, the processing of the Horizontal
samples requires more clock cycles than other samples due to the edge required to
process the Vertical samples, as mentioned in subsection 2.3.2. Also, although the
Interpolation Unit process 72 lines of horizontal samples, only 64 lines are considered
by the Evaluation Unit, being the first four lines ignored by the Evaluation Unit. Finally,
after processing any group of fractional samples, some controls of the Evaluation Unit
was restarted, which requires one clock cycle per reset.

3680
408 408 408 408 408 408 408 408 408
.......... 1 &8 M om0 M ;M M
Clock Cycles -

408
Horizontal ‘ Vertical ‘ Diagonal_1 ’ Diagonal_2 ‘ Diagonal_3
2 | 64 [65 | 65 | 65 |
als] 1m | [3] m L L 3] 11|
........................ Moo
Clock Cycles >

Figure 38 — Timeline from the FME Processing in a SA of 1922192 samples

Figure 39 presents a timeline from the processing of both IME and FME modules
considering the processing of three views of an FHD video at 30 frames per second.
As can be seen, the processing of each CTU requires from 4017 to 6917 clock cycles,
according to the best and worst scenario of the IME Unit. Considering all 510 CTUs
from an FHD frame, the architecture requires from 2.05M to 3.5M clock cycles to pro-
cess each FHD frame. Moreover, considering that the ME encoding tool was used in
both channels (in Texture and Depth Maps), and also the processing of three views,
the complete ME architecture requires from 368.7M to 634.9M clock cycles per sec-
ond, which demands a frequency of 634.98 MHz, considering the worst-case scenario
of the IME Unit.

When considering only the IME unit, disregarding the FME processing, the process-
ing of each CTU requires up to 3237 clock cycles. Figure 40 present the timeline of
the developed IME Unit for the processing of three views of an FHD video at 30 frames
per second. As can be seen in Figure 40, considering the 510 CTUs of each frame,
the processing of 30 frames of the temporal resolution, the two channels, and the three
views, the IME unit requires the frequency of 297.15 MHz, considering the worst-case

83r=a23n 0 u e e
3es0| e
4,017 ~ 6,917 xs09 |
2.05M ~ 3.5M x29 |
61.5M ~ 105.8M xt |

122.9M ~ 211.6M x2

368.7M ~ 634.9M

Clock Cycles >

Figure 39 — Timeline from the Complete ME Architecture when processing FHD 1080p
videos at 30 fps considering 3 views in the MVD format

scenario of the TZS algorithm.

337 ~ 3,237
337 ~ 3,237 x50 | i
171.87k ~ 1.65M x0 |
5.15M ~ 49.52M x|
10.31M ~ 99.05M x2

30.93M ~ 297.15M

Clock Cycles >

Figure 40 — Timeline from the IME Unit disregarding the FME processing when pro-
cessing FHD 1080p videos at 30 fps considering 3 views in the MVD format

4.4 Memory Management

This work was focused on the development of the processing unit from the hard-
ware architecture, as presented above. Details of the memory communication of this
processing unit were presented below. Although, it should be noted that this memory
communication was superficially evaluated among its viability in a real application. In
future works, this memory will be better explored and optimized, if necessary.

As previously mentioned, the ME encoding tool requires a high memory commu-
nication to process 3D videos with high-resolution, since it requires the samples from
several candidates from the Search Area. This was a problem for many hardware
designs that evaluate the several block sizes allowed by the 3D-HEVC independently.
However, since this work adopted a scheme that all block sizes are processed together,
the memory communication can be highly reduced than if processing all block sizes in-
dependently, as presented in section 2.6. The next subsection presents the memory
communication necessary for each unit from the developed architecture.

73

441 Integer ME Unit

The IME Unit processes the higher block sizes inheriting the result of smaller sub-
blocks. As mentioned before, the IME Unit requires the data from 64 sub-blocks of
4x4 samples at each clock cycle for obtaining the result of the smaller sub-blocks.
Considering that the required data comprises the samples of both the Search Area
and the Current Block being processed, and also that each sample has 8 bits width (1
Byte), this results that the IME Unit requires 2,048 Bytes of data per cycle.

4.4.2 Fractional ME Unit

The adopted scheme for the FME Unit interpolates a set of samples from a region
of the SA and evaluates all dependent block sizes in parallel. Considering that the set
of samples from a region to be interpolated contemplates the total of 72 samples (64
+ 8 due to the edge of samples required for the interpolation), the Interpolation Unit
requires 72 Bytes of data per clock cycle.

As previously mentioned, 593 Evaluation Units were adopted in the FME architec-
ture due that each CTU has a total of 593 PUs from different sizes. If each Evaluation
Unit adopts a different connection to the external storage for obtaining the samples of
the current block, a high bandwidth will be required to obtain all these samples. As
an example, considering only the square-shaped PU sizes, this represents 64 samples
per cycle for processing the 64264 Evaluation Unit, 2 x 2 x 32 samples for processing the
32232 Evaluation Units, 4 % 4 x 16 samples for processing the 16216 Units, and 8 x 8 x 8
samples for processing the 8z8 Units, resulting in the total of 960 samples per clock
cycle. Considering all PU sizes supported by the architecture, this strategy may result
in a huge requirement of at 8,384 samples per clock cycle. Therefore, for reducing
this huge memory communication of obtaining the samples of the current block to be
used in the Evaluation Unit, an internal buffer was adopted to store the current block,
being that this internal buffer is filled by the samples requested in the TZS Predictor
step. Thus, any memory communication with the SRAM is necessary for obtaining the
samples of the current block.

4.4.3 Complete ME Unit

As previously mentioned, the IME Unit requires 2,048 samples per clock cycle,
while the FME Unit requires only 72 samples per clock cycle. Figure 41 presents the
memory scheme required for the developed ME architecture, considering this band-
width required for the IME and FME Units and considering that each sample has 8 bits
(MULLER; VETRO, 2014).

When considering only the IME Unit, disregarding the FME, 3,237 clock cycles were
necessary to process each CTU, thus requiring 297.15MHz of operational frequency
to process 3 views of an FHD 1080p video with 30 fps, as presented in section 4.3.

74

(ME Architecture h

J

\.

Figure 41 — Memory scheme required for the developed architecture

Moreover, in each of those clock cycles, 2,048 Bytes of data are required for the IME
processing. Thus, for the frequency of 297.15MHz, the IME Unit requires a sustained
memory bandwidth of 608.57 GB/s.

Now, considering both IME and FME units, the ME architecture was scheduled so
that the FME was performed sequentially after the IME, while the IME is idle, thus
requiring a total of 6,917 clock cycles to performs the ME to each CTU, as presented
in Section 4.3. So, the developed architecture requires the maximum storage access
of 2,048 Bytes per cycle (given by IME processing). Considering that the developed
ME architecture requires an operating frequency of 634.98 MHz, it requires a memory
throughput of 1300.440 GB/s to process three views of FHD 1080p videos at 30 fps.

Therefore, to supply this high memory communication and feed the samples re-
quired when adopting both IME and FME Units, or even adopting only the IME Unit, an
SRAM memory was required between the ME architecture and the External Memory,
as can be seen on Figure 41. These SRAM stores a total of 44,096 Bytes since it was
used to buffer the samples of both the current block and from the SA.

The complete 44,096 Bytes of the SRAM buffer must be updated with the sam-
ples of the new current block and its related SA at each new CTU to be processed.
Although, neighboring CTUs share up to 2/3 of the samples from the Search Area.
Therefore, considering the Level-C scheme (Ching-Yeh Chen et al., 2006), only the
13,333 new samples of the Search Area, and the 4,096 samples of the current block,
needs to be updated.

When considering only the IME unit, disregarding the FME, the update of the 17,429
new Bytes of the SRAM could occur in two forms: 1) By dedicating some clock cycles
to perform the update between the end of the processing of one CTU and the start of
the processing of a new CTU, which may require a small increase in the operational
frequency, or 2) By performing the update while the TZS performs the lasts iteration
of the Refinement Step when the samples of the SA can be discarded. Thus, in both
forms, considering updating all 17,429 new Bytes in 192 clock cycles, a bandwidth
fewer than 91 Bytes per cycle are sulfficient for supply the SRAM buffer with its new

samples.

When considering both IME and FME Units presented, this data update can be
performed in parallel to the FME processing, due to the adoption of the internal buffer
to store the current block. This way, after the FME process each region, its related
samples of the region can be discarded and updated with its new 4,096 samples. Since
each region was processed in 408 clock cycles, these 4,096 samples can be updated
in less than 11 Bytes per cycle.

After presenting the developed ME architecture, the next chapter presents the re-
sults of the developed architecture and compares it with the results of related works
from the literature.

5 RESULTS AND COMPARISONS

The developed architecture was described in VHDL and the ASIC was synthesized
for 40nm TSMC standard-cells technology using the Cadence RTL Compiler. The ob-
tained power results presented below considers the total power dissipation, composed
by the sum of leakage and dynamic power. The dynamic power results were computed
considering the default switching activity of the Cadence RTL Compiler tool, which
corresponds to a transition of 20% in each input of architecture (PERLEBERG et al.,
2018). The area results presented are equivalent to the number of NAND-2 gates. For
that, it was computed the quotient between the cell area and the size of one NAND
gate with two inputs. Thus, the number of NAND-2 gates can be fairly compared with
the results of other works that adopt different technologies.

Two synthesis processes were performed. The first process considers only the IME
Unit, disregarding the FME, while the second process considers both IME and FME.
The next two subsections discuss, in detail, the results of each synthesis process.

5.1 IME Unit Results and Comparisons

The first process considers the adoption of only the IME Unit. By disregarding
the FME, the proposed IME algorithm results in an impact in the encoding efficiency
of 17.93% and 17.712% considering the BD-rate metric for NCO and FCO schemes,
respectively, as evaluated in Chapter 3. When adopting an FME Unit, like the one
presented in this paper, this BD-rate impact can be reduced to up to 8.945% and
8.766% considering NCO and FCO schemes, respectively.

The synthesis results show that the developed architecture can reach a maximum
frequency of 2.377 GHz. Considering that the IME requires a maximum of 3237 clock
cycles to process each CTU, the developed IME can process up to three views of a
UHD 2160p video at 60 frames per second.

Therefore, the synthesis was performed considering three different target fre-
quency: 1) at the maximum frequency of 2.377GHz, with which the architecture can
process up to three views of a UHD 2160p video at 60 frames per second. 2) at the

77

frequency of 297.15MHz, with which the architecture can process three views of an
FHD 1080p video at 30 frames per second, the major frequency of the 3D-HEVC Com-
mon Test Conditions (MULLER; VETRO, 2014). 3) at the frequency of 990.52MHz, an
average between the two frequencies above, with which the IME architecture can pro-
cess five views of an FHD 1080p video at 60 fps. The results of these three synthesis
are presented in Table 8, which shows the target frequency and its respective target
resolution, and the results among the Cell Area measured in the equivalent number of
NAND-2 gates, and the total power dissipation.

Table 8 — Synthesis results according to each synthesis performed and target fre-

quency
Target Target Cell Area Total Power
Frequency Resolution (k gates) (mW)
297.15MHz 3 Views 269 108.48
1080p @30fps
990.52MHz S Views 269 247.89
1080p @60fps
2.377GHz 3 Views 280 312.81
2160p @60fps

As can be seen in Table 8, the developed 3D-HEVC IME Unit requires 269k gates,
with a total power dissipation of 108.48mW when running at 297.15 MHz. When run-
ning at 990.52MHz, the IME architecture has a total power dissipation of 247.89mW.
Yet, when running at its maximum frequency of 2.377GHz, the developed IME dissi-
pates 312.81mW. Moreover, can be seen by the results in Table 8 that for reaching
its maximum frequency, the developed IME architecture requires 4.09% more NAND-2
gates.

Table 9 presents the results of the developed hardware along with the results of
other works proposing hardware architectures only for the IME encoding tool, disre-
garding the FME tool. It should be noted that all these related works were focused
on the HEVC encoding standard. Thus, for a fairer comparison, the throughput of the
developed architecture considering the processing of only the texture channel of one
view.

As can be seen, MEDHAT; SHALABY; SAYED (2015) and LIAO; SHEN; TSENG
(2019) have proposed architectures that adopt an algorithm that shares similarities
to the Full Search algorithm. Both these works propose a search range reduction,
thus requiring a small SRAM size than the developed hardware. However, the devel-
oped hardware requires fewer area resources than these two works, even compared

78

Table 9 — Comparative results for IME encoding tool considering only the processing

of texture channel

Related MEDHAT LIAO GU FAN Developed
Works (2015) (2019) (2019) (2018) Hardware
Video Coding HEVC | HEVC | HEVC | HEVC | 3D-HEVC
Standard
BMA Full Full . Modified | Master-Slave
Diamond
Algorithm Search Search TZS TZS
Search Range -27+27 -32+32 -16+16 -64+64 -64+64
SRAM size 10kB 8kB 6.75kB 147.20kB 40.96kB
ASIC 65nm 90nm 65nm 65nm’ 40nm
Technology TSMC TSMC TSMC TSMC
Supported Al | SauareE e Al Al
PU Sizes Symetric
Area (Gates) 454k 274.5k 225.7k 489.4k 269k
Maximum 2160p 2160p 2160p 2160p 2160p
Throughput 30fps 30fps 139fps 30fps 150fps
Frequency | 5, 100.5 500 500 198.12
2160p | (MHz)
30f
ps | Power N.A. N.A. N.A. 128.5 81.74
(mW)

' Standard-cells library was not mentioned in the paper

2 The MVD format was disabled

N.A. - Not Available

with LIAO; SHEN; TSENG (2019), which disregards the processing of Asymmetric PU
sizes. Both MEDHAT; SHALABY; SAYED (2015) and LIAO; SHEN; TSENG (2019) do

not present the power dissipation results of its proposed architectures.

The work GU et al. (2019) has presented an architecture that adopts a BMA al-
gorithm following a Diamond scheme. It adopts a Search Range of only 16 samples
around the center of the SA, thus it requires a smaller SRAM than the developed hard-
ware. It requires a smaller gate count than the developed hardware, and it processes
only Square-shaped PUs. Moreover, GU et al. (2019) can process 139 fps of UHD
2160p videos, while the developed hardware can process 150 fps for the same res-
olution. Also, GU et al. (2019) does not present the power dissipation results of its
proposed hardware.

79

The hardware proposed by FAN et al. (2018) adopts an algorithm similar to the
expansive search of the TZS algorithm, requiring an SRAM three times higher than
the developed hardware. It also supports the processing of all PU sizes of HEVC.
However, it requires more area resources, and it dissipates a power 57,2% higher than
the developed hardware when processing videos with the same resolution. Moreover,
the developed hardware reaches a maximum throughput 5 times higher than FAN et al.
(2018).

5.2 Complete ME Results and Comparisons

In the second synthesis process, the complete ME architecture presented was con-
sidered. The architecture was divided into six parts to perform the synthesis. The first
part is composed by the IME Unit and the Interpolation Unit, since these units define
the bottleneck of processing each CTU, while the other parts are a set of Evaluation
Units according to the type of the PU supported by the Evaluation Unit, i.e., the other
parts were divided into the Evaluation Units: Square-shaped, Symmetrical-Horizontal,
Symmetrical-Vertical, Asymmetrical-Horizontal, and Asymmetrical-Vertical. The syn-
thesis results of these two processes were presented in Table 10, which shows the
Area results, measured in the number of NAND-2 gates, and the total Power dissipa-
tion obtained in each synthesis, according to the target frequency.

Table 10 — Synthesis results of the complete ME architecture to the target resolution

Target Synthesized Cell Area | Total Power
Resolution Unit (k gates) (mW)
IME Uni
unit & 1,699 358.55
Interpolation Filters
Square 15,743 1,577.32
3 Views Symmetrical Horizontal 29,176 2,824.78
1080p @30fps :)
Symmetrical Vertical 30,480 3,164.01
(634.98MHz) Asymmetrical Horizontal 24,786 2,345.39
Asymmetrical Vertical 26,882 2,604.78
Complete (IME & FME) 128,766 12,874.83

Considering the complete ME architecture running at 634.98MHz, frequency nec-
essary to process 3 views of an FHD 1080p video at 30 fps, the IME Unit and the
Interpolation Filters require 1,699k gates and dissipates 358mW, as can be seen in
Table 10. Table 10 also shows that the set of Square Evaluation Units require 15,743k
gates and dissipates 1.577W, while the other sets of Evaluation Units require between

80

24,786k to 30,480k gates, with a total power dissipation between 2.345W to 3.164W.
Therefore, the complete IME and FME architecture requires 128,766k gates, with a
total power dissipation of 12.873W.

Table 11 presents the results of the complete ME architecture, along with the results
of other works for the HEVC ME encoding tool. Again, the throughput of the developed
architecture was normalized to the processing of only the texture channel and only one
view to allow a fair comparison with the related works. It should be emphasized that the
presented FME is a primary architecture, implemented only to the ME reaches its best
result considering the compression efficiency. The FME results shouldn’t be compared
with the related works since the results of Table 10 already shows that the presented
FME is not practical for real applications. Thus, in future works, a strategy to reduce
the complexity of the FME will be explored.

Table 11 — Comparative results for ME encoding tool when processing only the Texture

channel
Related PERLEBERG XU PASTUSZAK | Developed
Works (2018) (2018) (2016) Hardware
Video Coding HEVC HEVC HEVC 3D-HEVC
Standard
BMA Modified Sub-sampled Modified Master-Slave
Algorithm TZS Full Search TZS TZS
Search 64464 H: -80+80 64464 64464
Range V:-48+48
SRAM size no 75.5kB 76kB 44 1kB
ASIC 45nm 28nm 90nm 40nm
Technology Nangate TSMC TSMC TSMC
Supported Squared 32x32, 16x16 All Al
PU Sizes 32x16, 16x32
Area (Gates) 18,103.0k 1,094.0k 422 .6k 128,766.0k
Frequency | 44 90 350 400 634.98
2160p | (MHz)
30f
ps | Power 140.84 47 293 12.874.83
(mW)

The work XU et al. (2018) presents a ME architecture that adopts a sub-sampled FS
algorithm in IME with a reduced search range of +80 samples for Horizontal and +48
samples for vertical positions. Moreover, the interpolation filters adopted in the FME

81

evaluation of XU et al. (2018) was also simplified to reduce the hardware complexity.
It supports the processing of only four PU sizes. Due to all these complexity reduction
strategies, it reaches an architecture that requires a small area and small power dissi-
pation than the developed hardware. Although, all these strategies can result in a high
impact on encoding efficiency.

In the previous work (PERLEBERG et al., 2018), focused on HEVC, a hardware
architecture adopting the TZS algorithm with several constraints was proposed. How-
ever, in PERLEBERG et al. (2018) no data reuse strategy was adopted, thus only the
four squared PU sizes were processed to reduce complexity. The several PUs of a
CTU were processed in part sequentially, thus it has fewer units when compared with
processing all PUs in parallel. Therefore, as expected, the hardware of PERLEBERG
et al. (2018) requires fewer area resources while it dissipates less power than the de-
veloped hardware.

The algorithm adopted by PASTUSZAK; TROCHIMIUK (2016) applies the TZS al-
gorithm to 828 PUs, and higher PU sizes are predicted based on the results of those 88
PUs. Its FME Unit was also designed to process four 8x8 PUs in parallel. Therefore,
due to its processing is being performed from 828 PUs, its architecture has reached a
small area and power dissipation.

Table 12 presents the results of the related work that proposes hardware solutions
for 3D-HEVC, along with the results of the developed hardware. The work AFONSO
et al. (2019) proposes a hardware architecture for both ME and DE encoding tools.
The hardware architecture proposed in our work can also be used to perform the DE
tool only by selecting as reference frame a frame from a neighboring view. Although,
the evaluations presented in Section 3 were only measured in the ME tool, being its
impact in the encoding efficiency not evaluated in the DE context.

As in the developed hardware, AFONSO et al. (2019) performed several constraints
in the TZS algorithm to reduce the complexity of those tools. It processes the two
encoding tools in parallel, thus it requires a larger SRAM than the required by the
developed hardware. Since it processes only two PU sizes, and due to all constraints
applied in its algorithm, it reached a BD-rate impact of 23.3%. This impact is higher
than the developed hardware disregarding the FME tool, which has reached 17.7% of
BD-rate in the same conditions.

By disregarding the FME tool the developed hardware results in an area resource
99% smaller and a power dissipation 94.8% smaller than the required by the ME of
AFONSO et al. (2019). These expressive results are obtained mainly since the hard-
ware of AFONSO et al. (2019) was developed to evaluates the 2 channels of all 3
views in parallel, thus having several similar instances operating in parallel, and also
since its results considers the implementation of the SRAM memory. Although, when
considering both IME and FME Units, huge area resources are required to process

Table 12 — Results and related works for encoding tools of 3D-HEVC

Developed
Related Afonso
Works (2009) Hardyware
IME Only | IME & FME
Encoding Tool ME & DE ME
BMA Modified Master-Slave
Algorithm TZS TZS
SRAM size ME: 165.87k5 44.1kB
DE: 38.02kB
ASIC 45nm 40nm
Technology Nangate TSMC
Supported 16x16, 32x32 Al
PU Sizes
- . 9% | N :8.9%
I.BD rate FCO: 23.9% NCO: 17.9% CO: 8.9%
impact FCO: 17.7% | FCO: 8.8%
ME: 27,147k
Area (Gates) ’ 269k 128,766.0k
DE: 13,740k
Frequency 100 634.98 634.98
1080p | (MHz2)
30fps ME: 4.800
0.247 12.873
Power W) | pE. 1 648

the fractional candidates, which also results in an increase in power dissipation when
compared with the ME of AFONSO et al. (2019) with a smaller BD-rate impact.

As mentioned, the results of Table 10 shows that the presented FME is not practical
for real applications, since it was implemented to evaluate all fractional blocks consid-
ering all PU sizes supported on HEVC, thus reaching the best encoding efficiency of
ME. There are different strategies that could be adopted in this FME Unit to reduce its
high resources requirement and also its power dissipation, as 1) Reduce the amount
of PU sizes supported for fractional blocks, since traditionally some specific PU sizes
are more common than others (AFONSO et al., 2016a). 2) Evaluating only fractional
blocks at the half position to specific block sizes, thus reducing the size of each Evalu-
ation Unit. 3) Introduce an internal buffer to store the fractional samples, thus enabling
that one Evaluation Unit can process more than one IME vector. Therefore, those
strategies will be better explored in future work.

6 CONCLUSION

This work presented an energy-efficient hardware design for the Integer Motion
Estimation encoding tool adopting reuse strategies for data and operations, which al-
lows the processing of all PU sizes supported on 3D-HEVC with a reduced memory
communication. The developed hardware adopts the TZS algorithm, the default BMA
algorithm used in 3D-HEVC Reference Software, with some hardware constraints to
reduce its high complexity. The TZS was applied over the 64264 PUs, and all smaller
PUs evaluate the same candidates evaluated by the 64264 PUs. Therefore the devel-
oped hardware explores operations reuse strategies to evaluate all possible partitions
of each candidate in parallel, by computing the similarity value to small blocks and
accumulating these similarity values to compose the similarity values of higher PUS.
A Fractional Motion Estimation unit was also presented, with adopts some data reuse
strategies to reduce the memory communication to process all PU sizes. The FME per-
forms the interpolation of each region of the Search Area one time, and all candidate
blocks that depend on the fractional sample interpolated are processed in parallel. The
architecture was described in VHDL and synthesized for ASIC using the 40nm TSMC
standard-cells library. The synthesis results show that the developed IME hardware
can reach the processing of up to 5 views of UHD 2160p videos at 60 frames per
second while dissipating 312.81mW and requiring 280k gates. The IME architecture
requires the lowest gate count among the IME related works that process all PU sizes
supported on HEVC. The developed IME also results in a hardware 99% smaller with a
power dissipation 94.8% smaller than the unique work proposing hardware implemen-
tation for the 3D-HEVC Motion Estimation. The presented FME unit was not practical
for real applications, since it adopts high parallelism to reach its best encoding ef-
ficiency, thus resulting in requiring a huge amount of hardware resources with high
power dissipation. Therefore, in future works, strategies of reducing the FME complex-
ity will be explored, mainly adopting some strategies on FME of specific PU sizes, but
also enabling that one Evaluation Unit can process more than one IME vector, thus
better using the hardware resources.

REFERENCES

AFONSO, V. High-Throughput Dedicated Hardware Design Targeting the 3D-
HEVC-Prediction Coding Tools. 2019. 204p. Tese de Doutorado — Universidade
Federal do Rio Grande do Sul, Porto Alegre.

AFONSO, V.; CONCEICAO, R.; SALDANHA, M.; BRAATZ, L.; PERLEBERG, M.;
CORREA, G.; PORTO, M.; AGOSTINI, L.; ZATT, B.; SUSIN, A. Energy-Aware Motion
and Disparity Estimation System for 3D-HEVC With Run-Time Adaptive Memory Hi-
erarchy. IEEE Transactions on Circuits and Systems for Video Technology, [S.l],
v.29, n.6, p.1878-1892, June 2019.

AFONSO, V.; MAICH, H.; AUDIBERT, L.; ZATT, B.; PORTO, M.; AGOSTINI, L.; SUSIN,
A. Hardware Implementation for the HEVC Fractional Motion Estimation Targeting
Real-Time and Low-Energy. Journal of Integrated Circuits and Systems, [S.1.], v.11,
n.2, p.106—-120, 2016.

AFONSQO, V.; MAICH, H.; AUDIBERT, L.; ZATT, B.; PORTO, M.; AGOSTINI, L.; SUSIN,
A. Hardware Implementation for the HEVC Fractional Motion Estimation Targeting
Real-Time and Low-Energy. Journal of Integrated Circuits and Systems, [S...], v.11,
n.2, p.106—120, 2016.

AFONSO, V.; SUSIN, A.; PERLEBERG, M.; CONCEICAOQ, R.; CORREA, G.; AGOS-
TINI, L.; ZATT, B.; PORTO, M. Hardware-Friendly Unidirectional Disparity-Search Al-
gorithm for 3D-HEVC. In: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND
SYSTEMS (ISCAS), 2018., 2018. Anais... [S.l.: s.n.], 2018.

AGOSTINI, L. V. Desenvolvimento de Arquiteturas de Alto Desempenho dedi-
cadas a compressao de video segundo o Padrao H.264/AVC. 2007. 173p. Tese
de Doutorado — Universidade Federal do Rio Grande do Sul, Porto Alegre.

AMISH, F.; BOURENNANE, E.-B. An efficient hardware solution for 3D-HEVC intra-
prediction. Journal of Real-Time Image Processing, [S.l.], v.16, p.1559-1571, 2019.

BJONTEGAARD, G. Improvements of the BD-PSNR model. In: VCEG MEETING, 35.,
2008, Berlin. Anais... ITU-T SG16, 2008.

Ching-Yeh Chen; Chao-Tsung Huang; Yi-Hau Chen; Liang-Gee Chen. Level C+ data
reuse scheme for motion estimation with corresponding coding orders. IEEE Transac-
tions on Circuits and Systems for Video Technology, [S.l.], v.16, n.4, p.553-558,
April 2006.

FAN, Y.; HUANG, L.; HAO, B.; ZENG, X. A Hardware-Oriented IME Algorithm for HEVC
and lts Hardware Implementation. IEEE Transactions on Circuits and Systems for
Video Technology, [S.l.], v.28, n.8, p.2048—2057, Aug 2018.

FEHN, C. Depth-image-based rendering (DIBR), compression, and transmission for a
new approach on 3D-TV. In:. STEREOSCOPIC DISPLAYS AND VIRTUAL REALITY
SYSTEMS XI, 2004. Anais... SPIE, 2004.

Goncalves, P.; Porto, M.; Zatt, B.; Agostini, L.; Correa, G. Octagonal-Axis Raster Pat-
tern for Improved Test Zone Search Motion Estimation. In: IEEE INTERNATIONAL
CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP),
2018., 2018. Anais... [S.l.: s.n.], 2018. p.1763-1767.

GOPALAKRISHNA, S.; HANNUKSELA, M. M.; GABBOUJ, M. Flexible Coding Order
for 3D video extension of H.265/HEVC. In: PICTURE CODING SYMPOSIUM (PCS),
2013., 2013. Anais... [S.l.: s.n.], 2013. p.253—-256.

GU, C.; HUANG, L.; ZENG, X.; FAN, Y. A Micro-Code-Based Hardware Architecture of
Integer Motion Estimation for HEVC. In: IFIP/IEEE 27TH INTERNATIONAL CONFER-
ENCE ON VERY LARGE SCALE INTEGRATION (VLSI-SOC), 2019., 2019. Anais...
[S.l.:s.n.], 2019. p.269-274.

HEVC. 3D High Efficiency Video Coding. Disponivel em:
<https://hevc.hhi.fraunhofer.de/3dhevcs>. Acesso em: 2020-02-24.

ITU-T. H.265 High efficiency video coding. [S.l.]: Recommendation ITU-T, 2013.

JCT-3V. 3D-HEVC Reference Software. Disponivel em:
<https://hevc.hhi.fraunhofer.de/svn/svn_3DVCSoftware/>. Acesso em: 2020-02-24.

JCT-VC. HEVC Reference Software. Disponivel em:
<https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/>. Acesso em: 2020-02-
24.

JCT-VC. High Efficiency Video Coding. Disponivel em:
<https://hevc.hhi.fraunhofer.de>. Acesso em: 2020-02-24.

KAUFF, P; ATZPADIN, N.; FEHN, C.; MULLER, M.; SCHREER, O.; SMOLIC, A;
TANGER, R. Depth Map Creation and Image-Based Rendering for Advanced 3DTV
Services Providing Interoperability and Scalability. Image Commun., USA, v.22, n.2,
p.217-234, Feb. 2007.

LI, X.; WANG, R.; WANG, W.; WANG, Z.; DONG, S. Fast motion estimation methods
for HEVC. In: IEEE INTERNATIONAL SYMPOSIUM ON BROADBAND MULTIMEDIA
SYSTEMS AND BROADCASTING, 2014., 2014. Anais... [S.l.: s.n.], 2014. p.1-4.

LIAO, T.-T.; SHEN, C.-A.; TSENG, Y.-H. The algorithm and VLSI architecture of a high
efficient motion estimation with adaptive search range for HEVC systems. Journal of
Real-Time Image Processing, [S.l.], Jun 2017.

LIAO, T.-T.; SHEN, C.-A.; TSENG, Y.-H. The algorithm and VLSI architecture of a high
efficient motion estimation with adaptive search range for HEVC systems. Journal of
Real-Time Image Processing, [S.l.], v.16, p.1943—-1958, June 2019.

LIN, J.; CHEN, Y.; HUANG, Y.; LEI, S. Motion Vector Coding in the HEVC Standard.
IEEE Journal of Selected Topics in Signal Processing, [S.l.], v.7, n.6, p.957-968,
Dec 2013.

MEDHAT, A.; SHALABY, A.; SAYED, M. S. High-throughput hardware implementation
for motion estimation in HEVC encoder. In: IEEE 58TH INTERNATIONAL MIDWEST
SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2015., 2015. Anais...
[S.l.: s.n.], 2015.

MIANO, J. Compressed Image File Formats: JPEG, PNG, GIF, XBM, BMP. [S.L.]:
Addison-Wesley Professional, 1999.

MULLER, K.; VETRO, A. Common Test Conditions of 3DV Core Experiments. San
Jose: Standard JCT3V-G1100, 2014.

PASTUSZAK, G.; TROCHIMIUK, M. Algorithm and architecture design of the motion
estimation for the H. 265/HEVC 4K-UHD encoder. Journal of Real-Time Image Pro-
cessing, [S.l.], v.12, n.2, p.517-529, Ago 2016.

PERLEBERG, M.; AFONSO, V.; CONCEICAO, R.; SUSIN, A.; AGOSTINI, L.; ZATT,
B.; PORTO, M. A Power-Efficient and High-Throughput Hardware Design for 3D-HEVC
Disparity Estimation. In: SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEMS
DESIGN (SBCCI), 2018., 2018. Anais... [S.l.: s.n.], 2018.

PERLEBERG, M.; AFONSO, V.; CONCEICAO, R.; SUSIN, A.; AGOSTINI, L.; ZATT,
B.; PORTO, M. High-Throughput Hardware Design for 3D-HEVC Disparity Estimation.
IEEE Design Test, [S.l.], 2019.

PERLEBERG, M. R.; AFONSO, V.; CONCEICAO, R.; SUSIN, A.; AGOSTINI, L.;
PORTO, M.; ZATT, B. Energy and Rate-Aware Design for HEVC Motion Estimation
Based on Pareto Efficiency. Journal of Integrated Circuits and Systems, [S.1.], v.13,
n.1, Aug. 2018.

PERLEBERG, M. R.; GOEBEL, J. W.; MELO, M. S.; AFONSO, V.; AGOSTINI, L. V,;
ZATT, B.; PORTO, M. ASIC power-estimation accuracy evaluation: A case study using
video-coding architectures. In: IEEE 9TH LATIN AMERICAN SYMPOSIUM ON CIR-
CUITS SYSTEMS (LASCAS), 2018., 2018. Anais... [S.l.: s.n.], 2018.

PORTO, M. S. Desenvolvimento algoritmico e arquitetural para a estimacao de
movimento na compressao de video de alta definicao. 2012. 166p. Tese de
Doutorado — Universidade Federal do Rio Grande do Sul, Porto Alegre.

SANCHEZ, G.; FERNANDES, R.; CATALDO, R.; AGOSTINI, L.; MARCON, C. Low
Area Reconfigurable Architecture for 3D-HEVC DMMs Decoder Targeting 1080p
Videos. In: IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS
AND SYSTEMS (ICECS), 2018., 2018. Anais... [S.l.: s.n.], 2018. p.201-204.

SANCHEZ, G.; MARCON, C.; AGOSTINI, L. Real-time scalable hardware architecture
for 3D-HEVC bipartition modes. Journal of Real-Time Image Processing, [S.l.], v.13,
p.71-83, 2017.

SZE, V.; BUDAGAVI, M.; SULLIVAN, G. J. (Ed.). High Efficiency Video Coding
(HEVC). [S.l.]: Springer International Publishing, 2014.

TECH, G.; CHEN, Y.; MULLER, K.; OHM, J.; VETRO, A.; WANG, Y. Overview of the
Multiview and 3D Extensions of High Efficiency Video Coding. IEEE Transactions on
Circuits and Systems for Video Technology, [S.l.], v.26, n.1, p.35-49, Jan 2016.

TOSHIBA. ZL2* Digital Series. Disponivel em: <http://www.toshiba-
om.net/pdf/manuals/Icdtv/English/Country Specific/ZL2-55-English-Specific.pdf>.
Acesso em: 2020-03-15.

WIEGAND, T.; SULLIVAN, G. J.; BJONTEGAARD, G.; LUTHRA, A. Overview of the
H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems for
Video Technology, [S.l.], v.13, n.7, p.560-576, July 2003.

XU, K.; HUANG, B.; LIU, X.; TU, X.; WU, Z.; YAN, Z,; LIU, P; HAN, B.; LI, Y. A
Low-power Pyramid Motion Estimation Engine for 4K@30fps Realtime HEVC Video
Encoding. In: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS
(ISCAS), 2018., 2018. Anais... [S.l.: s.n.], 2018. p.1—4.

UCKER, M.; AFONSO, V.; AUDIBERT, L.; SUSIN, A.; ZATT, B.; PORTO, M.; AGOS-
TINI, L. Low-Power and High-Throughput Architecture for 3D-HEVC Depth Modeling
Mode 4. In: SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEMS DESIGN
(SBCCI), 2018., 2018. Anais... [S.l.: s.n.], 2018.

APPENDIX A —LIST OF PUBLICATIONS DURING THIS MASTERS DEGREE

During this masters degree, one work was accepted for publication on a conference,
and two works were accepted for publication in relevant periodic:

 Title: A Power-Efficient and High-Throughput Hardware Design for 3D-HEVC
Disparity Estimation.
Conference: 2018 Symposium on Integrated Circuits and Systems Design
(SBCCI)
Authors: Murilo Perleberg, Vladimir Afonso, Ruhan Conceigao, Altamiro Susin,
Luciano Agostini, Bruno Zatt, and Marcelo Porto
Qualis: B2

« Title: High-Throughput Hardware Design for 3D-HEVC Disparity Estimation.
Periodic: 2019 IEEE Design & Test
Authors: Murilo Perleberg, Vladimir Afonso, Ruhan Conceigéo, Altamiro Susin,
Luciano Agostini, Bruno Zatt, and Marcelo Porto
Qualis: A1

« Title: 6WR: a Hardware Friendly 3D-HEVC DMM-1 Algorithm and its Energy-
Aware and High-Throughput Design.
Periodic: 2020 IEEE Transactions on Circuits and Systems |l: Express Briefs
Authors: Murilo Perleberg, Vinicius Borges, Vladimir Afonso, Daniel Palomino,
Luciano Agostini, and Marcelo Porto
Qualis: A2

	Introduction
	Basic Concepts and Motivation
	Digital Videos
	3D-High Efficiency Video Coding
	3D-HEVC Characteristics and Features
	3D-HEVC Encoding Process

	Motion Estimation Algorithms
	Integer Motion Estimation
	Fractional Motion Estimation

	Complexity Analysis
	Related Works
	Main Motivation

	Software Evaluations
	Experimental Setup
	Hardware-Oriented Constraints Evaluation
	ME Hardware Constraints (1L)
	TZS Hardware Constraints (2L)
	TZS Master-Slave (3L)
	Full Splitting (4L)
	Modified Approach for the FME (5L)

	Experiments Conclusions

	Proposed Motion Estimation Hardware Architecture
	Integer Motion Estimation
	Test Zone Search Implementation
	SAD Tables

	Fractional Motion Estimation
	Interpolation Unit
	Evaluation Unit

	IME and FME Synchronism
	Memory Management
	Integer ME Unit
	Fractional ME Unit
	Complete ME Unit

	Results and Comparisons
	IME Unit Results and Comparisons
	Complete ME Results and Comparisons

	Conclusion
	References
	LIST OF PUBLICATIONS DURING THIS MASTERS DEGREE

