
UNIVERSIDADE FEDERAL DE PELOTAS
Centro de Desenvolvimento Tecnológico

Programa de Pós-Graduação em Computação

Dissertação

EXEHDA-DEP: Uma Arquitetura para o Processamento Distribuído de Eventos
Complexos

Weslen Schiavon de Souza

Pelotas, 2020

Weslen Schiavon de Souza

EXEHDA-DEP: Uma Arquitetura para o Processamento Distribuído de Eventos
Complexos

Dissertação apresentada ao Programa de Pós-
Graduação em Computação do Centro de De-
senvolvimento Tecnológico da Universidade Fe-
deral de Pelotas, como requisito parcial à obten-
ção do título de Mestre em Ciência da Computa-
ção.

Orientadora: Profa. Dra. Ana Marilza Pernas

Pelotas, 2020

Universidade Federal de Pelotas / Sistema de Bibliotecas
Catalogação na Publicação

S719e Souza, Weslen Schiavon de
SouEXEHDA-DEP : uma arquitetura para o processamento
distribuído de eventos complexos / Weslen Schiavon de
Souza ; Ana Marilza Pernas, orientadora. — Pelotas, 2020.
Sou84 f.

SouDissertação (Mestrado) — Programa de Pós-Graduação
em Computação, Centro de Desenvolvimento Tecnológico,
Universidade Federal de Pelotas, 2020.

Sou1. Processamento de eventos complexos. 2.
Processamento de eventos distribuído. 3. Internet das
coisas. I. Pernas, Ana Marilza, orient. II. Título.

CDD : 005

Elaborada por Maria Inez Figueiredo Figas Machado CRB: 10/1612

Weslen Schiavon de Souza

EXEHDA-DEP: Uma Arquitetura para o Processamento Distribuído de Eventos
Complexos

Dissertação aprovada, como requisito parcial, para obtenção do grau de Mestre em
Ciência da Computação, Programa de Pós-Graduação em Computação, Centro de
Desenvolvimento Tecnológico, Universidade Federal de Pelotas.

Data da Defesa: 25 de Março de 2020

Banca Examinadora:
Profa. Dra. Ana Marilza Pernas (orientadora)
Doutora em Computação pela Universidade Federal do Rio Grande do Sul.

Prof. Dr. Adenauer Correa Yamim
Doutor em Computação pela Universidade Federal do Rio Grande do Sul.

Prof. Dr. Andre Rauber Du Bois
Doutor em Ciência da Computação pela Universidade de Heriot-Watt.

Prof. Dr. João Ladislau Barbará Lopes
Doutor em Ciência da Computação pela Universidade Federal do Rio Grande do Sul.

Dedico aos meus pais, os quais proporcionaram que
tudo fosse possível.. . .

AGRADECIMENTOS

Agradeço primeiramente aqueles sem os quais eu jamais estaria presente, meus
pais, Rosângela e Valdirnei, eles que sempre se esforçaram para me proporcionar as
melhores oportunidades de ensino e sempre me incentivaram a seguir em frente.

A minha namorada Diulie pelas muitas revisões e correções de ortografia.
Aos meus amigos e professores que de alguma forma contribuíram para que este

trabalho fosse possível, agradeço a todos.

O homem erudito e um descobridor de fatos que já exis-
tem, mas o homem sábio é um criador de valores que não
existem e que ele faz existir.

— ALBERT EINSTEIN

RESUMO

SOUZA, Weslen Schiavon de. EXEHDA-DEP: Uma Arquitetura para o Proces-
samento Distribuído de Eventos Complexos. Orientadora: Ana Marilza Pernas.
2020. 84 f. Dissertação (Mestrado em Ciência da Computação) – Centro de Desen-
volvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, 2020.

Com o advento de novos avanços tecnológicos, a Internet das Coisas (termo
traduzido do inglês Internet of Things - IoT) tem se mostrado cada vez mais presente,
onde a introdução da computação aos mais variados dispositivos, como geladeiras
e cafeteiras, visa oferecer aos seus usuários melhorias e funcionalidades adicionais
as já naturalmente esperadas por estes equipamentos. Porém, existem ainda alguns
desafios inerentes à IoT, os quais precisam ser transpostos para que esta possa
tornar-se uma realidade onipresente a todos os tipos de usuários, sejam estes
especialistas da área ou não.

Alguns paradigmas e técnicas computacionais então sendo introduzidos na IoT vi-
sando conceber soluções para seus desafios. Dentre estas abordagens destacam-se
as aplicadas ao processamento de eventos, que objetivam auxiliar a análise e a ex-
tração de informações de alto nível do considerável volume de dados gerado nestas
redes de dispositivos, e ao desenvolvimento de middlewares, aplicados com a fina-
lidade de abstrair a heterogeneidade inerente aos ambientes de IoT. Foram identifi-
cados trabalhos que abordam estratégias visando fornecer arquiteturas de processa-
mento de eventos para a IoT, porém estes não levam em consideração a execução
de suas arquiteturas em meios com largura de banda reduzida ou que possuam links
de comunicação saturados. Ainda, por vezes apresentam pouco ou nenhum teste de
validação da capacidade de escalabilidade e distribuição da arquitetura.

Este trabalho tem como objetivo apresentar uma solução, materializada em uma
arquitetura, para o processamento distribuído de eventos na IoT, que seja escalável
e apta a lidar com a heterogeneidade destes ambientes, aplicando ainda estratégias
que visem favorecer a sua execução em meios com largura de banda reduzida ou que
possuam links de comunicação saturados.

Os objetivos puderam ser atingidos por meio da concepção da EXEHDA-DEP, uma
arquitetura para o processamento distribuído de eventos complexos, na qual os re-
sultados demonstraram uma considerável capacidade de processamento de eventos
auxiliada pela introdução de algoritmos de compactação e uma estratégia de compar-
tilhamento de trabalho concorrente entre os nodos de processamento ao modelo de
um produtor-consumidor.

Palavras-chave: Processamento de Eventos Complexos. Processamento de Eventos
Distribuído. Internet das Coisas.

ABSTRACT

SOUZA, Weslen Schiavon de. EXEHDA-DEP: An Architecture for Distributed Pro-
cessing of Complex Events. Advisor: Ana Marilza Pernas. 2020. 84 f. Dissertation
(Masters in Computer Science) – Technology Development Center, Federal University
of Pelotas, Pelotas, 2020.

With the advent of new technological advances, the Internet of Things (IoT) has
shown itself to be increasingly present, where the introduction of computing to the
most varied devices, such as refrigerators and coffee makers, aims to offer its users
improvements and additional features to those already naturally expected by this
equipment. However, there are still some challenges inherent to IoT, which need to
be overcome so that it can become a ubiquitous reality for all types of users, whether
these experts in the field or not.

Some paradigms and computational techniques then being introduced in the IoT in
order to devise solutions for your challenges. Among these approaches, those applied
to event processing stand out, which aim to assist the analysis and extraction of high-
level information from the considerable volume of data generated in these device net-
works, and to the development of middleware, applied with the purpose of abstracting
the inherent heterogeneity in IoT environments. Studies were identified that address
strategies aimed at providing event processing architectures for the IoT, but these do
not take into account the execution of their architectures in mediums with reduced
bandwidth or that have saturated communication links. Yet, sometimes they present
little or no validation test of the architecture’s scalability and distribution capacity.

This work aims to present a solution, materialized in an architecture, for the dis-
tributed processing of events in the IoT, which is scalable and able to deal with the
heterogeneity of these environments, also applying strategies that aim to favor its exe-
cution in media with width of reduced bandwidth or that have saturated communication
links.

The objectives could be achieved through the design of EXEHDA-DEP, an architec-
ture for the distributed processing of complex events, in which the results demonstrated
a considerable event processing capacity aided by the introduction of compression al-
gorithms and a work-sharing strategy competitor between the processing nodes to the
model of a producer-consumer.

Keywords: Complex Event Processing. Distributed Event Processing. Internet of
Things.

LISTA DE FIGURAS

1 Relação associativa entre os conceitos. 22

2 Strings de buscas usadas. 26
3 Percentual de publicações encontradas por base. 27
4 Número de publicações encontradas por base. 27
5 Quantidade de publicações de interesse por ano. 28
6 Fluxo de triagem dos artigos. 31
7 Comparativo entre os artigos selecionados. 39

8 Gerenciamento de um Ambiente Ubíquo pelo EXEHDA. 41
9 Arquitetura EXEHDA. 41
10 Arquitetura EXEHDA-SA. 43

11 Fluxo de comunicação padrão. 46
12 Comparativo de consumo de rede. 47
13 Fluxo de comunicação proposto. 48
14 Arquitetura simplificada Produtor Consumidor. 50
15 Cabeçalho do protocolo MQTT. 50
16 Fluxo de comunicação Apache Kafka. 52
17 Módulos a serem modificados no EXEHDA-SA. 55
18 Nodo de Pré-processamento. 56
19 Nodo Broker. 58
20 Nodo de processamento. 59
21 Visão geral da arquitetura. 60

22 Fluxo de execução do EXEHDA-DEP. 65
23 Escalabilidade Vertical nodo de pré-processamento. 66
24 Escalabilidade Vertical nodo de processamento. 67
25 Escalabilidade horizontal nodo de pré-processamento. 68
26 Escalabilidade horizontal nodo de processamento. 69
27 Estabilidade nodo pré-processamento. 70
28 Estabilidade nodo processamento. 71
29 Consumo de recursos pré-processamento. 72
30 Consumo de recursos processamento. 72
31 Consumo de rede com a distribuição. 74
32 Consumo de rede por algoritmos de compactação. 75
33 Fluxo de processamento com compactação. 76

LISTA DE ABREVIATURAS E SIGLAS

CEML Complex Event Machine Learning

CEP Complex Event Processing

CPU Central Processing Unit

CSV Comma-Separated Values

DAG Directed Acyclic Graph

DUP Duplicate Delivery

EPL Event Processing Language

ESP Event Stream Processing

EXEHDA Execution Environment for Highly Distributed Applications

EXEHDA-HM Execution Environment for Highly Distributed Applications - Hybrid Mo-
deling

EXEHDA-SA Execution Environment for Highly Distributed Applications - Situational
Awareness

HD Hard Disk

HDFS Hadoop Distributed File System

IP Internet Protocol

IoT Internet of Things

JSON Javascript Object Notation

LAs Learning Agents

MQTT Message Queuing Telemetry Transport

QoS Quality of Service

RAM Random Access Memory

SQL Structured Query Language

UbiComp Ubiquitous Computing

UFPel Universidade Federal de Pelotas

SUMÁRIO

1 INTRODUÇÃO . 14
1.1 Motivações . 15
1.2 Objetivos e Contribuições . 16
1.3 Organização do Trabalho . 17

2 EMBASAMENTO TEÓRICO . 18
2.1 Internet das Coisas . 18
2.2 Processamento de Eventos . 20
2.2.1 Processamento de Fluxo de Eventos . 22
2.2.2 Processamento de Eventos Complexos 23

3 ESTADO DA ARTE . 25
3.1 Mapeamento Sistemático da Literatura 25
3.1.1 Critérios de Inclusão e Exclusão . 28
3.2 Trabalhos Relacionados . 32
3.2.1 SAMURAI: A batch and streaming context architecture for large-scale

intelligent applications and environments 32
3.2.2 A Distributed Complex Event Processing System Based on Publish/-

Subscribe . 33
3.2.3 CEML: Mixing and moving complex event processing and machine lear-

ning to the edge of the network for IoT applications 34
3.2.4 Semantic IoT Middleware-enabled Mobile Complex Event Processing for

Integrated Pest Management . 35
3.2.5 Parallel big data processing system for security monitoring in Internet of

Things networks . 36
3.3 Discussão dos Trabalhos Relacionados 37

4 ESCOPO DE DESENVOLVIMENTO . 40
4.1 EXEHDA . 40
4.2 EXEHDA-SA . 42

5 EXEHDA-DEP: CONCEPÇÃO E TECNOLOGIAS 45
5.1 Modelo de Comunicação . 45
5.2 Modelo de Processamento . 47
5.3 Tecnologias Associadas . 49
5.3.1 Protocolo MQTT . 49
5.3.2 Apache Kafka . 51
5.3.3 Apache Spark . 52

5.3.4 Esper . 53
5.4 Concepção da Arquitetura . 53
5.4.1 Nodo de Pré-processamento . 54
5.4.2 Nodo Broker . 56
5.4.3 Nodo de Processamento . 57
5.4.4 Visão geral da arquitetura . 59

6 EXEHDA-DEP: AVALIAÇÕES E RESULTADOS 61
6.1 Cenário de Aplicação . 61
6.1.1 Ambiente de Teste . 62
6.2 Escalabilidade . 65
6.2.1 Escalabilidade Vertical . 65
6.2.2 Escalabilidade Horizontal . 67
6.3 Estabilidade e Consumo de Recursos 69
6.4 Consumo de Rede . 73

7 CONSIDERAÇÕES FINAIS . 78
7.1 Contribuições . 80
7.2 Trabalhos Futuros . 80

REFERÊNCIAS . 81

1 INTRODUÇÃO

A Computação Ubíqua (Ubiquitous Computing - UbiComp) se caracteriza pela in-
tegração da computação ao ambiente de forma onipresente e imperceptível aos seus
usuários, de modo que estes possam interagir com a tecnologia de maneira tão ele-
mentar e transparente quanto possível, visando assim favorecer a interação simpli-
ficada e ocultando perante aos usuários, toda e qualquer complexidade do uso da
tecnologia (KRUMM, 2016).

Um paradigma emergente que tem se mostrado uma materialização da UbiComp
é a Internet das Coisas (Internet of Things - IoT). A IoT consiste da integração de
dispositivos computacionais móveis e com conectividade, a objetos físicos comuns,
como lâmpadas e cafeteiras, proporcionando a inclusão destes dispositivos a redes
sem fio, onde os dados gerados durante o funcionamento destes equipamentos podem
ser coletados e armazenados em nuvem, permitindo o uso de ferramentas para extrair
dados semânticos destas informações e assim fornecer algum novo serviço ao usuário
deste equipamento (HANES et al., 2017).

A IoT tem se popularizado e beneficiado principalmente pelo avanço de diversas
áreas da tecnologia, como a dos sistemas embarcados, a microeletrônica, a comuni-
cação e o sensoriamento. Tais avanços tecnológicos têm favorecido o barateamento
e a elaboração de microcontroladores menores e com maior poder computacional, o
que propiciou a concepção de bibliotecas dedicadas e semanticamente de mais alto
nível aos mesmos, contribuindo para o desenvolvimento e a portabilidade de softwares
que necessitem maior poder computacional (RUIZ-RUBE et al., 2019).

Tais avanços tecnológicos permitiram a integração destes dispositivos aos mais
variados objetos, adicionando “inteligência” a estes, permitindo assim oferecer outros
serviços aos seus usuários, facilitando seu uso, como por exemplo, uma cafeteira que
se liga automaticamente minutos antes de seu usuário acordar, evitando que o mesmo
tenha de ligar a cafeteira e esperar que seu café fique quente.

Algumas previsões mostram que há um crescimento constante no número de dis-
positivos conectados, estimando para 2020 mais de 50 bilhões de equipamentos li-
gados à internet. Tais perspectivas demostram que a IoT não é um futuro longínquo,

15

destacando a relevância dos estudos sobre este paradigma computacional (XAVIER,
2016).

Porém, existem ainda alguns desafios inerentes à IoT que vem dificultando seu
avanço, dentre estes, pode-se citar: o tratamento da heterogeneidade das informa-
ções geradas pelos dispositivos, já que diferentes modelos destes, potencialmente
dispondo de Hardware e recursos distintos, podem estar comunicando-se nestes am-
bientes, sem qualquer tipo de padronização (PARK; ABUZAINAB; SAAD, 2016); o
processamento do considerável volume de eventos produzido por estas redes de dis-
positivos, onde devido a natureza distribuída destes ambientes, torna-se indispensável
a análise dessas informações de forma descentralizada e escalável (KOTENKO; SA-
ENKO; KUSHNEREVICH, 2017); a largura de banda necessária para trafegar o consi-
derável volume de dados geradas nestes ambientes (CHEN; KUNZ, 2016), onde mui-
tas estratégias de processamento de eventos abordam técnicas negligentes quanto
ao consumo de rede.

Alguns paradigmas e técnicas computacionais vem sendo considerados na IoT
visando conceber soluções para estes desafios. Dentre as abordagens comumente
aplicadas a este meio, pode-se citar:

• Processamento de Eventos - paradigma computacional empregado com o ob-
jetivo de auxiliar na análise e extração de informações de alto nível do conside-
rável volume de dados gerado nestas redes de dispositivos (KAMIENSKI et al.,
2019). O conceito de evento adotado neste paradigma normalmente é caracte-
rizado por uma tentativa de alteração de estado do sistema, a qual comumente
inclui, a noção de tempo, localidade e detalhes pertinentes a ação que originou
esta determinada ocorrência, sendo estas informações fundamentais no auxílio
da compreensão das causas ou efeitos desencadeadores (HEINZ et al., 2019).
Dentro deste paradigma surge ainda outros dois conceitos, o processamento de
fluxo de eventos (event stream processing - ESP) e o processamento de eventos
complexos (complex event processing - CEP), onde estes tem adquirido amplo
destaque no desenvolvimento de soluções voltadas para a IoT (YANG, 2017).

• Middlewares da IoT - com a finalidade de abstrair a heterogeneidade destes
ambientes, algumas soluções tem aplicado middlewares para atingir este deter-
minado fim, facilitando por meio destes, por exemplo, o uso dos dados gerados
pelos dispositivos destas redes (RAZZAQUE et al., 2015).

1.1 Motivações

Dentro das motivações tomadas para o desenvolvimento deste trabalho, pode-se
destacar:

16

• A carência de soluções de processamento de eventos para IoT que possuam su-
porte a execução em ambientes com largura de banda reduzida ou que possuam
links de comunicação saturados;

• A necessidade de arquiteturas de processamento de eventos aptas a executarem
em meios altamente distribuídos;

• O desprovimento de arquiteturas de processamento de eventos com a capaci-
dade de lidar com a heterogeneidade dos ambientes da IoT.

Estas motivações citadas por este trabalho foram identificadas com o auxilio da
execução de um mapeamento sistemático, o qual é apresentado no capitulo 3, onde
foi possível perceber por meio deste que alguns trabalhos como (SOTO et al., 2016) e
(NOCERA et al., 2017) abordam estratégias que visam fornecer arquiteturas de pro-
cessamento de eventos aptas a executarem nos ambientes heterogêneos da IoT, po-
rém estes não levam em consideração a execução de suas arquiteturas em meios com
largura de banda reduzida ou que possuam links de comunicação saturados. Ainda,
grande parte dos demais estudos identificados pelo mapeamento sistemático apre-
sentam pouco ou nenhum teste de validação da capacidade da arquitetura escalar e
distribuir, ou ainda, soluções que possuam a capacidade de executar em um ambiente
heterogêneos da IoT.

1.2 Objetivos e Contribuições

No âmbito das motivações citadas, o presente trabalho possui como objetivos prin-
cipais:

• O desenvolvimento de uma arquitetura de processamento de eventos distribuída
com escalabilidade voltada à IoT.

• Uma arquitetura apta a lidar com a heterogeneidade dos dados na IoT.

• A concepção de uma arquitetura de processamento distribuída, capacitada para
executar em ambientes com largura de banda reduzida ou que possuam links de
comunicação saturados pelo considerável volume de dados trafegados.

Já como objetivos específicos, este estudo visa aplicar estratégias que aprimorem
a eficiência do consumo de largura de banda, com o objetivo de proporcionar a aplica-
bilidade desta arquitetura em meios que possuam alguma limitação de rede, seja esta
uma restrição por links de comunicação saturados, onde perdas constantes de paco-
tes são recorrentes (FALL; STEVENS, 2011), ou em uma rede que possua limitações
quanto a largura de banda reduzida.

17

Os objetivos apresentados foram atingidos com a concepção do EXEHDA-
DEP((Execution Environment for Highly Distributed Applications - Distributed Event
Processing)) uma arquitetura de processamento de eventos complexos distribuída
para a IoT, sendo esta apta a lidar com a heterogeneidade proveniente deste meios
bem como de executar em ambientes altamente distribuídos e que possam conter al-
guma restrição de conexão, seja esta limitação gerada pela largura de banda reduzida
ou meios que possuam links de comunicação saturados.

1.3 Organização do Trabalho

No capítulo 2 é apresentado o embasamento teórico necessário para uma me-
lhor compreensão da presente dissertação. Já no capítulo 3 é apresentado ao leitor
os trabalhos relacionados com esta dissertação, identificados por meio da execução
de um mapeamento sistemático. O capítulo 4 contém o escopo de desenvolvimento
da proposta concebida por este trabalho. No capítulo 5 é apresentado o EXEHDA-
DEP uma arquitetura destinada ao processamento distribuído de eventos complexos.
No capítulo 6 é demonstrado os resultados dos testes de avaliação executados no
EXEHDA-DEP. Por fim, no capítulo 7 é abordada uma discussão sobre os resultados
obtidos com a concepção do EXEHDA-DEP.

2 EMBASAMENTO TEÓRICO

Este capítulo tem como objetivo apresentar o embasamento teórico necessário a
compreensão dos trabalhos apresentados no capítulo 3. Na seção 2.1 deste capítulo
será introduzido o embasamento teórico sobre a Internet das coisas, destacando seus
principais objetivos e desafios a serem superados. Por fim, Na seção 2.2 é abordado
o paradigma computacional de processamento de eventos, onde será descrito outros
dois sub-conceitos do mesmo: processamento de fluxo de eventos e o processamento
de eventos complexos.

2.1 Internet das Coisas

A tecnologia computacional tem avançado consideravelmente nos últimos anos,
onde dispositivos móveis de amplo poder computacional com capacidade de se co-
municar em rede, estão se tornando cada vez mais comuns. A popularização do
uso destes dispositivos “inteligentes” tem sido referenciada como Internet das Coisas,
onde este novo paradigma computacional vem mudando a forma como as pessoas
interagem com os objetos de seu cotidiano (XAVIER, 2016).

Deste modo, a IoT pode ser vista como a materialização da Computação Ubíqua,
a qual tem por finalidade fornecer computação com conectividade constante e mo-
bilidade, de forma transparente e integrada ao ambiente, visando assim anexar-se
ao mundo físico, em um esforço para torná-la imperceptível aos usuários, de modo
que estes não percebam que estão dando comandos a uma máquina, removendo do
usuário toda e qualquer responsabilidade perante a complexidade de uso da tecnolo-
gia, necessitando apenas que estes façam uso da mesma (KRUMM, 2016).

A Internet das Coisas tem o potencial de transformar o modo como as pessoas
interagem com o mundo ao seu redor, adicionando “inteligência” aos mais variados
itens do dia a dia, visando assim adicionar a capacidade de fornecer novas funcionali-
dades a estes dispositivos ou mesmo aprimorar as já existentes (HANES et al., 2017).
As áreas de aplicação para a IoT são das mais diversas possíveis: como o uso em
grandes cidades, onde a implementação de dispositivos inteligentes é aderida com o

19

intuito de fornecer diferentes tipos de serviços a sua população, entre estes pode-se
citar o fornecimento de informações sobre o tráfego e de eventos públicos; ainda, a
introdução de dispositivos inteligentes na agricultura, onde comumente estes equipa-
mentos executam um monitoramento preciso sobre as plantas e solo (GONÇALVES,
2017).

Porém, para que a IoT se torne efetivamente uma realidade presente aos mais
diversos ambientes, servindo a todos os tipos de usuários e não apenas a especialis-
tas da área de tecnologia, existem ainda alguns desafios a serem transpassados, dos
quais pode-se citar:

• O tratamento da heterogeneidade das informações geradas pelos dispositivos,
já que estes equipamentos podem apresentar hardwares e recursos totalmente
distintos, o que tende a tornar as informações concebidas muito discrepantes
entre si, tendo em vista que normalmente não há uma padronização no formato
dos dados gerados (AGRAWAL; VIEIRA, 2013);

• O processamento do grande volume de eventos gerados por estas redes de
dispositivos, já que estes ambientes poderão conter dezenas de milhares de dis-
positivos interconectados se comunicando constantemente e gerando dados de
forma ininterrupta, onde estas informações comumente demandam ser proces-
sados e analisados (HANES et al., 2017);

• A largura de banda necessária para trafegar o grande volume de informações
geradas neste ambiente, levando em consideração que estes dispositivos “in-
teligentes” podem estar localizados em áreas remotas, conectados em redes
de baixa largura de banda, como por exemplo em zonas rurais (CHEN; KUNZ,
2016);

• A configuração desses dispositivos, a qual deve ser feita de forma simplificada, já
que usuários finais sem conhecimentos técnicos precisam ser capazes de adici-
onar e remover dispositivos e recursos de uma rede sempre que estes desejarem
(HANES et al., 2017);

• A segurança aplicada sobre estas redes de dispositivos, tendo em vista que
soluções comuns de segurança normalmente não podem ser aplicadas aos dis-
positivos destes ambientes, devido à muitos destes equipamentos apresenta-
rem hardwares simples e de baixo poder computacional, os quais frequente-
mente não tem a capacidade para executar técnicas de criptografias modernas
(AGRAWAL; VIEIRA, 2013).

Com o intuído de se desenvolver técnicas que visem solucionar tais desafios, al-
guns estudos tem aplicado estratégias no auxilio do desenvolvimento destas soluções,
dentre as quais comumente abordadas por estes trabalhos, pode-se destacar:

20

• Processamento de Eventos - este paradigma computacional vem sendo apli-
cado na IoT com o objetivo de favorecer a análise e extração de informações
de alto nível do considerável volume de dados gerados nestes ambientes, os
quais são vistos e modelados neste paradigma como eventos (KAMIENSKI et al.,
2019), sendo este conceito de evento, caracterizado por uma ação de alteração
de estado do sistema, a qual normalmente inclui: noção de tempo, localidade e
detalhes pertinentes a esta ação que deu origem ao evento de interesse (HEINZ
et al., 2019). Estas informações agregada pelos eventos auxiliam na análise dos
dados, sendo assim oportuno sua aplicação em soluções voltadas para a IoT
(HANES et al., 2017).

• Middlewares da IoT - os middlewares são aplicações que atuam como uma
camada mediadora entre um meio e os aplicativos nele executados. Esta fer-
ramente normalmente opera traduzindo as informações deste meio para as de-
mais aplicações, favorecendo o uso simplificado dos serviços e recursos forne-
cidos por este (RAZZAQUE et al., 2015). Estas características tornam oportuno
a agregação de middlewares na IoT, os quais podem facilitar o uso dos dados
gerados nestes ambientes, por aplicações de terceiros, auxiliando assim na abs-
tração da heterogeneidade destes ambientes (HANES et al., 2017).

Estes desafios citados se tornam ainda mais relevantes quando analisado em con-
junto com dados de previsões, as quais demostram que há um crescimento constante
no número de dispositivos conectados, projetando para 2020 mais de 50 bilhões de
equipamentos ligados à internet. Tais dados enfatizam que a IoT não e mais o futuro,
mas sim o presente, tomando de suma importância o desenvolvimento de soluções
que estejam aptas a lidar de forma eficiente com tais desafios citados (XAVIER, 2016).

2.2 Processamento de Eventos

Para que se possa elucidar sobre o paradigma computacional de Processamento
de Eventos há necessidade de se abordar primeiramente o conceito de evento, já
que o mesmo está contido pelo processamento de eventos. Assim, a definição de
evento adotada por este documento consiste na determinação de como a ocorrência
de uma ação específica dentro de um ambiente ocorre, onde esta determinada ação
geralmente envolve uma tentativa de alteração de estado do sistema. Esta mudança
normalmente inclui, a noção de tempo, localidade e detalhes pertinentes ao evento
que desencadeou esta determinada ação, sendo estas informações fundamentais no
auxílio da compreensão das causas ou efeitos desencadeadores (FITZGERALD et al.,
2010).

A um evento pode-se atribuir campos adicionais, que auxiliem na descrição de

21

suas propriedades. Um evento na IoT pode incluir quatro atributos: eventID, event-
Name, eventTime e recordTime. EventID e eventName são normalmente definidos
como registros básicos representando o código identificador do evento e seu nome de
representação. EventTime e recordTime expressam o conceito de tempo no evento,
descrevendo sua hora de ocorrência e de captura respectivamente (MINBO; ZHU;
GUANGYU, 2013).

Tais eventos podem ser empregados em diversos sistemas para se atingir de-
terminados fins, como por exemplo, o uso em ferramentas de monitoramento onde
estes eventos são utilizados para representar mudanças de situações (CRUZ et al.,
2016). Estes sistemas monitorados podem ser representados por conjuntos de sen-
sores, onde por exemplo, em aplicações na agricultura de precisão são usados para
o monitoramento da umidade e acidez do solo, de forma que tais valores emitidos por
estes sensores podem ser vistos como mudanças de estado do ambiente, como uma
mudança brusca na acidez do solo ou em sua umidade, as quais podem ser represen-
tadas como uma mudança de situação de interesse (KAMIENSKI et al., 2019).

Assim com o conceito de evento bem definido e exemplificado, pode-se então citar
que o processamento de eventos é um paradigma computacional onde eventos são
analisados, com o objetivo de extrair informações relevantes e de alto nível destes
dados. Existem diversas áreas com aplicabilidade a serem exploradas pelo proces-
samento de eventos, dentre estas pode-se citar os setores da saúde com o monito-
ramento das condições de saúde dos pacientes onde os diversos eventos precisam
ser processados e analisados (PÉREZ-VEREDA et al., 2018); o setor da agricultura
de precisão, o qual emprega diversos sensores para o monitoramento de plantas, ge-
rando grandes fluxos de eventos que necessitam ser processados (KAMIENSKI et al.,
2019); o setor de energia elétrica, o qual fazendo uso de eventos para o monitora-
mento do consumo excessivo desta, visando atingir uma melhor eficiência energética
(HERDRICH et al., 2018).

O processamento de eventos tem sido empregado em diversos ambientes, com
o objetivo de auxiliar na resolução de problemas distintos presentes nos mesmos.
Normalmente existem algumas similaridades de requisitos exigidos nestes ambientes,
as quais tornam o uso deste paradigma computacional, uma solução em potencial
para os desafios presentes neste ambiente. Dentre as estas similaridades comu-
mente compartilhadas entre estes ambientes distintos, pode-se citar a necessidade
de processar em tempo de execução um volume expressivo de dados (DAYARATHNA;
PERERA, 2018).

A IoT tem se destacado por possuir uma alta aplicabilidade ao processamento
de eventos, onde este é aplicado no âmbito de solucionar problemas de tomadas de
decisão a partir da análise de grandes volumes de eventos gerados nestes ambientes.
Diversas ferramentas foram desenvolvidas para o processamento de eventos, visando

22

auxiliar na análise do extenso volume de dados, dentre estas pode-se citar o Apache
Storm1, Apache Spark2 e Apache Flink3.

O processamento de eventos pode ser subdividido em dois principais conceitos:
o processamento de fluxo de eventos, que se caracteriza por ter a capacidade de
executar operações contínuas como filtros, agregações, classificações e junções, sob
fluxos contínuos de dados; e o processamento de eventos complexos o qual faz uso
de padrões pré definidos, aplicando-os sobre dois ou mais eventos simples, visando
realizar assim a detecção de eventos compostos por meio da informação adicional
de alto nível obtida da associação destes eventos simples (DAYARATHNA; PERERA,
2018).

Na Figura 1 é ilustrada a relação associativa entre estes três paradigmas, onde o
processamento de eventos pode ser visto como um conceito mais genérico e abran-
gente o qual engloba o ESP que por sua vez engloba o CEP.

Figura 1 – Relação associativa entre os conceitos.

2.2.1 Processamento de Fluxo de Eventos

Para uma melhor e simples compreensão do significado de processamento de fluxo
de eventos, pode-se separar este conceito em outros três sub-conceitos:

1. Evento - pode-se definir evento, neste contexto, como qualquer ação que acon-
teça com um tempo claramente definido, onde o mesmo pode ser mensurado.

2. Fluxo - neste contexto é definido como uma sequência contínua de eventos,
sendo esta corrente de eventos claramente ordenada no tempo.

1https://storm.apache.org/
2https://spark.apache.org/
3https://flink.apache.org/

https://storm.apache.org/
https://spark.apache.org/
https://flink.apache.org/

23

3. Processamento - é a ação final de executar a análise sobre o conjunto de infor-
mações capturadas.

Desta forma, com a combinação destes três sub-conceitos pode-se dizer que o
processamento de fluxo de eventos nada mais é que o processo de analisar conti-
nuamente uma sequência constante de dados ordenados pelo tempo (DAYARATHNA;
PERERA, 2018), o qual trata da identificação de padrões ou de relacionamentos signi-
ficativos entre os fluxos de dados analisados, a fim de detectar determinados padrões
como a correlação de eventos, causalidade ou tempo.

Características normalmente presentes em sistemas que possuem aplicabilidade
deste paradigma computacional incluem a necessidade de analisar grandes fluxos de
dados, correlacionando estas informações, aplicando filtros em tempo de execução e
dando uma resposta de forma imediata (APPEL et al., 2013).

2.2.2 Processamento de Eventos Complexos

O processamento de eventos complexos é um paradigma computacional, o qual
normalmente é aplicado para executar o processamento e a análise de conjuntos de
informações em sistemas baseados em eventos, visando assim analisar a interação
destes eventos entre si. Sistemas que empregam este paradigma normalmente apre-
sentam as seguintes características: a necessidade de se verificar e informar a ocor-
rência de um evento composto, isto é, a necessidade de identificar a ocorrência de
duas ações especificas A e B sob determinadas condições e/ou em um intervalo es-
pecifico de tempo. Assim, o sistema deverá ser capaz de notificar a ocorrência destes
eventos sob tais condições, de modo que esta associação de dois ou mais eventos
sob condições especificas pode ser visto como um novo evento C, o qual é semanti-
camente distinto se comparado com os eventos A e B que o originaram.

Assim, pode-se definir mais especificamente o processamento de eventos comple-
xos como o ato de analisar dois ou mais eventos simples, visando assim inferir a partir
da associação destes, um novo evento semanticamente distinto dos anteriores. Deste
modo, pode-se dizer que a partir de uma análise combinatória de eventos simples, o
CEP é capaz de gerar um novo conjunto de informações, semanticamente de mais
alto nível que as informações analisadas (DAYARATHNA; PERERA, 2018).

Se pode exemplificar um cenário de atuação do processamento de eventos com-
plexos como o data center de uma empresa qualquer, onde sensores monitoram o
uso do disco rígido do sistema e o uso de rede, quando repentinamente o consumo
de disco e de rede aumentam consideravelmente, sendo estes definidos pelo admi-
nistrador como eventos de interesse, após a análise associativa destes dados de rede
e disco, o sistema pode “decidir” disparar um novo evento: “possível ataque hacker”
onde a partir do mesmo, os administradores podem tomar alguma decisão com o in-
tuito de mitigar este problema , como por exemplo, desconectar da rede o data center

24

(CRUZ et al., 2016).
Esta capacidade do CEP de extrair informações de alto nível por meio da análise

de um conjunto de eventos, torna favorável a sua implementação em meios que neces-
sitem processar e analisar grandes volumes de dados onde a partir da identificação de
eventos específicos, determinadas ações devem ser tomadas. Características estas
que o tornam oportuno de ser agregado a soluções voltadas para a IoT (HANES et al.,
2017).

3 ESTADO DA ARTE

Neste capítulo apresenta-se o estado da arte das pesquisas que tem como o en-
foque principal o Processamento de Eventos e a Internet das Coisas. Na seção 3.1 é
apresentada a estratégia seguida para a execução do mapeamento sistemático, bem
como todos os passos executados, os quais levaram a escolha dos trabalhos de inte-
resse definidos como base para a elaboração deste texto. A seção 3.2 disserta sobre
os estudos selecionados como mais relevantes ao desenvolvimento deste trabalho.
Por fim, na seção 3.3 é introduzida uma breve discussão sobre as soluções aborda-
das nos trabalhos de interesse definidos.

3.1 Mapeamento Sistemático da Literatura

O mapeamento sistemático abordado neste capítulo é baseado na metodologia
proposta por Petersen et al. (2015), onde seguindo a série de passos propostos, torna
o estudo realizado passível de ser replicado por outros pesquisadores (PETERSEN;
VAKKALANKA; KUZNIARZ, 2015). A partir desta metodologia, pode-se citar cinco
etapas das quais foram seguidas por este mapeamento:

1. Definição dos tópicos de interesse;

2. Execução da pesquisa com os tópicos de interesse para a identificação de estu-
dos primários realizados;

3. Triagem inicial, empregando critérios de inclusão e exclusão considerando o re-
sumo dos artigos;

4. Triagem final, considerando as seções de introdução, concepção do projeto e
conclusão;

5. Extração dos dados e mapeamento.

Para a consulta dos trabalhos relacionados, primeiramente foram definidos tópicos
de interesse a serem pesquisados, dos quais extraiu-se um conjunto de palavras como

26

candidatas a palavras chave, com o objetivo de aplicar estas em uma string de busca.
Esta string agregou as seguintes palavras: internet of things, distributed e complex
event processing.

A partir da definição das palavras chave, foi possível elaborar a string de busca
usada para executar as consultas sobre as bases da: ACM Digital Library, IEEE Ex-
plore, ScienceDirect, Springer, Web of Science e Scopus; e assim obter-se os traba-
lhos relacionados com o tema de pesquisa de interesse. As strings de consulta foram
aplicadas no início do segundo semestre de 2018, as quais podem ser vistas na Figura
2 incluindo as respectivas bases na qual foram executadas.

Figura 2 – Strings de buscas usadas.

Após a execução desta consulta preliminar, que se entende como a etapa de le-
vantamento dos estudos primários relevantes, foram identificados 647 trabalhos de
interesse onde este valor compreende-se da soma dos resultados obtidos em todas
as bases de consulta.

Todas as buscas foram realizadas sobre os metadados dos artigos (título, resumo
e palavras chave), porém, na data da execução deste trabalho, a ferramenta de busca
disponibilizada pela base de dados Springer não oferecia suporte a este tipo de con-
sulta, aplicando a string de busca sobre todas as seções dos artigos(Introdução, resul-
tados, referencias...). Assim, este problema foi contornado da seguinte forma: primei-
ramente foi feita a exportação do resultado preliminar da busca para o formato CSV
(o único suportado) resultando em 472 artigos. Após isto, fez-se uso da ferramenta
CSV2Bib1 para converter o arquivo CSV para .bib com o intuito de importar o resul-
tado, para a ferramenta Zotero2, o que permitiu a execução da string de busca sobre
os metadados dos 472 artigos encontrados preliminarmente pela Springer, resultando
em 6 documentos de interesse. A Figura 3 apresenta o percentual de publicações
que cada uma das bases contribuiu para o montante final, já a Figura 4 apresenta um
gráfico de barras contendo o número de artigos encontrados pela string de busca em
cada uma das bases.

O gráfico 5 apresenta o número total de publicações de interesse por ano encontra-
1https://github.com/jacksonpradolima/csv2bib
2https://www.zotero.org/

https://github.com/jacksonpradolima/csv2bib
https://www.zotero.org/

27

Figura 3 – Percentual de publicações encontradas por base.

Figura 4 – Número de publicações encontradas por base.

das em cada uma das bases, onde para a representação do gráfico foram removidos
todos os trabalhos duplicados. O eixo X apresenta o ano no qual os artigos foram
publicados e o eixo Y apresenta o número total de publicações em relação ao ano.
Pode-se perceber pela Figura 5 que a partir do ano de 2014 há um considerável au-
mento no número de pesquisas cientificas, e ainda um grande pico no ano de 2017,
demonstrando assim pontos de interesse neste período.

Como as buscas foram realizadas no início do segundo semestre de 2018, o nú-
mero de trabalhos encontradas foi inferior ao de 2017, porém considerando que o
número de publicações se mantivesse crescendo constantemente durante o restante
do ano, o número de artigos neste ano superaria facilmente o de 2017, destacando
a relevância da área de pesquisa abordada. Os trabalhos relacionados de 2019 que

28

aparecem citados, são estudos que seriam publicados em revistas em sua edição
seguinte no ano de 2019.

Figura 5 – Quantidade de publicações de interesse por ano.

3.1.1 Critérios de Inclusão e Exclusão

Após a seleção inicial realizada sobre as bases de dados, executou-se a triagem
inicial sobre o resumo dos artigos, aplicando os seguintes critérios de inclusão e ex-
clusão conforme a ordem apresentada a seguir:

• (E) Foi publicado antes de 2014;

• (E) Não é um artigo full paper ;

• (E) Não estar em Inglês ou Português;

• (E) Indisponibilidade de acesso ao artigo completo;

• (E) Artigos que não apresentam avaliação da proposta;

• (I) Explora cenários de processamento de eventos em segurança da informação;

• (I) Explora conceitos de Computação Ubíqua;

• (E) O artigo não possui nenhum dos critérios de inclusão.

Para auxiliar na aplicação dos critérios de inclusão e exclusão fez-se a importação
dos resultados preliminares das buscas na ferramenta Start3. Para isso usou-se os

3http://lapes.dc.ufscar.br/tools/start_tool

http://lapes.dc.ufscar.br/tools/start_tool

29

arquivos .bib exportados pelas ferramentas das bases de busca, com exceção apenas
da Spriger, onde usou-se o arquivo .bib exportado pelo Zootero, o qual foi gerado após
a execução da consulta sobre os metadados, aplicada sobre o resultado preliminar da
base.

Os critérios de exclusão e inclusão foram aplicados seguindo as seguintes ordens
e etapas:

• Remoção de trabalhos duplicados - Alguns dos trabalhos retornados pela
string de busca estavam indexados em ambas as bases de consulta, tornando
necessária a execução de uma etapa de remoção dos mesmos, resultando em
74 trabalhos duplicados removidos.

• Filtro por data - O intervalo de interesse para a aplicação do filtro foi adotado
com base no número de publicações por ano. Após o levantamento dos trabalhos
de interesse, identificou-se 2014 como sendo o ano no qual o número de publi-
cações aumenta consideravelmente, continuando a ascender até o pico máximo,
no ano de 2017, como pode ser visto na Figura 5. Desta forma optou-se por eli-
minar todas as publicações que fossem anteriores ao ano de 2014, retirando um
total de 26 artigos.

• Artigos full paper - Com o intuito de remover artigos que apresentassem ape-
nas resumos superficiais, sem qualquer tipo de detalhamento sobre os trabalhos,
ou que não tivessem cunho científico, foram removido os artigos que não se ca-
racterizassem como Full Paper (livro ou capítulo de livro, introdução de anais,
entre outros). No total foram excluídos 9 trabalhos.

• Filtro por idioma - Como as pesquisas foram realizadas sobre várias bases
de dados com escopo global, as quais podem indexar trabalhos em diferentes
línguas, optou-se por aplicar um filtro por idioma, visando remover qualquer tra-
balho que não esteja em Português ou Inglês (idiomas de total domínio do autor),
removendo desta forma 1 artigo.

• Indisponibilidade do artigo completo - Dado que alguns dos estudos de in-
teresse selecionados apresentaram apenas seus resumos e introdução dispo-
níveis, não oferecendo de maneira simplificada a opção de obter-se o trabalho
completo, optou-se por remover estes da pesquisa, sendo então 3 trabalhos ex-
cluídos.

• Avaliação da proposta - Foram removidos todos os artigos que não execu-
taram algum tipo de teste ou estudo de caso das soluções propostas por seus
trabalhos, excluindo-se assim 17 artigos.

30

• Explora conceitos de segurança - Este critério foi incluído devido a familia-
ridade do grupo com a analise e processamento de eventos da segurança da
informação proveniente de estudos anteriores (ALMEIDA et al., 2019). Para a
identificação destes eventos, é normalmente necessário de se executar a aná-
lise de um conjunto considerável de dados de rede, requisito este presente na
IoT, onde há necessidade de se executar o processamento das informações ge-
radas constantemente pelos dispositivos. Assim, selecionou-se os trabalhos que
abordaram como estudo de caso a segurança da informação, esta aplicada a
Computação Ubíqua ou que explorasse algum conceito desta. Com este critério
de inclusão adicionou-se 4 trabalhos.

• Explora conceitos de Computação Ubíqua - Trabalhos que explorassem ou ti-
vessem como foco de suas propostas a Computação Ubíqua foram selecionados
incluindo assim 20 novos trabalhos.

• Sem nenhum critério de inclusão - Todos os trabalhos que não se enqua-
draram em nenhum dos critérios de inclusão foram removidos, excluindo desta
forma 28 trabalhos da pesquisa.

Após execução da triagem inicial dos trabalhos, aplicando-se os critérios de inclu-
são e exclusão citados, sobre o resumo dos artigos, selecionou-se 24 documentos
de interesse. O fluxo da aplicação destes critérios de exclusão pode ser visto na Fi-
gura 6, assim como o número total de trabalhos removidos por cada um dos critérios
aplicados.

Após a triagem inicial dos trabalhos, executou-se a 4o etapa do mapeamento, que
consiste da triagem final dos artigos de interesse, sendo realizada através da análise
das seções de introdução, concepção e conclusão dos estudos. Os critérios conside-
rados durante a execução da 4o etapa foram se os trabalhos tinham como estudo de
caso a segurança da informação ou ainda se estes introduziam o uso de conceitos em
computação ubíqua.

Na execução da etapa de triagem final dos estudos de interesse buscou-se sele-
cionar os trabalhos que mais se assemelham com os temas de pesquisa abordados
inicialmente na string de busca, incluindo aqueles que tivessem como tema solucionar
desafios semelhantes aos abordados pelo grupo de pesquisa em que o autor deste
trabalho esta inserido, isto é, desafios de distribuição e escalabilidade no processa-
mento de eventos da IoT. Assim, com a execução da triagem final selecionou-se 5
dos 24 artigos identificados, estes sendo destinados para á análise completa de seu
conteúdo e da extração das informações destes, os quais foram tomados como base
para a elaboração deste trabalho.

31

Figura 6 – Fluxo de triagem dos artigos.

32

3.2 Trabalhos Relacionados

Com a execução do mapeamento sistemático da literatura, foram identificados
cinco estudos de interesse, os quais são tomados como base para o desenvolvimento
desta pesquisa. Nas subseções a seguir, será dissertado sobre os aspectos mais
pertinentes de cada uma das soluções propostas por estes trabalhos.

3.2.1 SAMURAI: A batch and streaming context architecture for large-scale in-
telligent applications and environments

Em (PREUVENEERS; BERBERS; JOOSEN, 2016) os autores apresentam o SA-
MURAI uma arquitetura de contexto em lote, streaming distribuído e multilocatária.
Esta é baseada em processamento de eventos complexos, aprendizado de máquina
e enriquecimento de contexto semântico, visando assim oferecer uma solução com
escalabilidade horizontal para a IoT.

O sistema proposto foi desenvolvido seguindo os conceitos da arquitetura Lambda,
esta dita pelos autores ser capaz de proporcionar o processamento de volumes de
dados consideráveis, de maneira eficiente, escalável e tolerante a falhas, mantendo
ainda uma interação responsiva com o usuário. A arquitetura Lambda projetada pelos
autores é dividida em três camadas:

• Camada de Lote - os dados são recebidos por meio de atualizações periódi-
cas, estas resultantes da execução de operações de redução executadas sobre
o conjunto de dados principal, por exemplo, um armazenamento imutável no
HDFS4(Hadoop Distributed File System). O processamento dos dados nesta
camada é de alta latência levando até horas para serem concluídos.

• Camada de Velocidade - processa atualizações incrementais dos dados, sendo
estas de baixa latência, ocorrendo na ordem de segundos. Esta camada geren-
cia apenas os dados novos recebidos, produzindo visualizações em tempo real
que compensam as atualizações de alta latência da Camada Provedora.

• Camada provedora - responsável por expor a visualização dos dados pré-
computadas para atender a consultas ad-hoc com baixa latência.

Para o desenvolvimento da arquitetura proposta, os autores fizeram uso da fer-
ramenta Apache Kafka5, sendo esta usada como mecanismo para o provimento da
comunicação, efetuando a distribuição dos dados em um padrão de publicação e as-
sinatura. Para executar o processamento dos dados na camada de lote, fez-se uso do

4https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
5https://kafka.apache.org/

33

Apache Spark6, o qual é encarregado de executar algoritmos distribuídos que neces-
sitam processar grandes volumes de dados de maneira escalável.

Já para o desenvolvimento da Camada de Velocidade, os autores incorporaram
a opção de selecionar o uso individual do Apache Spark ou do Apache Storm7 em
conjunto com Esper8 na execução do processamento de eventos complexos, esta in-
tegração é permitida pela tipagem das tuplas do Storm corresponderem ao formato
dos eventos do Esper.

O SAMURAI também incorpora a biblioteca de aprendizado de máquina Weka9

visando assim permitir a detecção de eventos por meio do uso de técnicas de IA. A
arquitetura desenvolvida expõe os principais recursos do Weka por meio de uma API
RESTful, permitindo que cada aplicativo registre um ou mais modelos, onde cada mo-
delo possui um conjunto de atributos e um classificador específico. Como alternativa
ao Weka, o sistema também permite o uso da biblioteca de aprendizado de máquina
MLlib10 do Spark, que apesar de oferecer menos funcionalidades, apresenta um de-
sempenho superior quando aplicada sobre grandes fluxos de dados.

3.2.2 A Distributed Complex Event Processing System Based on Publish/Subs-
cribe

No trabalho de (WANG; SHANG, 2019) é apresentada uma proposta de arquitetura
de processamento de eventos distribuído com abordagem de publicação e assinatura.
O processamento de eventos complexos neste trabalho foi modelado como um DAG
(Directed Acyclic Graph), onde cada nó representa um mecanismo CEP e suas bordas
determinam o fluxo que os dados percorrem. Diferentes nós CEP executam operações
de processamento distintas, onde nós CEP de baixo nível enviam eventos para nós
CEP de alto nível como um produtor e consumidor.

O fluxo de comunicação desta arquitetura foi projetado com a ferramenta Apache
Kafka, onde cada nodo de processamento consome de um tópico e publica os dados
já processados em um tópico seguinte, que por sua vez será consumido por algum
outro nodo de processamento. Um exemplo funcional desta arquitetura seria onde um
nodo1 consome os dados brutos recebidos em um tópico nomeado base-topic, este
nodo1 produzirá eventos para um segundo tópico nomeado node1-topic, que por sua
vez será subscrito pelos nodo2 e nodo3 que publicaram os dados no topico node2-
topic e o node3-topic respectivamente. Por fim, um nodo4 irá consumir os dados do
node2-topic e node3-topic e publicará seu resultado no tópico nomeado final-topic.

A arquitetura do nodo de processamento de eventos complexos possui quatro mó-
6https://spark.apache.org/
7http://storm.apache.org/
8http://www.espertech.com/esper/
9https://www.cs.waikato.ac.nz/ml/weka/

10https://spark.apache.org/mllib/

34

dulos, onde primeiramente o módulo Input Adapter busca os dados de um tópico Kafka
e repassa estes aos módulos Event Statement e o Event Processor os quais são res-
ponsáveis por descrever a lógica de processamento dos eventos, incluindo o tipo de
evento a ser consumido e as regras de agregação dos eventos. Para a execução do
processamento dos dados, o Esper foi implementado neste módulo, sendo usado a
linguagem EPL(Event Processing Language) suportada por este para executar a des-
crição das regras de processamento. Por fim, o componente Output Adapter publica
os dados já processados em um tópico Kafka previamente definido.

3.2.3 CEML: Mixing and moving complex event processing and machine lear-
ning to the edge of the network for IoT applications

Em (SOTO et al., 2016) é apresentado o CEML (Complex Event Machine Learning)
um framework capaz de fornecer técnicas de aprendizado de máquina para IoT, traba-
lhando com eventos de forma distribuída e escalável. Os autores citam ainda que esta
solução pode ser implementada em nuvem, sendo assim capaz de trabalhar sobre
grandes fluxos de dados.

A arquitetura do sistema foi projetada em um padrão de publicação e assinatura,
onde os clientes (dispositivos, aplicativos ou serviços) se comunicam publicando men-
sagens assíncronas nas quais os LAs (Learning Agents) estão inscritos. Estes mo-
delos de arquitetura permitem que o sistema distribua os dados em nós de processa-
mento externos ou internos, dependendo das necessidades do ambiente.

Cada tarefa a ser executada pela arquitetura é transformada em instruções, das
quais serão implantadas em um ou mais LA. Quando estas instruções forem desig-
nadas a mais de um LA, as subscrições dos tópicos serão entre os próprios LAs,
distribuindo assim o processamento das tarefas em diferentes serviços. Caso a dis-
tribuição das instruções seja designada a apenas um LA, a subscrição será apenas
interna ao sistema.

Já heterogeneidade dos dados, é abordada da seguinte forma pela arquitetura
proposta: primeiramente os diferentes fluxos de informações são divididos em tópicos
distintos; em seguida, o tratamento dos dados necessário(transformações, junções...)
é executado por regras previamente definidas; por fim, os eventos são agrupadas em
fluxos internos ou publicadas externamente em tópicos correspondentes. Estes fluxos
são gerenciados pelo módulo de manipuladores.

O modelo de comunicação do sistema foi implantado com o uso do Mosquito11

MQTT Broker e o cliente Java Paho12, os quais gerenciam toda a comunicação do
envio e recebimento dos dados.

Dentre os outros módulos do sistema implementado pelos autores, pode-se ainda
11https://mosquitto.org/
12https://www.eclipse.org/paho/clients/java/

35

destacar:

• Feeders - componentes encarregados de gerenciar os tipos de cargas úteis de
dados recebidos, os quais podem ser classificados como: dados/eventos, instru-
ções e solicitação de aprendizado.

• Learning Agents - módulo responsável por implementar toda lógica de proces-
samento de eventos complexos, este é executado com o auxílio da ferramenta
de processamento de dados Esper.

Dentro de um LA, os dados são ainda categorizados logicamente em três tipos
de fluxos distintos: fluxos de aprendizado, sendo este a entrada dos Modelos, os
quais são usados para a validação do sistema; fluxos de implantação, são os fluxos
a serem usados quando o Modelo já estiver validado; fluxos auxiliares, são usados
como nós de processamento interno pelos fluxos de aprendizado ou de implantação,
sua visibilidade é restrita ao próprio mecanismo CEP.

O modelo atual desta arquitetura desenvolvida pelos autores, tem a capacidade de
disponibilizar uma interface para problemas de classificação, usando para isto, várias
implementações do framework de inteligência artificial Weka.

3.2.4 Semantic IoT Middleware-enabled Mobile Complex Event Processing for
Integrated Pest Management

No trabalho de (NOCERA et al., 2017) é apresentada uma infraestrutura inteli-
gente, capaz de processar dados de fontes heterogêneas executando parcialmente
o processamento de eventos complexos em dispositivos móveis de forma distribuída
com o intermédio de um middleware da IoT.

A infra-estrutura projetada pelos autores consiste basicamente de duas partes:

• Servidor Back-End - neste servidor um arquivo JSON(Javascript Object Nota-
tion) contém a definição das regras sobre os dados da ontologia extraídos, bem
como as ações a serem executadas caso alguma regra for acionada. Em caso de
ativação de uma das regras o módulo Observer notifica o NodeJS13 que encami-
nha os dados da regra ativada, juntamente com as informações sobre sensores e
variáveis ao Redis14 para que possam ser publicados. Os consumidores assinam
o Redis Message Broker e são notificados da mensagem, a qual é encaminhada
com os dados do sensor, variável e regra(extraída do arquivo de configuração)
para o módulo de Mecanismo de Regras o qual executa tarefas pré-configuradas.

• Dispositivo Móvel - primeiramente o módulo Sensor Adapter desta arquitetura
se conecta aos sensores, coletando os dados e convertendo-os para um formato

13https://nodejs.org/
14https://redis.io/

36

de evento a ser usado pelos demais módulos deste sistema. Todas as informa-
ções já formatados são enviados para o componente Event Stream Manage-
ment, que despacha o fluxos de eventos para o CEP Engine responsável por
processar as regras CEP com o uso do Esper, caso estas sejam ativadas, a in-
formação do evento é repassada ao módulo Action Handler que executa alguma
ação predefinida no dispositivo móvel(notificação, alertas...) e por fim envia os
dados ao Redis para que este possa buscar na ontologia informações baseado
no evento ocorrido.

Todos os dados usados pelo sistema são provenientes de leituras de sensores de
ar, temperatura, umidade e emissão de poeira. Estes sensores são controlados por
um Arduíno o qual repassa as informações a uma RaspberryPi que fica responsável
por enviar e receber estes dados para o Servidor Back-End local, que por sua vez faz
a transição destes para o DeviceHive15 um middleware da IoT que faz a padronização
dos dados a serem usados pela arquitetura.

3.2.5 Parallel big data processing system for security monitoring in Internet of
Things networks

Em (KOTENKO; SAENKO; KUSHNEREVICH, 2017) é proposto um sistema para
processamento paralelo de dados de segurança destinado à implementação em am-
bientes IoT. O sistema implementado aplica estratégias CEP, sendo capaz de pré-
processar dados em tempo real, executando normalização, filtragem, agregação e
correlação de dados processados em tempo de execução.

A arquitetura projetada pelos autores inclui cinco componentes:

• Coletor de Dados - este é responsável por organizar os dados distribuídos re-
cebidos e armazena-los no componente Armazenamento de Dados. Além disso,
este módulo contém um gerador de fluxo de dados de teste, esse usado para
avaliar a eficácia do sistema;

• Armazenamento de Dados - os dados recebidos por este componente são ar-
mazenados em HDFS sendo esta uma maneira alternativa para executar o ar-
mazenamento de dados na IoT que sistemas tradicionais de gerenciamento de
banco de dados SQL. Após os eventos de segurança serem armazenados, estes
são empacotados em fluxos de dados e enviados ao componente de Agregação
de Dados com os seguintes campos: endereço IP(Internet Protocol) de origem,
porta de origem, IP de destino e porta de destino;

• Agregação de Dados - executa o processamento do fluxo de dados recebido,
usando para isto o Hadoop ou o Apache Spark. Para que a identificação dos

15https://devicehive.com/

37

eventos de segurança possa ser executada posteriormente, este módulo calcula
medidas estatísticas dos dados (mínimo, máximo, média, moda, quantis ...). Por
fim os resultados são registrados no HDFS e transferidos ao componente Nor-
malização e Análise de Dados;

• Normalização e Análise de Dados - inicialmente mente este componente exe-
cuta a conversão dos dados para o formato CSV(Comma-Separated Values), em
seguida é realizada a análise dos dados recebidos, consistindo na identificação
de incidentes de segurança por meio do uso de regras CEP predefinidas para
correlacionar os eventos. Por fim os resultados deste módulo são armazenados
no HDFS;

• Visualização de Dados - permite a visualização dos eventos de segurança de-
tectados em um gráfico previamente selecionado pelo administrador.

Por fim, os autores executaram a validação da proposta, por meio de uma análise
de desempenho comparativa, com o uso das ferramentas Hadoop e Apache Spark
para o processamento de eventos complexos da arquitetura proposta. Os resultados
obtidos pelos autores mostram que o Hadoop se comporta de forma satisfatória em
sistemas com recursos computacionais limitados. Já quando implementado com o
Apache Spark, o sistema aumenta seu desempenho em cerca de dez vezes, caso
este tenha uma quantidade suficiente de memória RAM(Random Access Memory)
disponível.

3.3 Discussão dos Trabalhos Relacionados

Após a análise dos trabalhos relacionados executada durante a última etapa do
mapeamento sistemático, percebeu-se que grande parte das pesquisas aplica estra-
tégias similares, baseadas em soluções ad-hoc, para a comunicação visando distribui-
ção e processamento dos eventos. No caso do processamento de eventos, todos os
trabalhos empregaram estratégias de CEP, aplicando em geral Esper, em conjunto ou
não com outras ferramentas, visando assim permitir o tratamento em fluxo dos dados.

Porém, apesar de todas os trabalhos terem como área de foco a IoT, nenhuma
das soluções apresentadas se preocupava com o consumo de rede necessário para
a execução da distribuição dos eventos, onde muitos ainda aplicavam estratégias ne-
gligentes quanto a distribuição dos dados, as quais podem vir a gerar um consumo de
rede diversas vezes maior do que o real necessário.

Identificou-se também que apenas em (NOCERA et al., 2017) e (SOTO et al., 2016)
é apresentado soluções que levassem em consideração a heterogeneidade da IoT,
onde os autores optaram por acoplar sua arquitetura proposta a um middleware ou

38

implementar regras de filtragem e transformação respectivamente, com o objetivo de
contornar este desafio.

Percebeu-se ainda, que apesar de todos os trabalhos proporem uma arquitetura
distribuída de processamento para a IoT, apenas (PREUVENEERS; BERBERS; JO-
OSEN, 2016) preocupou-se em executar testes de validação quanto a capacidade da
arquitetura distribuir e processar dados, porem este não apresentou nenhum teste de
consumo de recursos computacionais, algo de suma importância para a verificação
da aplicabilidade da proposta em hardware com poder computacional reduzido, estes
comumente presentes na IoT.

Dadas as informações levantadas a partir da análise dos trabalhos identificados
no mapeamento sistemático, identificou-se a carência de arquiteturas aptas a lidarem
com a heterogeneidade da IoT as quais sejam competentes em executar o proces-
samento de um volume considerável de eventos de forma distribuída não negligenci-
ando o consumo de banda gerado por este tráfego de informação. Assim no âmbito
das motivações citadas, este trabalho tem como objetivo desenvolver uma arquitetura
de processamento distribuído de eventos para a IoT com escalabilidade e que esteja
apta a lidar com a heterogeneidade destes ambientes, aplicando ainda estratégias
que visem aprimorar a eficiência do consumo de largura de banda, com o objetivo
de proporcionara aplicabilidade desta arquitetura em meios que apresentem alguma
limitação de rede, seja esta uma restrição por links de comunicação saturados, onde
perdas constantes de pacotes são recorrentes (FALL; STEVENS, 2011), ou por uma
rede que possua limitações quanto à largura de banda reduzida.

A Figura 7 apresenta uma análise comparativa entre os trabalhos selecionados
pelo mapeamento sistemático e o EXEHDA-DEP, a nova arquitetura proposta por este
trabalho, onde os campos selecionados para a comparação foram:

• Comunicação: exibe qual foi o padrão arquitetural adotado para executar a co-
municação entre os nodos de processamento dos eventos.

• Estratégia de EP: apresenta qual estratégia de processamento de eventos o
artigo adota em sua proposta. Esta coluna pode apresentar dois valores CEP ou
ESP.

• Ferramentas de EP: nesta coluna é apresentado as ferramentas adotadas para
executar o processamento de eventos em cada uma das propostas analisadas.

• Tratamento de heterogeneidade: exibe qual estratégia adotada no trabalho
para o tratamento da heterogeneidade da IoT. Esta coluna pode exibir os seguin-
tes valores: o nome do middleware usado para executar esta tarefa; “X” para
caso a solução apresentada implemente uma estratégia própria para o trata-
mento da heterogeneidade; “-” caso o trabalho não aborde este quesito.

39

• Segurança: nesta coluna é identificado se o trabalho tem como estudo de caso
a aplicação em segurança da informação ou ainda se a solução permite o uso
de alguma técnica de segurança. Se alguma destas condições for satisfeita, o
valor da coluna será “X”, caso contrário será “-”.

• Validação da Operação Distribuída: identifica se a solução proposta apresenta
testes de validação da capacidade da arquitetura distribuir o processamento dos
eventos, identificando os ganhos na taxa de processamento com o aumento dos
nodos de trabalho. Esta coluna apresenta o valor “X” quando a solução proposta
apresentar testes satisfatórios para a validação da distribuição, caso contrário o
valor será “-”.

• Avaliação do Consumo de Rede: exibe se a arquitetura proposta no trabalho
é capaz de fornecer um consumo de rede estável, isto é, se a distribuição do
processamento não gera uma enorme carga sobre o tráfego de rede. O valor
“X” nesta coluna representa que a solução é capaz de fornecer a distribuição do
processamento sem impactar muito no consumo de rede. Caso isto não ocorra,
o valor da coluna será “-”.

Figura 7 – Comparativo entre os artigos selecionados.

4 ESCOPO DE DESENVOLVIMENTO

Neste capítulo será dissertado sobre o EXEHDA, um middleware voltado para a
IoT e uma de suas implementações, o modelo arquitetural EXEHDA-SA. Ambas as
tecnologias citadas são tomadas como base para o desenvolvimento e proposta do
EXEHDA-DEP.

A seção 4.1 descreve as principais funcionalidades do middleware EXEHDA e de
sua arquitetura modular bem como dos cenários de aplicação para esta ferramenta.
Já a seção 4.2 disserta sobre o modelo arquitetural EXEHDA-SA, onde são apresen-
tados as funcionalidades atribuídas a cada um dos módulos desta arquitetura e seus
principais objetivos.

4.1 EXEHDA

Um middleware pode ser considerado como uma camada mediadora entre duas
aplicações, a qual gera um canal lógico de comunicação entre estas, possibilitando
que o middleware atue traduzindo a comunicação estabelecida, abstraindo qualquer
tipo de incompatibilidade ou complexidade existente entre estes dois meios. Desta
forma, pode-se definir middleware como uma camada de software responsável por
abstrair a heterogeneidade de um meio, facilitando o uso dos recursos disponibilizados
neste meio a aplicações de terceiros (NGU et al., 2016).

Existem diferentes tipos de middlewares disponíveis, exemplos comuns são: os de
banco de dados, os quais abstraem a complexidade da manipulação das informações
aos seus clientes; os voltados para a IoT, que normalmente atuam abstraindo a he-
terogeneidade destes ambientes, dentre estes middlewares pode-se citar o EXEHDA
(Execution Environment for Highly Distributed Applications) sendo este direcionado
principalmente às aplicações distribuídas, móveis e cientes de contexto, o qual atua
fornecendo serviços a estas aplicações (NGU et al., 2016).

O EXEHDA opera criando e gerenciando ambientes ubíquos formados por células
de execução distribuídas e promovendo a computação sobre este ambiente heterogê-
neo (LOPES et al., 2014). Na Figura 8 é ilustrado um ambiente Ubíquo, onde diversos

41

dispositivos interagem, sendo estes gerenciados pelo EXEHDA, agregados de forma
lógica em células de execução (MACHADO et al., 2017).

Figura 8 – Gerenciamento de um Ambiente Ubíquo pelo EXEHDA.
Fonte: (ALMEIDA et al., 2019).

A arquitetura do EXEHDA consiste da composição de diversos módulos, os quais
são responsáveis por prover algum tipo de serviço. Dentre estes módulos destaca-se
o Subsistema de Reconhecimento de Contexto, o qual é responsável pela síntese e
correlação dos eventos capturados no ambiente (MACHADO et al., 2017). A Figura 9
apresenta uma visão geral da arquitetura EXEHDA.

Figura 9 – Arquitetura EXEHDA.
Fonte: (YAMIN et al., 2005).

Existem diversos projetos concebidos sobre o EXEHDA: EXEHDA-HM(Execution
Environment for Highly Distributed Applications - Hybrid Modeling) (MACHADO et al.,
2017), EXEHDA-SA(Execution Environment for Highly Distributed Applications - Situa-
tional Awareness) (ALMEIDA et al., 2019), entre outros. Contudo, apesar do EXEHDA

42

ser um middleware direcionado a ambientes distribuídos, suas implementações apre-
sentam a compreensão dos eventos em escopo local, o que pode vir a gerar um gar-
galo de processamento em ambientes IoT altamente distribuídos.

4.2 EXEHDA-SA

O EXEHDA-SA consiste de um modelo de arquitetura distribuída de alto nível, o
qual foi projetado com base nas formalizações definidas pelo middleware EXEHDA.
Este modelo arquitetural apresenta recursos de reação dinâmica e personalizável para
interagir com a infraestrutura subjacente dos ambientes da IoT. Outra funcionalidade
disponibilizada por este modelo é a capacidade de coletar dados em um ambiente
heterogêneo como o da IoT, padronizando e abstraindo estas informações coletadas
de modo a facilitar o uso destes dados (ALMEIDA et al., 2019).

A concepção do EXEHDA-SA é baseada em um conjunto de premissas as quais
visam favorecer a este o suporte das demandas da IoT de escalabilidade, flexibilidade,
autonomia e heterogeneidade, dentre estas premissas abordadas, se pode destacar:
a extensibilidade modular para protocolos de coleta e comunicação de eventos; mó-
dulos extensíveis de processamento de eventos, os quais podem ser aplicados em
estratégias híbridas, tais como aprendizado de máquina e estrategias baseadas em
regras; recurso de reação dinâmica, personalizável e conectável os quais permitem
a interação com infraestruturas subjacente dos ambientes de IoT (ALMEIDA et al.,
2019).

Assim como no EXEHDA o EXEHDA-SA segue o mesmo mapeamento da infra-
estrutura física de três abstrações básicas, as quais são tomadas como base para a
composição do ambiente onipresente:

• EXEHDAnode: consiste dos dispositivos de processamento, os quais são en-
carregados da execução da aplicação. Uma subcategoria pertencente a esta ca-
tegoria é o EXEHDAnode mobile, o qual de diferencia de um EXEHDAnode pela
alta portabilidade onde este normalmente possui uma capacidade mais restrita
sendo normalmente detentor de uma interface de comunicação sem fio, onde
nesse caso, é integrado a uma célula onde seu ponto de acesso é subordinado;

• EXEHDAbase: é o meio de comunicação entre os EXEHDAnodes, o qual é
encarregado por prover todos os serviços essenciais do ambiente, onde estes
serviços fornecidos podem ser distribuídos entre vários dispositivos de proces-
samento, com o intuito de se obter um ambiente com escalabilidade;

• EXEHDAcel: encarregado por delimitar a área de operação do EXEHDAbase,
as definições principais tomadas para a especificação do escopo de uma célula
consiste: escopo institucional, proximidade geográfica e custos de comunicação.

43

Seguindo esta estrutura de projeto modular do EXEHDA, o EXEHDA-SA adquire
flexibilidade, onde usuários podem adicionar ou remover módulos dependendo de
suas necessidades. A Figura 10 apresenta uma visão geral da arquitetura EXEHDA-
SA.

Dentre os módulos presentes na arquitetura EXEHDA-SA pode-se destacar:

• Percepção: responsável por identificar fontes relevantes de eventos no disposi-
tivo em que uma instância do Collector está operacional;

• Pré-processamento: projetado para realizar a separação do evento em campos
executando a normalização dos eventos coletados;

• Compreensão: consiste na correlação de eventos com base nos campos dos
eventos obtidos no módulo de Pré-processamento;

• Projeção: evita reincidências de situações indesejadas previamente identificadas
durante a etapa de compreensão;

• Interface Web: uma interface administrativa onde um administrador de rede pode
analisar os eventos complexos identificados e definir novas regras e configura-
ções;

• Repositório: onde são armazenadas todas as configurações de regras definidas
pelo administrador, incluindo também dados de eventos identificados.

Figura 10 – Arquitetura EXEHDA-SA.

Nas implementações disponíveis do EXEHDA-SA as informações coletadas são
comumente disponibilizadas no formato JSON, contendo diferentes campos padro-
nizados e gerados pelo EXEHDA-SA, os quais podem ser modificados conforme a
necessidade do usuário. Dentre os campos normalmente disponibilizados em imple-
mentações do EXEHDA-SA pode-se citar: TAG, o qual identifica um fluxo de dados

44

relacionados, como por exemplo, o fluxo de informações vinda de roteadores; risco,
campo o qual identifica o nível de risco de segurança ao qual o dado remete; src_ip,
endereço IP da origem do dado (ALMEIDA et al., 2019).

5 EXEHDA-DEP: CONCEPÇÃO E TECNOLOGIAS

Neste capitulo será apresentada a metodologia abordada para solucionar os desa-
fios levantados durante o mapeamento sistemático da literatura.

Na seção 5.1 é apresentado o modelo de comunicação projetado, o qual se baseia
no padrão publicação e assinatura, o mesmo aplicado pelos trabalhos relacionados
citados na seção 3.2, porém neste novo modelo projetado, este padrão é reinventado
de forma a aplicar estrategias que visem permitir a execução do EXEHDA-DEP em
ambientes com limitações de comunicação na rede, sejam estas ocasionadas por links
de comunicação saturados ou por conexões de baixa velocidade.

Na seção 5.2 é apresentado o modelo desenvolvido de uma arquitetura de proces-
samento de eventos complexos, a qual possui a capacidade de processar eventos de
forma distribuída com escalabilidade.

A seção 5.3 apresenta as principais ferramentas e tecnologias empregadas para
o desenvolvimento da arquitetura proposta por este trabalho. Por fim, na seção 5.4 é
apresentada a nova arquitetura de processamento distribuído proposta.

5.1 Modelo de Comunicação

A estratégia de comunicação citada nesta seção consiste na forma como os dados
a serem processados são distribuídos entre os nodos de processamento. A grande
maioria dos trabalhos relacionados identificados na seção 3.2 se baseava em um mo-
delo de publicação e assinatura, onde os dados a serem processados são publicados
em um tópico central, o qual é assinado por vários nodos de processamento que re-
cebem estes mesmos dados e executam trabalhos de processamento distintos entre
si. Esta estratégia para a distribuição dos dados a serem processados pode ser vista
na Figura 11.

A estratégia citada pode ser identificada como de fácil implementação, garantindo
uma alta escalabilidade e permitindo que um novo nodo de processamento seja adici-
onado simplesmente com a subscrição do tópico central. Porém estratégias com esta
abordagem apresentam como principal desvantagem a sobrecarga gerada sobre os

46

Figura 11 – Fluxo de comunicação padrão.

links de comunicação, já que todos os nodos de processamento subscritos no tópico
central rebem os mesmos dados a serem processados, com o diferencial de estes
executarem tarefas distintas sob estas informações.

Deste modo, pode-se verificar que a estratégia citada adiciona uma sobrecarga na
rede de acordo com o número de nodos de processamento, quanto maior a quantidade
de nodos processando dados, maior será a largura de link necessária para trafegar
as informações a serem distribuídas, onde pode-se expressar esta sobrecarga adici-
onada ao link de comunicação por meio do produto do volume total dos dados a ser
processado, pela quantidade de nodos de processamento existentes. A equação 1
demonstra uma fórmula para o cálculo do tráfego total de rede exigido pelo modelo de
comunicação citado.

Trafego = Dados×Nodos (1)

Outra desvantagem derivada do recebimento total do conjunto de dados pelos no-
dos de processamento, consiste que estes potencialmente podem estar recebendo
informações que não se aplicam a suas tarefas de processamento, as quais são sim-
plesmente ignoradas. Este processo de ignorar estas informações, pode ser extrema-
mente custoso quando é considerado grandes volumes de dados a serem analisados
(HU; HONG; CHEN, 2017). Assim pode-se considerar que nodos de processamento
tem parte do seu tempo de trabalho ocupado pela tarefa de ignorar dados inúteis para
suas tarefas, gerando considerável perda de recursos computacionais nestes nodos
(tempo de processamento, memória RAM, consumo energético).

A estratégia de comunicação desenvolvida por este trabalho consiste em uma mo-
dificação do padrão publicação e assinatura adotado pelos trabalhos relacionados ci-
tados na seção 3.2, visando com estas modificações solucionar os problemas citados.
A estratégia consiste em adotar um padrão de classificação para o fluxo de dados a ser

47

analisado antes destes serem publicados no tópico que os nodos subscrevem. Esta
classificação consiste em subdividir logicamente o fluxo principal de dados em outros
fluxos menores, por meio do acréscimo de uma chave identificadora a estes, de modo
a permitir o direcionamento destes dados para cada um dos nodos, baseando-se na
distribuição destas chaves identificadoras. A Figura 12 apresenta uma comparação em
escopo teórico do consumo de rede exercido pelo método atual aplicado nos trabalhos
relacionados identificados com o novo método proposto, esta mesma comparação é
executada também em um escopo prático, onde esta figura é reapresentada com os
dados práticos obtidos na seção 6.4.

Figura 12 – Comparativo de consumo de rede.

Em um exemplo, com dois nodos de processamento, nodoA e nodoB, o fluxo ori-
ginal de dados poderia ser subdividido em outros dois A e B de modo que o nodoA
irá receber os dados do fluxo A e o nodoB os dados do fluxo B. Esta estratégia per-
mite evitar a sobrecarga de rede gerada pelo envio de todo o conjunto de dados para
cada um dos nodos. A Figura 13 ilustra o processo de comunicação seguindo o novo
padrão proposto.

A subdivisão do fluxo de eventos pode ser executada de forma a manter os eventos
que necessitem ser analisados juntos, em uma mesma categoria, centralizando as
regras de processamento com seus respectivos eventos a serem processados.

5.2 Modelo de Processamento

Nesta seção será apresentada a estratégia de processamento de eventos adotada
pelo presente trabalho, a qual visa proporcionar uma arquitetura de processamento
de eventos com escalabilidade, sendo voltada a ambientes altamente distribuídos que
necessitem processar grandes volumes de eventos, características estas presentes

48

Figura 13 – Fluxo de comunicação proposto.

na IoT.
A estratégia de processamento de eventos adotada por este trabalho consiste na

distribuição da carga de eventos para diferentes nodos de processamento, criando
um modelo arquitetural descentralizado. Esta descentralização visa evitar gargalos de
processamento adicionados a apenas uma máquina ou a um link de comunicação,
proporcionando também uma maior flexibilidade na implementação, se adaptando a
ambientes altamente distribuídos. A descentralização do processamento também pro-
porciona a versatilidade para o controle da capacidade de processamento, onde caso
seja necessário um throughput maior, a simples adesão de um novo nodo de proces-
samento adiciona o aumento do mesmo. Tais nodos de processamento independem
de arquiteturas com alto poder computacional, onde mesmo nodos executando sob
máquinas de baixo custo, com poder computacional limitado, agregam na capacidade
total de processamento disponibilizada no cluster de nodos, o que proporciona a van-
tagem de não necessitar o uso de máquinas especiais com grande capacidade de
processamento para a execução.

A arquitetura distribuída proposta foi modelada com três tipos distintos de nodos:

• Nodo de Pré-processamento: responsável por modelar os eventos recebidos
para um formato de mais fácil manipulação aos outros nodos de execução. Após
a execução desta modelagem, o nodo de pré-processamento envia estes even-
tos ao nodo Broker, podendo executar a compactação destes eventos antes do
envio, com o intuito de reduzir o consumo de rede gerado.

• Nodo Broker: este nodo é responsável por armazenar os eventos recebidos
pelo pré-processamento e distribui-los sob demanda aos nodos de processa-
mento. Este nodo também armazena os resultados dos eventos já processa-
dos, os disponibilizando para consulta das partes interessadas (administrador

49

de rede, ferramentas de terceiros...).

• Nodo de Processamento: nodo responsável por executar toda a tarefa de pro-
cessamento e análise dos eventos. As informações são transferidas de um nodo
Broker, extraídas caso tenham sido compactadas, processadas e analisadas
com base nas tarefas definidas para este nodo. O nodo pode ainda enviar dados
de notificação para um nodo Broker caso o mesmo tenha sido configurado para
tomar ações como esta, quando identificado algum evento de interesse.

Para evitar a perda de informações durante a iteração entre os nodos, estes fazem
o envio dos eventos por meio de transações, onde qualquer tipo de erro gerado du-
rante o processamento da informação ou durante o envio, gera uma ação de rollback
que desfaz qualquer transação malsucedida. O processo de iteração entre os nodos
pode ser visto como produtor consumidor, onde o nodo de pré-processamento gera
os eventos que serão consumidos pelo nodo Broker que por sua vez produz as infor-
mações a serem analisadas pelo nodo de processamento. Cada um dos três tipos
de nodos pode possuir de 1 a N instâncias de execução, sendo cada uma destas,
correspondente a uma das três categorias: o dos nodos de pré-processamento; os
nodos Broker; e os nodos de processamento. A abordagem com vários nodos de exe-
cução descentralizados ajuda a aumentar a garantia da disponibilidade do serviço, já
que para o serviço ficar indisponível, será necessário que todos os N nodos fiquem
inativos e não apenas um como em abordagens de processamento não distribuídos.
A Figura 14 ilustra de forma simplificada a iteração entre os nodos da arquitetura pro-
dutor consumidor.

5.3 Tecnologias Associadas

Nesta seção serão apresentadas as principais tecnologias empregadas por este
trabalho, bem como suas principais características e funcionalidades.

5.3.1 Protocolo MQTT

Em uma rede de computadores “tradicional” existem diversos protocolos de comu-
nicação sendo executados, os quais são responsáveis por gerenciar a transferência
de dados entre os dispositivos. Quando a comunicação entre dois ou mais dispositi-
vos é abordada, assim como acontece em uma rede IoT, surge a necessidade de se
escolher um protocolo capaz de gerenciar está comunicação. Capaz de gerenciar a
troca de mensagens e dados entre as coisas que estiverem conectadas a rede IoT
de forma eficiente, levando em consideração as características e limitações impostas
pelo ambiente. Um dos protocolos que se enquadram dentro destes requisitos é o
Message Queuing Telemetry Transport - (MQTT) (MARTINS; ZEM, 2016).

50

Figura 14 – Arquitetura simplificada Produtor Consumidor.

O MQTT foi desenvolvido por volta do ano de 1999, baseando-se na arquitetura
publish/subscribe e voltado para redes inseguras com baixa largura de banda e alta
latência (SONI; MAKWANA, 2017). O protocolo emprega confiabilidade na entrega
das mensagens minimizando o uso da largura de banda e apresentando baixo custo
de processamento, características que apresentam aplicabilidade em redes IoT.

O protocolo MQTT segue um modelo cliente-servidor onde cada um dos disposi-
tivos da rede são os clientes, os quais se conectam-se a um servidor chamado de
Broker usando o protocolo TCP. Após o cliente se conectar, as mensagens transmiti-
das são publicadas em tópicos. Os clientes podem se subscrever em tópicos, os quais
são capazes de receber todas as mensagens que qualquer outro cliente publique nes-
tes tópicos em especifico (MARTINS; ZEM, 2016).

Figura 15 – Cabeçalho do protocolo MQTT.
Fonte: (MARTINS; ZEM, 2015).

51

A Figura 15 mostra o cabeçalho presente em cada uma das trocas de mensagens
do protocolo MQTT, este possui 2 bytes de tamanho, sendo o primeiro byte usado para
identificar o tipo da mensagem e os campos marcadores:

• Duplicate Delivery (DUP): é ativado quando o cliente ou o servidor tenta reen-
viar uma mensagem.

• Quality of Service (QoS): indica o nível de garantia da entrega de uma mensa-
gem.

• Retain: quando uma mensagem é enviada ao servidor com este marcador ela
deve ser removida do servidor mesmo depois de ser entregue aos assinantes.

Por último, o segundo byte mostrado na Figura 15 é usado para representar a
quantidade de bytes remanescentes na mensagem, ou seja, a quantidade de espaço
livre em bytes ainda excedente no pacote.

5.3.2 Apache Kafka

O Apache Kafka é considerado uma plataforma de streaming distribuído de dados,
sendo usada tanto para o consumo de mensagens offline quanto para o online. Dentre
as características disponibilizadas pela plataforma, pode-se citar:

• Plataforma Distribuída: o Apache Kafka executa o particionamento dos dados,
distribuindo-os sobre diversos servidores, executando desta forma a distribuição
do consumo de recursos ao longo de um cluster de máquinas, mas continuando
a garantir a entrega ordenada das mensagens, não ocasionando na perda da
semântica da ordem dos dados. Sua arquitetura distribuída também permite o
aumento do número de máquinas no cluster ou a redução, conforme a necessi-
dade do usuário (GARG, 2013).

• Tolerância a Falhas: a plataforma é capas de fornecer garantia contra falhas
onde o mesmo pode manter várias cópias dos dados no cluster sem ocasionar
grandes perdas no desempenho. Estas cópias ajudam a manter a disponibi-
lidade da informação, onde caso uma ou mais máquinas do cluster caiam, a
informação irá continuar sendo disponibilizada pelas demais máquinas do clus-
ter. O Kafka também prove garantia de entrega e recebimento das mensagens,
evitando qualquer perda de informação causado por instabilidade de rede ou nos
servidores (GARG, 2013).

• Alta Capacidade: o Kafka foi projetado para fornecer suporte ao envio e re-
cebimento de milhões de mensagens por segundo garantindo baixas latências
(GARG, 2013).

52

O processo de envio e recebimento das mensagens no Apache Kafka é normal-
mente implementado com uma arquitetura publicação e assinatura, onde produtores
fazem o envio dos dados a tópicos específicos onde estes dados, dentro destes tópi-
cos, são separados em partições. Estratégia essa que é adotada pelo Kafka com o
objetivo de manter a ordenação dos dados e ainda oferecer suporte a vários consumi-
dores e produtores manipulando de forma concorrente o mesmo tópico. Cada um dos
consumidores no Kafka devem pertencer a um grupo, consumidores que pertençam
a um mesmo grupo não podem consumir dados de uma mesma partição, já consu-
midores de grupos diferentes podem consumir dados de uma mesma partição, porém
os mesmos dados desta partição será enviado a todos os consumidores de grupos
distintos (GARG, 2013). A Figura 16 ilustra o processo de envio e recebimento de
mensagens no Apache Kafka.

Figura 16 – Fluxo de comunicação Apache Kafka.

5.3.3 Apache Spark

O Apache Spark é um framework desenvolvido para executar o processamento
de dados em larga escala. Este fornece uma API de alto nível para diversas lingua-
gens de programação, como o Java por exemplo. Outras funcionalidades suportadas
pelo Spark incluem o uso de SQL para a execução de filtros e consulta aos dados
processados, esta funcionalidade é provida pela biblioteca Spark SQL (MENG et al.,
2016).

O Spark se destaca por sua capacidade de manter grandes conjuntos de dados em

53

memória para executar o processamento destas informações em tempo de execução
(SHORO; SOOMRO, 2015).

No Spark aplicações executam como conjuntos de serviços independentes, os
quais são coordenados pelo SparkContext, um objeto presente no programa principal.
Para que seja possível sua execução em cluster, o SparkContext deve se conectar a
um gerenciador, o qual fica responsável por alocar os recursos aos serviços. Após
efetuar a conexão, os objetos executors ficam responsáveis por realizarem os cálcu-
los e armazenar os dados da aplicação. Por fim é enviado o código da aplicação no
formato JAR ou Python aos executors para que assim o SparkContext possa designar
tarefas a serem executadas pelos executors com estas aplicações submetidas (MENG
et al., 2016).

5.3.4 Esper

O Esper é uma ferramenta de código aberto que oferece recursos para a execução
de processamento de eventos complexos e análise de fluxos de dados em tempo real
ou próximo do real. Seu principal objetivo é atender aos requisitos de aplicações que
necessitem analisar e reagir a algum tipo de evento, como por exemplo, softwares de
monitoramento de rede e de detecção de intrusão (SUHOTHAYAN et al., 2011).

Para a especificação dos eventos complexos o Esper faz uso de uma linguagem
declarativa semelhante ao SQL (Structured Query Language) denominada EPL, esta
linguagem inclui todos os operadores suportados pelo SQL, acrescentando ainda fun-
ções adicionais para a definição, interação de janelas e geração de saídas. A EPL e
a API de processamento do Esper estão disponíveis como bibliotecas para as lingua-
gens Java e .NET.

A linguagem EPL disponibilizada pelo Esper fornece duas sintaxes distintas para
que se execute os filtros dos dados: a primeira se caracteriza pelo uso de restrições
aninhadas, incluindo conjunções, disjunções, negações, sequências e iterações para
realizar o filtro dos dados; já a segunda usa expressões regulares. Ambas as sinta-
xes oferecem a mesma capacidade de expressividade. O Esper também possibilita o
uso da programação das políticas para executar a seleção de eventos explicitamente,
explorando os modificadores every e every-distinct (CUGOLA; MARGARA, 2012).

5.4 Concepção da Arquitetura

Nesta seção será apresentado a nova arquitetura de processamento de eventos
complexos distribuída para a IoT proposta por este trabalho, introduzindo as ferramen-
tas acopladas a esta arquitetura, bem como suas funcionalidades e peculiaridades,
pelas quais foram escolhidas para serem agregadas a este trabalho.

Para o desenvolvimento de uma arquitetura com capacidade de processar even-

54

tos complexos na IoT, necessitou-se primeiramente de uma forma simplificada de se
abstrair a heterogeneidade dos eventos a serem analisados nestes ambientes. Para
atingir este determinado objetivo optou-se por fazer uso de um middleware da IoT o
qual se encarrega de abstrair toda e qualquer complexidade do ambiente.

O EXEHDA-SA consiste de um modelo de arquitetura distribuída de alto nível, o
qual foi projetado com base nas formalizações definidas pelo middleware EXEHDA.
Estas formalizações proporcionam ao EXEHDA-SA funcionalidades e características
oportunas para o desenvolvimento da proposta deste trabalho. Porém apesar do
EXEHDA-SA ser direcionado a ambientes distribuídos, as implementações disponí-
veis do mesmo apresentam a compreensão dos eventos em escopo local, gerando
um gargalo de processamento em ambientes IoT altamente distribuídos. Desta forma
para que o EXEHDA-SA seja moldado aos requisitos e objetivos propostos por este
trabalho, executou-se as seguintes modificações:

• Módulo de Compreensão: neste módulo aplicou-se alterações de modo a per-
mitir a execução da correlação dos eventos de forma distribuída, removendo o
gargalo de processamento ao descentralizar esta tarefa, proporcionando tam-
bém uma maior tolerância a falhas, já que com a descentralização da tarefa não
á mais um único ponto de falha.

• Módulo de Pré-processamento: com o objetivo de implementar uma estratégia
de distribuição dos dados com a preocupação do consumo de rede, o Módulo
de pré-processamento foi alterado para que permitisse a inserção de chaves
identificadoras, visando permitir a divisão lógica do fluxo de dados. Também
se adicionou a funcionalidade de compactação dos dados a serem enviados,
permitindo assim a redução do consumo de rede. Este método de comunicação
e melhor detalhado na seção 5.1.

Na Figura 17 é destacado os módulos na arquitetura EXEHDA-SA que sofreram
modificações. Com as alterações executadas, desenvolveu-se uma arquitetura distri-
buída com três tipos de nodos: pré-processamento, broker e processamento de even-
tos. Onde estes nodos se relacionam em um padrão de produtor consumidor. Cada
um destes serão detalhados nas subseções seguintes.

5.4.1 Nodo de Pré-processamento

Este nodo é responsável por modelar os dados recebidos para um formato de mais
fácil manipulação aos outros nodos de execução, também é responsável por inserir
chaves identificadoras nos eventos para que assim se possa subdividir logicamente o
fluxo de informação. Este nodo realiza estas tarefas da seguinte maneira: primeira-
mente os eventos recebidos são inseridos em uma fila de consumo prioritária, onde a
precedência desta fila é baseada no campo de nível do risco, campo este adicionado

55

Figura 17 – Módulos a serem modificados no EXEHDA-SA.

previamente aos eventos pelo EXEHDA-SA. Esta fila tem por objetivo dar prioridade
no processamento dos eventos que tenham um maior nível de risco de segurança.
Após a inserção de algum evento a fila, o módulo de pré-processamento consome
este evento modelando-o em um objeto Java, onde esta manipulação pode ser execu-
tada por dois sub-módulos distintos: o primeiro faz o uso de expressões lambdas no
Java 8 para executar esta tarefa; já o segundo módulo faz uso do Apache Spark para
executar a manipulação dos eventos para objetos Java. A escolha do sub-módulo de
modelagem é definida pelo usuário através do arquivo de configuração.

O nodo de pré-processamento também é responsável por executar a inserção do
campo identificador de fluxo, o qual é usado para direcionar fluxos de eventos aos no-
dos de processamento. A escolha da chave identificadora é baseada no campo TAG,
este adicionado pelo EXEHDA-SA, sendo o mesmo gerado por meio da análise da
origem dos eventos (quais tipos de dispositivos geraram este dado). A forma da esco-
lha da chave identificadora também pode ser alterada pelo usuário com a introdução
de expressões regulares no arquivo de configuração do nodo de pré-processamento,
onde estas expressões podem selecionar qualquer parte dos eventos para serem usa-
das como chave.

Por fim o módulo cliente Kafka do nodo de pré-processamento executa o envio
dos eventos a um nodo Broker, podendo executar a compactação destes antes de
efetuar o envio destas informações, caso o usuário opte por executar a compactação,
este deverá selecionar no arquivo de configuração qual o algoritmo de compactação
deverá ser usado dentre o Snappy, LZ4 e GZIP. A Figura 18 ilustra a modelagem do
nodo de pré-processamento.

56

Figura 18 – Nodo de Pré-processamento.

5.4.2 Nodo Broker

Nodo responsável por armazenar os eventos recebidos pelo pré-processamento e
distribui-los sob demanda aos nodos de processamento. Para a implementação deste
nodo usou-se o Apache Kafka, onde em um nodo Broker encontram-se três tópicos
Kafka, nos quais são armazenadas as seguintes informações:

• Tópico de Trabalho: tópico que armazena todos os eventos enviados pelo nodo
de pré-processamento. Este tópico é subdividido em N partições, onde os dos
eventos são designados a uma destas partições pelo Kafka, o qual faz uso das
chaves identificadoras para executar esta tarefa, garantindo que eventos deten-
tores de uma mesma chave identificadora serão designados a uma mesma parti-
ção. Estas partições auxiliam o Kafka no gerenciamento do acesso concorrente
dos eventos, limitando a manipulação de uma mesma partição por no máximo um
nodo, garantindo assim uma entrega ordenada e continua do fluxo armazenado
nesta partição ao nodo de processamento que esteja consumindo a mesma.
Esta estratégia evita a possível perda na identificação de eventos complexos, já
que caso os eventos de um mesmo fluxo fossem divididos, eventos A e B que
juntos caracterizariam um evento complexo, poderiam ser designados a nodos
de processamento distintos, o que impossibilitaria a identificação deste evento
complexo.

• Tópico de Notificações: neste tópico são armazenadas todas as notificações
de identificação de eventos complexos, estas geradas pelos nodos de processa-
mento. Estes dados de notificações armazenados no tópico podem por exemplo
serem usados por administradores, com o intuito de adotar alguma ação base-

57

ado nos dados da notificação retornada ou ainda estas informações podem ser
integradas para uso de ferramentas de terceiros.

• Tópico de Regras: responsável por armazenar conjuntos de regras CEP a se-
rem enviadas aos nodos de processamento. Cada conjunto de regra possui uma
chave identificadora idêntica a chave do fluxo para o qual esta deverá ser apli-
cada, permitindo assim que os nodos de processamento usem apenas as regras
especificas para seus respectivos fluxos de eventos.

Todo o processo de comunicação executado entre o nodo Broker e os demais no-
dos de processamento é executado por meio de transações, de modo que quando
ocorre qualquer erro ou falha, uma operação de rollback é executada, desfazendo
qualquer modificação executada por uma operação malsucedida, garantindo que da-
dos não sejam perdidos. Estas operações de comunicação executam por meio do
protocolo MQTT, o que permite ao usuário, caso este necessite, o uso de forma faci-
litada de criptografia para o envio e recebimento das mensagens, algo imprescindível
para ambientes vulneráveis que necessitem trafegar dados sensíveis de forma segura.

Assim como os demais nodos desta arquitetura, o nodo Broker pode possuir de
1 a N instâncias de execução, distribuindo os fluxos de dados entre estas instâncias.
Como os fluxos de dados estão armazenados e divididos entre as instâncias, o usuá-
rio pode preferir ter a garantia contra a indisponibilidade destas informações caso um
dos nodos Broker falhe, para isto o nodo pode manter uma cópia dos dados armaze-
nada nas outras instâncias, sendo definido na configuração deste nodo o parâmetro
de fator de replicação, onde este número vai de zero ao número de instâncias do nodo
Broker em execução menos um. Onde o valor zero não dá garantias contra falhas, já
o valor um garante que caso um nodo Broker caia, não haverá perda das informações.
Deste modo, quanto maior for o fator de replicação adicionado, mais nodos poderão
falhar sem que ocorra a indisponibilidade dos dados, porém este fator de replicação
gera uma demanda maior de recursos computacionais aos nodos, recursos estes ne-
cessários para que se possa manter o backup dos dados atualizado entre todas as
instâncias. A Figura 19 ilustra o nodo Broker com as respectivas tecnologias empre-
gadas.

5.4.3 Nodo de Processamento

Neste nodo é executado toda a e qualquer tarefa de processamento e análise de
eventos. Primeiramente para executar esta função, quando um nodo de processa-
mento é instanciado, o módulo cliente Kafka deste comunica sua disponibilidade para
processar eventos ao Nodo Broker, o qual irá designar uma parte dos fluxos de eventos
para este processar. A designação dos fluxos é executada com base na quantidade
de nodos de processamento disponíveis, quanto mais nodos processando, menos flu-

58

Figura 19 – Nodo Broker.

xos de eventos serão designados a um nodo, com o limite de um único fluxo por nodo.
Após receber uma parte dos fluxos, o módulo cliente Kafka requisita ao nodo Broker
as regras de processamento correspondente aos fluxos designados para este. A cor-
respondência dos fluxos com as regras é feita pela chave identificadora, onde a chave
da regra corresponde a chave do fluxo para o qual esta deve ser aplicada. O módulo
cliente Kafka verifica periodicamente por novas regras de processamento, permitindo
que o usuário adicione novas regras em tempo de execução.

Após o recebimento dos eventos a serem processados, é executada a descompac-
tação dos mesmos, caso o usuário tenha optado por executar a compactação destes
no nodo de pré-processamento. Seguindo a descompactação, os eventos e as suas
correspondentes regras são submetidos ao Esper o qual fica responsável por aplicar
as regras de processamento sobre os fluxos de eventos, visando assim identificar a
ocorrência de eventos complexos.

Caso haja a identificação de algum evento complexo, o comportamento padrão de-
finido pela arquitetura é o envio de uma notificação ao nodo Broker com os dados que
geraram esta identificação do evento complexo e a regra de processamento que fez a
detecção deste evento. Este comportamento descrito pode ser alterado pelo usuário
por meio da passagem de um objeto Java como parâmetro da classe principal do nodo
de processamento, assim este objeto irá representar o novo padrão comportamental a
ser executado. A Figura 20 ilustra a modelagem do nodo de processamento de dados.

Todos os nodos de processamento são organizados em um mesmo grupo Kafka,

59

isto possibilita a distribuição dos eventos de forma concorrente, já que nodos per-
tencentes a um mesmo grupo de processamento dividem o conjunto de informação
armazenado em um tópico, trabalhando em parcelas distintas do mesmo.

O nodo de processamento, assim como os demais, implementa mecanismos de
tolerância a falhas, onde caso algum dos nodos de processamento, por um motivo
qualquer ficar ocioso, deixando de se comunicar, o nodo Broker percebe imediata-
mente a sua inatividade e distribui os fluxos de eventos antes detidos por este nodo
ocioso aos demais nodos de processamento disponíveis. Isto evita que estas informa-
ções permaneçam sem serem processadas até que o nodo fique ativo novamente, o
que poderia ocasionar na perca da identificação de eventos complexos, ou ainda na
identificação tardia dos mesmos, tendo em vista que a detecção de certos eventos
complexos só faz sentido se for efetuada em um intervalo de tempo muito curto.

Um exemplo deste cenário citado, seria a detecção de uma tentativa de invasão
em andamento aos dados sensíveis de um banco de dados, caso o administrador
seja notificado deste possível ataque em andamento, antes que o mesmo seja bem
sucedido por parte dos invasores, este administrador poderá tomar alguma decisão
de modo a mitigar esta tentativa de invasão.

Figura 20 – Nodo de processamento.

5.4.4 Visão geral da arquitetura

Na Figura 21 é apresentada a visão geral da arquitetura proposta bem como os
fluxos de comunicação entre cada um dos três nodos.

60

Figura 21 – Visão geral da arquitetura.

6 EXEHDA-DEP: AVALIAÇÕES E RESULTADOS

Neste capitulo são apresentados os testes de escalabilidade e consumo de rede
executados com a presente arquitetura proposta, bem como os resultados obtidos
com a implementação destas avaliações. Neste capitulo também será descrito o ce-
nário de caso de uso aplicado para a execução dos testes, incluindo as motivações e
justificativas para o uso do mesmo.

6.1 Cenário de Aplicação

O cenário de aplicação proposto para a execução dos testes teve como referência
o ambiente computacional da Universidade Federal de Pelotas (UFPel) o qual possui
uma infraestrutura com características da Computação Ubíqua. Dentre estas caracte-
rísticas presentes, pode-se citar:

• o grande número de dispositivos heterogêneos com hardwares e recursos dis-
tintos conectados a rede, como computadores com sistemas operacionais diver-
sos, impressoras, servidores, dispositivos móveis, câmeras de segurança, entre
outros;

• um ambiente descentralizado, com dispositivos localizados em campus geogra-
ficamente separados, os quais enviam e recebem informações entre si continu-
amente;

• a necessidade de trafegar um considerável volume de eventos por links de co-
nexão com baixa largura de banda;

• a falta de padronização das informações geradas por serviços oferecidos pelos
datacenters onde eventos de sistemas legados geram logs em diversos formatos
e padrões.

Com o enfoque de demonstrar a capacidade da arquitetura processar um consi-
derável volume de eventos em um ambiente ubíquo com escalabilidade e mantendo
o consumo de rede estável, o ambiente computacional da UFPEL se adéqua a estes

62

requisitos, o qual almeja por uma arquitetura apta a lidar com o processamento distri-
buído e heterogêneo dos eventos e com capacidade de executar em ambientes com
limitações de largura de link.

Dentro deste cenário da UFPEL, optou-se por executar a análise de eventos da
segurança da informação, tendo em vista a pertinência da identificação de eventos
deste tipo, já que há uma grande dificuldade e necessidade de se identificar e manter
redes de grande porte seguras contra ataques de Hackers (JOSHI; SINGH, 2017).

O processamento de eventos de segurança favorece também a execução do es-
tudo da capacidade do EXEHDA-DEP em lidar com um considerável volume de even-
tos quase que em tempo real, já que neste caso há necessidade de se analisar boa
parte do trafego de rede gerado por milhares de dispositivos na UFPel, em busca de
eventos de segurança da informação. Estes eventos caracterizam uma possível que-
bra de segurança, de modo que caso sejam detectados, deve-se notificar o administra-
dor de rede de imediato, para que assim este possa tomar as ações cabíveis. Assim,
as regras EPL aplicadas ao ambiente computacional da UFPEL visam a identificação
da execução de ataques de Hackers como de força bruta, injeção de código, dentre
outros. Estas regras EPL foram desenvolvidas e testadas por trabalhos anteriores do
grupo de pesquisa (ALMEIDA et al., 2019).

Outra característica presente na análise de eventos de segurança que se adéqua
aos objetivos deste trabalho é a ausência de padronização nas estruturas dos dados
a serem analisados, visto que há diferentes dispositivos com protocolos e recursos
distintos se comunicando na rede, o que gera a necessidade do EXEHDA-DEP em
trabalhar com dados heterogêneos, assim como em um ambiente da IoT (HANES
et al., 2017).

6.1.1 Ambiente de Teste

Devido a restrições de segurança para o acesso direto de terceiros ao ambiente
computacional da UFPEL, optou-se por executar a virtualização deste ambiente. Para
isto fez-se uso de um cluster para executar a simulação dos diferentes dispositivos
presentes no ambiente computacional da UFPEL, sobre os quais os nodos da arqui-
tetura proposta poderão executar.

As configurações do cluster usado para a simulação consiste:

• Processamento: 8 processadores Intel Xeon E5-4650V3 de 2.1GHZ forne-
cendo 96 núcleos de processamento.

• RAM: 64 módulos de 8 gigabytes DDR4, totalizando 512GB de memória.

• Armazenamento: 2 discos rígidos de 2 terabytes com velocidade de 12Gb/s
executando em RAID 1.

63

Já a virtualização das máquinas no cluster foi executado por meio do Docker1, o
qual fornece uma camada de abstração e automação para a virtualização de siste-
mas, o que permitiu a execução do isolamento dos recursos de hardware do clus-
ter (memória RAM, CPU, HD e largura de banda) permitindo uma melhor aproximação
da simulação ao ambiente real da UFPEL.

As restrições dos recursos computacionais foram executadas da seguinte maneira:

• CPU - o isolamento dos recursos de processamento foi elaborado com a limi-
tação do número de núcleos de processamento disponíveis para cada uma das
máquinas simuladas, bem como quais destes núcleos disponibilizados pelo clus-
ter seriam usados por cada uma destas máquinas virtuais. A quantidade de
núcleos de processamento disponibilizado as máquinas simuladas depende do
teste em questão a ser executado, podendo variar conforme o necessário.

• HD - a restrição do armazenamento foi elaborada através da limitação da veloci-
dade de leitura e escrita no disco rígido disponibilizada a cada uma das máqui-
nas virtuais, visando assim simular a independência do armazenamento entre as
máquinas virtuais. Não foram feitas limitação quanto a quantidade de HD(Hard
Disk) disponibilizada por cada nodo, ficando disponível as máquinas virtuais a
quantidade total livre no cluster.

• Rede de Comunicação - o Docker permite a virtualização de redes de comuni-
cação, incluindo a simulação de roteadores efetuando a distribuição de IPs para
as máquinas virtuais. Esta funcionalidade possibilitou a simulação e análise do
consumo de tráfego de rede gerado pela comunicação entre nodos de proces-
samento executando em máquinas distintas.

• Memória RAM - o controle da memória RAM limitou-se a disponibilizar uma
quantidade X para cada uma das máquinas virtuais, onde o volume de memória
disponibilizado para cada máquina pode variar dependendo das necessidades
dos testes em questão a ser executado.

Para a simulação do tráfego de rede usou-se um conjunto de logs de tráfego de
rede de diferentes dispositivos (Firewall, Roteadores, Switchs...) usados na UFPEL.
Estes dados foram enviados ao nodo de pré-processamento de forma periódica e não
sequencial, visando simular a geração natural dos logs no ambiente da UFPEL. O
envio destes dados foi executado com o auxílio de uma ferramenta desenvolvida em
Java, esta também projetada por este trabalho, se encontrando disponível para acesso
e uso junto da arquitetura principal projetada. Estes logs de dispositivos empregados
por este trabalho já foram usados anteriormente em outro trabalho desenvolvido pelo
presente grupo de pesquisa (ALMEIDA et al., 2019).

1https://www.docker.com/

https://www.docker.com/

64

Na Figura 22 é apresentado um diagrama do fluxo da execução do EXEHDA-DEP,
onde eventos de registro da atividade de rede na UFPel são capturados e padroniza-
dos pelos demais módulos previamente concebidos do middleware EXEHDA e modelo
arquitetural EXEHDA-SA (ALMEIDA et al., 2019), onde estes eventos são posterior-
mente enviados ao nodo de pré-processamento o qual empacota e classifica este
evento usando uma chave identificadora, o enviando em seguida por uma transação a
um nodo Broker.

Por sua vez, o nodo Broker recebe o pacote contendo o evento, o despachando
imediatamente para um nodo de processamento, se baseando para isto na chave iden-
tificadora adicionada pelo nodo de pré-processamento. Este nodo também armazena
os registros de notificações disparados pelos nodos de processamento, bem como as
regras EPL definidas pelo administrador de rede na interface administrativa, onde as
quais serão distribuídas por este nodo, aos nodos de processamento, se baseando
para isto nos fluxos de eventos que estes estiverem analisando.

O nodo de processamento recebe o pacote do evento por meio de uma transação
aberta com um nodo Broker. Este nodo, executa a análise de eventos complexos,
por meio do emprego de regras EPL definidas pelo administrador de rede, as quais
são inseridas em uma interface administrativa. Estas regras aplicadas pelos nodos
de processamento, foram definidas de modo a permitirem a identificação de possíveis
tentativas de invasão ou quebra de segurança a rede da UFPel. Sempre que um
nodo de processamento faz a identificação de um evento complexo, o comportamento
padrão executado é o envio de uma notificação ao nodo Broker, o qual armazena
esta mensagem, para que o administrador possa por meio da interface administrativa,
analisar os incidentes de segurança da informação detectados e assim tomar alguma
ação cabível ao mesmo.

65

Figura 22 – Fluxo de execução do EXEHDA-DEP.

6.2 Escalabilidade

Nesta seção será apresentado os resultados dos testes de escalabilidade execu-
tados com os nodos de pré-processamento e processamento. Todos os testes de
desempenho apresentados nesta seção foram executados com uma arquitetura de
cinco nodos Broker, estes executando em máquinas virtuais geradas pelo Docker com
as seguintes configurações: oito núcleos de processamento do cluster ; dezesseis gi-
gabytes de RAM; cinquenta megabits de velocidade máxima de leitura e escrita em
disco rígido.

6.2.1 Escalabilidade Vertical

Primeiramente executou-se testes com o objetivo de mostrar a capacidade da ar-
quitetura escalar verticalmente, isto é, demonstrar que com o aumento dos recursos
computacionais disponíveis, há algum aumento significativo na taxa de processamento
da arquitetura. Para isto simulou-se com o Docker uma máquina virtual inicialmente
com os seguintes recursos computacionais: um núcleo de processamento do cluster ;
seis gigabytes de memória RAM; uma taxa de leitura e escrita de disco de dez me-
gabits por segundo. Após a simulação inicial nesta arquitetura, repetiu-se o mesmo
teste de processamento, porém com os valores de todos os recursos computacionais
(número de núcleos de processamento, memória RAM e velocidade de leitura e es-

66

crita do HD) multiplicados por dois, três, quatro, cinco, dez e quinze. Esperando-se
obter com a execução destes testes um aumento contínuo e progressivo dos valores
médios de eventos processados por segundo, conforme os recursos computacionais
são incrementados nos diferentes testes de processamento citados, visando assim
demonstrar a capacidade da arquitetura escalar verticalmente.

Cada uma das simulações citadas fora executada com os nodos de Pré-
processamento e de Processamento, onde cada um destes testes foram realizados
trinta vezes. O valor médio da taxa de processamento obtido com as trinta iterações e
seus respectivos desvio padrão podem ser visto nas Figuras 23 e 24.

Figura 23 – Escalabilidade Vertical nodo de pré-processamento.

67

Figura 24 – Escalabilidade Vertical nodo de processamento.

Os dados obtidos com os testes, apresentados nas Figuras 23 e 24 demonstram
a capacidade dos nodos de pré-processamento e processamento de escalar vertical-
mente, demonstrando um aumento significativo na taxa de processamento. Porém,
também pode-se perceber pelo gráfico que os ganhos na capacidade de processa-
mento diminuem ao longo do aumento dos recursos computacionais, porém mesmo
com um aumento de quinze vezes da capacidade computacional inicial disponibilizada
aos nodos de pré-processamento e processamento, estes continuaram apresentando
algum ganho na taxa de transferência, enfatizando a capacidade da arquitetura pro-
posta de escalar verticalmente.

6.2.2 Escalabilidade Horizontal

Para demonstra a capacidade da arquitetura proposta escalar horizontalmente, isto
é, de demonstrar que quanto maior o número de nodos, maior será o ganho na taxa
total de processamento disponibilizada pela arquitetura, foram executados testes vi-
sando analisar a média de eventos processados pelos nodos de pré-processamento
e processamento, primeiramente em uma única máquina virtual, esta possuindo os
seguintes recursos computacionais: um núcleo de processamento do cluster ; seis gi-
gabytes de memória RAM; uma taxa de leitura e escrita de disco de dez megabits
por segundo. Após a análise do processamento de uma instância de execução dos
nodos em uma única máquina virtual respectivamente, repetiu-se esta simulação au-

68

mentando igualmente o número de máquinas virtuais e nodos, mas sempre mantendo
uma única instância dos nodos de pré-processamento ou processamento por máquina
virtual. Estes testes foram executados com: dois, três, quatro, cinco, dez e quinze má-
quinas virtuais e nodos igualmente.

Assim, com a análise da média total de eventos processados em cada um destes
testes, espera-se obter um aumento contínuo e progressivo do processamento destes
eventos, conforme o número de nodos de processamento aumenta em cada um dos
respectivos testes executados, demonstrando desta forma a capacidade da arquitetura
escalar horizontalmente.

Cada uma das simulações citadas fora executada com os nodos de pré-
processamento e de processamento, sendo cada um destes testes executados trinta
vezes. O valor médio da taxa de processamento obtido com as trinta iterações e seus
respectivos desvio padrão pode ser visto nas Figuras 25 e 26.

Figura 25 – Escalabilidade horizontal nodo de pré-processamento.

69

Figura 26 – Escalabilidade horizontal nodo de processamento.

Os dados obtidos com os testes, apresentados nas Figuras 25 e 26 demonstram
a capacidade dos nodos de pré-processamento e processamento escalar horizon-
talmente, apresentando aumento significativo na taxa de processamento. Pode-se
destacar o aumento contínuo e significante da taxa de processamento obtido nos tes-
tes, aumento este se mantendo significativo mesmo com quinze nodos executando ao
mesmo tempo, provendo assim altas taxas de processamento, destacando a capaci-
dade desta arquitetura de executar em ambientes altamente descentralizados e que
necessitem altas taxas de processamento, características estas presentes na IoT.

6.3 Estabilidade e Consumo de Recursos

Nesta seção será demonstrada a estabilidade da proposta, estabilidade esta desta-
cada pela capacidade dos nodos de pré-processamento e processamento de executar
continuamente por longos períodos sem apresentar instabilidades ou variações brus-
cas na taxa de processamento. Também será mensurado o consumo dos recursos
computacionais gerado pelos testes executados nesta seção, visando demonstrar a
possibilidade de se executar a proposta em hardware de baixo custo e ainda destacar
o gerenciamento eficaz dos recursos computacionais, isto é, demonstrar que a pre-
sente arquitetura não exerce um consumo elevado de memória RAM, aumentando o
uso continuamente ao longo do tempo, sem nenhuma causa necessária aparente, ou
mesmo que a proposta não possua períodos de ociosidade de processamento ou o

70

não uso da total capacidade disponibilizada pela CPU(Central Processing Unit).
Visando demonstrar a estabilidade da taxa de processamento dos nodos de pré-

processamento e processamento executou-se a medição da taxa média de eventos
consumidos ao longo do período de meia hora(1800 segundos), visando assim iden-
tificar qualquer instabilidade que afete a execução da arquitetura, gerando alguma
variação brusca na taxa de processamento dos eventos. Os seguintes recursos com-
putacionais foram disponibilizados a máquina virtual simulada para a execução deste
teste: um núcleo de processamento do cluster ; seis gigabytes de memória RAM; uma
taxa de leitura e escrita de disco de dez megabits por segundo. Os dados da taxa de
processamento de eventos complexos por segundo obtida com as simulações de meia
hora dos nodos de pré-processamento e processamento podem ser visto nas Figuras
27 e 28.

Figura 27 – Estabilidade nodo pré-processamento.

71

Figura 28 – Estabilidade nodo processamento.

Os dados obtidos com os testes, apresentados nas Figuras 27 e 28 demonstram
a estabilidade na execução do processamento de eventos complexos pela arquitetura
proposta, onde a mesma apresenta uma progressão estável e continua na taxa de
processamento, não apresentando grandes picos ou variações ao longo do tempo
de execução. Os testes visam demonstrar que a presente arquitetura proposta está
apta a ser introduzida a meios computacionais que necessitem de soluções confiáveis,
capazes de lidar com grandes fluxos de dados de forma continua e estável.

Durante os testes de estabilidades executados, executou-se também a medi-
ção do consumo de recursos computacionais gerado por cada um dos nodos, pré-
processamento e processamento, durante os testes citados. A execução destas me-
dições visa demonstrar a administração satisfatória dos recursos computacionais por
parte da arquitetura proposta, isto é, demonstrar que a presente arquitetura não exerce
um consumo elevado de memória RAM, aumentando o uso continuamente ao longo
do tempo, sem nenhuma causa necessária aparente, ou mesmo que a proposta não
possua períodos de ociosidade de processamento ou o não uso da total capacidade
disponibilizada pela CPU. Os dados coletados estão ilustrados nas Figuras 29 e 30.

72

Figura 29 – Consumo de recursos pré-processamento.

Figura 30 – Consumo de recursos processamento.

A Figura 29 demonstra o consumo estável e contínuo do tempo de processamento
disponibilizado pela máquina virtual ao nodo de pré-processamento, não apresen-
tando períodos de ociosidade ou grandes variações na média do processamento ao

73

longo do tempo da coleta dos dados. Já o consumo de memória RAM apresentou uma
leve progressão ao longo do tempo analisado, progressão esta que pode ser explicada
com a observação da Figura 27, a qual apresenta os dados da taxa média de proces-
samento ao longo do tempo deste nodo, onde percebe-se um contínuo aumento ao
longo do tempo da taxa média de processamento, o que acaba gerando consequente
mente um leve e contínuo aumento do consumo de memória RAM ao longo do tempo,
até que esta taxa de processamento se estabilize.

Na Figura 30 são apresentados os dados do nodo de processamento, o qual de-
monstra um consumo de tempo de processamento estável com leves variações, tendo
em vista que a identificação de um evento complexo acarreta em um chamada subse-
quente de uma ação designada para este fluxo de eventos complexos, estas variações
podem ser explicadas por períodos nos quais o número médio de eventos complexos
identificados teve uma leve alteração. Como os dados analisados pelas regras EPL
são gerados de forma aleatória, o que mais se aproxima do comportamento do ambi-
ente real, a ocorrência durante o tempo de execução de períodos com maior e menor
identificação de eventos complexos, desta forma, leves variações no consumo médio
de CPU são esperadas.

Já o consumo de memória RAM exercido pelo nodo de processamento não apre-
senta quaisquer variações, estabilizando aos 300 segundos de simulação em pouco
mais de 25% e se mantendo neste valor até o final do teste, demonstrando que a
arquitetura oferece um gerenciamento adequado deste recurso.

6.4 Consumo de Rede

Nesta seção serão apresentados os testes de consumo de rede, onde estes visam
demonstrar a capacidade da arquitetura proposta de gerenciar a transmissão dos da-
dos pela rede de modo a proporcionar a distribuição dos dados com um consumo de
banda estável, oferecendo opção também de usar a compactação dos eventos para
assim fornecer uma redução do consumo do tráfico de rede gerado pela distribuição
dos eventos, favorecendo o uso desta proposta em ambientes com baixa largura de
banda, ou que estejam com os links de comunicação saturados pela necessidade de
transmitir grandes volumes de informações.

Todos os testes demonstrados nesta seção foram executados com uma arquitetura
de cinco nodos Broker, estes executando em máquinas virtuais geradas pelo Docker
com as seguintes configurações: oito núcleos de processamento do cluster ; dezesseis
gigabytes de RAM; cinquenta megabits de velocidade máxima de leitura e escrita em
disco rígido.

Primeiramente com o objetivo de demonstrar que a presente arquitetura proposta
não gera custos adicionais ao tráfego de rede para executar a distribuição dos dados,

74

efetuou-se a simulação de máquinas virtuais, para que nestas fosse executado os no-
dos de processamento. Assim, gerou-se vinte e quatro milhões de eventos para que
estes fossem distribuídos pelos nodos Broker aos nodos de processamento, visando
desta forma mensurar o tráfego total de rede gerado nos links das máquinas virtu-
ais que os nodos de processamento executam. Este teste foi executado com: um,
dois, três, quatro, cinco, dez e quinze máquinas virtuais, onde em cada uma destas
executava uma instância do nodo de processamento. Os recursos computacionais
disponibilizados a cada uma das máquinas virtuais durante a execução destes testes
foram: um núcleo de processamento do cluster ; seis gigabytes de memória RAM; e
uma taxa de leitura e escrita de disco de dez megabits por segundo.

Com a transmissão deste volume de eventos a uma ou mais máquinas virtuais
nas quais executam os nodos de processamento, visa se possibilitar o comparativo
da carga total de rede exercida sobre os links de comunicação de cada uma das má-
quinas virtuais simuladas, possibilitando-se constatar de que a presente tem a capa-
cidade de efetuar o processamento de eventos complexos de formar distribuída sem
exercer qualquer carga adicional sobre os links de comunicação da rede. Os resulta-
dos destes testes podem ser vistos na Figura 31.

Figura 31 – Consumo de rede com a distribuição.

Os dados apresentados na Figura 31 demonstram um consumo de rede estável
fornecido pela arquitetura proposta, onde o valor exigido do link é o mesmo, indepen-
dente de quantos nodos estiverem trabalhando em conjunto. As pequenas variações
vistas no gráfico podem ser explicadas por comunicações adicionais executadas pe-

75

los sistemas operacionais das máquinas virtuais. Como os dados foram coletados
analisando o consumo de rede total gerado no link de comunicação disponibilizado a
cada uma das máquinas, o tráfego gerado ocasionalmente pelo sistema operacional
ou por suas aplicações acaba sendo considerado em conjunto, ou mesmo transmis-
sões mal sucedidas, que por este motivo necessitaram ser executadas novamente,
geram uma pequena discrepância nos dados de tráfego de rede. Porém estes valores
não interferem para a constatação de que a presente proposta prove uma arquitetura
com consumo de rede estável, não exercendo carga adicional para a distribuição dos
dados aos nodos de processamento.

Outra funcionalidade provida pela arquitetura proposta é a capacidade de com-
pactar os dados trafegados para que assim se possa diminuir o consumo de rede
total gerado no tráfego das informações. Esta funcionalidade visa facilitar o transporte
dos dados aos nodos de processamento em ambientes que tenham baixa largura de
banda ou ainda que sofram com links de comunicação saturados pelo grande volume
de dados trafegado nestas redes.

Para demonstrar esta capacidade de redução de tráfego gerada pela compacta-
ção, executou-se a produção de dezoito milhões de dados aos nodos Broker, os quais
redirecionaram estas informações a um nodo de processamento, o qual executava em
uma máquina virtual com as seguintes configurações: um núcleo de processamento
do cluster ; seis gigabytes de memória RAM; e uma taxa de leitura e escrita de disco de
dez megabits por segundo. Este teste foi executado para cada um dos tipos de com-
pactações suportadas pela arquitetura: Nenhuma, Snappy, LZ4 e GZIP. Os resultados
obtidos podem ser visto na Figura 32.

Figura 32 – Consumo de rede por algoritmos de compactação.

Na Figura 32 pode-se perceber um considerável declínio no consumo de rede ge-
rado pelo uso dos algoritmos de compactação, se comparado ao método que não

76

aplica nenhuma destas estratégias. Dentre estas estratégias de compactação aplica-
das, pode-se destacar o algoritmo GZIP, onde seu uso proporcionou uma redução de
mais de quatro vezes o tráfego de rede gerado, destacando a capacidade da arqui-
tetura executar em redes que tenham links de comunicação saturados ou de baixa
velocidade. Esta redução do tráfego de rede pode ainda proporcionar uma melhora
significativa no tempo de latência entre as comunicações, já que uma quantidade
maior de dados pode ser trafegada no mesmo período de tempo, proporcionando a
arquitetura oferecer um tempo de resposta mais curto. Tais reduções favorecem o uso
em aplicações que necessitem de processamento em tempo real, com baixas latên-
cias, fornecendo a identificação de eventos complexos quase que de imediato a sua
ocorrência.

Visando identificar os possíveis impactos gerados pelo uso dos algoritmos de com-
pactação na taxa de processamento, executou-se um teste para verificar a média de
eventos processada ao longo do tempo com o uso das quatro alternativas distintas de
compactação empregadas. Para executar esta simulação, fez-se uso de uma máquina
virtual na qual o nodo de processamento irá executar, de modo que este consuma da-
dos continuamente pelo período de meia hora (1800 segundos) permitindo assim a ve-
rificação do fluxo de processamento durante este período. As configurações aplicadas
na máquina virtual para executar esta simulação foram: um núcleo de processamento
do cluster ; seis gigabytes de memória RAM; e uma taxa de leitura e escrita de disco
de dez megabits por segundo. Este teste foi executado para cada uma das técnicas
de compactação onde os dados obtidos com estas execuções podem ser vistos na
Figura 33.

Figura 33 – Fluxo de processamento com compactação.

77

Na Figura 33 pode ser identificado que todos os algoritmos de compactação usa-
dos tiveram uma taxa de processamento significativamente maior se comparados com
a técnica que não usava uma estratégia de compactação. Isso se justifica que mesmo
estes métodos “perdendo tempo” antes de enviar ou receber os dados compactando
e descompactando a informação, esta tarefa ainda não se torna o gargalo do fluxo
da arquitetura, sendo este gargalo, neste caso testado, a velocidade de comunica-
ção dos links entre o nodos Broker e o nodo de processamento, demonstrando que
o tempo gasto para executar esta compactação dos dados é menor que o tempo ga-
nho por conseguir transmitir uma quantidade de dados maior consumindo o mesmo
percentual de largura de rede.

Os resultados obtidos, destacam ainda mais a importância da consideração do
consumo de rede na distribuição dos dados, tendo em vista que mesmo uma arquite-
tura simplificada, com um único núcleo de processamento, a velocidade dos links de
comunicação pode ainda ser o gargalo do fluxo de uma arquitetura. Estes dados de-
monstram a aplicabilidade desta arquitetura em ambientes com links de comunicação
saturados, a qual tem o potencial de reduzir o consumo da rede e ainda proporcionar
um aumento na taxa de processamento de dados.

Pode-se observar também pela Figura 33 que dentre as técnicas de compactação
disponibilizadas pela a arquitetura, a LZ4 foi a que atingiu a maior taxa de processa-
mento, sendo também a segunda com o maior nível de compactação dos dados.

7 CONSIDERAÇÕES FINAIS

O avanço tecnológico tem proporcionado mudanças significativas na sociedade,
introduzindo a computação aos mais variados dispositivos, como geladeiras e cafe-
teiras. Esta introdução da tecnologia computacional tem sido chamada de Internet
das Coisas e tem por finalidade fornecer computação com conectividade constante e
mobilidade, de forma transparente e integrada ao ambiente.

Porém, em conjunto com a IoT, surge uma gama de desafios a serem solucio-
nados, para que assim este novo paradigma computacional possa efetivamente vir
a tornar-se uma tecnologia onipresente a todos os tipos de usuários. Dentre estes
obstáculos se pode citar: o tratamento da heterogeneidade das informações; o pro-
cessamento do considerável volume de eventos; as limitações dos ambientes em que
estes dispositivos estão inseridos.

No âmbito destes desafios citados, este trabalho teve como objetivo o desenvolvi-
mento de uma arquitetura de processamento distribuído de eventos para a IoT esca-
lável e apta a lidar com a heterogeneidade destes ambientes, aplicando ainda estra-
tégias que visem aprimorar a eficiência do consumo de largura de banda. Defende-se
que este objetivo pôde ser alcançado com a concepção do EXEHDA-DEP.

Para que o EXEHDA-DEP dispusesse da capacidade em lidar com a heteroge-
neidade dos ambientes da IoT, foi adotado como escopo de desenvolvimento o mid-
dleware EXEHDA e o modelo arquitetural EXEHDA-SA, os quais favoreceram ao
EXEHDA-DEP esta competência.

Já para que fosse possível oferecer uma arquitetura com capacidade de proces-
sar um volume de eventos considerável, como o gerado na IoT, este trabalho adotou
uma abordagem distribuída na concepção do sistema, o que possibilitou que a taxa
de processamento pude-se ser escalada conforme a necessidade do usuário. Esta
capacidade foi evidenciada na seção 6.2, onde os resultados obtidos com testes de
processamento demonstraram que com o acréscimo de um novo nodo à arquitetura,
a taxa de eventos consumida por segundo aumenta significativamente, destacando a
aplicabilidade do EXEHDA-DEP à IoT, visto que estes ambientes tendem a crescer
consideravelmente, variando o volume de dados gerado no mesmo.

79

A arquitetura do EXEHDA-DEP foi ainda projetada de modo a permitir que novos
nodos de processamento possam ser adicionados ou removidos sem gerar quaisquer
impactos no sistema como um todo, onde os resultados obtidos com os testes executa-
dos e demonstrados na seção 6.4 enfatizam que o número de nodos processando não
influencia no consumo médio de rede, onde os quais podem ser removidos e inseri-
dos conforme a necessidade do usuário, sem produzir qualquer alteração do consumo
médio de rede. O sistema permite ainda que o usuário possa adicionar em tempo de
execução novas regras CEP aos nodos de processamento.

Para solucionar o desafio da aplicabilidade da arquitetura em ambientes com baixa
largura de banda, foi introduzido o uso de diferentes técnicas de compactação ao
EXEHDA-DEP, onde os resultados obtidos com os testes executados e demonstrados
na seção 6.4, enfatizaram a capacidade destas de reduzir o consumo de rede da
arquitetura projetada, onde nos quais uma redução de até quatro vezes foi obtida com
o uso do algoritmo GZIP, isto quando comparada com a execução que não faz uso de
nenhum tipo de compactação.

Foram também realizados testes visando demonstrar o impacto dos algoritmos de
compactação na taxa de processamento dos eventos. Os resultados demonstraram
que as técnicas de compactação nestes testes não reduzem a taxa de processamento
de eventos, mas sim aumentam a mesma. Tais resultados levaram a identificar que,
nos testes executados por este trabalho, a largura de banda é o gargalo para o pro-
cessamento dos eventos complexos, salientando a aplicabilidade do EXEHDA-DEP
em ambientes com baixa largura de banda, onde o mesmo possui não só a capaci-
dade de reduzir o tráfego de rede gerado pela distribuição dos eventos complexos,
mas também de incrementar a taxa do processamento dos mesmos.

Já para obter-se a competência de executar em ambientes que tenham links de
comunicação saturados, onde perdas de pacotes podem ser recorrentes, o EXEHDA-
DEP faz uso de transações, estas semelhantes às usadas em sistemas de gerencia-
mento de banco de dados, as quais são exemplificadas na seção 5.1. Assim, durante a
execução do sistema, caso algum dos nodos de processamento não notifique o recebi-
mento de uma informação previamente enviada, a transação que executou o despacho
é imediatamente desfeita e a informação é enviada novamente. Este procedimento é
de suma importância na execução do processamento de eventos complexos em ambi-
entes que possam gerar perdas de pacotes recorrentes, já que estas podem acarretar
na privação da detecção de um evento complexo, o que dependendo do cenário de
aplicação pode não ser aceitável.

80

7.1 Contribuições

Dentre as contribuições proporcionadas por meio do desenvolvimento do EXEHDA-
DEP pode-se destacar:

• o desenvolvimento de uma arquitetura distribuída de processamento de eventos
complexos.

• a concepção de uma arquitetura apta a lidar com o considerável volume de even-
tos na IoT e sua heterogeneidade.

• proporcionar ao EXEHDA a capacidade de processar os eventos de forma distri-
buída e escalável.

• a concepção de uma arquitetura com capacidade de executar em ambiente com
restrições de conexão.

• a possibilidade do usuário poder optar entre diferentes tipos de técnicas de com-
pactação, selecionando a que mais se adapte as suas necessidades.

• uma arquitetura com consumo de rede constante, independente do número de
nodos processando eventos.

• a capacidade de se adicionar e remover dinamicamente novos nodos de proces-
samento, sem gerar qualquer interrupção no sistema.

• a criação e inserção de novas regras CEP em tempo de execução.

Assim, dados os objetivos almejados com a proposta deste trabalho e as contribui-
ções previamente citadas, conclui-se que por meio da concepção do EXEHDA-DEP
foi possível atingir estes determinados fins com êxito, gerando ainda contribuições
adicionais.

7.2 Trabalhos Futuros

Os testes e as análises do EXEHDA-DEP foram executadas com base em um
estudo de caso da segurança da informação, onde dados de logs de diferentes dispo-
sitivos de rede são gerados de modo a simular o ambiente da UFPel. Estes dados são
analisados pelo EXEHDA-DEP por meio de regras CEP definidas pelo administrador
de rede, visando assim identificar possíveis incidentes da segurança da informação.

Assim, visando proporcionar ao EXEHDA-DEP a capacidade de identificar eventos
de segurança da informação de forma autônoma, sem a necessidade que o usuário
especifique regras CEP para o mesmo é proposto a introdução de técnicas de inte-
ligencia artificial de modo a favorecer a identificação de possíveis ataques os quais
ainda sejam desconhecidos pelo administrador do sistema.

81

REFERÊNCIAS

AGRAWAL, S.; VIEIRA, D. A survey on Internet of Things. Abakos, Brasil, v.1, n.2,
p.78–95, 2013.

ALMEIDA, R. B. et al. A distributed event-driven architectural model based on situatio-
nal awareness applied on internet of things. Information and Software Technology,
Amsterdam, Netherlands, v.111, p.144–158, 2019.

APPEL, S.; FRISCHBIER, S.; FREUDENREICH, T.; BUCHMANN, A. Event stream
processing units in business processes. In: Business Process Management. Cace-
res, Spain: Springer, 2013. p.187–202.

CHEN, Y.; KUNZ, T. Performance evaluation of IoT protocols under a constrained wire-
less access network. In: INTERNATIONAL CONFERENCE ON SELECTED TOPICS
IN MOBILE & WIRELESS NETWORKING (MOWNET), 2016., 2016, Piscataway, NJ,
USA. Anais. . . IEEE, 2016. p.1–7.

CRUZ, T. et al. A cybersecurity detection framework for supervisory control and data
acquisition systems. IEEE Transactions on Industrial Informatics, Piscataway, NJ,
USA, v.12, n.6, p.2236–2246, 2016.

CUGOLA, G.; MARGARA, A. Processing flows of information: From data stream to
complex event processing. ACM Computing Surveys (CSUR), New York, NY, USA,
v.44, n.3, p.15, 2012.

DAYARATHNA, M.; PERERA, S. Recent advancements in event processing. ACM
Computing Surveys (CSUR), New York, NY, USA, v.51, n.2, p.33, 2018.

FALL, K. R.; STEVENS, W. R. TCP/IP illustrated, volume 1: The protocols. Boston,
Massachusetts, USA: addison-Wesley, 2011.

FITZGERALD, E. et al. Common Event Expression (CEE) Overview. Report of the
CEE Editorial Board, Bedford, England, 2010.

GARG, N. Apache Kafka. Birmingham, England: Packt Publishing Ltd, 2013.

82

GONÇALVES, A. R. S. M. Research of the internet of things business models in
Portugal. 2017. Tese (Doutorado em Ciência da Computação) — .

HANES, D. et al. IoT fundamentals: Networking technologies, protocols, and use
cases for the internet of things. Hoboken, NJ, USA: Cisco Press, 2017.

HEINZ, C. et al. Complex event processing (CEP) based system for handling per-
formance issues of a CEP system and corresponding method. Piscataway, NJ,
USA: Google Patents, 2019. US Patent 10,229,162.

HERDRICH, A. J. et al. Power efficient processor architecture. Piscataway, NJ,
USA: Google Patents, 2018. US Patent 9,870,047.

HU, D.; HONG, P.; CHEN, Y. FADM: DDoS flooding attack detection and mitigation sys-
tem in software-defined networking. In: GLOBECOM 2017-2017 IEEE GLOBAL COM-
MUNICATIONS CONFERENCE, 2017, Piscataway, NJ, USA. Anais. . . IEEE, 2017.
p.1–7.

JOSHI, C.; SINGH, U. K. Information security risks management framework–A step
towards mitigating security risks in university network. Journal of Information Secu-
rity and Applications, Amsterdam, Netherlands, v.35, p.128–137, 2017.

KAMIENSKI, C. et al. Smart water management platform: Iot-based precision irrigation
for agriculture. Sensors, Basel, Switzerland, v.19, n.2, p.276, 2019.

KOTENKO, I. V.; SAENKO, I.; KUSHNEREVICH, A. Parallel big data processing sys-
tem for security monitoring in Internet of Things networks. JoWUA, Dobong-gu, Korea,
v.8, n.4, p.60–74, 2017.

KRUMM, J. Ubiquitous computing fundamentals. London, England: Chapman and
Hall/CRC, 2016.

LOPES, J. L. et al. A Middleware Architecture for Dynamic Adaptation in Ubiquitous
Computing. J. UCS, San Diego, USA, v.20, n.9, p.1327–1351, 2014.

MACHADO, R. d. S. et al. EXEHDA-HM: A compositional approach to explore contex-
tual information on hybrid models. Future Generation Computer Systems, Amster-
dam, Netherlands, v.73, p.1–12, 2017.

MARTINS, I. R.; ZEM, J. L. Estudo dos protocolos de comunicação MQTT e COaP
para aplicações machine-to-machine e Internet das coisas. Revista Tecnológica da
Fatec Americana, Brasil, v.3, n.1, p.24p–24p, 2015.

83

MARTINS, I. R.; ZEM, J. L. Estudo dos protocolos de comunicação MQTT e COaP
para aplicações machine-to-machine e Internet das coisas. Revista Tecnológica da
Fatec Americana, Brasil, v.3, n.1, p.24, 2016.

MENG, X. et al. Mllib: Machine learning in apache spark. The Journal of Machine
Learning Research, New York, NY, USA, v.17, n.1, p.1235–1241, 2016.

MINBO, L.; ZHU, Z.; GUANGYU, C. Information service system of agriculture IoT. au-
tomatika, England, v.54, n.4, p.415–426, 2013.

NGU, A. H. et al. IoT middleware: A survey on issues and enabling technologies. IEEE
Internet of Things Journal, Piscataway, NJ, USA, v.4, n.1, p.1–20, 2016.

NOCERA, F.; DI NOIA, T.; MONGIELLO, M.; DI SCIASCIO, E. Semantic IoT
Middleware-enabled Mobile Complex Event Processing for Integrated Pest Manage-
ment. In: CLOSER, 2017, Setubal, Portugal. Anais. . . SCITEPRESS, 2017. p.610–
617.

PARK, T.; ABUZAINAB, N.; SAAD, W. Learning how to communicate in the Internet of
Things: Finite resources and heterogeneity. IEEE Access, Piscataway, NJ, USA, v.4,
p.7063–7073, 2016.

PÉREZ-VEREDA, A.; FLORES-MARTÍN, D.; CANAL, C.; MURILLO, J. M. Complex
Event Processing for health monitoring. In: INTERNATIONAL WORKSHOP ON GE-
RONTECHNOLOGY, 2018, Caceres, Spain. Anais. . . Springer, 2018. p.3–14.

PETERSEN, K.; VAKKALANKA, S.; KUZNIARZ, L. Guidelines for conducting systema-
tic mapping studies in software engineering : An update. Information and Software
Technology, Alberta, Canada, v.64, p.1–18, 2015.

PREUVENEERS, D.; BERBERS, Y.; JOOSEN, W. SAMURAI: A batch and streaming
context architecture for large-scale intelligent applications and environments. Journal
of Ambient Intelligence and Smart Environments, Clifton, USA, v.8, n.1, p.63–78,
2016.

RAZZAQUE, M. A.; MILOJEVIC-JEVRIC, M.; PALADE, A.; CLARKE, S. Middleware
for internet of things: a survey. IEEE Internet of things journal, Piscataway, NJ, USA,
v.3, n.1, p.70–95, 2015.

RUIZ-RUBE, I. et al. Block-Based Development of Mobile Learning Experiences for the
Internet of Things. Sensors, Puerto Real, Spain, v.19, n.24, p.5467, 2019.

SHORO, A. G.; SOOMRO, T. R. Big data analysis: Apache spark perspective. Global
Journal of Computer Science and Technology, USA, 2015.

84

SONI, D.; MAKWANA, A. A survey on mqtt: a protocol of internet of things (iot). In:
INTERNATIONAL CONFERENCE ON TELECOMMUNICATION, POWER ANALYSIS
AND COMPUTING TECHNIQUES (ICTPACT-2017), 2017, Germany. Anais. . . Rese-
archGate, 2017.

SOTO, J. A. C.; JENTSCH, M.; PREUVENEERS, D.; ILIE-ZUDOR, E. CEML: Mixing
and moving complex event processing and machine learning to the edge of the network
for IoT applications. In: INTERNATIONAL CONFERENCE ON THE INTERNET OF
THINGS, 6., 2016, New York, NY, USA. Proceedings. . . ACM, 2016. p.103–110.

SUHOTHAYAN, S. et al. Siddhi: A second look at complex event processing architec-
tures. In: ACM WORKSHOP ON GATEWAY COMPUTING ENVIRONMENTS, 2011.,
2011, New York, NY, USA. Proceedings. . . ACM, 2011. p.43–50.

WANG, Q.; SHANG, Y. A Distributed Complex Event Processing System Based on
Publish/Subscribe. In: Recent Developments in Intelligent Computing, Communi-
cation and Devices. Singapore: Springer, 2019. p.981–990.

XAVIER, M. S. R. d. B. Smart Homes no mercado downstream de Oil & Gas. 2016.
Dissertação (Mestrado em Ciência da Computação) — FEUC.

YAMIN, A. et al. EXEHDA: adaptive middleware for building a pervasive grid environ-
ment. In: SELF-ORGANIZATION AND AUTONOMIC INFORMATICS (I), 2005., 2005,
New York, NY, USA. Proceedings. . . ACM, 2005. p.203–219.

YANG, S. IoT stream processing and analytics in the fog. IEEE Communications Ma-
gazine, Piscataway, NJ, USA, v.55, n.8, p.21–27, 2017.

	Introdução
	Motivações
	Objetivos e Contribuições
	Organização do Trabalho

	Embasamento Teórico
	Internet das Coisas
	Processamento de Eventos
	Processamento de Fluxo de Eventos
	Processamento de Eventos Complexos

	Estado da Arte
	Mapeamento Sistemático da Literatura
	Critérios de Inclusão e Exclusão

	Trabalhos Relacionados
	SAMURAI: A batch and streaming context architecture for large-scale intelligent applications and environments
	A Distributed Complex Event Processing System Based on Publish/Subscribe
	CEML: Mixing and moving complex event processing and machine learning to the edge of the network for IoT applications
	Semantic IoT Middleware-enabled Mobile Complex Event Processing for Integrated Pest Management
	Parallel big data processing system for security monitoring in Internet of Things networks

	Discussão dos Trabalhos Relacionados

	Escopo de Desenvolvimento
	EXEHDA
	EXEHDA-SA

	EXEHDA-DEP: Concepção e Tecnologias
	Modelo de Comunicação
	Modelo de Processamento
	Tecnologias Associadas
	Protocolo MQTT
	Apache Kafka
	Apache Spark
	Esper

	Concepção da Arquitetura
	Nodo de Pré-processamento
	Nodo Broker
	Nodo de Processamento
	Visão geral da arquitetura

	EXEHDA-DEP: Avaliações e Resultados
	Cenário de Aplicação
	Ambiente de Teste

	Escalabilidade
	Escalabilidade Vertical
	Escalabilidade Horizontal

	Estabilidade e Consumo de Recursos
	Consumo de Rede

	CONSIDERAÇÕES FINAIS
	Contribuições
	Trabalhos Futuros

	Referências

