UNIVERSIDADE FEDERAL DE PELOTAS
Centro de Desenvolvimento Techolégico
Programa de Pés-Graduacao em Computacao

R A A A A
A5 pRAS™

Dissertacao

EXEHDA-DEP: Uma Arquitetura para o Processamento Distribuido de Eventos
Complexos

Weslen Schiavon de Souza

Pelotas, 2020

Weslen Schiavon de Souza

EXEHDA-DEP: Uma Arquitetura para o Processamento Distribuido de Eventos
Complexos

Dissertagdo apresentada ao Programa de Pés-
Graduacdo em Computacdo do Centro de De-
senvolvimento Tecnol6gico da Universidade Fe-
deral de Pelotas, como requisito parcial a obten-
cao do titulo de Mestre em Ciéncia da Computa-
cao.

Orientadora: Prof2. Dr2. Ana Marilza Pernas

Pelotas, 2020

Universidade Federal de Pelotas / Sistema de Bibliotecas
Catalogacao na Publicacao

S719e Souza, Weslen Schiavon de

EXEHDA-DEP : uma arquitetura para o processamento
distribuido de eventos complexos / Weslen Schiavon de
Souza ; Ana Marilza Pernas, orientadora. — Pelotas, 2020.

84 f.

Dissertacao (Mestrado) — Programa de Pds-Graduagao
em Computacao, Centro de Desenvolvimento Tecnoldgico,
Universidade Federal de Pelotas, 2020.

1. Processamento de eventos complexos. 2.
Processamento de eventos distribuido. 3. Internet das
coisas. |. Pernas, Ana Marilza, orient. Il. Titulo.

CDD : 005

Elaborada por Maria Inez Figueiredo Figas Machado CRB: 10/1612

Weslen Schiavon de Souza

EXEHDA-DEP: Uma Arquitetura para o Processamento Distribuido de Eventos
Complexos

Dissertacao aprovada, como requisito parcial, para obtencao do grau de Mestre em
Ciéncia da Computacao, Programa de Po6s-Graduacdo em Computacao, Centro de
Desenvolvimento Tecnoldgico, Universidade Federal de Pelotas.

Data da Defesa: 25 de Marco de 2020

Banca Examinadora:
Prof2. Dr2. Ana Marilza Pernas (orientadora)
Doutora em Computagéo pela Universidade Federal do Rio Grande do Sul.

Prof. Dr. Adenauer Correa Yamim
Doutor em Computacao pela Universidade Federal do Rio Grande do Sul.

Prof. Dr. Andre Rauber Du Bois
Doutor em Ciéncia da Computacao pela Universidade de Heriot-Watt.

Prof. Dr. Jodo Ladislau Barbara Lopes
Doutor em Ciéncia da Computacao pela Universidade Federal do Rio Grande do Sul.

Dedico aos meus pais, 0s quais proporcionaram que
tudo fosse possivel....

AGRADECIMENTOS

Agradeco primeiramente aqueles sem 0s quais eu jamais estaria presente, meus
pais, Roséngela e Valdirnei, eles que sempre se esforcaram para me proporcionar as
melhores oportunidades de ensino e sempre me incentivaram a seguir em frente.

A minha namorada Diulie pelas muitas revisdes e corregcdes de ortografia.

Aos meus amigos e professores que de alguma forma contribuiram para que este
trabalho fosse possivel, agradeco a todos.

O homem erudito e um descobridor de fatos que ja exis-
tem, mas o homem sabio é um criador de valores que ndo
existem e que ele faz existir.

— ALBERT EINSTEIN

RESUMO

SOUZA, Weslen Schiavon de. EXEHDA-DEP: Uma Arquitetura para o Proces-
samento Distribuido de Eventos Complexos. Orientadora: Ana Marilza Pernas.
2020. 84 f. Dissertacdo (Mestrado em Ciéncia da Computacédo) — Centro de Desen-
volvimento Tecnoldgico, Universidade Federal de Pelotas, Pelotas, 2020.

Com o advento de novos avancos tecnolégicos, a Internet das Coisas (termo
traduzido do inglés Internet of Things - 10T) tem se mostrado cada vez mais presente,
onde a introdugdo da computagdo aos mais variados dispositivos, como geladeiras
e cafeteiras, visa oferecer aos seus usuarios melhorias e funcionalidades adicionais
as ja naturalmente esperadas por estes equipamentos. Porém, existem ainda alguns
desafios inerentes a loT, os quais precisam ser transpostos para que esta possa
tornar-se uma realidade onipresente a todos os tipos de usuarios, sejam estes
especialistas da area ou nao.

Alguns paradigmas e técnicas computacionais entdo sendo introduzidos na loT vi-
sando conceber solucdes para seus desafios. Dentre estas abordagens destacam-se
as aplicadas ao processamento de eventos, que objetivam auxiliar a analise e a ex-
tracdo de informagdes de alto nivel do consideravel volume de dados gerado nestas
redes de dispositivos, e ao desenvolvimento de middlewares, aplicados com a fina-
lidade de abstrair a heterogeneidade inerente aos ambientes de IoT. Foram identifi-
cados trabalhos que abordam estratégias visando fornecer arquiteturas de processa-
mento de eventos para a loT, porém estes ndo levam em consideragdo a execucao
de suas arquiteturas em meios com largura de banda reduzida ou que possuam /links
de comunicacao saturados. Ainda, por vezes apresentam pouco ou nenhum teste de
validacao da capacidade de escalabilidade e distribuicdo da arquitetura.

Este trabalho tem como objetivo apresentar uma solugédo, materializada em uma
arquitetura, para o processamento distribuido de eventos na loT, que seja escalavel
e apta a lidar com a heterogeneidade destes ambientes, aplicando ainda estratégias
que visem favorecer a sua execugdo em meios com largura de banda reduzida ou que
possuam links de comunicagao saturados.

Os objetivos puderam ser atingidos por meio da concep¢ao da EXEHDA-DEP, uma
arquitetura para o processamento distribuido de eventos complexos, na qual os re-
sultados demonstraram uma consideravel capacidade de processamento de eventos
auxiliada pela introducao de algoritmos de compactagéo e uma estratégia de compar-
tilhamento de trabalho concorrente entre os nodos de processamento ao modelo de
um produtor-consumidor.

Palavras-chave: Processamento de Eventos Complexos. Processamento de Eventos
Distribuido. Internet das Coisas.

ABSTRACT

SOUZA, Weslen Schiavon de. EXEHDA-DEP: An Architecture for Distributed Pro-
cessing of Complex Events. Advisor: Ana Marilza Pernas. 2020. 84 f. Dissertation
(Masters in Computer Science) — Technology Development Center, Federal University
of Pelotas, Pelotas, 2020.

With the advent of new technological advances, the Internet of Things (loT) has
shown itself to be increasingly present, where the introduction of computing to the
most varied devices, such as refrigerators and coffee makers, aims to offer its users
improvements and additional features to those already naturally expected by this
equipment. However, there are still some challenges inherent to loT, which need to
be overcome so that it can become a ubiquitous reality for all types of users, whether
these experts in the field or not.

Some paradigms and computational techniques then being introduced in the IoT in
order to devise solutions for your challenges. Among these approaches, those applied
to event processing stand out, which aim to assist the analysis and extraction of high-
level information from the considerable volume of data generated in these device net-
works, and to the development of middleware, applied with the purpose of abstracting
the inherent heterogeneity in loT environments. Studies were identified that address
strategies aimed at providing event processing architectures for the 10T, but these do
not take into account the execution of their architectures in mediums with reduced
bandwidth or that have saturated communication links. Yet, sometimes they present
little or no validation test of the architecture’s scalability and distribution capacity.

This work aims to present a solution, materialized in an architecture, for the dis-
tributed processing of events in the IoT, which is scalable and able to deal with the
heterogeneity of these environments, also applying strategies that aim to favor its exe-
cution in media with width of reduced bandwidth or that have saturated communication
links.

The objectives could be achieved through the design of EXEHDA-DEP, an architec-
ture for the distributed processing of complex events, in which the results demonstrated
a considerable event processing capacity aided by the introduction of compression al-
gorithms and a work-sharing strategy competitor between the processing nodes to the
model of a producer-consumer.

Keywords: Complex Event Processing. Distributed Event Processing. Internet of
Things.

== O 0 NOoO O~ WN -

—_
- O

G G G G Q'Y
OCoONOOOTLPAWN

NN
- O

NN
W N

NDMNDDNDDNN
ONO O~

WWWwWwN
WN =+ O

LISTA DE FIGURAS

Relacdo associativa entre os conceitos. 22
Stringsde buscasusadas. 26
Percentual de publicagdes encontradas porbase. 27
Numero de publicacdes encontradas porbase. 27
Quantidade de publica¢des de interesse porano. 28
Fluxo de triagem dos artigos. 31
Comparativo entre os artigos selecionados. 39
Gerenciamento de um Ambiente Ubiquo pelo EXEHDA. 41
Arquitetura EXEHDA.o 41
Arquitetura EXEHDA-SA. 43
Fluxo de comunicagaopadrao. 46
Comparativo de consumoderede. 47
Fluxo de comunicacdo proposto. 48
Arquitetura simplificada Produtor Consumidor. 50
Cabecalho do protocolo MQTT. 50
Fluxo de comunicacdo Apache Kafka. 52
Médulos a serem modificados no EXEHDA-SA. 55
Nodo de Pré-processamento. 56
Nodo Broker. 58
Nodo de processamento. 59
Visdo geral da arquitetura., 60
Fluxo de execu¢do do EXEHDA-DEP. 65
Escalabilidade Vertical nodo de pré-processamento. 66
Escalabilidade Vertical nodo de processamento. 67
Escalabilidade horizontal nodo de pré-processamento. 68
Escalabilidade horizontal nodo de processamento. 69
Estabilidade nodo pré-processamento. 70
Estabilidade nodo processamento. 71
Consumo de recursos pré-processamento. 72
Consumo de recursos processamento. 72
Consumo de rede com a distribuicdo. 74
Consumo de rede por algoritmos de compactagéo. 75

Fluxo de processamento com compactagdo. 76

CEML
CEP
CPU
CSV
DAG
DUP
EPL

ESP
EXEHDA

EXEHDA-HM

EXEHDA-SA

HD
HDFS
IP

loT
JSON
LAs
MQTT
QoS
RAM
SQL
UbiComp
UFPel

LISTA DE ABREVIATURAS E SIGLAS

Complex Event Machine Learning
Complex Event Processing
Central Processing Unit
Comma-Separated Values
Directed Acyclic Graph

Duplicate Delivery

Event Processing Language
Event Stream Processing

Execution Environment for Highly Distributed Applications

Execution Environment for Highly Distributed Applications - Hybrid Mo-

deling

Execution Environment for Highly Distributed Applications - Situational

Awareness

Hard Disk

Hadoop Distributed File System
Internet Protocol

Internet of Things

Javascript Object Notation
Learning Agents

Message Queuing Telemetry Transport
Quality of Service

Random Access Memory
Structured Query Language
Ubiquitous Computing
Universidade Federal de Pelotas

SUMARIO

1 INTRODUGAODttt it e ettt e e e e e e et e et e e e 14
1.1 Motivagdes 15
1.2 Objetivos e Contribuigées 16
1.3 Organizacaodo Trabalho 17
2 EMBASAMENTOTEORICOt iitiiiiinnenn, 18
21 InternetdasCoisas, 18
2.2 ProcessamentodeEventos 20
2.2.1 Processamento de Fluxode Eventos 22
2.2.2 Processamento de Eventos Complexos 23
3 ESTADODA ARTE it e e e e e e e e e e e 25
3.1 Mapeamento Sistematico da Literatura 25
3.1.1 Critériosde Inclusdoe Exclusdo 28
3.2 Trabalhos Relacionados 32
3.2.1 SAMURAI: A batch and streaming context architecture for large-scale
intelligent applications and environments 32
3.2.2 A Distributed Complex Event Processing System Based on Publish/-
Subscribe 33
3.2.3 CEML: Mixing and moving complex event processing and machine lear-
ning to the edge of the network for IoT applications 34
3.2.4 Semantic loT Middleware-enabled Mobile Complex Event Processing for
Integrated Pest Management 35
3.2.5 Parallel big data processing system for security monitoring in Internet of
Things networks 36
3.3 Discussao dos Trabalhos Relacionados 37
4 ESCOPODEDESENVOLVIMENTO. 40
41 EXEHDA e 40
4.2 EXEHDA-SA 42
5 EXEHDA-DEP: CONCEPCAOETECNOLOGIAS 45
5.1 Modelode Comunicacao 45
5.2 ModelodeProcessamento 47
5.3 Tecnologias Associadas 49
5.3.1 Protocolo MQTT 49
532 ApacheKafka 51

5383 ApacheSpark 52

534 Esper 53

5.4 ConcepcaodaArquitetura 53
5.4.1 Nodo de Pré-processamento 54
542 NodoBroker. 56
543 NododeProcessamento. 57
544 Visdaogeraldaarquitetura 59
6 EXEHDA-DEP: AVALIACOESERESULTADOS oo oo vun.. 61
6.1 Cendriode Aplicacao, 61
6.1.1 AmbientedeTeste 62
6.2 Escalabilidade 65
6.2.1 Escalabilidade Vertical 65
6.2.2 Escalabilidade Horizontal 67
6.3 Estabilidade e ConsumodeRecursos 69
64 ConsumodeRede., 73
7 CONSIDERAGOESFINAIS¢'iiiiiiminnnnnn 78
7.1 Contribuicdes 80
7.2 TrabalhosFuturos 80

REFERENCIASt i it e e e e e e e e e e e e e e e s e 81

1 INTRODUCAO

A Computacdo Ubiqua (Ubiquitous Computing - UbiComp) se caracteriza pela in-
tegracdo da computagao ao ambiente de forma onipresente e imperceptivel aos seus
usuarios, de modo que estes possam interagir com a tecnologia de maneira tao ele-
mentar e transparente quanto possivel, visando assim favorecer a interagdo simpli-
ficada e ocultando perante aos usuarios, toda e qualquer complexidade do uso da
tecnologia (KRUMM, 2016).

Um paradigma emergente que tem se mostrado uma materializagdo da UbiComp
€ a Internet das Coisas (/nternet of Things - 1oT). A loT consiste da integracao de
dispositivos computacionais méveis e com conectividade, a objetos fisicos comuns,
como lampadas e cafeteiras, proporcionando a inclusdo destes dispositivos a redes
sem fio, onde os dados gerados durante o funcionamento destes equipamentos podem
ser coletados e armazenados em nuvem, permitindo o uso de ferramentas para extrair
dados semanticos destas informacgdes e assim fornecer algum novo servico ao usuario
deste equipamento (HANES et al., 2017).

A loT tem se popularizado e beneficiado principalmente pelo avanco de diversas
areas da tecnologia, como a dos sistemas embarcados, a microeletrénica, a comuni-
cacao e o sensoriamento. Tais avangos tecnolégicos tém favorecido o barateamento
e a elaboragédo de microcontroladores menores e com maior poder computacional, o
que propiciou a concepcgao de bibliotecas dedicadas e semanticamente de mais alto
nivel aos mesmos, contribuindo para o desenvolvimento e a portabilidade de softwares
gue necessitem maior poder computacional (RUIZ-RUBE et al., 2019).

Tais avancos tecnolégicos permitiram a integracdo destes dispositivos aos mais
variados objetos, adicionando “inteligéncia” a estes, permitindo assim oferecer outros
servigos aos seus usuarios, facilitando seu uso, como por exemplo, uma cafeteira que
se liga automaticamente minutos antes de seu usuario acordar, evitando que 0 mesmo
tenha de ligar a cafeteira e esperar que seu café fique quente.

Algumas previsdes mostram que ha um crescimento constante no niumero de dis-
positivos conectados, estimando para 2020 mais de 50 bilhées de equipamentos li-
gados a internet. Tais perspectivas demostram que a loT n&o € um futuro longinquo,

15

destacando a relevancia dos estudos sobre este paradigma computacional (XAVIER,
2016).

Porém, existem ainda alguns desafios inerentes a loT que vem dificultando seu
avanco, dentre estes, pode-se citar: o tratamento da heterogeneidade das informa-
cbes geradas pelos dispositivos, ja que diferentes modelos destes, potencialmente
dispondo de Hardware e recursos distintos, podem estar comunicando-se nestes am-
bientes, sem qualquer tipo de padronizacdo (PARK; ABUZAINAB; SAAD, 2016); o
processamento do consideravel volume de eventos produzido por estas redes de dis-
positivos, onde devido a natureza distribuida destes ambientes, torna-se indispenséavel
a andlise dessas informagbes de forma descentralizada e escalavel (KOTENKO; SA-
ENKO; KUSHNEREVICH, 2017); a largura de banda necesséria para trafegar o consi-
deravel volume de dados geradas nestes ambientes (CHEN; KUNZ, 2016), onde mui-
tas estratégias de processamento de eventos abordam técnicas negligentes quanto
ao consumo de rede.

Alguns paradigmas e técnicas computacionais vem sendo considerados na loT
visando conceber solugdes para estes desafios. Dentre as abordagens comumente
aplicadas a este meio, pode-se citar:

e Processamento de Eventos - paradigma computacional empregado com o ob-
jetivo de auxiliar na analise e extracao de informagdes de alto nivel do conside-
ravel volume de dados gerado nestas redes de dispositivos (KAMIENSKI et al.,
2019). O conceito de evento adotado neste paradigma normalmente € caracte-
rizado por uma tentativa de alteragdo de estado do sistema, a qual comumente
inclui, a nogao de tempo, localidade e detalhes pertinentes a acao que originou
esta determinada ocorréncia, sendo estas informagdes fundamentais no auxilio
da compreensao das causas ou efeitos desencadeadores (HEINZ et al., 2019).
Dentro deste paradigma surge ainda outros dois conceitos, o processamento de
fluxo de eventos (event stream processing - ESP) e o processamento de eventos
complexos (complex event processing - CEP), onde estes tem adquirido amplo
destaque no desenvolvimento de solugdes voltadas para a loT (YANG, 2017).

e Middlewares da loT - com a finalidade de abstrair a heterogeneidade destes
ambientes, algumas soluc¢des tem aplicado middlewares para atingir este deter-
minado fim, facilitando por meio destes, por exemplo, o uso dos dados gerados
pelos dispositivos destas redes (RAZZAQUE et al., 2015).

1.1 Motivacoes

Dentro das motivagbes tomadas para o desenvolvimento deste trabalho, pode-se
destacar:

16

e A caréncia de solucbes de processamento de eventos para loT que possuam su-
porte a execugdo em ambientes com largura de banda reduzida ou que possuam
links de comunicacgao saturados;

e A necessidade de arquiteturas de processamento de eventos aptas a executarem
em meios altamente distribuidos;

e O desprovimento de arquiteturas de processamento de eventos com a capaci-
dade de lidar com a heterogeneidade dos ambientes da loT.

Estas motivagdes citadas por este trabalho foram identificadas com o auxilio da
execucao de um mapeamento sistematico, o qual é apresentado no capitulo 3, onde
foi possivel perceber por meio deste que alguns trabalhos como (SOTO et al., 2016) e
(NOCERA et al., 2017) abordam estratégias que visam fornecer arquiteturas de pro-
cessamento de eventos aptas a executarem nos ambientes heterogéneos da loT, po-
rém estes nao levam em consideracao a execugao de suas arquiteturas em meios com
largura de banda reduzida ou que possuam links de comunicacao saturados. Ainda,
grande parte dos demais estudos identificados pelo mapeamento sistematico apre-
sentam pouco ou nenhum teste de validagdao da capacidade da arquitetura escalar e
distribuir, ou ainda, solugdes que possuam a capacidade de executar em um ambiente
heterogéneos da loT.

1.2 Objetivos e Contribuicoes

No ambito das motivacdes citadas, o presente trabalho possui como objetivos prin-
cipais:

e O desenvolvimento de uma arquitetura de processamento de eventos distribuida
com escalabilidade voltada a loT.

e Uma arquitetura apta a lidar com a heterogeneidade dos dados na loT.

e A concepcao de uma arquitetura de processamento distribuida, capacitada para
executar em ambientes com largura de banda reduzida ou que possuam links de
comunicacgao saturados pelo consideravel volume de dados trafegados.

Ja como objetivos especificos, este estudo visa aplicar estratégias que aprimorem
a eficiéncia do consumo de largura de banda, com o objetivo de proporcionar a aplica-
bilidade desta arquitetura em meios que possuam alguma limitacao de rede, seja esta
uma restricdo por links de comunicacao saturados, onde perdas constantes de paco-
tes sao recorrentes (FALL; STEVENS, 2011), ou em uma rede que possua limitacdes
quanto a largura de banda reduzida.

17

Os objetivos apresentados foram atingidos com a concepg¢do do EXEHDA-
DEP((Execution Environment for Highly Distributed Applications - Distributed Event
Processing)) uma arquitetura de processamento de eventos complexos distribuida
para a loT, sendo esta apta a lidar com a heterogeneidade proveniente deste meios
bem como de executar em ambientes altamente distribuidos e que possam conter al-
guma restricdo de conexao, seja esta limitacdo gerada pela largura de banda reduzida
ou meios que possuam links de comunicacao saturados.

1.3 Organizacao do Trabalho

No capitulo 2 € apresentado o embasamento tedrico necessario para uma me-
lhor compreensao da presente dissertacdo. Ja no capitulo 3 € apresentado ao leitor
os trabalhos relacionados com esta dissertacao, identificados por meio da execucéao
de um mapeamento sistematico. O capitulo 4 contém o escopo de desenvolvimento
da proposta concebida por este trabalho. No capitulo 5 é apresentado o EXEHDA-
DEP uma arquitetura destinada ao processamento distribuido de eventos complexos.
No capitulo 6 é demonstrado os resultados dos testes de avaliacdo executados no
EXEHDA-DEP. Por fim, no capitulo 7 é abordada uma discussao sobre os resultados
obtidos com a concepcéo do EXEHDA-DEP.

2 EMBASAMENTO TEORICO

Este capitulo tem como objetivo apresentar o embasamento tedrico necessario a
compreensao dos trabalhos apresentados no capitulo 3. Na secédo 2.1 deste capitulo
sera introduzido o embasamento te6rico sobre a Internet das coisas, destacando seus
principais objetivos e desafios a serem superados. Por fim, Na se¢do 2.2 é abordado
o paradigma computacional de processamento de eventos, onde serd descrito outros
dois sub-conceitos do mesmo: processamento de fluxo de eventos e o processamento
de eventos complexos.

2.1 Internet das Coisas

A tecnologia computacional tem avancado consideravelmente nos ultimos anos,
onde dispositivos méveis de amplo poder computacional com capacidade de se co-
municar em rede, estdo se tornando cada vez mais comuns. A popularizagao do
uso destes dispositivos “inteligentes” tem sido referenciada como Internet das Coisas,
onde este novo paradigma computacional vem mudando a forma como as pessoas
interagem com os objetos de seu cotidiano (XAVIER, 2016).

Deste modo, a IoT pode ser vista como a materializacdo da Computacao Ubiqua,
a qual tem por finalidade fornecer computacdo com conectividade constante e mo-
bilidade, de forma transparente e integrada ao ambiente, visando assim anexar-se
ao mundo fisico, em um esfor¢o para torna-la imperceptivel aos usuarios, de modo
que estes ndo percebam que estdo dando comandos a uma maquina, removendo do
usuario toda e qualquer responsabilidade perante a complexidade de uso da tecnolo-
gia, necessitando apenas que estes facam uso da mesma (KRUMM, 2016).

A Internet das Coisas tem o potencial de transformar o modo como as pessoas
interagem com o mundo ao seu redor, adicionando “inteligéncia” aos mais variados
itens do dia a dia, visando assim adicionar a capacidade de fornecer novas funcionali-
dades a estes dispositivos ou mesmo aprimorar as ja existentes (HANES et al., 2017).
As areas de aplicacao para a loT sao das mais diversas possiveis: como 0 uso em
grandes cidades, onde a implementacao de dispositivos inteligentes é aderida com o

19

intuito de fornecer diferentes tipos de servigos a sua populacéo, entre estes pode-se
citar o fornecimento de informagdes sobre o trafego e de eventos publicos; ainda, a
introducéo de dispositivos inteligentes na agricultura, onde comumente estes equipa-
mentos executam um monitoramento preciso sobre as plantas e solo (GONCALVES,
2017).

Porém, para que a loT se torne efetivamente uma realidade presente aos mais
diversos ambientes, servindo a todos os tipos de usuarios e ndo apenas a especialis-
tas da area de tecnologia, existem ainda alguns desafios a serem transpassados, dos
quais pode-se citar:

e O tratamento da heterogeneidade das informacgdes geradas pelos dispositivos,
ja que estes equipamentos podem apresentar hardwares e recursos totalmente
distintos, 0 que tende a tornar as informacdes concebidas muito discrepantes
entre si, tendo em vista que normalmente ndo ha uma padronizagéo no formato
dos dados gerados (AGRAWAL; VIEIRA, 2013);

e O processamento do grande volume de eventos gerados por estas redes de
dispositivos, ja que estes ambientes poderdo conter dezenas de milhares de dis-
positivos interconectados se comunicando constantemente e gerando dados de
forma ininterrupta, onde estas informag¢dées comumente demandam ser proces-
sados e analisados (HANES et al., 2017);

e A largura de banda necessaria para trafegar o grande volume de informacdes
geradas neste ambiente, levando em consideracdo que estes dispositivos “in-
teligentes” podem estar localizados em areas remotas, conectados em redes
de baixa largura de banda, como por exemplo em zonas rurais (CHEN; KUNZ,
2016);

e A configuracdo desses dispositivos, a qual deve ser feita de forma simplificada, ja
gue usuarios finais sem conhecimentos técnicos precisam ser capazes de adici-
onar e remover dispositivos e recursos de uma rede sempre que estes desejarem
(HANES et al., 2017);

e A seguranca aplicada sobre estas redes de dispositivos, tendo em vista que
solucbes comuns de segurang¢a normalmente ndo podem ser aplicadas aos dis-
positivos destes ambientes, devido a muitos destes equipamentos apresenta-
rem hardwares simples e de baixo poder computacional, os quais frequente-
mente ndo tem a capacidade para executar técnicas de criptografias modernas
(AGRAWAL; VIEIRA, 2013).

Com o intuido de se desenvolver técnicas que visem solucionar tais desafios, al-
guns estudos tem aplicado estratégias no auxilio do desenvolvimento destas solugdes,
dentre as quais comumente abordadas por estes trabalhos, pode-se destacar:

20

e Processamento de Eventos - este paradigma computacional vem sendo apli-
cado na loT com o objetivo de favorecer a analise e extragdo de informagdes
de alto nivel do consideravel volume de dados gerados nestes ambientes, 0s
quais sao vistos e modelados neste paradigma como eventos (KAMIENSKI et al.,
2019), sendo este conceito de evento, caracterizado por uma agao de alteragao
de estado do sistema, a qual normalmente inclui: nogdo de tempo, localidade e
detalhes pertinentes a esta agao que deu origem ao evento de interesse (HEINZ
et al., 2019). Estas informacdes agregada pelos eventos auxiliam na analise dos
dados, sendo assim oportuno sua aplicacdo em solug¢des voltadas para a loT
(HANES et al., 2017).

e Middlewares da loT - os middlewares sao aplicagdes que atuam como uma
camada mediadora entre um meio e os aplicativos nele executados. Esta fer-
ramente normalmente opera traduzindo as informagdes deste meio para as de-
mais aplicag¢des, favorecendo o uso simplificado dos servigos e recursos forne-
cidos por este (RAZZAQUE et al., 2015). Estas caracteristicas tornam oportuno
a agregacao de middlewares na loT, os quais podem facilitar o0 uso dos dados
gerados nestes ambientes, por aplicagcbes de terceiros, auxiliando assim na abs-
tracdo da heterogeneidade destes ambientes (HANES et al., 2017).

Estes desafios citados se tornam ainda mais relevantes quando analisado em con-
junto com dados de previsdes, as quais demostram que h& um crescimento constante
no numero de dispositivos conectados, projetando para 2020 mais de 50 bilhdes de
equipamentos ligados a internet. Tais dados enfatizam que a loT nao e mais o futuro,
mas sim o presente, tomando de suma importancia o desenvolvimento de solucées
gue estejam aptas a lidar de forma eficiente com tais desafios citados (XAVIER, 2016).

2.2 Processamento de Eventos

Para que se possa elucidar sobre o paradigma computacional de Processamento
de Eventos ha necessidade de se abordar primeiramente o conceito de evento, ja
que o mesmo esta contido pelo processamento de eventos. Assim, a definicdo de
evento adotada por este documento consiste na determinacdo de como a ocorréncia
de uma acgéao especifica dentro de um ambiente ocorre, onde esta determinada acao
geralmente envolve uma tentativa de alteragdo de estado do sistema. Esta mudanca
normalmente inclui, a no¢ado de tempo, localidade e detalhes pertinentes ao evento
que desencadeou esta determinada acéo, sendo estas informag¢des fundamentais no
auxilio da compreenséao das causas ou efeitos desencadeadores (FITZGERALD et al.,
2010).

A um evento pode-se atribuir campos adicionais, que auxiliem na descricao de

21

suas propriedades. Um evento na loT pode incluir quatro atributos: eventlD, event-
Name, eventTime e recordTime. EventlD e eventName sdo normalmente definidos
como registros basicos representando o cddigo identificador do evento e seu nome de
representacdo. EventTime e recordTime expressam o conceito de tempo no evento,
descrevendo sua hora de ocorréncia e de captura respectivamente (MINBO; ZHU;
GUANGYU, 2013).

Tais eventos podem ser empregados em diversos sistemas para se atingir de-
terminados fins, como por exemplo, o uso em ferramentas de monitoramento onde
estes eventos sdo utilizados para representar mudancgas de situacdées (CRUZ et al.,
2016). Estes sistemas monitorados podem ser representados por conjuntos de sen-
sores, onde por exemplo, em aplicacdes na agricultura de precisdo sdo usados para
o monitoramento da umidade e acidez do solo, de forma que tais valores emitidos por
estes sensores podem ser vistos como mudancas de estado do ambiente, como uma
mudanca brusca na acidez do solo ou em sua umidade, as quais podem ser represen-
tadas como uma mudanca de situagéo de interesse (KAMIENSKI et al., 2019).

Assim com o conceito de evento bem definido e exemplificado, pode-se entéo citar
que o processamento de eventos é um paradigma computacional onde eventos sao
analisados, com o objetivo de extrair informagdes relevantes e de alto nivel destes
dados. Existem diversas areas com aplicabilidade a serem exploradas pelo proces-
samento de eventos, dentre estas pode-se citar os setores da saude com o monito-
ramento das condicbes de saude dos pacientes onde os diversos eventos precisam
ser processados e analisados (PEREZ-VEREDA et al., 2018); o setor da agricultura
de precisdo, o qual emprega diversos sensores para o monitoramento de plantas, ge-
rando grandes fluxos de eventos que necessitam ser processados (KAMIENSKI et al.,
2019); o setor de energia elétrica, o qual fazendo uso de eventos para o monitora-
mento do consumo excessivo desta, visando atingir uma melhor eficiéncia energética
(HERDRICH et al., 2018).

O processamento de eventos tem sido empregado em diversos ambientes, com
0 objetivo de auxiliar na resolugdo de problemas distintos presentes nos mesmos.
Normalmente existem algumas similaridades de requisitos exigidos nestes ambientes,
as quais tornam o uso deste paradigma computacional, uma solugcdo em potencial
para os desafios presentes neste ambiente. Dentre as estas similaridades comu-
mente compartilhadas entre estes ambientes distintos, pode-se citar a necessidade
de processar em tempo de execucado um volume expressivo de dados (DAYARATHNA;
PERERA, 2018).

A loT tem se destacado por possuir uma alta aplicabilidade ao processamento
de eventos, onde este é aplicado no ambito de solucionar problemas de tomadas de
decisao a partir da andlise de grandes volumes de eventos gerados nestes ambientes.
Diversas ferramentas foram desenvolvidas para o processamento de eventos, visando

22

auxiliar na analise do extenso volume de dados, dentre estas pode-se citar o Apache
Storm', Apache Spark? e Apache Flink3.

O processamento de eventos pode ser subdividido em dois principais conceitos:
o processamento de fluxo de eventos, que se caracteriza por ter a capacidade de
executar operagdes continuas como filtros, agregacoes, classificacoes e jungdes, sob
fluxos continuos de dados; e o processamento de eventos complexos o qual faz uso
de padrdes pré definidos, aplicando-os sobre dois ou mais eventos simples, visando
realizar assim a deteccao de eventos compostos por meio da informagao adicional
de alto nivel obtida da associacao destes eventos simples (DAYARATHNA; PERERA,
2018).

Na Figura 1 é ilustrada a relacdo associativa entre estes trés paradigmas, onde o
processamento de eventos pode ser visto como um conceito mais genérico e abran-
gente o qual engloba o ESP que por sua vez engloba o CEP.

P —
- -
- -

-~ Processamento ~~.
de

Processamento
. de -
. Eventos Complexos -

Figura 1 — Relacdo associativa entre os conceitos.

2.2.1 Processamento de Fluxo de Eventos
Para uma melhor e simples compreenséao do significado de processamento de fluxo

de eventos, pode-se separar este conceito em outros trés sub-conceitos:

1. Evento - pode-se definir evento, neste contexto, como qualquer agao que acon-
teca com um tempo claramente definido, onde 0 mesmo pode ser mensurado.

2. Fluxo - neste contexto é definido como uma sequéncia continua de eventos,
sendo esta corrente de eventos claramente ordenada no tempo.

"https://storm.apache.org/
’https://spark.apache.org/
Shttps://flink.apache.org/

https://storm.apache.org/
https://spark.apache.org/
https://flink.apache.org/

23

3. Processamento - é a acao final de executar a analise sobre o conjunto de infor-
magcdes capturadas.

Desta forma, com a combinacado destes trés sub-conceitos pode-se dizer que o
processamento de fluxo de eventos nada mais é que o processo de analisar conti-
nuamente uma sequéncia constante de dados ordenados pelo tempo (DAYARATHNA;
PERERA, 2018), o qual trata da identificacao de padrées ou de relacionamentos signi-
ficativos entre os fluxos de dados analisados, a fim de detectar determinados padrdes
como a correlagcao de eventos, causalidade ou tempo.

Caracteristicas normalmente presentes em sistemas que possuem aplicabilidade
deste paradigma computacional incluem a necessidade de analisar grandes fluxos de
dados, correlacionando estas informacdes, aplicando filtros em tempo de execucao e
dando uma resposta de forma imediata (APPEL et al., 2013).

2.2.2 Processamento de Eventos Complexos

O processamento de eventos complexos é um paradigma computacional, o qual
normalmente é aplicado para executar o processamento e a analise de conjuntos de
informacdes em sistemas baseados em eventos, visando assim analisar a interagao
destes eventos entre si. Sistemas que empregam este paradigma normalmente apre-
sentam as seguintes caracteristicas: a necessidade de se verificar e informar a ocor-
réncia de um evento composto, isto é, a necessidade de identificar a ocorréncia de
duas acgodes especificas A e B sob determinadas condi¢cdes e/ou em um intervalo es-
pecifico de tempo. Assim, o sistema devera ser capaz de notificar a ocorréncia destes
eventos sob tais condicbes, de modo que esta associacdo de dois ou mais eventos
sob condicdes especificas pode ser visto como um novo evento C, o qual é semanti-
camente distinto se comparado com os eventos A e B que o originaram.

Assim, pode-se definir mais especificamente o processamento de eventos comple-
X0S como o ato de analisar dois ou mais eventos simples, visando assim inferir a partir
da associagao destes, um novo evento semanticamente distinto dos anteriores. Deste
modo, pode-se dizer que a partir de uma andlise combinatéria de eventos simples, o
CEP é capaz de gerar um novo conjunto de informagdes, semanticamente de mais
alto nivel que as informagdes analisadas (DAYARATHNA; PERERA, 2018).

Se pode exemplificar um cenario de atuacédo do processamento de eventos com-
plexos como o data center de uma empresa qualquer, onde sensores monitoram o
uso do disco rigido do sistema e o0 uso de rede, quando repentinamente 0 consumo
de disco e de rede aumentam consideravelmente, sendo estes definidos pelo admi-
nistrador como eventos de interesse, apos a andlise associativa destes dados de rede
e disco, o sistema pode “decidir” disparar um novo evento: “possivel ataque hacker”
onde a partir do mesmo, os administradores podem tomar alguma decisdo com o in-
tuito de mitigar este problema , como por exemplo, desconectar da rede o data center

24

(CRUZ et al., 2016).

Esta capacidade do CEP de extrair informacdes de alto nivel por meio da analise
de um conjunto de eventos, torna favoravel a sua implementagcdo em meios que neces-
sitem processar e analisar grandes volumes de dados onde a partir da identificagao de
eventos especificos, determinadas agées devem ser tomadas. Caracteristicas estas
gue o tornam oportuno de ser agregado a solugdes voltadas para a loT (HANES et al.,
2017).

3 ESTADO DA ARTE

Neste capitulo apresenta-se o estado da arte das pesquisas que tem como o en-
foque principal o Processamento de Eventos e a Internet das Coisas. Na secéo 3.1
apresentada a estratégia seguida para a execucao do mapeamento sistematico, bem
como todos o0s passos executados, 0s quais levaram a escolha dos trabalhos de inte-
resse definidos como base para a elaboracao deste texto. A se¢ao 3.2 disserta sobre
os estudos selecionados como mais relevantes ao desenvolvimento deste trabalho.
Por fim, na sec¢éo 3.3 € introduzida uma breve discusséo sobre as solugdes aborda-
das nos trabalhos de interesse definidos.

3.1 Mapeamento Sistematico da Literatura

O mapeamento sistematico abordado neste capitulo € baseado na metodologia
proposta por Petersen et al. (2015), onde seguindo a série de passos propostos, torna
o estudo realizado passivel de ser replicado por outros pesquisadores (PETERSEN;
VAKKALANKA; KUZNIARZ, 2015). A partir desta metodologia, pode-se citar cinco
etapas das quais foram seguidas por este mapeamento:

1. Definicao dos topicos de interesse;

2. Execucgao da pesquisa com os tépicos de interesse para a identificagdo de estu-
dos primarios realizados;

3. Triagem inicial, empregando critérios de inclusdo e exclusdo considerando o re-
sumo dos artigos;

4. Triagem final, considerando as se¢des de introdugéo, concepg¢ao do projeto e
concluséo;

5. Extragédo dos dados e mapeamento.

Para a consulta dos trabalhos relacionados, primeiramente foram definidos tépicos
de interesse a serem pesquisados, dos quais extraiu-se um conjunto de palavras como

26

candidatas a palavras chave, com o objetivo de aplicar estas em uma string de busca.
Esta string agregou as seguintes palavras: internet of things, distributed e complex
event processing.

A partir da definicdo das palavras chave, foi possivel elaborar a string de busca
usada para executar as consultas sobre as bases da: ACM Digital Library, IEEE Ex-
plore, ScienceDirect, Springer, Web of Science e Scopus; e assim obter-se os traba-
lhos relacionados com o tema de pesquisa de interesse. As strings de consulta foram
aplicadas no inicio do segundo semestre de 2018, as quais podem ser vistas na Figura
2 incluindo as respectivas bases na qual foram executadas.

Base de Dados String de Busca
ACM Digital recordAbstract:(distributed AND ("internet of things" OR iot)
Library AND
("event stream processing" OR "event processing" OR "complex event processing"))
Demais Bases distributed AND ("internet of things" OR iot)
AND

("event stream processing” OR "event processing” OR "complex event processing")

Figura 2 — Strings de buscas usadas.

Apos a execucgao desta consulta preliminar, que se entende como a etapa de le-
vantamento dos estudos primarios relevantes, foram identificados 647 trabalhos de
interesse onde este valor compreende-se da soma dos resultados obtidos em todas
as bases de consulta.

Todas as buscas foram realizadas sobre os metadados dos artigos (titulo, resumo
e palavras chave), porém, na data da execucao deste trabalho, a ferramenta de busca
disponibilizada pela base de dados Springer ndo oferecia suporte a este tipo de con-
sulta, aplicando a string de busca sobre todas as se¢des dos artigos(Introducao, resul-
tados, referencias...). Assim, este problema foi contornado da seguinte forma: primei-
ramente foi feita a exportacdo do resultado preliminar da busca para o formato CSV
(o unico suportado) resultando em 472 artigos. Apoés isto, fez-se uso da ferramenta
CSV2Bib' para converter o arquivo CSV para .bib com o intuito de importar o resul-
tado, para a ferramenta Zotero?, o que permitiu a execugéo da string de busca sobre
os metadados dos 472 artigos encontrados preliminarmente pela Springer, resultando
em 6 documentos de interesse. A Figura 3 apresenta o percentual de publicacdes
gue cada uma das bases contribuiu para 0 montante final, ja a Figura 4 apresenta um
grafico de barras contendo o numero de artigos encontrados pela string de busca em
cada uma das bases.

O grafico 5 apresenta o numero total de publicacdes de interesse por ano encontra-

"https://github.com/jacksonpradolima/csv2bib
’https://www.zotero.org/

https://github.com/jacksonpradolima/csv2bib
https://www.zotero.org/

27

@ [EE

@ ACM

@ Science Direct
@ Link Springer
® Web of Science
@ Scopus

Figura 3 — Percentual de publicagées encontradas por base.

80

60

40

20

B 'EE [ACM | Science Direct [} Springer Link [l Web of Science [l Scopus

Figura 4 — Numero de publicagdes encontradas por base.

das em cada uma das bases, onde para a representacao do grafico foram removidos
todos os trabalhos duplicados. O eixo X apresenta o ano no qual os artigos foram
publicados e o0 eixo Y apresenta o numero total de publicagdes em relagcdo ao ano.
Pode-se perceber pela Figura 5 que a partir do ano de 2014 ha um consideravel au-
mento no numero de pesquisas cientificas, e ainda um grande pico no ano de 2017,
demonstrando assim pontos de interesse neste periodo.

Como as buscas foram realizadas no inicio do segundo semestre de 2018, o nu-
mero de trabalhos encontradas foi inferior ao de 2017, porém considerando que o
numero de publicagdes se mantivesse crescendo constantemente durante o restante
do ano, o numero de artigos neste ano superaria facilmente o de 2017, destacando
a relevancia da area de pesquisa abordada. Os trabalhos relacionados de 2019 que

28

aparecem citados, sao estudos que seriam publicados em revistas em sua edicao
seguinte no ano de 2019.

40

30

20

Numero de Publicacbes

2008 2010 2012 2014 2016 2018
Ano

Figura 5 — Quantidade de publicacbes de interesse por ano.

3.1.1 Critérios de Inclusao e Exclusao

Apos a selecéo inicial realizada sobre as bases de dados, executou-se a triagem
inicial sobre o resumo dos artigos, aplicando os seguintes critérios de inclusao e ex-
clusao conforme a ordem apresentada a seguir:

¢ (E) Foi publicado antes de 2014;
e (E) Nao é um artigo full paper;

e (E) Nao estar em Inglés ou Portugués;

(E) Indisponibilidade de acesso ao artigo completo;

(E) Artigos que nao apresentam avaliagao da proposta;

(I) Explora cenarios de processamento de eventos em seguranga da informagéo;

(I) Explora conceitos de Computacao Ubiqua;
e (E) O artigo nao possui nenhum dos critérios de inclusao.

Para auxiliar na aplicacao dos critérios de inclusédo e excluséo fez-se a importacao
dos resultados preliminares das buscas na ferramenta Start®. Para isso usou-se 0s

Shttp://lapes.dc.ufscar.br/tools/start_tool

http://lapes.dc.ufscar.br/tools/start_tool

29

arquivos .bib exportados pelas ferramentas das bases de busca, com excecao apenas
da Spriger, onde usou-se o arquivo .bib exportado pelo Zootero, o qual foi gerado apds
a execucgao da consulta sobre os metadados, aplicada sobre o resultado preliminar da

base.

Os critérios de exclusao e inclusao foram aplicados seguindo as seguintes ordens
e etapas:

Remocao de trabalhos duplicados - Alguns dos trabalhos retornados pela
string de busca estavam indexados em ambas as bases de consulta, tornando
necessaria a execucao de uma etapa de remocao dos mesmos, resultando em
74 trabalhos duplicados removidos.

Filtro por data - O intervalo de interesse para a aplicacao do filtro foi adotado
com base no numero de publicagdes por ano. Apds o levantamento dos trabalhos
de interesse, identificou-se 2014 como sendo o ano no qual o numero de publi-
cagOes aumenta consideravelmente, continuando a ascender até o pico méaximo,
no ano de 2017, como pode ser visto na Figura 5. Desta forma optou-se por eli-
minar todas as publica¢cdes que fossem anteriores ao ano de 2014, retirando um
total de 26 artigos.

Artigos full paper - Com o intuito de remover artigos que apresentassem ape-
nas resumos superficiais, sem qualquer tipo de detalhamento sobre os trabalhos,
ou que nao tivessem cunho cientifico, foram removido os artigos que nao se ca-
racterizassem como Full Paper (livro ou capitulo de livro, introdugéo de anais,
entre outros). No total foram excluidos 9 trabalhos.

Filtro por idioma - Como as pesquisas foram realizadas sobre varias bases
de dados com escopo global, as quais podem indexar trabalhos em diferentes
linguas, optou-se por aplicar um filtro por idioma, visando remover qualquer tra-
balho que nao esteja em Portugués ou Inglés (idiomas de total dominio do autor),
removendo desta forma 1 artigo.

Indisponibilidade do artigo completo - Dado que alguns dos estudos de in-
teresse selecionados apresentaram apenas seus resumos e introducéo dispo-
niveis, ndo oferecendo de maneira simplificada a opcéo de obter-se o trabalho
completo, optou-se por remover estes da pesquisa, sendo entédo 3 trabalhos ex-
cluidos.

Avaliacao da proposta - Foram removidos todos os artigos que nao execu-
taram algum tipo de teste ou estudo de caso das solugdes propostas por seus
trabalhos, excluindo-se assim 17 artigos.

30

e Explora conceitos de seguranca - Este critério foi incluido devido a familia-
ridade do grupo com a analise e processamento de eventos da segurancga da
informagéo proveniente de estudos anteriores (ALMEIDA et al., 2019). Para a
identificacao destes eventos, € normalmente necessario de se executar a ana-
lise de um conjunto consideravel de dados de rede, requisito este presente na
loT, onde ha necessidade de se executar o processamento das informagdes ge-
radas constantemente pelos dispositivos. Assim, selecionou-se os trabalhos que
abordaram como estudo de caso a segurancga da informacao, esta aplicada a
Computacédo Ubiqua ou que explorasse algum conceito desta. Com este critério
de inclusao adicionou-se 4 trabalhos.

e Explora conceitos de Computacao Ubiqua - Trabalhos que explorassem ou ti-
vessem como foco de suas propostas a Computacao Ubiqua foram selecionados
incluindo assim 20 novos trabalhos.

e Sem nenhum critério de inclusao - Todos os trabalhos que ndo se enqua-
draram em nenhum dos critérios de inclusdo foram removidos, excluindo desta
forma 28 trabalhos da pesquisa.

Apos execucgao da triagem inicial dos trabalhos, aplicando-se os critérios de inclu-
sdo e exclusao citados, sobre o resumo dos artigos, selecionou-se 24 documentos
de interesse. O fluxo da aplicacéo destes critérios de exclusdo pode ser visto na Fi-
gura 6, assim como o numero total de trabalhos removidos por cada um dos critérios
aplicados.

Apoés a triagem inicial dos trabalhos, executou-se a 4° etapa do mapeamento, que
consiste da triagem final dos artigos de interesse, sendo realizada através da analise
das secdes de introducdo, concepgao e conclusdo dos estudos. Os critérios conside-
rados durante a execucao da 4° etapa foram se os trabalhos tinham como estudo de
caso a segurancga da informac&o ou ainda se estes introduziam o uso de conceitos em
computacéao ubiqua.

Na execucao da etapa de triagem final dos estudos de interesse buscou-se sele-
cionar os trabalhos que mais se assemelham com os temas de pesquisa abordados
inicialmente na string de busca, incluindo aqueles que tivessem como tema solucionar
desafios semelhantes aos abordados pelo grupo de pesquisa em que o autor deste
trabalho esta inserido, isto €, desafios de distribuicdo e escalabilidade no processa-
mento de eventos da loT. Assim, com a execucao da triagem final selecionou-se 5
dos 24 artigos identificados, estes sendo destinados para a analise completa de seu
conteldo e da extracdo das informacgdes destes, os quais foram tomados como base
para a elaboracao deste trabalho.

Avaliacao Sem
Busca | | Filtro 1 r 77y Fitropor - gam 77 da 7 Criterio de
Inicial | | Duplicados! |FiltroData | FullPaper | | Idioma | agessg | | Proposta | | Incluséo

Science Direct 4 4 1 3 1 3 3 3 1 0 i 0 {

Web of Science 30 1 11 7 7 b7 7 6 i3

Springer 6 3 2 1 11 0 0

Scopus 8 || 52 | 39 . 3 | 3 | 32 || 23 il 11

IEE 310002 019 1 19 119 19 | 16 | 8

ACM 24 115 12 L7 o7 7 L7 o2

REMOVIDOS 0 i 74 [\ 2 | 9 il 1 3 1 17 i 28

1€

Figura 6 — Fluxo de triagem dos artigos.

32

3.2 Trabalhos Relacionados

Com a execucdao do mapeamento sistematico da literatura, foram identificados
cinco estudos de interesse, 0s quais sao tomados como base para o desenvolvimento
desta pesquisa. Nas subsec¢bes a seguir, sera dissertado sobre os aspectos mais
pertinentes de cada uma das solu¢des propostas por estes trabalhos.

3.2.1 SAMURAI: A batch and streaming context architecture for large-scale in-
telligent applications and environments

Em (PREUVENEERS; BERBERS; JOOSEN, 2016) os autores apresentam o SA-
MURAI uma arquitetura de contexto em lote, streaming distribuido e multilocataria.
Esta é baseada em processamento de eventos complexos, aprendizado de maquina
e enriguecimento de contexto semantico, visando assim oferecer uma solu¢cao com
escalabilidade horizontal para a loT.

O sistema proposto foi desenvolvido seguindo os conceitos da arquitetura Lambda,
esta dita pelos autores ser capaz de proporcionar o processamento de volumes de
dados consideraveis, de maneira eficiente, escalavel e tolerante a falhas, mantendo
ainda uma interagao responsiva com o usuario. A arquitetura Lambda projetada pelos
autores é dividida em trés camadas:

e Camada de Lote - os dados sédo recebidos por meio de atualizagdes periddi-
cas, estas resultantes da execucao de operacgdes de reducao executadas sobre
0 conjunto de dados principal, por exemplo, um armazenamento imutavel no
HDFS*(Hadoop Distributed File System). O processamento dos dados nesta
camada é de alta laténcia levando até horas para serem concluidos.

e Camada de Velocidade - processa atualizacdes incrementais dos dados, sendo
estas de baixa laténcia, ocorrendo na ordem de segundos. Esta camada geren-
cia apenas os dados novos recebidos, produzindo visualizagbes em tempo real
gue compensam as atualizacdes de alta laténcia da Camada Provedora.

e Camada provedora - responsavel por expor a visualizacdo dos dados pré-
computadas para atender a consultas ad-hoc com baixa laténcia.

Para o desenvolvimento da arquitetura proposta, os autores fizeram uso da fer-
ramenta Apache Kafka®, sendo esta usada como mecanismo para o provimento da
comunicacgao, efetuando a distribuicdo dos dados em um padrao de publicacéo e as-
sinatura. Para executar o processamento dos dados na camada de lote, fez-se uso do

“https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
Shttps://kafka.apache.org/

33

Apache Spark®, o qual é encarregado de executar algoritmos distribuidos que neces-
sitam processar grandes volumes de dados de maneira escalavel.

Ja para o desenvolvimento da Camada de Velocidade, os autores incorporaram
a opgao de selecionar o uso individual do Apache Spark ou do Apache Storm’ em
conjunto com Esper® na execugdo do processamento de eventos complexos, esta in-
tegracéo é permitida pela tipagem das tuplas do Storm corresponderem ao formato
dos eventos do Esper.

O SAMURAI também incorpora a biblioteca de aprendizado de maquina Weka®
visando assim permitir a deteccao de eventos por meio do uso de técnicas de IA. A
arquitetura desenvolvida expde os principais recursos do Weka por meio de uma API
RESTful, permitindo que cada aplicativo registre um ou mais modelos, onde cada mo-
delo possui um conjunto de atributos e um classificador especifico. Como alternativa
ao Weka, o sistema também permite o uso da biblioteca de aprendizado de maquina
MLIib™ do Spark, que apesar de oferecer menos funcionalidades, apresenta um de-
sempenho superior quando aplicada sobre grandes fluxos de dados.

3.2.2 A Distributed Complex Event Processing System Based on Publish/Subs-
cribe

No trabalho de (WANG; SHANG, 2019) € apresentada uma proposta de arquitetura
de processamento de eventos distribuido com abordagem de publicacdo e assinatura.
O processamento de eventos complexos neste trabalho foi modelado como um DAG
(Directed Acyclic Graph), onde cada né representa um mecanismo CEP e suas bordas
determinam o fluxo que os dados percorrem. Diferentes nés CEP executam operacdes
de processamento distintas, onde n6s CEP de baixo nivel enviam eventos para nés
CEP de alto nivel como um produtor e consumidor.

O fluxo de comunicacao desta arquitetura foi projetado com a ferramenta Apache
Kafka, onde cada nodo de processamento consome de um tépico e publica os dados
ja processados em um tdpico seguinte, que por sua vez sera consumido por algum
outro nodo de processamento. Um exemplo funcional desta arquitetura seria onde um
nodo1 consome os dados brutos recebidos em um tépico nomeado base-topic, este
nodo1 produzira eventos para um segundo tépico nomeado node1-topic, que por sua
vez sera subscrito pelos nodo2 e nodo3 que publicaram os dados no topico node2-
topic e 0 node3-topic respectivamente. Por fim, um nodo4 ir4 consumir os dados do
node2-topic e node3-topic e publicara seu resultado no tépico nomeado final-topic.

A arquitetura do nodo de processamento de eventos complexos possui quatro moé-

Shttps://spark.apache.org/
"http://storm.apache.org/
8http://www.espertech.com/esper/
https://www.cs.waikato.ac.nz/ml/weka/
10hitps://spark.apache.org/mllib/

34

dulos, onde primeiramente 0 moédulo Input Adapter busca os dados de um tépico Kafka
e repassa estes aos modulos Event Statement e o Event Processor os quais séo res-
ponsaveis por descrever a l6gica de processamento dos eventos, incluindo o tipo de
evento a ser consumido e as regras de agregacao dos eventos. Para a execucgao do
processamento dos dados, o Esper foi implementado neste médulo, sendo usado a
linguagem EPL(Event Processing Language) suportada por este para executar a des-
cricao das regras de processamento. Por fim, o componente Output Adapter publica
os dados ja processados em um tépico Kafka previamente definido.

3.2.3 CEML: Mixing and moving complex event processing and machine lear-
ning to the edge of the network for loT applications

Em (SOTO et al., 2016) é apresentado o CEML (Complex Event Machine Learning)
um framework capaz de fornecer técnicas de aprendizado de maquina para loT, traba-
lhando com eventos de forma distribuida e escalavel. Os autores citam ainda que esta
solugédo pode ser implementada em nuvem, sendo assim capaz de trabalhar sobre
grandes fluxos de dados.

A arquitetura do sistema foi projetada em um padrdo de publicacdo e assinatura,
onde os clientes (dispositivos, aplicativos ou servigos) se comunicam publicando men-
sagens assincronas nas quais os LAs (Learning Agents) estao inscritos. Estes mo-
delos de arquitetura permitem que o sistema distribua os dados em nos de processa-
mento externos ou internos, dependendo das necessidades do ambiente.

Cada tarefa a ser executada pela arquitetura é transformada em instrugdes, das
quais serdo implantadas em um ou mais LA. Quando estas instru¢des forem desig-
nadas a mais de um LA, as subscricoes dos tdpicos serdo entre os préprios LAs,
distribuindo assim o processamento das tarefas em diferentes servicos. Caso a dis-
tribuicdo das instru¢des seja designada a apenas um LA, a subscricdo sera apenas
interna ao sistema.

Ja heterogeneidade dos dados, é abordada da seguinte forma pela arquitetura
proposta: primeiramente os diferentes fluxos de informagdes sdo divididos em tépicos
distintos; em seguida, o tratamento dos dados necessario(transformagoes, jungdes...)
€ executado por regras previamente definidas; por fim, os eventos sdo agrupadas em
fluxos internos ou publicadas externamente em tépicos correspondentes. Estes fluxos
sao gerenciados pelo médulo de manipuladores.

O modelo de comunicagdo do sistema foi implantado com o uso do Mosquito'"
MQTT Broker e o cliente Java Paho'?, os quais gerenciam toda a comunicagédo do
envio e recebimento dos dados.

Dentre os outros mddulos do sistema implementado pelos autores, pode-se ainda

" https://mosquitto.org/
12https://www.eclipse.org/paho/clients/java/

35

destacar:

e Feeders - componentes encarregados de gerenciar os tipos de cargas uteis de
dados recebidos, os quais podem ser classificados como: dados/eventos, instru-
cOes e solicitagdo de aprendizado.

e Learning Agents - mddulo responsavel por implementar toda l6gica de proces-
samento de eventos complexos, este é executado com o auxilio da ferramenta
de processamento de dados Esper.

Dentro de um LA, os dados séo ainda categorizados logicamente em trés tipos
de fluxos distintos: fluxos de aprendizado, sendo este a entrada dos Modelos, os
quais sao usados para a validacao do sistema; fluxos de implantacao, sao os fluxos
a serem usados quando o Modelo ja estiver validado; fluxos auxiliares, sdo usados
como noés de processamento interno pelos fluxos de aprendizado ou de implantacéo,
sua visibilidade é restrita ao préprio mecanismo CEP.

O modelo atual desta arquitetura desenvolvida pelos autores, tem a capacidade de
disponibilizar uma interface para problemas de classificagdo, usando para isto, varias
implementag¢des do framework de inteligéncia artificial Weka.

3.2.4 Semantic loT Middleware-enabled Mobile Complex Event Processing for
Integrated Pest Management

No trabalho de (NOCERA et al., 2017) é apresentada uma infraestrutura inteli-
gente, capaz de processar dados de fontes heterogéneas executando parcialmente
o processamento de eventos complexos em dispositivos méveis de forma distribuida
com o intermédio de um middleware da loT.

A infra-estrutura projetada pelos autores consiste basicamente de duas partes:

e Servidor Back-End - neste servidor um arquivo JSON(Javascript Object Nota-
tion) contém a definicdo das regras sobre os dados da ontologia extraidos, bem
como as agdes a serem executadas caso alguma regra for acionada. Em caso de
ativagio de uma das regras o modulo Observer notifica 0 NodeJS'® que encami-
nha os dados da regra ativada, juntamente com as informacdes sobre sensores e
variaveis ao Redis'* para que possam ser publicados. Os consumidores assinam
o Redis Message Broker e sao notificados da mensagem, a qual € encaminhada
com os dados do sensor, variavel e regra(extraida do arquivo de configuracao)
para o mddulo de Mecanismo de Regras o qual executa tarefas pré-configuradas.

e Dispositivo Mével - primeiramente o0 moédulo Sensor Adapter desta arquitetura
se conecta aos sensores, coletando os dados e convertendo-os para um formato

3https://nodejs.org/
4https://redis.io/

36

de evento a ser usado pelos demais modulos deste sistema. Todas as informa-
cbes ja formatados sdo enviados para o componente Event Stream Manage-
ment, que despacha o fluxos de eventos para o CEP Engine responsavel por
processar as regras CEP com o uso do Esper, caso estas sejam ativadas, a in-
formacao do evento é repassada ao mddulo Action Handler que executa alguma
acao predefinida no dispositivo movel(notificacao, alertas...) e por fim envia os
dados ao Redis para que este possa buscar na ontologia informagdes baseado
no evento ocorrido.

Todos os dados usados pelo sistema sédo provenientes de leituras de sensores de
ar, temperatura, umidade e emissao de poeira. Estes sensores sdo controlados por
um Arduino o qual repassa as informacdes a uma RaspberryPi que fica responsavel
por enviar e receber estes dados para o Servidor Back-End local, que por sua vez faz
a transi¢éo destes para o DeviceHive'® um middleware da loT que faz a padronizagéo
dos dados a serem usados pela arquitetura.

3.2.5 Parallel big data processing system for security monitoring in Internet of
Things networks

Em (KOTENKO; SAENKO; KUSHNEREVICH, 2017) é proposto um sistema para
processamento paralelo de dados de seguranca destinado a implementacdo em am-
bientes IoT. O sistema implementado aplica estratégias CEP, sendo capaz de pré-
processar dados em tempo real, executando normalizacéo, filtragem, agregacéo e
correlagao de dados processados em tempo de execugao.

A arquitetura projetada pelos autores inclui cinco componentes:

e Coletor de Dados - este é responsavel por organizar os dados distribuidos re-
cebidos e armazena-los no componente Armazenamento de Dados. Além disso,
este modulo contém um gerador de fluxo de dados de teste, esse usado para
avaliar a eficacia do sistema;

e Armazenamento de Dados - os dados recebidos por este componente sédo ar-
mazenados em HDFS sendo esta uma maneira alternativa para executar o ar-
mazenamento de dados na loT que sistemas tradicionais de gerenciamento de
banco de dados SQL. Apds os eventos de seguranca serem armazenados, estes
sdo empacotados em fluxos de dados e enviados ao componente de Agregacao
de Dados com os seguintes campos: endereco |P(Internet Protocol) de origem,
porta de origem, IP de destino e porta de destino;

e Agregacao de Dados - executa o processamento do fluxo de dados recebido,
usando para isto o Hadoop ou o Apache Spark. Para que a identificagdo dos

Shitps://devicehive.com/

37

eventos de seguranca possa ser executada posteriormente, este mddulo calcula
medidas estatisticas dos dados (minimo, maximo, média, moda, quantis ...). Por
fim os resultados sdo registrados no HDFS e transferidos ao componente Nor-
malizagao e Analise de Dados;

e Normalizacao e Analise de Dados - inicialmente mente este componente exe-
cuta a conversao dos dados para o formato CSV(Comma-Separated Values), em
seguida é realizada a analise dos dados recebidos, consistindo na identificagao
de incidentes de seguranca por meio do uso de regras CEP predefinidas para
correlacionar os eventos. Por fim os resultados deste médulo sdo armazenados
no HDFS;

¢ Visualizacao de Dados - permite a visualizacdo dos eventos de seguranca de-
tectados em um gréfico previamente selecionado pelo administrador.

Por fim, os autores executaram a validacao da proposta, por meio de uma analise
de desempenho comparativa, com o uso das ferramentas Hadoop e Apache Spark
para o processamento de eventos complexos da arquitetura proposta. Os resultados
obtidos pelos autores mostram que o Hadoop se comporta de forma satisfatéria em
sistemas com recursos computacionais limitados. Ja quando implementado com o
Apache Spark, o sistema aumenta seu desempenho em cerca de dez vezes, caso
este tenha uma quantidade suficiente de memaéria RAM(Random Access Memory)
disponivel.

3.3 Discussao dos Trabalhos Relacionados

Apos a andlise dos trabalhos relacionados executada durante a ultima etapa do
mapeamento sistematico, percebeu-se que grande parte das pesquisas aplica estra-
tégias similares, baseadas em solu¢des ad-hoc, para a comunicagao visando distribui-
cao e processamento dos eventos. No caso do processamento de eventos, todos os
trabalhos empregaram estratégias de CEP, aplicando em geral Esper, em conjunto ou
nao com outras ferramentas, visando assim permitir o tratamento em fluxo dos dados.

Porém, apesar de todas os trabalhos terem como area de foco a loT, nenhuma
das solugdes apresentadas se preocupava com o consumo de rede necessario para
a execucao da distribuicdo dos eventos, onde muitos ainda aplicavam estratégias ne-
gligentes quanto a distribuicdo dos dados, as quais podem vir a gerar um consumo de
rede diversas vezes maior do que o real necessario.

Identificou-se também que apenas em (NOCERA et al., 2017) e (SOTO et al., 2016)
€ apresentado solugdes que levassem em consideracdo a heterogeneidade da loT,
onde 0s autores optaram por acoplar sua arquitetura proposta a um middleware ou

38

implementar regras de filtragem e transformacao respectivamente, com o objetivo de
contornar este desafio.

Percebeu-se ainda, que apesar de todos os trabalhos proporem uma arquitetura
distribuida de processamento para a loT, apenas (PREUVENEERS; BERBERS; JO-
OSEN, 2016) preocupou-se em executar testes de validagdo quanto a capacidade da
arquitetura distribuir e processar dados, porem este ndo apresentou nenhum teste de
consumo de recursos computacionais, algo de suma importancia para a verificagao
da aplicabilidade da proposta em hardware com poder computacional reduzido, estes
comumente presentes na loT.

Dadas as informacdes levantadas a partir da analise dos trabalhos identificados
no mapeamento sistematico, identificou-se a caréncia de arquiteturas aptas a lidarem
com a heterogeneidade da loT as quais sejam competentes em executar o proces-
samento de um volume consideravel de eventos de forma distribuida n&o negligenci-
ando o consumo de banda gerado por este trafego de informagcdo. Assim no ambito
das motivagdes citadas, este trabalho tem como objetivo desenvolver uma arquitetura
de processamento distribuido de eventos para a loT com escalabilidade e que esteja
apta a lidar com a heterogeneidade destes ambientes, aplicando ainda estratégias
que visem aprimorar a eficiéncia do consumo de largura de banda, com o objetivo
de proporcionara aplicabilidade desta arquitetura em meios que apresentem alguma
limitac&o de rede, seja esta uma restricdo por links de comunicagao saturados, onde
perdas constantes de pacotes sao recorrentes (FALL; STEVENS, 2011), ou por uma
rede que possua limitagdes quanto a largura de banda reduzida.

A Figura 7 apresenta uma andlise comparativa entre os trabalhos selecionados
pelo mapeamento sistematico e 0 EXEHDA-DEP, a nova arquitetura proposta por este
trabalho, onde os campos selecionados para a comparacao foram:

e Comunicacao: exibe qual foi o padrao arquitetural adotado para executar a co-
municacao entre os nodos de processamento dos eventos.

o Estratégia de EP: apresenta qual estratégia de processamento de eventos o
artigo adota em sua proposta. Esta coluna pode apresentar dois valores CEP ou
ESP.

e Ferramentas de EP: nesta coluna é apresentado as ferramentas adotadas para
executar o processamento de eventos em cada uma das propostas analisadas.

e Tratamento de heterogeneidade: exibe qual estratégia adotada no trabalho
para o tratamento da heterogeneidade da loT. Esta coluna pode exibir os seguin-
tes valores: o nome do middleware usado para executar esta tarefa; “X” para
caso a solugcdo apresentada implemente uma estratégia propria para o trata-

mento da heterogeneidade; “-” caso o trabalho ndo aborde este quesito.

39

e Seguranca: nesta coluna é identificado se o trabalho tem como estudo de caso
a aplicagcdo em seguranga da informagéo ou ainda se a solu¢ao permite o uso
de alguma técnica de seguranca. Se alguma destas condicdes for satisfeita, o
valor da coluna sera “X”, caso contrario sera “-”.

e Validacao da Operacao Distribuida: identifica se a solucao proposta apresenta
testes de validagdo da capacidade da arquitetura distribuir o processamento dos
eventos, identificando os ganhos na taxa de processamento com o0 aumento dos
nodos de trabalho. Esta coluna apresenta o valor “X” quando a solu¢ao proposta
apresentar testes satisfatérios para a validacao da distribuicdo, caso contrario o

valor serg “-”.

e Avaliacao do Consumo de Rede: exibe se a arquitetura proposta no trabalho
€ capaz de fornecer um consumo de rede estavel, isto é, se a distribuicdo do
processamento ndo gera uma enorme carga sobre o trafego de rede. O valor
“X” nesta coluna representa que a solugao é capaz de fornecer a distribuicao do
processamento sem impactar muito no consumo de rede. Caso isto ndo ocorra,

o valor da coluna sera “-”.

- Validagao da Avaliagao
Comunicagédo Esareatégla Fer:;n:;:; fas H:::::m:::iad::e Seguranga Operacio do
g Distribuida Consumo de Rede
PREUVENEERS, Publish/ Spark,
2016 Subscribe CEP Strom, Esper X X
Publish/
WANG, 2019 Subscribe CEP Esper
Publish/
S0TO, 2016 Subscribe CEP Esper X
NOCERA, 2017 Publish/ CEP Esper DeviceHive
Subscribe
Publish/ Spark,
KOTENKO, 2017 Subscribe CEP Hadoop X
EXEHDA-DEP (RSl CEP Esper,Spark EXEHDA X X X
Subscribe

Figura 7 — Comparativo entre os artigos selecionados.

4 ESCOPO DE DESENVOLVIMENTO

Neste capitulo sera dissertado sobre o EXEHDA, um middleware voltado para a
IoT e uma de suas implementacdes, o modelo arquitetural EXEHDA-SA. Ambas as
tecnologias citadas sdo tomadas como base para o desenvolvimento e proposta do
EXEHDA-DEP.

A secéo 4.1 descreve as principais funcionalidades do middleware EXEHDA e de
sua arquitetura modular bem como dos cenarios de aplicacao para esta ferramenta.
Ja a secao 4.2 disserta sobre 0 modelo arquitetural EXEHDA-SA, onde sao apresen-
tados as funcionalidades atribuidas a cada um dos modulos desta arquitetura e seus
principais objetivos.

4.1 EXEHDA

Um middleware pode ser considerado como uma camada mediadora entre duas
aplicac6es, a qual gera um canal légico de comunicagédo entre estas, possibilitando
que o middleware atue traduzindo a comunicagao estabelecida, abstraindo qualquer
tipo de incompatibilidade ou complexidade existente entre estes dois meios. Desta
forma, pode-se definir middleware como uma camada de software responsavel por
abstrair a heterogeneidade de um meio, facilitando o uso dos recursos disponibilizados
neste meio a aplicacdes de terceiros (NGU et al., 2016).

Existem diferentes tipos de middlewares disponiveis, exemplos comuns s&o: os de
banco de dados, os quais abstraem a complexidade da manipulacédo das informacdes
aos seus clientes; os voltados para a loT, que normalmente atuam abstraindo a he-
terogeneidade destes ambientes, dentre estes middlewares pode-se citar o EXEHDA
(Execution Environment for Highly Distributed Applications) sendo este direcionado
principalmente as aplicagdes distribuidas, méveis e cientes de contexto, o qual atua
fornecendo servigos a estas aplicagdes (NGU et al., 2016).

O EXEHDA opera criando e gerenciando ambientes ubiquos formados por células
de execucao distribuidas e promovendo a computacao sobre este ambiente heterogé-
neo (LOPES et al., 2014). Na Figura 8 é ilustrado um ambiente Ubiquo, onde diversos

41

dispositivos interagem, sendo estes gerenciados pelo EXEHDA, agregados de forma
l6gica em células de execugdo (MACHADO et al., 2017).

EXEHDANOdo SO §

: Ay
i9)) "

\
N " % ; @ r E ‘I
. .
EXENDAD _ EXEHDAnodo mével «- N

ase
E§ :
/
o

\

W
U IEI
N
L.

Figura 8 — Gerenciamento de um Ambiente Ubiquo pelo EXEHDA.
Fonte: (ALMEIDA et al., 2019).

A arquitetura do EXEHDA consiste da composicao de diversos médulos, os quais
sao responsaveis por prover algum tipo de servigco. Dentre estes médulos destaca-se
o Subsistema de Reconhecimento de Contexto, o qual é responsavel pela sintese e
correlagao dos eventos capturados no ambiente (MACHADO et al., 2017). A Figura 9
apresenta uma visao geral da arquitetura EXEHDA.

Aplicacdo Ubiqua

Framework Java + Extensdes

[Suporte a)
Suporte & Linguagem - Gerenciamento 1anci
em Tempo do Execugdode || doAmbiente S
Xecucao i Ubigueo
Aplicacbes
I=

da Subsistema de’

Execugao daptagio o
. h Reconhecimento
Distribuida S0 Contaxio,

Maquina Virtual Java
Sistema Operacional

Rede de Interconexdo (com ou sem fios)

de Acesso

istema de
Ubiquo Comunicacio

mMorsmMroo—3zg
FPOIM>XM

Figura 9 — Arquitetura EXEHDA.
Fonte: (YAMIN et al., 2005).

Existem diversos projetos concebidos sobre o EXEHDA: EXEHDA-HM(Execution
Environment for Highly Distributed Applications - Hybrid Modeling) (MACHADO et al.,
2017), EXEHDA-SA(Execution Environment for Highly Distributed Applications - Situa-
tional Awareness) (ALMEIDA et al., 2019), entre outros. Contudo, apesar do EXEHDA

42

ser um middleware direcionado a ambientes distribuidos, suas implementacdes apre-
sentam a compreensdo dos eventos em escopo local, 0 que pode vir a gerar um gar-
galo de processamento em ambientes |loT altamente distribuidos.

4.2 EXEHDA-SA

O EXEHDA-SA consiste de um modelo de arquitetura distribuida de alto nivel, o
qual foi projetado com base nas formalizagc6es definidas pelo middleware EXEHDA.
Este modelo arquitetural apresenta recursos de reagao dindmica e personalizavel para
interagir com a infraestrutura subjacente dos ambientes da loT. Outra funcionalidade
disponibilizada por este modelo € a capacidade de coletar dados em um ambiente
heterogéneo como o da loT, padronizando e abstraindo estas informacdes coletadas
de modo a facilitar o uso destes dados (ALMEIDA et al., 2019).

A concepcgao do EXEHDA-SA é baseada em um conjunto de premissas as quais
visam favorecer a este o suporte das demandas da IoT de escalabilidade, flexibilidade,
autonomia e heterogeneidade, dentre estas premissas abordadas, se pode destacar:
a extensibilidade modular para protocolos de coleta e comunicacao de eventos; mé-
dulos extensiveis de processamento de eventos, os quais podem ser aplicados em
estratégias hibridas, tais como aprendizado de maquina e estrategias baseadas em
regras; recurso de reacao dindmica, personalizavel e conectavel os quais permitem
a interacdo com infraestruturas subjacente dos ambientes de loT (ALMEIDA et al.,
2019).

Assim como no EXEHDA o EXEHDA-SA segue o0 mesmo mapeamento da infra-
estrutura fisica de trés abstragdes basicas, as quais sdo tomadas como base para a
composicdo do ambiente onipresente:

e EXEHDANode: consiste dos dispositivos de processamento, 0s quais s&o en-
carregados da execuc¢ao da aplicacdo. Uma subcategoria pertencente a esta ca-
tegoria € o EXEHDAnode mobile, o qual de diferencia de um EXEHDAnNnode pela
alta portabilidade onde este normalmente possui uma capacidade mais restrita
sendo normalmente detentor de uma interface de comunicagdao sem fio, onde
nesse caso, € integrado a uma célula onde seu ponto de acesso € subordinado;

e EXEHDAbase: ¢ o meio de comunicacao entre os EXEHDAnodes, o qual é
encarregado por prover todos os servigos essenciais do ambiente, onde estes
servigos fornecidos podem ser distribuidos entre varios dispositivos de proces-
samento, com o intuito de se obter um ambiente com escalabilidade;

e EXEHDACcel: encarregado por delimitar a area de operacdo do EXEHDAbase,
as definicbes principais tomadas para a especificacdo do escopo de uma célula
consiste: escopo institucional, proximidade geografica e custos de comunicagéo.

43

Seguindo esta estrutura de projeto modular do EXEHDA, o EXEHDA-SA adquire
flexibilidade, onde usuérios podem adicionar ou remover mddulos dependendo de
suas necessidades. A Figura 10 apresenta uma visédo geral da arquitetura EXEHDA-
SA.

Dentre os médulos presentes na arquitetura EXEHDA-SA pode-se destacar:

e Percepcao: responsavel por identificar fontes relevantes de eventos no disposi-
tivo em que uma instancia do Collector esta operacional;

e Pré-processamento: projetado para realizar a separacao do evento em campos
executando a normalizacado dos eventos coletados;

e Compreensdo: consiste na correlacdo de eventos com base nos campos dos
eventos obtidos no moédulo de Pré-processamento;

e Projecdo: evita reincidéncias de situagdes indesejadas previamente identificadas
durante a etapa de compreensao;

¢ Interface Web: uma interface administrativa onde um administrador de rede pode
analisar os eventos complexos identificados e definir novas regras e configura-
coes;

e Repositério: onde sdo armazenadas todas as configuragdes de regras definidas
pelo administrador, incluindo também dados de eventos identificados.

[EXEHDA-SA]

Repositorio Interface Web
Eventos | SituagBes| Configuractes Anlise Forense | Auditoria
Projegéo
Ativa | Passiva
Pré-processamento Compreenséo
Normalizagdo | Contextualizagio Filtragem | Correlagdo

Percepgéao
Coleta de Dados

Figura 10 — Arquitetura EXEHDA-SA.

Nas implementacdes disponiveis do EXEHDA-SA as informacdes coletadas séo
comumente disponibilizadas no formato JSON, contendo diferentes campos padro-
nizados e gerados pelo EXEHDA-SA, os quais podem ser modificados conforme a
necessidade do usuario. Dentre os campos normalmente disponibilizados em imple-
mentagdes do EXEHDA-SA pode-se citar: TAG, o qual identifica um fluxo de dados

44

relacionados, como por exemplo, o fluxo de informagdes vinda de roteadores; risco,
campo o qual identifica o nivel de risco de seguranca ao qual o dado remete; src_ip,
endereco IP da origem do dado (ALMEIDA et al., 2019).

5 EXEHDA-DEP: CONCEPCAO E TECNOLOGIAS

Neste capitulo sera apresentada a metodologia abordada para solucionar os desa-
fios levantados durante o mapeamento sistematico da literatura.

Na secdo 5.1 é apresentado o modelo de comunicacao projetado, o qual se baseia
no padrao publicagdo e assinatura, o mesmo aplicado pelos trabalhos relacionados
citados na seg¢éo 3.2, porém neste novo modelo projetado, este padrao é reinventado
de forma a aplicar estrategias que visem permitir a execucdo do EXEHDA-DEP em
ambientes com limitagdes de comunicagao na rede, sejam estas ocasionadas por links
de comunicagao saturados ou por conexdes de baixa velocidade.

Na secao 5.2 é apresentado o modelo desenvolvido de uma arquitetura de proces-
samento de eventos complexos, a qual possui a capacidade de processar eventos de
forma distribuida com escalabilidade.

A secado 5.3 apresenta as principais ferramentas e tecnologias empregadas para
o desenvolvimento da arquitetura proposta por este trabalho. Por fim, na secdo 5.4 é
apresentada a nova arquitetura de processamento distribuido proposta.

5.1 Modelo de Comunicacao

A estratégia de comunicacao citada nesta secao consiste na forma como os dados
a serem processados sao distribuidos entre os nodos de processamento. A grande
maioria dos trabalhos relacionados identificados na secao 3.2 se baseava em um mo-
delo de publicacéo e assinatura, onde os dados a serem processados sdo publicados
em um tépico central, o qual € assinado por varios nodos de processamento que re-
cebem estes mesmos dados e executam trabalhos de processamento distintos entre
si. Esta estratégia para a distribuicdo dos dados a serem processados pode ser vista
na Figura 11.

A estratégia citada pode ser identificada como de fécil implementacéo, garantindo
uma alta escalabilidade e permitindo que um novo nodo de processamento seja adici-
onado simplesmente com a subscri¢cdo do topico central. Porém estratégias com esta
abordagem apresentam como principal desvantagem a sobrecarga gerada sobre os

46

o LI LU

=hE] J Xz
ntermet L
3333

Figura 11 — Fluxo de comunicagao padrao.

links de comunicagao, ja que todos 0os nodos de processamento subscritos no topico
central rebem os mesmos dados a serem processados, com o diferencial de estes
executarem tarefas distintas sob estas informacdes.

Deste modo, pode-se verificar que a estratégia citada adiciona uma sobrecarga na
rede de acordo com o numero de nodos de processamento, quanto maior a quantidade
de nodos processando dados, maior sera a largura de link necessaria para trafegar
as informagdes a serem distribuidas, onde pode-se expressar esta sobrecarga adici-
onada ao link de comunicacéo por meio do produto do volume total dos dados a ser
processado, pela quantidade de nodos de processamento existentes. A equacéo 1
demonstra uma férmula para o calculo do trafego total de rede exigido pelo modelo de
comunicacao citado.

Trafego = Dados x Nodos (1)

Outra desvantagem derivada do recebimento total do conjunto de dados pelos no-
dos de processamento, consiste que estes potencialmente podem estar recebendo
informacgdes que ndo se aplicam a suas tarefas de processamento, as quais s&o sim-
plesmente ignoradas. Este processo de ignorar estas informacdes, pode ser extrema-
mente custoso quando é considerado grandes volumes de dados a serem analisados
(HU; HONG; CHEN, 2017). Assim pode-se considerar que nodos de processamento
tem parte do seu tempo de trabalho ocupado pela tarefa de ignorar dados inuteis para
suas tarefas, gerando consideravel perda de recursos computacionais nestes nodos
(tempo de processamento, memdria RAM, consumo energético).

A estratégia de comunicagao desenvolvida por este trabalho consiste em uma mo-
dificacdo do padrao publicacao e assinatura adotado pelos trabalhos relacionados ci-
tados na secéao 3.2, visando com estas modificagées solucionar os problemas citados.
A estratégia consiste em adotar um padréo de classificagdo para o fluxo de dados a ser

47

analisado antes destes serem publicados no tépico que os nodos subscrevem. Esta
classificagdo consiste em subdividir logicamente o fluxo principal de dados em outros
fluxos menores, por meio do acréscimo de uma chave identificadora a estes, de modo
a permitir o direcionamento destes dados para cada um dos nodos, baseando-se na
distribuicao destas chaves identificadoras. A Figura 12 apresenta uma comparacao em
escopo tedrico do consumo de rede exercido pelo método atual aplicado nos trabalhos
relacionados identificados com o novo método proposto, esta mesma comparagao é
executada também em um escopo pratico, onde esta figura é reapresentada com os
dados préticos obtidos na secéo 6.4.

® Método Atual @ Nove Método
.f_’__.,.‘
-
% —
& M
3 -
3 M
: ~
o -
o -
. =
o ___f'r
3 _~
-
& & & @

Numero de Clientes

Figura 12 — Comparativo de consumo de rede.

Em um exemplo, com dois nodos de processamento, nodoA e nodoB, o fluxo ori-
ginal de dados poderia ser subdividido em outros dois A e B de modo que 0 nodoA
ird receber os dados do fluxo A e o nodoB os dados do fluxo B. Esta estratégia per-
mite evitar a sobrecarga de rede gerada pelo envio de todo o conjunto de dados para
cada um dos nodos. A Figura 13 ilustra o processo de comunicacédo seguindo o novo
padrao proposto.

A subdiviséo do fluxo de eventos pode ser executada de forma a manter os eventos
que necessitem ser analisados juntos, em uma mesma categoria, centralizando as
regras de processamento com seus respectivos eventos a serem processados.

5.2 Modelo de Processamento

Nesta secao sera apresentada a estratégia de processamento de eventos adotada
pelo presente trabalho, a qual visa proporcionar uma arquitetura de processamento
de eventos com escalabilidade, sendo voltada a ambientes altamente distribuidos que
necessitem processar grandes volumes de eventos, caracteristicas estas presentes

48

(2 [Pacate de dartos a ser pracessad (g:j
jm, = = m{; ¢
B Internat mLE
il I
= =2 ‘H & ‘E

Figura 13 — Fluxo de comunicagéo proposto.

na loT.

A estratégia de processamento de eventos adotada por este trabalho consiste na
distribuicdo da carga de eventos para diferentes nodos de processamento, criando
um modelo arquitetural descentralizado. Esta descentraliza¢ao visa evitar gargalos de
processamento adicionados a apenas uma maquina ou a um link de comunicacao,
proporcionando também uma maior flexibilidade na implementacao, se adaptando a
ambientes altamente distribuidos. A descentraliza¢cdo do processamento também pro-
porciona a versatilidade para o controle da capacidade de processamento, onde caso
seja necessario um throughput maior, a simples adesao de um novo nodo de proces-
samento adiciona o aumento do mesmo. Tais nodos de processamento independem
de arquiteturas com alto poder computacional, onde mesmo nodos executando sob
maquinas de baixo custo, com poder computacional limitado, agregam na capacidade
total de processamento disponibilizada no cluster de nodos, o que proporciona a van-
tagem de nao necessitar o uso de maquinas especiais com grande capacidade de
processamento para a execugao.

A arquitetura distribuida proposta foi modelada com trés tipos distintos de nodos:

e Nodo de Pré-processamento: responsavel por modelar os eventos recebidos
para um formato de mais facil manipulacao aos outros nodos de execucao. Apds
a execucao desta modelagem, o nodo de pré-processamento envia estes even-
tos ao nodo Broker, podendo executar a compactacao destes eventos antes do
envio, com o intuito de reduzir o consumo de rede gerado.

e Nodo Broker: este nodo é responsavel por armazenar os eventos recebidos
pelo pré-processamento e distribui-los sob demanda aos nodos de processa-
mento. Este nodo também armazena os resultados dos eventos ja processa-
dos, os disponibilizando para consulta das partes interessadas (administrador

49

de rede, ferramentas de terceiros...).

e Nodo de Processamento: nodo responsavel por executar toda a tarefa de pro-
cessamento e analise dos eventos. As informagdes sao transferidas de um nodo
Broker, extraidas caso tenham sido compactadas, processadas e analisadas
com base nas tarefas definidas para este nodo. O nodo pode ainda enviar dados
de notificacdo para um nodo Broker caso 0 mesmo tenha sido configurado para
tomar agdes como esta, quando identificado algum evento de interesse.

Para evitar a perda de informacdes durante a iteracao entre os nodos, estes fazem
o envio dos eventos por meio de transagdes, onde qualquer tipo de erro gerado du-
rante o processamento da informacao ou durante o envio, gera uma acao de rollback
que desfaz qualquer transacdo malsucedida. O processo de iteracdo entre os nodos
pode ser visto como produtor consumidor, onde 0 nodo de pré-processamento gera
0s eventos que serdo consumidos pelo nodo Broker que por sua vez produz as infor-
macgdes a serem analisadas pelo nodo de processamento. Cada um dos trés tipos
de nodos pode possuir de 1 a N instancias de execucgao, sendo cada uma destas,
correspondente a uma das trés categorias: o dos nodos de pré-processamento; 0s
nodos Broker; e os nodos de processamento. A abordagem com varios nodos de exe-
cucao descentralizados ajuda a aumentar a garantia da disponibilidade do servico, ja
gue para o servigo ficar indisponivel, sera necessario que todos os N nodos fiquem
inativos e ndo apenas um como em abordagens de processamento nao distribuidos.
A Figura 14 ilustra de forma simplificada a iteragao entre os nodos da arquitetura pro-
dutor consumidor.

5.3 Tecnologias Associadas

Nesta secdo serdo apresentadas as principais tecnologias empregadas por este
trabalho, bem como suas principais caracteristicas e funcionalidades.

5.3.1 Protocolo MQTT

Em uma rede de computadores “tradicional” existem diversos protocolos de comu-
nicacdo sendo executados, 0s quais sdo responsaveis por gerenciar a transferéncia
de dados entre os dispositivos. Quando a comunicacao entre dois ou mais dispositi-
vos € abordada, assim como acontece em uma rede loT, surge a necessidade de se
escolher um protocolo capaz de gerenciar esta comunicagdo. Capaz de gerenciar a
troca de mensagens e dados entre as coisas que estiverem conectadas a rede loT
de forma eficiente, levando em consideracao as caracteristicas e limitacées impostas
pelo ambiente. Um dos protocolos que se enquadram dentro destes requisitos é o
Message Queuing Telemetry Transport - (MQTT) (MARTINS; ZEM, 2016).

50

[Nodo de Procossamente de Eventos | oo Brokes Moo de Pré-processsmento|
i] 1

0

0

Figura 14 — Arquitetura simplificada Produtor Consumidor.

O MQTT foi desenvolvido por volta do ano de 1999, baseando-se na arquitetura
publish/subscribe e voltado para redes inseguras com baixa largura de banda e alta
laténcia (SONI; MAKWANA, 2017). O protocolo emprega confiabilidade na entrega
das mensagens minimizando o uso da largura de banda e apresentando baixo custo
de processamento, caracteristicas que apresentam aplicabilidade em redes loT.

O protocolo MQTT segue um modelo cliente-servidor onde cada um dos disposi-
tivos da rede séo os clientes, os quais se conectam-se a um servidor chamado de
Broker usando o protocolo TCP. Apds o cliente se conectar, as mensagens transmiti-
das sdo publicadas em tépicos. Os clientes podem se subscrever em tépicos, os quais
sao capazes de receber todas as mensagens que qualquer outro cliente publique nes-
tes tépicos em especifico (MARTINS; ZEM, 2016).

bit 7 | 6 | 5 | 4 3 2 | 1 0
Byte 1 |Tipo da Mensagem Flag Nivel QoS RETAIN
DUP
Byte 2 Largura restante

Figura 15 — Cabecalho do protocolo MQTT.
Fonte: (MARTINS; ZEM, 2015).

51

A Figura 15 mostra o cabecalho presente em cada uma das trocas de mensagens
do protocolo MQTT, este possui 2 bytes de tamanho, sendo o primeiro byte usado para
identificar o tipo da mensagem e os campos marcadores:

e Duplicate Delivery (DUP): é ativado quando o cliente ou o servidor tenta reen-
viar uma mensagem.

e Quality of Service (Qo0S): indica o nivel de garantia da entrega de uma mensa-
gem.

e Retain: quando uma mensagem € enviada ao servidor com este marcador ela
deve ser removida do servidor mesmo depois de ser entregue aos assinantes.

Por ultimo, o segundo byte mostrado na Figura 15 é usado para representar a
quantidade de bytes remanescentes na mensagem, ou seja, a quantidade de espaco
livre em bytes ainda excedente no pacote.

5.3.2 Apache Kafka

O Apache Kafka é considerado uma plataforma de streaming distribuido de dados,
sendo usada tanto para o consumo de mensagens offline quanto para o online. Dentre
as caracteristicas disponibilizadas pela plataforma, pode-se citar:

e Plataforma Distribuida: o Apache Kafka executa o particionamento dos dados,
distribuindo-os sobre diversos servidores, executando desta forma a distribuicao
do consumo de recursos ao longo de um cluster de maquinas, mas continuando
a garantir a entrega ordenada das mensagens, ndo ocasionando na perda da
semantica da ordem dos dados. Sua arquitetura distribuida também permite o
aumento do niumero de maquinas no cluster ou a reducao, conforme a necessi-
dade do usuario (GARG, 2013).

e Tolerancia a Falhas: a plataforma é capas de fornecer garantia contra falhas
onde 0 mesmo pode manter varias cépias dos dados no cluster sem ocasionar
grandes perdas no desempenho. Estas copias ajudam a manter a disponibi-
lidade da informagédo, onde caso uma ou mais maquinas do cluster caiam, a
informacéo ir4 continuar sendo disponibilizada pelas demais maquinas do clus-
ter. O Kafka também prove garantia de entrega e recebimento das mensagens,
evitando qualquer perda de informagao causado por instabilidade de rede ou nos
servidores (GARG, 2013).

e Alta Capacidade: o Kafka foi projetado para fornecer suporte ao envio e re-
cebimento de milhées de mensagens por segundo garantindo baixas laténcias
(GARG, 2013).

52

O processo de envio e recebimento das mensagens no Apache Kafka é normal-
mente implementado com uma arquitetura publicacdo e assinatura, onde produtores
fazem o envio dos dados a topicos especificos onde estes dados, dentro destes topi-
cos, sao separados em particdes. Estratégia essa que é adotada pelo Kafka com o
objetivo de manter a ordenacao dos dados e ainda oferecer suporte a varios consumi-
dores e produtores manipulando de forma concorrente 0 mesmo topico. Cada um dos
consumidores no Kafka devem pertencer a um grupo, consumidores que pertencam
a um mesmo grupo nao podem consumir dados de uma mesma particao, ja consu-
midores de grupos diferentes podem consumir dados de uma mesma particao, porém
os mesmos dados desta particdo sera enviado a todos os consumidores de grupos
distintos (GARG, 2013). A Figura 16 ilustra o processo de envio e recebimento de
mensagens no Apache Kafka.

‘ Produtor A , ‘ Produtor B ’

Servidor Kafka

. n —
. — " —
———— _—

(1
. A Y A
| Topico | | HIRR]| | RIRIR]| Partistes | [RIRI=] |
A A A A A A
] |]
L ~ —. — - J
r'/ v Grupo A \'] r'/ Grupo B \']
H Consumidor A) ‘ Consumidor B ’ I | ' Consumidor C) |
.) L)

e — s —— s — = e — s —— s — —

Figura 16 — Fluxo de comunicac¢do Apache Kafka.

5.3.3 Apache Spark

O Apache Spark é um framework desenvolvido para executar o processamento
de dados em larga escala. Este fornece uma API de alto nivel para diversas lingua-
gens de programagéo, como o Java por exemplo. Outras funcionalidades suportadas
pelo Spark incluem o uso de SQL para a execucgao de filtros e consulta aos dados
processados, esta funcionalidade é provida pela biblioteca Spark SQL (MENG et al.,
2016).

O Spark se destaca por sua capacidade de manter grandes conjuntos de dados em

53

memoria para executar o processamento destas informacdes em tempo de execucao
(SHORO; SOOMRO, 2015).

No Spark aplicagcdes executam como conjuntos de servicos independentes, os
quais sao coordenados pelo SparkContext, um objeto presente no programa principal.
Para que seja possivel sua execucao em cluster, o SparkContext deve se conectar a
um gerenciador, o qual fica responsavel por alocar os recursos aos servigcos. Apos
efetuar a conexao, os objetos executors ficam responsaveis por realizarem os calcu-
los e armazenar os dados da aplicacdo. Por fim é enviado o c6digo da aplicacdo no
formato JAR ou Python aos executors para que assim o SparkContext possa designar
tarefas a serem executadas pelos executors com estas aplicagdes submetidas (MENG
et al., 2016).

5.3.4 Esper

O Esper é uma ferramenta de cédigo aberto que oferece recursos para a execugcao
de processamento de eventos complexos e andlise de fluxos de dados em tempo real
ou préximo do real. Seu principal objetivo € atender aos requisitos de aplicacdes que
necessitem analisar e reagir a algum tipo de evento, como por exemplo, softwares de
monitoramento de rede e de deteccao de intrusao (SUHOTHAYAN et al., 2011).

Para a especificagdo dos eventos complexos o Esper faz uso de uma linguagem
declarativa semelhante ao SQL (Structured Query Language) denominada EPL, esta
linguagem inclui todos os operadores suportados pelo SQL, acrescentando ainda fun-
cbes adicionais para a defini¢do, interagéo de janelas e geracéo de saidas. A EPL e
a API de processamento do Esper estao disponiveis como bibliotecas para as lingua-
gens Java e .NET.

A linguagem EPL disponibilizada pelo Esper fornece duas sintaxes distintas para
gue se execute os filtros dos dados: a primeira se caracteriza pelo uso de restricdes
aninhadas, incluindo conjuncgdes, disjuncdes, negacoes, sequéncias e iteracoes para
realizar o filtro dos dados; ja a segunda usa expressdes regulares. Ambas as sinta-
xes oferecem a mesma capacidade de expressividade. O Esper também possibilita o
uso da programacao das politicas para executar a selecao de eventos explicitamente,
explorando os modificadores every e every-distinct (CUGOLA; MARGARA, 2012).

5.4 Concepcao da Arquitetura

Nesta secdo sera apresentado a nova arquitetura de processamento de eventos
complexos distribuida para a loT proposta por este trabalho, introduzindo as ferramen-
tas acopladas a esta arquitetura, bem como suas funcionalidades e peculiaridades,
pelas quais foram escolhidas para serem agregadas a este trabalho.

Para o desenvolvimento de uma arquitetura com capacidade de processar even-

54

tos complexos na loT, necessitou-se primeiramente de uma forma simplificada de se
abstrair a heterogeneidade dos eventos a serem analisados nestes ambientes. Para
atingir este determinado objetivo optou-se por fazer uso de um middleware da loT o
qual se encarrega de abstrair toda e qualquer complexidade do ambiente.

O EXEHDA-SA consiste de um modelo de arquitetura distribuida de alto nivel, o
qual foi projetado com base nas formalizagbes definidas pelo middleware EXEHDA.
Estas formaliza¢des proporcionam ao EXEHDA-SA funcionalidades e caracteristicas
oportunas para o desenvolvimento da proposta deste trabalho. Porém apesar do
EXEHDA-SA ser direcionado a ambientes distribuidos, as implementacdes disponi-
veis do mesmo apresentam a compreensdo dos eventos em escopo local, gerando
um gargalo de processamento em ambientes loT altamente distribuidos. Desta forma
para que o EXEHDA-SA seja moldado aos requisitos e objetivos propostos por este
trabalho, executou-se as seguintes modificacoes:

e Modulo de Compreensao: neste modulo aplicou-se alteragdes de modo a per-
mitir a execugdo da correlacdo dos eventos de forma distribuida, removendo o
gargalo de processamento ao descentralizar esta tarefa, proporcionando tam-
bém uma maior tolerancia a falhas, ja que com a descentralizagcédo da tarefa nao
a mais um unico ponto de falha.

e Modulo de Pré-processamento: com o objetivo de implementar uma estratégia
de distribuicdo dos dados com a preocupacdo do consumo de rede, o Mddulo
de pré-processamento foi alterado para que permitisse a insercao de chaves
identificadoras, visando permitir a divisdo l6gica do fluxo de dados. Também
se adicionou a funcionalidade de compactagédo dos dados a serem enviados,
permitindo assim a reducao do consumo de rede. Este método de comunicacao
e melhor detalhado na secao 5.1.

Na Figura 17 é destacado os modulos na arquitetura EXEHDA-SA que sofreram
modificagdes. Com as alteracdes executadas, desenvolveu-se uma arquitetura distri-
buida com trés tipos de nodos: pré-processamento, broker e processamento de even-
tos. Onde estes nodos se relacionam em um padrao de produtor consumidor. Cada
um destes serdo detalhados nas subsecdes seguintes.

5.4.1 Nodo de Pré-processamento

Este nodo é responsavel por modelar os dados recebidos para um formato de mais
facil manipulacdo aos outros nodos de execucdo, também é responsavel por inserir
chaves identificadoras nos eventos para que assim se possa subdividir logicamente o
fluxo de informacéo. Este nodo realiza estas tarefas da seguinte maneira: primeira-
mente o0s eventos recebidos sdo inseridos em uma fila de consumo prioritaria, onde a
precedéncia desta fila € baseada no campo de nivel do risco, campo este adicionado

55

[EXEHDA-SA]

Repositdrio Interface Web

Eventos | Situagbes | Configuragtes s Bores || S e

Projegéao

Ativa | Passiva

Pré-processamento Compreenséo

Normalizagio | Contextualizaciio Filtragem | Correlagio

Percepgéao
Coleta de Dados

Figura 17 — Mdodulos a serem modificados no EXEHDA-SA.

previamente aos eventos pelo EXEHDA-SA. Esta fila tem por objetivo dar prioridade
no processamento dos eventos que tenham um maior nivel de risco de seguranga.
Apds a insercdo de algum evento a fila, o médulo de pré-processamento consome
este evento modelando-o em um objeto Java, onde esta manipulagao pode ser execu-
tada por dois sub-modulos distintos: o primeiro faz 0 uso de expressdes lambdas no
Java 8 para executar esta tarefa; ja o segundo médulo faz uso do Apache Spark para
executar a manipulacao dos eventos para objetos Java. A escolha do sub-mddulo de
modelagem é definida pelo usuario através do arquivo de configuracao.

O nodo de pré-processamento também é responsavel por executar a insercdo do
campo identificador de fluxo, o qual € usado para direcionar fluxos de eventos aos no-
dos de processamento. A escolha da chave identificadora € baseada no campo TAG,
este adicionado pelo EXEHDA-SA, sendo o mesmo gerado por meio da analise da
origem dos eventos (quais tipos de dispositivos geraram este dado). A forma da esco-
lha da chave identificadora também pode ser alterada pelo usuario com a introducéo
de expressdes regulares no arquivo de configuracao do nodo de pré-processamento,
onde estas expressdes podem selecionar qualquer parte dos eventos para serem usa-
das como chave.

Por fim o0 médulo cliente Kafka do nodo de pré-processamento executa o envio
dos eventos a um nodo Broker, podendo executar a compactacao destes antes de
efetuar o envio destas informagdes, caso o usuario opte por executar a compactagao,
este devera selecionar no arquivo de configuracao qual o algoritmo de compactacao
devera ser usado dentre o Snappy, LZ4 e GZIP. A Figura 18 ilustra a modelagem do
nodo de pré-processamento.

56

Nodo de Pré-processamento

o — — e —
L —

. ~
7~ ~
f Fila de Eventos Prioritaria \
I —> I
— P = = = [P -
n+2 n+1 n 2 1 0 |
I I
| Cliente Kafka Pré-processamento |
| l/’ EAcnsfk N\\‘ I/"‘ﬁ) APACHE \\\‘
I arka. N Javas | OOQN K j
~ —

T e e — T

Figura 18 — Nodo de Pré-processamento.

5.4.2 Nodo Broker

Nodo responsavel por armazenar os eventos recebidos pelo pré-processamento e
distribui-los sob demanda aos nodos de processamento. Para a implementacao deste
nodo usou-se o Apache Kafka, onde em um nodo Broker encontram-se trés topicos
Kafka, nos quais sdo armazenadas as seguintes informagoes:

e Topico de Trabalho: topico que armazena todos os eventos enviados pelo nodo
de pré-processamento. Este tépico é subdividido em N particdes, onde os dos
eventos sdo designados a uma destas particées pelo Kafka, o qual faz uso das
chaves identificadoras para executar esta tarefa, garantindo que eventos deten-
tores de uma mesma chave identificadora ser&o designados a uma mesma parti-
céo. Estas particées auxiliam o Kafka no gerenciamento do acesso concorrente
dos eventos, limitando a manipulagédo de uma mesma partigdo por no maximo um
nodo, garantindo assim uma entrega ordenada e continua do fluxo armazenado
nesta particdo ao nodo de processamento que esteja consumindo a mesma.
Esta estratégia evita a possivel perda na identificagcdo de eventos complexos, ja
que caso os eventos de um mesmo fluxo fossem divididos, eventos A e B que
juntos caracterizariam um evento complexo, poderiam ser designados a nodos
de processamento distintos, o que impossibilitaria a identificagédo deste evento
complexo.

e Topico de Notificacoes: neste tdpico sao armazenadas todas as notificagoes
de identificacdo de eventos complexos, estas geradas pelos nodos de processa-
mento. Estes dados de notificagbes armazenados no topico podem por exemplo
serem usados por administradores, com o intuito de adotar alguma agéo base-

57

ado nos dados da notificagao retornada ou ainda estas informacdes podem ser
integradas para uso de ferramentas de terceiros.

e Topico de Regras: responsavel por armazenar conjuntos de regras CEP a se-
rem enviadas aos nodos de processamento. Cada conjunto de regra possui uma
chave identificadora idéntica a chave do fluxo para o qual esta devera ser apli-
cada, permitindo assim que os nodos de processamento usem apenas as regras
especificas para seus respectivos fluxos de eventos.

Todo o processo de comunicacédo executado entre o nodo Broker e os demais no-
dos de processamento é executado por meio de transacdes, de modo que quando
ocorre qualquer erro ou falha, uma operacao de rollback é executada, desfazendo
qualquer modificacdo executada por uma operagao malsucedida, garantindo que da-
dos ndo sejam perdidos. Estas operagdes de comunicacdo executam por meio do
protocolo MQTT, o que permite ao usuario, caso este necessite, 0 uso de forma faci-
litada de criptografia para o envio e recebimento das mensagens, algo imprescindivel
para ambientes vulneraveis que necessitem trafegar dados sensiveis de forma segura.

Assim como os demais nodos desta arquitetura, o nodo Broker pode possuir de
1 a N instancias de execucéo, distribuindo os fluxos de dados entre estas instancias.
Como os fluxos de dados estdo armazenados e divididos entre as instancias, o usua-
rio pode preferir ter a garantia contra a indisponibilidade destas informag¢des caso um
dos nodos Broker falhe, para isto 0 nodo pode manter uma cépia dos dados armaze-
nada nas outras instancias, sendo definido na configuracdo deste nodo o parametro
de fator de replicacdo, onde este numero vai de zero ao numero de instancias do nodo
Broker em execucdo menos um. Onde o valor zero ndo da garantias contra falhas, ja
o valor um garante que caso um nodo Broker caia, ndo havera perda das informagdes.
Deste modo, quanto maior for o fator de replicagao adicionado, mais nodos poderéao
falhar sem que ocorra a indisponibilidade dos dados, porém este fator de replicacao
gera uma demanda maior de recursos computacionais aos nodos, recursos estes ne-
cessarios para que se possa manter o backup dos dados atualizado entre todas as
instancias. A Figura 19 ilustra o nodo Broker com as respectivas tecnologias empre-
gadas.

5.4.3 Nodo de Processamento

Neste nodo € executado toda a e qualquer tarefa de processamento e andlise de
eventos. Primeiramente para executar esta funcdo, quando um nodo de processa-
mento é instanciado, o médulo cliente Kafka deste comunica sua disponibilidade para
processar eventos ao Nodo Broker, o qual ird designar uma parte dos fluxos de eventos
para este processar. A designagédo dos fluxos é executada com base na quantidade
de nodos de processamento disponiveis, quanto mais nodos processando, menos flu-

58

Nodo Kafka Broker

- Fila de Trabalho Concorrente S

/ o/ N
C 7L]===[OIO[O[O]G
1
' f 4 3 2 1 0
/

Ry APACHE ‘
\ _ i /
~ kq F ka 1 - n Kafka Partitions L

~

R4 Fila de Notificacdes de Eventos
12 2

—{ | J=e =[SO

]
3 2 1 0 g

Figura 19 — Nodo Broker.

x0s de eventos serdo designados a um nodo, com o limite de um unico fluxo por nodo.
Apos receber uma parte dos fluxos, 0 moédulo cliente Kafka requisita ao nodo Broker
as regras de processamento correspondente aos fluxos designados para este. A cor-
respondéncia dos fluxos com as regras é feita pela chave identificadora, onde a chave
da regra corresponde a chave do fluxo para o qual esta deve ser aplicada. O modulo
cliente Kafka verifica periodicamente por novas regras de processamento, permitindo
gue o usuario adicione novas regras em tempo de execucao.

Apos o recebimento dos eventos a serem processados, € executada a descompac-
tacdo dos mesmos, caso o usuario tenha optado por executar a compactacao destes
no nodo de pré-processamento. Seguindo a descompactacao, os eventos e as suas
correspondentes regras sdo submetidos ao Esper o qual fica responsavel por aplicar
as regras de processamento sobre os fluxos de eventos, visando assim identificar a
ocorréncia de eventos complexos.

Caso haja a identificacdo de algum evento complexo, o comportamento padrao de-
finido pela arquitetura é o envio de uma notificagdo ao nodo Broker com os dados que
geraram esta identificacdo do evento complexo e a regra de processamento que fez a
deteccao deste evento. Este comportamento descrito pode ser alterado pelo usuario
por meio da passagem de um objeto Java como parametro da classe principal do nodo
de processamento, assim este objeto ir4 representar o novo padrao comportamental a
ser executado. A Figura 20 ilustra a modelagem do nodo de processamento de dados.

Todos os nodos de processamento sdo organizados em um mesmo grupo Kafka,

59

isto possibilita a distribuigdo dos eventos de forma concorrente, ja que nodos per-
tencentes a um mesmo grupo de processamento dividem o conjunto de informacéo
armazenado em um tdépico, trabalhando em parcelas distintas do mesmo.

O nodo de processamento, assim como 0s demais, implementa mecanismos de
tolerancia a falhas, onde caso algum dos nodos de processamento, por um motivo
qualquer ficar ocioso, deixando de se comunicar, 0 nodo Broker percebe imediata-
mente a sua inatividade e distribui os fluxos de eventos antes detidos por este nodo
ocioso aos demais nodos de processamento disponiveis. Isto evita que estas informa-
cbes permanegam sem serem processadas até que o nodo fique ativo novamente, o
qgue poderia ocasionar na perca da identificacdo de eventos complexos, ou ainda na
identificacao tardia dos mesmos, tendo em vista que a deteccédo de certos eventos
complexos s6 faz sentido se for efetuada em um intervalo de tempo muito curto.

Um exemplo deste cenario citado, seria a detecgdo de uma tentativa de invasao
em andamento aos dados sensiveis de um banco de dados, caso o administrador
seja notificado deste possivel ataque em andamento, antes que 0 mesmo seja bem
sucedido por parte dos invasores, este administrador podera tomar alguma decisédo
de modo a mitigar esta tentativa de invaséo.

Nodo de Processamento de Eventos

. . — — .

—_— " —

Processador de Eventos Esper Cliente K_afk_a_ 1
I ,/ :_‘ X \\‘ ,l’ i APACHE i \\\ |
. { S EsperTechi~——+ afka. O
[e e I
L J
~ -—

" —,
e T e o — - — —

Figura 20 — Nodo de processamento.

5.4.4 Visao geral da arquitetura

Na Figura 21 é apresentada a visdo geral da arquitetura proposta bem como os
fluxos de comunicagao entre cada um dos trés nodos.

Internet das Coisas

./4 \.
P - B N Nodo de Pré-processamento
/ Cafeteira Termostato camera \ ' = P
[} :
y
\ —_—
\ / o

.\ Smart House Lampada Controlador /'
~ . e . ~
: Interface de Adiministracao
\Adiminis(vador /
Nodo Kafka Broker T
=TT T T ~
- ~.
......... Tépico deTrabatho ™.
- Fila de Trabalho Concorrente \ b \
[_1===[DIQIOIDIO] . |

Dmlcz

de Eventos

7 u

Fila de Regras

EI oo UL]L]L]U

Figura 21 — Viséo geral da arquitetura.

09

6 EXEHDA-DEP: AVALIACOES E RESULTADOS

Neste capitulo sdo apresentados os testes de escalabilidade e consumo de rede
executados com a presente arquitetura proposta, bem como os resultados obtidos
com a implementacao destas avaliagcdes. Neste capitulo também sera descrito o ce-
nario de caso de uso aplicado para a execucao dos testes, incluindo as motivacoes e
justificativas para o uso do mesmao.

6.1 Cenario de Aplicacao

O cenério de aplicagao proposto para a execugao dos testes teve como referéncia
o ambiente computacional da Universidade Federal de Pelotas (UFPel) o qual possui
uma infraestrutura com caracteristicas da Computacédo Ubiqua. Dentre estas caracte-
risticas presentes, pode-se citar:

e 0 grande numero de dispositivos heterogéneos com hardwares e recursos dis-
tintos conectados a rede, como computadores com sistemas operacionais diver-
sos, impressoras, servidores, dispositivos moveis, cameras de seguranca, entre
outros;

e um ambiente descentralizado, com dispositivos localizados em campus geogra-
ficamente separados, os quais enviam e recebem informacdes entre si continu-
amente,;

e a necessidade de trafegar um consideravel volume de eventos por links de co-
nexao com baixa largura de banda;

¢ a falta de padronizacéo das informacgdes geradas por servigcos oferecidos pelos
datacenters onde eventos de sistemas legados geram /ogs em diversos formatos
e padrdes.

Com o enfoque de demonstrar a capacidade da arquitetura processar um consi-
deravel volume de eventos em um ambiente ubiquo com escalabilidade e mantendo
o consumo de rede estavel, o ambiente computacional da UFPEL se adéqua a estes

62

requisitos, o qual almeja por uma arquitetura apta a lidar com o processamento distri-
buido e heterogéneo dos eventos e com capacidade de executar em ambientes com
limitacdes de largura de link.

Dentro deste cenario da UFPEL, optou-se por executar a analise de eventos da
seguranca da informacao, tendo em vista a pertinéncia da identificacdo de eventos
deste tipo, ja que ha uma grande dificuldade e necessidade de se identificar e manter
redes de grande porte seguras contra ataques de Hackers (JOSHI; SINGH, 2017).

O processamento de eventos de seguranca favorece também a execucéo do es-
tudo da capacidade do EXEHDA-DEP em lidar com um consideravel volume de even-
tos quase que em tempo real, j& que neste caso ha necessidade de se analisar boa
parte do trafego de rede gerado por milhares de dispositivos na UFPel, em busca de
eventos de seguranca da informacédo. Estes eventos caracterizam uma possivel que-
bra de seguranca, de modo que caso sejam detectados, deve-se notificar o administra-
dor de rede de imediato, para que assim este possa tomar as agdes cabiveis. Assim,
as regras EPL aplicadas ao ambiente computacional da UFPEL visam a identificacdo
da execucao de ataques de Hackers como de forga bruta, inje¢cdo de codigo, dentre
outros. Estas regras EPL foram desenvolvidas e testadas por trabalhos anteriores do
grupo de pesquisa (ALMEIDA et al., 2019).

Outra caracteristica presente na analise de eventos de seguranga que se adéqua
aos objetivos deste trabalho € a auséncia de padronizacao nas estruturas dos dados
a serem analisados, visto que ha diferentes dispositivos com protocolos e recursos
distintos se comunicando na rede, o que gera a necessidade do EXEHDA-DEP em
trabalhar com dados heterogéneos, assim como em um ambiente da loT (HANES
et al., 2017).

6.1.1 Ambiente de Teste

Devido a restricdes de seguranca para o acesso direto de terceiros ao ambiente
computacional da UFPEL, optou-se por executar a virtualizagdo deste ambiente. Para
isto fez-se uso de um cluster para executar a simulagdo dos diferentes dispositivos
presentes no ambiente computacional da UFPEL, sobre os quais os nodos da arqui-
tetura proposta poderao executar.

As configuragdes do cluster usado para a simulagéo consiste:

e Processamento: 8 processadores Intel Xeon E5-4650V3 de 2.1GHZ forne-
cendo 96 nucleos de processamento.

e RAM: 64 mddulos de 8 gigabytes DDR4, totalizando 512GB de memoria.

e Armazenamento: 2 discos rigidos de 2 terabytes com velocidade de 12Gb/s
executando em RAID 1.

63

Ja a virtualizagdo das maquinas no cluster foi executado por meio do Docker', o
qual fornece uma camada de abstragdo e automacgéo para a virtualizagdo de siste-
mas, 0 que permitiu a execugdo do isolamento dos recursos de hardware do clus-
ter(memoéria RAM, CPU, HD e largura de banda) permitindo uma melhor aproximacao
da simulagao ao ambiente real da UFPEL.

As restrigdes dos recursos computacionais foram executadas da seguinte maneira:

e CPU - o isolamento dos recursos de processamento foi elaborado com a limi-
tacdo do numero de nucleos de processamento disponiveis para cada uma das
maquinas simuladas, bem como quais destes nucleos disponibilizados pelo clus-
ter seriam usados por cada uma destas maquinas virtuais. A quantidade de
nucleos de processamento disponibilizado as maquinas simuladas depende do
teste em questédo a ser executado, podendo variar conforme o necessario.

e HD - a restricao do armazenamento foi elaborada através da limitacao da veloci-
dade de leitura e escrita no disco rigido disponibilizada a cada uma das maqui-
nas virtuais, visando assim simular a independéncia do armazenamento entre as
maquinas virtuais. Nao foram feitas limitacdo quanto a quantidade de HD(Hard
Disk) disponibilizada por cada nodo, ficando disponivel as maquinas virtuais a
quantidade total livre no cluster.

e Rede de Comunicacao - o Docker permite a virtualizacdo de redes de comuni-
cagao, incluindo a simulacéo de roteadores efetuando a distribuicdo de IPs para
as maquinas virtuais. Esta funcionalidade possibilitou a simulagédo e analise do
consumo de trafego de rede gerado pela comunicacao entre nodos de proces-
samento executando em maquinas distintas.

e Memoria RAM - o controle da memodria RAM limitou-se a disponibilizar uma
guantidade X para cada uma das maquinas virtuais, onde o volume de memoria
disponibilizado para cada maquina pode variar dependendo das necessidades
dos testes em questédo a ser executado.

Para a simulacao do trafego de rede usou-se um conjunto de logs de trafego de
rede de diferentes dispositivos (Firewall, Roteadores, Switchs...) usados na UFPEL.
Estes dados foram enviados ao nodo de pré-processamento de forma periédica e nao
sequencial, visando simular a geracao natural dos logs no ambiente da UFPEL. O
envio destes dados foi executado com o auxilio de uma ferramenta desenvolvida em
Java, esta também projetada por este trabalho, se encontrando disponivel para acesso
e uso junto da arquitetura principal projetada. Estes logs de dispositivos empregados
por este trabalho ja foram usados anteriormente em outro trabalho desenvolvido pelo
presente grupo de pesquisa (ALMEIDA et al., 2019).

"https://www.docker . com/

https://www.docker.com/

64

Na Figura 22 é apresentado um diagrama do fluxo da execucao do EXEHDA-DEP,
onde eventos de registro da atividade de rede na UFPel sdo capturados e padroniza-
dos pelos demais modulos previamente concebidos do middleware EXEHDA e modelo
arquitetural EXEHDA-SA (ALMEIDA et al., 2019), onde estes eventos sao posterior-
mente enviados ao nodo de pré-processamento o qual empacota e classifica este
evento usando uma chave identificadora, o enviando em seguida por uma transagéo a
um nodo Broker.

Por sua vez, o nodo Broker recebe o pacote contendo o evento, o despachando
imediatamente para um nodo de processamento, se baseando para isto na chave iden-
tificadora adicionada pelo nodo de pré-processamento. Este nodo também armazena
os registros de notificagées disparados pelos nodos de processamento, bem como as
regras EPL definidas pelo administrador de rede na interface administrativa, onde as
quais serdo distribuidas por este nodo, aos nodos de processamento, se baseando
para isto nos fluxos de eventos que estes estiverem analisando.

O nodo de processamento recebe o pacote do evento por meio de uma transagéao
aberta com um nodo Broker. Este nodo, executa a analise de eventos complexos,
por meio do emprego de regras EPL definidas pelo administrador de rede, as quais
sdo inseridas em uma interface administrativa. Estas regras aplicadas pelos nodos
de processamento, foram definidas de modo a permitirem a identificagdo de possiveis
tentativas de invasdo ou quebra de seguranca a rede da UFPel. Sempre que um
nodo de processamento faz a identificagdo de um evento complexo, 0 comportamento
padrdo executado € o envio de uma notificagdo ao nodo Broker, o qual armazena
esta mensagem, para que o administrador possa por meio da interface administrativa,
analisar os incidentes de seguranca da informacao detectados e assim tomar alguma
acao cabivel ao mesmo.

65

Exemplo de Regra EPL
de Entrada

SELECT window(*) as events FROM ApacheEvent(
response!="200").win:time(1 sec)
GROUP BY src_ip
HAVING COUNT(*) >= 10

G

Java8 '\Z
Interface ey e ApAcHE
Adiministrativa kqﬂ(o S Qr’(
7 AD & =) g
/ 5 Nodo Broker
\Adiminisuador/
- Pré-processamento
Notificagdo de Evento =
{
= “"tag":"APACHE",
— "sequence™0,
—— Ej "_cr_type":"apache”,
1o " ip":"123.123.123.123",
0= h
- Internet W
\"GET /hotspot-detect.html HTTP/1.0\" 404 422 \"-\"
\"CaptiveNetworkSupport-355.200.27 wispr\"",
Nodos de auth':
Exemplo de | tjmestamp":"13/Dec/2018:18:23:55 -0200",
Processamento Dados de versio
Entrada httpver 0"
request":"/hotspot-detect.html”,
0w “response":"404",
(o 1= = " timestamp":"2019-07-31T21:39:52.4862",
‘tags":["apache_access"],
"verb":"GET",
— p— p— “source":"access.log",
= Esper = Esper = Esper “host":"1ed5dco7c2cd”,
= = = "bytes":422,
= = =R "agent":"CaptiveNetworkSupport-355.200.27 wispr"
I5) g [T {Fovmerivmmes] L

Figura 22 — Fluxo de execugcao do EXEHDA-DEP.

6.2 Escalabilidade

Nesta secdo sera apresentado os resultados dos testes de escalabilidade execu-
tados com os nodos de pré-processamento e processamento. Todos os testes de
desempenho apresentados nesta secédo foram executados com uma arquitetura de
cinco nodos Broker, estes executando em maquinas virtuais geradas pelo Docker com
as seguintes configuragdes: oito nucleos de processamento do cluster; dezesseis gi-
gabytes de RAM; cinquenta megabits de velocidade maxima de leitura e escrita em
disco rigido.

6.2.1 Escalabilidade Vertical

Primeiramente executou-se testes com o objetivo de mostrar a capacidade da ar-
quitetura escalar verticalmente, isto é, demonstrar que com o aumento dos recursos
computacionais disponiveis, ha algum aumento significativo na taxa de processamento
da arquitetura. Para isto simulou-se com o Docker uma maquina virtual inicialmente
com 0s seguintes recursos computacionais: um nucleo de processamento do cluster;
seis gigabytes de meméria RAM; uma taxa de leitura e escrita de disco de dez me-
gabits por segundo. Apds a simulacdo inicial nesta arquitetura, repetiu-se 0 mesmo
teste de processamento, porém com os valores de todos o0s recursos computacionais
(nimero de nucleos de processamento, memaria RAM e velocidade de leitura e es-

66

crita do HD) multiplicados por dois, trés, quatro, cinco, dez e quinze. Esperando-se
obter com a execucgéo destes testes um aumento continuo e progressivo dos valores
médios de eventos processados por segundo, conforme os recursos computacionais
sédo incrementados nos diferentes testes de processamento citados, visando assim
demonstrar a capacidade da arquitetura escalar verticalmente.

Cada uma das simulacbes citadas fora executada com os nodos de Pré-
processamento e de Processamento, onde cada um destes testes foram realizados
trinta vezes. O valor médio da taxa de processamento obtido com as trinta iteracoes e
seus respectivos desvio padrdo podem ser visto nas Figuras 23 e 24.

Eventos Processandos por Segundo

—8— Taxa de transferéncia =~ «oveeeer Linha de Tendéncia

35000

30000 2434%

25000

20000

Eventos

15000

10000 /408
./ 201
5000

241

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Capacidade da Arquitetura

Figura 23 — Escalabilidade Vertical nodo de pré-processamento.

67

Eventos Processandos por Segundo

—&@— Taxa de transferéncia =~ ----reee: Linha de Tendéncia

90000

80000

70000

60000

50000

Eventos

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Capacidade da Arquitetura

Figura 24 — Escalabilidade Vertical nodo de processamento.

Os dados obtidos com os testes, apresentados nas Figuras 23 e 24 demonstram
a capacidade dos nodos de pré-processamento e processamento de escalar vertical-
mente, demonstrando um aumento significativo na taxa de processamento. Porém,
também pode-se perceber pelo grafico que os ganhos na capacidade de processa-
mento diminuem ao longo do aumento dos recursos computacionais, porém mesmo
com um aumento de quinze vezes da capacidade computacional inicial disponibilizada
aos nodos de pré-processamento e processamento, estes continuaram apresentando
algum ganho na taxa de transferéncia, enfatizando a capacidade da arquitetura pro-
posta de escalar verticalmente.

6.2.2 Escalabilidade Horizontal

Para demonstra a capacidade da arquitetura proposta escalar horizontalmente, isto
€, de demonstrar que quanto maior o numero de nodos, maior sera o ganho na taxa
total de processamento disponibilizada pela arquitetura, foram executados testes vi-
sando analisar a média de eventos processados pelos nodos de pré-processamento
e processamento, primeiramente em uma Unica maquina virtual, esta possuindo os
seguintes recursos computacionais: um nacleo de processamento do cluster; seis gi-
gabytes de memdédria RAM; uma taxa de leitura e escrita de disco de dez megabits
por segundo. Apods a andlise do processamento de uma instancia de execucao dos
nodos em uma Unica maquina virtual respectivamente, repetiu-se esta simulacao au-

68

mentando igualmente o numero de maquinas virtuais e nodos, mas sempre mantendo
uma Unica instancia dos nodos de pré-processamento ou processamento por maquina
virtual. Estes testes foram executados com: dois, trés, quatro, cinco, dez e quinze ma-
quinas virtuais e nodos igualmente.

Assim, com a analise da média total de eventos processados em cada um destes
testes, espera-se obter um aumento continuo e progressivo do processamento destes
eventos, conforme o numero de nodos de processamento aumenta em cada um dos
respectivos testes executados, demonstrando desta forma a capacidade da arquitetura
escalar horizontalmente.

Cada uma das simulacbes citadas fora executada com os nodos de pré-
processamento e de processamento, sendo cada um destes testes executados trinta
vezes. O valor médio da taxa de processamento obtido com as trinta iteragdes e seus
respectivos desvio padrao pode ser visto nas Figuras 25 e 26.

Eventos Processandos por Segundo

—@®— Taxa de transferéncia =~ «exeeeeer Linha de Tendéncia

60000

50000

40000

30000

Eventos

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Nodos

Figura 25 — Escalabilidade horizontal nodo de pré-processamento.

69

Eventos Processandos por Segundo

—@&— Taxa de transferéncia ~ «+eeeeeee Linha de Tendéncia

120000

100000

.35

80000

3686,/

60000

Eventos

40000

e 5838
20000 [/
/3553

2458
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Nodos

Figura 26 — Escalabilidade horizontal nodo de processamento.

Os dados obtidos com os testes, apresentados nas Figuras 25 e 26 demonstram
a capacidade dos nodos de pré-processamento e processamento escalar horizon-
talmente, apresentando aumento significativo na taxa de processamento. Pode-se
destacar o aumento continuo e significante da taxa de processamento obtido nos tes-
tes, aumento este se mantendo significativo mesmo com quinze nodos executando ao
mesmo tempo, provendo assim altas taxas de processamento, destacando a capaci-
dade desta arquitetura de executar em ambientes altamente descentralizados e que
necessitem altas taxas de processamento, caracteristicas estas presentes na loT.

6.3 Estabilidade e Consumo de Recursos

Nesta secao serd demonstrada a estabilidade da proposta, estabilidade esta desta-
cada pela capacidade dos nodos de pré-processamento e processamento de executar
continuamente por longos periodos sem apresentar instabilidades ou variagdes brus-
cas na taxa de processamento. Também serd mensurado o consumo dos recursos
computacionais gerado pelos testes executados nesta se¢do, visando demonstrar a
possibilidade de se executar a proposta em hardware de baixo custo e ainda destacar
0 gerenciamento eficaz dos recursos computacionais, isto €, demonstrar que a pre-
sente arquitetura ndo exerce um consumo elevado de memédria RAM, aumentando o
uso continuamente ao longo do tempo, sem nenhuma causa necessaria aparente, ou
mesmo que a proposta ndo possua periodos de ociosidade de processamento ou 0

70

nao uso da total capacidade disponibilizada pela CPU(Central Processing Unit).

Visando demonstrar a estabilidade da taxa de processamento dos nodos de pré-
processamento e processamento executou-se a medicdo da taxa média de eventos
consumidos ao longo do periodo de meia hora(1800 segundos), visando assim iden-
tificar qualquer instabilidade que afete a execugdo da arquitetura, gerando alguma
variagdo brusca na taxa de processamento dos eventos. Os seguintes recursos com-
putacionais foram disponibilizados a maquina virtual simulada para a execucéao deste
teste: um nucleo de processamento do cluster; seis gigabytes de memaoria RAM; uma
taxa de leitura e escrita de disco de dez megabits por segundo. Os dados da taxa de
processamento de eventos complexos por segundo obtida com as simula¢des de meia
hora dos nodos de pré-processamento e processamento podem ser visto nas Figuras
27 e 28.

Eventos Processados

== Taxa de transferéncia Linha de tendéncia

6000
o

2 4000
3
{@)]
[4F]
w
o}
o
3

c 2000
@
>
w

0

0 200 400 600 800 1000 1200 1400 1600 1800

Tempo Decorrido em Segundos

Figura 27 — Estabilidade nodo pré-processamento.

71

Eventos Processados

== Taxa de transferéncia Linha de tendéncia
25000
20000
o
=]
c
& 15000
[4F]
w
S
o
o 10000
]
c
4]
i
5000
0
0 200 400 600 800 1000 1200 1400 1600 1800

Tempo Decorrido em Segundos

Figura 28 — Estabilidade nodo processamento.

Os dados obtidos com os testes, apresentados nas Figuras 27 e 28 demonstram
a estabilidade na execuc¢ao do processamento de eventos complexos pela arquitetura
proposta, onde a mesma apresenta uma progressao estavel e continua na taxa de
processamento, ndo apresentando grandes picos ou variagées ao longo do tempo
de execucdo. Os testes visam demonstrar que a presente arquitetura proposta esta
apta a ser introduzida a meios computacionais que necessitem de solugées confiaveis,
capazes de lidar com grandes fluxos de dados de forma continua e estavel.

Durante os testes de estabilidades executados, executou-se também a medi-
cao do consumo de recursos computacionais gerado por cada um dos nodos, pré-
processamento e processamento, durante os testes citados. A execucao destas me-
dicdes visa demonstrar a administracdo satisfatoria dos recursos computacionais por
parte da arquitetura proposta, isto €, demonstrar que a presente arquitetura nao exerce
um consumo elevado de meméria RAM, aumentando o uso continuamente ao longo
do tempo, sem nenhuma causa necessaria aparente, ou mesmo que a proposta nao
possua periodos de ociosidade de processamento ou 0 ndo uso da total capacidade
disponibilizada pela CPU. Os dados coletados estéo ilustrados nas Figuras 29 e 30.

72

Consumo de Meméria e CPU
w= CPU == Memoria

125%

100% ' ey
o
E
3
w
S 75%
Q
)
=]
T 50%
£
(]
o
& 25% _

0% ‘

0s 200s 400s 600s 800s 1000s 1200s 1400s 1600s 1800s
Tempo
Figura 29 — Consumo de recursos pré-processamento.
Consumo de Meméria e CPU
== CPU == Memoria
125%
100% : v -
T | SidA. maae

(@]
- | |
3
(]
5 75%
Q
3]
©
S 50%
£
(]
o
£ 25%

0%

Os 200s 400s 600s 800s 1000s 1200s 1400s 1600s 1800s

Tempo
Figura 30 — Consumo de recursos processamento.
A Figura 29 demonstra o consumo estavel e continuo do tempo de processamento

disponibilizado pela maquina virtual ao nodo de pré-processamento, ndo apresen-
tando periodos de ociosidade ou grandes variacées na média do processamento ao

73

longo do tempo da coleta dos dados. Ja o consumo de memaéria RAM apresentou uma
leve progressao ao longo do tempo analisado, progressao esta que pode ser explicada
com a observagao da Figura 27, a qual apresenta os dados da taxa média de proces-
samento ao longo do tempo deste nodo, onde percebe-se um continuo aumento ao
longo do tempo da taxa média de processamento, 0 que acaba gerando consequente
mente um leve e continuo aumento do consumo de memoria RAM ao longo do tempo,
até que esta taxa de processamento se estabilize.

Na Figura 30 sdo apresentados os dados do nodo de processamento, o qual de-
monstra um consumo de tempo de processamento estavel com leves variagoes, tendo
em vista que a identificacdo de um evento complexo acarreta em um chamada subse-
quente de uma acgao designada para este fluxo de eventos complexos, estas variagcoes
podem ser explicadas por periodos nos quais 0 numero médio de eventos complexos
identificados teve uma leve alteracdo. Como os dados analisados pelas regras EPL
sao gerados de forma aleatéria, 0 que mais se aproxima do comportamento do ambi-
ente real, a ocorréncia durante o tempo de execucao de periodos com maior e menor
identificacao de eventos complexos, desta forma, leves variagdes no consumo medio
de CPU sao esperadas.

Ja o consumo de memdria RAM exercido pelo nodo de processamento nao apre-
senta quaisquer variagdes, estabilizando aos 300 segundos de simulagdo em pouco
mais de 25% e se mantendo neste valor até o final do teste, demonstrando que a
arquitetura oferece um gerenciamento adequado deste recurso.

6.4 Consumo de Rede

Nesta secao serédo apresentados os testes de consumo de rede, onde estes visam
demonstrar a capacidade da arquitetura proposta de gerenciar a transmissao dos da-
dos pela rede de modo a proporcionar a distribuicdo dos dados com um consumo de
banda estavel, oferecendo opgdo também de usar a compactagdo dos eventos para
assim fornecer uma reducao do consumo do trafico de rede gerado pela distribuicao
dos eventos, favorecendo o uso desta proposta em ambientes com baixa largura de
banda, ou que estejam com os links de comunicacéo saturados pela necessidade de
transmitir grandes volumes de informacgoes.

Todos os testes demonstrados nesta secéo foram executados com uma arquitetura
de cinco nodos Broker, estes executando em maquinas virtuais geradas pelo Docker
com as seguintes configuracdes: oito nucleos de processamento do cluster; dezesseis
gigabytes de RAM; cinquenta megabits de velocidade maxima de leitura e escrita em
disco rigido.

Primeiramente com o objetivo de demonstrar que a presente arquitetura proposta
nao gera custos adicionais ao trafego de rede para executar a distribuicdo dos dados,

74

efetuou-se a simulacao de maquinas virtuais, para que nestas fosse executado os no-
dos de processamento. Assim, gerou-se vinte e quatro milhdes de eventos para que
estes fossem distribuidos pelos nodos Broker aos nodos de processamento, visando
desta forma mensurar o trafego total de rede gerado nos links das maquinas virtu-
ais que os nodos de processamento executam. Este teste foi executado com: um,
dois, trés, quatro, cinco, dez e quinze maquinas virtuais, onde em cada uma destas
executava uma instancia do nodo de processamento. Os recursos computacionais
disponibilizados a cada uma das maquinas virtuais durante a execucao destes testes
foram: um nucleo de processamento do cluster; seis gigabytes de memaoria RAM; e
uma taxa de leitura e escrita de disco de dez megabits por segundo.

Com a transmissdo deste volume de eventos a uma ou mais maquinas virtuais
nas quais executam os nodos de processamento, visa se possibilitar o comparativo
da carga total de rede exercida sobre os links de comunicacado de cada uma das ma-
quinas virtuais simuladas, possibilitando-se constatar de que a presente tem a capa-
cidade de efetuar o processamento de eventos complexos de formar distribuida sem
exercer qualquer carga adicional sobre os links de comunicagéo da rede. Os resulta-
dos destes testes podem ser vistos na Figura 31.

Trafego de Rede Total

14,0GB

11,708 P——

9,3GB

7,0GB

4,7GB

Consumo de Rede

2,3GB

0,0GB

1 3 5 7 9 1 13 15

Numero de Nodos
Figura 31 — Consumo de rede com a distribuicao.

Os dados apresentados na Figura 31 demonstram um consumo de rede estavel
fornecido pela arquitetura proposta, onde o valor exigido do /ink € o mesmo, indepen-
dente de quantos nodos estiverem trabalhando em conjunto. As pequenas variagoes
vistas no grafico podem ser explicadas por comunicagdes adicionais executadas pe-

75

los sistemas operacionais das maquinas virtuais. Como os dados foram coletados
analisando o consumo de rede total gerado no link de comunicagao disponibilizado a
cada uma das maquinas, o trafego gerado ocasionalmente pelo sistema operacional
ou por suas aplicagdes acaba sendo considerado em conjunto, ou mesmo transmis-
sbes mal sucedidas, que por este motivo necessitaram ser executadas novamente,
geram uma pequena discrepancia nos dados de trafego de rede. Porém estes valores
nao interferem para a constatacéo de que a presente proposta prove uma arquitetura
com consumo de rede estavel, ndo exercendo carga adicional para a distribuicao dos
dados aos nodos de processamento.

Outra funcionalidade provida pela arquitetura proposta é a capacidade de com-
pactar os dados trafegados para que assim se possa diminuir 0 consumo de rede
total gerado no trafego das informagdes. Esta funcionalidade visa facilitar o transporte
dos dados aos nodos de processamento em ambientes que tenham baixa largura de
banda ou ainda que sofram com links de comunicagao saturados pelo grande volume
de dados trafegado nestas redes.

Para demonstrar esta capacidade de reducédo de trafego gerada pela compacta-
cao, executou-se a producao de dezoito milhées de dados aos nodos Broker, os quais
redirecionaram estas informacgdes a um nodo de processamento, o qual executava em
uma maquina virtual com as seguintes configuracdées: um nucleo de processamento
do cluster; seis gigabytes de memoria RAM; e uma taxa de leitura e escrita de disco de
dez megabits por segundo. Este teste foi executado para cada um dos tipos de com-
pactacdes suportadas pela arquitetura: Nenhuma, Snappy, LZ4 e GZIP. Os resultados
obtidos podem ser visto na Figura 32.

10GB
8GB
6GB
4GB

3,77

2GB

0GB
Nenhuma Snappy LZ4 GZIP

Figura 32 — Consumo de rede por algoritmos de compactagao.

Na Figura 32 pode-se perceber um consideravel declinio no consumo de rede ge-
rado pelo uso dos algoritmos de compactacdo, se comparado ao método que nao

76

aplica nenhuma destas estratégias. Dentre estas estratégias de compactacéo aplica-
das, pode-se destacar o algoritmo GZIP, onde seu uso proporcionou uma reducao de
mais de quatro vezes o trafego de rede gerado, destacando a capacidade da arqui-
tetura executar em redes que tenham links de comunicagao saturados ou de baixa
velocidade. Esta reducao do trafego de rede pode ainda proporcionar uma melhora
significativa no tempo de laténcia entre as comunicagdes, ja que uma quantidade
maior de dados pode ser trafegada no mesmo periodo de tempo, proporcionando a
arquitetura oferecer um tempo de resposta mais curto. Tais reduc¢des favorecem o uso
em aplicagdes que necessitem de processamento em tempo real, com baixas latén-
cias, fornecendo a identificacdo de eventos complexos quase que de imediato a sua
ocorréncia.

Visando identificar os possiveis impactos gerados pelo uso dos algoritmos de com-
pactacdo na taxa de processamento, executou-se um teste para verificar a média de
eventos processada ao longo do tempo com o uso das quatro alternativas distintas de
compactagcao empregadas. Para executar esta simulacao, fez-se uso de uma maquina
virtual na qual o nodo de processamento ira executar, de modo que este consuma da-
dos continuamente pelo periodo de meia hora (1800 segundos) permitindo assim a ve-
rificacéo do fluxo de processamento durante este periodo. As configuragdes aplicadas
na maquina virtual para executar esta simulagdo foram: um nucleo de processamento
do cluster; seis gigabytes de meméria RAM; e uma taxa de leitura e escrita de disco
de dez megabits por segundo. Este teste foi executado para cada uma das técnicas
de compactagcdo onde os dados obtidos com estas execug¢des podem ser vistos na
Figura 33.

Comparativo por Estratégia de Compactacao

== Nenhuma == GZIP Snappy == LZ4
30000

20000

10000 /

Eventos por Segundo

0 200 400 600 800 1000 1200 1400 1600 1800

Tempo Decorrido em Segundos

Figura 33 — Fluxo de processamento com compactagéo.

77

Na Figura 33 pode ser identificado que todos os algoritmos de compactacéao usa-
dos tiveram uma taxa de processamento significativamente maior se comparados com
a técnica que n&o usava uma estratégia de compactacao. Isso se justifica que mesmo
estes métodos “perdendo tempo” antes de enviar ou receber os dados compactando
e descompactando a informacgéo, esta tarefa ainda ndo se torna o gargalo do fluxo
da arquitetura, sendo este gargalo, neste caso testado, a velocidade de comunica-
cao dos links entre o nodos Broker e 0 nodo de processamento, demonstrando que
o tempo gasto para executar esta compactacao dos dados é menor que o tempo ga-
nho por conseguir transmitir uma quantidade de dados maior consumindo 0 mesmo
percentual de largura de rede.

Os resultados obtidos, destacam ainda mais a importancia da consideracao do
consumo de rede na distribuicdo dos dados, tendo em vista que mesmo uma arquite-
tura simplificada, com um unico nucleo de processamento, a velocidade dos links de
comunicagao pode ainda ser o gargalo do fluxo de uma arquitetura. Estes dados de-
monstram a aplicabilidade desta arquitetura em ambientes com /inks de comunicagao
saturados, a qual tem o potencial de reduzir o consumo da rede e ainda proporcionar
um aumento na taxa de processamento de dados.

Pode-se observar também pela Figura 33 que dentre as técnicas de compactacao
disponibilizadas pela a arquitetura, a LZ4 foi a que atingiu a maior taxa de processa-
mento, sendo também a segunda com o maior nivel de compactagédo dos dados.

7 CONSIDERAGOES FINAIS

O avancgo tecnolégico tem proporcionado mudangas significativas na sociedade,
introduzindo a computacdo aos mais variados dispositivos, como geladeiras e cafe-
teiras. Esta introducdo da tecnologia computacional tem sido chamada de Internet
das Coisas e tem por finalidade fornecer computagédo com conectividade constante e
mobilidade, de forma transparente e integrada ao ambiente.

Porém, em conjunto com a loT, surge uma gama de desafios a serem solucio-
nados, para que assim este novo paradigma computacional possa efetivamente vir
a tornar-se uma tecnologia onipresente a todos os tipos de usuarios. Dentre estes
obstaculos se pode citar: o tratamento da heterogeneidade das informagdes; o pro-
cessamento do consideravel volume de eventos; as limitacées dos ambientes em que
estes dispositivos estdo inseridos.

No ambito destes desafios citados, este trabalho teve como objetivo o desenvolvi-
mento de uma arquitetura de processamento distribuido de eventos para a loT esca-
lavel e apta a lidar com a heterogeneidade destes ambientes, aplicando ainda estra-
tégias que visem aprimorar a eficiéncia do consumo de largura de banda. Defende-se
gue este objetivo péde ser alcangado com a concepcao do EXEHDA-DEP.

Para que o EXEHDA-DEP dispusesse da capacidade em lidar com a heteroge-
neidade dos ambientes da loT, foi adotado como escopo de desenvolvimento o mid-
dleware EXEHDA e o modelo arquitetural EXEHDA-SA, os quais favoreceram ao
EXEHDA-DEP esta competéncia.

J& para que fosse possivel oferecer uma arquitetura com capacidade de proces-
sar um volume de eventos consideravel, como o gerado na loT, este trabalho adotou
uma abordagem distribuida na concepcao do sistema, o que possibilitou que a taxa
de processamento pude-se ser escalada conforme a necessidade do usuario. Esta
capacidade foi evidenciada na secao 6.2, onde os resultados obtidos com testes de
processamento demonstraram que com o acréscimo de um novo nodo a arquitetura,
a taxa de eventos consumida por segundo aumenta significativamente, destacando a
aplicabilidade do EXEHDA-DEP a loT, visto que estes ambientes tendem a crescer
consideravelmente, variando o volume de dados gerado no mesmao.

79

A arquitetura do EXEHDA-DEP foi ainda projetada de modo a permitir que novos
nodos de processamento possam ser adicionados ou removidos sem gerar quaisquer
impactos no sistema como um todo, onde os resultados obtidos com os testes executa-
dos e demonstrados na secao 6.4 enfatizam que o nimero de nodos processando nao
influencia no consumo médio de rede, onde o0s quais podem ser removidos e inseri-
dos conforme a necessidade do usuério, sem produzir qualquer altera¢cdo do consumo
médio de rede. O sistema permite ainda que o usuario possa adicionar em tempo de
execucao novas regras CEP aos nodos de processamento.

Para solucionar o desafio da aplicabilidade da arquitetura em ambientes com baixa
largura de banda, foi introduzido o uso de diferentes técnicas de compactacao ao
EXEHDA-DEP, onde os resultados obtidos com os testes executados e demonstrados
na secdo 6.4, enfatizaram a capacidade destas de reduzir o consumo de rede da
arquitetura projetada, onde nos quais uma reducéao de até quatro vezes foi obtida com
0 uso do algoritmo GZIP, isto quando comparada com a execu¢ao que nao faz uso de
nenhum tipo de compactacao.

Foram também realizados testes visando demonstrar o impacto dos algoritmos de
compactacao na taxa de processamento dos eventos. Os resultados demonstraram
gue as técnicas de compactacao nestes testes ndo reduzem a taxa de processamento
de eventos, mas sim aumentam a mesma. Tais resultados levaram a identificar que,
nos testes executados por este trabalho, a largura de banda é o gargalo para o pro-
cessamento dos eventos complexos, salientando a aplicabilidade do EXEHDA-DEP
em ambientes com baixa largura de banda, onde o0 mesmo possui ndo sé a capaci-
dade de reduzir o trafego de rede gerado pela distribuicdo dos eventos complexos,
mas também de incrementar a taxa do processamento dos mesmos.

J& para obter-se a competéncia de executar em ambientes que tenham links de
comunicacao saturados, onde perdas de pacotes podem ser recorrentes, 0 EXEHDA-
DEP faz uso de transacgdes, estas semelhantes as usadas em sistemas de gerencia-
mento de banco de dados, as quais sdao exemplificadas na secdo 5.1. Assim, durante a
execucao do sistema, caso algum dos nodos de processamento nao notifique o recebi-
mento de uma informacao previamente enviada, a transacao que executou o despacho
€ imediatamente desfeita e a informacao é enviada novamente. Este procedimento é
de suma importancia na execug¢ao do processamento de eventos complexos em ambi-
entes que possam gerar perdas de pacotes recorrentes, ja que estas podem acarretar
na privacao da deteccao de um evento complexo, o que dependendo do cenario de
aplicacado pode nao ser aceitavel.

80

7.1 Contribuicoes

Dentre as contribuicdes proporcionadas por meio do desenvolvimento do EXEHDA-
DEP pode-se destacar:

e 0 desenvolvimento de uma arquitetura distribuida de processamento de eventos
complexos.

e aconcepcao de uma arquitetura apta a lidar com o consideravel volume de even-
tos na loT e sua heterogeneidade.

e proporcionar ao EXEHDA a capacidade de processar os eventos de forma distri-
buida e escalavel.

e a concepc¢ao de uma arquitetura com capacidade de executar em ambiente com
restricbes de conexao.

e a possibilidade do usuario poder optar entre diferentes tipos de técnicas de com-
pactacao, selecionando a que mais se adapte as suas necessidades.

e uma arquitetura com consumo de rede constante, independente do numero de
nodos processando eventos.

e a capacidade de se adicionar e remover dinamicamente novos nodos de proces-
samento, sem gerar qualquer interrupc¢ao no sistema.

e a criacao e insercao de novas regras CEP em tempo de execucgéo.

Assim, dados os objetivos almejados com a proposta deste trabalho e as contribui-
cbes previamente citadas, conclui-se que por meio da concepcédo do EXEHDA-DEP
foi possivel atingir estes determinados fins com éxito, gerando ainda contribuicées
adicionais.

7.2 Trabalhos Futuros

Os testes e as andlises do EXEHDA-DEP foram executadas com base em um
estudo de caso da segurancga da informacao, onde dados de /logs de diferentes dispo-
sitivos de rede sao gerados de modo a simular o ambiente da UFPel. Estes dados sé&o
analisados pelo EXEHDA-DEP por meio de regras CEP definidas pelo administrador
de rede, visando assim identificar possiveis incidentes da seguranga da informacao.

Assim, visando proporcionar ao EXEHDA-DEP a capacidade de identificar eventos
de seguranca da informacgédo de forma autbnoma, sem a necessidade que o usuario
especifique regras CEP para o mesmo é proposto a introducdo de técnicas de inte-
ligencia artificial de modo a favorecer a identificacdo de possiveis ataques os quais
ainda sejam desconhecidos pelo administrador do sistema.

81

REFERENCIAS

AGRAWAL, S.; VIEIRA, D. A survey on Internet of Things. Abakos, Brasil, v.1, n.2,
p.78-95, 2013.

ALMEIDA, R. B. et al. A distributed event-driven architectural model based on situatio-
nal awareness applied on internet of things. Information and Software Technology,
Amsterdam, Netherlands, v.111, p.144—-158, 2019.

APPEL, S.; FRISCHBIER, S.; FREUDENREICH, T.; BUCHMANN, A. Event stream
processing units in business processes. In: Business Process Management. Cace-
res, Spain: Springer, 2013. p.187-202.

CHEN, Y.; KUNZ, T. Performance evaluation of IoT protocols under a constrained wire-
less access network. In: INTERNATIONAL CONFERENCE ON SELECTED TOPICS
IN MOBILE & WIRELESS NETWORKING (MOWNET), 2016., 2016, Piscataway, NJ,
USA. Anais... IEEE, 2016. p.1-7.

CRUZ, T. et al. A cybersecurity detection framework for supervisory control and data
acquisition systems. IEEE Transactions on Industrial Informatics, Piscataway, NJ,
USA, v.12, n.6, p.2236—-2246, 2016.

CUGOLA, G.; MARGARA, A. Processing flows of information: From data stream to
complex event processing. ACM Computing Surveys (CSUR), New York, NY, USA,
v.44,n.3, p.15, 2012.

DAYARATHNA, M.; PERERA, S. Recent advancements in event processing. ACM
Computing Surveys (CSUR), New York, NY, USA, v.51, n.2, p.33, 2018.

FALL, K. R.; STEVENS, W. R. TCP/IP illustrated, volume 1: The protocols. Boston,
Massachusetts, USA: addison-Wesley, 2011.

FITZGERALD, E. et al. Common Event Expression (CEE) Overview. Report of the
CEE Editorial Board, Bedford, England, 2010.

GARG, N. Apache Kafka. Birmingham, England: Packt Publishing Ltd, 2013.

82

GONGCALVES, A. R. S. M. Research of the internet of things business models in
Portugal. 2017. Tese (Doutorado em Ciéncia da Computacao) — .

HANES, D. et al. loT fundamentals: Networking technologies, protocols, and use
cases for the internet of things. Hoboken, NJ, USA: Cisco Press, 2017.

HEINZ, C. et al. Complex event processing (CEP) based system for handling per-
formance issues of a CEP system and corresponding method. Piscataway, NJ,
USA: Google Patents, 2019. US Patent 10,229,162.

HERDRICH, A. J. et al. Power efficient processor architecture. Piscataway, NJ,
USA: Google Patents, 2018. US Patent 9,870,047.

HU, D.; HONG, P.; CHEN, Y. FADM: DDoS flooding attack detection and mitigation sys-
tem in software-defined networking. In: GLOBECOM 2017-2017 IEEE GLOBAL COM-
MUNICATIONS CONFERENCE, 2017, Piscataway, NJ, USA. Anais... IEEE, 2017.
p.1-7.

JOSHI, C.; SINGH, U. K. Information security risks management framework—A step
towards mitigating security risks in university network. Journal of Information Secu-
rity and Applications, Amsterdam, Netherlands, v.35, p.128-137, 2017.

KAMIENSKI, C. et al. Smart water management platform: lot-based precision irrigation
for agriculture. Sensors, Basel, Switzerland, v.19, n.2, p.276, 2019.

KOTENKQO, I. V.; SAENKQO, I.; KUSHNEREVICH, A. Parallel big data processing sys-
tem for security monitoring in Internet of Things networks. JOWUA, Dobong-gu, Korea,
v.8, n.4, p.60-74, 2017.

KRUMM, J. Ubiquitous computing fundamentals. London, England: Chapman and
Hall/CRC, 2016.

LOPES, J. L. et al. A Middleware Architecture for Dynamic Adaptation in Ubiquitous
Computing. J. UCS, San Diego, USA, v.20, n.9, p.1327-1351, 2014.

MACHADO, R. d. S. et al. EXEHDA-HM: A compositional approach to explore contex-
tual information on hybrid models. Future Generation Computer Systems, Amster-
dam, Netherlands, v.73, p.1-12, 2017.

MARTINS, I. R.; ZEM, J. L. Estudo dos protocolos de comunicacdo MQTT e COaP
para aplicagdes machine-to-machine e Internet das coisas. Revista Tecnolégica da
Fatec Americana, Brasil, v.3, n.1, p.24p—24p, 2015.

83

MARTINS, I. R.; ZEM, J. L. Estudo dos protocolos de comunicacdo MQTT e COaP
para aplicagdes machine-to-machine e Internet das coisas. Revista Tecnolégica da
Fatec Americana, Brasil, v.3, n.1, p.24, 2016.

MENG, X. et al. Mllib: Machine learning in apache spark. The Journal of Machine
Learning Research, New York, NY, USA, v.17, n.1, p.1235-1241, 2016.

MINBO, L.; ZHU, Z.; GUANGYU, C. Information service system of agriculture loT. au-
tomatika, England, v.54, n.4, p.415-426, 2013.

NGU, A. H. et al. loT middleware: A survey on issues and enabling technologies. IEEE
Internet of Things Journal, Piscataway, NJ, USA, v.4, n.1, p.1-20, 2016.

NOCERA, F; DI NOIA, T.;, MONGIELLO, M.; DI SCIASCIO, E. Semantic loT
Middleware-enabled Mobile Complex Event Processing for Integrated Pest Manage-
ment. In: CLOSER, 2017, Setubal, Portugal. Anais... SCITEPRESS, 2017. p.610-
617.

PARK, T.; ABUZAINAB, N.; SAAD, W. Learning how to communicate in the Internet of
Things: Finite resources and heterogeneity. IEEE Access, Piscataway, NJ, USA, v.4,
p.7063-7073, 2016.

PEREZ-VEREDA, A.; FLORES-MARTIN, D.; CANAL, C.; MURILLO, J. M. Complex
Event Processing for health monitoring. In: INTERNATIONAL WORKSHOP ON GE-
RONTECHNOLOGY, 2018, Caceres, Spain. Anais... Springer, 2018. p.3—14.

PETERSEN, K.; VAKKALANKA, S.; KUZNIARZ, L. Guidelines for conducting systema-
tic mapping studies in software engineering : An update. Information and Software
Technology, Alberta, Canada, v.64, p.1-18, 2015.

PREUVENEERS, D.; BERBERS, Y.; JOOSEN, W. SAMURAI: A batch and streaming
context architecture for large-scale intelligent applications and environments. Journal
of Ambient Intelligence and Smart Environments, Clifton, USA, v.8, n.1, p.63-78,
2016.

RAZZAQUE, M. A.; MILOJEVIC-JEVRIC, M.; PALADE, A.; CLARKE, S. Middleware
for internet of things: a survey. IEEE Internet of things journal, Piscataway, NJ, USA,
v.3, n.1, p.70-95, 2015.

RUIZ-RUBE, I. et al. Block-Based Development of Mobile Learning Experiences for the
Internet of Things. Sensors, Puerto Real, Spain, v.19, n.24, p.5467, 2019.

SHORO, A. G.; SOOMRO, T. R. Big data analysis: Apache spark perspective. Global
Journal of Computer Science and Technology, USA, 2015.

84

SONI, D.; MAKWANA, A. A survey on mqtt: a protocol of internet of things (iot). In:
INTERNATIONAL CONFERENCE ON TELECOMMUNICATION, POWER ANALYSIS
AND COMPUTING TECHNIQUES (ICTPACT-2017), 2017, Germany. Anais... Rese-
archGate, 2017.

SOTO, J. A. C.; JENTSCH, M.; PREUVENEERS, D.; ILIE-ZUDOR, E. CEML: Mixing
and moving complex event processing and machine learning to the edge of the network
for lIoT applications. In: INTERNATIONAL CONFERENCE ON THE INTERNET OF
THINGS, 6., 2016, New York, NY, USA. Proceedings... ACM, 2016. p.103-110.

SUHOTHAYAN, S. et al. Siddhi: A second look at complex event processing architec-
tures. In: ACM WORKSHOP ON GATEWAY COMPUTING ENVIRONMENTS, 2011.,
2011, New York, NY, USA. Proceedings... ACM, 2011. p.43-50.

WANG, Q.; SHANG, Y. A Distributed Complex Event Processing System Based on
Publish/Subscribe. In: Recent Developments in Intelligent Computing, Communi-
cation and Devices. Singapore: Springer, 2019. p.981-990.

XAVIER, M. S. R. d. B. Smart Homes no mercado downstream de Oil & Gas. 2016.
Dissertacédo (Mestrado em Ciéncia da Computa¢ao) — FEUC.

YAMIN, A. et al. EXEHDA: adaptive middleware for building a pervasive grid environ-
ment. In: SELF-ORGANIZATION AND AUTONOMIC INFORMATICS (1), 2005., 2005,
New York, NY, USA. Proceedings... ACM, 2005. p.203—-219.

YANG, S. loT stream processing and analytics in the fog. IEEE Communications Ma-
gazine, Piscataway, NJ, USA, v.55, n.8, p.21-27, 2017.

	Introdução
	Motivações
	Objetivos e Contribuições
	Organização do Trabalho

	Embasamento Teórico
	Internet das Coisas
	Processamento de Eventos
	Processamento de Fluxo de Eventos
	Processamento de Eventos Complexos

	Estado da Arte
	Mapeamento Sistemático da Literatura
	Critérios de Inclusão e Exclusão

	Trabalhos Relacionados
	SAMURAI: A batch and streaming context architecture for large-scale intelligent applications and environments
	A Distributed Complex Event Processing System Based on Publish/Subscribe
	CEML: Mixing and moving complex event processing and machine learning to the edge of the network for IoT applications
	Semantic IoT Middleware-enabled Mobile Complex Event Processing for Integrated Pest Management
	Parallel big data processing system for security monitoring in Internet of Things networks

	Discussão dos Trabalhos Relacionados

	Escopo de Desenvolvimento
	EXEHDA
	EXEHDA-SA

	EXEHDA-DEP: Concepção e Tecnologias
	Modelo de Comunicação
	Modelo de Processamento
	Tecnologias Associadas
	Protocolo MQTT
	Apache Kafka
	Apache Spark
	Esper

	Concepção da Arquitetura
	Nodo de Pré-processamento
	Nodo Broker
	Nodo de Processamento
	Visão geral da arquitetura

	EXEHDA-DEP: Avaliações e Resultados
	Cenário de Aplicação
	Ambiente de Teste

	Escalabilidade
	Escalabilidade Vertical
	Escalabilidade Horizontal

	Estabilidade e Consumo de Recursos
	Consumo de Rede

	CONSIDERAÇÕES FINAIS
	Contribuições
	Trabalhos Futuros

	Referências

