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If debugging is the process of removing software bugs,
programming must be the process of putting them in.
— EDSGER DIJKSTRA



ABSTRACT

FEITOSA, Samuel da Silva. Strategies for Testing and Formalizing Properties of
Modern Programming Languages. Advisor: Andre Rauber Du Bois. 2020. 133 f.
Thesis (Doctorate in Computer Science) – Centro de Desenvolvimento Tecnológico,
Universidade Federal de Pelotas, Pelotas, 2020.

Today’s world is full of devices and machines controlled by software, which de-
pend upon programming languages and compilers to be produced and executed. The
importance of correct software development goes beyond personal computers and
smartphone apps. An error in a critical system, such as on a nuclear power plant or
on an airplane controller, can cause catastrophic damage in our society. Nowadays,
essentially two software validation techniques are used to avoid such problems:
software testing and software verification.

In this thesis we combine both validation techniques in the programming languages
research area, applying property-based testing first to improve specifications and de-
bugging programs, before an attempt of formal verification. By using such testing ap-
proach we can quickly eliminate false conjectures, by using the generated counterex-
amples, which help to correct them. Then, having confidence that the specification
is correct, one can give a step forward and formalize the specification and prove its
properties in an interactive theorem prover, which uses a mathematical framework to
guarantee that these properties hold for a given specification.

We apply different strategies to test and formalize two major programming lan-
guages, the functional Lambda Calculus, and the modern object-oriented calculus
Featherweight Java. The first branch of this thesis defines a type-directed procedure
to generate random programs for each calculus in order to apply property-based test-
ing to check soundness properties on them, using the Haskell library QuickCheck.
And in the second branch, we apply the two most used approaches, extrinsic and
intrinsic, to formalize and prove type safety for both studied programming languages
using the dependently-typed programming language Agda, comparing the subtleties
of each technique. Furthermore, we show that our formalizations can be extended to
new language constructions, by specifying and proving the same properties for Java
8 constructions. We believe that this combination of property-based testing with for-
mal verification can improve the quality of software in general and increase productivity
during formal proof development.

Keywords: Property-based testing. Formal verification. Featherweight Java.
QuickCheck. Agda.



RESUMO

FEITOSA, Samuel da Silva. Estratégias para Teste e Formalização de Proprieda-
des de Linguagens de Programação. Orientador: Andre Rauber Du Bois. 2020.
133 f. Tese (Doutorado em Ciência da Computação) – Centro de Desenvolvimento
Tecnológico, Universidade Federal de Pelotas, Pelotas, 2020.

O mundo atual está repleto de dispositivos e máquinas controladas por soft-
ware, os quais dependem de linguagens de programação e compiladores para serem
produzidos e executados. A importância do desenvolvimento de software correto
vai além de computadores pessoais e aplicativos de smartphones. Um erro em um
sistema crítico, como em uma usina nuclear ou em um controlador de aviação, pode
causar danos catastróficos em nossa sociedade. Hoje em dia, essencialmente duas
técnicas de validação de software são utilizadas para evitar tais problemas: teste e
verificação de software.

Nesta tese, são combinadas ambas as técnicas de validação na área pesquisa
de linguagens de programação, aplicando testes baseados em propriedades inicial-
mente para melhorar especificações e depurar programas, antes de uma tentativa de
verificação formal. Por usar esta abordagem de testes, é possível eliminar falsas con-
jecturas rapidamente e usar os contra-exemplos gerados para corrigí-las. Então, tendo
confiança de que a especificação está correta, é possível ir além, formalizando a es-
pecificação e provando propriedades em um provador de teoremas interativo, o qual
usa um aparato matemático para garantir que estas propriedades são válidas para
uma dada especificação.

Aplicou-se diferentes estratégias para testar e formalizar duas linguages de pro-
gramação, o Cálculo Lambda, e o cálculo orientado a objetos Featherweight Java. A
primeira parte desta tese define um procedimento direcionado por tipos para gerar
programas aleatórios para cada linguagem de modo a aplicar testes baseados em
propriedades para verificar propriedades de segurança, usando Haskell e a biblioteca
QuickCheck. E, na segunda parte, foram aplicadas duas abordagens, extrínseca e
intrínseca, para formalizar e provar segurança de tipos para ambas as linguagens de
programação estudadas, usando a linguagem de tipos dependentes Agda, compa-
rando as sutilezas de cada técnica. Além disso, foi demonstrado que as formalizações
apresentadas podem ser estendidas para novas construções de linguagens, a par-
tir da especificação e provas das mesmas propriedades para construções do Java 8.
Acredita-se que esta combinação de testes baseados em propriedades com verifica-
ção formal pode melhorar a qualidade de software em geral e aumentar a produtivi-
dade durante o desenvolvimento de provas formais.

Palavras-chave: Testes baseados em propriedades. Verificação formal. Featherweight
Java. QuickCheck. Agda.
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1 INTRODUCTION

Programming languages are applied in every computational problem, from simple
applications, such as smartphone apps, to complex critical systems, like those for flight
control. Therefore, it is important to have mechanisms to verify that a programming lan-
guage indeed implements certain behavior and enjoys some desired properties. Typi-
cally, the development of compilers (or interpreters) of major programming languages
in the industry relies on dynamic analysis (testing) for detecting and eliminating bugs.
On the other hand, most of the research about programming languages is done using
static analysis (proving properties) for producing correct implementations. Both tech-
niques have pros and cons. Testing can be done easily, using several well-studied
approaches, producing counter-examples of the specification which can be used to
fix the implementation faster. However, only by testing, it is impossible to prove the
absence of errors. Theorem proving can provide such guarantees, however, in spite
of continuous progress in the area, the process of mechanizing properties is still very
time consuming and requires good skills from the user. Our methodology applies one
branch of the testing area, called property-based testing, to improve specifications and
to debug interpreters, before proving properties on a proof assistant.

Property-based testing is an automated approach to testing in which a program is
validated against a specification, using randomly generated input data, in order to find
counterexamples for the property being checked. Applying property-based testing for
compilers or programming language semantics is not an easy task, because it is diffi-
cult to design a random generator for valid programs. Generating good test cases can
be tricky, since these programs should have a structure that is accepted by the com-
piler, respecting several constraints, which can be as simple as a program having the
correct syntax, or more complex such as a program being type-correct in a statically-
typed programming language (CELENTANO et al., 1980; BAZZICHI; SPADAFORA,
1982). Most compiler test tools do not have a well-specified way for generating type-
correct programs, which is a requirement for such testing activities. However, despite
the initial complication, property-based testing can be a handy tool to achieve confi-
dence that a compiler or interpreter is correct, or that a specification is accurate. If one
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needs to change the definition or the implementation, ensuring that they are consistent
is just a matter of re-running the test suite.

Regarding formal verification of programming languages, the most used method for
checking correctness or soundness is the syntactic approach (sometimes called ex-
trinsic) proposed by Wright and Felleisen (WRIGHT; FELLEISEN, 1994). Using this
technique, the syntax is defined first, and then relations are defined to represent both
the typing judgments (static semantics), and the evaluation through reduction steps
(dynamic semantics). The common theorems of progress and preservation link the
static and the dynamic semantics, guaranteeing that a well-typed term does not get
stuck, i.e., it should be a value or be able to take another reduction step, preserving
the intended type. However, another technique, proposed by Altenkirch and Reus (AL-
TENKIRCH; REUS, 1999), is becoming increasingly popular in recent years, which
uses a functional approach (sometimes called intrinsic) to achieve a similar result.
The idea is to first encode the syntax and the typing judgments in a single definition
which captures only well-typed expressions, usually within a total dependently-typed
programming language. After that, one writes a definitional interpreter (REYNOLDS,
1972) which evaluates the well-typed expressions. By using this approach, type-
soundness is guaranteed by construction, and the necessary lemmas and proofs of
the syntactic approach can be obtained (almost) for free.

Ultimately, this thesis builds on research on techniques to verify safety properties of
programming languages. Our project explores two different branches: (1) a lightweight
approach, where we generate well-typed programs in order to test type safety proper-
ties; (2) a completely formal approach, where we prove type safety for languages using
different formalization styles (extrinsic and intrinsic). We study these techniques by
working on two major programming languages, which implement different paradigms.
The first, λ-calculus (CHURCH, 1932), is a well-studied language within the functional
programming community, used as basis to introduce the concepts regarding to both
property-based testing, and mechanized formalization. The second, Featherweight
Java (IGARASHI; PIERCE; WADLER, 2001), is a core calculus of a modern object-
oriented language with a rigorous semantic definition of the main core aspects of Java.
We argue that we can explore and apply the techniques simultaneously, since the
lightweight approach provided by property-based testing allows to experiment with dif-
ferent design and implementations, before working on the proof assistant, thus avoiding
trying to prove something impossible. Furthermore, by providing the reader with sev-
eral case studies, we fulfill also an educational purpose, allowing the understanding of
the area by running, reusing, or extending our examples.
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1.1 Contributions

More precisely, this thesis makes the following contributions:

• We provide a catalog containing the description of the four most popular Java-like
formalisms, presenting and comparing their main characteristics, aiming to aid in
the process of choosing between them.

• We provide type-directed algorithms to construct random programs for λ-calculus,
FJ, and an extension of FJ with the new Java 8 features (functional interfaces,
λ-expressions, and default methods), proving that our specifications are sound
with respect of the languages type-system, i.e., only well-typed programs are
generated.

• We use QuickCheck as a lightweight manner to check for type soundness against
hand-written interpreters using the programs produced by our type-directed pro-
cedure. We also use ‘javac’ as an oracle to compile the generated Java programs.

• We formalize the static and dynamic semantics of λ-calculus in both extrinsi-
cally and intrinsically-typed styles. We prove type soundness for the first using
the common theorems of progress and preservation, and we implement a defini-
tional interpreter for the second, which together with the intrinsic representation
embeds the soundness proofs.

• We formalize the semantics of Featherweight Java, also considering both ap-
proaches. Similarly, we prove soundness for the extrinsic version by using the
theorems of progress and preservation, and by using a definitional interpreter for
the intrinsic version.

• We show that the studied approaches are useful to reason about different pro-
gramming language concepts, by extending the formalization of Featherweight
Java with Java 8 constructions.

• We discuss the formalization approaches and their subtleties, using some met-
rics (such as lines of code, and number of lemmas and theorems) to provide a
comparison between the formalization styles.

1.1.1 Publications

Parts of this thesis are based on published papers, with the author of the thesis as
the lead author for each paper.

• Samuel da Silva Feitosa, Rodrigo Geraldo Ribeiro, and Andre Rauber Du Bois.
“Formal Semantics for Java-like Languages and Research Opportunities”, in Re-
vista de Informática Teórica e Aplicada, 2018. (FEITOSA; RIBEIRO; DU BOIS,
2018a)
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• Samuel da Silva Feitosa, Rodrigo Geraldo Ribeiro, and Andre Rauber Du
Bois. “Generating Random Well-Typed Featherweight Java Programs Using
QuickCheck”, in Proceedings of the XLIV Latin American Computing Conference,
2018. (FEITOSA; RIBEIRO; DU BOIS, 2019)

• Samuel da Silva Feitosa, Rodrigo Geraldo Ribeiro, and Andre Rauber Du Bois.
“Property-based Testing for Lambda Expressions Semantics in Featherweight
Java”, in Proceedings of the XXII Brazilian Symposium on Programming Lan-
guages, 2018. (FEITOSA; RIBEIRO; DU BOIS, 2018b)

• Samuel da Silva Feitosa, Rodrigo Geraldo Ribeiro, and Andre Rauber Du Bois.
“A Type-Directed Algorithm to Generate Well-Typed Featherweight Java Pro-
grams”, in Proceedings of the XXI Brazilian Symposium on Formal Methods,
2018. (FEITOSA; RIBEIRO; DU BOIS, 2018c)

• Samuel da Silva Feitosa, Alejandro Serrano Mena, Rodrigo Geraldo Ribeiro, and
Andre Rauber Du Bois. “An Inherently-Typed Formalization for Featherweight
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1.2 Structure

This thesis is structured as follows:

Chapter 2 provides the necessary background to the theory used in this thesis. We
introduce the concepts of operational semantics, property-based testing, and formal
verification.

Chapter 3 presents the target languages studied during the development of this
project. We briefly introduce subsets of functional and object-oriented languages, ac-
companied with their operational semantics. We also discuss the criteria for choosing
the languages used in the next chapters.

Chapter 4 shows the generation of well-typed random programs to test properties
of well-known programming languages, and applies it with QuickCheck.

Chapter 5 discusses the implementation of the same programming languages in
Agda, applying two formalization techniques to prove type soundness, comparing the
approaches with each other.

Chapter 6 presents future work, and concludes the present thesis.
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All source code presented in this thesis has been written in Haskell version 8.6
or formalized in Agda version 2.6.0. We present here parts of the code used in our
definitions, not necessarily in a strict lexically-scoped order. Some functions or formal
proofs were omitted from the text to not distract the reader from understanding the
high-level structure of the source code. In such situations we give a brief explanation
and point out where all details can be found. All source code produced, including the
LATEX source of this thesis, is available online (FEITOSA, 2019).

This thesis is aimed at a reader familiar with the basics of functional programming
in a language such as Haskell. Introductions to the Haskell programming language
and functional programming can be found elsewhere (SERRANO MENA, 2014; LIPO-
VACA, 2011). However we do not assume any specialized knowledge in areas such as
program semantics, property-based testing, or formal verification.



2 BACKGROUND

The purpose of this chapter is to cover some important background on a range of
different topics which are central for this thesis, namely operational semantics (Section
2.1), property-based testing and random program generation (Section 2.2), and finally,
formal verification and interactive theorem proving (Section 2.3). As stated in the in-
troductory Chapter, the reader is assumed to be familiar with the basics of functional
programming.

2.1 Operational Semantics

In this introductory section we explain the main concepts of formal semantics for
a programming language using a very simple language for boolean and arithmetic
expressions with two operations, addition and the logic conjunction. This example lan-
guage is quite simple, sometimes known as Hutton’s Razor, but useful to deal formally
with some aspects of programming languages, allowing us explain the mathematical
tools to express and reason clearly and precisely about the syntax and semantics of
programs. With this, we present fundamental concepts, such as abstract syntax, eval-
uation, and type system.

Figure 1 presents the abstract syntax of the target language we shall work on the
Backus-Naur Form (BNF), adapted from (PIERCE, 2002). It uses an auxiliary set of
numerals n, which is a syntactic representation of the more abstract set of natural
numbers N.

n ::= 0, 1, 2, ... numeric constants
e ::= expressions:

true constant true
false constant false
n numeric constant
e+ e math operator
e ∧ e logic operator

Figure 1 – Abstract syntax for the expression language.
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Besides numerals, the BNF schema in Figure 1 also uses two extra symbols, + and
∧. Their meanings are well-know in the programming language community: the first
represents mathematical addition, and the second represents the logical and operator.
The presented abstract syntax definition says that there are five ways to construct an
arbitrary expression e.

• The first three lines of our definition of expressions e state that true, false, and n
are possible constants in the presented language. The numeric constants allow
the encoding of an infinite number of expressions, namely 0, 1, 2, ....

• The fourth line shows that if we have already constructed two expressions e1 and
e2, then e1 + e2 is also a possible expression in this language.

• The last line is similar, if e1 and e2 are expressions, then e1 ∧ e2 is also an expres-
sion.

We also define, in Figure 2 a subset of expressions, called values, which represent
possible final results of evaluation. In the presented language, values are just the
boolean constants true and false, and the infinite list of natural numbers (0, 1, 2, ...).
Throughout our text, we use the meta-variable v to stand for values, bv for boolean
values, and nv for numeric values.

v ::= values:
true true value
false false value
nv numeric values

nv ::= 0, 1, 2, ... numeric definitions

Figure 2 – Values for the expressions language.

Throughout this thesis, we will use BNF grammars to present syntactic definitions
of programming languages. We could have used different schemes, such as inductive
definitions, inference rules, or the concrete syntax with equivalent meaning (PIERCE,
2002). When using BNF grammars we are concerned in describing the expressions
purely in terms of their structure, rather than a precise linear sequence of symbols
which are valid expressions of the target language. We say that an expression is
represented by its abstract syntax tree (AST).

The semantics of a programming language describes its behavior, giving to each
program, defined as an abstract syntax tree, a unambiguous meaning. There are three
basic approaches to formalizing semantics (NIELSON; NIELSON, 2007):

1. Operational semantics: The meaning of a construct is specified by the computa-
tion it induces when executed on an abstract machine.
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2. Denotational semantics: Meanings are modeled by mathematical objects repre-
senting the effect of executing the constructs.

3. Axiomatic semantics: Expresses specific properties of the effect of executing the
constructs. The meaning of a construct is just what can be proved about it.

In this thesis we explore the operational semantics approach, where the behavior
of a program is described as a series of computational steps. Operational semantics
can be classified into two styles, small-step, and big-step, both of which are used in
different parts of this thesis, as we will see next.

2.1.1 Small-Step Semantics

The origins of the small-step semantics, also known as structural operational se-
mantics, go back to a technical report by Plotkin (PLOTKIN, 1981). With small-step
semantics, we represent computation by means of deductive systems that turn an ab-
stract machine into a system of logical inference. The purpose is to describe how
individual steps of computations take place, which are represented as a transition sys-
tem.

To describe the behavior of a program, definitions are (usually) given by inference
rules consisting of a conclusion that follows from a set of premises. The general form
of an inference rule has the premises listed above a horizontal line, and the conclusion
below, as follows:

premise1 premise2 ... premisen
conclusion

If the number of premises is zero, the horizontal line can be omitted, and we refer
to the rule as an axiom. This kind of rule is used to define an evaluation relation or
reduction of an expression.

Figure 3 presents the evaluation relation of all possible expressions defined for the
language of boolean and arithmetic expressions. Besides the meta-variables for values
(v, bv, and nv), we let e denote an expression. Following common practice, all meta-
variables can appear primed or sub-scripted. In all rules, we can see the transition
relation e −→ e′, which expresses that “e evaluates to e′ in one step of reduction”.
This one-step relation −→ is the smallest binary relation on expressions. A multi-
step semantics representing the reflexive and transitive closure of the one-step relation
should be able to produce a value, or get stuck. We say that a computation is stuck
when the final expression is not a value and there is no rule to reduce it further.

The presented small-step relation has three rules for each operator in this language.
The first rule S-Add1, says that if we have an expression e1 + e2, we should first evaluate
the expression on the left (e1) producing an expression e′1 (as described by the premise
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e1 −→ e′1
e1 + e2 −→ e′1 + e2

[S-Add1]
e2 −→ e′2

nv + e2 −→ nv + e′2
[S-Add2]

nv1 + nv2 −→ nv1 ⊕ nv2 [S-Add]
e1 −→ e′1

e1 ∧ e2 −→ e′1 ∧ e2

[S-And1]

true ∧ e2 −→ e2 [S-And2] false ∧ e2 −→ false [S-And3]

Figure 3 – Small-step semantics for the expression language.

e1 −→ e′1), resulting in a new expression e′1 + e2. Similarly, the rule S-Add2 says that if
we have an expression nv + e2, i.e., we have a value in the left-hand side expression
(hopefully1 a numeric value), we should evaluate the right-hand side expression (e2)
producing an expression e′2, resulting in a new expression nv+e′2. The last rule regard-
ing mathematical addition S-Add, performs the actual addition on numbers. It says that,
if we have both sides as values (nv1 + nv2), we should produce a new value containing
the result of nv1 plus nv2. We use the operator ⊕ to represent the actual sum of two
numbers.

The rule S-And1 has the same purpose of S-Add1, evaluating the left-hand side ex-
pression. Rule S-And2 says that if the left-hand side expression is literally the constant
true, then the reduction of true ∧ e2 should leave only the right-hand side expression
e2. Rule S-And3 is described similarly, however, if the left-hand side expression is false,
evaluating false ∧ e2 will always produce false. The reader can note that, by using
a small-step relation, one can define the order of evaluation of expressions, in which
case, for this simple language, evaluation is done from left to right.

Apart from having a clear and concise way of expressing evaluation, the small-step
semantics provides one of the main justifications of formal descriptions of languages:
proving properties of programs and constructs of programming languages. Since the
semantic descriptions are based on logic, proofs of program properties are derived
directly from the definitions of language constructs.

2.1.2 Big-Step Semantics

The big-step semantics (KAHN, 1987), also known as natural semantics, is an al-
ternative style which directly formulates the notion of “expression e evaluates to the
final value v”, written as e ⇓ v, i.e., it describes the complete reduction of an expression
to its final result in one big-step.

Figure 4 presents the semantic rules considering the big-step style. Similarly to
the small-step semantics, the computation of a given expression is also defined using
inference rules.

1Only the dynamic semantics cannot guarantee that expressions will have the correct type. It is
responsibility of the type system to prevent ill-typed expressions.
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v ⇓ v [B-Value]
e1 ⇓ nv1 e2 ⇓ nv2

e1 + e2 ⇓ nv1 ⊕ nv2
[B-Add]

e1 ⇓ true e2 ⇓ bv
e1 ∧ e2 ⇓ bv

[B-And1]
e1 ⇓ false

e1 ∧ e2 ⇓ false
[B-And2]

Figure 4 – Big-step semantics for the expression language.

We have four rules in this style of formalization, against the six of the previous one.
The first rule, B-Value, expresses that if the initial expression is already a value, then this
value is the result of the evaluation. The rule B-Add deals with the arithmetic addition
operator. If we have an expression e1 + e2, then we evaluate both e1 and e2, using
our evaluation judgment ⇓. For example, e1 ⇓ nv1 evaluates expression e1 producing
(hopefully) a numeric value nv1. Having both nv1 and nv2, again we use the operator ⊕
to perform the actual sum of two numbers, which is the result for this rule. To deal with
the logic and operator, we have two rules: (1) rule B-And1 deals with the case when e1

evaluates to true, evaluating e2 to a boolean value bv, which is the result for this rule;
(2) rule B-And2 deals with the case when e2 is false, which means that the and operator
will produce always false, which is the presented result for this rule. The reader can
note that for the rule B-And2 there is no need for evaluating the second expression e2.

2.1.3 Type Checking

In the last sections we presented two ways to describe precisely the semantics of a
small expression language. We briefly discussed that evaluating an expression could
produce a value or get stuck at some point, when there is no applicable reduction rule
to reduce it further. For example, if we reach an expression such as true + 2, it is
impossible to reduce it, since true is not a numeric value. Usually, such expressions
correspond to meaningless or erroneous programs (PIERCE, 2002). Using just what
we saw so far, we cannot guarantee that only values with correct types are assigned for
sub-expressions. In this section we introduce the concept of static semantics, allowing
us to check, without evaluating an expression, if it is correctly defined. This static
analysis of terms is called type checking, which is able to differentiate well-typed from
ill-typed expressions.

Figure 5 introduces two types in our expression language, Bool to represent
boolean types, and Num to represent numeric types. We use the meta-variable T

in our rules to range over types.
To define the static semantics of a language we use an inductive definition of judg-

ments of the form ` e : T , which says that “an expression e has type T ”, meaning
that we can compute the type of a given expression statically, i.e., without evaluating
it (PIERCE, 2002).
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T ::= types:
Bool type of booleans
Num type of numbers

Figure 5 – Types for the expression language.

Figure 6 presents the type system rules for the calculus of expressions. The rule
T-Num assigns the type Num for numeric constants. Rules T-True and T-False assign the
type Bool to the boolean constants true and false. These three rules are axioms in our
type system. Rule T-Add assigns a type Num for mathematical addition, considering
that both e1 and e2 should be of type Num, as stated by the premises of this rule.
Similarly, rule T-And assigns a type Bool for the logic operation, as long as both e1 and
e2 have type Bool.

` n : Num [T-Num] ` true : Bool [T-True] ` false : Bool [T-False]

` e1 : Num ` e2 : Num

` e1 + e2 : Num
[T-Add]

` e1 : Bool ` e2 : Bool

` e1 ∧ e2 : Bool
[T-And]

Figure 6 – Typing rules for the expression language.

Formally, the typing relation for the presented language is the smallest binary re-
lation between expressions and types satisfying all instances of the rules presented
in Figure 6. An expression e is typable, or well-typed, if there is some T such that
` e : T (PIERCE, 2002).

2.1.4 Properties

Having defined the static and dynamic semantics, we can state the most basic
properties for this expression language: safety or soundness. We mentioned before
that an expression is stuck when it is not a final value, and there is no evaluation rule
to perform another reduction step. We show safety in two steps, commonly known
as the progress and preservation theorems. Together, these properties tell us that a
well-typed expression can never reach a stuck state during evaluation (PIERCE, 2002).

When working with structural type systems2, it is common to define a lemma about
the canonical forms of well-typed closed values. This lemma relates the possible values
with their types. A numeric expression should be related to the Num type, as well as
true and false should be related to the Bool type. The following lemma presents this
idea (HARPER, 2016).

2In a structural type system, the equivalence of types is determined by the type’s actual structure,
rather than by other characteristics such as its name or place of declaration.
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Lemma 1 (Canonical Forms). Let v be a well-typed value such that ` v : T . Then:

1. if T is the type Num, then v is a numeric value (1, 2, ...).

2. if T is the type Bool, then v is either true or false.

Proof. Immediate from the definition of values (Figure 2) and typing rules (Figure 6).

Intuitively, the progress theorem means that if a program has not terminated then it
can continue to be evaluated.

Theorem 1 (Progress). Let e be a well-typed expression such that ` e : T . Then either
e is a value or there is some expression e′ such that e −→ e′.

Proof. By induction on the derivation of ` e : T . The T-Num, T-True, and T-False cases are
immediate, since e in these cases is a value. For the other cases, we argue as follows.

• Case T-Add: e = e1 + e2 e1 : Num e2 : Num

By the induction hypothesis, we have that either e1 is a value or else there is
some e′1 such that e1 −→ e′1. If e1 −→ e′1 conclusion follows by rule S-Add1. If e1

is a value, by the induction hypothesis, we have that either e2 is a value or else
there is some e′2 such that e2 −→ e′2. If e2 −→ e′2 conclusion follows by rule S-Add2.
If e2 is also a value, then the canonical forms (Lemma 1) assures that e1 and e2

are the numeric values nv1 and nv2, and conclusion follows by rule S-Add.

• Case T-And: e = e1 ∧ e2 e1 : Bool e2 : Bool

By the induction hypothesis, we have that either e1 is a value or else there is
some e′1 such that e1 −→ e′1. If e1 is a value, then the canonical forms (Lemma 1)
assures that it must be either true or false, in which case S-And2 or S-And3 applies
to e. On the other hand, if e1 −→ e′1 conclusion follows by rule S-And1.

The preservation property means that whenever a program can be assigned to a
type, if it takes a computation step, then the resulting expression can also be assigned
to the same type3.

Theorem 2 (Preservation). Let e be a well-typed expression such that ` e : T . Then
e −→ e′ implies ` e′ : T .

Proof. By induction on the derivation of ` e : T . The rules T-Num, T-True, and T-False

represent impossible cases, since e is a value, and it cannot take a reduction step. For
the other cases, we argue as follows.

3There is some systems where types can change during evaluation. For example, in systems with
subtyping, types can become smaller during evaluation.
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• Case T-Add: e = e1 + e2 e1 : Num e2 : Num

If the last rule in the derivation is T-Add, then we know from the form of this rule
that e must have the form e1 + e2, for some e1 and e2. We must also have sub-
derivations with conclusions e1 : Num and e2 : Num. Now, looking at the (small-
step) evaluation rules for the addition operator, we find that there are three rules
by which e −→ e′ can be derived. We consider each case separately.

– Sub-case S-Add1: e1 −→ e′1 e′ = e′1 + e2

From the assumptions of the T-Add case, we have a sub-derivation of the
original typing derivation whose conclusion is e1 : Num. We can apply the
induction hypothesis to this sub-derivation, obtaining e′1 : Num. Combining
this with the facts (from the assumptions of the T-Add case) that e2 : Num,
we can apply rule T-Add to conclude that e′1 + e2 : Num, that is e′ : Num.

– Sub-case S-Add2: e2 −→ e′2 e′ = nv + e′2

From the assumptions of the T-Add case, we have a sub-derivation of the
original typing derivation whose conclusion is e2 : Num. We can apply the
induction hypothesis to this sub-derivation, obtaining e′2 : Num. Combining
this with the facts (from the assumptions of the T-Add case) that nv : Num,
we can apply rule T-Add to conclude that nv + e′2 : Num, that is e′ : Num.

– Sub-case S-Add: e1 = nv1 e2 = nv2 e′ = nv1 ⊕ nv2

If e −→ e′ is derived using S-And, then from the form of this rule we see
that e1 must be a numeric value nv1, and e2 must also be a numeric value
nv2, and the resulting expression e′ is represented by the arithmetic sum
nv1 ⊕ nv2. This means we are finished, since we know (from the canonical
forms lemma) that nv1 ⊕ nv2 : Num, which is what we need.

• Case T-And: e = e1 ∧ e2 e1 : Bool e2 : Bool

If the last rule in the derivation is T-And, then we know from the form of this rule
that e must have the form e1 ∧ e2, for some e1 and e2. We must also have sub-
derivations with conclusions e1 : Bool and e2 : Bool. Now, looking at the (small-
step) evaluation rules for the boolean and operator, we find that there are three
rules by which e −→ e′ can be derived. We consider each case separately.

– Sub-case S-And1: e1 −→ e′1 e′ = e′1 ∧ e2

From the assumptions of the T-And case, we have a sub-derivation of the
original typing derivation whose conclusion is e1 : Bool. We can apply the
induction hypothesis to this sub-derivation, obtaining e′1 : Bool. Combining
this with the facts (from the assumptions of the T-And case) that e2 : Bool, we
can apply rule T-And to conclude that e′1 ∧ e2 : Bool, that is e′ : Bool.
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– Sub-case S-And2: e1 = true e′ = e2

If e −→ e′ is derived using S-And2, then from the form of this rule we see that
e1 must be true and the resulting expression e′ is the second sub-expression
e2. This means we are finished, since we know (by the assumptions of the
T-And case) that e2 : Bool, which is what we need.

– Sub-case S-And3: e1 = false e′ = false

If e −→ e′ is derived using S-And3, then from the form of this rule we see
that e1 must be false and the resulting expression e′ is also false. This
means we are finished, since we know (from the canonical forms lemma)
that false : Bool, which is what we need.

These two generic results, progress and preservation, when applied to this lan-
guage of expressions guarantee that every well-typed program will always evaluate
completely to a value.

2.2 Property-Based Testing

Property-based random testing is a popular technique for quickly discovering soft-
ware errors. It is similar to formal verification, in that the user specifies desired prop-
erties of a unit under test, checking that a function or program obeys a given property.
Usually, there is no need to specify example inputs and outputs as with unit tests. In-
stead, one uses a generative-testing engine to create randomized inputs to find out
if the defined properties are respected, or to present counter-examples of the given
specification (LAMPROPOULOS; PARASKEVOPOULOU; PIERCE, 2017). In this way,
code can be performed with thousands of tests that would be infeasible to write by
hand, often uncovering subtle corner cases that would not be found otherwise. How-
ever, it is important to remember that, by running a finite number of tests when the
number of all inputs is infinite, can only disprove a property, or leaving its validity unde-
cided.

Claessen and Hughes (CLAESSEN; HUGHES, 2000) introduced property-based
testing with QuickCheck, a combinator library for the functional language Haskell. By
now, frameworks which implement at least some parts of the QuickCheck functionality
are available for most general-purpose programming languages. In this section we
give an overview on the basics of QuickCheck through examples, discussing how its
combinators can be used to generate user-defined random test-data, and presenting a
tool to measure test coverage.
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2.2.1 Overview of QuickCheck

QuickCheck is a Haskell library that provides comprehensive support for property-
based testing. It contains a combinator library for building composable properties (or
test oracles), as well as random generators for basic Haskell data types. In property-
based testing, we need to define a specification, i.e., a set of properties the program
should satisfy. For example, let’s consider the commutativity law for integers.

∀n m. n+m = m+ n

We can write a testable property for it by writing the Haskell function prop_PlusComm

that checks this equality for two numbers, as follows.

prop_PlusComm :: Int → Int → Bool

prop_PlusComm n m = n + m ≡ m + n

This function is an executable version of the logical property and may be used as
an oracle in random testing. A single test of this property is performed by generating
two numbers, running the function, and checking if the produced result is True.

To discuss this process further, we take the examples about the standard func-
tion reverse presented in the original QuickCheck paper (CLAESSEN; HUGHES, 2000).
This function satisfies the following laws.

reverse[x] = [x]

reverse(xs++ ys) = reverse ys++ reverse xs

reverse(reverse xs) = xs

We can convert each law into a function which determines whether the property
fails or succeeds on a given input. The specifications of the properties above can be
written in Haskell as follows. Note that each function starts with prop as a convention
in QuickCheck.

prop_RevUnit x = reverse [x] ≡ [x]

prop_RevApp xs ys = reverse (xs ++ ys) ≡ reverse ys ++ reverse xs

prop_RevRev xs = reverse (reverse xs) ≡ xs

Having specified the property as a function, we can use QuickCheck to generate
inputs and check the results.

Main> quickCheck prop_RevRev

OK: passed 100 tests.

In this sample execution, QuickCheck generated one hundred4 random lists and
found that each of them satisfied the equality of prop_RevRev function.

4One hundred is the standard number of test cases. The library allows the specification of different
numbers according to the user needs.
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2.2.1.1 Conditional Laws

Sometimes, when checking some property, we need to constrain the input under
certain conditions. QuickCheck provides an implication combinator to represent such
conditional laws (CLAESSEN; HUGHES, 2000). For example, consider the following
law.

x ≤ y =⇒ max x y = y

It says that max x y = y if and only if x ≤ y. Function prop_MaxLe represents such
definition.

prop_MaxLe :: Int → Int → Property

prop_MaxLe x y = x 6 y =⇒ max x y ≡ y

Similarly, to test a function that inserts an element into an ordered list, we need the
input xs to be ordered.

prop_Insert :: Int → [Int] → Property

prop_Insert x xs = ordered xs =⇒ ordered (insert x xs)

The reader can note that, instead of returning a Bool value, the functions over condi-
tional laws return a Property value. This type is used to indicate QuickCheck to generate
one hundred test cases satisfying the condition, i.e., for each generated test case, the
left hand-side condition is checked, and only those satisfying the condition are used
to verify the given property. Sometimes, checking a conditional law can produce the
following output.

Arguments exhausted after 64 tests.

The process of generating tests under conditional laws can be difficult for a random
generator. For example, generating small ordered lists can be easy, but when the num-
ber of elements grows, it becomes a problem. To avoid non-termination QuickCheck
tries (by default) generating one thousand test cases to find one hundred respecting
the expected law. If it cannot generate these tests, a message like the above is pre-
sented. It says that QuickCheck was able to generate only 64 tests under the specified
condition. We will see next, that for several purposes, the standard generators are not
able to produce good test cases, and the programmer should guide QuickCheck during
the generation process.
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2.2.2 User-Defined Test Cases

In this section, we will look into the problem of generating test cases through an
example. QuickCheck provides support for programmers to define their own test data
generators, being able to control the whole generation process and the distribution of
test data. Here, we consider the problem of generating random programs according
to the expression language presented previously. For this kind of problem, in practice,
this means that to obtain a system that is suitable for property-based testing, special
considerations are needed in the design.

2.2.2.1 An Interpreter for the Expression Language

Before presenting the generation process, we implement the expression language
we are studying in Haskell. First we define its syntax.

data Expr = BTrue | BFalse | Num Int | Add Expr Expr | And Expr Expr

And then, following the small-step semantic rules, we define the function step. In
this simple example, we are not dealing with error cases, since we want to test the
semantics only with well-typed expressions5.

step :: Expr → Maybe Expr

step (Add (Num n1) (Num n2)) = Just (Num (n1 + n2))

step (Add (Num n1) e2) = do e2′ ← step e2

return (Add (Num n1) e2′)

step (Add e1 e2) = do e1′ ← step e1

return (Add e1′ e2)

step (And BTrue e2) = Just e2

step (And BFalse e2) = Just BFalse

step (And e1 e2) = do e1′ ← step e1

return (And e1′ e2)

This function is responsible to implement only one reduction step, where the first
three defining equations (i.e., the first three pattern matching structures) deal with the
reduction for the arithmetic operator, and the last three defining equations perform
reduction for the boolean operator.

The language we are working on has two possible types (TBool and TNum), as
defined below.

data Ty = TBool | TNum

Ultimately, we want to check well-typed programs, in order to test safety properties.
Thus, we define the function typeof following the static semantic rules for the studied
calculus.

5A complete interpreter would check and present error messages for the user.
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typeof :: Expr → Maybe Ty

typeof BTrue = Just TBool

typeof BFalse = Just TBool

typeof (Num ) = Just TNum

typeof (Add e1 e2) = do TNum ← typeof e1

TNum ← typeof e2

return TNum

typeof (And e1 e2) = do TBool ← typeof e1

TBool ← typeof e2

return TBool

The first three cases are straightforward. We return the types associated with each
value. The last two cases are similar to each other. First they obtain recursively the
types for e1 and e2, forcing them to have the correct type TNum or TBool according to
the case. If both e1 and e2 are with correct types, then we return type TNum for the
arithmetic operation, and TBool for the boolean operator. It is important to note that
the return type of typeof is a Maybe value. Case e1 or e2 have types different of the
expected, the typeof function returns Nothing6.

2.2.2.2 Generating Test Cases

In order to successfully test a compiler or interpreter, programs not only need to
be grammatically correct, they may also need to satisfy other properties such as all
variables being bound, all expressions well-typed, certain combinations of constructs
not occurring in the programs, or a combination of such properties. We saw already
some cases when an ill-typed expression can be stuck during interpretation, and these
cases should be avoided by a program generator. We could try to use conditional laws
to generate only well-typed expressions, using an approach as follows.

well-typed e =⇒ some-property e

However, it is not hard to see that a random approach would hardly generate
any valid program at all. Considering this problem, PAŁKA et al. (2011) proposed a
type-directed procedure to generate only well-typed programs in the context of the λ-
calculus. We will give more details about their work in Chapter 4. By now, we adapted
their technique to generate well-typed programs for our expression language.

QuickCheck introduced the type class Arbitrary, of which a type is an instance if we
can generate arbitrary elements of it. We define an instance of this type class for our
Expr, to be able to randomly generate expressions. The next code is very simple. First
we generate a type using the function genType, which will bring us (randomly) one of

6This is the default behavior when using the “do notation” when a fail happens.
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our two possible types (TBool and TNum). Then, we use the function sized together with
the function genExpr to generate expressions. We use the QuickCheck function sized to
limit the depth of the recursive generation procedure, in order to avoid non-termination.

instance Arbitrary Expr where

arbitrary = do

t ← genType

sized (λ n → genExpr n t)

The function genExpr is responsible for generating well-typed expressions for our
language. It has two similar branches, one to generate expression with type TBool,
and another for type TNum. Each of them have two cases: (1) when the size (coming
from the sized function) is bigger than zero, then we can generate both composed
expressions, and values; (2) otherwise, we generate only values to stop the recursive
process. To generate expressions for constructors And and Add, we use the function
liftM2 from Control.Monad library7, generating the two expected expressions for those
constructors. The use of liftM8 is similar. We use the QuickCheck function oneof to
randomly select one of the alternatives in the given list. Furthermore, one can note
that the recursive call to genExpr is decreasing the size parameter for each call.

genExpr :: Int → Ty → Gen Expr

genExpr size TBool

| size > 0 = oneof ([ return BTrue , return BFalse , liftM2 And gt gt ])

| otherwise = oneof ([ return BTrue , return BFalse ])

where gt = genExpr (size `div ` 2) TBool

genExpr size TNum

| size > 0 = oneof ([ liftM Num n , liftM2 Add gt gt ])

| otherwise = oneof ([ liftM Num n ])

where n = genNat

gt = genExpr (size `div ` 2) TNum

After defining the genExpr function, it is possible to generate well-typed programs for
the expression language to be used as input for testing properties.

2.2.2.3 QuickChecking Properties

QuickCheck can be used as a lightweight manner to check formal properties of
programming languages. To accomplish this task, we have to write such properties
as Haskell functions, similarly to what we have done before. The progress property

7The function liftM2 lifts a function (or constructor) with two arguments to a monadic counterpart, i.e.,
it receives two monadic values, applies the given function, and wraps the result in a new monadic value.

8The function liftM has a similar meaning, however it lifts a function with a single argument to a
monadic counterpart.
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says that either an expression is a value, or it can take a reduction step. This property
is represented by the function prop_Progress, which should return a boolean value to
be used with QuickCheck. Since the function step returns a monadic value, we use
the function maybe9 returning False when step fails, and True when step is performed
successfully.

prop_Progress :: Expr → Bool

prop_Progress e = isVal e ∨ maybe (False) (const True) (step e)

Similarly, we can check the preservation property, which states that if an expression
can take a reduction step, the reduced expression should remain with the same type.
If the generated expression is not a value, we first infer its type by using the function
typeof. Then we use function step to reduce the expression, inferring its type. After
that, we check whether the type of the original expression is equal to the type of the
evaluated expression.

prop_Preservation :: Expr → Bool

prop_Preservation e =

isVal e ∨
case (typeof e) of

Just t → case (step e) of

Just e′ → case (typeof e′) of

Just t′ → t ≡ t′

→ False

→ False

→ False

Both properties are considered valid if all test cases are performed successfully,
i.e., all of them returning True. In case of a failing property, QuickCheck presents the
counter-example which caused the problem. This result is very useful to fix bugs in
the semantics and implementations. We highlight here that only by testing a property
it is impossible to assure that it is indeed valid. However, by using good tests we gain
confidence that the semantics is working for the majority of the cases. Next section will
bring us an alternative to definitely prove these properties.

9The maybe function takes three arguments: a default value, a function, and a Maybe value. If the
Maybe value is Nothing, the function returns the default value (first argument). Otherwise it applies and
returns the result of the function (second argument).
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2.2.3 Evaluating Test Coverage

As a way to measure the quality of the generated tests, we can check how much of
the code base of our interpreter was covered by the test suite. Such statistics are pro-
vided by the Haskell Program Coverage (HPC) tool (GILL; RUNCIMAN, 2007). Results
of code coverage are presented in Figure 7.

Figure 7 – Test coverage results for the expression language.

HPC displays information in two different ways: reports with summary statistics (as
shown above) and sources with color mark-up (which we will explore in Chapter 4).
The information provided in Figure 7 is measured at three different levels: “Top Level
Definitions” (functions and inductive definitions), “Alternatives” (conditionals or case
branches), and “Expressions” (variables, equations, and others) (GILL; RUNCIMAN,
2007), showing important information to improve the quality of test cases. In this case,
the figure says that 4 of 5 functions (80%) were reached, all alternatives were covered,
and almost all expressions (92%) were performed during the execution of our tests.

2.3 Formal Verification

Formal verification uses logical methods to establish claims expressed in precise
mathematical terms. When combined with an interactive theorem prover, i.e. the use of
proof assistants (like Agda, Coq, or Isabelle), the user can check whether these math-
ematical properties are satisfied, or verify that certain software (or hardware) meets
its formal specifications. Having the properties established, proving correctness be-
comes a form of theorem proving, and its validity is checked by the system. Every
claim (lemma or theorem) about the specification should be supported by a proof in a
suitable axiomatic foundation. It means that every inference rule and every step of a
calculation has to be justified by prior definitions and theorems (MOURA et al., 2015).

In this section, we present the basics of the dependently-typed programming lan-
guage Agda, which is a system combining a powerful programming language with
mechanisms to verify logic properties. After that, we mechanically check the expres-
sion language previously presented using two different (and equivalent) styles of for-
malization, extrinsic and intrinsic, which will be explored deeply in Chapter 5. The most
important benefit Agda brings us is that the results implemented in the language are
correct according to their specifications, and are checked every time by its underlying
system.
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2.3.1 Overview of Agda

Agda is a dependently-typed functional programming language based on Martin-Löf
intuitionistic type theory (MARTIN-LÖF, 1998). Function types and an infinite hierarchy
of types of types, Set `, where ` is a natural number, are built-in. Everything else is
a user-defined type. The type Set, also known as Set0, is the type of all “small” types,
such as Bool, String and List Bool. The type Set1 is the type of Set and “others like it”,
such as Set → Bool, String → Set, and Set → Set. We have that Set ` is an element
of the type Set (` + 1), for every ` > 0. This stratification of types is used to keep Agda
consistent as a logical theory (SØRENSEN; URZYCZYN, 2006).

An ordinary (non-dependent) function type is written A → B and a dependent one
is written (x : A) → B, where type B depends on x, or ∀ (x : A) → B. Agda allows
the definition of implicit parameters, i.e. parameters whose values can be infered from
the context, by surrounding them in curly braces: ∀ {x : A} → B. To avoid clutter,
sometimes we omit implicit arguments from the source code presentation. The reader
can safely assume that every free variable in a type is an implicit parameter.

As an example of Agda code, consider the following datatype of natural numbers
and length-indexed lists, also known as vectors.

data N : Set where

zero : N
suc : N → N

data Vec (A : Set) : N → Set where

[ ] : Vec A zero

_ :: _ : ∀ {n} → A → Vec A n → Vec A (suc n)

Constructor [ ] builds empty vectors. The cons-operator (_ :: _)10 inserts a new el-
ement in front of a vector of n elements (of type Vec A n) and returns a value of type
Vec A (suc n). The Vec datatype is an example of a dependent-type, i.e., a type that
uses a value (that denotes its length). The usefulness of dependent types can be illus-
trated with the definition of a safe list head function: head can be defined to accept only
non-empty vectors, i.e., values of type Vec A (suc n), which have at least one element.

head : Vec A (suc n) → A

head (x :: xs) = x

In head’s definition, the constructor [ ] is not used. The Agda type-checker can figure
out, from head’s parameter type, that argument [ ] to head is not type-correct, hence we
do not have to give a definition for that case. In Haskell, head [ ] throws an exception
instead.

10Agda supports the definition of mixfix operators. We can use underscores to mark arguments posi-
tions.
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Another useful datatype is the finite type Fin, which is defined in Agda’s standard
library as:

data Fin : N → Set where

zero : ∀ {n} → Fin (suc n)

suc : ∀ {n} → Fin n → Fin (suc n)

Note that Agda supports the overloading of data type constructor names. Con-
structor zero can refer to type N or Fin, depending on the context where the name is
used. Type Fin n has exactly n inhabitants (elements), i.e., it is isomorphic to the set
{0, ..., n − 1}. An application of such type is to define a safe vector lookup function,
which avoids the access of invalid positions.

lookup : ∀ {A n} → Fin n → Vec A n → A

lookup zero (x :: ) = x

lookup (suc idx) ( :: xs) = lookup idx xs

Thanks to the propositions-as-types principle11 we can interpret types as logical
formulas and terms as proofs. An example is the representation of equality as the
following Agda type:

data _ ≡ _ ∀ {`} {A : Set `} (x : A) : A → Set where

refl : x ≡ x

This type is called propositional equality. It defines that there is a unique evidence
for equality, constructor refl (for reflexivity), asserting that the only value equal to x is
itself. Given a predicate P : A → Set and a vector xs, the type All P xs is used to build
proofs that P holds for all elements in xs and it is defined as:

data All (P : A → Set) : Vec A n → Set where

[ ] : All P [ ]

_ :: _ : ∀ {x xs} → P x → All P xs → All P (x :: xs)

The first constructor specifies that All P holds for the empty vector and constructor
_ :: _ builds a proof of All P (x :: xs) from proofs of P x and All P xs. Since this type
shares the structure with vectors, some functions on Vec have similar definitions for
type All. As an example, consider the function lookup, which extracts a proof of P for
the element at position v :: Fin n in a Vec:

lookup : {xs : Vec A n} → Fin n → All P xs → P x

lookup zero (px :: ) = px

lookup (suc idx) ( :: pxs) = lookup idx pxs

11Also known as Curry-Howard “isomorphism” (SØRENSEN; URZYCZYN, 2006).



38

An important application of Agda (and dependent-types) is to encode and prove
properties about the specification of programming languages. We will discuss next two
different forms to formally describe programming languages, achieving an equivalent
soundness result.

2.3.2 Formalization Styles

Nowadays, there are two main approaches to formalize and prove type safety for
a programming language. In the first one, called extrinsic, usually, the syntax, typing,
and evaluation rules are described separately, and the common theorems of progress
and preservation link the rules to prove type safety. In the second one, called intrinsic,
the syntax and the typing judgments are expressed as a single definition, thus allow-
ing only the representation of well-typed terms. Using such definition together with a
terminating definitional interpreter, which implements the evaluation rules, type-safety
is guaranteed by construction.

Next we present the formalization of the expression language presented in the be-
ginning of this chapter. First we give its definition using the most traditional extrinsic
approach, and then we present an intrinsic variant of the same language.

2.3.2.1 Extrinsic Formalization

To formalize a programming language in the extrinsic format, we follow the usual
script: first we give the syntax, the semantics and typing rules, and then we prove the
properties of progress and preservation to guarantee type-safety.

Syntax definition. Defining the syntax is similar to what was done in Haskell. We have
a datatype Expr, and one constructor for each expressions12.

data Expr : Set where

BTrue BFalse : Expr

Num : N → Expr

_ ∧ _ _ + _ : Expr → Expr → Expr

The reader can note that, similarly to our Haskell definition (presented earlier), using
this datatype we can construct expressions that should not be considered well-typed
such as (Num 1) + True, but our typing relation will forbid this.

Values. The presented language has three constructors to define values. Constructors
VTrue and VFalse say that the boolean constants are values. Constructor VNum also
represents a value giving that n is of type N.

12Agda allows inline definitions of constructors resulting on the same type. We can see that for con-
structor True and False with type Expr, and for _ ∧ _ and _ + _ with type Expr → Expr → Expr.
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data Val : Expr→ Set where

VTrue : Val BTrue

VFalse : Val BFalse

VNum : ∀ {n} → Val (Num n)

The inductive definition Val is indexed by an Expr, showing which syntactical con-
structor is associated with each value. We need this definition to define the reduction
steps.

Dynamic semantics. The formalization of the evaluation for the expression language
using the extrinsic approach follows the small-step semantics presented in Figure 3.
The Agda code is basically a translation of the presented inference rules. The first three
constructors deal with the arithmetic operator, and the last three constructors deal with
the boolean operator. We use the Val datatype to force some of the expressions to
be values in some rules. Following the same idea of the small-step rules, we rename
Agda’s addition operator (+ to ⊕) to avoid name conflicts.

data _ −→ _ : Expr→ Expr→ Set where

S-Add1 : ∀ {e1 e′1 e2}
→ e1 −→ e′1
→ e1 + e2 −→ e′1 + e2

S-Add2 : ∀ {v1 e2 e′2}
→ Val v1

→ e2 −→ e′2
→ v1 + e2 −→ v1 + e′2

S-Add : ∀ {n1 n2}
→ Val (Num n1)

→ Val (Num n2)

→ (Num n1) + (Num n2) −→ Num (n1 ⊕ n2)

S-And1 : ∀ {e1 e′1 e2}
→ e1 −→ e′1
→ e1 ∧ e2 −→ e′1 ∧ e2

S-And2 : ∀ {e2}
→ Val BTrue

→ BTrue ∧ e2 −→ e2

S-And3 : ∀ {e2}
→ Val BFalse

→ BFalse ∧ e2 −→ BFalse

Syntax of types. The present formalization presumes the existence of only two types:
TBool representing booleans, and TNum representing numbers.

data Ty : Set where

TBool TNum : Ty
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Expression typing. The ` _ : _ relation encodes the typing rules for the expression
language, indicating that an expression Expr has type Ty. Again, the Agda encoding is
very similar to the rules presented in Figure 6. First three constructors give types for
values BTrue, BFalse, and Num. Constructor T-Add will have type TNum giving that both
e1 and e2 have type TNum. Similarly, T-And has type TBool if both e1 and e2 have type
TBool.

data ` _ : _ : Expr→ Ty→ Set where

T-True : ` BTrue : TBool

T-False : ` BFalse : TBool

T-Num : ∀ {n} → ` Num n : TNum

T-Add : ∀ {e1 e2}
→ ` e1 : TNum

→ ` e2 : TNum

→ ` e1 + e2 : TNum

T-And : ∀ {e1 e2}
→ ` e1 : TBool

→ ` e2 : TBool

→ ` e1 ∧ e2 : TBool

Expressions obeying the rules expressed in this relation are considered well-typed,
otherwise they are said to be ill-typed.

Soundness proofs. We now prove type soundness for the language tested before with
QuickCheck using the extrinsic approach.

First we need to define formally the basic property of reduction and types, identi-
fying the possible canonical forms (i.e., well-typed closed values) belonging to each
type (PIERCE et al., 2018). The definition has one constructor for each value (C-True,
C-False, and C-Num).

data Canonical : Expr→ Ty→ Set where

C-True : Canonical BTrue TBool

C-False : Canonical BFalse TBool

C-Num : ∀ {n} → Canonical (Num n) TNum

And a proof linking each value with its respective type.

canonical : ∀ {v τ } → ` v : τ → Val v→ Canonical v τ

canonical T-True = C-True

canonical T-False = C-False

canonical T-Num = C-Num
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The progress function represents the theorem with the same name presented earlier,
stating that if a well-typed expression e has type τ , then it can make Progress, i.e., or e

is a value, or it can take another reduction step. Before giving the proof, we define an
inductive datatype to hold the result of our proof, with two constructors: Done when e is
a value, and Step when e reduces to an e′13.

data Progress (e : Expr) : Set where

Step : ∀ {e′}
→ e −→ e′

→ Progress e

Done : Val e

→ Progress e

The proof of progress for this language in Agda is straightforward: cases with values
are finished with Done, and the respective Val constructor; the case for T-Add makes
progress (applying the induction hypothesis) for e1 and e2 and finishes with the canoni-
cal values and the rule S-Add; and the case for T-And makes progress for e1, finishing
the proof with the rules S-And2 or S-And3 according to the respective canonical value14.

progress : ∀ {e τ } → ` e : τ → Progress e

progress T-True = Done VTrue

progress T-False = Done VFalse

progress T-Num = Done VNum

progress (T-Add e1 e2) with progress e1

... | Step stp1 = Step (S-Add1 stp1)

... | Done v1 with progress e2

... | Step stp2 = Step (S-Add2 v1 stp2)

... | Done v2 with canonical e1 v1 | canonical e2 v2

... | C-Num | C-Num = Step (S-Add v1 v2)

progress (T-And e1 e2) with progress e1

... | Step stp1 = Step (S-And1 stp1)

... | Done v1 with canonical e1 v1

... | C-True = Step (S-And2 v1)

... | C-False = Step (S-And3 v1)

The preservation function also represents the theorem with the same name pre-
sented earlier, stating that if a well-typed expression e has type τ , and it takes a reduc-
tion step e −→ e′, then e′ remains with type τ . The proof proceeds by induction on the

13For clarity, we use the definition of a Progress datatype, following the ideas presented in Wadler’s
book (WADLER, 2018). We could achieve similar result using a disjunction operator.

14The ‘...’ notation is used when the original arguments for the with constructor are the same in the
new clauses.
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typing relation, case splitting each reduction case. First three cases deal with the arith-
metic operator, and the last three cases deal with the boolean operator. The reader
can note that the Agda system is smart enough to figure out that it is not necessary to
deal with values, since they cannot take any reduction step.

preservation : ∀ {e e′ τ } → ` e : τ → e −→ e′ → ` e′ : τ

preservation (T-Add r1 r2) (S-Add1 stp) = T-Add (preservation r1 stp) r2

preservation (T-Add r1 r2) (S-Add2 v1 stp) = T-Add r1 (preservation r2 stp)

preservation (T-Add r1 r2) (S-Add v1 v2) = T-Num

preservation (T-And r1 r2) (S-And1 stp) = T-And (preservation r1 stp) r2

preservation (T-And r1 r2) (S-And2 v1) = r2

preservation (T-And r1 r2) (S-And3 v1) = r1

2.3.2.2 Intrinsic Formalization

Another possibility to formalize a programming language is to define an intrinsically-
typed syntax, combining both the syntax and the typing rules in a single relation, and to
define a definitional interpreter, also known as functional big-step semantics, to define
its evaluation. Using this approach, we can use dependent-types and the well-behaved
features of the host language (Agda) to state soundness of the target language we are
working on.

Intrinsically-typed syntax. Representing the typing rules combined with the language
syntax is a well-known approach (ALTENKIRCH; REUS, 1999). Using such approach,
only well-typed expressions are accepted by the host language, and ill-typed expres-
sions are rejected by the compiler accusing type error. Considering this, the abstract
syntax trees capture not only the syntactic properties of the language, but semantic
properties as well, allowing programmers to reason about their programs as they write
them rather than separately at the meta-logical level.

Now, the definition of expressions Expr is parameterized by a type Ty (the same
presented for the extrinsic approach).

data Expr : Ty → Set where

True False : Expr Bool

Num : Nat → Expr Nat

_ + _ : Expr Nat → Expr Nat → Expr Nat

_ ∧ _ : Expr Bool → Expr Bool → Expr Bool

In this definition, the Expr datatype carries out information about the type of each
expression being built. For example, the first two constructor lines define the value
expressions with their types. And the last two lines define the operators present in our
language. We can note that for these operators, the intrinsically-typed syntax defines
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the expected type for each (left and right-hand side) expression. This way, Agda’s type
system can enforce that only well-typed terms could be written. A definition which uses
the expression (Num 1) + True will be rejected by Agda’s type checker automatically.

Definition of values. In order to define our interpreter we need a way to define an
intrinsically-typed value. We define the datatype Val indexed by a Ty. By using this
definition, when interpreting the code, the produced results are converted to an Agda
type (host language semantics). Thus, if the value represents a TBool, it results in the
Agda’s Bool type. Similarly, TNum results in a natural number.

Val : Ty→ Set

Val TBool = Bool

Val TNum = N

Definitional interpreter. Next we present a fairly standard definition of an interpreter for
the studied language in Agda. Basically, what we do is to use the host language struc-
ture to evaluate the target language, implementing the big-step semantics presented in
Figure 4. The three first defining equations are considering the evaluation of values in
the target language, resulting in values in the Agda language. The case for Add, both
side expressions (e1 and e2) are evaluated at once, then summing up their results with
⊕ operator. The process is similar to deal with booleans. The considerate reader can
notice that the treatment of And differs from the big-step semantics. In our implementa-
tion we chose to let Agda evaluate booleans using its standard library definition. Again
here, we rename the operators (+ to ⊕, and ∧ to &&) to avoid name conflicts.

eval : ∀ {τ } → Expr τ → Val τ

eval BTrue = true

eval BFalse = false

eval (Num x) = x

eval (Add e1 e2) = eval e1 ⊕ eval e2

eval (And e1 e2) = eval e1 && eval e2

There are two points to highlight on the intrinsic approach. First, we can note that
we do not have any error treatment in our interpreter. This is happening because we
are working only with a (intrinsically) well-typed expression, so in this case, the sub-
expression types are guaranteed by construction by Agda’s type checker. Second, by
allowing only the representation of well-typed expressions, the preservation property is
also assured by construction (the compiler checks that the two τ ’s in the function defi-
nition match), and by writing such evaluator in a total language like Agda, the progress
property is consequently guaranteed.

For further information about Agda, see (NORELL, 2009; STUMP, 2016; WADLER,
2018).
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2.4 Chapter’s Final Remarks

In this chapter we have set the basic script for the rest of this thesis, by reviewing the
basic ideas of operational semantics, property-based testing, and formal verification.
We equipped this chapter with a basic language serving as example for setting the
ground for all aspects we will work in the next chapters. We shall refer later to the ex-
amples presented here, to explain most advanced concepts involving property-based
testing or formal verification of programming languages.



3 TARGET LANGUAGES

In this chapter we bring an overview of the languages we considered during our
research about programming language subsets. We start with a classic program-
ming language (λ-calculus), which is widely used to study concepts of the functional
paradigm, to develop the techniques presented in this thesis. After that, we con-
duct a research to find a subset of a modern object-oriented calculus, considering
the Java language, which is one of the most used programming language nowadays.
We present a comparison among the formalizations and the criteria to choose the one
to explore in depth the techniques discussed in this work.

3.1 Functional Subsets

In this section we study one of the most famous example of programming languages
(at least in research circles), the λ-calculus. It is a well-known purely functional core
calculus proposed by Church in 1932 (CHURCH, 1932) capable of expressing compu-
tation with only three syntactic constructors: variables, abstractions, and application.
The λ-calculus is a universal model of computation equivalent to Turing machines, and
serves as basis for most of the current functional programming languages. Roughly,
this calculus consists of constructing lambda expressions and performing reductions
operations on them, through function abstraction and application using variable bind-
ing and substitution (WADLER, 2018).

Here we present a variant of λ-calculus, called simply-typed lambda calculus
(STLC), which consists of the same base language augmented with types. We discuss
the introduction of base types, presenting the syntax, semantics, and type system for
this small calculus. For a thorough introduction of the λ-calculus, the reader is directed
to (HINDLEY; SELDIN, 2008; BARENDREGT, 1992). The goal of this section is to
provide a minimal understanding of STLC, which will be referred in other parts of this
thesis when implementing the studied techniques.
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3.1.1 Simply-Typed Lambda Calculus

Pure λ-calculus has only three syntactic constructors. For simplicity, we augment
the pure calculus with the boolean constants true and false. The abstract syntax of
STLC is defined in Figure 8. Besides constants, we have variables, function definition
through abstraction, and function invocation with application. In the same figure, we
also define an abstraction as a value for the STLC language, plus the two boolean
constants. Similarly to the previous chapter, we use meta-variables e and v to range
over expressions and values, following the same conventions. Here, we also let x, y,
and z denote variables.

e ::= expressions:
true constant true
false constant false
x variable
λx.e abstraction
e e application

v ::= values:
true true value
false false value
λx.e abstraction value

Figure 8 – Abstract syntax for STLC.

Suppose we have a λ-expression λy.(λz.x(y z)). We say that y and z are bound
variables and x is a free variable (as there is no visible abstraction binding it). This
notion is important to clarify the scope of variables. For this calculus, we assume
Barendregt’s variable convention, which says that expressions do not have any name
clashing.

The most important notion of λ-calculus (and consequently STLC) is substitution to
define how to compute an expression. The computation is given by the application of
functions to arguments (which themselves can be functions). Each step in the compu-
tation consists of rewriting an application whose left-hand side is an abstraction, sub-
stituting the right-hand side for the bound variable in the abstraction’s body (PIERCE,
2002). We will write (λx.e1)e2 −→ [x 7→ e2]e1, where [x 7→ e2]e1 means “the expression
obtained by replacing all free occurrences of x in e1 by e2”. The substitution operation
is defined inductively in Figure 9.

[x 7→ s]x = s
[x 7→ s]y = y if x 6= y
[x 7→ s[(λy.e1) = λy.[x 7→ s]e1

[x 7→ s](e1 e2) = ([x 7→ s]e1) ([x 7→ s]e2)

Figure 9 – Variable substitution operation.
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An expression of the form (λx.e1)e2 is called a redex, i.e., a reducible expression,
and the operation of rewriting a redex is called beta-reduction. Several different reduc-
tion strategies can be applied to λ-calculus (such as call-by-value, call-by-name, etc.),
defining which redex (or redexes) should be reduced on the next step of evaluation.

We present the small-step semantics for STLC in Figure 10. Rule S-App1 and S-App2

are congruence rules (call-by-value), where the first evaluates the expression on the
left of a function application, while the second evaluates the expression on the right,
once the first is a value. Rule S-AppAbs uses the substitution operation to perform the
actual computation, substituting all free occurrences of x on the λ-expression body e1.
The reader can note that we are presenting a call-by-value evaluation strategy, since
we are only applying the substitution if the right expression is a value (v2).

e1 −→ e′1
e1 e2 −→ e′1 e2

[S-App1]
e2 −→ e′2

v1 e2 −→ v1 e
′
2

[S-App2]

(λx.e1)v2 −→ [x 7→ v2]e1 [S-AppAbs]

Figure 10 – Small-step semantics for STLC.

In order to define the type system for STLC, first we define the set of types in
Figure 11.

T ::= types:
Bool type of booleans
T → T type of functions

Figure 11 – Simple types for STLC.

Type-checking in STLC can be carried out structurally. Expressions (on the lan-
guage we are studying) can have boolean or function types. However, when analyzing
λ-expressions of the form (λx.e1) e2, the type which should be assigned to the whole
program depends on that assigned to the expression e2 according to the form of ex-
pression body e1. This dependency can be expressed in terms of assumptions about
the free variable x occurring in e1, according to the type assigned to e2. The standard
procedure is to define a context Γ as a type environment, to hold the association of
variables and types. Having this setting, a typing rule is expressed as Γ ` e : T , stat-
ing that e has type T according to variables in the Γ context. Figure 12 presents the
definition of the type environment and the lookup operations (WADLER, 2018).

In this figure, ∅ represents an empty context (we can see the context as a list),
and Γ, x : T represents the operation of extending a typing environment with variable x
having type T . We also use next dom(Γ) to denote the set of variables in the domain
of context Γ. Rule E-Lkp1 is the base case, when the variable appears in the current
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Γ ::= contexts:
∅ empty context
Γ, x : T variable binding

Γ, x : T ` x : T [E-Lkp1]
Γ ` x2 : T2 x1 6= x2

Γ, x1 : T1 ` x2 : T2
[E-Lkp2]

Figure 12 – Environment definition and operations.

scanning position, and rule E-Lkp2 is the recursive case, looking up further on the list,
when the variable is different from the one being sought.

Figure 13 summarizes the typing judgment rules for STLC. Rules T-True and T-False

define the type for the boolean constants. Rule T-Var looks up the Γ environment (using
the rules presented earlier) and returns the type T associated with the variable repre-
sented by x. Rule T-Abs assigns a function type (T1 → T2) to a λ-expression provided
under the assumption that x will have type T1, and augmenting the Γ context with this
information to obtain the type T2 for the body expression e2. Lastly, rule T-App assigns
the type T2 to a function application, where e1 (using the assumptions in Γ) should have
a function type (T1 → T2), and e2 should be of type T1.

Γ ` true : Bool [T-True] Γ ` false : Bool [T-False]

x : T ∈ Γ
Γ ` x : T

[T-Var]
Γ, x : T1 ` e2 : T2

Γ ` λx.e2 : T1 → T2
[T-Abs]

Γ ` e1 : T1 → T2 Γ ` e2 : T1

Γ ` e1 e2 : T2
[T-App]

Figure 13 – Type system for STLC.

With the dynamic and static semantics for STLC in hand, we can prove soundness
similarly to the previous chapter. Here we focus only on the important aspects of the
proof that differ from the previous presentation. We start off by defining the canonical
forms of values.

Lemma 2 (Canonical Forms). Let v be a well-typed value such that ∅ ` v : T . Then:

1. if T is the type Bool, then v is either true or false.

2. if T is the type T1 → T2, then v has form λx.e and ∅, x : T1 ` e : T2.

Proof. Immediate from the definition of values (Figure 8) and typing rules (Figure 11).
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Then we define the progress theorem. The statement of this theorem needs only
one small change. We are interested only in closed expressions, without free variables,
i.e., the type environment is empty (PIERCE, 2002).

Theorem 3 (Progress). Let e be a well-typed closed expression such that ∅ ` e : T .
Then either e is a value or there is some expression e′ such that e −→ e′.

Proof. Straightforward induction on typing derivations. The case for booleans are the
same presented earlier. The variable case cannot happen, because e is a close ex-
pression. The abstraction case is immediate, since abstractions are values.

Case e represents an application, we have that e = e1 e2, with ∅ ` e1 : T1 → T2 and
∅ ` e2 : T1. By the induction hypothesis both e1 and e2 are values, or can take a step.
If they can take a step either S-App1 or S-App2 can be applied (according to the case). If
both are values, then by the canonical lemma, we know that e1 has the form λx.eb, and
so rule S-AppAbs applies to e.

To prove that evaluation preserves typing (preservation theorem), we need first to
define some extra lemmas. The main difference from the proof of preservation pre-
sented in Chapter 2 is that now we have a context Γ, which stores information about
variables to be used during evaluation, and we need to state some properties about it.
We recall that we assume the Barendregt’s variable convention.

First lemma says that we can permute elements of a context, without changing the
typing statements that can be derived under it.

Lemma 3 (Permutation). If Γ ` e : T and Γp is a permutation of Γ then Γp ` e : T .

Proof. Straightforward induction on typing derivations.

The second lemma says that if we can derive a type from an expression e, we
should be able to derive the same type after adding a new (different) variable in the
context.

Lemma 4 (Weakening). If Γ ` e : T and x /∈ dom(Γ), then Γ, x : T1 ` e : T .

Proof. Straightforward induction on typing derivations.

Using these two lemmas, we can prove another important property of the typing
relation, stating that types are preserved after variable substitution.

Lemma 5 (Substitution). Suppose Γ, x : Tx ` e : T , where e is any expression in STLC.
If ∅ ` v : Tx, then Γ ` [x 7→ v]e : T .
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Proof. By induction on a derivation of the statement Γ, x : Tx ` e : T with case analysis
on the shape of e. The cases for boolean rules are immediate.

Case e represents a variable, from the assumptions of the T-Var rule, we have that
e = y with y : T ∈ (Γ, x : Tx). If y = x, then [x 7→ v]y = v, and the result is Γ ` v : Tx,
which is an assumption of this lemma. Otherwise, [x 7→ v]y = y, and the result is
immediate.

Case e represents an abstraction, from the assumptions of the T-Abs rule, we have
that e = λy.e1, T = T1 → T2, and Γ, x : Tx, y : T1 ` e1 : T2. By the Barendregt’s
convention we may assume x 6= y. Using the permutation lemma, we obtain Γ, y :

T1, x : Tx ` e1 : T2. Using the weakening lemma, we obtain Γ, y : T1 ` v : Tx. By the
induction hypothesis, Γ, y : T1 ` [x 7→ v]e1 : T2. By T-Abs, Γ ` λy.[x 7→ v]e1 : T1 → T2,
which is what we need, since by the definition of substitution, [x 7→ v]e = λy.[x 7→ v]e1.

Case e represents an application, from the assumptions of the T-Add rule, we have
that e = e1 e2, with Γ, x : Tx ` e1 : T1 → T2, Γ, x : Tx ` e2 : T1, and T = T2. By
the induction hypothesis, Γ ` [x 7→ v]e1 : T1 → T2 and Γ ` [x 7→ v]e2 : T1. By T-Add,
Γ ` [x 7→ v]e1 [x 7→ v]e2 : T , i.e., Γ ` [x 7→ v](e1 e2) : T .

Having the substitution lemma, we can easily show the preservation property.

Theorem 4 (Preservation). Let e be a well-typed expression such that ∅ ` e : T . Then
e −→ e′ implies ∅ ` e′ : T .

Proof. Induction on typing derivations and case analysis on the evaluation rules. The
case for booleans and λ-expressions are impossible, since both represent values,
which cannot take a step. Similarly, the case for variable is impossible, since we are
working with closed values.

Case e represents an application, from the assumptions of the T-Add rule, we have
that e = e1 e2, with ∅ ` e1 : T1 → T2 and ∅ ` e2 : T1. By the evaluation rules, we
have three rules by which e −→ e′. From rule S-App1, we have that e′ = e′1 e2, where
e1 −→ e′1. We can apply the induction hypothesis to ensure that ∅ ` e′1 : T1 → T2.
Combining this with the facts that ∅ ` e2 : T1, we can apply the rule T-Add to conclude
that ∅ ` e′1 e2 : T2, that is ∅ ` e′ : T2. The treatment for rule S-App2 is similar. From
rule S-AppAbs we have that e′ = [x 7→ v2]e1, and the result follows by the substitution
lemma.

In this section we chose to show the complete lemmas, theorems, and proofs to
demonstrate soundness of the presented STLC setting, because we gather information
from different sources, such as (PIERCE, 2002; WADLER, 2018; PIERCE et al., 2018).
In later sections, we will prefer to point out the references in which the proofs are
written, and omit them from this text.
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3.2 Object-Oriented Subsets

This section presents the results of our research on finding a formal subset for
a modern object-oriented language to be applied in the next chapters of this thesis.
The text presented here is a summary of our paper “Formal Semantics for Java-like
Languages and Research Opportunities” (FEITOSA; RIBEIRO; DU BOIS, 2018a). We
chose to look into subsets of Java, since it is the most used programming language
nowadays (TIOBE.COM, 2019), and also because this language is being adopted in
many large projects, where applications reach a level of complexity for which only man-
ual testing and human inspection are not enough to guarantee quality in software de-
velopment.

Java is a statically, strongly typed, object-oriented, multi-threaded language. Except
for threads, it is completely deterministic. The official specification of the Java language
is the JLS (ORACLE.COM, 2018). JLS has 755 pages and 19 chapters; more than 650
pages were used to describe the language and its behavior. Java is distributed as part
of the Java Development Kit (JDK) and currently is in version 10. At the imperative level,
this language has 38 operators (JLS §3.12), 18 statements (§14), and some dozens
of expressions (§15), among other features, and is evolving over time (BOGDANAS;
ROSU, 2015). A Java program can be represented by a combination of several of
its features. Considering that, the formalization (and update) of the whole language
becomes an almost impossible task, justifying the need for definitions of formal subsets
for Java.

Indeed, there exist several studies on the formalization of parts of the Java lan-
guage (FLATT; KRISHNAMURTHI; FELLEISEN, 1998; DROSSOPOULOU; EISEN-
BACH, 1999; IGARASHI; PIERCE; WADLER, 2001; KLEIN; NIPKOW, 2006; BOG-
DANAS; ROSU, 2015; FARZAN; CHEN; MESEGUER, 2004; STARK; BORGER;
SCHMID, 2001), and we have defined some criteria to select some of them to be
presented in this text. Initially, we looked up for projects that describe the semantics
of Java, particularly by structural operational semantics, filtering those that presented
proofs of type-safety, both in formal or informal (non-mechanized) ways. From these,
we selected the four most popular formalisms, i.e., those with the higher number of
citations according to Google Scholar (GOOGLE, 2018) database. Using this criterion,
Featherweight Java could be considered the most popular, with almost 900 citations,
followed by Classic Java, with approximately 500 quotes. JavaS and Jinja currently
present between 300 and 400 citations. The remainder of this section summarizes
the selected formalizations, discussing their completeness and conformance with the
official specification of Java, and comparing them with each other.
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3.2.1 Featherweight Java

Featherweight Java (FJ) (IGARASHI; PIERCE; WADLER, 2001), is a minimal core
calculus for Java, in the sense that as many features of Java as possible are omit-
ted while maintaining the essential flavor of the language and its type system. How-
ever, this fragment is large enough to include many useful programs. A program in FJ
consists of a declaration of a set of classes and an expression to be evaluated, that
corresponds to the public static void main method of Java.

FJ is related to Java, as λ-Calculus is to Haskell. It offers similar operations, provid-
ing classes, methods, attributes, inheritance and dynamic casts with semantics close
to Java’s. The Featherweight Java project favors simplicity over expressivity and offers
only five ways to create terms: object creation, method invocation, attribute access,
casting, and variables. The following example shows how classes can be modeled in
FJ. There are three classes, A, B, and Pair, with constructor and method declarations.

class A extends Object {
A () {super (); }
}
class B extends Object {

B () {super (); }
}
class Pair extends Object {

A fst; B snd;

Pair (A fst, B snd) {
super ();

this.fst = fst;

this.snd = snd;

}
Pair setfst (A newfst) {

return new Pair (newfst, this.snd);

}
}

FJ semantics provides a purely functional view without side effects. In other words,
attributes in memory are not affected by object operations (PIERCE, 2002). Further-
more, interfaces, overloading, call to base class methods, null pointers, base types,
abstract methods, statements, access control, and exceptions are not present in the
language (IGARASHI; PIERCE; WADLER, 2001).

Because the language does not allow side effects, it is possible to formalize the
evaluation just using the FJ syntax, without the need for auxiliary mechanisms to model
the heap.
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Figure 14 presents the syntactic definitions originally proposed for FJ, where L

refers to class declarations, K and M to constructors and methods respectively, and
finally, e represents the expressions of that language. We assume that the set of vari-
ables includes the special variable this and super is a reserved keyword. Throughout
this document, we write f̄ as shorthand for a possibly empty sequence f1,...,fn (simi-
larly for C̄, x̄, ē, etc.).

L ::= class declarations
class C extends C {C̄ f̄ ;K M̄}

K ::= constructor declarations
C(C̄ f̄) {super(f̄); this.f̄ = f̄ ; }

M ::= method declarations
C m(C̄ x̄) {return e; }

e ::= expressions:
x variable
e.f field access
e.m(ē) method invocation
new C(ē) object creation
(C) e cast

Figure 14 – Syntactic definitions for FJ.

Figure 15 presents the evaluation rules originally proposed for FJ, formalizing how
to evaluate attribute access (R-Field), method invocation (R-Invk), and casts (R-Cast)
(IGARASHI; PIERCE; WADLER, 2001), the only three possible terms to be used in
the main program. The presented functions, fields and mbody, are also formalized in
the original paper, representing respectively a way to obtain a list of attributes of some
class C, and the body expression inside a method m which belongs to a given class
C. In the method invocation rule, we write [x̄ 7→ ū, this 7→ new C(v̄)]e0 for the result of
replacing x1 by u1,...,xn by un, and this by “new C(v̄)” in expression e0. In the cast rule,
the symbol <: is used to express the sub-typing relation between C and D, stating that
C is a subtype of D. These symbols are also used throughout the document.

fields(C) = C̄ f̄

new C(v̄).fi −→ vi
[R-Field]

mbody(m,C) = (x̄, e0)

new C(v̄).m(ū) −→ [x̄ 7→ ū, this 7→ new C(v̄)]e0

[R-Invk]

C <: D
(D) (new C(v̄)) −→ new C(v̄)

[R-Cast]

Figure 15 – Evaluation rules for FJ.
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The typing rules for expressions are in Figure 16. There we can note the use of an
environment Γ, which represents a finite mapping from variables to types, written x̄ : C̄.
We let Γ(x) denote the type C such that x : C ∈ Γ. The typing judgment for expressions
has the form Γ ` e : C, read as “in the environment Γ, the expression e has type C”.
The typing rules are syntax directed, with one rule for each form of expression, except
for casts. Most of the typing rules are straightforward adaptations of the rules in Java:
the rule (T-Var) checks if the variable x is in the Γ context and gets its type; rule (T-
Field) uses the function fields to obtain the field type; the rules for method invocations
(T-Invk) and for constructors (T-New) check that each actual parameter has a type that
is subtype of the corresponding formal parameter type; the last three rules are related
to casts, considering upcasts, downcasts, and unrelated objects. The latter was added
to allow proofs of type soundness.

Γ ` x : Γ(x)
[T-Var]

Γ ` e0 : C0 fields(C0) = C̄f̄

Γ ` e0.fi : Ci
[T-Field]

Γ ` e0 : C0 mtype(m,C0) = D̄ → C Γ ` ē : C̄ C̄ <: D̄

Γ ` e0.m(ē) : C
[T-Invk]

fields(C) = D̄f̄ Γ ` ē : C̄ C̄ <: D̄

Γ ` new C(ē) : C
[T-New]

Γ ` e0 : D D <: C

Γ ` (C) e0 : C
[T-UCast]

Γ ` e0 : D C <: D C 6= D

Γ ` (C) e0 : C
[T-DCast]

Γ ` e0 : D C ≮: D D ≮ C

Γ ` (C) e0 : C
[T-SCast]

Figure 16 – Typing rules for FJ.

For brevity, the formalization of sub-typing relation, auxiliary definitions, congruence
and sanity checks for methods and classes were omitted here, but can be found in the
original FJ paper (IGARASHI; PIERCE; WADLER, 2001).

An important contribution of FJ is the soundness proofs for the proposed type sys-
tem. We present the Type Soundness theorem as an example, to show the way proofs
were modeled by the authors.

Theorem 5 (Type Soundness). If ∅ ` e : C and e→∗ e′ with e′ a normal form, then e′ is
either a value v with ∅ ` v : D and D <: C, or an expression containing (D) new C(ē)

where C <: D.

Proof. Immediate from Subject Reduction (Theorem 2.4.1) and Progress (Theorem
2.4.2) theorems found in the original paper (IGARASHI; PIERCE; WADLER, 2001).

3.2.2 ClassicJava

ClassicJava (FLATT; KRISHNAMURTHI; FELLEISEN, 1998, 1999) is a also small
subset of sequential Java. To model its type structure, the authors use type elabo-
rations (POTTIER, 2014), where it is verified that a program defines a static tree of
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classes and a directed acyclic graph (DAG) of interfaces. For the semantics, rewriting
techniques were used, where evaluation is modeled as a reduction on expression-store
pairs in the context of a static type graph. The class model relies on as few implemen-
tation details as possible.

In ClassicJava, a program P is represented by a sequence of classes and inter-
faces followed by an expression. Each class definition consists of a sequence of field
declarations and a sequence of method declarations. In the interfaces, the difference
is that there are only methods. A method body in a class can be abstract when the
method should be overridden in a subclass or can be an expression. In the case of
interfaces, the method body must be always abstract. Similarly to Java, objects are
created with the new operator, but the constructors are omitted in the proposed specifi-
cation. Thus, instance variables are initialized to null. There are also constructors that
represents casts (view operator) and assignments (let operator). Figure 17 shows the
formal syntax of ClassicJava.

P ::= program specification
defn∗ e

defn ::= class and interface declarations
class c extends c implements i∗ {field∗ meth∗}

field ::= field statement
t fd

meth ::= method declarations
t md(arg∗) {body}

arg ::= argument list
tvar

body ::= method body declarations
e | abstract

e ::= expressions:
new c instancing a class
var a variable name or this
null null value
e : c.fd field access
e : c.fd = e field assignment
e.md(e∗) method invocation
super ≡ this : c.md(e∗) method invocation
view t e cast
let var = e in e assignment

Figure 17 – Syntactic definitions for ClassicJava.

To be considered valid, a program should satisfy a number of simple predicates and
relations, for example: ClassOnce indicates that a class name is declared only once,
FieldOncePerClass checks if field names in each class are unique, MethodOncePer-
Class checks oneness for method names, InterfacesAbstract verifies that methods in
interfaces are abstract, relation ≺c

P associates each class name in P to the class it ex-
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E = [] | E : c.fd | E : c.fd = e | v : c.fd = E
e = ... | object | E.md(e...) | v.md(v...E e...)
v = object | null | super ≡ v : c.md(v...E e...)

| view t E | let var = E in e

P ` 〈E[new c],S〉 ↪→ 〈E[object],S[object] 7→ 〈c,F〉]〉 where object [new]
/∈ dom(S) and F = {c′.fd 7→ null | c ≤c

P c′ and ∃t s.t. 〈c′.fd, t〉 ∈∈cP c′}

P ` 〈E[object : c′.fd],S〉 ↪→ 〈E[v],S〉 where S(object) = 〈c, F〉 [get]
and F(c′.fd) = v

P ` 〈E[object : c′.fd = v],S〉 ↪→ 〈E[v],S[object 7→ 〈c, F [c′.fd 7→ v]〉]〉 [set]
where S(object) = 〈c, F〉

P ` 〈E[object.md(v1, ..., vn)],S〉 ↪→ 〈E[e[object/this, v1/var1, ..., vn/varn]],S〉 [call]
where S(object) = 〈c,F〉 and 〈md, (t1...tn) −→ t), (var1...varn), e〉 ∈cP c

P ` 〈E[super ≡ object : c′.md(v1, ..., vn)],S〉 [super]
↪→ 〈E[e[object/this, v1/var1, ..., vn/varn]],S〉

where 〈md, (t1...tn) −→ t), (var1...varn), e〉 ∈cP c′

P ` 〈E[view t′ object],S〉 ↪→ 〈E[object],S〉 where S(object) = 〈c, F〉 [cast]
and ≤c

P t
′

P ` 〈E[let var = v in e],S〉 ↪→ 〈E[e[v/var]],S〉 [let]

P ` 〈E[view t′ object],S〉 ↪→ 〈error : bad cast,S〉 where S(object) = 〈c, F〉 [xcast]
and �c

P t
′

P ` 〈E[null : c.fd],S〉 ↪→ 〈error : derreferenced null,S〉 [nget]

P ` 〈E[null : c.fd = v],S〉 ↪→ 〈error : derreferenced null,S〉 [nset]

P ` 〈E[null.md(v1, ..., vn)],S〉 ↪→ 〈error : derreferenced null,S〉 [ncall]

Figure 18 – Evaluation rules for ClassicJava.

tends, relation ∈∈cP (overloaded) capture the field and method declarations of P , and so
on. The complete list of auxiliary definitions can be found in the original paper (FLATT;
KRISHNAMURTHI; FELLEISEN, 1998).

The operational semantics for ClassicJava is defined as a contextual rewriting sys-
tem on pairs of expressions and stores. A store S is a mapping from objects to class-
tagged field records. A field record F is a mapping from elaborated field names to
values.

Figure 18 shows the operational semantics for ClassicJava. By looking at the get
rule, for example, it is possible to note that a search for an attribute fd in a class c′

is performed by using the field record F , resulting in a value v. For the case of the
call rule one can note that it invokes a method by rewriting the method call expression
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with the body of the invoked method, syntactically replacing argument variables in this
expression with the supplied argument values and the special variable this. The other
rules can be understood in a similar way.

The type elaboration rules translate expressions for field access or method call into
annotated expressions. For instance, when a field is used, the annotation contains
the compile-time type of the instance expression, which determines the class contain-
ing the declaration of the accessed field. The complete typing rules can be found in
the original paper (FLATT; KRISHNAMURTHI; FELLEISEN, 1998). There the authors
show that a program is well-typed if its class definitions and final expressions are well-
typed. A definition, in turn, is well-typed when its field and method declarations use
legal types and the method body expressions are well-typed. Finally, expressions are
typed and elaborated in the context of an environment that binds free variables to types.

The authors also have presented formal proofs, which aim to guarantee the safety of
this calculus, i.e., an evaluation cannot get stuck. This property was formulated through
the type soundness theorem, where an evaluation step yields one of two possible
configurations: either a well-defined error state or a new expression-store pair. In
the latter case, there exists a new type environment that is consistent with the new
store, and it establishes that the new expression has a type below t. The complete
proof is available in an extended version of the original ClassicJava paper (FLATT;
KRISHNAMURTHI; FELLEISEN, 1999).

3.2.3 JavaS, JavaSE and JavaR

Another formal semantics for a subset of Java was developed by Drossopoulou and
Eisenbach, where they have presented an operational semantics, a formal type sys-
tem, and sketched1 an outline of the type soundness proof (DROSSOPOULOU;
EISENBACH, 1997; DROSSOPOULOU; EISENBACH; KHURSHID, 1999;
DROSSOPOULOU; EISENBACH, 1999). This subset includes primitive types,
classes with inheritance, instance variables, and instance methods, interfaces,
shadowing of instance variables, dynamic method binding, statically resolvable
overloading of methods, object creation, null pointers, arrays and a minimal treatment
of exceptions.

The author’s approach was to define JavaS, which is a provably safe subset of Java
containing the features listed above, a term rewrite system to describe the operational
semantics and a type inference algorithm to describe compile-time type checking. They
also prove that program execution preserves the type up to the subclass/subinterface
relationship (DROSSOPOULOU; EISENBACH, 1999). Furthermore, the type system

1The authors provided informal (and incomplete) proofs to argue that the type system of Java is
sound. The work of Syme (SYME, 1999) complemented these proofs and provided a machine-checked
version of them in the Declare proof assistant.
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was described in terms of an inference system.
This formal calculus was designed as a series of components, where JavaS is a

formal representation of the subset of Java semantics, JavaSE is an enriched version
of JavaS containing compile-time type information, and JavaR, which extends JavaSE

and describes the run-time terms. Figure 19 shows the syntax of JavaS.

Program ::= program specification
(ClassBody)∗

ClassBody ::= class declarations
ClassId ext ClassName {(MethBody)∗}

MethBody ::= method declarations
MethId is (λ ParId : V arType.)∗ {Stmts; return [Expr]}

Stmts ::= statement list
ε | Stmts ; Stmt

Stmt ::= statement declarations:
if Expr then Stmts else Stmts if statement
V ar := Expr assignment
Expr.MethName(Expr∗) method invocation
throw Expr exception throw
try Stmts(catch ClassName Id Stmts)∗ finally Stmts
try Stmts(catch ClassName Id Stmts)+

Expr ::= expressions:
V alue primitive values
V ar variable names
Expr.MethName(Expr∗) method invocation
new ClassName instancing a class
new SimpleType([Expr])+([])∗ array instantiation

Figure 19 – Syntactic definitions for JavaS .

In JavaS a program consists of a sequence of class bodies. Class bodies consist
of a sequence of method bodies. Method bodies consist of the method identifier, the
names and the types of the arguments, and a statement sequence. It is required
exactly one return statement in each method body, which should be the last statement.
Also, the authors considered only conditional statements, assignments, method calls,
try and throw statements. This was done because iteration and other constructors can
be achieved in terms of conditionals and recursion.

The calculus considers values, method calls, and instance variable accesses. The
values are primitives (such as true, 4, ‘c’, etc.), references or arrays. References are
null, or pointers to objects. The expression new C creates a new object of class C,
whereas the expression new T [en]+ creates a n dimensional array. Also, pointers to
objects are implicit.
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As the other Java calculi, this proposal also models the class hierarchy, proposing
the v relationship. Moreover, they also describe the environment, usually denoted by
a Γ, using the BNF notation and containing both the subclass and interface hierarchies
and variable type declarations. The environment also holds the type definitions of
all variables and methods of a class and its interface. For the sake of brevity, this
grammar (DROSSOPOULOU; EISENBACH, 1999) was omitted from here.

The following piece of code serves to demonstrate the JavaS syntax and some of
the features tacked by the authors.

ps = Phil ext Object {
think is λ y : Phil. { ...}
think is λ y : FrPhil. { ...}
}
FrPhil ext Phil {

think is λ y : Phil. {this.like := oyster; ...}
}

Considering the presented program, the environment Γ is:

Γ = Phil ext Object {
like : Truth ,

think : Phil → Phil

think : FrPhil → Book} ,
FrPhil ext Phil { like : Food ,

think : Phil → Phil}

The operational semantics for this language was defined as a ternary rewrite re-
lationship between configurations, programs, and configurations. Configurations are
tuples of JavaR terms and states. The terms represent the part of the original pro-
gram remaining to be executed. The method calls evaluation were described as textual
substitutions (DROSSOPOULOU; EISENBACH, 1999). There are three relations for
specifying the reduction of terms, one for each syntax category: exp

 (Γ,p),
var
 (Γ,p),

stmt
 (Γ,p).

Global parameters are an environment Γ (containing the class and interface hierar-
chies, needed for runtime type checking) and the program p being executed (SYME,
1999).

The proposed rewrite system has 36 rules in total, where 15 of them are “redex”
rules that specify the reduction of expressions in the cases where sub-expressions
have reductions. A sample of this rules is:

stmt0, s0
stmt
 (Γ,p) stmt1, s1

{stmt0, stmts}, s0
stmt
 (Γ,p) {stmt1, stmts}, s1
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There are 11 rules for dealing with the generation of exceptions: 5 for null pointers
dereferences, 4 for bad array index bounds, one for bad size when creating a new array
and one for runtime type checking when assigning to arrays. A simple example is:

ground(exp) ground(val)

null[exp] := val, s0
stmt
 (Γ,p) NullPointExc, s0

In this calculus, a term is ground if it is in normal form, i.e. no further reduction can
be made. The presented rule results a null pointer exception when one tries to assign
a value to a null pointer. The complete set of rules, such as for field dereferencing,
variable lookup, class creation, field assignment, local variable assignment, conditional
statements, method call and for dealing with arrays, are covered in the original pa-
per (DROSSOPOULOU; EISENBACH, 1997). This presentation also omits the type
system rules and auxiliary definitions.

By proving subject reduction and soundness, the authors argue that the type system
of JavaS is sound, in the sense that unless an exception is raised, the evaluation of any
expression will produce a value of a type “compatible” with the type assigned to it by
the type system.

3.2.4 Javalight and Jinja

Jinja (NIPKOW, 2003; KLEIN; NIPKOW, 2006) is a Java-like programming language
with a formal semantics designed to exhibit core features of Java, proposed by Nipkow
and improved in conjunction with Klein. According to the authors, the language is a
compromise between the realism of the language and tractability and clarity of the
formal semantics. It is also an improvement of Javalight (NIPKOW; OHEIMB, 1998),
enhancing the treatment of exceptions.

In contrast to others formalizations, they presented a big and a small-step seman-
tics, which are independent of the type system, showing their equivalence. They also
presented the type system rules, a definite initialization analysis, and the type safety
proofs of the small-step semantics. Additionally, the whole development has been car-
ried out in the theorem prover Isabelle/HOL (KLEIN; NIPKOW, 2017).

The abstract syntax of programs is given by the type definitions in Figure 20. A
program is a list of class declarations. A class declaration consists of the name of
the class and the class itself. A class consists of the name of its direct superclass, a
list of field declarations, and a list of method declarations. A field declaration is a pair
consisting of a field name and its type. A method declaration consists of the method
name, the parameter types, the result type, and the method body. A method body is a
pair of formal parameter names and an expression (KLEIN; NIPKOW, 2006).

Jinja is an imperative language, where all the expressions evaluate to certain val-
ues. Values in this language can be primitive, references, null values or the dummy
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prog ::= program declaration
cdecl list

cdecl ::= class declarations
cname× class

class ::= class definition
cname× fdecl list×mdecl list

fdecl ::= field declarations
vname× ty

mdecl ::= method declarations
mname× ty list× ty

J-mb ::= method body
vname list× expr

Figure 20 – Syntactic definitions for Jinja.

value Unit. As an expression-based language, the statements are expressions that
evaluate to Unit. The following expressions are supported by Jinja: the creation of new
objects, casting, values, variable access, binary operations, variable assignment, field
access, field assignment, method call, block with locally declared variables, sequential
composition, conditionals, loops, and exception throwing and catching. The following
example shows a program source-code using this language.

class B extends A {field F : TB

method M : TBs→ T1 = (pB, bB)}
class C extends B {field F : TC

method M : TCs→ T2 = (pC, bC)}

In this example, the field F in class C hides the one in class B. The same occurs
with the method M. This differs from Java, where methods can also be overloaded,
which means that multiple declarations of M can be visible simultaneously since they
are distinguished by their argument types.

In this language, everything (expression evaluation, type checking, etc.) is per-
formed in the context of a program P . Thus, there are some auxiliary definitions, omit-
ted from here, like is-class, subclass, sees-method, sees-field, has-field, etc., that can
be used to obtain information that are inside the abstract syntax tree of a program to
assist on the evaluation.

The evaluation rules were presented in two parts: first, the authors introduce a
big-step or evaluation semantics, and then a small-step or reduction semantics. The
big-step semantics was used in the compiler proof, and the small-step semantics in
the type safety proof. As this language deals with effects, it was necessary to define a
state, represented by a pair, which models a heap and a store. A store is a map from
variable names to values and a heap is a map from address to objects.
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new-Addr h = bac P ` C has-fields FDTs h’ = h(a 7→ (C, init-fields FDTs))
P ` 〈new C,(h, l)〉 ⇒ 〈addr a, (h’, l)〉

(R-New)

P ` 〈e, s0〉 ⇒ 〈addr a,(h,l)〉 h a = b(C, fs)c fs(F, D) = bvc
P ` 〈e.F{D},s0〉 ⇒ 〈Val v,(h,l)〉

(R-Field)

P ` 〈e,s0〉 ⇒ 〈addr a, s1〉 P ` 〈ps,s1〉[⇒]〈map Val vs,(h2,l2)〉
h2 a = b(C,fs)c P ` C sees M: Ts→T = (pns, body) in D | vs |=| pns |

l′2 = [this 7→ Addr a, pns [7→] vs] P ` 〈body,(h2,l′2)〉 ⇒ 〈e′,(h3,l3)〉
P ` 〈e.M(ps),s0〉 ⇒ 〈e′,(h3,l2)〉

(R-Method)

Figure 21 – Partial big-step semantics for Jinja.

For the big-step semantics, the evaluation judgment is of the form P ` 〈e, s〉 ⇒
〈e′, s′〉, where e and s are the initial expression and state, and e′ and s′ the final expres-
sion and state. Figure 21 shows some of the rules for Jinja’s big-step semantics.

The first rule (R-New) first allocates a new address: function new-Addr returns a
“new” address, that is, new-Addr h = bac implies h a = None. Then predicate has-fields
computes the list of all field declarations in and above class C, and init-fields creates
the default field table. The second (R-Field) evaluates e to an address, looks up the
object at the address, indexes its field table with (F, D), and evaluates to the value found
in the field table. The lengthiest rule presented here (R-Method) is the one for a method
call. It evaluates e to an address a and the parameter list ps to a list of values vs, looks
up the class C of the object in the heap at a, looks up the parameter names pns and
the body of the method M visible from C, and evaluates the body in a store that maps
this to Addr a and the formal parameter names to the actual parameter values. The
final store is the one obtained from the evaluation of the parameters. The complete set
of rules can be found at the original papers (NIPKOW, 2003; KLEIN; NIPKOW, 2006).

According to the authors, the small-step semantics was provided because the big-
step semantics has several drawbacks, for example, it cannot accommodate paral-
lelism, and the type safety proof needs a fine-grained semantics. The main difference
between the two proposed semantics is that in the small-step they present subexpres-
sion reduction, which essentially describes the order that subexpressions are evalu-
ated. Having the subexpressions sufficiently reduced, they describe the expression
reduction. Most of that rules are fairly intuitive and many resemble their big-step con-
terparts (KLEIN; NIPKOW, 2006). These rules were omitted from this text.

In their papers, the authors relate the big-step with the small-step semantics, show
the type-system rules and then prove its type-safety by showing the progress and
preservation theorems for the proposed language. Additionally, the whole develop-
ment of this project runs to 20000 lines of Isabelle/HOL text, which can be found on-
line (KLEIN; NIPKOW, 2017).
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3.2.5 Comparing the Most Used Semantics

The use of formal modeling can offer significant advances to the design of a com-
plex system. The introduction of lightweight versions of a programming language,
where complex features are dropped to enable rigorous arguments about key prop-
erties, allow a better understanding of the language characteristics, facilitate the inves-
tigation of novel constructions, and can be a useful tool for studying the consequences
of extensions and variations.

However, choosing a formal model for a programming language when starting a
research can be a difficult task, since there is a large number of projects in this area
and several factors to be considered. For example, one project may need a more
complete semantics, where a big number of features are included, while another project
could render itself better to a more compact language, in order to study some specific
extension that does not depend on a complete approach. A look at the related work
can be a good starting point to choose among the variety of formalisms, because one
can observe the pattern applied to these projects, and the similarities with the work to
be developed. This section provides a comparison between the models presented in
previous sections, helping on this choice process.

Table 1 shows which features are modeled on each of the discussed formal lan-
guages. Features of original Java that are not modeled in any of the presented lan-
guages (for example packages, access modifiers, λ-expressions, concurrency, reflec-
tion, among others) were suppressed from this table. For clarity, we split the table into
categories, and we group some similar features for space optimization. We use three
different kinds of support level, where  means that the category or feature is fully
supported by the presented formalism, G# stands for a partial support, and # when the
feature is not supported at all. For presentation purposes we abbreviate Featherweight
Java as FJ, ClassicJava as CJ, JavaS as JS, and Jinja as JJ in the first line of the ta-
ble. Our intention is to present the main functionalities for each studied language, thus
some minor features may not appear in this table.

When looking at the table, we can identify two different patterns. The first, repre-
sented by Featherweight Java and ClassicJava, is compactness. The second, repre-
sented by JavaS and Jinja, is completeness. While the first ones are concentrated on
a minimal object-oriented formalism, the others formalized a larger subset of the Java
language. These patterns can be useful to choose between one or another approach,
so next, we discuss each pattern separately.

Featherweight Java and ClassicJava offer similar functionalities, where the goal of
these projects was to define a core calculus that is as small as possible, capturing just
the features of Java that are relevant for some particular task. In the case of FJ, the
task was to analyze extensions of the core type system. The task of CJ was to analyze
an extension of Java with mixins (FLATT; KRISHNAMURTHI; FELLEISEN, 1998), a
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Feature FJ CJ JS JJ
Primitive Types and Values # #  G#
Integer # #   
Boolean # #   
String literal # #  #
Basic Statements # G#   
Null values and Assignment #    
Conditionals # #   
Loops and Sequences # #   
Try-catch-finally # #   
Math Operators # # #  
Basic OOP G# G# G# G#
Classes and inheritance     
Interfaces #   #
Casts   #  
Constructors, super and this  G# # G#
Polymorphism and overriding   #  
Overloading and static methods # # # #
Generics  # # #
Arrays # #  #
Formal Specifications G# G# G#  
Big-step semantics # # #  
Small-step semantics     
Progress and preservation     
Use of proof assistant # # G#  

Support level:  = Full G# = Partial # = None
FJ is Feath. Java, CJ is ClassicJava, JS is JavaS, JJ is Jinja.

Table 1 – Comparison between the most used Java-like semantics.

feature of the Common Lisp language. The approach demonstrated by the authors of
FJ is somewhat smaller than CJ, where the syntax, typing rules, and operational se-
mantics of FJ take approximately three times less space than the other. Consequently,
the soundness proofs are also correspondingly smaller.

The functionalities offered by JavaS and Jinja are also similar. The goal of the
first was to show that Java’s type system is sound, while the goal of the second was
to provide a formal semantics of the core features of Java, emphasizing on a unified
model of the source language, the virtual machine, and the compiler. JS was one of
the first steps toward a formal semantics for Java, and hence, it was an inspiration
for later projects. However, because it explored a larger subset of an older version
of Java, it is not usually taken as the basis for new projects, being useful for study
purposes. In contrast, JJ was widely used as the basis for investigations of object-
oriented characteristics. As JJ is not properly a subset of Java, it was also used on
formalizations of other object-oriented languages. Because JJ also offers proofs, a
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virtual machine, and a compiler verified in the theorem prover Isabelle/HOL, it seems
to be a good formalism when a more complete formalism of Java is needed.

An indirect consequence of this section is that, although not covering all aspects
of the presented formalisms, it can provide insights on useful criteria for others when
choosing a formalism to be applied on their projects. Indeed, the comparison presented
here helped us on choosing the formalism to apply the techniques presented in this
thesis. We chose Featherweight Java as basis for our investigations, mainly because
a smaller calculus fit better for our purposes. When comparing specifically FJ with CJ,
and looking at the derived projects of both (FEITOSA; RIBEIRO; DU BOIS, 2018a),
we could see that FJ was applied mostly in Java extensions or novel constructions
in the object-oriented context, while CJ was applied in several projects to work with
threads and concurrency. We also considered that as a reason to choose FJ, as well
as because its formalization rules and proofs are more compact (and understandable)
than the other.

3.3 Chapter’s Final Remarks

This chapter summarized the programming languages we will use for the rest of
this thesis. First, we introduced a variant of λ-calculus, called STLC, augmented with
boolean constants and types, and we shown the soundness proofs of this calculus.
Second, we presented the four most used subset of object-oriented programming lan-
guages, using a comparison among them to choose Featherweight Java as the formal-
ism to apply the techniques we explored in this project.



4 TESTING PROPERTIES OF LANGUAGES

In the previous chapter we presented the semantics of two major languages to be
explored in this thesis. In this chapter, we start working with the first branch of this the-
sis, where the idea is to explore property-based testing in order to check soundness
properties of programming languages. We begin by developing a formal definition of
a type-directed algorithm to generate random programs, first for STLC, then for the
more complex language FJ. We then show how this algorithm can be implemented
in Haskell, together with QuickCheck, and how the resulting system can be used for
property-based testing. And finally, we evaluate the quality of our type-directed proce-
dure by measuring the code coverage of hand-written interpreters for both presented
languages. To show that our process can scale up for bigger languages, we extend
FJ and our program generator with some Java 8 features, checking the soundness
properties for the resulting calculus.

The first problem one faces when working with property-based testing is the cre-
ation of good test cases. First, because it should respect the programming language
requirements, in order to produce a valid test case. Second, if the test cases are cre-
ated by a person, it stays limited by human imagination, where obscure corner cases
could be overlooked. If the compiler writers are producing the test cases, they can be
biased, since they can make assumptions about their implementation or about what
the language should do. Furthermore, when the language evolves, previous test cases
could be an issue, considering the validity of some old tests may change if the language
semantics is altered (ALLWOOD; EISENBACH, 2009).

Considering the presented problem, there is a growing research field exploring ran-
dom test generation. However, generating good test programs is not an easy task,
since these programs should have a structure that is accepted by the compiler, re-
specting some constraints, which can be as simple as a program having the correct
syntax, or more complex such as a program being type-correct in a statically-typed
programming language (PAŁKA et al., 2011). We present next our efforts on this re-
search field.
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4.1 Simply-Typed Lambda Calculus

We propose in this section a generation algorithm to generate random programs
for STLC, inspired by the approach of PAŁKA et al. (2011). Different form the previous
works, we formalize a type-directed procedure having one generation rule for each
typing rule considering the structural type system of STLC, and we also prove that our
generation algorithm is sound with respect to the STLC typing rules.

4.1.1 Expression Generation

For our generation procedure we assume the existence of a function ξ : [a] → a,
which returns a random element from an input list. We also assume that T is a list
of valid types for STLC, and that there exist a list Vn of possible variable names. We
slightly abuse notation by using set operations on lists (sequences) and its meaning is
as usual.

The expression generation for STLC is represented by the following judgment,
where Γ is a typing environment, T is a STLC type (which can be Bool, Bool → Bool,
and so on), and e is the produced expression.

Γ;T ⇒e e

Having defined this general judgment, we present different generation rules for the
syntactical elements of the STLC language presented in the last chapter.

Boolean value generation. The generation of boolean values is straightforward. We
have one rule for each possible value.

Γ;Bool ⇒e true [G-True]

Γ;Bool ⇒e false [G-False]

Variable generation. The process for generating a variable constructor needs to select
one element in the Γ context whose type is T . First we select all x such that Γ(x) = T ,
producing a list of candidates (which can be empty). After that, we select one element
of the produced list. If the list of candidates is empty, the rule [G-Var] cannot be used.

Γ;T ⇒e ξ({x | Γ(x) = T}) [G-Var]

Abstraction generation. To generate an abstraction, we select one variable name x

from the list of variable names Vn, and then we add this variable in the Γ context with
type T1 to generate the body expression e with type T2. The result of rule [G-Abs] is a
λ-expression with v as its parameter and e as its body.
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v = ξ(Vn)
Γ, v : T1;T2 ⇒e e

Γ;T1 → T2 ⇒e λv.e
[G-Abs]

Application generation. The last generation rule [G-App] produces a function application.
First it generates a type T1 from the list of valid types T. Having this type, it generates
an abstraction expression e1 with type T1 → T2, and an expression e2 with type T1.
The function application is represented by the application of the expression e2 with the
function expression e1.

T1 = ξ(T)
Γ;T1 → T2 ⇒e e1

Γ;T1 ⇒e e2

Γ;T2 ⇒e e1 e2
[G-App]

By using these four generation rules, one can generate well-typed λ-terms with
respect to the presented STLC typing rules.

4.1.2 Soundness of Expressions Generation

We prove next that the presented type-directed algorithm is sound, i.e., it produces
only well-typed expressions, according to STLC rules.

Theorem 6 (Soundness of expression generation). For all Γ and T , if Γ;T ⇒e e, then
e is well-typed.

Proof. The proof proceeds by induction on the derivation of Γ;T ⇒e e with case analy-
sis on the last rule used to deduce Γ;T ⇒e e.

Case (G-True): By rule G-True, e = true and conclusion follows directly by rule T-True.

Case (G-False): Similar.

Case (G-Var): Then, e = x, for some variable x. By rule G-Var, x = ξ({y | Γ(y) = T})
and from this we can deduce that Γ(x) = T and the conclusion follows by rule T-Var.

Case (G-Abs): Then, e = λv.e0 for some v and e0; By rule G-Abs, we know that
Γ, v : T1;T2 ⇒e e0, for some T1 and T2; By the induction hypothesis we have that
Γ, v : T1 ` e0 : T2, and the conclusion follows by the rule T-Abs.

Case (G-App): Then, e = e1 e2 for some e1 and e2; By rule G-App, we know that
T1 = ξ(T), Γ;T1 → T2 ⇒e e1, and Γ;T2 ⇒e e2 for some T1 and T2; By the induction
hypothesis we have that Γ ` e1 : T1 → T2, and Γ ` e2 : T1, thus the conclusion follows
by the rule T-App.

4.1.3 QuickChecking Semantic Properties

This thesis aims to explore techniques to check properties of programming lan-
guages. In order to do that for STLC, we implemented an interpreter following the se-
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mantic rules presented earlier, and a test suite1 which implements the type-directed
algorithm to generate random programs using the QuickCheck tool (CLAESSEN;
HUGHES, 2000). We combine both to test if this hand-written interpreter is sound with
respect to STLC typing rules by testing the usual theorems of progress and preserva-
tion, similarly to what we have done for the expression language in Chapter 2.

The QuickCheck library provides a way to define a property as a Haskell function.
Thus, testing this property involves running the function on a finite number of inputs
when the number of all inputs is infinite. We are aware that testing can only result in
disproving the property, by finding a counter-example or leaving its validity undecided.
However, if a counter-example is found, it can be used in order to help to fix implemen-
tation bugs. Considering that, we start modeling the desired properties. The first is the
progress property.

prop_progress :: Expr → Bool

prop_progress e = isVal e ∨ maybe (False) (const True) (step e)

This property is encoded exactly the same way presented before. Function
prop_progress receives an expression Expr as parameter (which is automatically gen-
erated by QuickCheck), and performs a reduction using the function step when the
generated expression is not a value. We use the function isVal to check this fact. If the
tested property holds, the result is True, and False otherwise.

Then, we encode the preservation property.

prop_preservation :: Expr → Bool

prop_preservation e =

isVal e ∨
case (typeof Data.Map.empty e) of

Just t → case (step e) of

Just e′ → case (typeof Data.Map.empty e′) of

Just t′ → t ≡ t′

→ False

→ False

→ False

Similarly, the function prop_preservation receives an expression Expr as parameter.
It also checks if expression e is a value, because a value cannot take a reduction
step. Considering that e is not a value, we use the function typeof to obtain the type
of expression e before evaluation. The reader can note the use of an extra parameter
Data.Map.empty, which represents an empty Γ context. Afterwards, the function per-
forms a reduction step on e, having as result an e′. Then, we use again the function

1The source-code of our interpreter and the test suite is available online (FEITOSA, 2019).
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typeof on expression e′, to check if the types are preserved after a reduction step, i.e.,
the type t of e is the same of type t′ of e′.

4.1.4 Measuring the Quality of Tests

After running thousands of well-succeeded tests for both presented properties, we
gain confidence that our interpreter and test suite is working properly. Indeed, dur-
ing our tests, we found some small bugs in our interpreter implementation, which were
fixed and quickly re-checked by running the test suite again. Then, as seen in the back-
ground chapter, we apply the HPC tool to measure code coverage of our interpreter.
The summary of the results produced by HPC is presented in Figure 22.

Figure 22 – Test coverage results for STLC.

As the interpreter of STLC is encoded in a unique module, we have just one line
showing the coverage results for “Top level definitions” (71%), “Alternatives” (95%), and
“Expressions” (98%). Then, we used the detailed coverage description to see which
part of code was not reached by the performed tests. Figure 23 shows a result of HPC
with highlighted code (using the yellow color) for unreachable code.

Figure 23 – Unreachable code on STLC definition of types.

This result is obviously correct, since we are not concerned in showing any informa-
tion to the user (i.e., there is no instance to Show) when running our tests of properties.
Figure 24 shows a piece of code highlighted using the green color, which means that
whenever the interpreter reaches the highlighted code, the result is always True. Here
again, the result is obvious, because the otherwise keyword will always produce such
result.

Figure 24 – Unreachable code on STLC evaluation.

The last result we show for STLC is related to its type-checker. Figure 25 shows the
complete implementation of function typeof which encodes the static semantics of this
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calculus. By observing this results, we have two distinct parts highlighted with different
colors. The first part appears in green, stating that the test t1 ≡ t1′ is always true,
and as result the line in yellow is never reached. Indeed, this is the expected result for
this code, since we are generating only well-typed expressions, which means that we
should never return an error during type-checking.

Figure 25 – Unreachable code on STLC type-checker.

The presented statistics provided by HPC are very useful to improve the quality of
tests, since we have information about each individual line of code performed when
running the test suite. Specifically for the presented interpreter, we can say that al-
though not covering all the source-code, we have good test cases, because code not
reached by the interpreter would only be reached by ill-typed programs, i.e., error han-
dling code.

4.2 Featherweight Java

To generate random programs in the context of FJ, we follow two distinct phases,
expression and class generation, generalizing the approach presented in the last
section, considering that FJ has a nominal type system instead of a structural one.
Similarly to STLC, we specified a generation rule for each typing rule, both for ex-
pression generation and class table generation. This section summarizes the results
of the papers “Generating Random Well-Typed Featherweight Java Programs Using
QuickCheck” (FEITOSA; RIBEIRO; DU BOIS, 2019), and “A Type-Directed Algorithm to
Generate Well-Typed Featherweight Java Programs” (FEITOSA; RIBEIRO; DU BOIS,
2018c).

4.2.1 Expression Generation

We assume that a class table CT is a finite mapping between names and its cor-
responding classes. We let dom(CT) denote the set of names in the domain of the
finite mapping CT. An empty sequence is denoted by •, and the length of a sequence
	x is written #	x. The generation algorithm also uses the function ξ : [a] → a, which
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returns a random element from an input list. Similarly the previous section, we use set
operations on lists (sequences) and its meaning is as usual.

The expression generation is represented by the following judgment:

CT ; Γ ; C⇒e e

There CT is a class table, Γ is a typing environment, C is a type name and e is the
produced expression.

For generating variables, we just need to select a name from the typing environ-
ment, which has a type C.

CT ; Γ ; C⇒e ξ ({ x | Γ(x) = C })
[G-Var]

For fields access, we first need to generate a list of candidate type names for gen-
erating an expression with type C′ which has at least one field whose type is C. We
name such list Cc:

Cc = { C1 | C1 ∈ dom(CT) ∧ ∃ x. C x ∈ fields(C1) }

Now, we can build a random expression by using a type randomly chosen from it.

C′ = ξ(Cc)
CT ; Γ ; C′ ⇒e e

Since type C′ can have more than one field with type C, we need to choose one of
them (note that, by construction, such set is not empty).

C f = ξ({C x | C x ∈ fields(C′)}

The rule G-Field combines these previous steps to generate a field access expres-
sion:

Cc = {C1 | C1 ∈ dom(CT) ∧ ∃ x. C x ∈ fields(C1)}
C′ = ξ(Cc)

CT ; Γ ; C′ ⇒e e
C f = ξ({C x | C x ∈ fields(C′)}

CT ; Γ ; C⇒e e.f
[G-Field]

For method invocations, we first need to find all classes which have method signa-
tures with return type C. As before, we name such candidate class list as Cc.

Cc = {C1 | C1 ∈ dom(CT) ∧ ∃ m D̄. mtype(m, C1) = D̄→ C}

Next, we need to generate an expression e0 from a type chosen from Cc, we name
such type as C′.
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C′ = ξ(Cc)
CT ; Γ ; C′ ⇒e e0

From such type C′, we need to chose which method with return type C will be called.
For this, we select a random signature from its list of candidate methods.

Mc = {(m, D̄→ C) | ∃ m. mtype(m , C′) = D̄→ C}
(m′, D̄′ → C) = ξ(Mc)

Next, we need to generate arguments for all formal parameters of method m′. For
this, since arguments could be of any subtype of the formal parameter type, we need
to choose it from the set of all candidate subtypes.

First, we define a function called subtypes, which return a list of all subtypes of
some type.

subtypes(CT, Object) = {Object}
subtypes(CT, C) = {C} ∪ subtypes(CT, D), if class C extends D ∈ CT

Using this function, we can build the list of arguments for a method call.

ā = {e | D ∈ D̄′ ∧ CT ; Γ ; ξ(subtypes(CT, D))⇒e e }

The rule G-Invk combines all these previous steps to produce a method call.

Cc = {C1 | C1 ∈ dom(CT) ∧ ∃ m D̄. mtype(m, C1) = D̄→ C}
C′ = ξ(Cc)

CT ; Γ ; C′ ⇒e e0

Mc = {(m, D̄→ C) | ∃ m. mtype(m , C′) = D̄→ C}
(m′, D̄′ → C) = ξ(Mc)

ā = {e | D ∈ D̄′ ∧ CT ; Γ ; ξ(subtypes(CT, D))⇒e e}
CT ; Γ ; C⇒e e0.m′(ā)

[G-Invk]

The generation of a random object creation expression is straightforward: First, we
need to get all field types of the class C and produce arguments for C’s constructor
parameters, as demonstrated by rule G-New.

F̄ = {C′ | C′ f ∈ fields(C)}
ā = {e | F ∈ F̄ ∧ CT ; Γ ; ξ(subtypes(CT, F))⇒e e}

CT ; Γ ; C⇒e new C(ā)
[G-New]

We construct upper casts expressions for a type C using the G-UCast rule.

D̄ = subtypes(CT, C)
CT ; Γ ; ξ(D̄)⇒e e
CT ; Γ ; C⇒e (C) e

[G-UCast]

Although we do not start a program with downcasts or stupid casts, because ex-
pressions generated by these typing rules can reduce to cast unsafe terms (IGARASHI;
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PIERCE; WADLER, 2001), we defined the generation process in the rules G-DCast and
G-SCast, since they can be used to build inner sub-expressions.

For generating downcasts, first we need the following function, which returns the
set of super types of a given class name C.

supertypes(CT, Object) = •
supertypes(CT, C) = {D} ∪ supertypes(CT, D), if class C extends D ∈ CT

Then, we can produce the rule G-DCast to generate a downcast expression.

D̄ = supertypes(CT,C)
CT ; Γ ; ξ(D̄)⇒e e
CT ; Γ ; C⇒e (C) e

[G-DCast]

The generation of stupid casts has a similar process, except that it generates a list
of unrelated classes, as we can see in the first line of the rule G-SCast.

C̄ = dom(CT) - (subtypes(CT,C) ∪ supertypes(CT,C))
CT ; Γ ; ξ(C̄)⇒e e
CT ; Γ ; C⇒e (C) e

[G-SCast]

Considering the presented generation rules, we are able to produce well-typed ex-
pressions for each FJ’s definitions.

4.2.2 Class Table Generation

To generate a class table, we assume the existence of an enumerable set Cn of
class names and Vn of variable names. We let ϕ : L → C denote a function that
returns a class name C from a given class declaration L. The inclusion of an item
x in a sequence X is denoted by x : X, following Haskell’s notation for lists. The
generation rules are parameterized by an integer n which determines the number of
classes that will populate the resulting table, a limit m for the number of members
(attributes or methods) in each class and a limit p for the number of formal parameters
in the generated methods. This procedure is expressed by the following judgment:

CT ; n ; m ; p⇒ct CT′

It is responsible to generate n classes using as input the information in class table
CT (which can be empty), each class will have up to m members. As a result, the
judgment will produce a new class table CT′. As expected, this judgment is defined by
recursion on n:

CT ; 0 ; m ; p⇒ct CT
[CT-Base]
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CT ; m ; p⇒c L
ϕ(L) L : CT ; n ; m ; p⇒ct CT′

CT ; n + 1 ; m ; p⇒ct CT′
[CT-Step]

Rule CT-Base specifies when the class table generation procedure stops. Rule CT-

Step uses a specific judgment to generate a new class, inserts it in the class table CT,
and generate the next n classes using the recursive call ϕ(L) L : CT; n ; m ; p⇒ct CT′.
The following judgment presents how classes are generated:

CT ; m ; p⇒c L

It generates a new class, with at mostmmembers, with at most p formal parameters
in each method, using as a starting point a given class table. First, we create a new
name which is not in the domain of the input class table, using:

C = ξ(Cn - (dom(CT) ∪ {Object}))

This rule selects a random class name from the set Cn excluding the names in the
domain of CT and Object. Next, we need to generate a valid super class name, which
can be any of the set formed by the domain of current class table CT and Object:

D = ξ(dom(CT) ∪ {Object})

After generating a class name and its super class, we need to generate its mem-
bers. For this, we generate random values for the number of fields and methods,
named fn and mn, respectively. Using such parameters we build the fields and meth-
ods for a given class.

Field generation is straightforward. It proceeds by recursion on n, as shown below.
Note that we maintain a set of already used attribute names Un to avoid duplicates.

CT ; 0 ; Un ⇒fs •
[G-Fields-Base]

C = ξ(dom(CT) ∪ {Object})
f = ξ(Vn - Un)

CT ; n ; f : Un ⇒fs C̄ f̄

CT ; n + 1 ; Un ⇒fs C f : C̄ f̄
[G-Fields-Step]

Generation of the method list proceeds by recursion on m, as shown below. We
also maintain a set of already used method names Un to avoid method overload, which
is not supported by FJ. The rule G-Method-Step uses a specific judgment to generate
each method, which is described by rule G-Method.
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CT ; C ; 0 ; p ; Un ⇒ms •
[G-Methods-Base]

x = ξ(Vn - Un)
CT ; C ; p ; x⇒m M

CT ; C ; m ; p ; x : Un ⇒ms M̄
CT ; C ; m + 1 ; p ; Un ⇒ms M : M̄

[G-Methods-Step]

The rule G-Method uses an auxiliary judgment for generating formal parameters (note
that we can generate an empty parameter list). To produce the expression, which
defines the method body, we build a typing environment using the formal parameters
and a variable this to denote this special object. Also, such expression is generated
using a type that can be any of the possible subtypes of the method return type C0.

n = ξ([0..(p - 1)])
CT ; n ; • ⇒ps C̄ x̄

C0 = ξ(dom(CT) ∪ {Object})
Γ = C̄ x̄, this : C

D̄ = subtypes(CT,C0)
E0 = ξ(D̄)

CT ; Γ ; E0 ⇒e e
CT ; C ; p ; m⇒m (C0 m (C̄ x̄) {return e;})

[G-Method]

We create the formal parameters for methods using a simple recursive judgment
that keeps a set of already used variable names Un to ensure that all produced vari-
ables are distinct.

CT ; 0 ; Un ⇒ps •
[G-Param-Base]

C = ξ(dom(CT) ∪ {Object})
x = ξ(Vn - Un)

CT ; n ; x : Un ⇒ps C̄ x̄

CT ; n + 1 ; Un ⇒ps (C x : C̄ x̄)
[G-Param-Step]

Finally, with the generated class name and its super class, we build the constructor
definition using the judgment:

CT ; C ; D⇒k K

Rule G-Constr represents the process to generate the constructor.

D̄ ḡ = fields(D)
C̄ f̄ = fields(C) - D̄ ḡ

CT ; C ; D⇒k ( C (D̄ ḡ, C̄ f̄) { super(ḡ) ; this.f̄ = f̄ } )
[G-Constr]
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The process for generating a complete class is summarized by rule G-Class, which
is composed by all previously presented rules.

C = ξ(Cn - (dom(CT) ∪ {Object}))
D = ξ(dom(CT) ∪ {Object})

fn = ξ([1..m])
mn = ξ([1..(m - fn)])

CT′ = C (class C extends D {}) : CT
CT′ ; fn ; • ⇒fs C̄ f̄

CT′′ = C (class C extends D {C̄ f̄}) : CT
CT′′ ; C ; mn ; p ; • ⇒ms M̄

CT′ ; C ; D⇒k K
CT ; m ; p⇒c (class C extends D { C̄ f̄; K M̄ })

[G-Class]

Considering the presented generation rules, we are able to fill a class table with
well-formed classes in respect to FJ typing rules.

4.2.3 Soundness of Program Generation

The generation algorithm described in the previous section produces only well-
typed FJ programs.

Lemma 6 (Soundness of expression generation). Let CT be a well-formed class table.
For all Γ and C ∈ dom(CT), if CT ; Γ ; C⇒e e then exists D, such that Γ ` e : D and D
<: C.

Proof. The proof proceeds by induction on the derivation of CT ; Γ ; C ⇒e e doing a
case analysis on the last rule used to deduce CT ; Γ ; C⇒e e. We show some cases
of the proof.

Case (G-Var): Then, e = x, for some variable x. By rule G-Var, x = ξ({y | Γ(y) = C})
and from this we can deduce that Γ(x) = C and the conclusion follows by rule T-Var.

Case (G-Invk): Then, e = e0.m(ē) for some e0 and ē; CT ; Γ ; C′ ⇒e e0, for some
C′; there exists (m, D̄′ → C), such that mtype(m, C′) = D̄→ C and for all e′ ∈ ē, D ∈ D̄′,
CT ; Γ ; ξ(subtypes(CT,D)) ⇒e e′. By the induction hypothesis, we have that: Γ ` e0 :
D′, D′ <: C′, for all e′ ∈ ē, D ∈ D̄′. Γ ` e′ : B, B <: D and the conclusion follows by the
rule T-Invk and the definition of subtyping relation.

Lemma 7 (Soundness of subtypes). Let CT be a well-formed class table and C ∈
dom(CT). For all D. if D ∈ subtypes(CT,C) then C <: D.

Proof. Straightforward induction on the structure of the result of subtypes(CT, C).

Lemma 8 (Soundness of method generation). Let CT be a well-formed class table and
C ∈ dom(CT) ∪ {Object}. For all p and m, if CT ; C ; p ; m⇒m C0 m (C̄ x̄) { return e; }
then C0 m (C̄ x̄) { return e; } OK in C.
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Proof. By rule G-Method, we have that:

• C̄ ⊆ dom(CT)

• Γ = {C̄ x̄, this : C}

• C0 = ξ(dom(CT) ∪ {Object})

• D̄ = subtypes(CT,C0)

• CT ; Γ ; E0 ⇒e e

• E0 = ξ(D̄)

By Lemma 7, we have that for all D ∈ D̄, C0 <: D.
By Lemma 6, we have that Γ ` e : E′ and E′ <: E0.
Since CT is well-formed, then mtype(m, C) = C̄→ C0 and the conclusion follows by

rule method typing and the definition of the subtyping relation.

Lemma 9 (Soundness of class generation). Let CT be a well-formed class table. For
all m, p, if CT ; m ; p⇒c CD then CD OK.

Proof. By rule G-Class, we have that:

• CD = class C extends D { C̄ f̄ ; K M̄ }

• C = ξ(Cn - (dom(CT) ∪ Object))

• D = ξ(dom(CT) ∪ Object)

• fn = ξ([1..m])

• mn = ξ([1..(m - fn)])

• CT ′ = C (class C extends D {}) : CT

• CT ′ ; fn⇒fs C̄ f̄

• CT ′′ = C (class C extends D { C̄ f̄; }) : CT

• CT ′′ ; C ; mn ; p ; • ⇒ms M̄

• CT ′ ; C ; D⇒k K

By Lemma 8, we have that for all m. m ∈ M̄, m OK.
By rule G-Constr we have that K = C (D̄ ḡ, C̄ f̄) {super(ḡ); this.f̄ = f̄;}, where D̄ ḡ =

fields(D).
The conclusion follows by rule class typing.
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Lemma 10. Let CT be a well-formed class table. For all n, m and p, if CT ; n ; m ; p
⇒ct CT′ then for all C, D ∈ dom(CT′), if C <: D and D <: C then CT(C) = CT(D).

Proof. By induction on n.

Case n = 0: We have that CT′ = CT. Conclusion follows by the fact that CT is a
well-formed class table.

Case n = n′ + 1: Suppose C, D ∈ dom(CT′), C <: D and D <: C. By the induction
hypothesis we have that for all CT1, C′, D′ ∈ CT1, if C′ <: D′ and D′ <: C′ then C′ = D′,
where CT ; n ; m ; p⇒ct CT1. Let L be a class such that CT ; m ; p⇒c L. By Lemma 9,
we have L OK in CT. By the induction hypothesis on ϕ(L) L : CT ; n ; m ; p⇒ct CT′ and
rule CT-Step we have the desired conclusion.

Lemma 11 (Soundness of class table generation). Let CT be a well-formed class table.
For all n, m and p, if CT ; n ; m ; p⇒ct CT′ then CT′ is a well-formed class table.

Proof. By induction on n.

Case n = 0: We have that CT′ = CT and the conclusion follows.

Case n = n′ + 1: By rule CT-Step we have that:

• CT ; m ; p⇒c L

• ϕ(L) L : CT ; n ; m ; p⇒ct CT′

By Lemma 9, we have that L OK. By the induction hypothesis we have that CT′ is a
well-formed class table. By Lemma 10, we have that subtyping in CT′ is antisymmetric.
Conclusion follows by the definition of a well-formed class table.

Theorem 7 (Soundness of program generation). For all n, m and p, if • ; n ; m ; p⇒ct

CT, and CT ; Γ ; C⇒e e, then:

1. CT is a well-formed class table.

2. For all C ∈ CT, we have C OK.

3. e is a well-typed expression.

Proof. Corollary of Lemmas 6, 9, 10 and 11.

4.2.4 QuickChecking Semantic Properties

As a proof of concept we have implemented an interpreter following the semantics
of FJ, and we used random generated programs to check this interpreter against some
properties, including those for type-soundness. The properties were specified and
tested using QuickCheck (CLAESSEN; HUGHES, 2000).
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Considering that testing requires additional programming, there is a natural risk that
the testing code itself contain bugs (MIDTGAARD et al., 2017). In order to reduce the
risk of bugs in our implementation, we have tested it with QuickCheck, by using our
interpreter and the test generators. We checked the following:

• That our custom generator produces only well-formed class tables.

• That our custom generator produces only well-typed expressions, according to a
randomly generated class table.

• And if all generated expressions are cast-safe.

We started defining a function to check if generated class tables are well-formed,
as follows:

prop_genwellformedct :: Bool

prop_genwellformedct =

forAll (genClassTable) $

λ ct → Data.List.all

(λ (c, cl) → classTyping cl Data.Map.empty ct) (Data.Map.toList ct)

The above code uses the QuickCheck function forAll, which mimics the universal
quantifier ∀, generating a user-defined number of instances of class tables, and testing
if all produced classes and interfaces inside a given class table are well-formed, by
running the function classTyping.

We also defined a function to test if the generated expressions are well-typed, as
in the following piece of code. This function starts by generating an instance of a class
table ct. After that, it randomly chooses a type t present in the class table (class or
interface). Then, it uses the produced ct and an empty environment, to generate an
expression of type t. In the end, by using the function typeof, it checks if the expression
has indeed the type t.

prop_genwelltypedexpr :: Bool

prop_genwelltypedexpr =

forAll (genClassTable) $

λ ct → forAll (genType ct) $

λ t → forAll (genExpression ct Data.Map.empty t) $

λ e → either (const False)

(λ (TypeClass t′) → t ≡ t′)

(typeof Data.Map.empty ct e)

As a last check for our generators, the following function tests if a produced expres-
sion is cast-safe, i.e., the subject expression is a subtype of the target type (IGARASHI;
PIERCE; WADLER, 2001).
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prop_gencastsafeexpr :: Bool

prop_gencastsafeexpr =

forAll (genClassTable) $

λ ct → forAll (genType ct) $

λ t → forAll (genExpression ct Data.Map.empty t) $

λ e → case e of

(Cast c e) → case (typeof Data.Map.empty ct e) of

Right (TypeClass t′) → subtyping t′ c ct

→ False

→ True

Thanks to these checks we found and fixed a number of programming errors in our
generator, and in our interpreter implementation. Although testing can’t state correct-
ness, we gain a high-degree of confidence in using the generated programs.

We have used our test suite as a lightweight manner to check the properties of
preservation and progress presented in the FJ paper. The informal (non-mechanized)
proofs were also modeled as Haskell functions to be used with QuickCheck.

The preservation (subject reduction) property is presented by Theorem 2.4.1 (p.
406 of (IGARASHI; PIERCE; WADLER, 2001)), stating that “If Γ ` e: T and e → e′,
then Γ ` e′: T′ for some T′ <: T.”. Our function was modeled as follows:

prop_preservation :: Bool

prop_preservation =

forAll (genClassTable) $

λ ct → forAll (genType ct) $

λ t → forAll (genExpression ct Data.Map.empty t) $

λ e → either (const False)

(λ (TypeClass t′) → subtyping t′ t ct)

(case (eval′ ct e) of

Just e′ → typeof Data.Map.empty ct e′

→ throwError (UnknownError e))

As we can see in the code, after generating an instance for ct, a type t, and an
expression e of type t, a reduction step is performed by function eval′ over expression
e producing an e′. Then, the function typeof is used to obtain the type of e′. Last, the
subtyping function is used to check if the expression keeps the typing relation after a
reduction step.

Similarly, we modeled (as follows) a function for the progress property (Theorem
2.4.2, p. 407 (IGARASHI; PIERCE; WADLER, 2001), which states that a well-typed
expression does not get stuck.
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prop_progress :: Bool

prop_progress =

forAll (genClassTable) $

λ ct → forAll (genType ct) $

λ t → forAll (genExpression ct Data.Map.empty t) $

λ e → isValue ct e ∨ maybe (False) (const True) (eval′ ct e)

This function also generates a class table, a type, and an expression of that type.
Then it checks that or the expression is a value, or it can take a reduction step through
the function eval′.

4.2.5 Measuring the Quality of Tests

We also ran many thousands of tests for the presented functions, all of them with
success. Then, similarly to the previous section, we measured the quality of our tests
with HPC by checking how much of the code base was covered by our test suite.
Results of code coverage for each module (evaluator, type-checker, auxiliary functions,
and total, respectively) are presented in Figure 26.

Figure 26 – Test coverage results for FJ.

In Figure 27 we present a piece of code of our evaluator with unreachable code
highlighted.

Figure 27 – Unreachable code on FJ evaluation.

There we can note that to reach the highlighted code it is necessary: (1) the field
f is not found in the fields of class c; (2) an error processing function eval′ for the
subexpression e. Both cases represent stuck states, which can be only executed if
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we have an ill-typed expression. As stated on type soundness proofs (IGARASHI;
PIERCE; WADLER, 2001), a well-typed expression does not get stuck.

Similarly, Figure 28 shows a piece of code of our type-checker with unreachable
code highlighted.

Figure 28 – Unreachable code on FJ type-checker.

We notice that the highlighted code would be executed only if: (1) we have an
undefined variable in the typing context Γ; (2) the code is using a field that is not
present in the class of current expression; (3) the type of sub-expression e could not
be obtained. In all situations, we have an ill-typed program.

Finally, Figure 29 shows a piece of code of our auxiliary functions, where the high-
lighted code could be reached in two cases: (1) the class c is not present on the class
table; (2) performing fields on a base class results in an error. This would only happen
if we had an ill-typed program.

Figure 29 – Unreachable code on FJ auxiliary functions.

Although not having 100% of code coverage, our test suite was capable to verify
the main safety properties presented in FJ paper, by exercising on randomly generated
programs of increasing size. By analyzing test coverage results, we could observe that
code not reached by test cases consists of stuck states on program semantics or error
control for expressions that are ill-typed.

After testing our generation procedure against our hand-written interpreter, we com-
pile the generated ASTs of FJ to regular Java code, and we created a QuickCheck
property to export the generated code to a Java file, and to compile it using the ‘javac’
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compiler (the closest implementation of Java Specification Language), which was as-
sumed as an oracle for our algorithm. The function prop_compile (shown below) first
generates a class table, a type, and an expression. Then it writes the code into a
Java file (“program.java”), and invokes the ‘javac’ compiler passing this program as pa-
rameter, checking for success or failure in the process. In case of failure, QuickCheck
presents the generated code as a counter example of the property.

prop_compile =

forAll (genClassTable) $

λ ct → forAll (genType ct) $

λ t → forAll (genExpression ct Data.Map.empty t) $

λ e → monadicIO $

do f ← run (writeFile “program.java” (formatJavaProgram ct e))

(ex, out, err) ← run (readProcessWithExitCode “javac” [“programa.java”] “”)
assert (ex ≡ ExitSuccess)

By using this function, while developing our code generator we were able to find
two problems in our implementation when compiling it with ‘javac’. The first occurred
when generating an expression with a cast, where we notice lack of parenthesis on the
cast expression, which caused an error of precedence. Another problem we found was
the size limit for a method, since the Java Virtual Machine specification limits the size
of generated Java byte code for each method in a class to the maximum of 64Kb. This
limitation caused the JVM to throw java.lang.VerifyError at runtime when the method size
exceeded this limit. Both bugs were easily corrected by using the presented counter
examples, and after that 100% of the test cases were successfully performed.

4.3 Semantics of Java 8 features in Featherweight Java

In order to explore in depth the property-based testing approach regarding program-
ming language properties, we extended Featherweight Java with new features. We
defined the formal semantics of λ-expressions and default methods which were added
in the kernel of Java in the release of Java Development Kit version 8 (JDK 8). By
using λ-expressions a programmer can treat functions as a method argument, or code
as data in Java in a similar way functional languages work, offering a programming
model that fuses the object-oriented and functional paradigms. The text presented in
this section is based upon our paper “Property-based Testing the Semantics of Java 8
Features in Featherweight Java” (FEITOSA; RIBEIRO; DU BOIS, 2018b).
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4.3.1 Extended Definitions

The abstract syntax of FJ augmented with interfaces, λ-expressions and default
methods is given in Figure 30, where T represents type declarations, L and P express
classes and interfaces, K represents constructors (presented earlier), S stands for
signatures, M for methods, and e refers to the possible expressions. We use the meta-
variables C, D, and E to represent class names, I, and J to represent interface names,
and T , U , and V to represent generic names for classes or interfaces. Other definitions
are similar to those presented earlier in this chapter.

T ::= type definitions
C | I

L ::= class declarations
class C extends C implements I {T f ;K M}

P ::= interface declarations
interface I extends I {S; default M}

S ::= signature declarations
T m(T x)

M ::= method declarations
S { return e; }

e ::= expressions:
· · · original FJ constructors
(T x)→ e λ-expression

Figure 30 – Syntactic definitions for the extended FJ.

The differences from original FJ (IGARASHI; PIERCE; WADLER, 2001)
were given firstly by the introduction of interface declarations, where
interface I extends I { S; default M } introduces an interface named I with a
list of super-interfaces I. The new interface defines a list of signatures S and a list
of default methods default M . For completeness, since Java’s semantics allows a
class to implement a list of interfaces, we changed the class declarations accordingly.
Second, the signature declarations were added representing prototypes for abstract
and concrete methods, where T m(T x) introduces a method named m, a return type
T , and parameters x of types T . As a consequence, the method declarations were
also modified. Lastly, we added the constructor for λ-expressions, where (T x) → e

represents an anonymous function, which has a list of arguments with type T and
names x, and a body expressions e.

The class table was also modified to accept both class and interface declarations.
Therefore, a class table CT is a mapping from class or interface names, to class or
interface declarations, L or P respectively. It still should satisfy some conditions, such
as each type T should be in CT, except Object, which is a special class; and there
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are no cycles in the sub-typing relation. Thereby, a program is a pair (CT, e) of a
class table and an expression. For brevity, we omit from this text the details about
auxiliary definitions (fields, mtype, mbody, λmark and abs-methods), sub-typing, and
the dynamic semantics, but these definitions can be found in (FEITOSA; RIBEIRO;
DU BOIS, 2018b). We explain the meaning of these definitions as they appear in the
sequence of this text.

Since our generation procedure relies on the typing rules, we show in Figure 31 the
new typing rule T-Lam, which was added to type the λ-expression constructor. This rule
first checks if I is a functional interface2, using the function abs-methods which should
bring information about its only method signature. Next, we use our λmark3 definition
to annotate the source-code with types for λ-expressions. Lastly, this rule verifies if the
resulting type of the body is a sub-type of the return type of the method m.

abs-methods(I) = {T m(T̄ ȳ)}
λmark(e,T) = e′ x̄: T̄, Γ ` e′ : U U <: T

Γ ` (I) ((T̄ x̄)→ e) : I
[T-Lam]

Figure 31 – Typing λ-expressions in FJ.

We also had to add a rule to check if interfaces are well-formed, as shown in Figure
32. Roughly, this rule checks if all default methods are well-formed (using the rule
presented in the original FJ paper (IGARASHI; PIERCE; WADLER, 2001)), and that
there is at least one abstract method in such interface definition.

M̄ OK in I abs-methods(I) 6= •
interface I extends Ī { S̄; default M̄ } OK

Figure 32 – Interface typing in FJ.

Having defined the new rules, we proved in (FEITOSA; RIBEIRO; DU BOIS, 2018b)
the subject reduction and progress to demonstrate type soundness for the Java 8 fea-
tures of λ-expressions and default methods analogously to FJ. We kept the theorem
names of the original FJ paper (IGARASHI; PIERCE; WADLER, 2001), presenting only
the new cases for each of them.

Lemma 12 (Term substitution preserves typing). If Γ, x : U ` e : U and Γ ` d : U0

where U0 <: U , then Γ ` [x 7→ d]e : T for some T <: U .

Proof. By induction on the derivation of Γ, x : U ` e : U with case analysis on the typing
rule used. It extends the original lemma for FJ (Lemma A.1.2 (IGARASHI; PIERCE;
WADLER, 2001)) with the following case:

2A functional interface is an interface that contains one and only one abstract method.
3A detailed explanation about this definition and its use can be found in our paper (FEITOSA;

RIBEIRO; DU BOIS, 2018b)
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Case (T-Lam). e = (I)((T x0) → e0), abs-methods(I) = {T0 m(T y)}, and Γ, x :

U, x0 : T ` e0 : V where V <: T0. By the induction hypothesis Γ, x0 : T ` [x 7→ d]e0 : V ,
finishing the case by applying the rule T-Lam.

Theorem 8 (Subject reduction). If Γ ` e : T and e → e′, then Γ ` e′ : T ′ for some
T ′ <: T .

Proof. By induction on the reduction e → e′, with a case analysis on the reduction
rule used. It extends the original proof (IGARASHI; PIERCE; WADLER, 2001) of the
corresponding theorem for FJ with the following cases:

Case (R-Default). e = ((I)((T x) → e0)).m(u), mbody(m, I) = (y, e1), and by rules
T-Invk and T-Lam, we have: Γ ` ((I)((T x) → e0)) : I, mtype(m, I) = U → U , Γ ` u : T ,
and T <: U . Furthermore, e′ = [u 7→ y]e1 and by the Lemma 12, Γ ` e′ = [u 7→ y]e1 : T

for some T <: U .
Case (R-Lam). e = ((I)((T x) → e0)).m(u), and by rules T-Invk and T-Lam, we have:

Γ ` ((I)((T x) → e0)) : I, mtype(m, I) = U → U , Γ ` u : T , and T <: U . Furthermore,
e′ = [u 7→ x]e0 and by the Lemma 12, Γ ` e′ = [u 7→ x]e0 : T for some T <: U .

Case (R-Cast-Lam). e = (T )((I)((T x) → e)), I <: T , and by rules T-UCast and
T-Lam, we have: Γ ` ((I)((T x) → e)) : I, and (T )((I)((T x) → e)) : T . Furthermore,
e′ = (I)((T x)→ e), finishing the case since I <: T .

Theorem 9 (Progress). Suppose e is a well-typed expression.
(1) If e includes ((I)((T x) → e0)).m(u) as a sub-expression, and mbody(m, I) =

(y, e1), then #y = #u for some y and e1.
(2) If e includes ((I)((T x) → e0)).m(u) as a sub-expression, and mbody(m, I) is

not defined, then #x = #u.

Proof. The proof is based on the analysis of all well-typed expressions, extending
previous proofs (IGARASHI; PIERCE; WADLER, 2001), which can be reduced to the
above cases, to conclude that either it is in normal form or it can be further reduced to
obtain a normal form. There are two possible normal forms. They are:

- new C(v) Object as in FJ.
- (I)((T x)→ e) A well-typed λ-expression.

Theorem 10 (Type Soundness). If ∅ ` e : T and e →∗ e′ with e′ being a normal form,
then e′ is a value w with ∅ ` w : S and ∅ ` S <: T .

Proof. Immediate from above theorems.
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4.3.2 Generation of Random Programs

Using the new typing rules presented above, we also extended our generation al-
gorithm to generate programs including the constructors of Java 8. Some of the ex-
istent constructors of FJ were slightly changed to include these new features, and to
avoid clutter we omit these small changes from this text. In this formalization, we
let classes(CT) and interfaces(CT) denote the set of names in the domain of the fi-
nite mapping CT for classes and interfaces, respectively. Then, dom(CT) denotes
classes(CT) ∪ interfaces(CT). Next we focus only in the brand new generation rules,
including generation for λ-expressions and interfaces.

λ-expression generation. The type for a λ-expression is given by a functional interface
I, which should have only one abstract method, and the generation rule is similar to
those presented before. First, we need to get information about this abstract method.
To accomplish this task, we use the auxiliary definition abs-methods4, which returns
the formal parameters and the return type of the expected λ-expression. After that, we
generate the body expression by selecting a type from the sub-types of the return type
T , and then we assemble the λ-expression with the formal parameters (T x) and the
generated body expression e. This process is formalized by the G-Lam rule.

abs-methods(I) = {T m(T̄ x̄)}
CT ; x̄: T̄, Γ ; ξ(subtypes(CT,T))⇒e e

CT ; Γ ; I⇒e (T̄ x̄)→ e
[G-Lam]

Interface generation. Similarly to the rule G-Class presented earlier, in this extended
calculus we have a specific judgment to generate interfaces:

CT ; m ; p⇒i I

It generates a new interface, with at most m members (signatures or default meth-
ods), with at most p formal parameters for each signature or method, using as starting
point a given class table. First, we create a new name which is not in the domain of the
input class table, using:

I = ξ(Tn - (dom(CT) ∪ {Object}))

Since in our extended FJ, an interface (and also a class) can implement a list of
interfaces, we define a recursive procedure to produce a list of valid interfaces on the
class table (which can be empty). This judgment is also defined by recursion on n.
Note that we maintain a set of already used names Un to avoid duplicates.

4The description of all auxiliary definitions is given in our paper (FEITOSA; RIBEIRO; DU BOIS,
2018b)
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CT ; 0 ; Un ⇒is •
[G-Impl-Base]

I = ξ(interfaces(CT) - Un)
CT ; n ; I : Un ⇒is Ī

CT ; n + 1 ; Un ⇒is I : Ī
[G-Impl-Step]

Signature generation. The judgment to generate signatures is similar to the one that
generates methods presented in the last section. The only difference is that signatures
do not have method bodies. Thus, the generation of a signature list also proceeds by
recursion on m, using an auxiliary list to keep used names, as shown below. The rule
G-Signs-Step uses a specific judgment to generate each signature, which is described
by the rule G-Sign.

CT ; I ; 0 ; p ; Un ⇒ss •
[G-Signs-Base]

x = ξ(Vn - Un)
CT ; I ; p ; x⇒s S

CT ; I ; m ; p ; x : Un ⇒ss S̄
CT ; I ; m + 1 ; p ; Un ⇒ss S : S̄

[G-Signs-Step]

Rule G-Sign reuse the judgment to generate at most p formal parameters (presented
earlier). After that, it generates a type (class or interface) to represent the return of
such method signature.

n = ξ([0..(p - 1)])
CT ; n ; • ⇒ps T̄ x̄

T0 = ξ(dom(CT) ∪ {Object})
CT ; I ; p ; m⇒s T0 m (T̄ x̄)

[G-Sign]

Rule G-Interface summarizes the process for generating an interface. The reader
can note the we reuse the recursive judgment to generate methods for FJ in the last
premise of G-Interface, which is responsible for generating the default methods for inter-
faces.

I = ξ(Tn - (dom(CT) ∪ {Object}))
in = ξ([0..#(interfaces(CT))])

sn = ξ([1..m])
mn = ξ([1..(m - sn)])

CT ; in ; • ⇒is Ī
CT ; I ; sn ; p ; • ⇒ss S̄

CT ; I ; mn ; p ; • ⇒ms M̄
CT ; m ; p⇒i (interface I extends Ī { S̄; default M̄ })

[G-Interface]
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Here we also extended the proofs presented in the last section showing that our
generation algorithm keeps producing only well-formed class tables and well-typed
expressions with Java 8 constructors. We show here only the new cases.

Lemma 13 (Soundness of expression generation). Let CT be a well-formed class table.
For all Γ and T ∈ (dom(CT) ∪ {Object}), if CT ; Γ ; T⇒e e then exists U, such that Γ `
e : U and U <: T.

Proof. The proof proceeds by induction on the derivation of CT ; Γ ; T ⇒e e doing a
case analysis on the last rule used to deduce CT ; Γ ; T⇒e e. We show the new case
of the proof.

Case (G-Lam): Then, e = (T̄ x̄) → e0 for some e0, x̄, and T̄; CT ; x̄: T̄, Γ ;
ξ(subtypes(CT, T))→e e0, for some T; there exists (T m (T̄ x̄)), such that abs-methods(I)
= {T m (T̄ x̄)}. By the induction hypothesis, we have that: Γ ` e0 : U, U <: T, and the
conclusion follows by the rule T-Lam and the definition of the subtyping relation.

Lemma 14 (Soundness of interface generation). Let CT be a well-formed class table.
For all m, p, if CT ; m ; p⇒i ID then ID OK.

Proof. By rule G-Interface, we have that:

• ID = interface I extends Ī { S̄ ; default M̄ }

• I = ξ(Tn - (dom(CT) ∪ {Object}))

• in = ξ([0..#(interfaces(CT))])

• sn = ξ([1..m])

• mn = ξ([1..(m - sn)])

• CT ; in ; • ⇒is Ī

• CT ; I ; sn ; p ; • ⇒ss S̄

• CT ; I ; mn ; p ; • ⇒ms M̄

By Lemma 8, we have that for all m. m ∈ M̄, m OK.
The conclusion follows by rule interface typing.

Combining these lemmas with those defined for FJ, we prove that our generation
procedure is sound with respect to the typing rules of FJ augmented with Java 8 fea-
tures.
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4.3.3 Checking Properties

We adapted the interpreter and test suite used in Section 4.2 to include the Java 8
features, and we use our test suite also as a lightweight manner to check the properties
of preservation and progress for this calculus. Similarly, the informal (non-mechanized)
proofs were also modeled as Haskell functions to be used with QuickCheck.

The preservation (subject reduction) property of FJ extended here, states that “If
Γ ` e: T and e → e′, then Γ ` e′: T′ for some T′ <: T.”. Our function was modeled as
follows:

prop_preservation :: Bool

prop_preservation =

forAll (genClassTable) $

λ ct → let ct′ = ctTyping ct Data.Map.empty

in forAll (genInstantiableType ct′) $

λ t → forAll (genExpression True ct′ Data.Map.empty t) $

λ e → case (typeof ct′ Data.Map.empty e) of

Right (tp, e′) →
either (const False)

(λ (Type t′, ) → subtyping ct′ t′ t)

(case (eval′ ct′ e′) of

Just e′′ →
typeof ct′ Data.Map.empty e′′

→ throwError (UnknownError e′)

)

→ False

As can be seen in the code, after generating an instance for ct, an instantiable type
t (which can be a class or a functional interface), and an expression e of type t, a
reduction step is performed by function eval′ over expression e producing an e′. Then,
the function typeof is used to obtain the type of e′. Last, the subtyping function is used
to check if the expression keeps the typing relation after a reduction step.

Similarly, we modeled (as follows) a function for the progress property, which states
that a well-typed expression does not get stuck.

prop_progress :: Bool

prop_progress =

forAll (genClassTable) $

λ ct → forAll (genInstantiableType ct) $

λ t → forAll (genExpression True ct Data.Map.empty t) $

λ e → isValue ct e ∨
maybe (False) (const True) (eval′ ct e)
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This function also generates a class table, a type, and an expression of that type.
Then it checks that or the expression is a value, or it can take a reduction step through
the function eval′.

We performed for this extended calculus the same verifications of the previous sec-
tion. First we ran many thousands of tests, checking and fixing bugs in our specification
and implementations (interpreter and test suite). Then, we verified the code coverage
of our interpreter, as a way to improve our test cases. Combining the execution of tests
with the verification of code coverage, we could note that some syntactical constructors
were never reached, which was result of an error on the generation rules (and conse-
quently the implementation). This error was fixed and tested again by re-running the
test suite. Lastly, we generated actual Java code to execute using the Java compiler,
which demonstrated that our specification is generating code semantically correct ac-
cording to the Oracle’s JVM, which we consider the closest implementation of the Java
Language Specification. We believe that the material presented in this section can be
useful to understand the basics of the new features of Java, and that our test suite
can be useful to test different Java compilers, besides quick-checking of programming
language properties.

4.4 Related Work

Property-based testing is a technique for validating code against an executable
specification by automatically generating test-data, typically in a random and/or ex-
haustive fashion (BLANCO; MILLER; MOMIGLIANO, 2017). However, the generation
of random test-data for testing compilers represents a challenge by itself, since it is
hard to come up with a generator of valid test data for compilers, and it is difficult to
provide a specification that decides what should be the correct behavior of a com-
piler (PAŁKA et al., 2011). As a consequence of this, random testing for finding bugs in
compilers and programming language tools received some attention in recent years.

The testing tool Csmith (YANG et al., 2011) is a generator of programs for the C lan-
guage, supporting a large number of language features, which was used to find a num-
ber of bugs in compilers such as GCC, LLVM, etc. Le et al. (LE; AFSHARI; SU, 2014)
developed a methodology that uses differential testing for C compilers. Lindig (LINDIG,
2005) created a tool for testing the C function calling convention of the GCC compiler,
which randomly generates types of functions. There are also efforts to generate test
cases for other languages (DRIENYOVSZKY; HORPáCSI; THOMPSON, 2010). All
of these projects rely on informal approaches, while ours is described formally and
applied to property-based testing.

More specifically, Daniel et al. (DANIEL et al., 2007), Soares et al. (SOARES;
GHEYI; MASSONI, 2013) and Mongiovi et al. (MONGIOVI et al., 2014) generate Java
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programs to test refactoring engines applied in Eclipse and NetBeans IDEs. Gligoric
et al. (GLIGORIC et al., 2010) presented an approach for describing tests using non-
deterministic test generation programs applying in the Java context. Klein et al. (KLEIN;
FLATT; FINDLER, 2010) generated random programs to test an object-oriented library.
Silva, Sampaio and Mota (SILVA; SAMPAIO; MOTA, 2015) used program generation to
verify transformations in Java programs. Allwood and Eisenbach (ALLWOOD; EISEN-
BACH, 2009) also used FJ as a basis to define a test suite for the mainstream program-
ming language in question, testing how much of coverage their approach was capable
to obtain. These projects are closely related to ours since they are also generating
code in the object-oriented context. The difference of our approach is that we formal-
ize the generation procedure to randomly generate complete classes and expressions
based on the type system of FJ, proving that both are well-formed and well-typed. An-
other difference is that we also used property-based testing to check that the properties
of the Java semantics hold by using the generated programs.

The work of Palka, Claessen and Hughes (PAŁKA et al., 2011) also used the
QuickCheck library in their work aiming to generate λ-terms to test the GHC compiler.
Our approach was somewhat inspired by theirs, in the sense we also used QuickCheck
and the typing rules for generating well-typed terms. Unlike their approach, we pro-
vided a standard small-step operational semantics to describe our generation algo-
rithm, and we worked with different language settings, starting with STLC, and evolving
the approach to a much bigger (and complex) language subset, as FJ extended with
Java 8 features. Another difference of our approach is that we worked over a list of
candidate expressions for STLC, which avoids the need for backtracking during the ex-
pression generation. The same idea was applied to generate well-typed FJ programs.

We used as inspiration for our formalization of Java 8 features the works of Bellia
and Occhiuto (BELLIA; OCCHIUTO, 2011) and Bettini et al. (BETTINI et al., 2018),
where both used FJ as a basis to describe the semantics and type system of λ-
expression in Java. The approach used in this thesis can be seen as a simplification
of the model presented in (BETTINI et al., 2018). While they provided a semantics
for typed and untyped λ-expressions, with an extra syntactic constructor to annotate
types, we focused on typed λ-expressions using casts to do such type annotation.
In (FEITOSA; RIBEIRO; DU BOIS, 2018b) we also describe a different approach for
the semantics of λ-expressions: instead of annotating types at run-time, we use type-
elaboration to type λ-expressions at compile time. Unlike the work of Bettini et al., be-
sides the semantic specification, we performed property-based testing against hand-
written interpreters (following the semantics) to check soundness properties for the
proposed extension. While their work provides a proof of type soundness informally,
in this thesis we also describe an intrinsically-typed formalization in Agda (see next
Chapter).
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4.5 Chapter’s Final Remarks

In this chapter we presented the contributions of the first branch of this thesis re-
garding random program generation to be applied to check properties of programming
languages. We discussed the subtleties of generating code from the typing rules for
both STLC and FJ (and an extended version of FJ with Java 8 features) to produce
well-typed programs, the encoding of properties as Haskell functions, as well as the
use of a tool to improve the quality of tests. We used this approach as a lightweight
form of verification, to gain confidence about the correctness of the tested properties
before formally proving them in a proof assistant, as we shall see in the next chapter.
We believe that this approach can also be used when working with different program-
ming languages.



5 PROVING PROPERTIES OF LANGUAGES

In this chapter we develop the second main topic of this thesis, where we apply
formal verification on the studied programming languages in a proof assistant. Formal
verification is a heavyweight approach, which uses a mathematical framework to prove
that properties are indeed valid with respect to the subsets we are working. We know
that by using only tests, it is impossible to offer full guarantees, since tests can reach
only a limited amount of cases. Mechanized proof assistants are powerful tools, but
proof development can be difficult and time consuming (DELAWARE; COOK; BATORY,
2011). This fact creates a trade-off between testing and formal verification, and the
project managers have to carefully select the approach according to their needs.

Nowadays, there are two main approaches to formalize and prove type safety for
a programming language, which were briefly presented in Chapter 2. The most used
method is the syntactic approach (sometimes called extrinsic) proposed by Wright and
Felleisen (WRIGHT; FELLEISEN, 1994). Using this technique, the syntax is defined
first, and then relations are defined to represent both the typing judgments (static se-
mantics), and the evaluation through reduction steps (dynamic semantics). The com-
mon theorems of progress and preservation link the static and the dynamic semantics,
guaranteeing that a well-typed term do not get stuck, i.e., it should be a value or be
able to take another reduction step, preserving the intended type.

Another technique that is becoming increasingly popular in recent years, which uses
a functional approach (sometimes called intrinsic) to achieve a similar result, was pro-
posed by Altenkirch and Reus (ALTENKIRCH; REUS, 1999). The idea is to first encode
the syntax and the typing judgments in a single definition which captures only well-
typed expressions, usually within a total dependently-typed programming language.
After that, one writes a definitional interpreter (REYNOLDS, 1972) which evaluates
the well-typed expressions. By using this approach, type-soundness is guaranteed by
construction, and the necessary lemmas and proofs of the syntactic approach can be
obtained (almost) for free.

We apply these two techniques for each language we are studying, exploring differ-
ent techniques to prove type soundness of programming languages, and showing that
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it is possible to represent modern languages (such as FJ) with complex structure and
binding mechanisms using both styles of formalization. We also provide a compari-
son between both formalization approaches with some criteria to help a programmer
to choose between them if necessary. Using such criteria, we chose the intrinsically-
typed approach to formalize FJ with λ-expressions, following the semantics presented
in Section 4.3, showing that it is indeed possible to extend the proposed formalization.

5.1 Simply-Typed Lambda Calculus

This section is divided in two parts, where the first shows how to formalize STLC
using the syntactic (extrinsic) approach with explicit proofs for the common theorems
of progress and preservation. The second part uses the functional (intrinsic) approach,
which uses dependent types and a definitional interpreter to achieve a similar sound-
ness result. Although STLC is a simple language, it is useful to introduce an important
concept, de Bruijn indices, which is applied broadly in the FJ formalization.

5.1.1 Extrinsic Formalization

This subsection follows the usual script for when extrinsically formalizing a program-
ming language: first the syntax, semantics and typing rules, and then the properties
of progress and preservation are proven. This text is highly based on what is pre-
sented on Wadler’s (WADLER, 2018) and Pierce’s (PIERCE et al., 2018) books for the
formalization of STLC in Agda and Coq, respectively.

Syntax definition. As mentioned in Chapter 3, we extended the STLC with Boolean
types. Thus, it has the three basic constructors of λ-calculus (Var, Lam, and App),
and two constants representing the Boolean values true and false. In this definition, for
simplicity, a variable name is represented as a natural number N. The next code shows
how expressions are defined in Agda.

data Expr : Set where

true : Expr

false : Expr

Var : N → Expr

Lam : N → Expr → Expr

App : Expr → Expr → Expr

For example, the identity function is represented as Lam 1 (Var 1). With this syntax
one can create ill-scoped terms like Lam 1 (Var 2), but the typing relation will forbid this.

Values. In our representation, besides the constants true and false being values, we
also consider an abstraction (λ-expression) a value, no matter whether the body ex-
pression is a value or not, i.e., reduction stops at abstractions. The reduction of a
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λ-expression only begins when a function is actually applied to an argument (PIERCE
et al., 2018).

data Val : Expr→ Set where

V-True : Val true

V-False : Val false

V-Lam : ∀ {x e} → Val (Lam x e)

The inductive definition Val is indexed by an Expr, showing which syntactical con-
structor the value represents. The definition of values will be used next, during the
formalization of the reduction steps.

Dynamic semantics. The presented formalization considers the call-by-value evalua-
tion strategy. The only reducible expression is the application App of a λ-expression
(represented by the constructor Lam) to a value. In the reduction relation _ −→ _ de-
fined below, the rule R-App1 represents one step of evaluation to reduce the left-hand
side of an application. This rule should be applied until the expression e1 becomes a
value. Rule R-App2 is used when the left-hand side is already a value, and reduces the
right-hand side of an application. Again, it should be applied until e2 becomes a value.
After that, the rule R-App should be applied when both (left and right) expressions are
values, and the left one is a Lam. With this setting, it applies a substitution (using func-
tion subs1) of the actual parameter v1 where the formal parameter x appears in the body
expression e.

subs : Expr→ N→ Expr→ Expr

-- Implementation omitted

data _ −→ _ : Expr→ Expr→ Set where

R-App1 : ∀ {e1 e2 e′1}
→ e1 −→ e′1
→ App e1 e2 −→ App e′1 e2

R-App2 : ∀ {v1 e2 e′2}
→ Val v1

→ e2 −→ e′2
→ App v1 e2 −→ App v1 e′2

R-App : ∀ {x e v1}
→ Val v1

→ App (Lam x e) v1 −→ (subs e x v1)

1We omit the implementation of function subs, however it is available online (FEITOSA, 2019).
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Syntax of types. In the presented formalization, there are only two types: bool repre-
sents Booleans, and _ =⇒ _ represents a function type. The function type represents
the type for a λ-expression using two arguments. The first represents the expected
parameter type, and the second represents the return type of a given λ-expression.

data Ty : Set where

bool : Ty

_ =⇒ _ : Ty→ Ty→ Ty

Expression typing. The _ ` _ : _ relation encodes the typing rules of STLC: consider-
ing a context Ctx, an expression Expr has type Ty. A context Ctx is defined as a list
of pairs List (N × Ty), linking each variable with its given type. The first two rules are
simple: constants true and false have always type bool no matter what is contained in
a context Γ. Rule T-Var uses an auxiliary definition for context lookup _ 3 _ : _2 which
binds a type τ for a variable x according to a context Γ. Rule T-Lam uses our typing
judgment to type the right-hand side of a λ-expression with a context Γ extended with
the formal parameter (left-hand side) of that λ-expression. We use the list concate-
nation (x , τ1) :: Γ to extend the context, and the result is a function type τ1 =⇒ τ2.
The last rule T-App guarantees the correct type for expressions e1 and e2 to perform an
application. The first (e1) should have a function type (τ1 =⇒ τ2), and the second (e2)
should be of type τ1, ensuring that the formal and actual parameters are of the same
type. If both premises hold, the typing judgment results in τ2, which is the return type
of the λ-expression.

data _ ` _ : _ : Ctx→ Expr→ Ty→ Set where

T-True : ∀ {Γ}
→ Γ ` true : bool

T-False : ∀ {Γ}
→ Γ ` false : bool

T-Var : ∀ {Γ x τ }
→ Γ 3 x : τ

→ Γ ` (Var x) : τ

T-Lam : ∀ {Γ x e τ1 τ2}
→ ((x , τ1) :: Γ) ` e : τ2

→ Γ ` (Lam x e) : (τ1 =⇒ τ2)

T-App : ∀ {Γ e1 e2 τ1 τ2}
→ Γ ` e1 : (τ1 =⇒ τ2)

→ Γ ` e2 : τ1

→ Γ ` (App e1 e2) : τ2

2We also omit the definition of context lookup, but it can be found in our repository (FEITOSA, 2019).
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Soundness proofs. We formalized the common theorems of progress and preservation
for the presented calculus in Agda. Since STLC is a small calculus, the proofs are
carried simply by induction in the structure of the typing judgment.

The preservation function represents the theorem with the same name, stating that
if a well-typed expression e has type τ in an empty context [ ], and it takes a reduction
step e −→ e′, then e′ remains with type τ . The only typing rule that matters is the
one that applies one expression to another, with three cases, one for each reduction
rule: the first applies the induction hypothesis to the left-side expression, the second
is similar, but applies the induction hypothesis to the right-side, and the last one uses
an auxiliary function subst representing the lemma which states that Substitution Pre-
serves Typing3. All the other cases represent values (impossible cases), which cannot
take any reduction step.

subst : [ ] ` v : τ1 → (x , τ1) :: Γ ` e : τ2 → Γ ` (subs e x v) : τ2

-- Proof code omitted

preservation : ∀ {e e′ τ } → [ ] ` e : τ → e −→ e′ → [ ] ` e′ : τ

preservation T-True ()

preservation T-False ()

preservation (T-Var ())

preservation (T-Lam ) ()

preservation (T-App r1 r2) (R-App1 s) = T-App (preservation r1 s) r2

preservation (T-App r1 r2) (R-App2 v1 s) = T-App r1 (preservation r2 s)

preservation (T-App (T-Lam r1) r2) (R-App v1) = subst r2 r1

Similarly to the previous theorem, the progress function represents the theorem with
the same name, stating that if a well-typed expression e has type τ in an empty context
[ ], then it can make Progress, i.e., or e is a value, or it can take another reduction
step. First we define an inductive datatype to hold the result of our proof, with two
constructors: Done when e is a value, and Step when e reduces to an e′.

data Progress (e : Expr) : Set where

Step : ∀ {e′}
→ e −→ e′

→ Progress e

Done : Val e

→ Progress e

We also need to establish a basic property of reduction and types, identify-
ing the possible canonical forms (i.e., well-typed closed values) belonging to each

3For brevity, we present only the type of subst here, but the complete proof (and its related lemmas)
can be found in our source-code repository (FEITOSA, 2019)
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type (PIERCE et al., 2018). The definition has one constructor for each value (C-True,
C-False, and C-Lam), and its proof linking each value with its respective type4.

data Canonical : Expr→ Ty→ Set where

-- Inductive definition code omitted

canonical : ∀ {v τ } → [ ] ` v : τ → Val v→ Canonical v τ

-- Proof code omitted

The proof for progress is straightforward: cases with values are finished with Done

and the respective Val constructor; and the case dealing with application is finished
with Step, using the induction hypothesis for the left and right side, and the canonical
form C-Lam, which relates the values with their types.

progress : ∀ {e τ } → [ ] ` e : τ → Progress e

progress T-True = Done V-True

progress T-False = Done V-False

progress (T-Var ())

progress (T-Lam ) = Done V-Lam

progress (T-App e1 e2) with progress e1

... | Step stp1 = Step (R-App1 stp1)

... | Done v1 with progress e2

... | Step stp2 = Step (R-App2 v1 stp2)

... | Done v2 with canonical e1 v1

... | C-Lam stp = Step (R-App v2)

5.1.2 Intrinsic Formalization

This subsection introduces the intrinsically-typed formalization, and the implemen-
tation of a definitional interpreter for the STLC. This text should serve as basis to under-
stand the basics of this approach, considering how we use dependent-types to encode
the syntax and typing rules, and how we use de Bruijn indices (BRUIJN, 1972) to deal
with name binding. Again, the concepts presented here will be used in a more complex
environment when formalizing Featherweight Java.

Intrinsically-typed syntax. Representing the typing rules combined with the language
syntax is a well-known approach (ALTENKIRCH; REUS, 1999; REYNOLDS, 2003).
Using such approach, only well-typed expressions are accepted by the host language
(Agda in our case), and ill-typed expressions are rejected by the compiler accusing
a type error. Using this approach the defined abstract syntax trees (ASTs) not only

4We show only the type definition for Canonical and canonical. The complete source code is available
online (FEITOSA, 2019).



101

capture the syntactic properties of a language but semantic properties as well. We
highlight the importance of the approach here because it allows programmers to reason
about their programs as they write them rather than separately at the meta-logical level.

Since we are embedding types together with the syntax, we need a Ty, which is
the same presented in the previous subsection, and a type context Ctx, which is rep-
resented by a List Ty. Then, the expression definition is parameterized by a Γ of type
Ctx, which binds a type for each free variable, and indexed by a Ty, which represents
the type of a given expression. The following code show our Expr definition.

data Expr (Γ : Ctx) : Ty→ Set where

true : Expr Γ bool

false : Expr Γ bool

Var : ∀ {x} → x ∈ Γ→ Expr Γ x

Lam : ∀ σ {τ } → Expr (σ :: Γ) τ → Expr Γ (σ =⇒ τ)

App : ∀ {σ τ } → Expr Γ (σ =⇒ τ)→ Expr Γ σ → Expr Γ τ

The first two constructors represent the constants true and false, both with type bool.
The constructor Var shows us a different way to represent variables. All name bindings
are done with statically-checked de Bruijn indices (BRUIJN, 1972), a technique for
handling binding by using a nameless, position-dependent name scheme. Thus, with
this constructor, we do not use a name to identity a variable, but a well-typed de Bruijn
index x ∈ Γ which witnesses the existence of an element x in Γ, as defined by the
standard library _ ∈ _ operator. The result type of this expression should be the one
represented by the x variable type. This technique is well known for avoiding out-of-
scope errors. The Lam constructor expects a σ of type Ty, representing the formal
parameter of a λ-expression, and an expression Expr (σ :: Γ) τ , representing its body.
Here we note that the expected expression has type τ considering an extended context
σ :: Γ. Then, the resulting type for this expression is of a function type σ =⇒ τ . The
last constructor App expects two expressions, the first with a function type σ =⇒ τ ,
and the second with a type σ, which has the same type of the formal parameter of the
first expression. If both expressions respect the premises, an expression of type τ is
constructed.

Values and Environments. To define the STLC interpreter, we need intrinsically-typed
values and environments. First we define a Value indexed by a type Ty. By using this
definition, when interpreting the code, we are able to convert the result to an Agda type
(host language semantics). So, if the value represents a bool, it results in the Agda’s
Bool type. In the case of a function type, it results in an Agda’s function type.

Value : Ty→ Set

Value bool = Bool

Value (σ =⇒ τ) = Value (σ)→ Value (τ)
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When working with such intrinsically-typed definition, an environment holds the in-
formation for which Value is associated with each variable in the context Γ. The repre-
sentation of this environment is not totally obvious, since variables can have different
types (AUGUSTSSON; CARLSSON, 1999). We encoded it by using the datatype All,
where each type in the context is linked with a typed value, as we can see next.

Env : Ctx→ Set

Env Γ = All Value Γ

Definitional interpreter. We present next a fairly standard definition of an interpreter for
STLC in Agda. The interpreter has three main points: processing of primitive values,
variable lookup, and performing the actual evaluation of a λ-expression. The function
eval pattern matches on the given Expr, dealing with each case, as follows.

eval : ∀ {Γ τ } → Env Γ→ Expr Γ τ → Value τ

eval env true = true

eval env false = false

eval env (Var x) = lookup env x

eval env (Lam σ e) = λ x→ (eval (x :: env) e)

eval env (App e e1) = eval env e (eval env e1)

The cases for true and false are simple. The case for Var uses the standard library’s
function lookup to project the appropriate value from the run-time environment env. The
typed de Bruijn index guarantees that the value projected from the environment has
the type demanded since the environment is typed by the context Γ, which allows us to
look up values of a particular type x in an environment Env Γ using the witness x ∈ Γ.

The case for Lam is tricky. It converts our definition to a λ-expression in Agda.
The case for App evaluates the first expression e, which results in a λ-expression, and
applies to it the result of evaluating the second expression e1. One can note that the
actual evaluation of expressions is delegated to Agda, so it is not necessary to define
substitution as in the extrinsic formalization.

There are two points to highlight with the presented approach. First, we can note
that we do not have any error treatment in our interpreter. This is happening because
we are working only with a (intrinsically) well-typed term, so in this case, every time
a variable is requested it is guaranteed by construction that it exists with the correct
type. The same happens when applying one expression to another. The well-typed
syntax guarantees that the first expression is indeed a λ-expression (produced by our
Lam case) and the second expression has the correct type.

Second, by allowing only the representation of well-typed expressions, the preser-
vation property is also assured by construction, and by writing such evaluator in a total
language like Agda, the progress property is guaranteed by consequence.
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5.1.3 Elaborating STLC Extrinsic to Intrinsic

We show, by using the elab function, that we can elaborate an extrinsic well-typed
expression (using our extrinsic typing predicate Γ ` e : τ ) to an intrinsic expression,
which is well-typed by construction. The first two cases are straightforward, return-
ing the Boolean expression associated with each constructor. The case T-Var results
in a intrinsic Var, and the function elab-var (omitted here) produces a de Bruijn index
according to its position on the environment. The case for T-Lam results a Lam expres-
sion, elaborating its body recursively. Similarly, T-App results in an App expression,
elaborating both (left and right) expressions recursively.

elab : ∀ {Γ e τ } → Γ ` e : τ → Expr Γ τ

elab T-True = true

elab T-False = false

elab (T-Var x) = Var (elab-var x)

elab (T-Lam {x = x} p) = Lam x (elab p)

elab (T-App p p1) = App (elab p) (elab p1)

One can use this elaboration function to check that both formalizations (extrinsic
and intrinsic) produce the same result, by running the interpreters for both approaches,
or by proving it as theorem.

5.2 Featherweight Java

Similarly to STLC, we also split the formalization of FJ in two subsections, using the
extrinsic and intrinsic approaches to achieve an equivalent result.

5.2.1 Extrinsic Formalization

This subsection presents our formalization of a large subset of FJ in Agda (ex-
cluding casts and subtyping) using the usual syntactic approach. As for STLC, this
encoding was also divided in two major parts. First a set of definitions corresponding
to the syntax, auxiliary functions, reduction and typing rules were created, followed by
the main proofs for type soundness of the encoded language.

Syntax. The definition of FJ is more intricate than STLC. An expression can refer to
information of two sources: (1) a context to deal with variables, similar to STLC; (2)
a class table, which stores information about all classes in the source-code program.
Besides, there is a mutual relation between classes and expressions: an expression
can refer to information about classes, and a class can contain expressions (which
represent method bodies).

Considering all this, we start our formalization in Agda by defining the syntactic
elements regarding FJ. A Class is represented by a record with three fields. The class
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name is stored in cname, the attributes are in flds, and the methods are in meths. For
simplicity, we represent all names as natural numbers (Name = N).

record Class : Set where

field

cname : Name

flds : List (Name × Name)

meths : List (Name × Meth)

As one can see, attributes are represented by a List of tuples (Name × Name),
encoding the name and the type for each field. For methods, we have a similar setting,
however, we use a List of tuples (Name × Meth), where the first element is the method
name, and the second encodes the method information, containing the return type ret,
the method parameters params, and the method body body, as shown below:

record Meth : Set where

field

ret : Name

params : List (Name × Name)

body : Expr

An expression can be seen in two parts of a FJ program. It can appear in a method
body, or it can represent the Java’s main method, acting as a starting point for the
program. It is represented using an inductive definition, considering the following con-
structors:

data Expr : Set where

Var : Name→ Expr

Field : Expr→ Name→ Expr

Invk : Expr→ Name→ List Expr→ Expr

New : Name→ List Expr→ Expr

A variable is represented by the constructor Var, a field access is encoded by Field,
a method invocation by Invk, and object instantiation is defined by New (IGARASHI;
PIERCE; WADLER, 2001).

The only possible value in FJ is encoded in the Val definition. Since Java adopts a
call-by-value evaluation strategy, to be a value, we need an object instantiation with all
parameters being values themselves. This was encoded using the standard library’s
datatype All.

data Val : Expr→ Set where

V-New : ∀ {c cp} → All Val cp→ Val (New c cp)
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Auxiliary definitions. A FJ expression can refer to information present on the class
table, where all classes of a given program are stored. To reason about information of
a given class, two auxiliary definitions were defined. Using the definition fields one can
refer to information about the attributes of a class.

data fields : Name→ List (Name × Name)→ Set where

obj : fields Obj [ ]

other : ∀ {c cd}
→ ∆ 3 c : cd

→ fields c (Class.flds cd)

Similarly to STLC, we also use a predicate to lookup in a given list of pairs
(_ 3 _ : _)5. In FJ we use this definition to lookup for classes, fields, methods, and
variables.

By using the predicate method it is possible to refer to information about a specific
method in a certain class. Both auxiliary definitions refer to information on a class table
∆, which is defined globally in the working module.

data method : Name→ Name→ Meth→ Set where

this : ∀ {c cd m mdecl}
→ ∆ 3 c : cd

→ (Class.meths cd) 3 m : mdecl

→ method c m mdecl

Reduction rules. The reduction predicate takes two expressions as arguments. The
predicate holds when expression e reduces to some expression e′. The evaluation
relation is defined with the following type.

data _ −→ _ : Expr→ Expr→ Set

When encoding the reduction relation, two important definitions6 were used:
interl, which is an inductive definition to interleave the information of a list of pairs
(List (Name × A)) with a List B, providing a new list List (Name × B); and subs, which is
responsible to apply the substitution of a parameter list into a method body. We present
only their types next.

data interl : List (Name × A)→ List B→ List (Name × B)→ Set

-- Inductive definition code omitted.

subs : Expr→ List (Name × Expr)→ Expr

-- Function code omitted.

5We omit the code of _ 3 _ : _ predicate, but it can be found in our repository (FEITOSA, 2019).
6Both definitions can be found online (FEITOSA, 2019).
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From now on we explain each constructor of the evaluation relation separately to
make it easier for the reader.

Constructor R-Field encodes the behavior when accessing a field of a given class.
All fields of a class are obtained using fields C flds. We interleave the definition of fields
flds with the list of expressions cp received as parameters for the object constructor by
using interl flds cp fes. With this information, we use fes 3 f : fi to bind the expression fi

related to field f.

R-Field : ∀ {C cp flds f fi fes}
→ fields C flds

→ interl flds cp fes

→ fes 3 f : fi

→ Field (New C cp) f −→ fi

Constructor R-Invk represents the encoding to reduce a method invocation. We use
method C m MD to obtain the information about method m on class C. As in R-Field

we interleave the information about the method parameters Meth.params MD with a list
of expressions ap received as the actual parameters on the current method invocation.
Then, we use the function subs to apply the substitution of parameters in the method
body.

R-Invk : ∀ {C cp m MD ap ep}
→ method C m MD

→ interl (Meth.params MD) ap ep

→ Invk (New C cp) m ap −→ subs (Meth.body MD) ep

All the next constructors represent the congruence rules (call-by-value) of the FJ
calculus. Reduction of the first expression e is done by RC-Field and RC-InvkRecv, pro-
ducing an e′.

RC-Field : ∀ {e e′ f }
→ e −→ e′

→ Field e f −→ Field e′ f

RC-InvkRecv : ∀ {e e′ m mp}
→ e −→ e′

→ Invk e m mp −→ Invk e′ m mp

Reduction of arguments when invoking a method or instantiating an object is done
by RC-InvkArg and RC-NewArg. An extra predicate (_ 7−→ _) is used to evaluate a list of
expressions recursively.
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RC-InvkArg : ∀ {e m mp mp′}
→ mp 7−→ mp′

→ Invk e m mp −→ Invk e m mp′

RC-NewArg : ∀ {C cp cp′}
→ cp 7−→ cp′

→ New C cp −→ New C cp′

Typing rules. The typing rules for FJ are divided in two main parts: there are two
predicates to type an expression, and two predicates to check if classes and methods
are well-formed. A FJ program is well-typed if all typing predicates hold for a given
program.

To type an expression, the typing judgment predicate _ ` _ : _ which encodes the
typing rules of FJ is used, and the predicate _ |= _ : _ responsible to apply the typing
judgment _ ` _ : _ to a list of expressions recursively. Their type definitions are shown
below:

data _ ` _ : _ : Ctx→ Expr→ Name→ Set

data _ |= _ : _ : Ctx→ List Expr→ List Name→ Set

Both definitions are similar, receiving three parameters each. The first parameter is
a type context Ctx, similar to the one for λ-calculus, aiming to store the types for vari-
ables. The second is an Expr for the typing judgment, and a List Expr for the recursive
case, both representing the expressions being typed. The last argument is a Name

(or List Name) representing the types for the given expressions. Next we present each
constructor for the _ ` _ : _ predicate.

The constructor T-Var is similar to the one presented for λ-calculus. A variable x

has type C if this variable is present in a context Γ with its type.

T-Var : ∀ {Γ x C}
→ Γ 3 x : C

→ Γ ` (Var x) : C

Constructor T-Field is more elaborated. First, we use the typing judgment to obtain
the type of the sub-expression e. Then, we use the auxiliary definition fields which
gives us the attributes flds of a class C. Like variables, the type of f is obtained by the
information stored in flds.

T-Field : ∀ {Γ C Ci e f flds}
→ Γ ` e : C

→ fields C flds

→ flds 3 f : Ci

→ Γ ` (Field e f) : Ci
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Constructor T-Invk also uses the typing judgment to obtain the type for the sub-
expression e. After that, we use the auxiliary predicate method to obtain the definition of
method m in class C. It is used to type-check the method parameters mp7. Considering
that all the premises hold, the type of a method invocation is given by Meth.ret MD.

T-Invk : ∀ {Γ C e m MD mp}
→ Γ ` e : C

→ method C m MD

→ Γ |= mp : proj2 (unzip (Meth.params MD))

→ Γ ` (Invk e m mp) : (Meth.ret MD)

Similarly to T-Invk, in the definition T-New we also use the predicate to type a list of
expressions. In this case, the premises will hold if the actual parameters cp of the class
constructor are respecting the expected types for the fields of a given class C.

T-New : ∀ {Γ C cp flds}
→ fields C flds

→ Γ |= cp : proj2 (unzip flds)

→ Γ ` (New C cp) : C

A class is well-formed if it respects the ClassOk predicate. In the presented definition,
the All datatype is used to check if all methods are correctly typed.

data ClassOk : Class→ Set where

T-Class : ∀ {CD}
→ All (MethodOk CD) (proj2 (unzip (Class.meths CD)))

→ ClassOk CD

Similarly, a method is well-formed in a class if it respects the MethodOk predicate.
The expression typing judgment is used as a premise to type-check the expression
body using the formal parameters as the environment Γ, expecting the type defined as
the return type of the given method.

data MethodOk : Class→ Method→ Set where

T-Method : ∀ {CD MD}
→ Meth.params MD ` Meth.body MD : Meth.ret MD

→ MethodOk CD MD

7We use proj2 to get the second argument of a tuple, and unzip to split a list of tuples.
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Properties. We proved type soundness through the standard theorems of preservation
and progress for the presented formalization of FJ.

The function preservation is the Agda encoding for the theorem with the same name,
stating that if we have a well-typed expression, it preserves type after taking a reduction
step. The proof proceeds by induction on the typing derivation of the first expression.

preservation : ∀ {e e′ τ } → [ ] ` e : τ → e −→ e′ → [ ] ` e′ : τ

preservation (T-Var x) ()

preservation (T-Field tp fls bnd) (RC-Field ev) =

T-Field (preservation tp ev) fls bnd

preservation (T-Field (T-New fs1 tps) fs2 bnd) (R-Field fs3 zp bnde)

rewrite ≡-fields fs1 fs2 | ≡-fields fs2 fs3 = `-interl zp tps bnd bnde

preservation (T-Invk tp tmt tpl) (RC-InvkRecv ev) =

T-Invk (preservation tp ev) tmt tpl

preservation (T-Invk tp tmt tpl) (RC-InvkArg evl) =

T-Invk tp tmt (preservation-list tpl evl)

preservation (T-Invk (T-New fls cp) tmt tpl) (R-Invk rmt zp)

rewrite ≡-method rmt tmt = subst (`-method tmt) tpl zp

preservation (T-New fls tpl) (RC-NewArg evl) =

T-New fls (preservation-list tpl evl)

The case for constructor T-Var is impossible, because a variable term cannot take
a step, finishing this case using the Agda’s absurd () pattern. Constructor T-Field has
two cases: (1) the congruence rule, applying the induction hypothesis in the first ex-
pression; (2) the reduction step, where using the auxiliary lemmas ≡-fields and `-interl

we show that the expression e′ preserves the initial type of expression e. The T-Invk

constructor is the most intricate, with three cases: (1) the congruence rule for the first
expression, where the induction hypothesis is applied; (2) the congruence for the list
of arguments, where we use an auxiliary proof preservation-list which call the induction
hypothesis for each argument; (3) the reduction step, where we show that after a re-
duction step the type is preserved by using the auxiliary lemmas ≡-method, `-method,
and subst8. This proof is similar to λ-calculus, using the lemma stating that Expression
substitution preserves typing (IGARASHI; PIERCE; WADLER, 2001). Lastly, T-New

has only the congruence case for which we apply the induction hypothesis for each
argument of the class constructor.

8These lemmas are omitted from this text, but can be found in our source code repository (FEITOSA,
2019).
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The proof of progress for FJ follows the same script as usual: induction on the deriva-
tion of the typing rule.

progress : ∀ {e τ } → [ ] ` e : τ → Progress e

progress (T-Var ())

progress (T-Field tp fls bnd) with progress tp

progress (T-Field tp fls bnd) | Step ev = Step (RC-Field ev)

progress (T-Field (T-New flds fts) fls bnd) | Done ev

rewrite ≡-fields flds fls = Step (R-Field fls (proj2 (|=-interl fts))

(proj2 (3-interl fts (proj2 (|=-interl fts)) bnd)))

progress (T-Invk tp mt tpl) with progress tp

progress (T-Invk tp mt tpl) | Step ev = Step (RC-InvkRecv ev)

progress (T-Invk tp mt tpl) | Done ev with progress-list tpl

progress (T-Invk tp mt tpl) | Done ev | Step evl =

Step (RC-InvkArg evl)

progress (T-Invk (T-New flds fts) mt tpl) | Done ev | Done evl =

Step (R-Invk mt (proj2 (|=-interl tpl)))

progress (T-New fls tpl) with progress-list tpl

progress (T-New fls tpl) | Step evl = Step (RC-NewArg evl)

progress (T-New fls tpl) | Done evl = Done (V-New evl)

Most cases are simple, as for λ-calculus. We use the same approach as before: a
datatype definition called Progress to hold the cases for when the expression is a value
or it can take a step. The complicated cases are those for T-Field and T-Invk, when
processing the actual reduction step. When proving progress for T-Field, to be able
to produce a R-Field we needed to write two extra lemmas |=-interl and 3-interl, which
were omitted here for brevity. The case for T-Invk also used the lemma |=-interl to
produce a R-Invk.

5.2.2 Intrinsic Formalization

In this subsection we present an intrinsically-typed formalization and a definitional
interpreter for the same subset of FJ presented in the previous subsection. Here, we
show how de Bruijn indices can be used to deal with the subtleties of more elaborated
binding mechanisms. This calculus uses a nominal type system, which differs from the
structural type system of STLC. The text presented here is an adaptation of our paper
“An Inherently-Typed Formalization for Featherweight Java” (FEITOSA et al., 2019).
In our approach, we chose to drop all names, using de Bruijn indices to represent
name bindings for classes, attributes, methods, and variables. First we define a type
Ty where each class is represented by an index Fin n on the class table. Variable n

represents the amount of classes in the source program, and it is bound as a module
parameter in our Agda implementation.
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As seen earlier, the syntax of FJ presents a mutual relation between expressions
and class tables, i.e., a class can contain expressions, and an expression can relate
to information in the class table. It gives rise to a cyclic dependency between the
two elements, which makes the encoding of an intrinsically-typed syntax for FJ tricky.
As a solution, we split the definition of a class in two parts: the signature of a class
defines only the types of the fields and methods, whereas the implementation contains
the actual code (expression) to be executed. This definition allows us to type-check
expressions using information in the class table.

Intrinsically-typed syntax. We define a class signature CSig as a record with two fields.
The flds definition represents the types for each attribute in a class. The signs field
represents the method signatures, which is defined as a list of MSig. It is worth to note
that we omit names for attributes and methods, since we are representing them as de
Bruijn indices.

record CSig : Set where

field

flds : List Ty

signs : List MSig

The method signature is also defined as a record with two fields. The first ret rep-
resents the method return type, and the second params a list of types for each method
parameter.

record MSig : Set where

field

ret : Ty

params : List Ty

We represent the table of class signatures as a vector Vec (coming from the stan-
dard library) and indexed by n, representing the number of defined classes in the pro-
grammer source-code.

CTSig : Set

CTSig = Vec CSig n

Similarly, we define CImpl, MImpl, and CTImpl9 to represent the implementation of
classes, methods, and class tables, respectively. Using this approach, each instance
of CImpl is associated with its respective index of a CSig, and the field impls associates
a body expression for each method.

9The details of implementation were omitted from this text, but can be found in our source code
repository (FEITOSA, 2019).
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Auxiliary functions. As for the extrinsically defined version of FJ, we have auxiliary
definitions to obtain information from the class table. Function fields provides a list of all
available attributes of a given class. The class table ∆ is bound as a module parameter.

fields : Ty→ List Ty

fields τ = CSig.flds (lookup ∆ τ)

Similarly to fields, the function signatures provides a list of all available method sig-
natures of a given class.

signatures : Ty→ List MSig

signatures τ = CSig.signs (lookup ∆ τ)

We also have a function to retrieve the implementations of a given class, which re-
turns a list of all method implementations. We use the functions sym and lookup-allFin

from Agda’s standard library to associate the signatures with its implementations.

implementations : (τ : Ty)→ CTImpl→ All MImpl (signatures τ)

implementations τ δ rewrite sym (lookup-allFin τ) =

CImpl.impls (lookup τ δ)

Once we have the definition of a class table, we can define the inherently-typed syn-
tax for expressions. We start by defining an object-level type context Ctx encoded as a
list of types (similar to STLC), which is used to store variable types. We represent each
judgment of the FJ’s static semantics as a constructor. As we mentioned before, FJ ex-
pressions can refer to information from two different sources: (1) on a well-formed class
table ∆, which is defined globally after importing the class table module; (2) on vari-
ables in the type context Γ, which is expected as a parameter for the inductive datatype
definition. Similarly to the intrinsically-typed definition of STLC, the Expr datatype is
indexed by Ty, which represents the expected result type for the expression. The rep-
resentation of expressions is defined in the code as follows. The reader can note that,
to define the intrinsically-typed syntax of expressions, we use only signatures, never
implementations.

data Expr (Γ : Ctx) : Ty→ Set where

Var : ∀ {x} → x ∈ Γ→ Expr Γ x

Field : ∀ {c f } → Expr Γ c→ f ∈ (fields c)→ Expr Γ f

Invk : ∀ {c m} → Expr Γ c→ m ∈ (signatures c)

→ All (Expr Γ) (MSig.params m)→ Expr Γ (MSig.ret m)

New : ∀ c→ All (Expr Γ) (fields c)→ Expr Γ c
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The constructor for Var is encoded the same way as for STLC, where we use a
well-typed de Bruijn index x ∈ Γ which binds the type for variable x. The result type of
this expression should be the one represented by the x variable.

The constructor Field expects an expression of type c and a de Bruijn index
f ∈ (fields c). Again, we represent the expected field using a similar scheme to the
one used for variables. Here f is the type of the expected field, c is the index of the
given class, and fields c returns a list containing all the fields of the class represented
by c. The result type Expr Γ f states that the expression has the type defined in f.

The constructor Invk receives three parameters, where the first is an expression
having type c, the second a de Bruijn index m ∈ (signatures c), and the third uses
the predicate All to associate each parameter with its expected type (MSig.params m).
The result type for this expression Expr Γ (MSig.ret m) should be the one coming from
the method’s return type MSig.ret m. The constructor for New receives first an index
representing a class c, and then similarly to the Invk constructor, it uses the predicate
All to enforce each parameter to have the expected type using the information coming
from a call of function fields c. The result type of this constructor is the type of the class
c, which is being instantiated.

Values and environments. This procedure is the same adopted when defining the
intrinsic version of STLC. First we define a Val, which in FJ has only one constructor
representing an object creation with all parameters also being values. Here we also
use the predicate All to guarantee this restriction.

data Val : Ty→ Set where

V-New : ∀ c→ All Val (fields c)→ Val c

And then, we define an Env, which links each type on the context Γ with a value Val.

Env : Ctx→ Set

Env Γ = All Val Γ

Definitional Interpreter. Having all the building blocks to make the FJ interpreter, we
can define the eval function. It receives four arguments, and returns a Maybe value.
We have to remember that Agda is a total language, i.e., each program developed
in it must terminate and all possible patterns must be matched. However, FJ allows
recursion through the use of the this pointer, thus one can write a program which does
not terminate, making it impossible to implement a terminating interpreting function,
at least without some workaround. To address this problem, we define a fuel based
evaluator (AMIN; ROMPF, 2017; OWENS et al., 2016). Basically, what we do is to
parameterize the interpreter (first argument of the eval function) over a step index or
fuel value (represented as a natural number Fuel = N), which bounds the amount
of work the interpreter is allowed to do, and it is decremented on each recursive call.
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We could also have used a monadic approach to hide the fuel argument, or instead
produce a coinduction evaluation trace to address the same problem. In any case, the
choice of fuel over the other alternatives is not a requirement of our technique. The
second parameter of the eval function is the implementation of a class table. The third
parameter is the run-time variable environment. And the last one is the expression Expr

to be evaluated. The return of this function will provide a Val c in case of success, or
nothing when the fuel runs out.

eval : Fuel→ CTImpl→ Env Γ→ Expr Γ c→ Maybe (Val c)

eval zero δ γ e = nothing

eval (suc f) δ γ (Var x) = just (lookup γ x)

eval (suc f) δ γ (Field e x) with eval f δ γ e

... | nothing = nothing

... | just (V-New c cp) = just (lookup cp x)

eval (suc f) δ γ (Invk e m mp) with eval f δ γ e

... | nothing = nothing

... | just (V-New c cp) with eval-list f δ γ mp

... | nothing = nothing

... | just mp′ = let mi = lookup (implementations c δ) m

in eval f δ mp′ (MImpl.body mi)

eval (suc f) δ γ (New c cp) with eval-list f δ γ cp

... | nothing = nothing

... | just cp′ = just (V-New c cp′)

As we are using fuel based evaluation (AMIN; ROMPF, 2017; OWENS et al., 2016),
we pattern match first on the fuel argument. It has two cases: zero when the fuel counter
reaches zero, and our evaluation function returns nothing, or suc fuel when there is still
fuel to proceed with the evaluation. Then we pattern match with the expression being
evaluated, with one case for each FJ syntactic constructor. The case for Var is the same
of STLC, except here the result is embedded in a Maybe monad. For Field first we have
to evaluate the expression e, and then it is necessary to lookup the de Bruijn index f

on the argument list cp. For the Invk constructor, we have to evaluate the expression
e and the list of arguments mp, and then, using the implementations function, we select
the method m, to evaluate its body, using the evaluated method parameters mp′ as the
γ environment. Lastly, to evaluate New, we have to evaluate the parameters cp. For all
recursive cases, we decrement the fuel parameter to guarantee termination, since FJ
can implement recursion, and thus run indefinitely. It is worth noticing that the only way
the eval function can result in nothing is when the fuel reaches zero. Again, we highlight
here that there is no need for error control regarding to indices, since we have ensured
everything is well-scoped using de Bruijn indices.
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5.2.3 Elaborating FJ Extrinsic to Intrinsic

Similarly to STLC, we also elaborate the extrinsic syntax of FJ to the intrinsic version
using the elabExpr function. Since in the intrinsic formalization of FJ we use de Bruijn
indices instead of names (to represent variables, attributes, methods, and classes), we
had to define one function to elaborate each name to its correspondent intrinsic index.
Thus, the function elabVar is used to elaborate a variable name to an index, elabField

and elabMeth work the same way for fields and methods. We also encoded the elabExprs

function to recursively apply elabExpr for each parameter when elaborating the method
and constructor parameters, and function Name⇒Ty to produce an index for a given
class name.

elabExpr : ∀ {Γ e τ } → Γ ` e : τ → Expr (elabCtx Γ) (Name⇒Ty τ)

elabExpr (T-Var x) = Var (elabVar x)

elabExpr (T-Field wte fls wtf) = Field (elabExpr wte) (elabField fls wtf)

elabExpr (T-Invk {Γ = Γ} wte wtm wtmp) =

Invk (elabExpr wte) (elabMeth wtm)

(subst (All (Expr (elabCtx Γ))) (eq-mparams wtm) (elabExprs wtmp))

elabExpr (T-New {Γ = Γ} {C = C} flds wtcp) =

New (Name⇒Ty C)

(subst (All (Expr (elabCtx Γ))) (eq-fields flds) (elabExprs wtcp))

5.3 Comparing Styles of Formalization

We have described in this thesis the formalization of two programming languages
in Agda using the syntactical (extrinsic) and functional (intrinsic) approaches. We
presented the process of writing the relational semantics rules together with sound-
ness proofs and the intrinsically-typed syntax together with a definitional interpreter to
achieve a similar result. In this section we compare the resulting specifications using
two metrics: lines of code, and number of high-level structures.

Table 2 compares our two language definitions considering the extrinsic and intrin-
sic formalization approaches regarding to the approximate number of lines-of-code10

(LOC) to provide a type soundness result. Roughly, the table shows us that, if we con-
sider the sum of all modules (Total), we had to write a considerable amount of lines
when applying the extrinsic compared to its intrinsic version. However, to express the
syntax and evaluation rules, we used a similar amount of lines of code. The main
difference between both approaches is that we do not need to write any line to de-
fine the type-checker nor the soundness proofs using the intrinsic approach (since it
guarantees safety-by-construction).

10We call here “approximate” because we are not considering lines to create/import modules, and
some break lines to improve readability.
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Ext. STLC Int. STLC Ext. FJ Int. FJ
Syntax 10 10 19 26
Typing Rules 16 0 39 0
Evaluation 22 8 40 25
Proofs 75 0 99 0
Auxiliary 8 12 23 13
Total 131 30 220 64

Table 2 – Approximate sizes (in LOC) for our STLC and FJ developments.

Obviously, lines of code is only one metric which can be used to compare the ex-
pressivity of each approach, and not its complexity. The main advantage of using an
extrinsic approach is to have a depth control over the structures and the semantics,
being able to follow step-by-step during the proof construction. Also, by using proof
assistants with proof automation mechanisms (such as Coq), we could considerably
decrease the number of lines to prove the same theorems. For the intrinsic version, an
advantage is that type safety becomes a guiding contract when writing a program, and
this guarantee comes from the host language used in the development. Furthermore,
we can reuse more code from Agda’s standard library.

In Table 3 we present a comparison of the number of high-level structures devel-
oped in our source-code formalizations. Again, we can see that using the intrinsic
version, we can express the syntax, typing rules, evaluation and proofs using a small
number of high level definitions (functions or lemmas, and inductive definitions). We
can see that for the case of STLC, it naturally fits into Agda’s definition, since both
languages are functional. For the case of FJ, the intricate relation between its object-
oriented features forces us to express its internal features using some extra high-level
structures than for STLC. However, we could express both languages using less high-
level structures in the intrinsic version when compared with its respective extrinsic one.

Ext. STLC Int. STLC Ext. FJ Int. FJ
Nr. Functions/Lemmas 10 2 21 5
Nr. Inductive Definitions 9 3 19 10

Table 3 – Number of high-level definitions for our STLC and FJ developments.

Although there is a considerable difference between the LOC and high-level struc-
tures considering the different approaches to formalize a programming language in
Agda, we could note during our development that the intrinsic version requires creativ-
ity and insight to find the correct representation of the semantics, which is relatively
simple for the extrinsic one. Usually, in the extrinsic approach we have to basically
translate the relation on the structural operational semantics of the language into the
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proof assistant, and follow the script to prove type soundness. The most difficult part
is to reason on how to break the proofs in small lemmas, so they are accepted by the
proof assistant. For the intrinsic case, sometimes we have to tweak some definitions,
to model the necessary invariants to obtain a type soundness result. This effort could
be noted in our intrinsic formalization of FJ, where we had to split the definition of a
class table in signatures and implementations to allow the intrinsically-typed syntax to
be sound-by-construction.

5.4 Formalizing Java 8 Features in Featherweight Java

After comparing both formalization approaches, we chose to formalize some fea-
tures of Java 8, such as λ-expressions and functional interfaces, using the intrinsically-
typed method, since it is more concise and elegant than the usual extrinsic approach.
Although the formalization of FJ is more complicated than the usual λ-calculus, be-
cause of the complex binding mechanisms and the mutual relation between the syn-
tactic constructions, the good news is that we only need to do this modeling of the
language once. After that, we can add any number of extensions we want to the Java
language, as we will show next.

5.4.1 Extended Definitions

As we saw in the previous chapter, functional interfaces are used to assign types to
λ-expressions in Java 8. Since FJ does not provide interfaces in its definitions, we have
to add it in our calculus. The first step we take is to change our definition of types, now
allowing the representation of classes and interfaces. Both Cl and Fi are defined as a
finite datatype Fin, representing classes and functional interfaces, respectively. Thus,
a Ty can be constructed with class, which receives as argument a class index Cl, or with
interface which receives as argument an interface index Fi.

data Ty : Set where

class : Cl→ Ty

interface : Fi→ Ty

We represent a functional interface with the record ISig, which models a single
method signature. The field sign is defined by a tuple List Ty × Ty, representing the
parameter types and the return type of the method being specified.

record ISig : Set where

field

sign : List Ty × Ty
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Similar to the CTSig presented in the last section, here we define an interface table
ITSig, which is also represented by a Vec with at most i elements, where i is the number
of interfaces in the source code program.

ITSig : Set

ITSig = Vec ISig i

We also defined the auxiliary function isignature to obtain information about the
method signature in a functional interface.

isignature : ITSig→ Fi→ List Ty × Ty

isignature ξ τ = ISig.sign (lookup ξ τ)

After having implemented the main changes on the well-formed class and inter-
face table, we added two constructors in the intrinsically-typed syntax of FJ to deal
with λ-expressions. The reader can note that we added an extra argument (with type
Maybe Cl) in the Expr constructor. This argument represents the Java this pointer, which
is used to refer to the class itself and can be used only inside classes.

data Expr (Γ : Ctx) : Maybe Cl→ Ty→ Set where

-- Other FJ definitions

Lam : ∀ { i} → Expr (proj1 (isignature (ζ ∆) i)) nothing (proj2 (isignature (ζ ∆) i))

→ Expr Γ nothing (interface i)

InvkL : ∀ { i} → Expr Γ nothing (interface i)

→ All (Expr Γ nothing) (proj1 (isignature (ζ ∆) i))

→ Expr Γ nothing (proj2 (isignature (ζ ∆) i))

The constructor Lam represents a λ-expression. It can be used to implement higher-
order functions, and can be assigned to variables, passed as method arguments, etc.
This constructor has only one argument, which is an expression Expr with the Γ context
set to (proj1 (isignature (ζ ∆) i)) (the parameter types of a λ-expressions defined in the
functional interface), the this pointer set to nothing (because this can appear only in
classes), and the expected type set to (proj2 (isignature (ζ ∆) i)) (the return type of a
λ-expression). It constructs an expression with type (interface i). The constructor InvkL

is responsible to execute the λ-expression, and receives two arguments. The first is
the actual λ-expression (represented by the constructor Lam), and the second is the
actual parameters to be substituted on the λ-expression body, using information about
types from the functional interface. It constructs an expression which type is the same
of the return type of the λ-expression.

A λ-expression is also represented as a value in our calculus, and its definition
is presented next. The meaning is similar to the Lam constructor, however here it
constructs a value Val.
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data Val : Ty→ Set where

-- Other FJ definitions

VLam : ∀ { i} → Expr (proj1 (isignature (ζ ∆) i)) nothing (proj2 (isignature (ζ ∆) i))

→ Val (interface i)

All the presented definitions were easily incorporated in our previous formalization,
showing that indeed we can use the proposed approach to study new constructions in
a complex object-oriented setting.

5.4.2 Definitional Interpreter

We adapted our eval function to deal with the new Java 8 constructors. First
we added an extra argument to deal with the this pointer regarding classes and λ-
expressions. It is expected as a monadic Maybe value, since it can only appear in
classes. The reader can note the direct relation between this monadic value and the
expression to be evaluated.

eval : ∀ {Γ τ c} → Fuel→ (m : Maybe (Val (class τ)))→ CTImpl→ Env Γ

→ Expr Γ (maybe (λ x→ just τ) nothing m) c→ Maybe (Val c)

We added two defining equations in our definitional interpreter presented earlier.
The first is very simple, it evaluates a Lam constructor to a VLam value directly.

eval (suc fuel) nothing δ γ (Lam e) = just (VLam e)

The second defining equation is similar to the evaluation of method invocations.
First we use the function eval-list to evaluate the actual parameter list lp, producing a
list of values lp′. Then we use the function eval to evaluate the left-hand expression e,
producing a λ-expression value. Both calls can ran out of fuel, and abort the evaluation
with nothing. Having the λ-expression value we call eval one more time to evaluate the
its body b using lp′ as the runtime environment. It is important to highlight again that
we do not need to check if the produced value is a VNew, since it is guaranteed by
construction that only λ-expression values (VLam) will be allowed when processing the
presented constructor.

eval {Γ} {τ } (suc fuel) nothing δ γ (InvkL e lp) with eval-list {Γ} {τ } fuel nothing δ γ lp

... | nothing = nothing

... | just lp′ with eval {Γ} {τ } fuel nothing δ γ e

... | nothing = nothing

... | just (VLam b) = eval {τ = τ } fuel nothing δ lp′ b

Using such intrinsically-typed approach we achieve a similar soundness result
if compared to the extrinsic method. Programs constructed using the inherently-
typed ASTs are type-sound by construction, where only well-typed programs can
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be expressed, so the preservation property is enforced by the host-language type
checker (AMIN; ROMPF, 2017). And by implementing the definitional interpreter in
a total language like Agda, i.e., specifying the dynamic semantics in a functional way,
instead of relational we also show the progress property, without the need for an extra
explicit proof (OWENS et al., 2016). Considering all this, we believe that this approach
is promising to be explored on even more complex programming languages.

5.5 Related Work

There is a vast body of literature on soundness and proof techniques regarding
programming languages. The most relevant styles are from Wright and Felleisen’s
syntactic approach (WRIGHT; FELLEISEN, 1994), Plotkin’s structural operational se-
mantics (PLOTKIN, 2004), Kahn’s natural semantics (KAHN, 1987), and Reynold’s
definitional interpreters (REYNOLDS, 1972). Although the common ground is to find
mechanized formalization using more syntactic (extrinsic) approaches, we could see
the number of functional (intrinsic) encodings of semantics increasing in recent years.

Considering the extrinsic approach, there are several papers describing the mech-
anization of both, λ-calculus and Featherweight Java. For example, in their book,
Pierce et al. (PIERCE et al., 2018) describe the formalization of STLC in Coq, and
Wadler (WADLER, 2018) present the formalization of STLC in Agda. We applied a sim-
plified version of the ideas presented in these books in our formalization of STLC. Be-
sides these books, there are several other papers mechanizing different versions of λ-
calculus (RIBEIRO; FIGUEIREDO; CAMARÃO, 2013; DONNELLY; XI, 2007). Regard-
ing Featherweight Java, there are some projects describing its formalization. Mackay
et al. (MACKAY et al., 2012) developed a mechanized formalization of FJ with assign-
ment and immutability in Coq, proving type-soundness for their results. Delaware et
al. (DELAWARE; COOK; BATORY, 2011) used FJ as basis to describe how to engi-
neer product lines with theorems and proofs built from feature modules, also carrying
the formalization Coq. Both papers inspired us in our modeling of FJ. As far as we
know, our work is the first to formalize FJ in Agda using the extrinsic approach.

The formalization of programming languages combining an inherently-typed syn-
tax (showed in (ALTENKIRCH; REUS, 1999; AUGUSTSSON; CARLSSON, 1999;
REYNOLDS, 2003)) and definitional interpreters has also been made more often.
Danielsson (DANIELSSON, 2012) used the co-inductive partiality monad to formalize
λ-calculus using total definitional interpreters, demonstrating that the resulting seman-
tics are useful type-soundness results. Benton et al. (BENTON et al., 2012) used Coq
to formalize an intrinsic version of STLC using de Bruijn indices to deal with name
binding. In his book, Wadler (WADLER, 2018) also discuss the definition of STLC
using an intrinsically-typed approach. We can find some other results applying these
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techniques (MCBRIDE, 2010; ALTENKIRCH; KAPOSI, 2016). On the formalization of
modern programming languages (such as Java), Affeldt and Sakaguchi (AFFELDT;
SAKAGUCHI, 2014) present an intrinsic encoding in Coq of a subset of C applying it
to TLS network processing, Owens et al. (OWENS et al., 2016) advocate for the use
of a definitional interpreter written in a purely functional style in a total language. Amin
and Rompf (AMIN; ROMPF, 2017) show how type soundness proofs for advanced,
polymorphic, and object-oriented type systems can be carried out with an operational
semantics based on definitional interpreters implemented in Coq. More closely to our
intrinsic formalization of FJ, Bach Poulsen et al. (BACH POULSEN et al., 2017) present
a formalization of Middleweight Java (a variant of FJ) defined in Agda and some tech-
niques to deal with name binding. In our formalization, we used only standard tech-
niques (like de Bruijn indices) to formalize FJ, trying to keep the code as simple as
possible to facilitate readability and maintainability. Furthermore, following the spec-
ifications presented in (FEITOSA; RIBEIRO; DU BOIS, 2018b), where the properties
of progress and preservation were proved (on paper) and tested with QuickCheck, we
were able to achieve a similar soundness result in our intrinsically-typed formalization
in Agda. To the best of our knowledge, we were the first to define an intrinsically-typed
(mechanically checked) definition of FJ, as well as an extension of it with functional
interfaces and λ-expressions.

5.6 Chapter’s Final Remarks

This chapter summarized our results using the main approaches on the formal-
ization of programming languages, extrinsic and intrinsic, applied to two different lan-
guages (and an extension), which implement different paradigms. We developed our
formalizations in a way that they can be extended in future projects (as shown in Sec-
tion 5.4), providing insights for how to formalize some concepts, and also to save time
by reusing a working source-code. Besides, we provided a comparison between the
formalization styles, which can be useful for a programmer when starting a project
involving programming language semantics.
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In this final chapter, we present the final remarks about this thesis, discussing the
limitations of the achieved results, and presenting some possible paths to continue the
research in this area.

6.1 Thesis’ Final Remarks

We have studied the formalization of two programming languages subsets with the
ultimate goal to be able to apply property-based testing and formal verification on them.
Since our ideas needed formal specifications, we restricted our research on calculus
described using (at least) small-step semantics and proofs for type soundness. Based
in these studies we were able to make a choice between programming language sub-
sets in the functional and object-oriented paradigm. Naturally, we chose λ-calculus
to represent the functional paradigm, and we chose FJ after comparing it with differ-
ent object-oriented subsets. As an indirect consequence, we had the opportunity to
understand better distinct ways to formalize the semantics and the type system of pro-
gramming languages.

After defining the programming languages to explore further, we discussed the re-
sults of the first branch of this thesis. We presented a syntax directed procedure for
generating type correct programs, for both STLC and FJ, proving soundness with re-
spect to their typing rules. We implemented the proposed algorithms and applied
property-based testing using QuickCheck to verify soundness properties against hand-
written interpreters. Indeed, we explored the approach even further, proposing a for-
mal semantics for FJ extended with Java 8 features (such as functional interfaces,
λ-expression, and default methods), generating well-typed programs and applying
property-based testing to check whether soundness properties were still valid for the
extended calculus. The lightweight approach provided by QuickCheck allowed us to
experiment with different semantic designs and implementations and to quickly check
any changes. During the development of this work, we have changed our definitions
(specification and implementation) many times, both as a result of correcting errors and
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streamlining the presentation. Ensuring that our changes were consistent was simply
a matter of re-running the test suite.

The second branch of this thesis discussed the formalization of the studied
programming languages using the syntactic (extrinsic) and functional (intrinsic) ap-
proaches with the Agda programming language. When formalizing the STLC, we were
able to analyze the differences between each approach to prove type soundness in a
small setting. The formalization of FJ brought some extra challenges, mostly because
of its mutual relation between expressions and class tables, and because of its complex
binding mechanisms. For both languages and scenarios we could observe the com-
plexities of each approach, and their advantages. By using an extrinsic formalization,
we can have access to all the steps when processing the static and dynamic seman-
tics, while using the intrinsic version we avoid repetitions and receive type soundness
proofs (almost) for free.

We believe that our project gives one step further in the research of programming
languages, and that the combination of property-based testing with formal verification
can be very useful to reduce the amount of work when mechanically proving properties,
since it is the most costly and time consuming task.

6.2 Limitations

As the reader could note, this thesis was focused in working with only two pro-
gramming language subsets, limiting the range of our work. Obviously, it would be
impractical to cover all existent programming languages and paradigms, however we
tried to cover important aspects of two programming language paradigms. Our gener-
ation algorithms were presented together with informal (non-mechanized) proofs that
they are sound according to their specifications, which could be improved by machine-
checking the presented proofs. The use of FJ does not reflect the exactly semantics
of Java (and also our extension with λ-expressions) since several features are missing
in this subset. When considering our formalizations in Agda, we limited FJ even more
to be able to contrast more clearly the differences between the extrinsic and intrinsic
approaches. It is hard to say how well the techniques explored in this thesis would be-
have when exploring different programming language paradigms. Several limitations
presented here are listed as future work and explained in the next section.

6.3 Future Work

There is plenty of room for improvement and deepening upon the work developed
in this thesis. In this section we discuss a few of the possibilities.

Studying different languages. To be able to produce a text related to the subject
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of this thesis, we had to limit the amount of languages to work on. A good starting
point to work in this area is the study or specification of different programming lan-
guage semantics, and the application of the techniques presented here. The acquired
knowledge when doing this task can be useful to apply on bigger and more complex
projects.

Testing compilers. Using the test generators produced in this thesis, one can apply
differential testing in order to check the existence of bugs in real compilers, with few
adaptations in our approach. Furthermore, the same technique can be explored to
generate programs for different languages, expanding the horizon of this research.
We also consider the development of a composable random program generator in the
style of “Data types a la carte” (SWIERSTRA, 2008), to be able to reuse the generation
procedures of similar constructors for different programming languages.

Soundness and completeness. An important step regarding our generation method is
to mechanically prove the soundness properties presented in our text, as well as prov-
ing the completeness property to demonstrate that all values of a type will eventually
be generated when performing our test suite. We gave a first step in this direction by
checking the code coverage of our interpreters, however a formal proof would bring
elegance and conciseness impossible to achieve only by testing.

Extrinsic and intrinsic verification. We should explore further the presented techniques
in our case studies, expanding the STLC subset with more complex constructors, as
well as to formalize the complete calculus of FJ, since we focused the formalization in
the most important object-oriented constructors in this thesis. Furthermore, we intend
to provide machine checked proofs for the Java 8 constructors also using the extrinsic
approach, following the presented specification and the ideas explored using property-
based testing. Lastly, by using our case studies one can be able to apply both the
extrinsic and intrinsic approaches in order to verify different language subsets.

Equivalence between formalization approaches. Another interesting subject to be ex-
plored is to mechanically prove equivalence between the extrinsic and intrinsic versions
of language semantics. Indeed, we have done a step in this direction, allowing the elab-
oration of an extrinsic well-typed expression into an intrinsically-typed one. Having a
proof like that, one can safely choose the approach that fits best for each part of a
project.
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