
0

UNIVERSIDADE FEDERAL DE PELOTAS
Programa de Pós-Graduação em Computação

 Tese

SmartDR: Algorithms and Techniques for Fast Detailed Routing with Good
Design Rule Handling

Stèphano M. M. Gonçalves

Pelotas, 2020

http://www.ufpel.tche.br/

1

Stèphano M. M. Gonçalves

SmartDR: Algorithms and Techniques for Fast Detailed Routing with Good
Design Rule Handling

Tese apresentada ao Programa de Pós-
Graduação em Computação da
Universidade Federal de Pelotas, como
requisito parcial à obtenção do título de
Doutor em Ciência da Computação.

 Orientador: Felipe de Souza Marques

 Co-Orientador: Leomar Soares da Rosa Jr.

Pelotas, 2020

2

Universidade Federal de Pelotas / Sistema de Bibliotecas

Catalogação na Publicação

G635s Gonçalves, Stèphano Machado Moreira

Smartdr : algorithms and techniques for fast detailed

routing with good design rule handling / Stèphano Machado

Moreira Gonçalves ; Felipe de Souza Marques, orientador ;

Leomar Soares da Rosa Jr., coorientador. — Pelotas, 2020.
130 f. : il.

Tese (Doutorado) — Programa de Pós-Graduação

em Computação, Centro de Desenvolvimento

Tecnológico, Universidade Federal de Pelotas, 2020.

1. Roteamento detalhado. 2. Acesso a pinos. 3. Busca

de caminhos. 4. Regras de projeto. 5. ISPD 2018 Contest. I.

Marques, Felipe de Souza, orient. II. Jr., Leomar Soares da

Rosa, coorient. III. Título.
CDD : 005

Elaborada por Aline Herbstrith Batista CRB: 10/1737

3

Stèphano M. M. Gonçalves

SmartDR: Algorithms and Techniques for Fast Detailed Routing with Good
Design Rule Handling

Tese aprovada, como requisito parcial, para obtenção do grau de Doutor em
Ciência da Computação, Programa de Pós-Graduação em Computação,
Universidade Federal de Pelotas.

Data da Defesa: 15 de janeiro de 2020

Banca examinadora:

Prof. Dr. Felipe de Souza Marques (Orientador, PPGC UFPEL)

Prof. Dr. Leomar Soares da Rosa Jr. (Co-Orientador, PPGC UFPEL)

Prof. Dr. Bruno Zatt (PPGC UFPEL)

Prof. Dr. Marcelo Johan (UFRGS)

Dr. Renato Fernandes Hentschke (Intel)

4

Resumo

GONÇALVES, Stèphano Machado Moreira. SmartDR: Algorithms and Techniques
for Fast Detailed Routing with Good Design Rule Handling. 2020. 130p. Tese
(Doutorado em Ciência da Computação) – Programa de Pós-Graduação em
Computação, Centro de Desenvolvimento Tecnológico, Universidade Federal de
Pelotas, Pelotas, 2020.

O roteamento detalhado é uma das etapas mais desafiadoras e demoradas do projeto
de circuitos integrados. A solução do roteamento deve obedecer a todas as regras de
projeto para que o circuito possa ser corretamente fabricado. No entanto, o tratamento
de regras de projeto pode ser muito desafiador, quanto a suas soluções algorítmicas
e sua implementação, e pode facilmente levar a tempos de execução inviáveis. Para
tornar a resolução do roteamento detalhado mais factível, ele é dividido em duas
etapas, onde, na primeira, chamada de roteamento detalhado inicial, uma solução
quase completa é obtida mediante a flexibilização das regras de projeto. Na segunda
etapa as violações remanescentes de regras de projeto são resolvidas. No entanto,
quanto mais o tratamento dessas regras é deixado para a segunda etapa, maior é a
chance de elas não serem resolvidas completamente, e isto costuma ocorrer. Assim,
é necessário enfrentar o desafio de lidar com o maior número possível de regras na
etapa inicial sem comprometer o desempenho do roteamento. Dessa forma, este
trabalho propõe um roteador detalhado inicial, chamado SmartDR, para atender essas
necessidades, isto é, apresentar uma boa lida com regras de projeto ao mesmo tempo
que mantendo um bom desempenho. As principais características do roteador, que
atendem a esses objetivos, são técnicas de acesso a pinos e de busca de caminhos.
Este trabalho propõe um novo método de acesso a pinos, em que os caminhos de
acesso a pinos compartilham os mesmos recursos de roteamento e são legalizados e
implementados dinamicamente. Também é proposto um novo algoritmo de busca de
caminhos, baseado na busca A* com intervalos, o qual é ciente de várias regras de
projeto. É proposto também um novo método para melhorar a função heurística da
busca A* levando em consideração peculiaridades do roteamento detalhado, o que
leva a um melhor desempenho. Utilizando os benchmarks da competição ISPD 2018,
todos os métodos propostos foram avaliados separadamente e em conjunto no
roteador proposto, o qual foi comparado com os roteadores estado-da-arte. Os
experimentos mostram que as técnicas propostas contribuem para uma melhoria em
desempenho e um bom tratamento de regras de projeto, assim como demonstra que
o SmartDR é superior aos roteadores estado da arte nesses mesmos quesitos.

Palavras-chave: Roteamento detalhado. Acesso a pinos. Busca de caminhos. Regras

de projeto. ISPD 2018 Contest.

5

Abstract

GONÇALVES, Stèphano Machado Moreira. SmartDR: Algorithms and Techniques
for Fast Detailed Routing with Good Design Rule Handling. 2020. 130p. Thesis
(Doctorate in Computer Science) – Postgraduate Program in Computer Science,
Technology Development Center, Federal University of Pelotas, Pelotas, 2020.

Detailed routing is one of the most challenging and time-consuming steps of the design
of integrated circuits. The routing solution must obey all of the design rules so that the
circuit can be properly manufactured. However, design rule handling may be very
challenging, regarding its algorithmic solutions and implementation, and may easily
lead to unfeasible runtimes. In order to make the detailed routing resolution more
feasible, it is divided into two steps, where in the first, called initial detailed routing, an
almost complete solution is achieved by relaxing design rules. In the second step the
remaining design rule violations are solved. However, the more these rules are left to
be handled in the second stage, the greater is the chance that they will not be
completely solved, and this usually occurs. Thus, it is necessary to face the challenge
of dealing with as many rules as possible in the first step without compromising the
runtime. Thus, this work proposes an initial detailed router, called SmartDR, to meet
these needs, that is, to provide a good design rule handling while keeping a good
runtime. The main features of the router that meet these goals are pin access and path
search techniques. This work proposes a novel pin access method, in which the pin
access paths share the same routing resources and are dynamically legalized and
implemented. It is also proposed a new path search algorithm, based on A *-interval
search, which is aware of several design rules. A new method to improve the A *
heuristic function is also proposed, taking into account the peculiarities of detailed
routing, which leads to a better runtime. Using ISPD 2018 Contest benchmarks, all
proposed methods were evaluated separately and altogether in the proposed router,
which was compared with state-of-the-art routers. The experiments show that the
proposed techniques contribute to runtime and design rule handling improvement, as
well as it demonstrates that SmartDR is superior to the state-of-the-art routers in these
metrics.

Keywords: Detailed routing. Pin access. Path search. Design rules. ISPD 2018

Contest.

6

Summary

1 Introduction .. 13

2 Background and Context ... 19

2.1 Design Styles .. 19

2.2 Standard Cell Design Flow of Integrated Circuits .. 20

2.3 Routing .. 21

2.3.1 Global Routing .. 23

2.3.2 Detailed Routing ... 26

2.3.2.1 Design Rules ... 28

3 Detailed Routing Literature ... 32

3.1 Detailed Routing Approaches and Techniques ... 32

3.1.1 Channel and Switchbox Routing .. 33

3.1.2 Over-the-Cell Routing Using Gcells as Switchboxes .. 34

3.1.3 Sequential Routing Using Path Search for Long Connections 35

3.1.4 Track Assignment ... 37

3.1.5 Multicommodity Flow and Integer Linear Programming.................................... 39

3.1.6 Multilevel Routing ... 40

3.1.7 Search Space Representation .. 41

3.1.7.1 Grid-Based .. 41

3.1.7.2 Gridless ... 42

3.1.8 Multiple Patterning Compliant Detailed Routing ... 44

3.2 Path Search ... 46

3.2.1 Lee's algorithm ... 46

3.2.2 A* Algorithm ... 47

3.2.3 Line Probe Algorithms .. 52

3.2.4 A*-interval-based Path Search ... 53

3.2.5 Improved Heuristic Function for A*-based Path Search in Detailed Routing 55

3.2.6 Design Rule Aware Path Search .. 58

3.3 Pin Access ... 60

3.3.1 Escape Routing .. 61

3.3.2 Intra-cell with Conflict-Free Solution and Static Implementation 62

3.3.3 Inter-cell with Conflict-Free Solution and Dynamic Implementation 64

4 SmartDR Overview ... 66

4.1 Modeling Routing Information .. 66

4.2 Routing Flow ... 68

5 Pin Access .. 72

5.1 Calculating Pin Access Paths .. 74

7

5.1.1 Overall Procedure .. 74

5.1.2 Design Rule Handling ... 75

5.2 Dynamic Manipulation ... 77

5.3 Thick Metal Shape Detection ... 78

5.4 Comparison with Related Work ... 82

5.5 Experiments .. 83

5.6 Conclusions and Future Works ... 90

6 Path Search ... 91

6.1 Path Search Mechanics... 91

6.2 Handling PAP Costs in the Source and Target Points ... 93

6.3 Tunnel Lowerbound ... 95

6.3.1 The Proposed Technique ... 95

6.3.2 Algorithm and Implementation .. 97

6.4 Design Rule Handling .. 99

6.4.1 Via Checking .. 100

6.4.1.1 Efficient Via Queries .. 101

6.4.2 Cut Spacing on Same-Path Vias .. 103

6.4.3 Minimum Area .. 104

6.5 Comparison with Related Work ... 105

6.5.1 DRAPS ... 105

6.5.2 Improved Lowerbounds for the A* Heuristic Function 107

6.6 Experiments .. 107

6.6.1 PAP Cost Aware Path Search .. 107

6.6.2 Tunnel Lowerbound .. 108

6.6.2.1 Comparison with (PEYER, 2009) .. 109

6.6.3 Design Rule Aware Path Search .. 112

6.7 Conclusions and Future Works ... 114

7 Comparison with State-of-the-Art Routers ... 115

8 Conclusions .. 122

References..122

8

Figure List

Figure 1- Flowchart of the design process of integrated circuits, emphasizing physical

synthesis. .. 21

Figure 2- Illustration of a routed circuit layot .. 22

Figure 3– Illustration of the global routing ... 23

Figure 4– Illustration of a MRST (a), a RMST (b) and a Hannan grid (c), with a 4-pin

net ... 24

Figure 5- Illustration of via shape configurations of a via library. 26

Figure 6- Picture of a standard cell in Cadence Innovus tool 27

Figure 7- Illustration of minimum edge rule. .. 28

Figure 8- Illustration of the parallel runlength rule. .. 29

Figure 9- Illustration of the parallel runlength rule with a polygon with multiple

rectangles. ... 29

Figure 10- Illustration of the cut spacing rule with adjacent via cuts constraint 30

Figure 11- Illustration of end-of-line rules .. 30

Figure 12 – Illustration of a switchbox routed .. 33

Figure 13- Illustration of routing each gcell as a switchbox and the problem involved

in the crosspoint assignment ... 35

Figure 14 – Illustration of the Track Assignment problem. .. 37

Figure 15 – Illustration of the graphs used in the TA technique................................. 38

Figure 16 – The V-shaped multilevel routing framework. .. 41

Figure 17 – The shape grid, proposed in BonnRoute .. 42

Figure 18 – Illustration of the search space representation using slit tree and interval

trees .. 43

Figure 19 – Illustration of connection graph (a) and tile-based (b) (c) approaches.... 43

Figure 20 – Illustration of the layout decomposition and stitch generation 45

Figure 21 – Illustration of some steps of the execution of Lee’s algorithm 47

Figure 22 – Pseudocode of A* algorithm. .. 49

Figure 23 - Comparison of the search space of A * (a) and Lee’s algorithm (b) 50

Figure 24- Illustration of the impact, in the number of search nodes, of the gap

between h(n) and h*(n) .. 51

Figure 25 – Illustration of Mikami and Tabuchi’s algorithm .. 53

9

Figure 26 – Illustration of the principle of merging a group of redundant nodes into

intervals ... 54

Figure 27 – Illustration of the interval expansion of Hetzel’s algorithm 55

Figure 28: Illustration of the expanded search nodes using 𝑳𝟏 distance (a) and TL

(b), using an A*-interval-based path search (as Hetzel’s algorithm), restricted by a

tunnel of 3 rectangles .. 56

Figure 29- Illustration of the manipulation of the coefficients and the corresponding

offset points (in red) ... 57

Figure 30- Illustration of the rectangle partitioning in a tunnel 58

Figure 31- Illustration of the pin access problem. .. 60

Figure 32- Illustration of an escape routing solution. ... 61

Figure 33- Illustration of circuitclasses (bottom) and their corresponding instances

(top) ... 63

Figure 34- Illustration of PAP creation with (a) and without (b) violations 63

Figure 35- Illustration of inter-cell conflicts .. 64

Figure 36- Illustration of finding a non-conflicting pin access solution for the entire

standard cell row. .. 65

Figure 37- Illustration of grid point occupancy criteria. .. 66

Figure 38- Illustration of trivial via cut handling (a), and the one adopted in SmartDR

(b) .. 67

Figure 39- Flowchart of SmartDR detailed routing flow. .. 69

Figure 40: Illustration of pin access situations ... 73

Figure 41: Illustration of patch metal insertion and TMS creation. 75

Figure 42: Illustration of same-pin PAP conflicts. .. 76

Figure 43: Illustration of the PAP blockage information and cache usage in metal1. 77

Figure 44: Illustration of our TMS detection algorithm ... 79

Figure 45- Pseudocode of the proposed TMS detection algorithm. 81

Figure 46- Pseudocode of the method to create a CFS from the RS solution of

SmartDR.. 85

Figure 47: Comparison of the CFS implementing 1, 2 and 3 via-PAPs, regarding total

routing runtime (a) and number of failed searches (b) in Standard Routing step. 86

Figure 48: Comparison of different strategies of via-PAP implementation, and results

in total routing runtime (a) and failed searches (b) in Standard Routing step. 88

Figure 49: Runtime results of PAP legality check with and without cache. 88

10

Figure 50- Pseudocode of DRAPS. .. 92

Figure 51: Illustration of the issues of handling costs in the target points. 94

Figure 52: Illustration of the TL technique. Ref points are red and yellow. 96

Figure 53- Pseudocode of the proposed algorithm to precompute the tunnel

lowerbounds. ... 98

Figure 54- Pseudocode of the DRC function. .. 100

Figure 55: Via selection order and via blockage information (red dots). 101

Figure 56- Illustration of a situation where querying the grid with the via blockage

information is not enough to avoid DRVs. ... 102

Figure 57- Illustration of the via check using the empty-space intervals stored by

DRAPS .. 103

Figure 58: Illustration of a path search scenario with a cut-cut spacing violation within

the path. .. 104

Figure 59: Illustration of situations of min area check. ... 105

11

Table List

Table 1: Differences Between the Proposed Method and (NIEBERG, 2011). 82

Table 2: Benchmark Information ... 84

Table 3: Comparison Between RS and CFS Approaches ... 86

Table 4: TMS Usage Results ... 89

Table 5: Comparison with design rule aware path search algorithms in literature. .. 106

Table 6: Results of Using PAP Costs in the Path Search. 108

Table 7: Results of the Proposed Tunnel Lowerbound Technique 109

Table 8: Results of the method proposed in (PEYER, 2009). 110

Table 9: Comparison of relative results between TL and the method in (PEYER,

2009). .. 111

Table 10: Results of Design Rule Violations of DRAPS .. 113

Table 11: Detailed Design Rule Violation results over (KAHNG, 2018) and (CHEN,

2019b). .. 116

Table 12: Area Short and Total Violation Results. ... 116

Table 13: Runtime Results. ... 116

Table 14: Results of WL, Vias and Out-of-Guide Usage ... 117

Table 15: Results of Wrong-Way WL, Off-Track Usage and Scores. 117

Table 16: ISPD18 Score Metrics. .. 119

Table 17: ISPD18 Score Results. .. 120

12

List of Abbreviations and Acronyms

Application Specific Integrated Circuit ASIC

Breadth-First Search BFS

Computer Aided Design CAD

Conflict-Free Solution CFS

Cross Point Assignment CPA

Depth-First Search DFS

Design Rule Checking DRC

Design Rule Violation DRV

Field Programable Gate Array FPGA

Global cell gcell

Half-Perimeter-Wire-Length HPWL

Hardware Description Language HDL

Integer Linear Programming ILP

Integrated Circuit IC

International Symposium on Physical Design of 2018 ISPD18

Lookup Table LUT

Maximum Weight Independent Set MWIS

Multicommodity Flow MCF

Pin Access Path PAP

Rectilinear Minimal Spanning Tree RMST

Resource Sharing RS

Ripup-and-Reroute RNR

Self-Aligned Multiple Patterning SAMP

Thick Metal Shape TMS

Track Assignment TA

Wire-Length WL

13

1 Introduction

As technology advances, integrated circuits have become increasingly complex.

The shrinking of the transistors size, and consequently of other components, allowed

the design of circuits with a huge number of logic gates, limited to very small physical

spaces. In addition, the market has increased the demand for the technology, requiring

greater agility in the production of integrated circuits. Therefore, due to their high

complexity, the design of integrated circuits is performed by CAD (Computer Aided

Design) tools, which automate the synthesis process of the circuits.

There are several design styles to perform the circuit synthesis. The most

eminent design style is called standard cell. The standard cell synthesis process begins

with the description of the logic behavior of the circuit using hardware description

languages (HDL). After that, the set of logical functions that describe the circuit are

optimized in the logical synthesis design step. Then, the technology mapping design

step defines which available logic gates will be used to implement these logic functions.

The next design step is physical synthesis, which aims to provide a geometrical

description of the circuit. The physical synthesis is subdivided into two main steps:

placement and routing. The placement determines the positions of the logic cells

aiming to minimize some cost functions and alleviate the effort of the next design step.

The routing design step obtains the wire routes needed to connect the components,

while also minimizing some cost functions. Finally, a physical verification step is

performed to ensure that all electrical and logical functionality are met.

Due to its high complexity, routing is subdivided into two stages: global and

detailed routing. The global routing defines the areas in which the wires of nets should

pass through, while controlling wire congestion to improve routability for detailed

routing. Thus, the main purpose of global routing is to provide instructions for detailed

routing, in addition to reducing its effort. The detailed routing finds the exact location

of the wires inside the areas delimited by the global routing. Detailed routing must take

into account a number of manufacturing constraints, referred as design rules.

In the old days, when there was no global routing, the first routers relied entirely

on Lee’s algorithm (LEE, 1961) or the line probe methods of (MIKAMI, 1968) and

(HIGHTOWER, 1969). However, the circuit’s layout had specific characteristics that

could be exploited in order to perform a more efficient routing. The cells were grouped

in rows, and between each row there was a space, called channel, which was used for

routing between two adjacent rows. Thus, the channel (HASHIMOTO; DEUTSCH,

14

1971, 1976) and switchbox (JOOBBANI; LUK; MAREK-SADOWSKA; HAMACHI,

1986, 1985, 1985, 1984) routers emerged to solve the routing problem more efficiently.

As the complexity of the circuits increased, global routing was proposed to alleviate

the routing problem. Later, this complexity reached a level such that the channels had

to be very large in order to support all wires, and this was a problem, since the circuit

area had to increase. Thereby, it was necessary to change the circuit layout paradigm,

removing the channels between the rows of cells, and assigning the routing to take

place above the cells. This paradigm is called over-the-cell routing, and it is used

nowadays.

With the end of channel routing, several routing approaches have emerged. In

the time of channel routers, global routing divided the circuit layout in irregular regions,

which were channels and switchboxes, and most connections were performed inside

each region. In over-the-cell routing, global routing partitions the layout in a regular grid

of global cells (gcells), and most connections must cross the boundaries of the gcells.

One approach to perform detailed routing in this new paradigm is to route each gcell

of a global route separately. In order to do this, it is necessary to define the connecting

interface between gcells. The problem to define such interfaces was performed as an

intermediate step between global and detailed routing and was known as the Cross

Point Assignment (CHANG, 2001) (KAO, 1995). Another new approach is the track

assignment (BATTERYWALA, 2002), which was proposed as an intermediate step

between global and detailed routing. It consists in assigning the segments of global

routes to the routing tracks. It is followed by detailed routing, which connects the

missing pieces of the nets. The detailed routing handling long connections with fast

and optimal path search was introduced by Hetzel (HETZEL, 1998). In this approach,

a single path search is performed for an entire path of gcells. This was possible due to

the path search algorithm proposed (HETZEL, 1998), which combined the benefits of

the maze search and line probe algorithms. At the first half of the past decade, the

multilevel routing frameworks (LIN; HO; CONG; CONG, 2002, 2003, 2001, 2005)

became popular. They consist in further decomposing the routing problem in even

more levels of abstraction beyond global and detailed routing, also combining top-

down and bottom-up methodologies.

Most recent detailed routing approaches combined previous techniques and

specialized some of them. The multilevel routing frameworks did not persevere. Li et

al. (2007) proposed a gridless router combining two common gridless routing

15

techniques, tile expansion and connection graphs. In (LI, 2011), the approach of (LI,

2007) was combined with track assignment (BATTERYWALA, 2002), which was aimed

for grid-based routing. Ozdal (2009) proposed efficient algorithms for escape routing

for dense pin clusters. Zhang et al. (2013) proposed RegularRoute, a detailed router

that uses a track-assignment-based technique (BATTERYWALA, 2002) inside detailed

routing, providing full connections, rather than the original track assignment, which was

an intermediate step between global and detailed routing and which provided a partial

solution. The GDRouter routing tool (ZHANG, 2012) combined a global router (XU,

2009) with RegularRoute (ZHANG, 2013) in an interleaved global and detailed routing

procedure. Gester et al. (2013) proposed efficient data structures to handle design

rules in a grid-based routing using a path search algorithm based on Hetzel’s algorithm

(HETZEL, 1998) for long connections. Jia et al. (2017) proposed a detailed router

based on the multicommodity flow graph problem and used Integer Linear

Programming (ILP) to solve the routing problem. TritonRoute (KAHNG, 2018)

proposed an intra-layer parallel routing scheme and also solved it using ILP. In (SUN,

2018), a via location aware track assignment and a multi-thread two stage detailed

routing algorithm is proposed. (CHEN, 2019b) proposed a technique to make the path

search run in an optimized local graph, based on the obstacles inside the global routing

guide. Considering the peculiarities of advanced technology nodes, many works have

emerged addressing multiple-patterning compliant detailed routing (DING; YU; YUAN;

GAO; MIRSAEEDI; MA; LIU, 2018, 2018, 2009, 2010, 2011, 2012, 2016).

Detailed routing also holds an important problem, which is pin access. The pin

shapes are often irregular and not aligned on the routing grid, requiring special

treatment when connecting with the wires. Also, this connection often leads to design

rule violations (DRVs) between the wire and the pin, and within the pin access path

itself. Since one of the main goals of detailed routing is to avoid DRVs, this problem

deserves considerable attention. There are few works on literature that addressed the

pin access problem. Nieberg (2011), proposed an approach that uses gridless pin

access paths free of DRVs within the paths themselves. The method also explores

redundancies in the cell instances such that it is not necessary to calculate pin access

solutions for every placed cell instance, saving runtime. In (OZDAL, 2009), scape

routing is proposed, aiming to provide pin access paths that possibly run out of the cell

boundary, escaping from the pin access congestion, increasing routability. In (XU,

16

2016) and (XU, 2017), pin access considering self-aligned double patterning compliant

detailed routing is proposed.

Almost all detailed routing approaches rely on path search algorithms. The goal

of such algorithms is to find a path between two sets of points in a search space. There

are two classes of path search algorithms in detailed routing: the maze search and the

line probe algorithms. The maze search algorithms derive from Dijkstra’s algorithm

(CORMEN, 2001). They work on a graph, which is usually a grid, and expand the

search point by point, while the line probe algorithms use line segments. Usually, the

maze algorithms guarantee the optimal path, but they are slow, while the line probe

algorithms are usually fast but do not guarantee the optimal path. The Lee’s algorithm

(LEE, 1961) is equivalent to the Dijkstra’s algorithm in the specific context of grid

graphs with uniform cost edges. Later, Rubin (RUBIN, 1974) used the A* search

(HART, 1968) technique to speed up Lee’s algorithm. The first line probe algorithm

was proposed by Mikami and Tabuchi (1968). Later, Hightower (1969) proposed a

modification on this algorithm. Finally, Hetzel (1998) united the advantages of both

classes of algorithms, proposing an A*-based algorithm using intervals of grid graph

vertices as search nodes. The algorithm was shown to be faster than A*, and it is

optimal, unlike (MIKAMI, 1968) and (HIGHTOWER, 1969). Later, the algorithm was

generalized in (PEYER, 2009) to handle more generic scenarios.

The mentioned path search algorithms are not aware of the design rules that

detailed routing must attend to. These rules are commonly treated outside of the path

search. Part of them are handled after routing, in post-processing steps. However, the

attempt of solving DRVs after routing may either result in the inability of their resolution

or in the creation of new violations. A good way to handle this situation is to make the

path search algorithm aware of some design rules, so that it is able to provide DRV

free paths in a correct-by-construction fashion.

There are few works in literature that propose design rule aware path search

algorithms. MANA (CHANG, 2013) is aware of the minimum area design rule, but it is

a maze algorithm, and such algorithms present high runtime. In (CHEN, 2019b), a

maze algorithm that attends the minimum area rule is also proposed. It runs in a

reduced graph, constructed on-the-fly, which mitigates the maze routing runtime

problem, but there is still a time overhead to construct such graph. In (AHRENS, 2015),

it is proposed a multi-label algorithm which also handled this design rule, and different-

17

mask rules for multiple patterning detailed routing approaches. The runtime was also

high, making the algorithm worth to be used only in some circumstances.

Although detailed routing has been extensively studied in the past decades,

there are still research possibilities. One of the biggest challenges of detailed routing

is design rule handling. The routing solution must respect all design rules, since the

circuit depends on it to properly work. Considering that design rule handling is hard,

detailed routing is yet subdivided. The first step, called initial detailed routing, performs

the majority of the effort, finding all routes and considering the simplest design rules.

The last step solves the remaining DRVs and may perform some refinement on the

routing solution. This subdivision is due to the fact that considering all design rules at

once is hard and increases the likelihood of causing large runtime overheads.

However, leaving more violations for the final step makes the DRV cleanup harder,

and possibly unfeasible. Thus, it is ideal to try to solve as many violations as possible

in the initial phase. However, eminent routers (GESTER; ZHANG, 2013, 2013) have

shown to be unable to handle all design rules in the initial step, delegating industrial

routers to perform DRV cleanup. Even so, the industrial routers are not always able to

solve all violations. Also, runtime is another important objective to be optimized, since

detailed routing is naturally time consuming, and making high effort to handle design

rules is unfavorable for it.

Mantik et al. (2018), members of Cadence Design Systems, pointed another

issue in part of the detailed routing works in the literature, which is the fact that they

relied on small instances of the routing problem. Considering these issues, the Initial

Detailed Routing Contest of the International Symposium on Physical Design of 2018

(ISPD18) (MANTIK, 2018) emerged, encouraging research in detailed routing field and

bringing the first set of detailed routing academic benchmarks to the literature. Also,

although the reality of the industry is probably far more advanced than in the literature,

it is indeed pertinent to do research in detailed routing to provide public knowledge.

Besides, although less likely, the academy research may even contribute to the

industry.

Considering that time is an important metric for detailed routing, and having a

design with no violations is essential, this work proposes an initial detailed router,

called SmartDR, addressing these objectives. The key features of SmartDR that attend

to these objectives are the pin access algorithm and path search techniques. The main

contributions of this work are:

18

1. a novel pin access approach of flexible pin access path selection with

resource sharing and dynamic legality check;

2. a design rule checking algorithm, used in pin access, to detect thick metal

shapes that require higher spacing;

3. a new A*-interval-based design rule aware path search (DRAPS) algorithm

capable of handling the minimum area rule, cut-to-cut spacing rules of

same-path vias, and is aware of the via library, performing efficient via

checking;

4. adaptations in the path search to properly incorporate costs in the source

and target points to reduce pin access path usage, which impacts in via

count and other routing metrics;

5. an efficient technique to improve the A* heuristic function (h) by making it

aware of the global routing guides, providing a substantial speedup to the

path search;

6. experimental results, using ISPD 2018 Contest benchmark suite (MANTIK,

2018), evaluating the proposed techniques, and comparing SmartDR with

other state-of-the-art routers that were also tested using the same

benchmarks. The results show that the proposed router is superior in

runtime and design rule handling.

This work is structured as follows. Section 2 clarify the context of this work and

presents some background information. Section 3 presents a review of the detailed

routing literature. Section 4 presents an overview of SmartDR. Section 5 presents the

proposed pin access method and the related experiments. Section 6 presents the

proposed path search techniques and experiments. Section 7 presents the comparison

of SmartDR with state-of-the-art routers and section 8 are the conclusions.

19

2 Background and Context

First, let us define some common nomenclature. An integrated circuit (IC)

consists of logic gates, which are interconnected by wires. A logic gate, or cell, is the

building block of the logical functionality of the circuit. Since it is a component that

implements a logic function, it has inputs and outputs, which are called pins or

terminals. An output pin carries the electrical signal through wires, which connect to

input pins of other logic gates. This set of pins is called net. A block, or logical block,

or macro block, is a circuit of logic gates that acts as a black-box component of the

chip functionality, and commonly presents a functionality that is easily reusable. The

term macro block is commonly used to designate a block with a large number of cells.

2.1 Design Styles

There are several ways to design integrated circuits. The design styles impact

in time-to-market, cost and in the quality of the IC. Also, some design styles depend

on the application of the IC.

The Full Custom design style allows the design to be highly customizable. For

example, macro blocks can be placed anywhere in the chip. The high freedom in the

design makes the IC more optimized. However, the development time is also high, due

to a relative lack of automation, making the design more expensive. Also, due to the

high manual interaction, this style is more susceptible to present errors. It is worth

using when the IC production is high enough to compensate the large design effort,

such as in microprocessors and FPGAs (Field Programable Gate Arrays) (KAHNG,

2011a).

In Gate Array design style, all logic components have the same structure and a

generic logical functionality, and there is no wiring connecting the components. The

wire routing is performed after defining the application of the IC. Due to the

standardization of the logic components, the only major design effort is in routing, and,

consequently, time-to-market and design costs are favorable. However, since the

placement of the components does not take into consideration routing, this may cause

routing problems (KAHNG, 2011a).

Similarly to gate arrays, the FPGAs use standardized logic components, but

also with prefabricated wiring. All logical functionality is configurable by the user. The

design cost and time-to-market is even lower than in the gate array style. However, the

20

IC runs slower and dissipates more power than application specific integrated circuits

(ASICs) (KAHNG, 2011a).

The Standard Cell design style is the more popular for ASICs. It uses a library

of logical cells, and possibly some macro blocks, to implement the IC functionality. The

cells have standardized height and are placed, in the chip, side by side in rows.

Between the rows, power and ground rails feed the cells. The conception of the cell

library may take substantial effort. Still, with design freedom reduced, this design style

provides a good time-to-market and design cost (KAHNG, 2011a). The scope of this

work is within standard cell-based design.

2.2 Standard Cell Design Flow of Integrated Circuits

The design of standard cell ICs is a complex procedure, containing many steps.

Figure 1 presents a simplified scheme of the design flow. The procedure begins with

the specification of the of the goals and the requirements of the system that the IC will

implement. The logic behavior of the circuit is defined using hardware description

languages (HDL). Some common HDLs are Verilog and VHDL.

In the Logical Synthesis step, a data structure called netlist is generated based

on the circuit description. This structure stores all the information regarding the logical

connectivity of the circuit. Then, the netlist is optimized by boolean algebra optimization

techniques. Once the logical synthesis is finished, Technology Mapping step is started.

This step consists in defining which available cells will be used to implement the logic

functions that define the netlist.

The next design step is the Physical Synthesis, which aims to define a

geometrical description of the circuit. The physical synthesis is subdivided in the

following steps. Partitioning breaks up a circuit into smaller subcircuits or modules,

which can each be designed or analyzed individually. Floorplanning determines the

shapes and arrangement of subcircuits or modules, as well as the locations of external

ports and IP or macro blocks. Power and ground routing, often intrinsic to floorplanning,

distributes power and ground nets throughout the chip. Placement finds the spatial

locations of all cells within each block, while minimizing the estimated wire-length (WL).

Clock network synthesis determines the buffering, gating (e.g., for power

management) and routing of the clock signal to meet prescribed skew and delay

requirements. Routing provides the wire routes needed to connect the components,

while also minimizing the WL and attending to other objectives (KAHNG, 2011b).

21

‘

Figure 1- Flowchart of the design process of integrated circuits, emphasizing physical synthesis.

After the physical synthesis, the Physical Verification step is performed to

ensure that all electrical and logical functionality are met. Here, a netlist is extracted

from the layout and compared to the original netlist. Also, design rule checking (DRC)

is performed to ensure all design rules are respected. The same way, electrical rule

checking is performed to validate the correctness of the electrical signals and their

timing.

2.3 Routing

The main goal of the routing problem is to determine the wire routes of all nets

of the IC. Also, the routing solution must respect all design rules. The design rule

attendance is necessary to ensure that the IC can be manufactured and will be

electrically reliable.

The routing occurs in a tridimensional space with parallel planes, where each

plane refers to a metal layer in which the wires are placed. Metal layers have a

preferred routing direction, which is either horizontal or vertical. Adjacent layers have

different preferred directions. This is to avoid capacitance effects of nearby parallel

wires of adjacent layers and to improve routability. Between each metal layer, there is

a cut layer. The cut layers hold the vias, which are the components that connect wires

from different metal layers. This stack of metal and cut layers is placed above the

standard cells. Figure 2 illustrates a section of a routed circuit layout.

Functionality

Description

Logical

Synthesis

Technology

Mapping

Physical

Synthesis

Physical

Verification

Placement

Routing

Partitioning

Floorplaning

Power/Ground

Routing

Clock

Network

22

Figure 2- Illustration of a routed circuit layot. The red and blue layer belong to the standard cell, and the
metal layers are above. Source: public domain.

Routing also tries to optimize some objective functions, such as runtime, WL,

number of vias, timing and yield. The runtime is important because routing is a very

time-consuming process, accounting for much of the time spent on physical synthesis.

WL impacts power consumption, delay and signal degradation. The number of vias

also contributes to signal degradation since the vias have high electrical resistance.

Timing is related to the delay of the propagation of the electrical signal in the IC. Yield

represents the likelihood of a circuit to be manufactured correctly, without presenting

any defects. Some good practices may be beneficial to yield.

The number of wire connections that routing must complete may reach the

millions. When modeled by a grid graph, the routing space may present billions of

vertices (SCHULTE, 2012). This makes impracticable, in runtime terms, to perform the

wire connections just by using path search algorithms, even the line probe ones, which

are the fastest. Also, simply routing the wires without any planning will make many

wires to unnecessarily congest routing areas needed to complete some wire

connections, which compromises routability. Finally, the lack of planning will make the

solution, even if possible to exist in a feasible time, to present low quality due to large

wire detours, increasing WL, via count and timing.

These facts require routing to adopt a divide and conquer strategy. Thus, routing

is divided into global and detailed routing. Global routing works on a simplified version

of the problem and serves as an orientation to detailed routing. This separation in two

steps is not always precise, since there are some works that propose multilevel routers

23

(LIN; HO; CONG; CONG, 2002, 2003, 2001, 2005), with more intermediate steps, or

interleaved approaches (ZHANG, 2012), which will be mentioned in section 3.1.

2.3.1 Global Routing

The goal of global routing is to reduce the complexity of the problem by providing

a pre-solution to detailed routing, which defines the final routing. Also, objective

functions as WL, via count and timing are optimized. This complexity reduction occurs

through a use of coarse-grained grid (Figure 3a and b), where each grid point covers

many points of the real grid, used in detailed routing. Thus, each point represents an

area, called the global cell (gcell). The grid can be both two-dimensional or three-

dimensional. Each edge of the graph, which represents the grid, models the borders

between two gcells. Each edge has a capacity, which represents the maximum number

of wires that can pass through both regions. As routing occurs, the congestion level of

each edge is calculated based on the capacity of the edge and the amount of wires

passing through it. The global routing output are the gcell routes of each net. A gcell

route of a given net, called global routing guide, is a region that restricts, with some

flexibility, the detailed routing solution for this net as shown in Figure 3b, c and d.

The method to route a net depends on the its number of pins. The approaches

can be divided into two categories: for two-pin nets and for nets with more than two

pins (multi-pin nets). Considering two-pin nets, there are two ways to solve the

problem: using maze routing or using pattern routing. In maze routing the A * algorithm

(section 3.2.2) or some variation of it is used. In pattern routing, the search is restricted

specifically to considering path patterns that follow the format L (one bend), Z (two

 (a) (b) (c) (d)

Figure 3– Illustration of the global routing. (a) Detailed grid (thin lines) and coarse grid (thick lines). The
coarse grid contains four gcells. (b) Global routing determines the connection path, in gcells, between
two pins. (c) The detailed routing area is restricted according to the resulting global routing path. (d) The
connection is made in detailed routing. Source: (CHEN, 2009).

24

bends, as in Figure 3d) or U (a detour with two bends). This approach was proposed

by Chen (1999) and Kastner (2002). Both search styles (maze and patterns) guarantee

the optimal path, but pattern routing is restricted to a much smaller search space,

presenting a superior performance in runtime. Thus, pattern routing is widely used in

global routing of two-pin networks (CHEN, 2009).

The second category of algorithms used in global routing refers to multi-pin nets.

Within this scope, there are two main approaches to solving the problem. The first is

to decompose the net into multiple two-pin nets and solve each one by default two-pin

routing. The second is to solve the Steiner tree problem (SHERWANI, 1998).

The first approach can be solved by finding a Rectilinear Minimal Spanning Tree

(RMST) from the net pins. A RMST is a tree that connects all vertices of a graph, having

the lowest possible cost, which is given by the sum of edge costs. In this case, the

vertices of the graph are the pins and the edges represent the possible connections of

each pin with the others. Edge cost is the lowest possible connection cost. RMSTs can

be found in polynomial time by the algorithms of Kruskal and Prim (CORMEN, 2002).

Solving the problem by this approach can provide suboptimal results. Figure 4a

shows the net resulting from a four-pin MST. Note that the net does not have optimal

WL, which is the case in Figure 4b. In this case, the router split the net into three two-

pin nets, which were routed separately. Considering separately the resulting path of

each pair of pins, it is clear that the WL is optimal. However, the total WL of the net is

not optimal. In order to obtain the optimal result, it is necessary that the paths share

some sections, but this cannot be foreseen since the problem was decomposed. Thus,

Figure 4– Illustration of a MRST (a), a RMST (b) and a Hannan grid (c), with a 4-pin net. Source: (CHEN,
2009).

Pin Steiner point

25

it is necessary to have a global view of the problem, which is the case of the Steiner

tree problem.

The second approach to routing a multi-pin net is to find the Minimal Rectilinear

Steiner Tree (MRST) of the net. A MRST is an RMST with additional vertices called

Steiner points. These points are strategically inserted into locations to force the net to

reuse the same path sections to connect different pins. The problem in finding an

MRST consists in determining the appropriate number of Steiner points and their

locations to maximize this “path section sharing”. These points form the Hanan grid

(HANAN, 1966), which is obtained by projecting vertical and horizontal lines over each

pin (Figure 4c). The vertices of this grid are the intersection points of these lines. The

problem of finding an MRST is NP-Complete. Thus, heuristics were created to solve

the problem quickly, with little WL loss, compared to the optimum result. The FLUTE

algorithm (CHU, 2008) is a good example of the use of such heuristics, showing

optimum results for nets of 9 pins or less. However, these methods do not take into

account important routing factors such as obstacles, congested areas, and delay.

There are several methods that consider the presence of obstacles (LIN; WU; LI;

HUANG; 2007, 2007, 2008, 2010). Regarding congestion consideration, the FastRoute

router (PAN; PAN; ZHANG; XU; 2006, 2007, 2008, 2009) is one of the main

references. Another method of calculating an MRST is by using maze routing. The

advantage of this approach is that it easily handles all the factors involved in routing,

providing a solution with better quality, but with a runtime disadvantage. This approach

is used by the AMAZE tool (HENTSCHKE; 2007, 2009).

The mentioned approaches are used to route single nets. For routing all nets in

the chip, there are two main approaches: concurrent, using ILP, and a sequential, using

a negotiated congestion technique. The concurrent one routes all nets simultaneously,

and the sequential routes them one after another. The sequential methodology relies

on ripup-and-reroute (RNR)1 techniques. The RNR consists in ripping nets already

routed so that new nets can be successfully routed. Considering that the ILP-based

global routers present higher runtime, the sequential approach is preferred (KAHNG,

2011c). The sequential methodology using negotiated congestion technique keeps a

cost history of the nets that passed between each gcell. When the capacity of an edge

of the gcell graph is overflown, the cost of this edge is increased. Thus, congested

1 RNR is sometimes called RRR, as in (KAHNG, 2011c)

26

regions present high penalty costs for the routing algorithms. This avoids the paths to

pass through them, leaving the region to be used only by net nets that really need to

do so (KAHNG, 2011d).

2.3.2 Detailed Routing

In detailed routing, all wire routes are determined within the global routing

guides, with some flexibility. Detailed routing also tries to optimize metrics as WL and

via count, but the major part of these optimizations was already performed in global

routing and are reflected in the global routing guides. There are many approaches to

solve detailed routing. They are described in section 3.

Normally, the routing is restricted, with some flexibility, to a predefined routing

grid. Each metal layer has a set of tracks in the preferred routing direction. There is

also a routing approach that does not use any predefined grid, which is called gridless

routing. Anyway, even in gridless routing, non-uniform grids may be created on-the-fly

to run path searches.

The physical components involved in routing are pins, wires, vias and

obstructions. The pins are interconnected by wires and vias. The wires have a default

width, but some special nets may require a different width. Upper metal layers have

thicker wires. The vias connect wires of adjacent layers. A via has a bottom and a top

pad, as shown in Figure 5. Thus, a via is defined by three shapes: in the bottom, in the

Figure 5- Illustration of via shape configurations of a via library.

27

Figure 6- Picture of a standard cell in Cadence Innovus tool. Metal 1 is blue and metal 2 is red. The
labeled polygons are the pins, and the other are the obstructions.

cut and in the top layer. Some vias present more than one cut shape. The vias that a

detailed router can use are defined in a via library. Most of the pins are in the standard

cells. These pins have more irregular shape and require much care when making

contact with the wires, since it is easy to such connections cause DRVs, as will be

discussed ahead. The other pins have a more regular shape, usually composed by just

one rectangle, and are located in the chip boundaries (I/O pins) and in the macro cells.

The obstructions are usually present in some standard cells and in the macro blocks.

Figure 6 shows the pins and obstructions of a standard cell.

One of the biggest challenges of detailed routing, and possibly the biggest, is

design rule handling. Dealing with all design rules during the construction of the routing

solution is hard. Thus, this incentive the division of detailed routing in two parts. The

first, called initial detailed routing, takes the major effort of the process. It finds all wire

routes and handles the more feasible design rules. The last part, which is often referred

as design rule cleanup tries to solve the remaining design rule violations (DRVs) and

may perform some refinement on the solution. The problem is that it is not always

possible to solve all DRVs in the cleanup step, and this has been constantly seen in

the literature (AHRENS; GESTER; JIA; ZHANG, 2015, 2013, 2017, 2013). The more

violations the initial phase leaves for the final one, the more likely is to be impossible

(or unfeasible) to solve them all. Thus, the initial phase should handle DRVs as much

as possible, while observing all metrics to be optimized. It is a challenging

28

(a) (b)
Figure 7- Illustration of minimum edge rule.

implementation work, but it is possible, and the experiments in this work are evidence

of this.

2.3.2.1 Design Rules

This section presents some common design rules handled in detailed routing.

Each layer, metal or cut, has a set of design rules. These rules can be grouped in two

main categories: shape rules and spacing rules. Shape rules impose constraints in the

shape of the objects. Spacing rules require the objects to obey a minimum distance

from each other that may be influenced by many factors. There are also the

overlapping rules, which impose restrictions on the overlapping between shapes, but

they will not be treated here.

The minimum area is an example of a shape rule. It requires that any polygon

in a metal layer meet a minimum area. The minimum edge rule is another example. In

this case, two consecutive shape edges that do not meet a minimum length are

forbidden. Figure 7 illustrates this rule. Also, any shape must respect a minimum width.

The default wires of a metal layer have this width.

The parallel runlength is a spacing rule that requires that two metal shapes

respect a minimum spacing from each other. The thicker the shapes, the higher is the

spacing. The same way, the higher is the extent that both shapes run in parallel (i.e.

the parallel runlength), the higher is the spacing. A spacing table defines these values.

The rows and columns are the widths and parallel runlength ranges, and the table

values are the required spacing. The minimum spacing value of the table is the default

minimum spacing between any object. Usually, this spacing value plus the minimum

width rule value, which is the default wire width, result in the pitch of the metal layer.

The pitch is the distance between the grid points of the routing grid. Sometimes the

Violation
Minimum edge:

OK

29

 (a)

 (b)

 (c)

 (d)

Figure 8- Illustration of the parallel runlength rule.

(a) (b)

(c) (d)
Figure 9- Illustration of the parallel runlength rule with a polygon with multiple rectangles.

Spacing 1

Width 1

Spacing 2

Width 2

Spacing 3

Width 3
Spacing 1

Width 1

Width 1

Width 1

Spacing[1][1]

Prl 1

Width 1

Width 1

Spacing[1][2]
(violation)

Prl 2

Width 2

Width 1

Spacing[2][1]
(violation)

Prl 1

Width 2

Width 1

Spacing[2][2]
(violation)

Prl 2

30

pitch can be higher than this sum.

Figure 8 shows examples of the parallel runlength rule. “Width 1” and “Width 2”

are widths of the width ranges 1 and 2 of the spacing table. The same way, the “Prl”

represents the parallel runlength between both objects. Spacing[w][p] is the required

spacing between two objects; w is the index of the width range that contains the greater

width of the two objects and p is the index of the parallel runlength range that contains

the parallel runlenght of the two objects. The width of an object is the lesser side of the

rectangle.

A metal object may be a polygon, defined by many rectangles. In this case, it

may present parts that trigger different spacing values on the spacing table, due to

their different widths. This is shown in Figure 9. The spacings shown are width-

 (a) (b)

Figure 10- Illustration of the cut spacing rule with adjacent via cuts constraint. The via cut 0 requires
spacing of adjSpacing if there are 3 or more via cuts touching cutWithin radius.

(a) (b)
Figure 11- Illustration of end-of-line rules. (a) is the simple case and (b) with parallel edge modifier.

31

dependent only, as the parallel runlength itself, between two objects, is ignored. An

object passing by this polygon must be aware of all of its parts in order to avoid

violations. The parallel runlength is measured in each part separately.

The cut spacing specifies the minimum spacing between two via cuts. This value

is usually higher than the minimum wire spacing. The cut spacing rule may present

some modifiers, like the adjacent cuts. A cut spacing with, say, 3 adjacent cuts means

that this spacing is only applied when there is 3 via cuts in a given radius. Figure 10

illustrates the cut spacing rule with adjacent cuts constraint.

The end-of-line rule requires special spacing from a shape edge that has less

than a determined size. Figure 11 shows examples of this rule. The red segment is the

end-of-line edge. Any object in the red dashed rectangle causes a violation. The rule

may present some modifiers, like the parallel edges. In Figure 11b, the parallel edges

modifier is used, meaning that it is necessary to exist an object in any of the two blue

rectangle areas in order to trigger the spacing requirement. If the modifier is set to two

edges, then both blue rectangles must be intersected to trigger the spacing.

The pitch of the routing grid ensures that the wires of default width do not

present violations with each other. Thus, the violation possibilities are in whatever

objects with a width and/or with a spacing requirement greater than the minimum.

These objects are pins, obstructions, non-default wires and vias. Thus, the major

attention in avoiding DRVs is in the pin access and in the path search, since the paths

need vias to connect the wires of different layers.

The ISPD18 benchmarks, adopted in the experiments of this work, use a

simplified set of the mentioned design rules. The rules are: (1) minimum area; (2) cut

spacing (no adjacent cuts); (3) end-of-line (no parallel edges); (4) parallel runlength,

ignoring the parallel runlength itself, varying only the widths. Also, there are no non-

default wires.

32

3 Detailed Routing Literature

This section presents a literature review of detailed routing. Section 3.1 presents

detailed routing approaches and techniques. Considering that path search is a

fundamental building block of detailed routing, and that part of the contributions of this

work is related to path search, section 3.2 presents path search related algorithms. Pin

access is also another important step of detailed routing, and since it is one of the main

contributions of this work, section 3.3 presents pin access techniques.

3.1 Detailed Routing Approaches and Techniques

Detailed routing is a problem that can be solved in many ways. Over the history

of routing in integrated circuits, many approaches and techniques were used. In the

old days, when the number of layers available for routing was two or three, routing was

solved using the channel routing approach. With the change of paradigm to the current

one (over-the-cell routing), the resolution of the detailed routing problem is more

flexible, presenting many different approaches.

The detailed routing methodologies may be grouped in some categories,

according to the routing order of the nets, the use of a predefined grid, and the

awareness of manufacturing peculiarities that improve yield.

Regarding the routing order, there are the sequential (also called net-by-net)

and the concurrent approach. In the sequential one, the nets are routed one after

another, such that previously routed nets form obstacle to the new ones. Nets that

could not have a route found are rerouted in RNR (SHIN, 1987) step, as in global

routing, in which nets are routed possibly ripping out other nets. The sequential routing

tends to present a favorable runtime, but this can be compensated by the RNR step.

The routing order of the nets has a high impact in the number open nets (i.e., nets that

could not complete a connection). Thus, in order to properly work, this methodology

relies on a good net ordering.

The concurrent approach routes all net pieces in some routing regions

simultaneously. It is better at handling high congested areas, but it tends to present

higher runtime than the sequential methodology. It is still possible to present open nets

and rely on RNR, but much less than in the sequential approach. The concurrent

routing is easier to parallelize than the sequential one.

Regarding the routing space modeling, most approaches use a predefined grid.

This facilitates the implementation and tends to provide faster runtime than gridless

33

approaches. The main argument of gridless routing is that it naturally handles design

rules better, mainly the less common ones.

Some routing approaches focus on optimizing good practices that may impact

on the manufacturing yield. Examples are routers that try to use multi-cut vias and the

ones that attend to the multiple patterning constraints (DING; YU; YUAN; GAO;

MIRSAEEDI; MA; LIU, 2018, 2018, 2009, 2010, 2011, 2012, 2016).

3.1.1 Channel and Switchbox Routing

In the old routing paradigm, between each row of logic gates there was a space,

called channel. The pins of the cells were located at the cell border adjacent to the

channel. The connections between the cells were performed on the channels. Two

metal layers were used, at first.

A channel is a rectangle with pins at two of its opposing borders. As the complexity of

the circuits increased, not all connections could be performed on the same channel.

The routing space was divided in rectangles, called switchboxes, with connections at

the four borders. Figure 12 shows an example of a switchbox routed.

The first channel routing algorithm was the Left-Edge (HASHIMOTO, 1971).

Later, (DEUTSCH, 1976) proposed the Dog-Leg algorithm, which was an improvement

over Left-Edge. The switchbox routers (JOOBBANI; LUK; MAREK-SADOWSKA;

HAMACHI, 1986, 1985, 1985, 1984) derive from the channel routers. The basic

procedure of channel routing is the following. First, a horizontal constraint graph is built

Figure 12 – Illustration of a switchbox routed. Blue and red represent the different metal layers, and the
black squares are the vias. The terminals are labeled by numbers representing their respective net.

34

in order to detect the minimum number of routing tracks needed to make the routing

feasible. Second, a vertical constraint graph is built, aiming to provide a topological

order of pin connections to be routed. Finally, the connections are implemented

following the vertical constraint graph topology and respecting the constraints of the

horizontal constraint graph.

With the increase in circuit complexity, the routing channels had to become even

larger in height, which would increase the circuit area. Thus, a third metal layer was

introduced. In this layer, wires were allowed to be put over the cells. Several over-the-

cell channel routers were proposed (CONG, Jason; HOLMES; CONG, J.;

NATARAJAN; WU; 1990, 1991, 1990, 1992, 1992). However, this was not enough to

handle the wire congestion that was constantly increasing. Thus, more metal layers

were introduced, and the routing space assigned to the channels became pointless,

causing the end of channel routing.

3.1.2 Over-the-Cell Routing Using Gcells as Switchboxes

In the time of channel routing, global routing worked on irregularly partitioned

regions, constituted of channels and switchboxes. With the change of paradigm, global

routing partitioned the routing area regularly in gcells, as already shown in Figure 4. A

path obtained in global routing is a sequence of gcells, called global routing guide,

connecting all net pins. In detailed routing, the routing of a net is restricted to the region

denoted by this set of gcells. Considering the sequential paradigm, in order to route a

net, it is necessary to use a path search to connect all of its components (pins and

wires). Since these components may be far away from each other, this may cause high

runtime overheads in some path search algorithms. Thus, one detailed routing

approach is to decompose these long connections into smaller connections, one for

each gcell (IGUSA; PARNG, 1989, 1989). Each gcell, work as a switchbox, with

pseudopins at its boundaries, as shown in Figure 13. Pseudopins are terminals that

act like pins. This approach gave rise to the Cross-Point Assignment (CPA) problem

(KAO; CHANG, 2001, 1995).

The CPA, also called Pseudopin Assignment, is an intermediate step between

global and detailed routing, aiming to determine the positions of the pseudopins at the

gcells boundaries. An advantage of this approach is that it allows a good level of

parallelism, since it is possible to route each gcell separately. This methodology can

35

(a) (b)

 Figure 13- Illustration of routing each gcell as a switchbox and the problem involved in the crosspoint
assignment. The gcell grid is denoted by the thick blue lines. The global routing guide is in translucid
blue. A path (in red) connects two cells. The green points are the crosspoints (or pseudopins). In (a), it
is possible to see the WL increase that may happen in this approach, due to the decomposition of the
searches. In (b) it is shown the optimal solution.

be either sequential or concurrent. That is, it is possible to route all connections of all

pseudopins of a gcell, each time one is processed (concurrent approach), or it is

possible to consider one net at each time (sequential approach) and perform the

connections of all gcells in the global routing guide. The mentioned parallelism is

independent of the approach.

A disadvantage of this approach is that it provides bad results in terms of WL,

as shown in Figure 13a. Since a connection is decomposed, the global view of the full

connection is lost and thus, the optimal path cannot be guaranteed. This methodology

became less popular with the emergence of more modern approaches (as in the next

sections), which performed long connections more efficiently.

3.1.3 Sequential Routing Using Path Search for Long Connections

The justification of the path decomposition of the previously commented

approach is that, the path search algorithms available in that time were not satisfactory

to handle long connections. The maze search algorithms are known to present a high

processing time, which is proportional to the available search space. The line probe

algorithms are faster, but don’t guarantee the optimal path and cannot handle variable

grid point (and graph edge) costs. As will be shown in section 3.2.4, Hetzel’s algorithm

(HETZEL, 1998) uses line segments and is goal oriented, using A* technique. In the

current work, this kind of path search is called A*-interval-based path search. With this

algorithm, there is no reason to decompose the pin connections. Another possibility is

to preprocess the global routing guide area to create an optimized graph for a Dijkstra-

36

based (CORMEN, 2001) path search algorithm, as in (CHEN, 2019a, 2019b).

However, as the experiments in this work suggest (section 7), the time spent in

constructing such graph does not compensate the runtime improvement of using an

interval-based path search.

The sequential detailed routing methodology is the following. First, the nets are

ordered in a priority queue. As mentioned earlier, a good net order is very important

for a good routing. A good criterion for net ordering is related to the routing area of the

global routing guides or the estimated WL of the net. Routing nets with less area (or

WL) first theoretically tends to present good results, since a lower area net has less

freedom to perform the connections. However, in practice, routing nets with more WL

first may be better. Since the routing guides of all nets have the same width, the net

length factor weights more than the routing area factor. Also, longer nets have most of

their routes in higher metal layers, using lower layers only for pin access, while shorter

nets tend to use more the lower layers. This makes longer nets present few blockages

to shorter nets, if they are routed first, while routing first shorter nets presents more

blockages to longer nets.

After the net ordering, the nets are sequentially routed. Since a net can have

multiple pins, it is decomposed in two pin nets. This decomposition may be performed

at the routing procedure begin, before net ordering, or after a net is selected for routing.

Each two-pin net is restricted to a section of the global routing guides, which is called

tunnel in this work. The two-pin net is routed and the resulting path is inserted into the

routing space. Open nets are handled in the RNR step, as mentioned earlier. The path

searches in RNR may rip other nets, and the process continues until all nets are routed

or some other criterion, like a runtime limit, is met. In order to avoid RNR loops, the

path search is penalized when routing through other wires. Another good practice is

using a Negotiation-based technique (KAHNG, 2011d) in which the routing space

stores a cost history of the wires that were already inserted on it. Thus, congested

regions present higher penalty cost for the path search.

In the sequential approach, parallelization is less trivial than in the concurrent

one, but it is still feasible. (CHEN, 2019a, 2019b) proposes to route, in parallel, batches

of nets that do not present routing guide overlapping with each other. After a batch is

routed, all found paths are inserted into the routing space, and the next batch is

chosen, and so on.

37

Examples of sequential routers are (SHIN, 1987), (HETZEL, 1998), BonnRoute

(GESTER; AHRENS, 2013, 2015), and (CHEN, 2019a, 2019b).

3.1.4 Track Assignment

Track Assignment (TA) was proposed in (BATTERYWALA, 2002) as an

intermediate step between global and detailed routing. It is closer to detailed routing

than global routing, though. Consider Figure 14. Each row of gcells of a global routing

guide is called global segment. An iroute (or ir) is a wire segment from detailed routing

used to implement the global segment. A panel is the region denoted by an entire line

or column of gcells of the global routing graph, following the preferred routing direction.

The track assignment problem consists in assigning all ir’s of a panel to routing tracks

without overlapping ir’s of different nets.

The first step of TA is to group all ir’s to their respective panels. Then, each

panel is processed separately. This allows a good level of parallelization. For a given

Figure 14 – Illustration of the Track Assignment problem. (a) Vertical and horizontal panels in global
routing grid. (b) The global routing guides of a net (in grey), its global segments (dashed lines), its iroutes
(lines), and its pins (dots). (c) Track assignment example. The grey rectangle is an obstacle. Source:
(BATTERYWALA, 2002).

38

Figure 15 – Illustration of the graphs used in the TA technique. (a) irou-te overlap graph. (b) bipartite
assignment graph. (c) combined graph model.

panel, an iroute overlap graph is constructed (Figure 15a). Each vertex of this graph is

an ir and the edges are their overlaps. Then, this graph is extended to a bipartite

assignment graph (Figure 15b), where one set of vertices is composed by the ir’s and

the other set contains the tracks. The edges connecting both sets represent the

availability of assigning an ir to a track. The weight of these edges represents the cost

of assigning the ir to the track. These costs are modeled by many factors, such as

obstruction costs, long wire penalties in some cases, and anchor costs (wires and pins

of the same net should be as close as possible).

Since the optimal track assignment solution is NP-Complete (BATTERYWALA,

2002), a heuristic is used to solve the problem. In an iterative procedure, the largest

cliques1 of the iroute overlap graph are selected, and their ir’s are assigned to different

tracks, by modeling this task as a weighted bipartite matching problem and solving it

using the shortest augmenting path algorithm of Jonker and Volgenant (1987). The

combined graph (Figure 15c) is updated by removing the assigned ir’s and their edges

linking to the tracks.

After the track assignment step, detailed routing is performed to connect the

pieces of the nets. Since the longer connections were already performed by TA, the

path search algorithm (even a maze search one) does not encounter great difficulties

to find the routes.

In 2013, Zhang (2013) proposed a detailed router, called RegularRoute, based

on TA. However, it does not use TA as an intermediate step between global and

1 A clique is a set of vertices in an undirected graph such that any pair of vertices is connected by an edge.

39

detailed routing. The detailed router itself uses TA-based technique and provide the

full connections of the nets. In RegularRoute, the ir’s are not just segments, but also

the segment connections to their terminals. These new ir’s are called choices. There

can be many choices for the same “ir segment”. A terminal can be a pin or other

segment. The order of assignment of choices is determined by modeling the problem

as a Maximum Weight Independent Set (MWIS) problem. The MWIS problem aims to

find, in a graph, the set of vertices of higher weight, where there is no pair of vertices

connected by edges. In the case, the vertices are the choices and the edges are their

conflicts. A vertex weight is given by a function that returns the benefit of the choice.

The MWIS is solved by iteratively selecting the choice of highest benefit, inserting it on

the routing space and removing all its neighbors from the graph. Then, all the pieces,

of the remaining choices, that can be assigned to the current panel are assigned. All

of these pieces of choices have their terminals assigned to the next upper metal layer,

aiming to delegate the incomplete connection to the other layer.

3.1.5 Multicommodity Flow and Integer Linear Programming

The multicommodity flow (MCF) is a graph flow problem. A commodity is a flow

demand, which has a source and a sink node. The graph G = (V, E) must be a flow

network, that is, each edge has an associated flow capacity. Given G and a set of

commodities, the goal is to find a path for each commodity such that the total flow in

each edge does not exceed its capacity.

Jia (2017) proposed a MCF-based detailed router in which track assignment

(BATTERYWALA, 2002) is used, greatly mitigating the hardiness for a MCF approach.

Then, the routing problem is modeled as a MCF problem, and it is solved by ILP. ILP

consists in optimizing an objective function, given a set of constrains. The objective

and constraint functions are all linear. The edges in the MCF model are the edges of

the grid graph. The edge capacities are binary (0 or 1), meaning that a graph edge can

either or not support a wire segment. The flow demand of the commodities is also

binary. The objective function to be minimized, in the ILP, is the sum of all edge flows

multiplied by the edge costs. The constraints are: 1) All pins of each net are connected

by a path; 2) There is no wire segment overlapping; 3) There are no design rule

violations. The router presented a good design rule handling, but at the high cost of

runtime.

40

TritonRoute also uses an ILP-based detailed routing framework, but without

modeling the problem as a MCF problem. The approach routes, in parallel, sections of

each metal layer using ILP. The metal layers are routed from bottom to top

sequentially.

3.1.6 Multilevel Routing

At the beginning of the last decade, several multilevel routers were proposed.

The motivation for the creation of these routers were that the predicted shrinking size

of the transistors would make global and detailed routing much harder, since there

would be much more connections per area. The multilevel routing can be either a

routing framework with additional steps between global and detailed routing, or an

interleaved global and detailed routing framework with many levels of grid coarsening

(increasing gcell size) and uncoarsening.

DUNE (CONG, 2001) is a gridless detailed router that has an intermediate step

between global and detailed routing. This step is called wire planning, and it is used to

plan wire connections in a more detailed view. When a routing connection fails, detailed

routing reports back to the wire planning model, which replans the connection. The

most popular multilevel framework is the V-shaped model (Figure 16). The V-shaped

framework uses a bottom-up followed by a top-down approach. Routers using this

model (LIN; HO; CONG, 2002, 2003, 2005) start the routing performing a grid

coarsening (bottom-up step). In this step, local connections (i.e. connections within a

gcell) are performed, and the routing congestion is estimated for the next coarse level.

After some coarsening steps, the top-down phase is executed by uncoarsening the

gcells while refining the routing pendencies.

When multilevel routers emerged, Hetzel’s algorithm (HETZEL, 1998) was not

popular. This path search algorithm certainly weakens the multilevel approach

premise. The same is true for track assignment. Still, (HO, 2003) is a multilevel router

that uses TA. The use of techniques to handle long connections weakens the multilevel

premise, but the expectations about the increasing routing complexity, in that epoch,

were high. Whether because global routing evolved to more efficient methods, or

detailed routing approaches efficient for long connections emerged or became more

popular, the multilevel approach lost emphasis in the academy. It should not be

forgotten though, since it presents a more global view of the routing problem.

41

Figure 16 – The V-shaped multilevel routing framework.

3.1.7 Search Space Representation

3.1.7.1 Grid-Based

In the grid-based routing approach, the wires should respect a grid implicit in

the search space. The pitch is the distance between grid points. This distance should

be at least the minimum wire width plus the minimum wire distance. Since upper layers

tend to have ticker wires, the pitch of upper layers is larger. Consequently, the layer

with a larger pitch is misaligned in relation to the lower pitch layers. Thus, it is not

possible to perform a connection between layers with different pitch anywhere, only

when the grid points are aligned.

One naive approach to implement the grid is with a matrix for each layer. This

implementation, in addition to utilize much memory, is very inefficient to handle grid

queries. Since the wires have long segments, the addition of a wire segment in such

grid, or a query to verify whether the segment is not blocked, would result in multiple

queries for each grid point of the segment. Thereby, a good way to implement the grid

is to keep a set of sorted line segments for each routing track.

A more modern approach to implement the grid is used in BonnRoute (GESTER,

2013). In order to handle different wire widths on the same layer, as well as the

common misalignment of pins to routing tracks, Gester et al. (GESTER, 2013)

proposed a grid data structure that allows routing tracks with irregular distances to

each other. This data structure, called shape grid, shown in Figure 17, is responsible

for storing all the shapes (wires, pins, power supplies) in the routing space. This grid

partitions the routing space in cells. Each cell is small enough such that shapes of

42

Figure 17 – The shape grid, proposed in BonnRoute. Source: (GESTER, 2013)

different nets cannot be legally present in the same cell. Each cell has a possible

configuration. A configuration is a layout of circuit components, as shown in the cell

configuration table of Figure 17. These cells are not stored separately. Instead,

intervals of cells with repeating configuration are stored. These intervals store the cell

id. Since the shape grid includes more detailed information of the search space,

queries in this grid are expensive. Thus, a fast grid data structure is used in

combination with the shape grid. The fast grid stores simplified blockage information

obtained from the queries on the shape grid, and is implemented as the standard grid

mentioned earlier, with AVL trees storing intervals in the routing tracks. The fast grid is

used to perform queries for segments of standard wires (i.e. wires with default width).

In (GESTER, 2013) about 98% of the grid queries are performed using the fast grid.

3.1.7.2 Gridless

Considering that wires may have different widths, and thus, different minimum

distance rules, the uniform grid-based approach does not handle straightforwardly

these characteristics. If the highest wire width is used to calculate the grid pitch, this

causes much waste of space. Thus, an alternative approach to model the search space

is to allow wires to be at any position.

The space representation is more complex than the traditional uniform grid. A

common approach is shown in Figure 18. In a given layer, the layout area is sliced by

a slit tree (KATO; KUH, 1987, 1990), and inside each slice, an interval tree

(EDELSBRUNNER, 1983) is used to keep all shapes inside the slice. The slit tree

slices are performed in the preferred routing direction. There are also orthogonal cut

lines that are created for the interval tree. These cut lines are the nodes of the interval

tree, while the cells formed by the horizontal and vertical lines are the leaves. The

43

Figure 18 – Illustration of the search space representation using slit tree and interval trees. Source:
(CONG, 2001).

Figure 19 – Illustration of connection graph (a) and tile-based (b) (c) approaches. Source: (LI, 2007).

longer shapes that intersect a cut line are stored at the highest-level node (i.e. cut line)

they cut. There are two approaches for gridless routing: tile-based (SATO, 1987)

(MARGARINO; LIU, 1987, 1998) and by connection graph (OHTSUKI, 1985). A

connection graph is obtained by extending the boundary lines of all obstacles until

reaching the boundary of other obstacles or the routing boundary (Figure 19a). A path

is obtained by running a maze path search algorithm in the graph. The graph can be

created on-the-fly during the path search. Tile-based approach partitions the search

space into two tile types (space tiles and block tiles) and organizes all tiles using a

corner-stitching data structure (OUSTERHOUT, 1984). The tile plane of a routing layer

is produced by extending the border lines, of the preferred direction, of all obstacles

until any obstacle or routing boundary is reached (Figure 19b and c). A maze search

algorithm is run in order to obtain the sequence of tiles that connect the source and

44

target pins (this is called tile propagation), and line probe methods (MIKAMI;

HIGHTOWER, 1968, 1969) are used within each tile to define the actual path. Li et al.

(LI, 2007) proposed a gridless router combining tile propagation and connection

graphs. In (LI, 2011), the approach of (LI, 2007) was combined with track assignment

(BATTERYWALA, 2002), which was aimed for grid-based routing.

3.1.8 Multiple Patterning Compliant Detailed Routing

The IC fabrication is performed using photolithography technology. A mask with

geometric patterns is exposed to light over a photosensitive material (photoresist),

creating the IC features (i.e. wires, pins).

With the advance of technology, and consequently the feature size shrinking,

the IC features, represented in the mask, become too close to each other. This causes

a precision loss in the printing of the features. The solution is to reduce the wavelength

of the light used. However, this wavelength reduction has already reached a limit of

193nm. While the 13.5nm UV technology is not ready, other solutions have emerged,

and double patterning technology is one of the most prominent.

In double patterning, the features are defined by two masks. Each mask has a

pitch large enough to guarantee the printing precision. The lithography process occurs

separately for each mask, assuring the fidelity of the printed features in both masks.

Using the same concept, triple and quadruple patterning also emerged. The term

“multiple patterning” refers to any of them.

The use of multiple patterning requires an additional step in the design flow of

ICs, which is layout decomposition. This procedure assigns a mask to each feature in

the layout. Figure 20 shows a layout decomposition example. However, this

decomposition is not always possible. A solution is to try to modify the layout, which

may be very problematic, or to decompose a feature in two polygons and assign each

one to a different mask, creating a stitch, as shown in Figure 20. The problem is that a

stitch is highly sensitive to distortions in the printed features, possibly causing contact

issues, as shown in Figure 20b. Thus, the number of stitches should be minimized.

The layout decomposition is performed after routing. However, considering that

the majority of the features are wires, ignoring the stitch creation problem in detailed

routing may lead to an increase in the number of stitches. The following works

proposed multiple patterning compliant detailed routers: (LIN, 2012), (MA, 2012),

(CHO, 2008), (YUAN, 2009), (LIN, 2010), (GAO, 2010), (LEI, 2014) and

45

(a) (b)
Figure 20 – Illustration of the layout decomposition and stitch generation. Black and grey represent the
two masks. In (b), the rounded objects are the resulting printed features. Source: (CHO, 2008).

(AHRENS, 2015). The basic strategy of handling multiple patterning in these works,

excluding (AHRENS, 2015) and (LEI, 2014), is to color the metal layers features (one

color for each mask) and to penalize stitches in the path search. In (AHRENS, 2015)

and (LEI, 2014), this coloring control is simplified by assign colors to routing tracks.

Each feature in a routing track is encouraged to have the routing track color. Wires

with colors different from the routing track color are penalized in the path search.

Considering that the only way to form stitches is with jogs (i.e., non-preferred direction

wires) of adjacent tracks, stitches are forbidden in (AHRENS, 2015), since jogs

between adjacent tracks are not allowed. Thus, stitch control is simplified.

Another multiple patterning technology is Self-Aligned Multiple Patterning

(SAMP). One of the main advantages of SAMP over other multiple patterning

approaches is that SAMP presents better overlay control. Overlay is the mask

misalignment during manufacturing, which may cause distortions in the printed

features and yield loss.

The same way as other multiple patterning approaches, it is ideal to make

detailed routing aware of SAMP. However, the SAMP is more complex, presenting

other masks (i.e. trim and cut masks), such that the mask features do not represent

directly the printed layout features. This makes SAMP compliant detailed routing even

more challenging than other multiple patterning techniques. Examples of SAMP

compliant detailed routers are (MIRSAEEDI, 2011), (DU, 2013), (LIU, 2016), (DING,

2017) and (DING, 2018).

 (MANTIK, 2018) presented a critic to these works claiming that “the problem

instances adopted in these works are much smaller than the real industrial designs.”,

and this is one of the motivations for the creation of the ISPD18 Contest, which

46

provides more realistic benchmarks, derived from industrial chips. The ISPD18

benchmarks are not from technology nodes that require multiple patterning though.

Thus, the scope of the current work does not consider multiple patterning approaches,

since it uses the ISDP18 benchmarks.

3.2 Path Search

Almost all detailed routing approaches rely on path search algorithms. In graph

theory domain, the path search is a problem which consists in finding a path between

two vertices, or two sets of vertices S and T (source and target sets) in a graph. Some

algorithms can handle multiple source-target (s-t) vertices, while others can handle

only a single s-t pair. In detailed routing, the graph is a grid-graph, and the path cost is

desired to be minimized. This grid graph is only conceptual, and it does not to be

explicitly stored, as discussed in section 3.1.7.1. In this work, the term “path search” is

also used for line probe methods, such as Hightower’s algorithm (HIGHTOWER,

1969), which can work in a plane of continuous coordinates, meaning that the search

is purely geometrical (i.e., it is not a graph search).

3.2.1 Lee's algorithm

The Lee’s algorithm (LEE, 1961), also known as the Maze Router, is a Breadth-

First Search (BFS) algorithm specialized for a grid graph context. Figure 21 illustrates

how the algorithm works. It starts the search at the source point s. From this point, the

adjacent points (with the exception of the diagonals) are visited and labeled with

values, representing the known distance from the points to s (Figure 21a). For each of

these points the same process repeats, generating successive expansive waves, until

target t is found (Figure 21b and c). Then, the algorithm starts the path recovery phase

(Figure 21d). Once the target point is reached, it is added in the path, and any adjacent

point with a value less than it is also added to the path. This point is selected and the

procedure continues until the source point is reached. Then all the labeled points are

unlabeled. Lee's algorithm ensures that a path is found, if any exist, in addition to

ensuring that the path is optimal.

47

Figure 21 – Illustration of some steps of the execution of Lee’s algorithm. In red are the source and
target points. (a) The four neighbors of s are labeled. (b) Neighbors of neighbors of s are labeled. (c)
After some iterations, the destination is reached. (d) The path is found.

3.2.2 A* Algorithm

 Lee's algorithm expands the search in all directions. In situations where the

routing region is not full of obstacles, expanding the search in a direction contrary to

the target point is pointless. This behavior causes Lee’s algorithm to have a high

runtime and memory consumption. In order to improve this, Rubin (RUBIN, 1974)

applied the A* search (HART, 1968) technique in Lee's algorithm. Although A * is a

speedup technique of Dijkstra’s algorithm, the term “A* algorithm” is commonly used

in detailed routing, and in this work, as Dijkstra’s algorithm with A* technique. This

algorithm consists in an implementation of Dijkstra’s algorithm using a heuristic to bias

the search towards the target point. In Dijkstra’s algorithm, and consequently Lee's

algorithm1, the cost of a search node n is the cost of the known path between the

source point and n. In A*, the cost of the search nodes is given by the function f(n) =

1 The application of Dijkstra’s algorithm in a grid graph, with uniform cost edges, provides the same
search behavior and results as Lee’s algorithm

(c)

(b) (a)

(d)

48

g(n) + h(n), where g(n) returns the known cost of n to the source point, as in Dijkstra’s

algorithm, and h(n) is a heuristic function that returns the estimated path cost from n to

the target point. Thus, f(n) cost means the least cost, known so far, that a s-n-t path1

can have. Since the function h estimates the cost of the node to the target point, the

total cost, given by f, is called potential cost of n.

In a grid graph, h is usually implemented by the 𝐿1 (i.e Manhattan) distance. The

𝐿1 distance (or 𝐿1 norm) is the shortest possible distance between two points on a grid

graph. The 𝐿1 distance of two points (x1, y1, z1) and (x2, y2, z2) in a grid graph is given

by

𝐿1((x1, y1, z1), (x2, y2, z2)) = |x1 – x2| + |y1 – y2| + |z1 – z2|.

In detailed routing, it is normal that the via usage is discouraged. Thus, vias

normally present cost penalties to the path search. Thereby, the value |z1 – z2| of the

𝐿1 function may be easily modified by the cost of using a via. Also, if z1 = z2, the cost

of two vias may be used, if the best possible path necessarily must use two vias.

Note that the h function is a heuristic to reduce the search space (improving

runtime), not a heuristic to obtain the optimal path. Thus, the optimal path of A* is still

assured, provided h is admissible. This is true for the original version of A*, which

admits that the search nodes may be reopened, but in the common applications of A*,

such as in routing (and the one described here), the closed nodes are never reopened.

Thus, in this scenario, h must also be consistent. A heuristic function is admissible if it

never overestimates the real path cost it is estimating. It is consistent if h(a) ≤ cost(a,

b) + h(b), that is, the estimated cost from a to the target is not higher than the cost of

reaching a neighbor b of a plus the estimated cost from b to the target. These properties

ensure that the f(n) values never decrease during the search.

The pseudocode of the algorithm A* is shown in Figure 22. The pseudocode of

A* is the same of Dijkstra’s algorithm, since the only difference is the function used to

sort the nodes in the priority queue, i.e., A* is Dijkstra’s algorithm if h(n) is set to 0.

However, the presented pseudocode is closer to a more practical implementation than

the one defining Dijkstra’s algorithm (CORMEN, 2001). For example, in Dijkstra’s

algorithm, the graph vertices are labeled, which requires all vertices are initially labeled

as ∞. In the presented pseudocode, instead of labeling the vertices of the grid graph,

1 That is, a path starting at s, passing by n and ending in t

49

ALGORITHM: A* (Point s, Point t)

1 Add node(s, null) in O

2 while O ≠ ∅

3 n ← pop(O)

4 if n.point = t: return path(n)

5 for each neighbor point v of n.point:

6 if there is a node v’, with v’.point = v, either open or closed:

7 if f(n) + cost(n, v) < f(v’)) :

8 Update v’ in in O

9 else Add node(v’, n) in O

10 return null
Figure 22 – Pseudocode of A* algorithm.

which is not even explicitly stored in detailed routing, it creates search nodes that

reference the grid points, which are the grid graph vertices. These nodes also store

some information, as g, optionally h, and a parent node reference. Initially, the source

node is created (function node) and added in the open set O. The second parameter

of the function node is the parent node. In the case of s, since it has no parent node, it

has a null parent. The nodes in the open set are called open nodes, and nodes not in

this set are called closed (or visited) nodes. This set represents the current boundaries

of the search. The open set is implemented by a priority queue, usually a heap. In each

iteration, the algorithm obtains and removes the node of least f(n) cost from O (line 3).

If the t is reached (line 4), the path is returned. Next, the node n is said to be expanded

(lines 5 - 9). For each point v adjacent to the point of n (n.point), ignoring diagonals,

the algorithm tries to add nodes in these points in the open set. If there is already a

node created in v and it is in the open set and its cost is higher than the cost of the new

candidate node (i.e., over v), then the cost and parent reference of the already existing

node are updated, as well as the position of this node in the priority queue O. If the

already existing node is not in the open set (i.e., it is closed), its cost is guaranteed to

be lesser or equals than the candidate node’s cost, by the properties of the algorithm.

If the candidate node’s cost is higher or equal to the already existing node, the

candidate node is not added in O. If there is no node either open or closed referencing

v, then the candidate node is inserted in O. This is the relaxation step of Dijkstra’s

algorithm. A good way to control the open and closed nodes is to maintain a “satellite”

data structure, as a hash table, of all created nodes so far.

Figure 23 shows a comparison of the search space of A* algorithm (a) and Lee’s

algorithm (b). Note that if the h function of A * was implemented to always return 0, the

algorithm would behave exactly as Lee’s algorithm. It is evident the difference of the

50

Figure 23 - Comparison of the search space of A * (a) and Lee’s algorithm (b). In (a) the gray points are
the closed points, and the green points are the open nodes. The numbers represent the costs of the
nodes.

search space of both algorithms. By iteratively obtaining the nodes with cost 7, A*

quickly converged to t, whereas the Lee’s algorithm loses processing time performing

waves of expansion in all directions. The use of a heuristic function in A * enables the

algorithm to look first where it is most promising, implying a large performance gain.

Another important consideration regarding A * is the tie breaking criterion of

nodes with the same cost. The way the algorithm decides the priority of these nodes

can drastically affect the performance of the algorithm. Note that in Figure 23a there

are nodes with cost 7 that are open. Depending on the tie-breaking criterion, these

nodes could be expanded, as well as all their successors, forming a rectangle of visited

points, which would be similar to the search space visited by Lee’s algorithm. A good

tie breaking criterion is to give priority to nodes with the highest g value, or nodes with

lowest h value. This way, nodes that are further from the source point, and

consequently closer to the target point, will be chosen first. This gives the algorithm a

Depth-First Search (DFS) behavior.

In detailed routing, it is desirable that the path search algorithm handles multiple

source and target points. The A* algorithm naturally supports this without major

modifications in the original algorithm. The algorithm receives two sets of points S and

T, representing the source and target points, respectively. Each node now has a

reference to its current target point. In the node creation, and during the execution of

the algorithm, this reference is updated. The criterion for choosing a target is the

estimated cost of the node to the target, using the h function. If the cost of a newly

created node, using its parent’s target, is equals to its parent’s cost, it is not necessary

51

to update the target. Otherwise, if the cost has increased, updating becomes

necessary. At the beginning of the execution (Figure 22, line 1), all source nodes are

added in O. The rest of the execution is performed as usual, considering only that all

tests that involve the target point now refer to the target of a specific node, such as the

calculation of the function and the stopping criterion of the algorithm.

One last consideration is regarding the relation of h(n) with the real n-t path cost,

which will be denoted as h*(n). The h function aims to make the path search converge

to the target point. The closer is h(n) to h*(n), the faster the algorithm converges. In

Figure 23a, h(n) = h*(n), for every n in the resulting path, and the search behaves as

a DFS. However, in Figure 24, an obstacle makes h(n) ≠ h*(n). Since h is being

implemented by the L1 distance, it implicitly considers that the path from the estimated

cost will be of L or Z shape, that is, it will be constituted from 2 or 3 segments, without

any detours. This path is bounded by the red dashed rectangle of Figure 24a, if we

consider h was measured in the source point. Thus, all nodes within this bounding box

will present the least possible path cost, which is 8 in the example. Since there is an

obstacle blocking any path with this cost, all nodes in the bounding box are expanded.

Then, the algorithm begins to behave as a BFS (Figure 24b), like Lee’s algorithm,

compromising runtime. It is evident the large increase in the search space. If h was

somehow aware of this obstacle, such that h(n) = h*(n), all expanded nodes would

have cost 16, and the algorithm would behave as a DFS detouring the obstacle without

having to expand the search in all directions. This concept is important in detailed

(a) (b)
Figure 24- Illustration of the impact, in the number of search nodes, of the gap between h(n) and h*(n).
The source and target points are the red and blue node, respectively. The open and closed nodes are
in green and grey, respectively. Black denotes an obstacle.

52

routing, since the path searches are constrained by the global routing guides, which

may present many detours. One of the contributions of the current work is related to

making h aware of the shapes of the global routing guides. This will be discussed in

section 6.3.

3.2.3 Line Probe Algorithms

The previous algorithms may be denominated as maze search algorithms. They

expand the search point by point, guarantee the optimal path, but suffer from runtime.

Even the A* algorithm, with its large reduction of expanded nodes, faces the same

problem, since its complexity depends on the distance between the source and target

points. Thus, maze search algorithms may be unfeasible for finding long connections.

To overcome this problem, Mikami and Tabuchi (MIKAMI, 1968) developed the first

path search algorithm that uses line segments instead of points. Rather than traversing

all points in a row, the algorithm creates a line that extends itself until reaching an

obstacle or the end of the search space. Thus, the complexity of this class of algorithms

does not depend on the distance between the points of origin and destination, but on

the number of lines created. In general, algorithms of this class do not guarantee the

optimal path, but are faster than the maze search algorithms. Mikami and Tabuchi’s

algorithm guarantee that a path is found, if one exists. Another drawback of the line

probe algorithms is that they don’t work with variable grid costs, which is easily handled

by the maze search algorithms.

The basic procedure of the Mikami and Tabuchi’s algorithm is the following. The

source and target points are called base points. Initially, two perpendicular lines are

created over the base points. These lines are called level 0 lines. The lines are

extended until reaching an obstacle the search space limit. If a line from the target

point intersects a line from the source point, the path is found. If this does not occur,

new base points are created on the generated lines. At each iteration, for each base

point, a line of level i (perpendicular to the lines of level i -1) is created over the point.

When all points on the four leading lines are occupied by base points, a line is selected

so that new base points can be created over it. Figure 25 shows an example of the

Mikami and Tabuchi’s algorithm execution.

Another algorithm that works very similarly to the Mikami and Tabuchi’s

algorithm is Hightower’s algorithm (HIGHTOWER, 1969). The difference of this

53

Figure 25 – Illustration of Mikami and Tabuchi’s algorithm. The points marked with × represent the base
points. The numbers refer to the line levels.

algorithm is that it considers only lines that detour the obstacles. In addition, each line

may have a maximum of two base points. Because of this restriction, the Hightower

algorithm does not guarantee that any path is found. To handle this, it is possible to

use backtracking techniques to be able to choose the appropriate base points for the

path to be found. However, this leads to an increase in processing time, which can be

almost as high as the time of Lee's algorithm (CHEN, 2009).

3.2.4 A*-interval-based Path Search

Consider Figure 26. In (a), the s-t path resulting from the application of the

algorithm A* is shown. The resulting path is made of two segments, and was

constructed by several expansions of nodes with cost 9. Note that the cost of nodes in

each segment has never changed. This is a common behavior in A*, which was

exploited by Hetzel (HETZEL, 1998). In such cases, it is not necessary to label each

node of a path segment. If a sequence of nodes belonging to the same segment has

the same cost (Figure 27b), these nodes are redundant for the search, and can be

merged to a set containing them, which is labeled with the nodes value (Figure 27c).

In Hetzel’s algorithm, this set is represented by an interval. Thus, Hetzel’s algorithm

can be viewed as an A* algorithm such that its search nodes are intervals of nodes of

the traditional A*. Since the search space is a grid graph, there is implicit information

on the graph geometry that enables to calculate such intervals in constant time. Using

54

(a) (b) (c)

Figure 26 – Illustration of the principle of merging a group of redundant nodes into intervals. Costs are
given by f(n). (a) Path resulting from the application A* algorithm. Two groups of redundant nodes (b)
are merged in two intervals (c).

a function h that is based on the 𝐿1 distance, the intervals align with the target point

coordinates. Note that Figure 26 has the objective of presenting the idea of merging

sets of nodes in intervals, and for this it was used an example in a 2-dimensional

scenario, without major compromises with the mechanics of the algorithm.

When proposed in (HETZEL, 1998), the algorithm had some restrictions,

working only with the 𝐿1 distance as the h function. It considered that the routing tracks

of a layer matched tracks of different layers with the same preferred direction, that is,

that the pitch was constant in all layers. Later, Peyer et al. (PEYER, 2009) made the

algorithm more generalized, allowing variable pitches. The BonnRoute tool (GESTER,

2013) uses the updated version of this algorithm, and this is the version presented

here.

The main loop of Hetzel’s algorithm is almost the same of A*: the best interval

is chosen, it is removed from the open set, and it is expanded, generating all adjacent

intervals, which are put into the open set, and so on, until an interval chosen cover a

target point. The f(n) ties are decided by giving priority to the interval which covers that

furthest point from target. Figure 27 shows an example of an interval expansion.

Considering that the h function is using L1 distance, the interval containing the source

point would be [source.x, target.x]. However, since there is an obstacle, the interval

ends at the obstacle adjacency. When an interval is expanded, it generates intervals

at points neighboring the expanded interval. As in A *, it is necessary to check whether

the newly created intervals can actually be opened. If a newly created search-interval

intersects an already existing search-interval, interval subtractions are performed in

order to determine which parts of which intervals will remain. The criterion to determine

this is the same used in the relaxation step of A* (lines 7-10).

55

Figure 27 – Illustration of the interval expansion of Hetzel’s algorithm

In the best and average case, the approach proposed by Hetzel shows a

speedup w.r.t. A* of at least 6 (GESTER, 2013). In (GONÇALVES, 2017), a speedup

of 20 was achieved. This is due to the fact that Hetzel’s algorithm complexity is affected

by the number of intervals and an interval usually contains many points of the

traditional A* search. In the worst case, when most intervals have a single point, the

algorithm behaves like A*. The algorithm guarantees the optimal path, as in the A*

search. Hetzel’s algorithm can be seen as a hybrid of maze search and line probe

approaches.

3.2.5 Improved Heuristic Function for A*-based Path Search in Detailed Routing

A*-based path search is widely used in detailed routing. As mentioned earlier,

the speedup of A* depends on its heuristic function h. The more realistic is the

estimation, the more the algorithm takes a Depth-First-Search (DFS) behavior towards

the target node and, consequently, the faster it ends.

In detailed routing, the L1 distance is the most straightforward way to implement

the h function. When h(n) uses L1, it implicitly predicts that the path from n to the target

node is of L/Z shape. However, the tunnels (i.e. global routing guide sections) have

shapes that force the paths to perform detours, such as an U shape path, as in Figure

28. In these cases, using L1 distance makes the path search to take a Breadth-First

search (BFS) behavior, which is slow. On the other hand, if h is implemented such that

it is aware of the tunnel shape, it will provide a more realistic lower bound, enabling the

search to perform a DFS.

In order to handle this problem, Peyer et al. (2009), proposed a method to

preprocess the tunnels, before the path search, computing more realistic lowerbounds

s

t

Obstacle Open Node Expanded Node Expansion Indicator

Source/Target Pref. Dir. Track Non Pref. Dir. Track

56

(a) (b)

Figure 28: Illustration of the expanded search nodes using 𝑳𝟏 distance (a) and TL (b), using an A*-
interval-based path search (as Hetzel’s algorithm), restricted by a tunnel of 3 rectangles. Each dark blue
line segment represents a search node (interval). Red dashed lines are the cost estimations. The cost
of a non-preferred graph edge is 3 times the cost of a preferred edge.

for the h function. During the path search, the algorithm used the precomputed

information. The key idea in the preprocessing step is to partition the tunnel rectangles

in sub rectangles such that it is possible to express relatively simple lowerbound

functions for these rectangles. The lowerbound of a point in a rectangle is given by the

function

𝑑(𝑥, 𝑦) = 𝑐1(𝑥 − 𝑥1) + 𝑐2(𝑦 − 𝑦1) + 𝛿(𝑐1, 𝑐2).

𝑐1 and 𝑐2 are the edge costs for stepping in x and y directions, respectively, and x1 and

y1 are the lower left corner coordinates of the rectangle The edge costs consider

penalties for jogs and also negative values of the default edge costs, or 0. For example,

considering a preferred direction edge has cost 1 and a jog has cost 4 the possible

values of these coefficients are 1, 4, -1, -4 and 0. 𝛿(𝑐1, 𝑐2) is an offset cost to the target

component of the path search.

Figure 29 shows an example of how manipulating the coefficients 𝑐1 and 𝑐2

obtains offsets to different positions within the rectangle. This may be performed by

changing the signal of these coefficients or by making them 0. The expressions are

omitting the offset value 𝛿(𝑐1, 𝑐2). However, some additional clauses are needed to

enable offsets to x2 and y2. The values of these clauses are added in the offset function

𝛿(𝑐1, 𝑐2). This offset function represents the offset from the corresponding offset point

to the target component of the path search.

The problem with this method for calculating lowerbounds is that it calculates a

limited number of offsets (more exactly 8). Given the rectangle of Figure 29, it is

possible that the best cost to the target component uses a point different from any of

source

target

source

target

57

Figure 29- Illustration of the manipulation of the coefficients and the corresponding offset points (in red).
In dark blue is the point where the lowerbound will be measured. x and y are the point coordinates and
x1, x2, y1 and y2 are the rectangle bounds (x1 ≤ x2 and y1 ≤ y2)

the shown points. Thus, in order for this method to work properly, it is necessary to

partition the tunnel rectangles into smaller rectangles such that it is guaranteed, that

there is no other offset point with a better offset cost. Figure 30 shows an example of

this rectangle partitioning. The partitioning depends on the structure of the target

component. The exact criterion to determine the rectangles was not mentioned in

(PEYER, 2009), but it is clear that it allows different sets of target points to be present

in the same rectangle, such that it is necessary to use at least two functions to

determine the lowerbound of a given point. For example, using the same coefficient

values mentioned earlier, and considering the rectangle R in Figure 30 has 4x4 pitches,

the lowerbound of a point (𝑥, 𝑦) in R is given by the minimum of the two functions

𝑑(𝑥, 𝑦) = 4(𝑥 − 𝑥1) and 𝑑(𝑥, 𝑦) = −4(𝑥 − 𝑥1) + (𝑦 − 𝑦1) + 16. Note that horizontal

edges receive jog penalty (cost 4). Each function is targeting one set of target points.

The first function targets the left border and takes the form of the function 𝑐1(𝑥 − 𝑥1) +

 0(𝑦 − 𝑦1) from Figure 29. The second function targets the lower-right corner of the

rectangle and takes the form of the function −𝑐1(𝑥 − 𝑥1) + 𝑐2(𝑦 − 𝑦1) + 𝑐1(𝑥2 − 𝑥1)

from Figure 29.

Using a modified version of Dijkstra’s algorithm, considering as graph vertices

the partitioned rectangles, the distance functions d are propagated into the neighboring

rectangles, creating the offset values 𝛿(𝑐1′, 𝑐2′) on them. The rectangles containing the

target points have 𝛿(𝑐1, 𝑐2) = 0 in the start. These offset values are given by the

c
1
(x-x

1
) + 0(y-y

1
)

c
1
(x-x

1
) + c

2
(y-y

1
) 0(x-x

1
) + c

2
(y-y

1
) -c

1
(x-x

1
) + c

2
(y-y

1
) + c

1
(x

2
– x

1
)

-c
1
(x-x

1
) + 0(y-y

1
) +

c
1
(x

2
– x

1
)

-c
1
(x-x

1
) - c

2
(y-y

1
) +

 c
1
(x

2
– x

1
) + c

2
(y

2
– y

1
)

0(x-x
1
) - c

2
(y-y

1
) + c

2
(y

2
– y

1
) c

1
(x-x

1
) - c

2
(y-y

1
) + c

2
(y

2
– y

1
)

58

Figure 30- Illustration of the rectangle partitioning in a tunnel. Source: (PEYER, 2009)

minimum cost to reach the projected rectangle from a red point in Figure 29

corresponded to the type of the distance function that is being propagated. For each

of these newly created offset values 𝛿(𝑐1′, 𝑐2′) there is also a corresponding function

d, with new coefficients. Thus, considering R and R’ of Figure 30, the function 𝑑(𝑥, 𝑦) =

 4(𝑥 − 𝑥1), which is targeting left target border of R, induces an offset 𝛿(4, 1) = 0 in R’

and the other function, targeting the lower-right corner of R, induces an offset 𝛿(−4, 1)

= 4. Their corresponding functions in R’ are 𝑑(𝑥, 𝑦) = 4(𝑥 − 𝑥1) + (𝑦 − 𝑦1) and

𝑑(𝑥, 𝑦) = −4(𝑥 − 𝑥1) + (𝑦 − 𝑦1) + 20, respectively. Note that these functions are of the

type of the lower-left and lower-right ones shown in Figure 29. At the end of the

execution of the algorithm, each rectangle has a set of distance functions that are used

to calculate the lowerbound during the path search.

3.2.6 Design Rule Aware Path Search

One of the biggest challenges of detailed routing is the design rule handling. If

the router tries to solve DRVs in routing postprocessing, many DRVs will not be solved.

Thus, it is necessary to adopt a correct-by-construction approach. Making the path

59

search algorithm aware of some design rules is essential for a good design rule

handling.

In (CHANG, 2013), it is proposed MANA, an A*-based maze algorithm handling

the minimum area (or min area) design rule. The min area rule requires a metal shape,

of a given routing layer, to meet a minimum area. A straightforward approach to solve

min area violations is by a post-processing, after routing: pieces of metal which violated

the min area requirement are extended. However, it is possible that there is no space

available for such extensions, and thus, new violations are created. This can be

avoided if the path search algorithm is aware of this design rule.

The approach in (CHANG, 2013) is to make each search node consider path

segment extensions to meet the min area, when necessary. When a node is created,

it is not known whether it is necessary to do a min area extension or not, since a path

arising from this node may still meet the min area. Actually, a single node may originate

many paths, and some of them may meet the min area, while others do not.

Considering this, each node has a minimum and a maximum cost. The maximum cost

is considering the min area extension, and the minimum cost is not considering it.

Nodes are ordered in the open set by the minimum cost. In practice, the algorithm only

knows that an extension will be actually needed when a node expands creating a

descending node in an adjacent layer. In these cases, the maximum cost of the node

with the extension is used to calculate the cost of the descending node.

This separation of minimum and maximum costs is to make the algorithm

guarantee the optimal path, considering the extensions. If the maximum cost is

ignored, and if a node with a better (i.e., lower) cost excludes other node with a higher

cost, then this may cause the algorithm to not find the optimal path, because this better

node may lead to a path that requires this node to present an extension, but this is only

known after the node expands. This double cost implies that different nodes may share

the same point, but it is possible to prune some nodes. If the minimum cost of a node

is equal or higher than the maximum cost of other node sharing the same point, then

the first node is pruned. The MANA algorithm guarantees the optimal path, considering

the min are extensions, but since it is a maze search algorithm, the runtime is not

favorable, as its application in practice. The algorithm proposed in (CHEN, 2019a,

2019b) is basically the same as MANA, except that it allows min area extensions with

violations to exist, with a penalty in the node cost.

60

Another approach to handle the min area rule in the path search is proposed in

(AHRENS, 2015). This work proposes a multi-label path search to handle min area

rule and wire coloring for multiple patterning approaches. The strategy is to handle the

min area rule by constructing a grid whose pitch already guarantees that any wire

segment will meet the rule. This is problematic since it can lead to an increase in WL

and present routability problems. The proposed algorithm was shown to present

unfavorable runtime, being worthwhile only in some circumstances.

3.3 Pin Access

Due to the irregular shapes and locations of the pins, the grid points are often

outside the pin shapes. In these cases, since the path search runs in a grid, the

available valid connection points to the pins are those at the pin’s surroundings. Thus,

it is necessary to create off-track (i.e. out of grid) pin access paths (PAPs) to connect

the access points to the pin. The challenge is to create these PAPs without (or

minimizing) DRVs. Figure 31 shows some pin access situations with DRVs. Even when

accessing grid points inside the pin it is still possible to occur violations, as shown in

Figure 31b.

The pin access problem can be classified in intra-cell and inter-cell pin access.

The intra-cell pin access aims to provide short connections between the pins and the

neighboring access points, handling the DRVs that commonly emerge from such

connection and with nearby pins and possibly with other PAPs. The inter-cell pin

access also avoids conflicts between intra-cell PAPs, but focuses on extending pin

access paths beyond the cell, avoiding conflicts with PAPs of other cells. The PAPs

(a) (b)

 Pin Wire PAP DRV Via

Figure 31- Illustration of the pin access problem.

61

are possibly directed towards other pins of the same net, or may be connected to pins

from other nearby cells from the same row.

3.3.1 Escape Routing

In detailed routing literature there are relatively few works addressing the pin

access problem. The work in (OZDAL, 2009) proposed an inter-cell pin access

approach, called escape routing. Escape routing aims to alleviate the routability

problem caused by dense pin clusters. The pin access solution consists in assign each

pin with at least one path that escape the congested area. These paths are drawn

towards the other pins of the same net. Some routes are even completed, when the

pins are in the same standard cell row. The method selects clusters of pins, that may

contemplate more than one cell, and finds a conflict-free solution. The problem is

solved using ILP. Figure 32 shows an example of escape routing solution in a cluster

of three cells. All escape routes are statically implemented in the routing space before

routing.

The work in (XU, 2017) also proposes an escape routing technique, but handling

SAMP constraints. Ignoring the SAMP-related considerations, the main difference from

Figure 32- Illustration of an escape routing solution. The items outside the pin cluster are the
corresponding connecting pins (i.e, pin X connects with X’ or X’’) Source: (OZDAL, 2009).

62

(OZDAL, 2009) is that the problem is modeled by a weighted interval assignment

problem. These intervals represent the wire segments that will connect to each pin

using metal 2. The intervals may be extended up to the boundaries of the bounding

box of the net of the connecting pin. The problem consists in assigning one interval to

each pin, such that there is not conflict between intervals of different nets and the total

interval length is maximized. Entire standard cell rows are processed and the solution

is obtained by using ILP.

3.3.2 Intra-cell with Conflict-Free Solution and Static Implementation

Nieberg (NIEBERG, 2011) proposed an intra-cell pin access method. The

approach calculates a conflict-free pin access solution for each cell and implements all

PAPs in the routing space before the routing itself (static PAP implementation). A

conflict-free solution is a solution where all PAPs may coexist without causing any

DRV. The PAPs are not calculated for every cell instance in the layout though. Each

cell has many instances placed over the chip floorplan. The key idea is to process the

cells, not their instances. However, a cell itself has not a grid alignment and, therefore,

it is impossible to create pin access paths and pin blockage information, since they are

related to the routing grid. Thus, it is necessary to look for all the grid alignments that

a cell may assume when instantiated. Each cell may have many grid alignments, but

their number is still far inferior than the number of cell instances. Also, a cell may be

placed mirrored and with different rotations. However, taking into consideration only

these patterns is not enough, since there are other routing objects placed in the chip

area, such as power and ground nets. Thus, by considering the cell, the grid alignment,

the geometric configuration and the nearby shapes, it is possible to find repeating

patterns, which are called circuitclasses (examples in Figure 33). Thus, the pin access

is performed on the circuitclasses.

Regarding the PAP calculation, the major effort is to create pin access paths

without DRVs, either with any pin, with other PAPs, or with the path itself. Figure 34

shows an example of a PAP with and without violations. The PAPs are obtained by a

gridless path search. Thus, an implicit Hannan (HANAN, 1966) grid is used,

considering the neighboring pins and their spacing requirements. The source of each

63

Figure 33- Illustration of circuitclasses (bottom) and their corresponding instances (top). Source:
(NIEBERG, 2011).

Figure 34- Illustration of PAP creation with (a) and without (b) violations. Source: (NIEBERG, 2011)

(a)

(b)

64

After all PAPs are calculated for all circuitclasses, they are implemented in the

routing space, to avoid that wires, during routing, block the pin access points. However,

neighboring cells may present conflicting PAPs with each other. In these cases, only

one PAP is implemented. In routing, if a pin does not have any available PAP, then a

PAP is created on-the-fly, but there is not guarantee that the PAP will be DRV-free.

3.3.3 Inter-cell with Conflict-Free Solution and Dynamic Implementation

(XU, 2016) proposed a SAMP compliant pin access technique. The approach

consists in calculating all possible conflict-free pin access solutions of each cell. No

solution is implemented in the routing space, before routing, like in (NIEBERG, 2011).

The solution of a cell is determined and implemented dynamically, during routing.

A pin access solution considers wire extensions on the access points, in metal

2, to handle the min area rule and some SAMP-related rules. This wire extensions may

cause conflicts with neighboring cells, as shown in Figure 35. Thus, an inter-cell pin

access technique is used. The goal is to find a valid pin access solution for all standard

cells in a row. This is accomplished by creating a graph, where each vertex represents

a solution, and by finding a path in this graph, as illustrated in Figure 36. Each cell has

many solutions (vertices) and each of them is linked (by a graph edge) with the

solutions of the neighboring cells. The source and target vertices of this path search

are virtual, and represent the beginning and the end of a row, respectively.

The source of the need to find a valid solution for an entire row is the fact that

Figure 35- Illustration of inter-cell conflicts. A “hit point” is a pin access point. Source: (XU, 2016).

65

Figure 36- Illustration of finding a non-conflicting pin access solution for the entire standard cell row.

wire extensions are performed in the pin access calculation. However, this is not

necessary, since they can be performed during routing. Thus, the problem of finding a

pin access solution for a standard cell row can be avoided by delegating the wire

extensions to the routing step.

Another important thing to note, about this approach and the one in (XU, 2017),

is that they are aimed for SAMP technologies. In these technologies, the pin access is

simpler due to the more regular shapes of the pins, but most importantly, due to the

fact that the routing is one-dimensional on each metal layer, meaning that jogs are not

allowed. Thus, off-track pin access, like in (NIEBERG, 2011), is not possible. In SAMP

technologies, the pin access consists in just reaching a pin through metal 2 with a

standard on-track wire and placing a via over the pin. Thus, this pin access context is

not much realistic for the context of the current work, since the benchmarks used here

are not of technology nodes that require multiple patterning approaches. Still, it is valid

to mention these techniques, since they could be used, with restrictions and possibly

drawbacks, in any technology. Although not a SAMP approach, (OZDAL, 2009) also

does not report about considering the problem of finding DRV-free PAPs (considering

the via connections with the pins), and the examples of pin access solutions are very

similar to the ones in (XU, 2016) and (XU, 2017) regarding the simplicity for a pin

access connection.

66

4 SmartDR Overview

This section presents an overview of the proposed detailed router, SmartDR.

Section 4.1 presents the modeling of some routing information, such as how wires and

vias are stored. Section 4.2 presents the routing flow.

4.1 Modeling Routing Information

The routing grid is implemented by a data structure called grid in this work. It

stores occupancy information of all routing-related objects, such as wires, vias, pins

and obstructions. Each metal layer in the grid is an array where each position

corresponds to a routing track. Each routing track is implemented by an AVL tree

storing intervals that represent occupied space, by any mentioned routing object, in

the grid. These intervals may also be called blockages, since they form blockages for

objects of different nets. Each different routing object has a specific interval type that

is related to the object that induced it, but there are only two general interval types

worth to mention here: solid and spacing.

Figure 37 shows the criteria to determine the occupancy of a grid point and its

type. A grid point is considered occupied if a shape would cause a violation in a default

wire in this point. Thus, each grid point has an occupancy zone (Figure 37a), which

has the wire width. If a shape touches this zone, either with its spacing radius or with

the shape itself, the grid point is marked as occupied. Let us emphasize again that this

marking is done using intervals of grid points in the grid data structure. In Figure 37b a

(a) (b)

 Occupancy Zone Solid Blockage Spacing Blockage Required Spacing

Figure 37- Illustration of grid point occupancy criteria.

67

shape (in black) touches 2 grid points and they are marked as solid blockages, and the

spacing radius touches the upper grid points, which are marked as spacing blockages.

The difference between these two types of blockages is that spacing blockages of

different nets may coexist in the same grid point without causing any DRV. Thus, this

makes routing less restrictive, which improves routability. The solid blockage intervals

have also the information whether their tips are spacing blockages or not, to avoid the

necessity of creating spacing intervals.

SmartDR presents a separate control for cut layers. The minimum distance

required between two via cuts is higher than the minimum wire spacing. Without loss

of generality, let us consider the vias of the lower layers (via1-via5), which cannot be

placed in adjacent grid points due to the spacing requirement. A trivial solution is to

store via cut blockage information is the same adopted in the metal layers, as shown

in Figure 38a. However, this is not efficient, since up to 3 queries are needed to check

whether the via cut can be used or not. Thus, SmartDR uses a more efficient strategy.

The routing space is sliced horizontally, grouping a number of horizontal tracks, equal

to the radius of the cut blockage information (3, in this case). Figure 38b illustrates this.

Each slice holds an AVL tree in which the keys are the “x” coordinate of the via, and

the associated data is the via itself. A single key may store more than one data (up to

2), but this is rare in practice. Each AVL tree is stored in a vector. Regarding the slicing

orientation, it is irrelevant whether they are horizontal or vertical. A query in this data

structure consists in an interval search in the tree, where the interval is the spacing

radius of the via cut. All via cuts whose “x” coordinate intersects the interval are

(a) (b)

Figure 38- Illustration of trivial via cut handling (a), and the one adopted in SmartDR (b). The blue
segments in (a) are the blockage intervals of the via cut. In (b), we have a slice (red dashed lines) of
three tracks with three via cuts.

68

checked whether they cause a violation with the querying via or not.

The size of the slices is justified by the fact that, if a querying via is on the center

of the slice, then one query is enough to know whether it can be used or not. If it is in

other tracks, then it is necessary a maximum of two queries, one in the current slice

and the other in the adjacent one. In the given example, since the middle track

represents one case where it is necessary only one query, and the adjacent tracks are

two cases where two queries are needed, the average number of queries is 1.66 (i.e.,

5/3 queries), against 3 queries of the trivial method mentioned earlier.

This data structure is called via map and is exploited by the via check feature

(section 6.4.1) of the proposed path search algorithm, to provide more efficient via

queries during the path search. The via storage has some other peculiarities, but they

will be discussed in section 6.4.1.

4.2 Routing Flow

Figure 39 shows the routing flow of SmartDR. The router takes as input a .lef

and a .def file describing the circuit and a .guide file describing the global routing

guides. After parsing the files and performing initialization procedures, it processes the

cells, creates pin access paths and places pin blockage information on the routing

space. Not all cell instances are preprocessed though. Here, the same strategy of

(NIEBERG, 2011) is used. Each cell has many instances placed over the chip

floorplan. The key idea is to process the cells, not their instances. However, a cell itself

has not a grid alignment and, therefore, it is impossible to create pin access paths and

pin blockage information, since they are related to the routing grid. Thus, it is necessary

to look for all the grid alignments that a cell may assume when instantiated. Each cell

may have many grid alignments, but their number is still far inferior than the number of

cell instances. A cell with a grid alignment is called cell configuration (or cellconfig, for

simplification) in this work, and it represents the same concept of circuitclasses of

(NIEBERG, 2011). After each cellconfig is processed, each cell instance is iterated and

all blockage information related to its cellconfig is transcribed to the grid (Populate Grid

step, in Figure 39).

The pin access step generates pin access paths (PAPs) without DRVs created

by the geometry of the path itself (path-path DRVs), and also without DRVs between

the path and the pin (path-pin DRVs). These PAPs, with some exceptions, are not

statically implemented in the routing space, as usually done by pin access approaches

69

(OZDAL; NIEBERG; XU, 2009, 2011, 2017). During the routing phase, they are

checked for legality. A PAP is legal (or available) if it can be implemented in the routing

space without causing any DRV. If a PAP is available and it is chosen by the path

search to be a path terminal, it is dynamically implemented in the routing space. The

proposed pin access approach is explained in the next section.

Before the Standard Routing step, each multipin net is decomposed in sets of

two-pin nets, using Prim’s algorithm (CORMEN, 2002). The Prim’s algorithm considers

that each pin is a vertex and the graph is complete, i.e., all vertices are connected to

each other. The cost of the edges is given by the minimum distance, aware of the

global routing guide shapes, between the vertices (pins). In this step the mentioned

routing guides of each net are sliced into many guides, which are called tunnels, one

for each two-pin net. The tunnels are refined, by adding guide rectangles (GRs) in the

upper layer of the GRs that use long jogs. The GRs may also be enlarged to contain

all access points of a pin.

Figure 39- Flowchart of SmartDR detailed routing flow.

Input Files

Pin Blockage

Pin Access

Populate Grid

Route Batch

Build Repair

Nets

Calculate TL

PAP Legality

Check

Run DRAPS

Add Found

Paths List
Add RNR list

Postprocessing

and Layout

Generation

Solution

No Yes

No
Yes

Yes No

No

No

Standard Routing

Parsing and

Initialization
Route Batch

Pin Processing

Cell Processing

Has batch?

Net

Decomposition

and Guide

Net Ordering

Create Net

Batch List

Has Net?

Update Grid

with Found

Paths List

Create Net

Batch List

Ripup-and-

Reroute

Has batch?

Update Grid

with Found

Paths List

Has Ripped

Nets ?

Yes

Yes

Path found?

70

After the Net Decomposition and Guides Slicing step, the nets are sorted by the

decreasing order of their half-perimeter wire-length (HPWL). The HPWL of a net is the

half of the perimeter of the bounding box of the net pins. Routing longer nets first is

better since they have more likelihood of being blocked than short nets. Since the

tunnels of all nets have the same width, the net length factor weights more than the

routing area factor. Also, longer nets have most of their routes in higher metal layers,

using lower layers only for pin access, while shorter nets tend to use more the lower

layers. This makes longer nets present few blockages to shorter nets, if they are routed

first, while routing first shorter nets presents more blockages to longer nets.

SmartDR uses a parallel scheme, based on (CHEN, 2019a, 2019b), to route

nets in batches. Before the Standard Routing step, batches of nets that do not present

tunnel overlapping with each other are created. Thus, all nets within a batch can be

routed in parallel later.

In Standard Routing step, each net batch is routed. The first step of the net

routing is to perform the PAP legality check. The access points of the legal PAPs are

passed as source and target points for the path search algorithm later. But before the

path search is run, the tunnel of the current net is preprocessed in order to obtain a

more realistic lowerbound for the heuristic function of the path search. This is

addressed in section 6.3. Then, the path search is executed. If a path is found, it is

added in a list of found paths. If a path could not be found, it is added in the Ripup-

and-Reroute (RNR) list. After a net batch is routed, all paths found are added in the

routing space, including the PAPs that were used by the path search to access the

pins.

In the RNR step, the basic structure of the net batch routing methodology is the

same as the Standard Routing step. Thus, these details are omitted in the flow chart,

as they are inside the “Route Batch” box. In RNR, the path search algorithm is run in

a mode where it is allowed to find a path that overlaps existing wire segments of

different nets. These segments are removed from the routing space and are added in

a list of ripped segments of their respective net.

After all batches are routed, if there are nets that were ripped, a net repairing

procedure is started. For each net that has rips, a repair net is created, based on the

connectors (i.e. wires and pins) of the ripped wire segments. These nets are

decomposed in two pin nets, and their tunnels are obtained. The RNR algorithm may

71

also inflate the tunnels (i.e. increase and/or enlarge GRs) based on the ripping history.

After this, the repair nets are added in the RNR list, and another RNR iteration begins.

When all nets are successfully routed, a postprocessing is applied in the

solution, solving some DRVs. Then, the layout of the routing solution is created and

saved in a def file, which is the output of SmartDR.

72

5 Pin Access

This section presents the proposed pin access approach. The scope of the pin

access problem addressed in this work is regarding “hard pin access instances”, where

pins have very irregular shapes and are often not aligned to the grid, requiring off-track

pin access paths to perform some connections, as in (NIEBERG, 2011). Also, the

proposed approach is intra-cell pin access, since it aims to provide short connections

between the pins and the neighboring access points, handling the DRVs that

commonly emerge from such connection.

The common approach to solve the pin access problem is to calculate a conflict-

free solution (CFS) for all pin access paths of each pin of a cell. A CFS is a set of PAPs

that may be simultaneously coexistent without causing any DRV. Figure 40a shows an

illustration of a CFS. This procedure is performed before the routing step, and the

resulting PAPs are implemented in the routing space, as in (NIEBERG, 2011). This

implementation acts as a routing resource reservation that prevents wires to occupy

the PAP locations. However, this strategy brings some issues. First, it is not feasible

to implement a large amount of PAPs, mostly the ones that use vias, because they will

form many routing blockages for other nets, and only one PAPs is actually needed. On

the other hand, with a restricted number of PAPs, there are not many routing

blockages, but there are few options for the path search to connect to the pin. This

tends to make the path search harder, since it may spend more time finding an access

point, or even prevent it to find a route at all, as in Figure 40b. Thus, in both

approaches, routability is affected. A third approach is to implement few PAPs but let

the path search chose other access points. The PAPs of these alternative access

points are calculated on-the-fly or at the end of routing, in a postprocessing step.

However, it may be impossible to find such PAPs without DRVs. Thus, the ideal

scenario is to keep many DRV-free PAPs available to be chosen by the path search

but without blocking many routing resources. To attend this, the current work proposes

to use resource sharing ghost pin access paths with dynamic legalization and

implementation.

A ghost PAP is a PAP that was created but was not implemented in the routing

space. During the routing phase, they are checked for legality (i.e., whether they can

be implemented without causing any DRV). If a PAP is legal and it is chosen by the

path search to be a path terminal, it is dynamically implemented in the routing space.

With this approach, a pin may have many DRV-free ghost PAPs that does not cause

73

any routing blockage. This gives the path search high flexibility to find an access point

to the pins, increasing routability, and consequently, reducing RNR effort, which is a

routing step with unfavorable runtime that may also degrade the routing quality.

Another important feature of our method, is that the routing resources are shared for

all PAPs from all pins. This means that, unlike the CFS methodology, the pin access

solution accepts that a single grid point may be used by different PAPs of different pins.

This is shown in Figure 40c. The decision of which PAP will utilize the grid point is

performed on-the-fly. This also favors the flexibility of PAP selection, and,

consequently, the routability. Thus, both features (ghost PAPs and resource sharing)

are important. For example, in Figure 40b, even if we used a CFS with ghost PAPs it

would be still impossible to connect to pin A, since both grid points on the right of A are

statically assigned to PAPs of B (as seen in Figure 40a). With the proposed method,

these points represent valid PAP candidates for both pins, which allows the connection

to pin A. Thus, in this scenario, the path is found only thanks to the resource sharing

feature. Since this approach requires dynamic PAP legality check, which has a runtime

overhead, techniques that mitigate this overhead are also proposed in the next

sections.

Figure 40: Illustration of pin access situations. (a) CFS. Some grid points, adjacent to pins, without
PAPs are forbidden since using them will cause DRVs. (b) A path (red arrow) in metal 2 tries to connect
to pin A, but cannot reach the implemented PAPs shown in (a). We are assuming metal 3 is unreachable
either by wire blockages or absence of routing guide. (c) Pin access solution with resource sharing.

 PAP indicator
 Metal 1 pin
 Metal 1
 Metal 2
 Implemented PAP
 Via

(a) (b)

(c)

A B

74

5.1 Calculating Pin Access Paths

5.1.1 Overall Procedure

The PAP creation procedure begins calculating root PAPs. These are the PAPs

whose access points are in the vicinity of the pin, in the same layer. Thus, they are

directly connected to the pin. Then, all root PAPs are expanded (as in maze routing),

creating new PAPs, including in the upper metal layer, allowing PAPs to use access

vias (these are called via-PAPs). There may be more than one expansion iteration, but

it is commonly useless, since the paths of two or more expansions almost never

present DRVs, and the main goal of the pin access calculation is to handle such DRVs.

A PAP that access the pin from an adjacent layer may do it by using many

different vias from the via library. If we statically assign a specific via for a PAP, it is

possible that, while in routing, this via causes a violation where other vias do not. This

makes the PAP unavailable when it could be available if it used other via. Thus, a

single PAP may keep many candidate access vias. The algorithm tries to create on-

track vias. However, if it was not possible to create any PAPs with on-track vias for a

given pin, an off-track via-PAP is created.

Although the proposed approach is to not implement the PAPs, it is pertinent to

open exceptions in some cases. There are pins that present high potential to have

their access routes easily blocked by wires of other nets (usually small pins). Since

most of the pin access is performed by metal2, a via-PAP is implemented in such

cases. After the calculation of the PAPs of all pins of a cellconfig, a procedure to identify

which PAPs will be implemented is started. The procedure identifies these potentially

blockable pins and tries to implement a via-PAP, in the cellconfig, avoiding DRVs with

other via-PAPs already implemented. Via-PAPs that are more distant to the other pins

receive high priority to be selected. For the ISPD18 testcases, this heuristic was

enough to guarantee no conflicts between implemented via-PAPs. Anyway, in the case

of conflicts, this can be solved by branch-and-bound techniques. The following

heuristic to determine which pins are potentially blockeable is used (any of these

conditions must hold):

• If the pin has two or less via-PAPs

• If metal 2 preferred direction is vertical (horizontal) and the width (height)

of the PAP bounding box is 0

75

• If metal 2 preferred direction is vertical (horizontal) and the pin have 4 or

less PAPs and the PAP bounding box width (height) is one metal 1 pitch (in preferred

direction)

The PAP bounding box is the bounding box that encloses all (on-grid) access

points of all PAPs of the pin. The last steps of the pin access procedure are the conflict

check of same-pin PAPs and the creation of LUTs with blockage information, as will

be described ahead.

5.1.2 Design Rule Handling

Using the proposed approach, it is not necessary to control the violations

between PAPs of different pins. When a PAP is calculated it also ignores possible

violations with other PAPs of the same pin. However, these violations (of same-pin

PAPs) are eventually detected, as will be explained later.

When calculating a PAP, it is allowed the occurrence of violations between the

PAP and the pin, provided it may be solved using patch metals without causing any

violation with other pins. The same-pin DRVs caused by the patch metal insertion can

also be solved using patch metals the same way. Figure 41a shows an example of

DRVs solved by patch metal insertion in Figure 41b. The patch metal usage gives more

(a) (b)

(c) (d)

 DRV Patch Metal TMS indicator Required Spacing

Figure 41: Illustration of patch metal insertion and TMS creation.

76

flexibility in the PAP creation, but may create thick metal shapes (TMSs), as shown in

Figure 41c and d, that require a spacing higher than the minimum. In the figure’s

situation, the patch metal insertion solved two violations but created an unsolvable one.

The proposed pin access algorithm is aware of TMS creation. In section 5.3, it is

presented the proposed TMS detection algorithm. Regarding via-PAPs, the design rule

checking with possible patch metal correction is performed with all possible vias in the

via library. So, a via-PAP may have many configurations, one for each via. Only vias

that cause unsolvable (by patch metals) violations are not present in the PAP.

During routing, when two or more PAPs of a same pin are implemented

simultaneously, they may present DRVs between them, as shown in Figure 42a. In this

case, we say they are conflicting PAPs. To allow high PAP diversity, it is allowed

conflicting PAPs to exist if their violations can be solved using patch metals (Figure

42b). In this case, the conflict is said to be solvable. If the simultaneous implementation

of two PAPs create DRVs that cannot be solvable using patch metals, as in Figure 42c,

then the conflict is unsolvable and the PAPs cannot be simultaneously implemented.

Thus, the PAP legality check must be aware of DRVs of same-pin PAPs.

However, it is expensive (in runtime terms) to dynamically detect same-pin PAP

conflicts. This is mostly due to the fact that TMS detection is heavy. Therefore, during

the pin access step and after all PAPs are created, same-pin PAP conflicts are

precomputed and stored in conflict graphs, one for each pin. The graph vertices are

the PAPs and the edges are their conflicts. Solvable conflicts store the patch metals

and their related blockage information, as will be explained in the next section.

This procedure iterates over all pair combinations of PAPs of a given pin,

checking: (1) if their simultaneous implementation requires patch metals; (2) if the

(a)

(b)

(c)

 DRV Patch Metal TMS indicator Required Spacing

Figure 42: Illustration of same-pin PAP conflicts.

77

patch metals directly cause a violation with nearby pins; and (3) if the patch metals

create TMSs and cause violations with other pins. For this verification, PAPs with

multiple vias are decomposed into many PAPs each one with a single via. To optimize

runtime, this conflict verification is trimmed by considering only the PAPs that are close

enough to create and DRVs.

5.2 Dynamic Manipulation

In the pin access procedure, after the creation of the LUTs containing the PAP

blockage information, LUTs are created containing queries (i.e. line segments) in the

regions where the obstacles should be verified and brought to the cache. These are

the regions that will be queried by the PAP blockage information in order to check PAP

legality. These queries should also be optimized to minimize the accesses in the grid.

Figure 43b shows the cache queries of a pin. Although Figure 43a shows only one

PAP, the cache queries in Figure 43b are considering all PAPs of the pin. Figure 43c

illustrates metal 1 blockages around the pin, during routing step. Figure 43d shows the

resulting contents of the cache after using the queries of (b) in the scenario of (c).

The first step in the PAP legality check of a pin is to create the cache. In order

to know whether a PAP is legal or not, it is necessary to look at the same-pin PAP

conflict graph. If there is an implemented PAP that has an unsolvable conflict with the

candidate PAP, then the candidate PAP is illegal. Otherwise, the cache is queried

using the LUT holding the blockage information of the PAP and their same-pin conflicts

(a) (b)

(c) (d)

 PAP blockage information Cache Query Segment Metal 1 Blockage

Figure 43: Illustration of the PAP blockage information and cache usage in metal 1.

78

(if existent). If the blockage information is not intersected by routing obstacles in the

cache, then the PAP is legal. Otherwise, it is illegal. For via-PAPs, the legality check is

performed iteratively, for each via, until the PAP is considered legal. When the path

search successfully finds a path, the PAPs used as the terminals of the path are

implemented. This implementation consists in adding in the routing space all PAP

blockage information, which avoids other routing objects (wires, vias and PAPs) to use

the same routing resources.

In RNR, PAPs may be directly ripped or may be ripped when its wire connector

is ripped. In such cases, they are deactivated, i.e., all blockage information is removed

from the routing space. When performing PAP legality check in RNR, a PAP is also

considered legal when it intersects obstacles that are susceptible to be ripped, such

as wires, vias and other PAPs (except those that had its implementation fixed in cell

processing phase). However, the path search penalizes the search nodes of these

PAPs the same way it penalizes nodes that overlap obstacles.

One last advantage of the proposed approach is that it naturally handles the

problem of overlapping PAPs of neighboring cells. Pins very close to the cell boundary

may be too close to the pins of a neighbor cell, such that its PAPs overlap each other.

This is a problem if we use the static PAP implementation methodology with CFS, as

in (NIEBERG, 2011). Since it is not always possible to implement these PAPs in a safe

region, due to neighboring pins of the same cell, they cannot be statically implemented,

or they are implemented but disallow the implementation of conflicting PAPs of the

neighbor cell. This introduces the possibility of a pin not having available PAPs. In

these cases, (NIEBERG, 2011) calculates these PAPs on-the-fly, but there is no

guarantee there will be a DRV-free PAP. In the proposed approach, we can afford to

allow the creation of PAPs in the risk zone, or even out of the cell borders, since they

will be eventually verified for availability during routing. Also, the high PAP diversity

and the possibility to deactivate them guarantee that there will be always DRV-free

available PAPs.

5.3 Thick Metal Shape Detection

The TMS detection of two or less rectangles is trivial, but in the current problem,

there may be many rectangles to analyze. Thus, the TMS detection method must be

robust. This section proposes a fast algorithm to perform this procedure. Note that this

algorithm may be used regardless of the pin access approach, but it is most important

79

in the proposed one, since it is widely used. This high usage is due to the fact that the

method always tries to solve PAP-pin DRVs with patch metals, rather than forbidding

the PAP creation, and using patch metals increases the likelihood of TMS creation.

A TMS is a rectangle whose lesser side is large enough to require a spacing

higher than the minimum spacing of the spacing table. We define the TMS Detection

Problem as follows:

Definition 1: given a polygon R, defined by a set of rectangles, the TMS

Detection Problem aims to find all possible TMSs, with maximum dimensions, that are

completely covered by R.

The proposed method uses a border projection approach to solve the problem.

Consider Figure 44. The first step is to obtain the external borders of the shape resulted

from all rectangles in R. Then, each border is maximized (c) and projected towards the

shape interior (d). The projection ends when the border touches an opposite border.

Then, the rectangle resulted from both borders (projector and projected), called TMS

candidate, is checked whether it is a TMS or not. The projected border is subtracted

from all touched borders, and the remaining pieces of the projected border continue

the projection, and so on.

(a) (b) (c)

(d) (e)

Figure 44: Illustration of our TMS detection algorithm. (a) R set. (b) external borders of R; the blue border
will be projected. (c) the border is maximized. (d) the border is projected and a TMS candidate is
obtained (transparent rectangle). (d) the remaining piece of the projected border continues the
projection.

80

The TMS detection algorithm is used in three cases: 1) On the pin shapes; 2)

On PAP creation; 3) On same-pin PAP conflict detection. The case 1 occurs in the

initialization procedures of the detailed router. In case 2, it is not necessary to

reconstruct the pin borders, since they were already calculated. Only the PAP borders

need to be created and added in the pin borders set. The PAP borders are removed

from this set, after the creation of the PAP. Also, the pin borders do not need to be

projected again, since they would possibly find the same TMSs again. In case 3, since

the PAP borders were already calculated, they are also reused. Therefore, in cases 2

and 3, the TMS detection problem is slightly changed. We now want to find only the

TMSs that are created by adding a set of rectangles A on R. In our application, R is

the pin shape and A is the PAP shapes, in cases 2 and 3. In case 3, A also holds the

patch metals used to solve the violation between the PAPs. This variation of the first

problem is defined as the Differential TMS Detection problem, as follows:

Definition 2: considering Definition 1, find the TMSs of A ∪ R that are not in R.

A trivial method to solve this problem is to calculate the TMSs of A ∪ R and

obtain the difference of the TMS solution of R, but this is not efficient. Thus, an

algorithm to efficiently solve this problem is proposed. The key idea is to project only

the borders of A. The algorithm is presented in Figure 45. If set A = ∅, then the

algorithm solves the first version of the problem. The BorderMap B is a data structure

that holds the borders of the polygon R. It is composed of two maps, one for vertical

and other for horizontal borders. Each map maps lines to sets of borders of their

respective line. These lines are grouped in a sorted list, so that the border projection

algorithm can use a sweep line approach. The createBorders function obtains all

borders of the rectangles of the first parameter and subtracts them from the rectangles

of the second parameter to avoid the existence of borders inside the resulting shape

(i.e. A ∪ R). Obviously, the borders of a given rectangle are not subtracted from itself.

The updateBorderMap function adds a set of borders in the border map. The

getBorders function returns a copy of the borders of the border map. The copy function

returns a copy of the border in the parameter. If a border is being projected for the first

time (lines 11 and 12), it is extended, as shown in Figure 44c. The TMS-Candidate

function checks whether the border meets the minimum length that the lesser side of

a rectangle must meet for it to be considered a TMS. Thus, line 13 is an optimization

81

step that avoids the projection of borders that are guaranteed to not create TMSs. Line

14 performs a border projection illustrated in Figure 44d, using a sweep line approach.

The function rect creates a minimum rectangle enclosing the border b, and extending

itself to the line of o. It is actually creating the TMS candidate. The algorithm may find

redundant TMSs. When a TMS is found, the list of TMSs found so far (TMS-List) is

checked to avoid redundant TMS insertion (line 15). It is possible to solve the

redundant projection issue by removing the intersections of the projected border with

its intersecting borders, from the borders in P. However, this was not worth the effort

in our implementation. In line 17, the erase function subtracts b from the borders

intersected by b. In lines 18-20, the resulting borders continue the projection, as

illustrated in Figure 44e. The intervalIntersectionLength function performs an interval

intersection between the two borders (i.e. it considers only the border tips) and returns

the length of the intersection interval. If the intersection length is greater than 0, this

means that, if b2 creates a TMS t in a future projection, then t depends on o to exist.

Otherwise, all TMSs created by b2 have their existence independent of o. Since o is a

border of A, these TMSs already belonged to R, and do not need to be considered.

ALGORITHM: TMS-Detector(Set A, Set R, BorderMap B)

1 if A ≠ ∅:

2 P ← createBorders(A, A ∪ R)

3 updateBorderMap(B, P)

4 else:

5 P ← getBorders(B)

6 for each border b in P:

7 projectBorder(b, copy(b))

8 return TMS-List

9

10 function projectBorder(Border b, Border o):

11 if b = o:

12 Extend b until it reaches the shape limits

13 if not TMS-Candidate(b): return

14 Project b towards its inner direction until it intersects a parallel

opposite border

15 if rect(b, o) is a TMS and TMS-List do not contain rect(b, o):

16 TMS-List.add(rect(b, o))

17 pieces ← erase(b, intersectedBorders(b))

18 for each border b2 in pieces:

19 if A = ∅ or intervalIntersectionLength(b2, o) > 0:

20 projectBorder(b2, o)
Figure 45- Pseudocode of the proposed TMS detection algorithm.

82

5.4 Comparison with Related Work

The main goal of section is to clarify the differences between the proposed pin

access method and the work in (NIEBERG, 2011), since it is the only work that

addresses pin access within the scope of the proposed method, which is intra cell pin

access allowing off-track paths. The other methods presented in section 3.3 are inter-

cell, and their intra-cell handling is more straightforward, since off-track paths are not

allowed (at least in the SAMP methods), and it is guaranteed that the connection to the

pins can be done without DRVs by simply putting a via over the pin. Table 1 shows the

differences between the proposed method and (NIEBERG, 2011).

Table 1: Differences Between the Proposed Method and (NIEBERG, 2011).

Method CFS RS PAP implementation
Patch

metals

(NIEBERG, 2011) yes no static, with exceptions no

Proposed no yes dynamic, with exceptions yes

CFS vs Resource Sharing (RS): in (NIEBERG, 2011), each cellconfig (referred

as circuitclassess in (NIEBERG, 2011)) has a conflict-free solution for all pins, meaning

that all PAPs may coexist without causing any DRVs. In the proposed approach, the

cellconfigs present a resource sharing solution, meaning that the PAPs of different pins

would present DRVs between them, if implemented simultaneously, and may use the

same routing resources (grid points).

PAP Implementation: in (NIEBERG, 2011), before routing, all PAPs are

implemented in the routing space. There may be conflicts between PAPs of

neighboring cells, and in these cases some PAPs may not be implemented. If this

makes a pin to not have any implemented PAP, then a PAP is constructed on-the-fly

during the routing step. In the proposed approach, the PAPs are not implemented

before routing, except for the via-PAPs of small pins (at most, one via-PAP per pin is

implemented). During routing, the other PAPs are dynamically checked for legality and

are dynamically implemented, if chosen by the path search. LUTs and caching

strategies are used to mitigate runtime overhead of legality check. Also, an

implemented PAP may be deactivated in RNR.

Patch Metal Usage: in (NIEBERG, 2011), no patch metals are used. The PAPs

may perform many detours to avoid DRVs with the pin and within the path itself, and

the path may not be the shortest. The proposed method heavily relies on patch metals

83

to allow PAP diversity. The PAPs are always the shortest possible. The patch metals

greatly contribute to TMS creation, and a fast TMS detection algorithm is used.

Although the proposed method is intra-cell, it is not incompatible to an inter-cell

point of view. An inter-cell extension of the method would require one more step, to

create wire segments connecting the via-PAPs and to direct them to other net

components. As for the compatibility of the proposed approach with other pin access

contexts, with simplified intra-cell handling, the use of patch metals and TMS detection

would not fit, but the resource sharing idea can be used independent of the pin access

context.

5.5 Experiments

This section evaluates the effectiveness of the proposed pin access approach.

For this, the ISPD 2018 Contest (MANTIK, 2018) benchmark suite is used, which is

derived from industrial test cases. Table 2 presents the benchmark information. The

columns represent the number of standard cells, number of macro blocks, number of

nets, number of I/O pins, number of metal layers, die size (in mm²) and technology,

respectively. In order to obtain design rule violation results and other routing metrics,

Cadence Innovus 17.1 and the ISPD18 Evaluation Script are used. The experiments

were run in a Linux machine with 132Gb RAM, CPU AMD Opteron 2.3 Ghz. The

proposed detailed routing system was implemented in Java. This experimental setting

was the same used in all other experiments in this work (sections 6.6 and 7).

First, we will evaluate the effectiveness of the proposed RS approach over the

CFS one. Note that the goal is not to compare the proposed pin access algorithm to

any specific algorithm, such as (NIEBERG, 2011). The goal here is to compare

approaches. In theory, the CFS approach either blocks many routing resources, if

implementing many PAPs, or presents few PAPs per pin. In either case, routability and

runtime is affected. In theory, the RS approach solves these issues, but there is a

runtime overhead for PAP legality check. Thus, the objective of this experiment is to

evaluate and measure these predictions in practice.

In order to do this, a pin access solution resulted from the proposed pin access

method is used to create a CFS, and two versions of SmartDR, with CFS and RS, are

compared. The algorithm to extract a CFS out of the RS solution is presented in Figure

46. All PAPs in metal 1 that do not present conflicts with other PAPs, including within

the same pin, are implemented, except by those in adjacent grid points to other PAPs

84

Table 2: Benchmark Information

Bench #std #blk #net #pin #layer Die Size Tech Description

test1 8879 0 3153 0 9 0.20x0.19 45nm Standard cell netlist only.

test2 35913 0 36834 1211 9 0.65x0.57 45nm
Standard cell netlist with
IO pins.

test3 35973 4 36700 1211 9 0.99x0.70 45nm
Standard cell netlist with
IO pins and block macros.

test4 72090 4 72410 1211 9 0.89x0.61 32nm
Design has Metal2 OBS in
some of its standard cells.

test5 71946 8 72394 1211 9 0.93x0.92 32nm

Design has Metal2 OBS,
Metal2 Power/Ground
pins, and routing direction
is reversed.

test6 107919 0 107701 1211 9 0.86x0.53 32nm

Design has Metal2 OBS,
Metal2 Power/Ground
pins, and reversed routing
direction, but without any
block macro.

test7 179865 16 179863 1211 9 1.36x1.33 32nm

Quad-core design with
Metal2 OBS and Metal2
Power/Ground pins as
blockage.

test8 191987 16 179863 1211 9 1.36x1.33 32nm

Quad-core design with
Metal2 to Metal3 OBS and
Metal2 to Metal4
Power/Ground pins as
blockage.

test9 192911 0 178858 1211 9 0.91x0.78 32nm

Quad-core design with
Metal2 to Metal3 OBS and
Metal2 to Metal4
Power/Ground pins as
blockage, no block macro,
higher utilization.

test10 290386 0 182000 1211 9 0.91x0.87 32nm

Quad-core design with
Metal2 to Metal3 OBS and
Metal2 to Metal4
Power/Ground pins as
blockage, no block macro,
extra congested area.

of the same pin. In metal 2, only one via-PAP was implemented by pin, also without

conflicts with any other PAP of any pin. The best number of implemented PAPs was

also evaluated, as discussed ahead, and the mentioned configuration was found to be

the best. The algorithm iteratively implements one PAP per pin, until it has no PAPs to

implement. It gives priority to pins with less PAPs, and to PAPs that are further from

the other pins. In all testcases, all pins had some implemented PAP. In the pseudocode

of Figure 46, A is an array of priority queues of PAPs. Each queue holds the PAPs, of

a given pin, that are available to be implemented. I is the set of implemented PAPs. P

85

ALGORITHM: CFS(Resource Sharing Solution S)

1 Build PAP queue array A from S

2 I ← ∅

3 do:

4 Build pin queue P considering the available PAPs in A

5 if P is empty: break

6 while P is not empty:

7 pin ← pop(P)

8 while A[pin] is not empty:

9 pap ← pop(A[pin])

10 if canBeImplemented(pap, I): break

11 pap ← null
12 if pap ≠ null:

13 I ← I ∪ pap

14 while true

15 return I
Figure 46- Pseudocode of the method to create a CFS from the RS solution of SmartDR.

is the priority queue that stores all pins. In line 4, if a pin has 0 available PAPs, it is not

added in P. The function canBeImplemented verifies the implementing restrictions

mentioned earlier.

Table 3 presents the results. In order to provide a more accurate measure of

the runtimes, they are presented considering a single-thread execution. However, in

order to present a realistic total runtime difference of the compared approaches, the

column “Total Real Time” considers 8 threads, as it is the default in ISPD18 Contest,

and means the total time spent on the entire routing flow. “LC” is the total time spent

on PAP legality check. “Total Time RS 1t” is the total time of the routing flow using 1

thread. “Path Search Time” is the time spent only in the path search. “Fails” is the

number of failed path searches in the Standard Routing step. “Grid Init. Time” is the

time spent on transcribing all cellconfig information to the grid, before routing. “RS”

refers to the proposed Resource Sharing approach. All times are measured in seconds.

“Red. Total” is the total runtime reduction by using RS (i.e. (CFS-RS)/CFS%)). “Red.

PS” is the path search runtime reduction of RS. “Fail Inc.” is the increase in “Fails” of

CFS.

The execution using CFS is implementing one via-PAP per pin. Implementing

up to 2 via-PAPs has no significative impact on runtime, as it slightly increases or

decreases, but it increases the number of fails. However, implementing up to 3 via-

PAPs has considerable impact in runtime (17% in average, w.r.t. 1 via-PAP). This is

shown in Figure 47. Also, implementing all possible via-PAPs has caused near 3000

86

Table 3: Comparison Between RS and CFS Approaches

Benc. LC

Total

Time

RS 1t

Total Real

Time

Path Search

Time
Fails

Grid Init.

Time

Red.

Total

(%)

Red.

PS

(%)

Fail

Inc.

(%)

Red.

WL

(%)

Red.

Vias

(%) RS CFS RS CFS RS CFS RS CFS

test1 2.7 24 16 21 9 14 38 341 0.4 1.6 24 36 797 6.4 5.2

test2 25 164 71 92 82 122 163 1101 1.9 7 23 33 575 3.3 6.0

test3 27 255 157 217 166 269 525 1865 2.1 7.4 28 38 255 3.1 6.9

test4 75 609 314 355 256 463 1214 5263 9.8 27 12 45 334 3.3 -2.9

test5 64 562 208 303 232 446 10167 14288 16 32 31 48 41 3.0 -2.1

test6 98 802 286 329 340 649 17148 24289 27 51 13 48 42 3.1 -2.0

test7 164 1199 429 502 571 990 24590 36145 47 88 15 42 47 2.9 -2.1

test8 171 1206 435 664 565 998 24255 36263 45 89 34 43 50 3.2 -2.9

test9 180 1160 405 647 557 987 28439 40473 44 91 37 44 42 3.8 -2.9

test10 189 2135 717 1041 1482 2183 31763 46450 52 94 31 32 46 3.3 -2.3

Avg

24.8 40.8 222.9 3.5 0.1

(a) (b)

Figure 47: Comparison of the CFS implementing 1, 2 and 3 via-PAPs, regarding total routing runtime
(a) and number of failed searches (b) in Standard Routing step.

fails in test1, which is the easiest test case, and an unfeasible runtime. This only shows

what was already expected: implementing too many via-PAPs causes more routing

blockages than choices to the path search access the pins. Regarding the

implemented PAPs in metal 1, there is not much space to implement many such PAPs,

due to the neighboring pins and their PAPs. Thus, this does not have considerable

impact in routability. Still, two criteria were tested: in the first, all PAPs without conflicts

with other PAPs of the same pin were implemented; the second criterion added another

restriction to the first, which was to forbid the implementation of PAPs in adjacent

points. Thus, the second criterion provides a sparser solution. Both criteria were

evaluated and it was observed a very slight runtime and fails improvement with the

second criterion. In average, the runtime reduction was 0.3% and the fails reduction

was of 3.4%.

0

200

400

600

800

1000

1200

1400
Runtime

1 via 2 vias 3 vias

0

20000

40000

60000

80000

100000
Fails

1 via 2 vias 3 vias

87

The PAP legality check takes, in average, takes 12% of the total runtime of

SmartDR. The CFS approach presents higher Grid Init. Time, since it has to implement

the PAPs. This time increase compensates part of the PAP legality check overhead.

As expected, CFS presents more fails than RS. The average fail increase is 321%

(589%, for testcases 1-4, and 144% for the others). The runtime overhead resulted

from this fail increase is reflected mainly in the path search, since it spends more time

to find a PAP or to realize that there is no route to any PAPs. The average runtime

increase in the path search is 40%. This shows the high runtime impact in the path

search that the lack of pin access flexibility may cause. The average total real time

increase is 24.8%.

The WL and via count of the solutions of CFS and RS were also measured. In

Table 3, “Red. WL” is the WL reduction when using the proposed method, and “Red.

Vias” is the reduction in the via count. The large increase in the number of fails

contributes to the routing quality degradation. With more fails, we have more ripups in

RNR and this makes WL to increase. The average WL reduction of using RS is of

3.5%. Regarding via count, it is possible to occur an increase and a decrease. With

more available via-PAPs, this contributes to an increase, but with less fails, and

consequently less ripups and detours, this contributes to a decrease. For the 45nm

testcases, the RS approach brought a via reduction of 6% in average. For the other

benchmarks, there was an average increase of 2.4%. Also, the CFS using 1 via-PAP

presented better results, regarding WL and via count, than using 2 or more via-PAPs.

Regarding the via count oscillation in different technologies, this can be

explained by the following. DRAPS tries to minimize the number of via-PAPs used, as

will be discussed in section 6.2. This is done by assigning costs to via-PAPs, and to

assign cost 0 to a via-PAP already implemented. As will be also shown in the

experiments of section 6.6.1, DRAPS manages to reduce the number of vias more in

the 45nm benchmarks, with 11.1% in average, than in the 32nm ones, with 6.3% in

average. The difference is probably due to the fact that in the 45nm benchmarks the

routing over the pins is sparser, and thus, due to the lack of obstacles, the algorithm is

freer to reuse the same vias, in different path searches. A possible solution to decrease

the use of via-PAPs in the 32nm benchmarks is to increase the via cost in the path

search, so that it makes more effort the reuse the via-PAPs already implemented.

In addition, an evaluation of the impact of implementing one via-PAP, in the

proposed approach, was also performed. Figure 48 shows results in three scenarios:

88

(a) (b)

Figure 48: Comparison of different strategies of via-PAP implementation, and results in total routing
runtime (a) and failed searches (b) in Standard Routing step.

Figure 49: Runtime results of PAP legality check with and without cache.

(1) implementing no via-PAP; (2) implementing 1 via-PAP per pin; (3) using the

heuristic described in section 5.1.1 to identify potentially blockeable pins and

implementing one via-PAP in these pins. Implementing no via-PAPs causes

considerable increase in fails and runtime, w.r.t. the default approach (0-1 vias). In

average, it presents 70% more fails and 16% more runtime. Implementing 1 via-PAP

per pin brings, in average, 9.6% more fails and 13% more runtime.

Figure 49 shows the runtime results of the PAP legality check with and without using

a cache to store the grid blockages before the legality check itself. The runtime with

cache includes the time spent on building the cache. The average runtime reduction of

using a cache is 30%.

Regarding TMS detection, it was evaluated the runtime of the procedure and

the impact in spacing violations when not using TMS detection. Also, it was measured

the gain in runtime of using the proposed TMS algorithm considering the Differential

TMS Problem (Definition 2) against the same algorithm but solving the first version of

the problem (Definition 1). Basically, in Definition 2, all PAP borders that were already

constructed are reused and the algorithm only tries to detect TMSs created by the

0

200

400

600

800

1000
Runtime

0 vias 1 via 0-1 vias

0

10000

20000

30000

40000
Fails

0 vias 1 via 0-1 vias

0

50

100

150

200

250

300

test1 test2 test3 test4 test5 test6 test7 test8 test9 test10

with cache

without cache

89

Table 4: TMS Usage Results

bench Cellcon
PA2

Time

TMS2

Time

TMS1

Time

PA1

Time

TMS2/PA2

(%)

TMS1/PA1

(%)

TMS2

Red. (%)

#spacing

TMS No TMS

test1 196 4.9 0.8 2.4 6.8 16.3 35 67 1 40

test2 222 6.2 1.15 3.2 8.2 18.5 39.4 64 6 936

test3 247 6.2 1.05 2.8 7.5 16.9 38.0 63 33 996

test4 2764 111 21.6 87.1 167 19.5 51.9 75 204 6120

test5 2768 83 19.4 66.6 123 23.4 53.8 71 75 4566

test6 2886 93 19.4 72.6 143 20.9 50.5 73 228 6992

test7 228 5.1 0.74 1.6 5.6 14.6 28.3 53 300 13143

test8 230 5.1 0.80 2.1 6.0 15.7 35 62 351 13141

test9 136 4.5 0.84 2.1 5.5 18.6 37.7 60 238 13383

test10 144 4.7 0.67 1.3 5.1 14.3 26.4 50 1398 14793

Avg 17.8 39.6 63.8

addition of the PAPs in the pin shape, while in Definition 1 it always constructs the

borders of the resulting shape and tries to detect all TMSs.

Table 4 presents the experimental results regarding TMS detection. The

“Cellcon” column represents the number of cellconfigs. “PA2 Time” is the time spent

on the router Cell Processing step (basically the pin access calculation time), when

using the TMS algorithm to solve the problem of Definition 2 (here we refer to it as

TMS2). “TMS2 Time” is the time spent on TMS2 algorithm. “TMS1 Time” is the time of

the TMS procedure of solving the TMS problem of Definition 1. “PA1 Time” is the Cell

Processing time using TMS1. “TMS2/PA2” is the proportion of “TMS2 Time” w.r.t. “PA2

Time”. “TMS1/PA1” is the proportion of “TMS1 Time” w.r.t. “PA1 Time”. “TMS2 Red.”

is the runtime reduction of “TMS2 Time” w.r.t. “TMS1 Time”. “#spacing” is the number

of spacing violations using TMS detection (“TMS” column) and not using it (“No TMS”

column). Note that the results, in DRVs, of both approaches (TMS1 and TMS2) are the

same.

The TMS2 procedure takes, in average, 17% of the pin access process time

(“PA2 Time2”). Considering only tests 4-6, which present higher number of cellconfigs,

the procedure takes, in average, 21% of the total process. The TMS1 procedure

presents a high runtime overhead w.r.t. TMS2. Using TMS1, the procedure time takes

39% of the total cell processing time, in average. This arises to 52%, when considering

tests 4-6. In average, using TMS2 reduces the runtime in 63% w.r.t. TMS1.

The non-use of TMS detection causes a huge increase in the number of spacing

violaions (4958%, in average). This shows the importance of TMS detection in the

proposed pin access method. Since patch metals are frequently used to solve DRVs,

TMS creation also becomes more frequent.

90

5.6 Conclusions and Future Works

Section 5 presented the proposed pin access method, which is a novel

approach to solve the pin access problem. Unlike any other pin access method in

literature, the proposed approach allows pin access paths of different pins to share the

same routing resources. The proposed approach is also unique regarding the patch

metal usage and the TMS detection, allowing high PAP diversity without suffering from

DRVs caused by patch metal usage and TMS creation, and this is thanks to the TMS

detection algorithm proposed.

The impact of the high flexibility in PAP selection brought by the proposed

method was measured by comparing it to a CFS approach. The experiments showed

that it considerably reduces runtime and number of failed path searches. It also

provides a slight improvement on WL and may also do the same with the via count,

although the via count may be increased. The TMS detection was shown to be

essential in design rule handling in the proposed pin access method, as the proposed

TMS detection algorithm was shown to be efficient.

As future works, it is intended to do the following researches. The PAP legality

check may be exchanged by making each insertion of routing objects in the search

space to be aware of the blockage information of the PAPs, such that it disables any

intersecting PAP. This implies in the necessity of an efficient control of the available

PAPs. It is also pertinent to evaluate the impact of varying the number of the created

PAPs, since it is possible that a little less PAPs may present a better tradeoff, regarding

PAP selection flexibility (and, consequently routability and runtime) and the dynamic

PAP control overhead. The patch metal usage should be evaluated in order to identify

the extension of its beneficial effects. It is also necessary to evaluate to what extent it

is worth to allow TMS creation. Regarding reserving routing resources to PAPs, it is

intended to evaluate the effectiveness of applying cost penalties in the grid, in the

PAPs, to discourage the path search of using these points but without disallowing it.

91

6 Path Search

This section presents the proposed techniques related to the path search. More

specifically, it is presented the proposed design rule aware path search algorithm

(DRAPS), which is an A*-interval-based path search, and a method to improve the

lowerbounds of the h function of A* in the detailed routing scenario. The path search

mechanics of DRAPS is based on the path search algorithm in BonnRoute (GESTER,

2013), which is based on Hetzel’s algorithm (HETZEL, 1998). The contributions of the

proposed techniques are (1) adaptations in the path search to properly handle PAP

costs in the source/target points, presented in section 6.2, and (2) the integration of

design rule checking (DRC) into the path search core, presented in section 6.4. The

proposed method to improve the h function is presented in section 6.3. Section 6.1

presents the basic path search mechanics and an overview of the algorithm.

6.1 Path Search Mechanics

The routing space may be defined by a grid graph. This graph does not need to

be explicitly stored in a graph data structure though, as it may be implicitly represented

by the layer pitch information and the routing obstacles. The proposed algorithm is

based on the A* search (HART, 1968). Each node n has an associated cost, f(n) = g(n)

+ h(n), where g(n) is the best-known cost from a source point to n, and h(n) is an

estimated cost from n to a target point. In the classical A* approach, each search node

is associated with a grid graph vertex. In DRAPS, each search node is composed of a

set (interval) of grid graph vertices on the same track. Rows of vertices with the same

f(n) cost (calculated as if they were search nodes in a maze search) are merged in one

interval of vertices, which is labeled by f(n) and consists in a search node. Due to the

knowledge of the implicit geometric information of the grid graph and the h function

behavior, it is possible to efficiently calculate the intervals in constant time. This interval

labeling technique is the same proposed by Hetzel, discussed in section 3.2.4. If the h

function is implemented by the manhattan distance, then the intervals are directed to

the target node (as in Figure 27). DRAPS uses a more complex h function though, that

is aware of the global routing guides, and is explained in section 6.3.

Figure 50 presents the pseudocode of the proposed algorithm. The algorithm

handles multi source-target points. As in multi source-target A* search, each node n

seeks a target point t ∈ T that minimizes f(n). Each search node has many associated

information: an interval of grid points, a reference point for the interval calculation, g

92

ALGORITHM: DRAPS(Source S, Target T)

1 Initialize open set Q with source set S

2 while Q ≠ ∅:

3 n ← pop(Q)

4 if f(n) ≥ f(B): return B

5 if n.i intersects n.target: return n

6 Find a target point t intersecting n.i with lowest f((n, t))

7 if t ≠ null AND (B = null OR f((n, t)) < f(B)):

8 B ← (n, t)

9 for each interval i adjacent to n.i:

10 n2 ← newNode(i, n, T)

11 if n2.z ≠ n.z AND NOT DRC(n2): continue

12 for each interval i2 in STL that intersects i:

13 if f(i2.node) > f(n2):

14 i2 ← i2 – i

15 if i2 = ∅:

16 remove i2 from STL and i2.node from Q

17 else:

18 i ← i – i2

19 if i = ∅: break

20 if i ≠ ∅:

21 Q ← Q ∪ {n2}

22 STL ← STL ∪ {i}

23 return null

Figure 50- Pseudocode of DRAPS.

and h values, and a parent node. In line 3, the minimum f(n) cost node is extracted

from the priority queue Q, which is the A* search Open Set. In the case of a tie, the

algorithm gives priority to the last added node, which provides a depth-first behavior in

the search, unlike in (GESTER, 2013), which chooses the furthest node from the target

point, presenting a breadth-first behavior, which tends to be slower. Lines 4 and 6-8

are referent to the PAP cost in the target points, which will be addressed in the next

section. Line 5 checks whether n has found its target (n.target is the target point sought

by n). In line 9, two intervals are adjacent if they are conceptually connected by a graph

edge. The n.i is the interval of node n. The newNode(i, n, T) function creates a search

node with interval i, antecessor node n and seeks a target ∈ T. In line 11, if the newly

created node belongs to another metal layer, the algorithm performs a design rule

check (DRC function) that returns true if there is no violation. The DRC is explained in

section 6.4. STL refers to the “satellite” data structure that stores all the open and

closed nodes. The relaxation step of A* algorithm (lines 12-22) is performed on

intervals. In the case of intersection of intervals, the interval whose node has the lowest

93

cost (or the interval in STL, in case of a tie) cuts the intersection piece of the other

interval (i – i2 and i2 – i represent interval subtractions).

The open set Q is implemented by a combination of data structures: a heap and

a hash table. The heap stores the costs of the search nodes, with no repeated costs.

The keys of the hash table are the node costs and the data of a key is a stack of search

nodes with the key’s cost. When a node is removed from Q, the top of the stack with

the best cost is removed, giving the algorithm a depth-first-search (DFS) behavior in

the case of a tie of node costs. Separating nodes with the same cost in stacks

decreases the time overhead of the heap queries, since it has less elements. The little

overhead of querying the hash compensates the overhead of heaving all nodes in a

heap. Also, in practice, the hash is queried only once to obtain the stack.

The algorithm holds sets of line segments that represent available routing space

free of obstacles. They will be referred as empty-space intervals. All intervals are

created over them, except in RNR step, in which it is allowed for intervals to be created

inside the routing obstacles, with a high cost penalty. The use of these empty-space

intervals is justified by the fact that it is cheaper to query the data structure that stores

them, than to query the grid. This may be interpreted as a cache of available routing

space. These intervals are created on-the-fly, during the path search.

In order to an interval expand creating nodes in adjacent layers, it is necessary

to iterate the interval while trying to create the nodes. However, there are few routing

guide sections that present guides in two adjacent metal layers. Only in these sections

it is pertinent for the algorithm to try to create nodes in adjacent layers. DRAPS is

optimized to iterate the intervals only in these cases.

6.2 Handling PAP Costs in the Source and Target Points

The PAPs have associated costs that are considered by the path search. The

cost of a PAP is the WL it uses, considering cost penalty for jogs, plus the via cost, if

it is a via-PAP. These costs aim to improve these routing metrics, especially the

number of vias. The high PAP selection flexibility provided by the proposed pin access

method may increase the number of via-PAPs used. Thus, via-PAPs that were already

implemented have cost 0 to encourage the path search to reuse them. The pin access

experiments in section 5.5 were already considering this feature in DRAPS.

Handling costs in the source points is trivial: the g(n), which is usually 0 for the

source points, is set to the cost of their respective PAP. The problem arises when

94

considering the PAP costs in the target points. In this case, the cost of the h function

is added to the cost of the target PAP, which is the cost from the target point to the pin

itself. This makes the cost of h inconsistent with its target, for it is consistent with the

pin itself, and makes the algorithm not to guarantee the optimal path. For instance, the

algorithm may step over a target point n whose f(n) cost is greater than the f(n2) cost

of a more distant target point n2. The algorithm will ignore the target point found n,

seeking the distant one. Eventually, n2 turns out to be difficult to access and its f(n2)

cost becomes greater than f(n). Since n is now a closed node, the algorithm cannot

find a path to it anymore. Thus, the algorithm does not find the optimal path or may

even not find a path at all, if there is no path to the other target point. Figure 51, shows

an example of this scenario. A node is being created in the green point, and it aims to

find a path to the middle pin. There are only 2 available PAPs (i.e. 2 target points), and

they are in metal 2. The upper one has cost 0, and the lower has cost 800. The pitch

is 200 and the preferred direction of metal 2 is vertical. If the upper target is chosen,

h(n) = 800; if the lower one is chosen h(n) = 1000. Thus, the upper target is chosen

and the node interval is biased towards it. Although the interval overlaps the lower

target, it will try to find a path to the upper one. Later, the algorithm will realise that the

cost to the upper target is higher than 1000, since it can only be reached by a detour

using the upper layer (consider that using the lower layer is not possible since it will

cause DRVs). But since there is no node seeking the lower target, this target is lost,

and the path found will be the one using the upper target, which is more expensive.

To solve this issue, it is necessary to keep saved the best target node found so

far. A target node is a node whose interval intersects its target. Each time a node is

removed from the priority queue, its f(n) is compared to the f(n) of the best found target.

If the cost of the chosen node, from the priority queue, is greater or equals, then the

Figure 51: Illustration of the issues of handling costs in the target points.

 Metal 1 pin
 Metal 2
 Pin Access Point
 Node point
 Node interval

95

algorithm returns the saved target node. This is performed in line 4 of DRAPS algorithm

(B is the best target node found). In lines 6-8, B is updated. If n.i intersects a target

other than n.target, then this target must be saved. Since many targets may intersect

n.i, the one that minimizes the total cost is chosen. In the pseudocode, the tuple (n, t)

represents a search node that is a copy of n, except that it seeks target t. Due to the

proposed technique to improve the h function, it is not always necessary to iterate over

all target points to select t. This will be explained in the next section.

6.3 Tunnel Lowerbound

This section presents the proposed Tunnel Lowerbound method, published in

(GONÇALVES, 2019a). The A* is a generic path search algorithm that uses a heuristic

function (h) to guide the search to the target node. This function calculates the

estimated path cost from a node n to a target node. The more realistic is the estimation,

the more the algorithm takes a Depth-First-Search (DFS) behavior towards the target

node, and, consequently, the faster it ends.

In detailed routing, the L1 distance is the most straightforward way to implement

the h function. When h(n) uses L1, it implicitly predicts that the path from n to the target

node is of L/Z shape. However, the global routing guides have shapes that force the

paths to perform detours, such as an U shape path. In these cases, using L1 distance

makes the path search to take a Breadth-First search (BFS) behavior, which is slow.

On the other hand, if h is implemented such that it is aware of the global routing guide

shape, it will provide a more realistic lower bound, enabling the search to perform a

DFS. This was already discussed in sections 3.2.2 and 3.2.5.

6.3.1 The Proposed Technique

Each net has a global routing guide associated with. This guide consists in a set

of rectangles which limit the path search space. We call tunnel a section of the global

routing guide which connects two net components (terminals) that act as source and

target of the path search (i.e., pins and wires). Each path search aims to find a path

connecting two terminals, and this search is constrained by a tunnel. The function

rect(n) denotes the tunnel rectangle that contains the point n. We call Tunnel

Lowerbound (TL) the minimum tunnel-aware-cost of a path connecting a point p to a

target point which minimizes such cost. Note that there may be more than one target

point since a pin usually spans more than one track. The function TL(n) denotes the

96

TL measured at point n. The function lb(𝑛1, 𝑛2) returns the 𝐿1distance modified by the

via cost, if the points do not belong to the same metal layer.

The basic idea of the proposed technique is to: 1) precompute the TL for each

tunnel rectangle, before the path search; 2) during the path search, calculate the

heuristic function h(n) by obtaining the precomputed cost of rect(n) and adding it to the

offset cost between n and the reference point for the TL calculation.

A reference point (or just ref point, for simplification) is associated with a target

point, and with an offset cost to such point. There may be as many ref points as target

points in each tunnel rectangle, although this usually does not happen in practice, as

will be seen ahead. It is necessary to maintain this relation of ref points to target points

due to the following. If the target pin has multiple target points and a rectangle has only

one ref point, h(n) may overestimate the cost, depending on the location of both n and

the target points. For example, in Figure 52, the minimum cost from 𝑛1 to the target pin

is the cost from 𝑛1 to 𝑡4. If the only ref point of 𝑟𝑒𝑐𝑡2 was 𝑟1, then h(𝑛1) would return the

offset cost from 𝑛1 to 𝑟1 plus the offset cost from 𝑟1 to 𝑡1 (TL(𝑟1)), which is higher than

the cost from 𝑛1 to 𝑡4. Thus, sometimes it is necessary for a rectangle to have more

than one ref point. The number and the location of the ref points of a rectangle r are

determined by the projections of the ref points of the previous rectangle into r, such

that the offset cost of the projection is minimized. The source rectangles of this chain

of projections are the ones containing the target points. Usually there is only one such

rectangle. The target points are also ref points of these rectangles. In Figure 52, the

arrows denote these

Figure 52: Illustration of the TL technique. Ref points are red and yellow.

Target points

rect
2

rect
3

t
1
 t

2

t
3
 t

4

r
1
 r

2
 r

3
 r

4

n
1

rect
1

97

projections. If a ref point is the result of the projection of more than one ref point, it

stores the offset cost (and is related to the target point) of the lowest cost projection.

The heuristic function h is defined as

ℎ(𝑛) = min{ 𝑙𝑏(𝑛, 𝑟) + 𝑇𝐿(𝑟) | 𝑟 𝑖𝑠 𝑎 𝑟𝑒𝑓 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑟𝑒𝑐𝑡(𝑛)},

implying that each time h is called, it iterates over the ref points of the rectangle in order

to obtain the lowest total cost. Thus, this operation is performed in O(k) time, where k

is the number of ref points of the rectangle. However, this number is very small in

practice. As the projections propagate over the rectangles, they quickly reduce the

number of ref points to just one. This happens at the second rectangle bend (see 𝑟𝑒𝑐𝑡3

of Figure 52). Thus, for a tunnel with at least two bends and many rectangles, the

majority of the rectangles have only one ref point. In the experiments evaluating this

technique, most rectangles have only 1 ref point, and the average number of ref points

by rectangle is only 3. The iteration over ref points can be even improved by storing

adjacent ref points as intervals or even rectangles. Therefore, in practice and in the

average case, h(n) performs in constant time. Also, regarding the awareness of PAP

costs in the path search, it is not necessary to iterate over all target points, in line 6 of

DRAPS algorithm. The search can be performed in the target points related to the ref

points of the tunnel rectangle containing the expanding node.

The projections of ref points may generate redundant ref points. A ref point is

redundant if, in the case it is omitted, it will not cause any cost overestimation by h. In

Figure 52, 𝑟2 is a redundant ref point because, even if the TL is measured over it, the

h function will return a value that is no less than the value returned if it choses 𝑟1or 𝑟3

as ref points. Thus, redundant points should be avoided, since they are useless.

6.3.2 Algorithm and Implementation

The preprocessing before the path search consists in calculating the ref points

and their TL, for all tunnel rectangles. The procedure begins in the rectangles

containing the targets points. The ref points of these rectangles are projected into the

intersecting rectangles of both neighboring and same layers, and so on, until all

rectangles have all ref points set. This problem is modeled as a shortest path problem

on a graph with non-negative edges, and is solved using Dijkstra’s algorithm

98

(CORMEN, 2001) with some modifications. Each graph vertex is a tuple (R, p), where

R is a rectangle, which can be defined as a set of grid points, and p ∈ R a ref point of

R. The edges of a vertex are the intersections of R with other rectangles of both the

same and neighboring layers (i.e., rectangles that can be directly accessed from R).

The cost of an edge ((R, p), (R’, p’)) is lb(p, p’).

The preprocessing algorithm is described in Figure 53. Lines 1-3 perform the

initialization of priority queue Q. Line 5 retrieves and removes from Q the lowest cost

node. Lines 6-16 represent the expansion of the chosen node. Lines 8 and 9 check

whether p’ is redundant. Lines 10-16 are the relaxation step of Dijkstra’s algorithm. The

priority queue Q stores search nodes (R, p, δ), where (R, p) is a vertex and δ is the

offset value of p to the target pin, i.e, TL(p). Q is sorted by δ. Each rectangle is a data

structure that stores all its ref points and its respective offset values δ. The function

addRefPoint(R, p, δ) stores the ref point p in rectangle R with offset value δ. The

function refPoints(R) denotes the list of ref points stored in R. The TL(x) function of the

pseudocode is actually accessing the offset value δ of x stored in R’.

An A*-based path search algorithm handling multi target points must choose

which target point it is seeking. However, using the proposed technique, the ref point

selection replaces this operation. This is due each ref point is indirectly related to a

target point. Target points may also be stored in the rectangles, for each ref point, in

the addRefPoint function, and updated with the target point of p, together with TL(p’),

ALGORITHM: DijkstraTL(Tunnel tn)

16 for each n ∈ {(R, t, 0) | t ∈ R is a target point}:

17 Q ← Q ⋃ n

18 addRefPoint(R, t, 0)

19 while Q ≠ ∅:

20 (R, p, δ) ← pop(Q)

21 for each neighbor R’ of R:

22 Calculate p’ ∈ R’ such that lb(p, p’) is minimized

23 for each ref point r of R’:

24 if lb(p’, r) + TL(r) ≤ δ + lb(p, p’): go to 4

25 if p’ ∈ refPoints(R’):

26 if δ + lb(p, p’) < TL(p’):

27 TL(p’) ← δ + lb(p, p’)

28 Update (R’, p’, TL(p’)) in Q

29 else:

30 addRefPoint(R’, p, δ + lb(p, p’))

31 Q ← Q ⋃ {(R’, p’, TL(p’))}
Figure 53- Pseudocode of the proposed algorithm to precompute the tunnel lowerbounds.

99

in line 12. The target point of a ref point will always be the same of its parent ref point.

The complexity of Dijkstra’s algorithm with ideal implementation is O(|V| × log |V| + |E|),

where |E| is the number of edges and |V| is the number of vertices. In our problem |E|

≅ |V|, since, in most of cases, each rectangle has only one successor rectangle in the

expansion chain. For each graph edge traversed, there is also the redundant point

verification overhead, which iterates over all ref points of the rectangle in question (R’,

in the pseudocode). Considering p is the average number of ref points by rectangle,

|E| can be substituted by |V|*p. |V| is equivalent to r*p, where r is the number of

rectangles in the tunnel. In the worst case, each rectangle stores a number of ref points

equals (or similar) to the number of target points t. Thus, the worst case complexity of

DijkstraTL is bounded by O(rt log rt+rt²). However, this happens only in tunnels with

few rectangles and less than one bend, which is a minority, and consists in the simplest

routing cases. Thus, this worst case bound is far from the average case. In average,

the majority of the tunnel rectangles have only one ref point. Therefore, p = 1, and the

complexity of DijkstraTL in the average case is bounded by O(r log r).

The proposed method is robust in the sense that it does not require any specific

conditions, regarding the tunnel properties, to work. The tunnel may be any set of

rectangles of arbitrary sizes. Also, the target points may be present in any rectangles.

Regarding optimality, it is evident that TL(r), where r is a ref point, is the minimum path

cost from r to its target (i.e. it is a lowerbound). This is guaranteed by the fact that each

ref point projection generates ref points in positions that minimize their distance and,

in the case of a projection over an existing ref point, the lowest cost (TL) projection

receives priority. Regarding h(n), since it chooses a ref point that minimizes the total

cost, it returns the minimum cost between n and the target point set. Thus, h(n) is a

proper lowerbound, making it admissible and consistent, which ensures the A*

optimality.

6.4 Design Rule Handling

One of the biggest challenges of detailed routing is the design rule handling. If

the router tries to solve DRVs in routing postprocessing, many DRVs will not be solved.

Thus, it is necessary to adopt a correct-by-construction approach. Making the path

search algorithm aware of some design rules is essential for a good design rule

handling. DRAPS is aware of the via library, the min area rule and the cut-cut spacing

100

violations that occur inside the same path. In DRAPS, the DRC function (in DRAPS

algorithm, Figure 50), performs design rule checking, possibly disallowing the

candidate new node to be added in the open set. The same function (DRC) handles

the three cases of design rule violations that DRAPS is aware, since the circumstances

that enable the creation of DRVs by these cases are basically the same, as seen

ahead. The pseudocode of the DRC function is presented in Figure 54, and will be

addressed in the next sections. DRAPS was published in (GONÇALVES, 2019b)

ALGORITHM: DRC(Node n)

1 p ← first predecessor node n’ of n.parent with n’.z ≠ n.parent.z, or null, if

n’ does not exist

2 if p ≠ null and n’.z = n.z and cutSpacingViolation(n’, n):

3 return false

4 if the area of the traversed path < minArea(n.parent.z):

5 if there is not enough space around n.parentSegment() to extend it such

 that area(n.parentSegment ()) >= minArea(n.parent.z):

6 return false

7 viasInRange ← viaMap.getViasInRange(n.point)

8 if viasInRange ≠ null:
9 for each via v in viaList:

10 if hasViaViol(v, viasInRange): continue

11 break

12 if all vias in viaList present violation: return false

13 for each via v in viaList:

14 if hasViol(v, n, grid): continue

15 break

16 if all vias in viaList present violation: return false

17 return true
Figure 54- Pseudocode of the DRC function.

6.4.1 Via Checking

The detailed router is restricted to use a set of vias defined in a via library. If the

vias used to connect the wires are chosen after the path is found, it may be impossible

to find a via that does not create any DRV, such as end-of-line and short violations (a

short violation happens when two shapes of different nets make contact).

DRAPS is aware of the via library. When an expansion implies in a via, it

chooses the most suitable via, and queries the via map (section 4.1) and possibly the

grid to know whether the via can be used or not. If the via cannot be used, it chooses

the second most suitable via and so on. The algorithm stores a sorted list of vias for

each cut layer. The via ordering in these lists is given by the criterion that defines a via

as “most suitable” than others, discussed ahead. Lines 7-17 of the DRC function

101

describe this procedure. Lines 7-12 will be better explained in the next subsection.

These lists are created before the routing step, by preprocessing the via library.

A via is considered more suitable than other via if the metal widths, in non-

preferred routing direction, of the top and/or bottom shapes are shorter. If the bottom

width is shorter, the via is more suitable. In case of a tie, the top is checked. A via with

larger metal width, in non-preferred routing direction, tends to block adjacent tracks.

The bottom shape is checked first since lower metal layers are more disputed, and

thus, it is preferable to block adjacent tracks of the upper layers. Figure 55 illustrates

the via selection order.

Figure 55: Via selection order and via blockage information (red dots). Dark blue rectangles are the via
metal shapes.

6.4.1.1 Efficient Via Queries

In order to query the grid to check whether the via can be used or not, it is

necessary to know the tracks and the track extension the via occupies, taking into

consideration both its shape and its minimum spacing requirements. Due to

performance matters, this via blockage information is calculated for each via definition

before routing, together with the sorted via lists (see Figure 55), and stored in a LUT.

In a grid query of a via during routing, the predefined via blockage in the LUT is used.

The via blockage information is stored on intervals.

If the via queries are performed using only these intervals, it is still possible to exist

violations with other vias, as shown in Figure 56. One solution is to use more querying

intervals in the via surroundings, but this is more costly in runtime terms. A via pad

aligned with the preferred direction track usually requires only one grid query, and, in

this solution, it would require three queries. Another solution is to keep the queries as

they are but making the vias occupy more space on its surroundings. However, this

creates more blockages than necessary, which is unfavorable for routability.

The solution used by DRAPS is to make use of the via map, proposed in section

4.1. The via map was designed for storing cut layer information of vias, but it is also

1st 2nd 3rd

102

 Via pad Solid Blockage Spacing Blockage DRV

Figure 56- Illustration of a situation where querying the grid with the via blockage information is not
enough to avoid DRVs. The two vias induce a blockage on the same point, but since both are spacing
blockages, they may coexist. The preferred routing direction is horizontal.

used in DRAPS to check via pad violations, meaning that the via map does not stores

only the via cuts, but the entire vias. Thus, with a single query in this data structure, it

is possible to know whether the candidate via present a cut spacing violation or a

violation in the via pads with other vias. However, a query in a given cut layer of the

via map is blind to the via pads of the vias of adjacent layers. Thus, it is necessary that

each cut layer in the via map store the vias from the adjacent cut layers. For example,

the cut layer via2 stores the vias of via1, via2 and via3. Considering that n is the number

of vias in a slice of a cut layer in the via map without this merging technique, a query

in a slice is O(log n) to find the first via (this is added to O(k) to find all k vias in a range).

With the proposed approach n is multiplied by 3 on average, but this is still better than

to perform 3 queries in the via map, since O(log 3n) < O(3log n).

The via check in the via map is done in lines 7-12 of the DRC function. All vias

in a range around the point of the expanding node are obtained with a single query.

Then, if there are any such vias, they are geometrically compared against the

candidate via for design rule checking.

Even if the via check in the via map does not accuse any violation, it is still

possible to exist violations with other routing objects, such as wires, pins or cell

obstructions (PAPs are being considered as wires here). Thus, it is necessary to

perform queries in the grid. Although not implemented in DRAPS, it is possible to

identify the vias that presented violation in the via map check to avoid checking them

again. Anyway, the via checking in the grid tends not to be too expensive, due to the

following. When a via check in the grid occurs, DRAPS has already obtained the

empty-space intervals, in which the search nodes are stored, of the top and bottom

Coincident spacing blockage

103

 Obstacle Expanded Node Via Checked Via Blockage Interval Empty-space Interval

Figure 57- Illustration of the via check using the empty-space intervals stored by DRAPS. When the via
pads are aligned to the routing tracks, and the vias are not from higher metal layers, checking the via
blockage interval against the empty-space interval is enough to know whether the via causes a violation
or not. The empty-space intervals may hold the information whether the adjacent obstacles are spacing
blockages, to allow creation of vias whose spacing blockage is out of the empty-space interval.

tracks of the via to be used, as shown in Figure 57. The majority of the via pads,

especially the ones of vias in the first place of the sorted via lists, have their blockage

information occupying only one track by layer, as in Figure 55. In this case, if the empty-

space interval contains the via blockage interval, then the via pad is passed in the

check; otherwise, it presents violations, and the via cannot be used. Thus, in these

cases, it is not necessary to query the grid, and the via check is very fast.

The pins may also present violation situations similar to the one in Figure 56. In

order to guarantee that the vias do not cause violations with pins, DRAPS performs

additional grid queries in the surroundings of the metal 1 via pads. If a pin blockage is

found on this extended query region, then the pin and the via are geometrically

checked for violations. Although this is more costly, as mentioned earlier, these queries

in metal 1 are rare and thus, they do not cause alarming runtime impact.

6.4.2 Cut Spacing on Same-Path Vias

It is possible to control cut spacing violations the same way as metal spacing,

i.e, storing position and occupation information of via cuts in the grid. However, during

a path search, the vias used by the paths are not (and should not be) added in the

routing space, since a path that is being searched is not necessarily the path that will

be implemented. Thus, without a control of the vias used inside a path search, it is

Violation

Violation

104

 Figure 58: Illustration of a path search scenario with a cut-cut spacing violation within the path. We are
assuming the minimum center-to-center via distance is 2 tracks of extension. Node a cannot be added
into the open set.

possible to occur cut spacing violations of via cuts of the same path after the path is

found.

Each time a node expands generating a node in an adjacent layer, this implies

the use of a via (as node a in Figure 58). When this happens, the DRAPS algorithm

backtracks the node path until it finds the first via (line 1 of DRC function). In Figure

58, this via is the one that connects the s point. Then, it checks whether the new via

causes cut spacing violation with this via. If there is a violation, the created node is not

added in the open set. This simple heuristic presents nice results without compromising

runtime, as shown in the experiments ahead.

6.4.3 Minimum Area

The minimum area rule requires a metal shape, of a given routing layer, to meet

a minimum area. A straightforward approach to solve min area violations is by a post-

processing, after routing: pieces of metal which violated the min area requirement are

extended. However, it is possible that there is no space available for such extensions,

and thus, new violations are created. This can be avoided if the path search algorithm

is aware of this design rule.

The proposed algorithm uses the following strategy to handle the min area rule.

When the path search creates a node in a different layer from the parent node, the

DRC function is called. Then it backtracks the path, as mentioned before (line 1 of DRC

function), while storing the area of the path section. If this area does not meet the min

area, then the grid is queried in order to know whether the wire extension is possible

or not (lines 4-6). In Figure 59a, the creation of node a implies a previous path that

satisfies the min area. In Figure 59b, the previous path does not satisfy the min area,

but the path segment can be extended in either direction to meet the area. In Figure

59c, node a cannot be created since the previous path does not meet the min area and

s

a

Conflicting vias

105

(a)

(b)

(c) (d)

 Previous Path

Figure 59: Illustration of situations of min area check. We are assuming that the min area requires a wire
segment of at least 2 pitches.

there is not enough space to extend it. Note that we perform the extensions only along

the same track of the expanding node, and always on the path segment over it. In

Figure 59d, the path formed in the lower layer has enough area, so node a can be

created. In the DRC function, the parentSegment function denotes the segment that

connects the newly created node n (which is a in Figure 59) to its parent node in its

metal layer.

The proposed approach does not guarantee the optimal path if we consider the

extensions length in the path’s cost. It guarantees the optimal path if we ignore the

extensions length though, just as Hetzel’s algorithm guarantees the optimal path. This

constraint was relaxed since it tends to present little impact on WL. The extensions are

very short, and are performed in a minority of cases, mostly on metal 2 and metal 3,

where the path goes up and down to access the pins. The largest part of a path is

composed by long wire segments in the upper layers. This is further discussed in the

experiments section 6.6.3.

6.5 Comparison with Related Work

6.5.1 DRAPS

The basic path search mechanics is the same of the path search in (GESTER,

2013), which is based on Hetzel’s algorithm (HETZEL, 1998), except by the tie

breaking criterion, where DRAPS gives priority to nodes last added in the open set,

s

a

s

a

s

a

s

a

106

and GESTER, 2013) choses the furthest node from the target point. All the other

features of DRAPS, as design rule handling and source/target costs, are not present

in (GESTER, 2013) .

Table 5 presents a comparison of DRAPS with the other design rule aware path

search algorithms in the literature. “Intervals” represents whether the algorithm uses

the interval labeling technique or it is a maze search. “Min Area” and “Cut Spc” refer to

the awareness of the min area rule, and cut spacing of vias within the same path,

respectively. “Vias” is the awareness of the via library and techniques used in the via

queries during the path search. “S/T Costs” refers to handle costs in the source and

target points.

DRAPS and (AHRENS, 2015) use an interval-based approach, but in

(AHRENS, 2015), the algorithm is multi-label and runs in a graph especially

constructed for the multi-label system. Regarding the min area handling, (AHRENS,

2015) handles the min area by making this special grid to have a pitch long enough to

guarantee that any wire segment meets the minimum area. The algorithm guarantees

the optimal path in this grid, but the path length may not be the shortest considering

the original grid. DRAPS, (CHANG, 2013) and (CHEN, 2019a, 2019b) handle min area

by identifying possible wire extensions. (CHANG, 2013) and (CHEN, 2019a, 2019b)

guarantee the optimal path with the extensions, while DRAPS do not. (CHEN, 2019a,

2019b) allows the wire extensions to create DRVs, in some cases. Regarding the via

handling, (CHEN, 2019a, 2019b) and DRAPS build LUTs containing the via blockage

information. DRAPS makes the queries even more efficient by using the proposed via

map, and by exploiting the empty-space intervals built of the path search, which act as

a cache of available search space. Finally, DRAPS is the only algorithm that reports

dealing with the cut spacing of same-path vias, and is also the only that treats costs in

Table 5: Comparison with design rule aware path search algorithms in literature.

Algorithm Intervals Min Area Vias Cut Spc
S/T

Costs

DRAPS yes non-optimal, extensions
LUTs, via map,

caching
yes yes

(CHANG, 2013) no optimal, extensions no no no

(CHEN, 2019a,

2019b)
no

optimal, extensions, allow

DRVs
LUTs no no

(AHRENS, 2015) yes optimal*, pitch no no no

107

the source/target points.

6.5.2 Improved Lowerbounds for the A* Heuristic Function

This section compares the proposed Tunnel Lowerbound technique to (PEYER,

2009). In (PEYER, 2009), the lowerbound of a point in a rectangle is given by a

predefined function. In order for this function to provide proper lowerbounds, it is

necessary to alter its coefficients according to the situation, in the preprocessing step.

Also, the rectangle must meet constraints so that the function can properly work. Thus,

the tunnel is partitioned in many rectangles, such that each of them meet the

mentioned constraints. Each rectangle has a list of coefficients for the lowerbound

function.

In the proposed approach, no rectangle splitting is necessary. The lowerbound

is not given by a default function. The rectangles have reference points for each target

point. Each of them stores the offset cost from them to their respective target. During

the path search the heuristic function h(n) choses the reference point that minimizes

the cost from n to the target pin. Although the proposed approach may seem less

efficient in the path search, this does not happen, since most rectangles have only one

reference point. Also, probably due to the high rectangle splitting of (PEYER, 2009),

the precomputation of lowerbounds leads to unfeasible runtimes, as discussed in

section 6.6.2.

6.6 Experiments

This section presents experiments to evaluate the proposed path search

techniques, namely: PAP costs in the source/target points in the path search (Section

6.6.1), tunnel lowerbound (section 6.6.2) and design rule awareness in the path search

(section 6.6.3).

6.6.1 PAP Cost Aware Path Search

The cost of a PAP is the WL it uses, considering cost penalty for wrong-way WL

(i.e., WL of jogs), plus the via cost, if it is a via-PAP. If a via-PAP is already implemented

in the routing space, the cost is 0. Table 6 shows the results of the impact in considering

costs in the PAPs. “WL Red.” is the reduction in WL when adopting the proposed

technique. “Via Red.” is the reduction in the number of vias. “WW Red.” Is the wrong-

way WL reduction. The “Time” columns show the total runtime with and without the

108

Table 6: Results of Using PAP Costs in the Path Search.

Bench
WL Red.

(%)
Via Red.

(%)
WW

Red. (%)

Time

With Without
Red.
(%)

test1 1.2 12.4 35.0 16 16 0.00
test2 0.6 10.3 50.6 71 76 6.58
test3 0.5 10.6 48.7 157 167 5.99
test4 0.5 6.1 52.4 304 314 3.18
test5 0.5 6.1 64.3 208 215 3.26
test6 0.6 6.0 61.5 286 296 3.38
test7 0.7 6.3 67.9 429 439 2.28
test8 0.6 6.3 67.2 435 429 -1.40
test9 0.8 6.4 68.1 405 420 3.57
test10 0.7 6.5 61.2 717 738 2.91

Avg 0.68 7.8 57.2 2.98

PAP cost awareness, and the runtime reduction (“Red.”) brought by it. A slight WL

improvement (0.68, in average) is obtained, since the path search prefers PAPs with

less WL. Wrong-way WL is greatly decreased (57%, in average). The most important

reduction is in the via count, and this is the main goal of the proposed technique. It

provided an average of 11.1% of reduction, for the 45nm benchmarks, and 6.3% for

the others. The average reduction for all benchmarks is 7.8%. The runtime was not

significatively affected by handling costs in PAPs. It actually decreased by 2.66% in

average. This difference in the via reduction of benchmarks of different technologies is

probably due to the fact the routing over the pins in the 45nm benchmarks is less

congested than in the 32nm ones. This makes the algorithm more able to reuse the

same implemented via-PAPs, in 45nm benchmarks, while in the 32nm ones it is harder

to reuse them. A possible solution is to increase the via cost in the path search, so that

the algorithm will make a higher effort to avoid using new via-PAPs.

6.6.2 Tunnel Lowerbound

This section presents runtime results of using the proposed Tunnel Lowerbound

(TL) technique. It is presented a comparison of SmartDR with DRAPS using TL and

the L1 distance. Table 7 shows the results. The column names follow the same pattern

from the other tables. “Total Real Time” is the total time of SmartDR using 8 threads.

All “Total Path Search” columns show the total time spent on all threads. “Pre” is the

tunnel preprocessing time before the path search. “Red. PS” is the runtime reduction,

in the path search, of the TL w.r.t. L1. “Red. PS+Pre” is the same of “Red. PS”, but

considering both path search and preprocessing time. The average path search

109

Table 7: Results of the Proposed Tunnel Lowerbound Technique

Bench
Total Real

Time
Red.
Total
(%)

Total Path Search
Time

Red.
PS (%)

Red.
PS+Pre

(%) TL L1 TL Pre L1

test1 16 23 30.4 9 0.4 17.7 49.2 46.9
test2 71 131 45.8 82 2.6 197 58.4 57.1
test3 157 188 16.5 166 2.8 258 35.7 34.6
test4 314 328 4.3 256 12.4 424 39.6 36.7
test5 208 365 43.0 232 11.3 620 62.6 60.8
test6 286 515 44.5 340 18.1 866 60.7 58.6
test7 429 718 40.3 571 23.1 1379 58.6 56.9
test8 435 742 41.4 565 23.3 1378 59.0 57.3
test9 405 713 43.2 557 24.2 1352 58.8 57.0
test10 717 1069 33.0 1482 25 2416 38.7 37.6

Avg 34.2 52.1 50.3

runtime reduction is 52.1%. Considering the preprocessing time, it is slightly decreased

to 50.3%. This shows that the proposed preprocessing method is very efficient. The

path search time reduction brings a total runtime reduction of 34.2%, in average. The

testcases 3, 4 and 10 present a deviation of the runtime reduction since they present

harder RNR effort. In RNR, TL is used only when one of the path search terminals is a

pin, and this usually does not happen, since there are many path searches connecting

wire segments. Also, in test4, the pin handling time takes a considerable portion of the

total time, around 20%, and this happens for both TL and L1.

6.6.2.1 Comparison with (PEYER, 2009)

Since the benchmarks used in (PEYER, 2009) are not publicly available, it was

not possible to run the proposed technique in these benchmarks. Also, in (PEYER,

2009), the methods were presented in a high abstraction level, lacking implementation

details, which discouraged their implementation. Still, it is possible to reach a

conclusion by comparing some relative values.

The basic idea of both TL and (PEYER, 2009) is the same: the tunnel rectangles

are preprocessed before the path search, calculating the offset costs to the target pin,

and, during the path search, this information is efficiently used to quickly guide the

search to its destination. The output of both preprocessing methods is the same,

regarding the offset values δ of a rectangle, although this information is represented

differently, as they split the tunnel rectangles and the TL method do not. Also, the path

search algorithm used in (PEYER, 2009) was the same of (GESTER, 2013), which has

110

Table 8: Results of the method proposed in (PEYER, 2009).

bench L1
Hybrid New Red. PS

Hyb. (%)
Red. PS+Pre

Hyb. (%)
Red. PS
New (%)

Red.
PS+Pre
New (%) PS+Pre Pre PS+Pre Pre

Dieter 607 481 20 1479 1047 24.1 20.8 28.8 -143.7

Paul 580 459 25 1590 1187 25.2 20.9 30.5 -174.1

Lotti 827 688 35 1379 815 21.0 16.8 31.8 -66.7

Hannelore 1546 1031 48 4355 3370 36.4 33.3 36.3 -181.7

Elena 4604 3811 169 8191 4833 20.9 17.2 27.1 -77.9

Heidi 6160 5077 382 14571 10199 23.8 17.6 29.0 -136.5

Garry 9715 8142 529 20552 13247 21.6 16.2 24.8 -111.5

Edgar 12020 8627 555 19898 12215 32.8 28.2 36.1 -65.5

Ralf 11651 9599 544 42862 33944 22.3 17.6 23.5 -267.9

Hermann 51190 39568 1450 83235 43248 25.5 22.7 21.9 -62.6

Avg 25.4 21.1 29.0 -128.8

the same basic path search mechanics as DRAPS, as an A*-interval-based search.

Thus, in terms of runtime, both path searches are equivalent1. If both methods deliver

the same lower bound information to the “same” path search, and the time spent to

use this information, for the proposed method and (PEYER, 2009), is O(1), then the

benefit of both methods to the path search time is the same. Thus, the practical

difference of the proposed technique and (PEYER, 2009) is in the runtime of the

preprocessing methods.

Table 8 presents the results of Table 4 of (PEYER, 2009), with some added

columns. “L1” is the path search time using the L1 distance. “New” represents using

their preprocessing before every path search, and “Hybrid” means using the

preprocessing only in some circumstances. “PS+Pre” is the total time spent on both

the path search and the preprocessing. All other column names follow the same pattern

as in Table 7. “Hyb.” and “New”, in the last four columns, are referring to the “Hybrid”

and “New” columns.

Table 9 presents a comparison of relative values between the proposed TL

method and (PEYER, 2009). The values in Table 9 represent an average of all

benchmarks. “Always Pre” refers to using the preprocessing before every path search.

The column names follow the same patterns as before. In (PEYER, 2009), if the

preprocessing is performed before every path search, the total runtime is higher than

1 This is obviously an approximation, since DRAPS has an overhead for DRC and a runtime advantage for being

more DFS-directed.

111

the routing time using just 𝐿1distance. The runtime increase reached an average value

of 128%. In TL, we have a time reduction of 51.8%. In (PEYER, 2009), the time spent

on preprocessing was 66% in average of the total runtime of a benchmark. In TL, this

value is 3.6%. Note that the path search algorithm used in (PEYER, 2009) has the

same A*-interval mechanics of DRAPS, and thus, these differences in the proportions

are mainly due to the preprocessing. This information shows that the proposed

preprocessing method is faster than the one in (PEYER, 2009), which is a contribution

over the only existing work addressing this problem.

This is perfectly explained by the rectangle partitioning of (PEYER, 2009). A

preprocessing method sensible only to the number of tunnel rectangles would never

have a runtime greater than the path search runtime, since the path search complexity

is proportional to the number of intervals, which is higher than the number of tunnel

rectangles. Besides, in the worst case, the number of intervals is the number of points

in the rectangle, which jumps to other order of magnitude. Thus, considering that the

path search time cannot be lower than a tunnel preprocessing time proportional to the

number of tunnel rectangles, the only thing that can make the tunnel preprocessing

time higher is if it is proportional to something greater than the number of tunnel

rectangles. This is the case of (PEYER, 2009), since the complexity of their method

depends on the number of partitioned rectangles and also the number of possible

coefficients in the distance functions. More precisely, the complexity of their method is

O(k1k2Vlog(k1k2V)), where k1 and k2 are the number of possible x and y coefficients,

respectively, and V is the number of partitioned rectangles. In the proposed method,

the complexity is O(r log r), where r is the number of tunnel rectangles. This complexity

is also higher than the number of tunnel rectangles, but it is much closer to it than the

complexity of the method in (PEYER, 2009).

In order to provide a runtime benefit, (PEYER, 2009) used a heuristic to identify

cases where the use of the preprocessing was worthwhile. The “Selective Pre”

columns in Table 9, and the “Hybrid” columns, in Table 8, refer to this. Using the

Table 9: Comparison of relative results between TL and the method in (PEYER, 2009).

Method
Always Pre (%) Selective Pre (%)

Red. PS
Red.

PS+Pre
Pre/PS+

Pre
Red. PS

Red.
PS+Pre

Pre/
PS+Pre

TL 52.1 50.3 3.6 - - -
(PEYER, 2009) 29 -128 66 25 21 5.3

112

heuristic, they reached a total runtime improvement of 21%. We cannot compare this

value to the 50.3% of TL, since this depends on the benchmark and mostly on the

tunnel shapes. However, as the “Red. PS” of “Always Pre” column shows, the

maximum possible runtime reduction on the benchmarks in (PEYER, 2009) is 29%.

This value is the path search runtime reduction in the case of applying the method

before every path search. Thus, using the heuristic, they were able to extract about

73% of the maximum runtime benefit. Using TL, it is possible to extract 96.6% of it,

since the preprocessing is used before every path search, and its runtime is negligible.

In other words, these statistics predict that, if the proposed method was run in the

experiments in (PEYER, 2009), the runtime reduction would be about 29%.

6.6.3 Design Rule Aware Path Search

In order to evaluate the effectiveness of handling design rules in the path search

algorithm, two routing flows were executed: one using default DRAPS and other using

DRAPS with design rule awareness turned off. In the scenario without design rule

awareness, the design rules were handled in the following manner. The min area rule

was solved in the Post Processing step of the router, by extending the wire segments

that did not meet the min area requirement, even if the extension created new DRVs

(the algorithm tries to avoid such DRVs though). The via selection was also executed

in the same Post Processing step. The algorithm tries to select the most suitable via

(using the same sorted list of vias that DRAPS use) that causes no DRV. If no via is

DRV-free, the best via of via via list is chosen. The cut spacing of same-path vias was

not solved, since there is no straightforward way to handle it.

Table 10 presents the results regarding total routing time and DRV count. “No

DRC” refers to DRAPS algorithm without handling any design rules. “Via ON” is

DRAPS aware only of Via Selection strategies. “Via + MAR ON” is DRAPS aware of

Via Selection and Min Area. “Full DRC” is the default DRAPS. “Cut Sp” are the number

of cut spacing violations. “Total Sp” are the number of all spacing violations. “Shorts”

are the number of short violations. A short violation happens when two shapes of

different nets make contact. The time is measured in seconds.

The via library awareness provides an average DRV reduction of 69%, w.r.t.

“No DRC”. The Min Area awareness further reduces these violations, since the router

does not need to extend wires in post processing, risking to create spacing and short

violations. Almost all short violations are solved after min area handling is turned on.

113

Table 10: Results of Design Rule Violations of DRAPS

Bench
No DRC Via ON

Cut Sp Total Sp Shorts Total Time Cut Sp Total Sp Shorts Total Time

test1 0 2348 43 2391 16 0 114 52 166 18
test2 1 23208 454 23662 63 0 705 373 1078 78
test3 19 22298 1801 24099 63 0 718 413 1131 192
test4 23652 67588 8118 75706 152 1406 21157 670 21827 256
test5 68409 214873 39209 254082 177 1596 84159 11110 95269 212
test6 100373 257576 63733 321309 252 2250 131638 17726 149364 287
test7 153630 390877 97306 488183 347 3906 200262 28310 228572 422
test8 156286 396582 99814 496396 355 4007 202919 29184 232103 421
test9 155309 397216 99901 497117 363 3790 205892 29800 235692 409
test10 173974 469310 125130 594440 440 4194 224109 33628 257737 714

Bench
Via + MAR ON Full DRC

Cut Sp Total Sp Shorts Total Time Cut Sp Total Sp Shorts Total Time

test1 0 1 0 1 18 0 1 0 1 16
test2 0 9 0 9 80 0 6 0 6 71
test3 0 33 0 33 161 0 33 0 33 157
test4 1416 1609 16 1625 282 0 204 15 219 314
test5 1594 1674 3 1677 222 0 75 8 83 208
test6 2271 2521 0 2521 306 0 228 0 228 286
test7 3918 4233 14 4247 471 2 300 13 313 429
test8 3996 4345 11 4356 441 0 351 12 363 435
test9 3804 4036 3 4039 450 0 238 4 242 405
test10 4181 5563 1542 7105 728 42 1398 1349 2747 717

The technique to handle cut spacing of same-path vias also solves almost all

cut spacing violations, and slightly improves the runtime (4.8% in average), since it

prunes some search nodes. The average DRV reduction of DRAPS “Full DRC” w.r.t.

DRAPS “No DRC” is 99.8%, and the average runtime increase is of 42%.

Results regarding WL and via count were also measured. The design rule

handling has no significative impact on the number of vias. There was a via count

decrease of “Full DRC” w.r.t. “No DRC” of 0.37%, in average. The major WL change

came from the min area awareness. There was an average WL increase of 2.9% of

 “Via + MAR ON” w.r.t. “Via ON”. This is expected since it is necessary to perform

detours to avoid the DRVs of the wire extensions. The total WL of all wire extensions

was also measured, and its average proportion w.r.t. the total WL is 5%. This serves

as a upperbound for the lack of optimality of DRAPS, when considering the WL of the

wire extensions. This means that it is impossible that more than 5% of the total WL is

caused by the lack of optimality. However, it is very pessimistic to even consider that

the non-optimality causes something near this 5% of WL, because this implies that

almost not extensions were performed, which is not realistic.

114

6.7 Conclusions and Future Works

Section 6 presented the proposed path search techniques. The proposed path

search algorithm (DRAPS) is a new design rule aware A*-interval-based path search.

The algorithm also properly handles costs in the source and target points, which

interconnects it with the proposed pin access method, mitigating the increase in the

via count brought by the high PAP diversity. Regarding design rule handling, DRAPS

presents new features: the awareness of cut spacing of same-path vias and the

efficient via check. For the via check, a new data structure to efficiently manipulate vias

was proposed. It was also proposed a new method to preprocess the tunnels to obtain

more realistic lowerbounds for the h function. Comparing to other path searches in

literature, DRAPS is the only algorithm that unites so many features to improve runtime

and design rule handling.

The proposed path search techniques were evaluated. The experiments

showed that it is essential to the path search algorithm to be aware of the design rules

handled by DRAPS. Also, it was shown that DRAPS is able to provide a good design

rule handling without compromising runtime. The experiments also showed that the

PAP cost awareness in the path search considerably mitigates the increase in via count

brought by the proposed pin access approach. Thus, both techniques make a good

match. Finally, the proposed tunnel lowerbound method was shown to be efficient,

since it presents a light preprocessing and is able to be used before every path search,

considerably reducing the path search and the overall runtime.

As future works, it is intended to create a bidirectional version of DRAPS,

evaluate its effectiveness. This seems to imply in a bidirectional TL preprocessing. It

is also intended to make the TL method consider some routing obstacles. The source

and target cost handling may also incorporate costs regarding patch metals and TMSs.

115

7 Comparison with State-of-the-Art Routers

In this section SmartDR is compared against the state-of-the-art academic

routers that were tested using ISPD18 benchmarks in (CHEN, 2019a), (CHEN, 2019b),

(KAHNG, 2018) and (SUN, 2018). Their binaries were obtained and were executed in

the same machine SmartDR was run. The routers were executed using 8 threads, as

in ISPD18 Contest. There were problems with the binary of (SUN, 2018) that could not

be solved even contacting the authors. Thus, (SUN, 2018) is compared using the data

presented in their paper. However, this made the comparison incomplete in some

aspects, but not enough to impact in the conclusions of the experiments, as we will

see ahead. For the other router’s binaries, the results matched the ones in their papers.

Table 11 presents the detailed information of the design rule violation results.

“Triton” refers to TritonRoute (KAHNG, 2018), “Sun” refers to (SUN, 2018), “DC” refers

to Dr.CU (CHEN, 2019a), “DC2” refers to the last version of Dr.CU (CHEN, 2019b) and

“Sm” refers to SmartDR. Table 12 presents the results regarding the area of metal

shorts and the total number of violations. “Area Shorts” is the total area of metal shorts

in the ISPD18 Area Short Unit (metal2_pitch²). “Total DRVs” is the total number of

DRVs. “DRVR” is the DRV reduction of “Total DRVs” of SmartDR w.r.t. the compared

routers. Some columns related to (SUN, 2018) present an approximated result, since

they are extracted from (SUN, 2018) and they were presented in scientific notation (i.e.

× 10³). SmartDR presented better DRV count for all benchmarks. From the compared

routers, DC2 (CHEN, 2019b) presents the better design rule handling. The average

DRV reduction w.r.t DC2 is 82.4%. Table 13 presents the runtime results. “Runtime

Reduction” is the runtime reduction of SmartDR w.r.t. the compared routers. SmartDR

presented the best runtime of all compared routers, ranging from 94.7% to 44.2% of

average runtime reduction.

A direct runtime comparison was not possible with (SUN, 2018), since the

machine used in this experiment is different from theirs. However, even if we suppose

(SUN, 2018) has better runtime than our router, this is not much of an advantage since

the design rule violation count of (SUN, 2018) is far higher than SmartDR (99.7%

average DRVR), and a fast router leaving a large number of violations is useless. Also,

the runtime of the binary received from the authors of (SUN, 2018) is higher than all

routers’ runtime.

Regarding the runtime improvement over (KAHNG, 2018) and (CHEN, 2019a,

2019b), it is impossible to precisely know all of its causes, since they depend on the

116

Table 11: Detailed Design Rule Violation results over (KAHNG, 2018) and (CHEN, 2019b).

Bench
Spacing Shorts Min Area

Triton Sun* DC DC2 Sm Triton Sun* DC DC2 Sm Triton Sun DC DC2 Sm

test1 120 770 122 17 1 4364 100 127 4 0 0 0 0 0 0

test2 1419 6800 1949 73 6 29845 1220 1005 12 0 1 0 0 0 0

test3 1755 8480 2419 161 33 34753 3920 2444 346 0 0 0 0 0 0

test4 3130 45660 11224 1071 204 42024 5970 6914 463 15 54 126 0 6 0

test5 7438 96580 7742 496 75 145826 7040 5466 406 8 118 37 0 10 0

test6 11621 113050 11023 587 228 152388 10380 7988 168 0 188 48 0 21 0

test7 12896 179190 14880 325 300 243375 19800 23141 772 13 270 108 0 38 0

test8 12744 182490 14384 399 351 238519 20940 20641 861 12 240 103 0 20 0

test9 12581 185270 14470 379 238 264230 19250 18830 297 4 260 74 0 28 0

test10 16176 218480 20837 3910 1398 340862 35220 26688 14605 1349 285 55 0 44 0
* Approximated results

Table 12: Area Short and Total Violation Results.

Bench
 Area Shorts×106 TOTAL DRVs DRVR (%)

Triton Sun DC DC2 Sm Triton Sun* DC DC2 Sm Triton Sun* DC DC2

test1 0.2 0.7 2.5 0.07 0 4484 870 249 21 1 99.98 99.89 99.60 95.2

test2 5.8 27 213 0.2 0 31265 8020 2954 85 6 99.98 99.93 99.80 92.9

test3 241 218 317 59.6 0 36508 12400 4863 507 33 99.91 99.73 99.32 93.5

test4 684 330 1053 17.5 0 45208 51756 18138 1540 219 99.52 99.58 98.79 85.8

test5 72 307 189 3.1 0 153382 103657 13208 912 83 99.95 99.92 99.37 90.9

test6 77 488 516 3.7 0 164197 123478 19011 776 228 99.86 99.82 98.80 70.6

test7 368 838 1322 9.2 0 256541 199098 38021 1135 313 99.88 99.84 99.18 72.4

test8 335 904 894 10 0.001 251503 203533 35025 1280 363 99.86 99.82 98.96 71.6

test9 101 717 693 6.5 0.164 277071 204594 33300 704 242 99.91 99.88 99.27 65.6

test10 538 8861 6028 454.8 1700 357323 253755 47525 18559 2747 99.23 98.92 94.22 85.2

Avg 99.8 99.7 98.7 82.4
* Approximated results

Table 13: Runtime Results.

Bench
Runtime (s) Runtime Reduction (%)

(%) Triton DC DC2 Sm Triton DC DC2

test1 154 29 14 16 89.6 44.8 -14.3

test2 1399 169 118 71 94.9 58.0 39.8

test3 2335 196 155 157 93.3 19.9 -1.3

test4 9972 683 450 314 96.9 54.0 30.2

test5 3705 1136 589 208 94.4 81.7 64.7

test6 6124 1695 708 286 95.3 83.1 59.6

test7 10994 3178 1347 429 96.1 86.5 68.2

test8 9793 3104 1413 435 95.6 86.0 69.2

test9 9119 3014 1222 405 95.6 86.6 66.9

test10 16421 3124 1743 717 95.6 77.0 58.9

Avg 94.7 67.8 44.2

implementation of the routers, which are inaccessible, and their techniques, which we

have limited knowledge. However, the main reason behind the runtime improvement

is probably because SmartDR uses an interval-based path search algorithm. This

approach was already shown to be very effective in comparison with the traditional

maze routing. In (GESTER, 2013), it is stated that it presents a speedup of at least 6

117

w.r.t maze routing approach. In (GONÇALVES, 2017), an average speedup of 20 was

achieved, in comparison with the classic A* search. Also, the A* heuristic function (TL)

that DRAPS uses helps in the runtime improvement. The higher runtime of TritonRoute

(KAHNG, 2018) is probably due to the fact they assume a concurrent routing approach

and use ILP to solve the routing problem. Regarding Dr.CU (CHEN, 2019b), the local

area of the path search (i.e, the area restricted by the global routing guides) is

preprocessed and an optimized graph is created, in which the path search is run using

a Dijkstra-based algorithm. Running the path search in this optimized graph gives

advantage over the traditional maze search approach, but there is a runtime cost to

build the graph. Using an interval-based path search, no preprocessing is needed.

In ISPD18 Contest, other routing metrics are also considered, as WL, via count,

wrong-way WL (WW), off-track WL (OTW) and vias (OTV), and out-of-guide (i.e. global

routing guide) WL (OGW) and vias (OGV). Using ISPD18 Evaluation Script, all of these

statistics were obtained. Table 14 and Table 15 present these results. The results of

Table 14: Results of WL, Vias and Out-of-Guide Usage

Bench
WL × 106 Vias × 103 Out-of-Guide WL× 105

Triton Sun DC DC2 Sm Triton Sun DC DC2 Sm Triton Sun DC DC2 Sm

test1 186 200 174 173 181 39 43 34 32 36 23 4 17 7 46

test2 3239 3330 3127 3123 3227 385 404 339 317 355 256 136 419 137 573

test3 3606 3690 3483 3473 3544 390 398 332 308 340 169 65 707 210 1835

test4 5433 5540 5209 5207 5319 848 823 702 659 816 536 113 1539 266 1965

test5 5841 5900 5570 5546 5849 1143 1073 943 917 1106 557 260 1298 186 1245

test6 7581 7620 7163 7119 7577 1769 1642 1447 1404 1693 818 382 1953 285 1619

test7 13731 13810 13072 12999 13679 2866 2657 2350 2272 2735 1355 908 4376 471 2700

test8 13798 13810 13134 13058 13752 2880 2621 2360 2282 2749 1394 938 4576 581 3022

test9 11651 11660 10999 10921 11596 2873 2622 2359 2282 2744 1242 673 3209 569 2387

test10 14327 14330 13656 13582 14341 3056 2791 2533 2440 2947 1926 1048 5654 2275 6547

Table 15: Results of Wrong-Way WL, Off-Track Usage and Scores.

Ben
Off-Track WL× 105 Off-Track Vias× 103 Wrong-Way WL×105 Out-of-Guide Vias × 102

Triton Sun DC DC2 Sm Triton Sun DC DC2 Sm Triton Sun DC DC2 Sm Triton Sun DC DC2 Sm

test1 0.3 0.7 1.1 2 7 0.1 0 0 0 0 0.07 7 9 19 63 13 5 9 4 25

test2 9.9 11.1 17 20 52 1.2 0 0 0 0 0.7 72 88 178 335 127 57 118 59 232

test3 80 7.7 17 23 55 1.1 0 0 0 0 0.8 67 89 182 360 7 60 107 55 234

test4 361 8.7 84 18 389 1.7 0 0 0 0 2.0 112 179 119 653 500 286 314 161 1014

test5 40 32 27 3 44 9.9 0 0 0 1 2.3 216 127 89 153 546 134 431 167 747

test6 62 61 41 17 66 16.4 0 0 0 2 5.5 366 192 140 257 803 218 687 259 1118

test7 187 105 66 33 7196 23.4 0 0 0 76 8.8 604 341 214 372 1314 394 1019 363 1419

test8 177 106 67 34 15778 23.6 0 0 0 79 9.0 615 341 222 378 1351 393 1030 386 1448

test9 104 92 59 25 11521 23.4 0 0 0 77 8.9 603 337 217 365 1272 395 1155 421 1727

test10 476 122 66 61 19557 27.7 0 0 0 125 11.5 717 361 396 480 1381 477 1403 645 2339

118

SmartDR were better in some cases and worse in the others. However, it is important

to note that the compared routers present higher spacing and short violation number,

and higher area of metal shorts. These violations imply in higher wire (and spacing

radius) overlapping. In order to avoid these overlapping, the router needs to perform

more detours. The more detours a router performs, the higher is the: 1) WL; 2) WW,

when it detours in the same metal layer; 3) Via count, when detouring using adjacent

layers; 4) OGW and OGV, when the detours take the path out of the global routing

guide; 5) OTW and OTV, when the router needs to perform off-track paths in order to

access the pins without violations. Thus, a router with less DRVs, which is the case of

SmartDR, will have higher values on these metrics. Notice that the most important

thing is the DRV number, since a circuit cannot be manufactured with DRVs, no matter

how good are these metrics.

Comparing to DC2, SmartDR presents more WL and via count. There is an

average WL increase of 4.4%, and an average via count increase of 15.6%. Part of the

increase in these routing metrics, and possibly the largest, may be explained by the

higher DRVs of Dr.CU, but there are some other possible explanations. Dr.CU, uses a

net routing approach that is more favorable for these metrics. When routing a net, the

resulting paths are used as source components for the next path searches of the same

net. This makes the routed net closer to its Steinner tree, reducing WL, detours, and,

consequently, the number of vias. In SmartDR, each net is decomposed in two-pin

nets, before routing. Thus, all path searches, in Standard Routing step, are performed

to connect pins only, meaning that the path search is blind to the parts of the net that

were already routed. It is still possible to update a two-pin net on-the-fly making it select

an already routed wire segment on its tunnel to replace the pins, but this is not trivial,

and was not implemented. Another solution is not to decompose the nets, but this may

cause some runtime increase, since the number of batches of nets to be routed in

parallel will be higher. Also, regarding via count, it is important to note that this increase

w.r.t. DC2 is not due to the pin access approach, since the via count increase, in the

worst case, was of 2.4% in average w.r.t. a CFS using one via per pin.

Another explanation for the WL increase w.r.t. DC2 is the following. It was

empirically observed that DC2 uses patch metals to perform the wire extensions

needed to meet the min area rule. However, the ISPD18 Evaluation Script does not

count patch metals as WL. In SmartDR, the wire extensions are not currently being

performed by patch metals, thus, they are counting for WL. Considering that the

119

Table 16: ISPD18 Score Metrics.

Metrics Score Weight

Area Shorts/metal2_pitch 500

Number of spacing violations

500

Number of min area violations 500

Out-of-Guide WL 1

Out-of-Guide Vias 1

Off-track WL 0.5

Off-track Vias 1

Wrong-way WL 1

Number of Vias 2

WL 0.5

average wire extension WL is 5% of the total WL of SmartDR, and that it presents 4.4%

more WL than DC2, it is even possible that SmartDR has less WL.

The ISPD18 Contest uses a score to measure the effectiveness of a router. This

score takes into consideration all of the mentioned metrics. Table 16 presents the

ISPD18 score metrics (MANTIK, 2018). Comparing the effectiveness of routers

usingthis score seems reasonable, but it must be clear that it does not represent how

good a router is in a precise way, since: 1) The weighted sum used to calculate the

score utilizes subjective values, and the “effectiveness of a router” may be subjective

or relative according to the circumstances; 2) The runtime impact on score is

underestimated. Runtime is very important since detailed routing is highly time-

consuming. The ISPD18 Contest also takes into consideration the runtime, but its

impact in the score is negligible. The maximum possible runtime benefit is 10% score

reduction (the lower the score, the better). In the presented experiments, even with the

44.2% average runtime reduction w.r.t. DC2, this causes about 2-3% score reduction

on average. 3) The score calculation has a flaw. It does not penalize short violations,

only the area of metal shorts. This way, a short with 0 area has no score penalty. This

opens the possibility to solve spacing violations of different nets, by creating patch

metals that connect both shapes that create the violation, without having score penalty.

This was better discussed in (SUN, 2018).

Table 17 presents the score results (Score × 104 column). They do not consider

runtime. In (SUN, 2018), it was presented two versions of results, one using patch

metals to solve spacing violations, as mentioned earlier, and other without this patch

120

Table 17: ISPD18 Score Results.

Benchmark
 Score × 104 Modified Score× 104

Triton Sun DC DC2 Sm Triton Sun* DC DC2 Sm

test1 38 35.7 36 29.7 32.9 256 40.7 42.6 29.9 32.9

test2 563 554 637 466 500 2055 615 687 467 500

test3 697 672 743 533 571 2435 868 865 550 571

test4 2583 3708 3411 1530 1654 4684 4007 3757 1554 1655

test5 2163 5100 2281 1614 1766 9454 5452 2554 1635 1766

test6 2901 7339 3391 2120 2351 10520 7858 3790 2128 2351

test7 5065 12466 6382 3772 4337 17234 13456 7539 3811 4338

test8 4959 12578 5850 3799 4592 16885 13625 6882 3842 4593

test9 4181 11786 5001 3259 3910 17392 12748 5943 3274 3911

test10 5629 23402 12814 4791 7246 22672 25163 14149 5521 7313
* Overestimated results

metal insertion. The results of (SUN, 2018) regarding DRV count and solution quality

presented before, are without patch metal insertion. The score results of (SUN, 2018)

presented in Table 17 are with patch metal insertion, and thus, they are not consistent

with their results presented before. Ignoring DC2, SmartDR beats all routers in all

benchmarks, except for test10, comparing to TritonRoute. This is because TritonRoute

exploits the flaw in the metric mentioned earlier. In order to obtain a fairer and more

realistic score, it is also presented a modified score (Modified Score × 104 column)

which penalizes short violations as any other violation (i.e. 500 score penalty for each

short). This was also adopted by the new score calculation of ISPD19 Contest (LIU,

2019). (SUN, 2018) is penalized in the modified score by considering the metal short

count of results, which has not patch metal insertion. Thus, the number of metal shorts

of the version of results that used patch metal insertion is even higher, making the

score of (SUN, 2018) shown in the Modified Score column overestimated (i.e. lower

than it actually is). Using the modified score, it is possible to observe the huge

difference in the score of TritonRoute.

The best score of all compared routers is of DC2. However, as argued earlier,

this does not imply that DC2 is the best router. Comparing routers by this score may

be significative only when the scores substantially different, as comparing SmartDR

with TritonRoute, for example. However, due to the subjective metrics, this comparison

becomes not significative when the compared scores get closer. Also, the runtime is

not being considered in the score. Thus, since one of the main objectives of SmartDR

is runtime, this comparison is not even fair. The only reason this comparison is being

held here is (1) that the benchmarks used are the ones of ISPD18 Contest and this

contest has a score to rank the routers, and it seems not acceptable to present results

121

using these benchmarks without showing the router score, considering that all other

routers presented it in their respective works; and (2) although the comparison by this

score is limited, it may be significative in some cases, as argued before.

While SmartDR focuses on runtime and design rule handling, DC2 is designed

for score reduction of ISPD18 Contest. For example, the relaxation of min area

violations in the path search of DC2 (CHEN, 2019a, 2019b) is due to the fact that some

violations may lead to a better score. The same is true for the high number of short

violations of DC2. Even in the simplest test case (test1), DC2 present short violations.

Also, in (CHEN, 2019b) it is stated that the number of RNR iterations is limited by 4,

since more iterations lead to a slight score improvement at the expense of high runtime.

All of this show that the goal of DC2 is the score reduction, which is not much realistic.

By aiming at runtime and design rule handling, and presenting considerably better

results in these goals, SmartDR is closer than DC2 to present a manufacturable

solution in practice.

122

8 Conclusions

This work proposed an initial detailed router (SmartDR) addressing two

important routing metrics: runtime and design rule handling. The main contributions to

attend these objectives are in the pin access and path search techniques.

Regarding pin access, it was proposed a new approach enabling resource

sharing among PAPs, with dynamic legalization and implementation. The main idea of

the method is to provide as many DRV-free PAPs as possible to be chosen by the path

search so that routability is not penalized as it happens when statically implementing

few PAPs. Part of the high PAP diversity is due to the use of patch metals to solve

common pin access DRVs. Since these patch metals greatly contribute to TMS

creation, it was also proposed an algorithm to efficiently detect TMSs. The proposed

pin access approach, along with the TMS detection algorithm, is novel in the literature.

As for the path search techniques, the proposed path search algorithm unites

some existing techniques, with slight changes, and integrates new ones, resulting in a

new path search algorithm. It is an A*-interval-based path search which integrates

design rule handling and is adapted to properly handle costs in the source and target

points. The source/target cost handling complements the pin access method by

considering the costs of PAPs and avoiding non-necessary multiple PAP selection,

which can increase in via count. The main novelty of the design rule handling feature

of the proposed algorithm is the efficient via checks with the proposed via map. As for

the A* heuristic function h, it was also proposed a new technique to preprocess the

tunnels in order to provide better lowerbounds to h during the path search.

SmartDR and all of the proposed techniques were evaluated using the ISPD18

Contest benchmarks, which are derived from real industrial designs. Regarding the

proposed pin access method, the experiments have shown that it provides better

runtime and routability results when compared to the common approach of statically

assigning PAPs to specific locations. The WL was slightly improved and the via count

presented slight oscillations. The path search awareness of the PAP costs provided a

considerable mitigation of the via count increase brought by the high PAP diversity.

The design rule handling in the path search was shown to be essential to reduce the

number of design rule violations. Also, the proposed path search algorithm is able to

reduce a huge number of design rule violations without compromising runtime. The

experiments also showed that the proposed tunnel lowerbound method provides a

considerable speedup to the path search. The method was also shown to be more

123

efficient than the only other proposed method in the literature (PEYER, 2009), since its

preprocessing time is negligible, while the preprocessing in (PEYER, 2009) was heavy

such that it actually worsens the overall time rather than decreases it. Considering the

comparison of SmartDR with other state-of-the-art routers, the experiments have

shown that it presents substantially superior results in both runtime and design rule

handling, which are the main goals of the proposed router.

124

References

AHRENS, M. Detailed Routing Algorithms for Advanced Technology Nodes. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, v. 34, n.
4, p. 563 - 576, 2015.

BATTERYWALA, S. Track assignment: a desirable intermediate step between global
routing and detailed routing. ICCAD '02 Proceedings of the 2002 IEEE/ACM
international conference on Computer-aided design. San Jose: [s.n.]. 2002. p. 59-66.

CHANG, C.-C. Pseudopin assignment with crosstalk noise control. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, v. 20, n. 5, p. 598 -
611, 2001.

CHANG, F.-Y. MANA: A Shortest Path Maze Algorithm Under Separation and
Minimum Length NAnometer Rules. IEEE TRANSACTIONS ON COMPUTER-AIDED
DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, v. 32, n. 10, p. 1557 - 1568,
September 2013.

CHAZELLE, B. Computing the Largest Empty Rectangle. SIAM Journal on Computing,
v. 15, n. 1, p. 300–315, 1986.

CHEN, G. Detailed Routing by Sparse Grid Graph and Minimum-Area-Captured Path
Search. ASPDAC '19 Proceedings of the 24th Asia and South Pacific Design
Automation Conference. Tokyo: [s.n.]. 2019a. p. 754-760.

CHEN, G. Dr. CU: Detailed Routing by Sparse Grid Graph and Minimum-Area-
Captured Path Search. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, July 2019b.

CHEN, H. M. Integrated floorplanning and interconnect planning. Proc. IEEE/ACM Int.
Conf. on computer-Aided Design. [S.l.]: [s.n.]. 1999. p. 354–357.

CHEN, H.-Y. Global and Detailed Routing. In: Electronic Design Automation:
Synthesis, Verification, and Test. [S.l.]: [s.n.], 2009. p. 687-749.

CHO, M. Double patterning technology friendly detailed routing. International
Conference on Computer-Aided Design (ICCAD'08). San Jose: [s.n.]. 2008.

CHU, C. FLUTE: Fast Lookup Table Based Rectilinear Steiner Minimal Tree Algorithm
for VLSI Design. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, v. 27, 2008. 70–83.

CONG, J. General models and algorithms for over-the-cell routing in standard cell
design. DAC '90 Proceedings of the 27th ACM/IEEE Design Automation Conference.
Orlando: [s.n.]. 1990. p. 709-715.

CONG, J. Over-the-cell channel routing. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, v. 9, n. 4, p. 408 - 418, 1990.

125

CONG, J. DUNE-a multilayer gridless routing system. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, v. 20, n. 5, p. 633 - 647,
2001.

CONG, J. MARS-a multilevel full-chip gridless routing system. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, v. 24, n. 3, p. 382 - 394,
2005.

CORMEN, T. The algorithms of Kruskal and Prim. In: Introduction to Algorithms.
Cambridge: The MIT Press, 2002.

CORMEN, T. H. Section 24.3: Dijkstra's algorithm. In: Introduction to Algorithms. 2ª.
ed. Cambridge: MIT Press, 2001. p. 595–601.

DEUTSCH, D. N. A "DOGLEG" CHANNEL ROUTER. DAC '76 Proceedings of the 13th
Design Automation Conference. San Fransico: [s.n.]. 1976. p. 425-433.

DING, Y. Self-Aligned Double Patterning Lithography Aware Detailed Routing With
Color Preassignment. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, v. 36, n. 8, p. 1381 - 1394, Aug. 2017.

DING, Y. Self-Aligned Double Patterning-Aware Detailed Routing With Double Via
Insertion and Via Manufacturability Consideration. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, March 2018. 657-668.

DU, Y. Spacer-is-dielectric-compliant detailed routing for self-aligned double patterning
lithography. 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC). [S.l.]:
[s.n.]. 2013.

EDELSBRUNNER, H. A new approach to rectangle intersections. International Journal
of Computer Mathematics, v. 13, n. 3-4, p. 209-219, 1983.

GAO, X. Enhancing double-patterning detailed routing with lazy coloring and within-
path conflict avoidance. DATE '10 Proceedings of the Conference on Design,
Automation and Test in Europe. Dresden: [s.n.]. 2010.

GESTER, M. BonnRoute: Algorithms and data structures for fast and good. ACM
Transactions on Design Automation of Electronic Systems, 18, n. 2, March 2013. 1-
24.

GONÇALVES, S. M. M. A survey of path search algorithms for VLSI detailed routing.
Symposium on Circuits and Systems (ISCAS), 2017 IEEE International. Baltimore:
[s.n.]. 2017.

GONÇALVES, S. M. M. An Improved Heuristic Function for A*-Based Path Search in
Detailed Routing. Symposium on Circuits and Systems (ISCAS), 2019 IEEE
International. Sapporo: [s.n.]. 2019a.

126

GONÇALVES, S. M. M. DRAPS: A Design Rule Aware Path Search Algorithm for
Detailed Routing. IEEE Transactions on Circuits and Systems II: Express Briefs, [early
access], 2019b.

HAMACHI, G. T. A switch-box router with obstacle avoidance. DAC '84 Proceedings
of the 21st Design Automation Conference. Albuquerque: [s.n.]. 1984. p. 173-179.

HANAN, M. On Steiner’s problem with rectilinear distance. SIAM Journal on Applied
Mathematics, 1966. 255–265.

HART, P. E. A Formal Basis for the Heuristic Determination of Minimum Cost Paths.
IEEE Transactions on Systems Science and Cybernetics, v. 4, n. 2, p. 100-107, 1968.

HASHIMOTO, A. Wire routing by optimizing channel assignment within large
apertures. DAC '71 Proceedings of the 8th Design Automation Workshop. Atlantic City:
[s.n.]. 1971. p. 155-169.

HETZEL, A. A Sequential Detailed Router for Huge Grid Graphs. Design, Automation
and Test in Europe. Paris: [s.n.]. 1998. p. 332-338.

HIGHTOWER, D. A solution to line routing problems on the continuous plane.
Proceedings of DAC '69 Proceedings of the 6th annual Design Automation
Conference. New York: [s.n.]. 1969. p. 1-24.

HO, T.-Y. A fast crosstalk- and performance-driven multilevel routing system. ICCAD
'03 Proceedings of the 2003 IEEE/ACM international conference on Computer-aided
design. Washington: [s.n.]. 2003. p. 382.

HOLMES, N. D. Algorithms for three-layer over-the-cell channel routing. Computer-
Aided Design, 1991. ICCAD-91. Digest of Technical Papers., 1991 IEEE International
Conference on. Santa Clara: [s.n.]. 1991.

IGUSA, M. ORCA: A sea-of-gates place and route system. Design Automation, 1989.
26th Conference on. Las Vegas: [s.n.]. 1989.

JIA, X. A Multi-Commodity Flow based Detailed Router with Efficient Acceleration
Techniques. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, v. PP, n. 99, p. 217-230, 2017.

JONKER, R. A shortest augmenting path algorithm for dense and sparse linear
assignment problems. Computing, v. 38, n. 4, p. 325–340, 1987.

JOOBBANI, R. WEAVER: a knowledge-based routing expert. IEEE Design & Test of
Computers, v. 3, n. 1, p. 12 - 23, 1986.

KAHNG, A. B. Negotiated Congestion Routing. In: KAHNG, A. B. VLSI Physical
Design: From Graph Partitioning to Timing Closure. [S.l.]: Springer, 2011d. p. 162-163.

KAHNG, A. B. Rip-Up and Reroute (RRR). In: KAHNG, A. B. VLSI Physical Design:
From Graph Partitioning to Timing Closure. [S.l.]: Springer, 2011c. p. 158-160.

127

KAHNG, A. B. VLSI Desing Styles. In: KAHNG, A. B. VLSI Physical Design: From
Graph Partitioning to Timing Closure. [S.l.]: Springer, 2011b. p. 158-160.

KAHNG, A. B. VLSI Desing Styles. In: KAHNG, A. B. VLSI Physical Design: From
Graph Partitioning to Timing Closure. [S.l.]: Springer, 2011a. p. 11-16.

KAHNG, A. B. TritonRoute: An Initial Detailed Router for Advanced VLSI Technologies.
ICCAD '18 Proceedings of the International Conference on Computer-Aided Design.
San Diego: [s.n.]. 2018.

KAO, W.-C. Cross point assignment with global rerouting for general-architecture
designs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, v. 14, n. 3, p. 337 - 348, 1995.

KASTNER, R. Pattern routing: use and theory for increasing predictability and avoiding
coupling. IEEE Trans. on Computer-Aided Design, 2002. 777–790.

KATO, I. A method of pattern data management of PWB layout system. Proceedings
of the 35th Annual Convention IPS Japan. Japan: [s.n.]. 1987.

KUH, E. Recent advances in VLSI layout. Proceedings of the IEEE, v. 78, n. 2, p. 237
- 263, 1990.

LEE, C. Y. An Algorithm for Path Connections and Its Applications. IRE Transactions
on Electronic Computers, v. 10, n. 3, p. 346–365, September 1961.

LEI, S.-I. Double patterning-aware detailed routing with mask usage balancing.
Fifteenth International Symposium on Quality Electronic Design. [S.l.]: IEEE. 2014.

LI, Y.-L. NEMO A new implicit connection graph-based gridless router with multi-layer
planes and pseudo-tile propagation. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, v. 26, n. 4, p. 705 - 718, 2007.

LI, Y.-L. A gridless routing system with nonslicing floorplanning-based crosstalk
reduction on gridless track assignment. ACM Transactions on Design Automation of
Electronic Systems , v. 16, n. 2, 2011.

LIN, S.-P. A novel framework for multilevel routing considering routability and
performance. Computer Aided Design, 2002. ICCAD 2002. IEEE/ACM International
Conference on. San Jose: [s.n.]. 2002.

LIN, Y.-H. Double patterning lithography aware gridless detailed routing with innovative
conflict graph. DAC '10 Proceedings of the 47th Design Automation Conference.
Anaheim: ACM New York. 2010. p. 398-403.

LIN, Y.-H. TRIAD: a triple patterning lithography aware detailed router. ICCAD '12
Proceedings of the International Conference on Computer-Aided Design. San Jose:
ACM New York. 2012. p. 123-129.

128

LIU, I.-J. Overlay-aware detailed routing for self-aligned double patterning lithography
using the cut process. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 35, n. 9, Sept. 2016. 1519 - 1531.

LIU, L. C. Chip-level area routing. Proceedings of the International Symposium on
Physical Design. Monterey: [s.n.]. 1998. p. 197–204.

LIU, W.-H. ISPD 2019 Initial Detailed Routing Contest and Benchmark with Advanced
Routing Rules. ISPD '19 Proceedings of the 2019 International Symposium on Physical
Design. San Francisco: [s.n.]. 2019.

LUK, W. K. A greedy switch-box router. Integration, the VLSI Journal, v. 3, n. 2, p. 129-
149, 1985.

MA, Q. Triple patterning aware routing and its comparison with double patterning
aware routing in 14nm technology. DAC '12 Proceedings of the 49th Annual Design
Automation Conference. San Francisco: [s.n.]. 2012.

MANTIK, S. ISPD 2018 Initial Detailed Routing Contest and Benchmarks. ISPD '18
Proceedings of the 2018 International Symposium on Physical Design. Monterey:
[s.n.]. 2018. p. 140-143.

MAREK-SADOWSKA, M. Two-dimensional router for double layer layout. Design
Automation, 1985. 22nd Conference on. Las Vegas: [s.n.]. 1985.

MARGARINO, A. A tile-expansion router. IEEE Transactions on Computer-Aided
Design, v. 6, n. 4, p. 507–517, 1987.

MIKAMI, K. A computer program for optimal routing of printed circuit connectors.
Proceedings of the Internatinal Federation for Informatics. [S.l.]: [s.n.]. 1968. p. 1475–
1478.

MIRSAEEDI, M. Self-aligned double-patterning (SADP) friendly detailed routing.
Design for Manufacturability through Design-Process Integration V. San Jose: [s.n.].
2011.

NATARAJAN, S. Over-the-cell channel routing for high performance circuits. DAC '92
Proceedings of the 29th ACM/IEEE Design Automation Conference. Anaheim: [s.n.].
1992.

NIEBERG, T. Gridless pin access in detailed routing. DAC '11 Proceedings of the 48th
Design Automation Conference. San Diego: ACM New York. 2011.

OHTSUKI, T. Gridless routers—New wire routing algorithms based on computational
geometry. Proceedings of the International Conference on Circuits and Systems. [S.l.]:
[s.n.]. 1985.

OUSTERHOUT, J. K. Corner stitching: A data-structuring technique for VLSI layout
tools. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, v. 3, n. 1, p. 87 - 100, 1984.

129

OZDAL, M. M. Detailed-routing algorithms for dense pin clusters in integrated circuits.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, v.
28, n. 3, p. 340 - 349, 2009.

PARNG, T. M. A new approach to sea-of-gates global routing. Computer-Aided
Design, 1989. ICCAD-89. Digest of Technical Papers., 1989 IEEE International
Conference on. Santa Clara: [s.n.]. 1989.

PEYER, S. A generalization of Dijkstra’s shortest path algorithm with applications to
VLSI routing. Journal of Discrete Algorithms, v. 7, n. 4, p. 377-390, 2009.

RUBIN, F. The Lee Path Connection Algorithm. IEEE Transactions on Computers, v.
C-23, n. 9, p. 907 - 914, 1974.

SATO, M. A fast line-search method based on a tile plane. IEEE International
Symposium on Circuits and Systems, v. 5, p. 588-591, 1987.

SCHULTE, C. Design Rules in VLSI Routing. Bonn: [s.n.], 2012.

SHERWANI, N. Steiner Tree Algorithms. In: SHERWANI, N. Algorithms for VLSI
Design Automation. 3 ed. ed. New York: [s.n.], 1998. p. 111-115.

SHIN, H. A Detailed Router Based on Incremental Routing Modifications: Mighty. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, v. 6, n.
6, p. 942 - 955, 1987.

SUN, F.-K. A multithreaded initial detailed routing algorithm considering global routing
guides. ICCAD '18 Proceedings of the International Conference on Computer-Aided
Design. San Diego: [s.n.]. 2018.

WU, B. Over-the-cell routers for new cell model. DAC '92 Proceedings of the 29th
ACM/IEEE Design Automation Conference. Anaheim: [s.n.]. 1992. p. 604-607.

XU, X. Self-Aligned Double Patterning Aware Pin Access and Standard Cell Layout
Co-Optimization. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, v. 34, n. 5, p. 699 - 712, May 2015.

XU, X. PARR: Pin-Access Planning and Regular Routing for Self-Aligned Double
Patterning. ACM Transactions on Design Automation of Electronic Systems
(TODAES), 21, n. 3, Jul 2016.

XU, X. Concurrent Pin Access Optimization for Unidirectional Routing. DAC '17
Proceedings of the 54th Annual Design Automation Conference 2017. Austin: [s.n.].
2017.

XU, Y. FastRoute 4.0: global router with efficient via minimization. ASP-DAC '09
Proceedings of the 2009 Asia and South Pacific Design Automation Conference.
Yokohama: [s.n.]. 2009.

130

YU, H.-J. DSA-Friendly Detailed Routing Considering Double Patterning and DSA
Template Assignments. 2018 55th ACM/ESDA/IEEE Design Automation Conference
(DAC). San Francisco: [s.n.]. Aug. 2018. p. 1381 - 1394.

YUAN,. Double patterning lithography friendly detailed routing with redundant via
consideration. DAC '09 Proceedings of the 46th Annual Design Automation
Conference. San Francisco: ACM New York. 2009.

ZHANG, Y. GDRouter: Interleaved global routing and detailed routing for ultimate
routability. Design Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE. San
Francisco: [s.n.]. 2012.

ZHANG, Y. RegularRoute: An Efficient Detailed Router Applying Regular Routing
Patterns. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, v. 21,
n. 9, p. 1655 - 1668, 2013.

