
UNIVERSIDADE FEDERAL DE PELOTAS
Centro de Desenvolvimento Tecnológico

Programa de Pós-Graduação em Computação

Thesis

HybriD-GM: Parallel Model for Quantum Computing Targeted to Hybrid
Architectures

Anderson Braga de Avila

Pelotas, 2020

Anderson Braga de Avila

HybriD-GM: Parallel Model for Quantum Computing Targeted to Hybrid
Architectures

Thesis presented to the Programa de Pós-Graduação
em Computação at the Centro de Desenvolvi-
mento Tecnológico of the Universidade Federal
de Pelotas, as a partial requirement to obtain the
title of Doctor in Computation.

Advisor: Prof. Dra. Renata Hax Sander Reiser
Coadvisor: Prof. Dr. Maurício Lima Pilla

Collaborator: Prof. Dr. Adenauer Yamin

Pelotas, 2020

Universidade Federal de Pelotas / Sistema de Bibliotecas
Catalogação na Publicação

A111h Avila, Anderson Braga de
AviHybriD-GM : parallel model for quantum computing
targeted to hybrid architectures / Anderson Braga de Avila
; Renata Hax Sander Reiser, orientadora ; Mauricio Lima
Pilla, Adenauer Correa Yamin, coorientadores. — Pelotas,
2020.
Avi96 f.

AviTese (Doutorado) — Programa de Pós-Graduação em
Computação, Centro de Desenvolvimento Tecnológico,
Universidade Federal de Pelotas, 2020.

Avi1. Quantum computing. 2. Hybrid simulation. 3. GPU. I.
Reiser, Renata Hax Sander, orient. II. Pilla, Mauricio Lima,
coorient. III. Yamin, Adenauer Correa, coorient. IV. Título.

CDD : 005

Elaborada por Maria Inez Figueiredo Figas Machado CRB: 10/1612

Anderson Braga de Avila

HybriD-GM: Parallel Model for Quantum Computing Targeted to Hybrid
Architectures

Thesis approved, as a partial requirement, to obtain the degree of Doctor
in Computation, Programa de Pós-Graduação em Computação, Centro de
Desenvolvimento Tecnológico, Universidade Federal de Pelotas.

Defense Date: 8 July 2020

Examining Board:

Prof. Dra. Renata Hax Sander Reiser (advisor)
Doctor in Computer Science by the Universidade Federal do Rio Grande do Sul.

Prof. Dr. André Rauber Du Bois.
Doctor in Computation by the Heriot-Watt University.

Prof. Dr. Carlos Amaral Hölbig.
Doctor in Computation by the Universidade Federal do Rio Grande do Sul.

Prof. Dr. Luiz Gustavo Leão Fernandes.
Doctor in Computing by the Institut National Polytechnique de Grenoble.

RESUMO

AVILA, Anderson Braga de. HybriD-GM: Parallel Model for Quantum Computing
Targeted to Hybrid Architectures. Orientador: Renata Hax Sander Reiser. 2020.
96 f. Tese (Doutorado em Computation) – Centro de Desenvolvimento Tecnológico,
Universidade Federal de Pelotas, Pelotas, 2020.

Uma grande quantidade de pesquisas científicas e desenvolvimentos tecnológi-
cos ainda depende de simulações de computação quântica, uma vez que os com-
putadores quânticos ainda são limitados por implementações físicas. Atualmente, o
desenvolvimento de algoritmos de computação quântica tem sido realizado por proce-
dimentos analíticos ou de simulação enquanto os computadores quânticos não estão
amplamente disponíveis. Embora a simulação de computação quântica seja paralela
por natureza, a complexidade espacial e temporal são os maiores riscos de desem-
penho, pois os estados quânticos e as transformações quânticas aumentam expo-
nencialmente com o número de qubits simulados. Esta proposta contribui desde a
concepção até a consolidação do modelo HybriD-GM, bem como introduz a extensão
do ambiente D-GM, proporcionando execuções paralelas eficientes para computação
quântica, que neste trabalho é voltada para arquiteturas híbridas, considerando tanto
CPU quanto GPU. O modelo HybriD-GM explora as potencialidades da Computação
de Alto Desempenho, fornecendo funcionalidades e explorando operadores de proje-
ção que atuam em estruturas quânticas, estados e transformações, para manipular a
granularidade e distribuição de cálculos. Neste contexto, a distribuição das computa-
ções é baseada em estruturas de dados em árvore, onde os nós intermediários e finais
correspondentes às camadas de projeção e execução são configurados para otimizar
os recursos de hardware. Simulações dos algoritmos de Shor e Grover foram reali-
zadas a fim de avaliar o modelo HybriD-GM, e os resultados alcançaram melhorias
de desempenho significativas para execuções em CPU e GPU. Quando comparados
com a versão anterior do D-GM, eles apresentaram speedups de 21× e 9, 5× para
simulações paralelas em CPU e de 61, 9× e 38, 32× para simulações em GPU. Além
disso, em relação aos simuladores LIQUi|〉 e ProjectQ, a simulação paralela com 23
qubits do Shor foi 4, 64× mais rápida e do Grover foi 32× mais rápida. Os resultados
das simulações híbridas mostraram que é possível aumentar o desempenho para al-
gumas classes de algoritmos, melhorando o desempenho do algoritmo de Grover em
até 3, 18× em comparação ao uso apenas da abordagem GPU.

Palavras-chave: Keyword-one. Keyword-two. Keyword-three. Keyword-four.

ABSTRACT

AVILA, Anderson Braga de. HybriD-GM: Parallel Model for Quantum Computing
Targeted to Hybrid Architectures. Advisor: Renata Hax Sander Reiser. 2020. 96 f.
Thesis (Doctorate in) – , Universidade Federal de Pelotas, Pelotas, 2020.

HybriD-GM: Parallel Model for Quantum Computing Targeted to Hybrid Architec-
tures

A huge amount of scientific research and technological developments still depends
on quantum computing simulations, since quantum computers still limited by physical
implementations. Currently, the development of quantum computing algorithms has
been carried out by analytic or simulation procedures while quantum computers are not
widely available. Although quantum computing simulation is parallel by nature, spatial
and temporal complexity are major performance hazards, as quantum states and quan-
tum transformations increase exponentially with the number of qubits simulated. This
proposal contributes from the conception to the consolidation of the HybriD-GM model,
as well as introduces the extension of D-GM environment, providing efficient parallel
executions for quantum computing, which in this work is targeted to hybrid architec-
tures, considering both CPU and GPU architectures. The HybriD-GM model explores
the potentialities of High Performance Computing, providing functionalities and explor-
ing projection operators which are acting on quantum structures, state and transforma-
tions, to manipulate the granularity and distribution of computations. In this context,
the distribution of computations are based on tree data-structures, where intermedi-
ate and final nodes corresponding to projection and execution layers are configured
to optimize the hardware resources. Simulations of Shor’s and Grover’s algorithms
were performed in order to evaluate the HybriD-GM model, and the results achieved
significant performance improvements for executions in both CPU and GPU. When
compared to the D-GM previous version, they presented speedups of 21× and 9.5×
for parallel CPU simulations and of 61.9× and 38.32× for GPU simulations. In addi-
tion, related to LIQUi|〉 and ProjectQ simulators, the parallel simulation with 23 qubits
was 4.64× faster for Shor’s and 32× faster for Grover’s. Results for hybrid simulations
showed that is possible to increase performance for some classes of algorithms, im-
proving the performance of Grover’s algorithm up to 3.18× in comparison to only using
GPU approach.

Keywords: Quantum Computing. Hybrid Simulation. GPU.

LIST OF FIGURES

1 Typical quantum circuit. 23
2 Toffoli gate in the quantum circuit model. 26
3 Controlled-U gate in the quantum circuit model. 26

4 The D-GM simulation framework . 31
5 Decomposition of non-controlled QT 33
6 Decomposition of controlled QT . 33
7 Decomposition of a 9-qubit quantum transformation. 35

8 LIQUi|〉 architecture. 40
9 Shor results for LIQUi|〉. 41
10 Example of two qubit state and single-qubit gate operations. 42
11 Distributed implementation of a single-qubit gate operation. 42
12 ProjectQ’s full stack software framework. 43
13 Runtime comparison the simulator from (HäNER et al., 2016) to the

ProjectQ. 43
14 Coalescing-aware strategy for a block. 47
15 Data distribution for n = 5 and l = 3. 48
16 The workflow of this quantum computer simulation. 48
17 Simulation of 4-qubits QFT in a node with 4 GPU. 49

18 Projection of qubits 1 and 2 of a 3-dimensional quantum state. . . . 53
19 Quantum operators projection. 54
20 Generic 3-qubit QT projection. 55
21 Projections of the first basis of the QT Id⊗H. 55
22 Structures projection for a generic 2-qubit system. 56
23 Computation of a generic 2-qubit system. 56
24 Computing a 2-qubit system. 57

25 Projection model overview. 59
26 Generic projection layer . 63
27 Diffusion operator with 6-qubit. 65
28 Flow diagram for the Comp Gate module. 68
29 Flow diagram related to the Kernel Layer. 69
30 Layers composition for single core simulations. 70
31 Layers composition for GPU simulations. 70
32 Layers composition for multi core simulations. 71
33 Layers composition for hybrid simulations. 72

34 Shor’s algorithm speedups for HybriD-GM parallel simulation over
sequential simulation. 77

35 Shor’s algorithm speedup for HybriD-GM over D-GM. 77
36 Shor’s algorithm speedup for HybriD-GM with 10 threads over

LIQUi|〉 and ProjectQ. 78
37 Grover’s algorithm speedups for HybriD-GM parallel simulation over

sequential simulation. 79
38 Grover’s algorithm speedup for HybriD-GM over D-GM. 79
39 Grover’s algorithm speedup for HybriD-GM with 10 threads over

LIQUi|〉 and ProjectQ. 80
40 Projections with 10 operators. 81
41 Projections with 50 operators. 81
42 Projections with 100 operators. 81
43 Projections with 150 operators. 81
44 Projections with 200 operators. 82
45 HybriD-GM speedup over D-GM for GPU simulations. 83
46 Speedup of simulations with 2 GPU over 1 GPU. 84

LIST OF TABLES

1 Overview and summary analysis of literature review related to se-
lected quantum computing simulators 51

2 LIQUi|〉 and ProjectQ simulation times for Shor’s algorithm, in seconds. 76
3 LIQUi|〉 and ProjectQ simulation times for Grover’s algorithm, in sec-

onds. 76
4 Simulation times for Shor’s algorithm over CPU for previous imple-

mentation, in seconds. 76
5 Simulation times for Shor’s Algorithm over CPU for HybriD-GM, in

seconds. 77
6 Simulation times for Grover’s algorithm over CPU for previous imple-

mentation, in seconds. 78
7 Simulation times for Grover’s algorithm over CPU for new implemen-

tation, in seconds. 79
8 Average simulation times for Shor’s Algorithm in seconds. 82
9 Average simulation times for Grover’s Algorithm in seconds. 83
10 Simulation times for a hybrid execution of 25-qubits Shor’s and

Grover’s algorithm with a limitation of 20 qubits for GPU memory,
measured in seconds. 84

LIST OF ABBREVIATIONS AND ACRONYMS

CPU Central Processing Unit

D-GM Distributed Geometric Machine

DMA Direct Access Memory

GPU Graphical Process Unit

HPC High-Performance Computing

MPP Mixed Partial Process

QA Quantum Algorithm

QC Quantum Computing

QFT Quantum Fourier Transform

qGM Quantum Geometric Machine

QM Quantum Mechanics

QS Quantum State

QT Quantum Transformation

RB Read Basis

RM Reduced Matrix

VPE-qGM Visual Programming Environment for the qGM Model

VIRD-GM Virtual Distributed Geometric Machine

WB Write Basis

CONTENTS

1 INTRODUCTION . 13
1.1 Main Motivations . 13
1.1.1 Relevance of Quantum Computing . 14
1.1.2 Relevance of Quantum Algorithms . 15
1.1.3 Relevance of Quantum Computing Simulation 16
1.2 Main research questions . 17
1.3 Proposal and main objectives . 18
1.4 Thesis Outline . 19

2 QUANTUM COMPUTING FOUNDATIONS 20
2.1 Basic Concepts . 20
2.1.1 Postulates of Quantum Mechanics . 21
2.1.2 Quantum Circuit Model . 22
2.1.3 Quantum Transformations . 23
2.1.4 Quantum Measurements . 26
2.2 Shor’s Algorithm for Quantum Factoring 27
2.3 Grover’s Algorithm for Quantum Search 28
2.4 Summarizing . 29

3 D-GM FRAMEWORK . 30
3.1 Reducing Simulation Complexity . 32
3.1.1 Avoiding replication and sparsity inhered from Id-operators 32
3.1.2 Decomposing QT based on Id-operators 33
3.2 Improving scalability of QT . 34
3.3 Implementation . 34
3.3.1 CPU Execution . 35
3.3.2 GPU Execution . 36
3.4 Summarizing . 38

4 QUANTUM COMPUTING SIMULATION: RELATED-WORK 39
4.1 LIQUi|〉 . 39
4.1.1 Execution Modes and Simulation Results 40
4.2 qHiPSTER . 41
4.2.1 Simulation Results . 42
4.3 ProjectQ . 43
4.3.1 Simulation Results . 43
4.4 Haner Distributed Simulator . 44
4.4.1 Circuit Optimizations and Simulation Results 45

4.5 Gutierrez simulator in CUDA . 46
4.5.1 Simulation Results . 46
4.6 Zhang simulator . 47
4.6.1 Results . 49
4.7 Analysis of selected quantum computing simulators 49
4.8 Summarizing . 50

5 HYBRID-GM PROPOSAL: CONCEPTUAL MODEL 52
5.1 Matrix-structure of quantum state projections 52
5.2 Matrix-structure of quantum transformation projections 54
5.3 Computations with projections over matrix-structures 55
5.4 Summarising . 57

6 HYBRID-GM PROPOSAL: ARCHITECTURAL MODEL 58
6.1 Structuring the HybriD-GM model . 58
6.1.1 Functionalities of component levels on the HybriD-GM model 58
6.1.2 Data-structures of component levels on the HybriD-GM model 60
6.2 Main level components of the HybriD-GM model 60
6.2.1 Preprocessing in HybriD-GM model . 60
6.2.2 Projection Manager Structure . 61
6.2.3 Projections Layers . 66
6.2.4 Execution Layers . 67
6.3 Execution Approaches . 69
6.4 Summarizing . 72

7 HYBRID-GM PROPOSAL: EVALUATING APPLICATIONS 73
7.1 GPU Kernel . 73
7.2 Results . 75
7.2.1 CPU Results . 75
7.2.2 GPU Results . 80
7.3 Summarizing . 85

8 CONCLUSION . 86
8.1 Relevance of construction of HybriD-GM Model 86
8.2 Main Contributions . 86
8.2.1 Reporting the main publications . 87
8.3 Further Work . 89

REFERENCES . 91

1 INTRODUCTION

Quantum computing (QC) promises to solve some problems that in classical com-
puting would be impractical. Thus, the imminence of quantum supremacy is a reality,
meaning that a quantum computer can perform a calculation task which would be in-
tractable on a classical supercomputer (AARONSON; CHEN, 2017).

Several quantum algorithms (ordering, prime factorization, modular exponentiation)
have already been developed leading to significant improvements when compared to
the best known classical algorithms (AHARONOV; LANDAU; MAKOWSKY, 2007).

Consequently, quantum computing has been considered potentially significant in
many areas such as reversible logic, quantum cryptography, information processing,
communication, data coding methods and so many other (BISWAS et al., 2017).

However, quantum computers are still in their early days. Although the construction
of quantum hardware is still a technological challenge, restricted to laboratories and
huge companies, it might become a feasible technology in the near future.

Until quantum computers become widely available, the development and testing of
quantum algorithms may be done simulating quantum computing on classical comput-
ers. Although specific classes of quantum algorithms can be efficiently simulated (VI-
DAL, 2003), this is not the case for most quantum algorithms.

This research work contributes to the development of a computational model sup-
porting efficient quantum computing simulation targeted to classical hybrid architec-
tures.

1.1 Main Motivations

In the next subsections, the main motivations in the development of this research
are characterized, organized under the perspective of the relevance of quantum com-
puting, quantum algorithms and quantum computing simulation.

14

1.1.1 Relevance of Quantum Computing

There is an increasing interest in devices taking advantages from resources related
to atomic/nano scale of quantum mechanical effects, and as consequence, in quantum
computing. The main reasons compelling evidences for the relevance of quantum
computation are briefly reported in the following.

(i) In the sense of complexity theory, the quantum model of Turing machine is more
powerful than the classical one, meaning that a simulation of a finite-size quan-
tum system is a more complex computational task when performed by clas-
sical means. In addition, it can be performed without an exponential slow-
down (NIELSEN; CHUANG, 2000).

(ii) Highlighting the universality property, described in the complexity theory as the
ability of a computer to simulate any other computer in polynomial time. As a
mathematical quantum model, the universal quantum Turing machine enables to
overall the Hamiltonian systems with local and time of computations. Thus, in
such context, several experiments have been shown that quantum computation
can be universal, not only by taking single qubits but also by considering quan-
tum registers systems. Such approach seems more useful from a computational
viewpoint, as effectively performed by the Fredkin-Toffoli gate (FEYMANN, 1982;
BARENCO et al., 1995).

(iii) In the current computer technology, the heat production problem is one of the
factors limiting speed and size reduction of digital computers. Overcoming such
problem and contributing with this relevant research question, new technological
developments provided by quantum devices are based on an exceptional charac-
terization, meaning that the energy consumption in the performance of quantum
computational tasks can be minimized (BENNETT, 1989). Thus, during a com-
putation, an ideally closed quantum system preserves reversibility, consequently
no energy is consumed, and as a consequence there is no theoretical limit to the
computational speed, due to the thermodynamic foundations.

(iv) Another important result illustrating the power of quantum computation is related
to potential of quantum algorithms. See, e.g., in (GROVER, 1996a), the Grover’s
algorithm performing a search for an element in a database and solving the prob-
lem in expected time which grows proportional to the square root of the number
of entries (CAFARO; MANCINI, 2015). Moreover, the Shor’s algorithm, factor-
izing numbers in polynomial time with respect to a quantum probabilistic Turing
machine (BENNETT; SHOR, 1998).

In addition, quantum technological advancement impacts are not restricted to ac-
celerate the connected world on the globalization, demanding by easy and fast commu-

15

nication as well as providing unprecedented changes on our digital era. It also rapidly
has been promoting innovative technologies, leading to steady advances, directly re-
flecting in scientific research and emerging technologies. See, for instance, in quantum
nano science and biomedical sciences, including food and pharmako biotechnologies,
nanoproducts and bioprocessing industries. And, Natural Computing and Neurocom-
puting supporting physical systems can also reach unsurpassed parallelism (VERDON
et al., 2019).

1.1.2 Relevance of Quantum Algorithms

Quantum computing impacts on the weakening of traditional hardware scaling laws,
improving and stimulating industrial, supporting commercial and security new interests,
promoting abroad approaches for scientific and technological developments.

By explore the quantum-mechanical effects as superposition, entanglement, and
quantum tunneling, quantum computers perform many executions and much more ef-
ficiently tasks when compared to traditional digital computing.

(i) Quantum superposition, referring not only to the fact that each qubit is indeed in
both basis states simultaneously, but also to the distribution probability, propor-
tional to the quantum state amplitude. And thus, in a quantum register each qubit
can be in two places at once. Such implicitly parallel nature of quantum me-
chanic’s phenomena provide solutions to problems whose computational com-
plexity makes unsuitable for classical computers (AARONSON; CHEN, 2017).

(ii) Quantum entanglement is presented as inherent property correlating two quantum
particles not only in one direction but also in possible all directions. Entanglement
provides an effect that is not easily simulated classically, since it has no classical
contra part and hence, determining a potential quantum advantage from classical
computers (JEFFERY; MAGNIEZ; WOLF, 2014). Thus, two particles created
together are capable of interacting immediately even when spatially separated by
any distance. And then, by subjecting one particle to one particular effect, the
other particle entangled will react instantly (NIELSEN; CHUANG, 2000).

(iii) Quantum tunneling, often explaining in terms of the Heisenberg uncertainty prin-
ciple, is described as a property allowing that, in an exact location, atomic parti-
cles break rules of classical mechanics and move in the space without passing
over the potential energy barrier. New physical limits to the size of transistors
can be achieved, meaning that microprocessors can be tunneling-projected, due
to atomic particles enabling to tunnel past them even when transistors are too
small (DENCHEV et al., 2016) (TRIEU, 2009).

The development of new computational applications, which can be supported by the

16

quantum computing paradigm, passes trough the understanding their main properties,
The design of new quantum algorithms can be improved, by extracting the potential
of such inherent properties of quantum mechanics. This strategy provides support
to advances in research areas. In particular, this work is focused on simulation of
inner quantum parallel via high performance computing (HPC), simulating a quantum
parallelism related to superposition of multiple-qubit applications.

1.1.3 Relevance of Quantum Computing Simulation

This research promote a simulation of quantum algorithms by classical technologies
mainly motivated by the arguments described below.

(i) Although the construction of quantum hardware is still a technological challenge,
several quantum algorithms (ordering, prime factorization, modular exponentia-
tion) have already been developed showing significant improvements when com-
pared to the best known classical algorithms (BISWAS et al., 2017).

(ii) Improvements toward the better understanding of many classes of quantum algo-
rithm and their behaviors might be the first step taking an approach to solving
huge computational problems, in emerging computing areas such as artificial in-
telligence and robotics, huge big data analysis, bioinformatics, and also cyber
security (SILVA; OLIVEIRA; LUDERMIR, 2016).

(iii) The new computation techniques to simulate quantum algorithms has made in-
teresting progress, integrating relevant areas as quantum neural computing and
appearing as a new paradigm built upon the combination of artificial intelligence
and neural computation. Simulations modeling brain functionality and interpreting
the behavior of a quantum algorithm (QA) have contributed to creating new sys-
tems for information processing, including new solutions for classically intractable
problems(LU; JUANG, 2011).

(iv) Simulations of a generic quantum algorithm on classical computers is a demand-
ing task both regarding temporal and spatial complexity. As quantum states (QS)
may be represented as vectors and quantum transformations (QT) as matrices,
register sizes increase exponentially with the number of qubits of the applica-
tion (LI; YANG; LI, 2015; YANG et al., 2015).

(v) New methodologies dealing with quantum computational models are grounded on
the understanding of power and complexity of QC by resorting to the known ca-
pacity of learning about the main characteristic of good results of quantum algo-
rithms.

17

(vi) Until quantum computers become broadly available, the development and testing
of quantum algorithms may be done by simulation, providing many advantages
over analytical processes such as detailed study of their behaviour without sup-
porting of a quantum physical environment;

1.2 Main research questions

As main research questions, this work considers the following:

• How to explore the potentialities of High Performance Computing (HPC) in order
to provide support and optimization of quantum computing simulation?

Computer simulation has long been accepted as consolidate methodology in many
branches of science and engineering. In addition, classical computers can simulate
the abstract model of an ideal quantum computer providing fundamental and theoretical
results and, most relevantly, they can also simulate the physical behaviour of a quantum
algorithm exploiting its potential to new technological applications.

Classical computers (Desktops) have been used to simulate quantum algorithms
which are relatively small (up to 30 qubits with 16 GB RAM) but are significantly larger
than the experimental models available and restricted to research laboratories.

By making use of simulations carried out on present-day (but not necessarily super)
computers and massive parallel architectures, quantum computing simulation is estab-
lished as a research area for HPC, trying to explore optimization techniques to improve
performance.

• How to explore computational strategies in order to control and manage the huge
data volume related to memory and processes on simulations, due to the expo-
nential growth of their representation of quantum states and quantum transfor-
mations?

In the context of quantum computing simulation, quantum transformations (QT) are
modeled as 2n×2n matrices quantum and states (QS) as 2n vectors, with sizes increas-
ing exponentially with the number of qubits (n) in a quantum application. Therefore, it
involves a lot of computational resources, not only to store the quantum structures, but
also to perform the quantum state evolution by matrix-vector linear algebraic opera-
tions.

Considering the use of mathematical constructors as composition and projection
operators can help to control the computation granularity and explore optimizations
properties such as the sparsity of control operators and the partiality of unitary trans-
formations. Consequently, programming in multidimensional database can deal with
queries in parallel which can improve storage and distribution of quantum processes
and states.

18

1.3 Proposal and main objectives

This proposal aims the development of improvements on performance of quantum
computing simulation research area, in order to better assist the study of quantum
algorithms. The related study and research efforts were organized in two moments,
each with its specific objectives.

(i) the HybriD-GM model, which is conceived as a computational methodology:

– optimizing resources and enabling scalability even with upcoming CPU
and/or GPU hardwares;

– considering composition and projection operators acting on quantum struc-
tures used to structure a model for CPU and/or GPU architectures as hard-
ware independent;

– customizing a uniform programming based on the HybriD-GM Model, by
explore not only the potential of different processing units, but also integrate
them face the differences in their architectures, programming models and
performance.

(ii) the HybriD-GM framework supporting an extension of the D-GM framework:

– assisting simulation of quantum applications which use memory superposi-
tion/entanglement related to quantum overlap/parallel processes.

The research project are developed integrating three strategical objectives:

(i) Study and analysis of properties and main characteristics demanding by projec-
tion operators acting on quantum structures:

– Projecting n-dimensional basis of quantum states and n2-dimensional basis
of quantum processes in a hybrid model structured;

– studying the D-GM environment (AVILA et al., 2015, 2016a), functionalities
and thier code structures;

– Revising literature based on frameworks for general purpose simulation of
quantum computing algorithms.

(ii) Structuring and development of the HybriD-GM model congregating CPU and/or
GPU architectures considering a hybrid approach;

– Extending the D-GM functionalities and code structures in order to support
the approach of the proposed model.

(iii) Validation and evaluation of the HybriD-GM model in the extended D-GM envi-
ronment;

19

– Developing case studies based on the simulations of quantum algorithms.

The proposal of a hybrid software architecture for quantum computing is conceived
as independent of hardware, where the computations can be performed from regular
desktops for sequential, multiple GPU or hybrid simulations of multi-qubits quantum
applications.

1.4 Thesis Outline

The text is organized as follows. Firstly, quantum computing foundations are de-
scribed in Chapter 2. In Chapter 3, the previous structure of the D-GM environment,
mainly reported functionalities incorporated at the beginning of the thesis proposal is
presented. Related works are reported in Chapter 4, describing their approaches and
implementations. The conceptual model of the HybriD-GM proposal is described in
Chapter 5 followed by the description of its architecture model in Chapter 6. Chap-
ter 7 reports the proposal evaluation considering as case study the factorization and
sorted quantum algorithms, named Shor’s algorithm and Grover’s algorithms. Finally,
the Conclusion presents main results and contributions achieved with this work, also
including further work.

2 QUANTUM COMPUTING FOUNDATIONS

The current chapter considers the main concepts of quantum computing and quan-
tum mechanics (QM), underlying the results discussed in this work.

2.1 Basic Concepts

The conceptual presentation of quantum computing has grounded the quantum
systems in very actual applied research areas connected to computer science. See,
e.g., in (DO et al., 2020), proposing a model for compilation of a quantum algorithm
for graph coloring, and in (STOLLENWERK et al., 2020), promoting a model for air
traffic management in computer engineering, both structured based on foundations
from quantum computing.

Particle manipulation at the atomic/subatomic scale comprises a task of high com-
plexity, since in these situations, particles (photons, electrons and other individual
structures of the same scale) exhibit unusual behaviors which are not completely de-
fined by the laws of classical physics. And, quantum mechanics is the area of physics
that studies such behavior, presenting theories which precisely define the phenomena
occurring on a atomic/subatomic scale.

Besides the quantum-mechanical effects as superposition, entanglement, and
quantum tunneling as briefly described in introduction, the QM also contemplates the
interpretation of the inference phenomenon of wave-particle duality, exemplified by the
Double-Slot Experiment (YOUNG, 2017), in which an atomic particle is capable of pre-
senting two distinct behaviors: (i) the wave, where its trajectory is described by a
superposition of waves; (ii) the corpuscular, with a well defined trajectory. A quantum
particle is defined by a wave function, consisting of a wide variety of possible states.
However, by using any device to measure the state of that particle, its wave function
collapses into one of their possibilities, behaving from that point on as a particle with a
well-defined state (PESSOA, 2003).

From this behavior emerges Heisenberg’s uncertainty principle, which, in short,
establishes that by measuring the state of a quantum object, its state will be instanta-

21

neously altered, leaving no quantum properties present. Note, therefore, the impos-
sibility of determining the trajectory of a quantum particle, since, when measuring the
corresponding position, its state collapses, preventing the measurement of its veloc-
ity (PORTUGAL; LAVOR; MACULAN, 2004).

2.1.1 Postulates of Quantum Mechanics

These initial considerations ground the description of the behavior of quantum sys-
tems, which are mathematically specified through four postulates defined by QM, al-
lowing the analogy with physical systems:

• State Space
In QC, the qubit is the basic unit of information, mathematically represented by
a unit vector in a Hilbert space C2 with two basis-elements in superposition. Ac-
cordingly, the vectors of H are indicated by |ψ〉, |ϕ〉,... ; while the basis-elements
are denoted by |0〉, |1〉. Thus a qubit |ψ〉 will have the form:

|ψ〉 = α|0〉+ β|1〉,

where the complex coefficients α, β are called amplitudes such that:

|α〉2 + |β〉2 = 1.

The information related to superposition-states representing involves a certain
uncertainty degree. In particular, the number |α〉2 correspond to the probability-
value of the information described by the basic state |α〉; while |β〉2 correspond to
the probability-value of the information described by the basic state |β〉.

• Composite Systems
A vector space of a n-qubit system is represented by a unit vector in the n-fold
tensor product Hilbert space ⊗nC2 := C2 ⊗ ...⊗ C2︸ ︷︷ ︸

n times

(where ⊗1C2 := C2). In a

quantum system with two qubits, |ψ〉 = α|0〉 + β|1〉 and |ϕ〉 = γ|0〉 + δ|1〉, the
corresponding state space is composed by tensor product

|ψ〉 ⊗ |ϕ〉 = αγ|00〉+ αδ|01〉+ βγ|10〉+ βδ|11〉. (1)

• System Evolution
The state transition in a quantum system is done by unitary quantum transfor-
mations, associated with orthonormal matrices of order 2n × 2n, where n is the
number of the qubits of the transformation.

• Quantum Measurements The process of extracting information from a quantum

22

system, identifying the most probable current state, is studied from the measure-
ment operation. The projective quantum measure considers:both operators: (i)
projection operators, which apply different filtering processes over the space of
states, and (ii) normalization operator. The final state of the system depends on
the projection operator executed.

Due a reflection on the four postulates, any isolated physical system can be mathe-
matically interpreted as a Hilbert space, a complex vector space with an inner product
known as the state space. Such system is completely described by its state vector, a
unit vector in the state space.

The evolution of quantum systems is deterministic, modeled by unitary quantum
gates corresponding to unitary linear operators on the Hilbert space, which is restricted
to normalized vectors of the state space for quantum systems. So it can be said that
quantum algorithms are represented by the expression of a unit operator, projections
and/or combinations of unit operators (NIELSEN; CHUANG, 2000).

Now, ome remark commenting limits and restrictions of quantum computers are
presented, for details see (KAYE; LAFLAMME; MOSCA, 2007).

There is no computer with a local Hamiltonian that has a similarly striking advan-
tage in the sense of complexity theory (DEUTSCH, 1985). However, in contrast to
computation by classical means, by the quantum state superpositions, there is no limit
for the parallelism of quantum computations (DEUTSCH, 1985). And, if there is no re-
striction on the number of quantum processors, every Turing computable function can
be evaluated in an arbitrarily short time (KNILL; LAFLAMME, 1998).

In fact, the quantum systems are ideally closed, meaning that there are no interac-
tions with the outside world except when the initial state is prepared and at the time of
the final measurement, in order to read out the result. So, systems characterized by
only spatially local energy interactions are probably simpler to realize since the com-
munication pathways are short.

The main advantage of such systems is that there is no energy dissipation, which is
one of the most severe factors limiting the speed of computing. And also, it is possible
to describe the entire dynamics of a closed system by the Schrödinger equation.

2.1.2 Quantum Circuit Model

The most recurrent model for describing quantum applications is the quantum circuit
model (NIELSEN; CHUANG, 2000). This representation is one of the most fundamen-
tal of the QC, being characterized by an intuitive graphical notation that refers to the
model of digital circuit used in classical computing.

Quantum circuits comprise synchronizations and compositions of unitary quan-
tum gates and measurement operations, modeling any type of quantum algorithm, as

23

Figure 1 – Typical quantum circuit.

shown in Figure 1. Some conventions are adopted aiming at a homogeneous descrip-
tion of quantum algorithms, being described as follows:

• Horizontal Lines: each line represents one qubit of the system, and the corre-
sponding time evolution occurs from left to right;

• Vertical Lines: indicate that a given quantum transformation acts on the qubits
connected through this line;

• Control: represented by a circle on the line of a qubit. If the circle is closed, it
indicates that the state |1〉 of the qubit is considered; if it is opened, the state |0〉
is considered;

• Quantum gates: unitary transformations that manipulate the qubit on which they
are applied;

• Measurement: at the end of each line of the circuit can appear a measurement
operation, determining the classic state of the corresponding qubit.

2.1.3 Quantum Transformations

Unitary quantum transformations are the operations responsible for manipulating
the amplitudes associated with the states of a quantum system. These transformations
are defined by unitary square matrices of order 2n, where n represents the number of
qubits on which the transformation will act. The main basic quantum transformations
are described in the sequence.

• Hadamard, which is a transformation generating the superposition of a multidi-
mensional states. Its matrix definition is:

H =
1√
2

(
1 1

1 −1

)
(2)

24

The application of H on the state vector of the generic qubit |ψ〉, defined in the
first postulate of QM, results in:

H|ψ〉 = 1√
2
(α + β, α− β)t (3)

• Pauly X, which is equivalent to the classical gate NOT, inverting the amplitudes
of a qubit state. The corresponding matrix definition and application on the state
vector of |ψ〉 is represented by:

X =

(
0 1

1 0

) (
α

β

)
=

(
β

α

)
(4)

• Pauly Y, a transformation applied to |ψ〉 resulting on Y |ψ〉 = −iα|0〉 + iβ|1〉. The
correspondent matrix definition is:

Y =

(
0 −i
i 0

)
(5)

• Pauly Z, the operation matrix of this transformation is given by:

Z =

(
1 0

0 −1

)
(6)

Its function is to performing the inversion of the qubit phase, transforming the
state (α, β)t vector into (α,−β)t.

• Phase (S), introducing a relative phase, which means, taking the qubit |ψ〉 to the
state S|ψ〉 = α|0〉+ iβ|1〉, where the amplitude |0〉 remains unchanged, while the
amplitude |1〉 differs by a phase factor equal to i. The matrix corresponding to the
Phase gate is described by:

S =

(
1 0

0 i

)
(7)

• π/8, which is the quantum transformation associated with the following unitary
matrix:

T =

(
1 0

0 exp(iπ/4)

)
(8)

By the application of T to the state vector |ψ〉, it results on (α, exp(iπ/4)β)t.

In order to exemplify the exponential increase of quantum transformations applied
to multiple qubits systems, we first consider the Hadamard (H) transformation applied

25

to a 1-qubit system. The following matrix representation describes such scenario:

H|ψ〉 ≡ 1√
2

(
1 1

1 −1

)
×

(
α

β

)
=

1√
2

(
α + β

α− β

)
(9)

Considering now the simultaneous application of H to a 2-qubits system, we have the
following matrix structure

H⊗2 ≡ 1√
2

(
1 1

1 −1

)
⊗ 1√

2

(
1 1

1 −1

)
=

1

2


1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 , (10)

which is obtained from the tensor product operation (⊗) between the correspondent
basic matrices compounding the quantum system. The ⊗ operator generates an ex-
ponential increase in the amount of elements in the resulting matrix.

The application of H⊗2 given in the quantum system, Eq. 10, to the state space
defined in Eq. 1, results on the following vector structure

1

2


1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

×


α

β

γ

δ

 =
1

2


α + β + γ + δ

α− β + γ − δ
α + β − γ − δ
α− β − γ + δ

 (11)

In addition, in order to manipulate qubits from a multidimensional quantum state/-
transformation, we can make use of controlled transformations.

By applying such operations, we can modify the state of one or more qubits consid-
ering the current state. Among the controlled transformations, the following stands out
two operators considered in the algorithms simulated in this work.

Controled NOT (CNOT) Transformation
The bidimensional quantum transformation CNOT receives 2 qubits, |ψ〉 and |ϕ〉, as

input and applies the NOT (Pauly X) to one of them (target qubit), by considering the
current state of the other (control qubit). As an example, lets consider first qubit with
control in |1〉 and the second qubit as the target, then we have the following system:

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




α

β

γ

δ

 =


α

β

δ

γ

 (12)

Toffoli Transformation
In the three dimensional controlled transformation Toffoli, the transformation Pauly

26

X is applied to a qubit when the state of the other two qubits are |1〉. Its graphical
representation in the quantum circuit model is exemplified by Figure 2.

Figure 2 – Toffoli gate in the quantum circuit model.

Controlled-U Transformation
Generic controlled transformations (Controlled-U) (NIELSEN; CHUANG, 2000) can

be defined in order to use various configurations of control qubits and apply any unitary
transformation U to the target qubit(s). See, an illustration in Figure 3.

Figure 3 – Controlled-U gate in the quantum circuit model.

Quantum algorithms are constructed from the sequential and synchronous compo-
sition of quantum transformations.

2.1.4 Quantum Measurements

In order to obtain information from a quantum system, it is necessary to apply mea-
surement operators, defined by a set of linear operators Mm called projections, with
index m refers to the possible measurement results, related to an m-dimensional of
classical basis and corresponding to probability measure.

Moreover, the M †
m operator is called the adjoint operator or Hermitian adjoint oper-

ator of Mm (NIELSEN; CHUANG, 2000; KNILL; NIELSEN, 2000).
Let |ψ〉 = α|0〉 + β|1〉, with α, β 6= 0, be a state of a one-dimensional quantum

system. Thus, immediately before the measurement, the probability of an outcome
occurrence is given by

pm(|ψ〉) =
Mm|ψ〉√
〈ψ|M †

mMm|ψ〉
(13)

verifying the complementary relation∑
mM

†
mMm = I

27

and, considering the Hermitian operators:

M0 =

(
1

0

)(
1 0

)
=

(
1 0

0 0

)
=M †

0

M1 =

(
0

1

)(
0 1

)
=

(
0 0

0 1

)
=M †

1

which are not reverse operators, as can one can easily observe in the following:

M2
0 =M2

0 , M2
1 =M2

1 and M †
0M0 +M †

1M1 = I2 =M0 +M1.

Thus, when a measure is performed on qubit |ψ〉, the probability of observing |0〉 and
|1〉 are, respectively, given by the following expressions:

p0(|ψ〉) = 〈φ|M †
0M0|φ〉 = 〈φ|M0|φ〉 = |α|2;

p1(|ψ〉) = 〈φ|M †
1M1|φ〉 = 〈φ|M1|φ〉 = |β|2.

And, after the measuring process, the quantum state |ψ〉 has |α|2 as the probability to
be in the state |0〉 and |β|2 as the probability to be in the state |1〉.

In multidimensional quantum systems, for a measure performed on an n-
dimensional quantum state |ψ〉, the Mn

m-projection operators in Eq.(13) are considered.

2.2 Shor’s Algorithm for Quantum Factoring

Consider the Prime Factorization Problem: “given a composite odd positive integer
N (typically several hundred digits long), how can one find its prime factors?”

It is well known that factoring N can be reduced to the task of choosing at ran-
dom an integer a relatively prime to N , and then determining its module N multi-
plicative order r. This approach to factorization enabled Shor to construct his fac-
toring algorithm for quantum computing (SHOR, 1994, 1995). It consists of a classical
pre-processing related to a quantum algorithm for order-finding, and a classical post-
processing (WECKER; SVORE, 2014).

The only usage of quantum phenomena in Shor’s algorithm is to find the order of a
modulo N , where N is an n-bit integer that we want to factor. Additionally, the order r
of a modulo N is the least positive integer such that ar ≡ 1(mod N).

Given a number N to factor, see the algorithm steps (BEAUREGARD, 2003):

1. If N is even, return the factor 2.

2. Classically determine if N = pq for p ≥ 1 and q ≥ 2 and if so return the factor p
(this can be done in polynomial time).

28

3. Choose a random number a such that 1 < a ≤ N − 1. Using Euclid’s algorithm,
determine if gcd(a,N) > 1 and if so, return the factor gcd(a,N).

4. Use the order-finding quantum algorithm to find the order r of a module N .

5. If r is odd or r is even but ar/2 = −1(mod N), then go to step (3). Otherwise,
compute gcd(ar/2 − 1, N) and gcd(ar/2 + 1, N). Test to see if one of these is a
non-trivial factor of N , and return the factor if so.

Due to its potential exponential advantage over conventional algorithms and its ap-
plication to breaking public key cryptography it is the most celebrated of quantum al-
gorithms (THAKER et al., 2006). It is primarily composed of two parts, the modular
exponentiation, whose execution is dominated by Toffoli quantum gates and the quan-
tum fourier transform but requiring huge communication between data qubits (SHOR,
1999).

The order-finding quantum algorithm used in this paper is the one described
in (BEAUREGARD, 2003), using 2n+ 3 qubits in a n-bit integer factorization.

2.3 Grover’s Algorithm for Quantum Search

A search algorithm considers the problem to find an element, satisfying a known
condition, in an unsorted or unstructured database with N elements. Classically, when
each element is tested at a time, until hit the one searched for, it takes average N

2

attempts or N in the worst case, therefore the complexity is O(N). Lov Kumar Grover
devised in 1996 a quantum algorithm which would do this search in time complexity
O(
√
N), having a quadratic speedup over the classical one (GROVER, 1996b). Instead

of checking possibilities one by one, a uniform superposition over all possibilities are
created, which repeatedly and destructively interferes with states that are not solutions.

In contrast with classical search algorithms, Grover’s algorithm does not search
through lists but through function inputs. By taking a function f , in a high probability,
it searches through the implicit list (L = {0, 1, ..., N − 1}) of possible inputs of such
function, returning the single input (i0) which causes the function to return true (1), or
false (0) otherwise.

Quantum searching is a relevant theoretical research area, with many applica-
tions in scientific computing. Since (BRASSARD; HØYER; TAPP, 1998), extensions
of Grover’s quantum searching algorithm are considered, extending the Grover itera-
tion in the light of a concept called amplitude amplification. In (LU; JUANG, 2011),
the evolutionary quantum-inspired space search algorithm (QSSA) is introduced for
solving numerical optimization problems, which may be applied to a series of numer-
ical optimization problems. More recently, in (CAFARO; MANCINI, 2015), information

29

related to a geometric characterization of Grover’s quantum search algorithm is dis-
cussed, showing that the quantum searching problem can be recast in an information
geometric framework.

2.4 Summarizing

This chapter presents basic concepts of QC, reporting the postulates of QM, in-
cluding the quantum computing circuit model and main quantum operators as the
Hadamard quantum transformations and controlled transformations, such as Con-
trolled Not, Controlled-U and Toffoli transformations.

These concepts are theoretical foundations to understanding the main character-
istics of the quantum algorithms as Grover’s quantum search and Shor’s algorithm
for quantum factoring, and also, the simulation environment, structured by the D-GM
framework which is presented in the next chapter.

3 D-GM FRAMEWORK

The quantum approach of Distributed Geometric Machine Model (D-GM) is based
on the subcategory of coherence spaces and linear functions (GIRARD; LAFONT; TAY-
LOR, 1989), conceived as a domain-theoretical model (DTM) for interpretation of quan-
tum computing (SCOTT, 1967). Over such structure it is possible to guide the ordered
construction of quantum processes and quantum memory through the Scott-style in-
verse colimit construction (AMARAL; REISER; COSTA, 2009).

A complete structure for supporting of quantum algorithms is consolidated in the
D-GM framework, and graphical interfaces for modeling/simulating applications were
incorporated to its architectural structure. The D-GM environment has been in constant
evolution, which development leaded to support sequential and parallel simulations
approaches, using multicore CPU or GPU, by considering strategies based on partiality
of quantum states and processes (MARON et al., 2013a; AVILA et al., 2015).

Observe in Figure 4 how the D-GM Simulation Framework is organized. It is divided
into the following levels, in a top-down sequence:

(i) Quantum Circuit Level: describing the application in the circuit model and then
automatically exporting it to a representation for the qGM (Quantum Geometric
Machine) model (MARON et al., 2013b).

(ii) qGM Level: containing the Visual Programming Environment for the qGM Model
(VPE-qGM) which allows the user to describe/simulate computations under the
qGM (MARON; REISER; PILLA, 2013).

(iii) D-GM Level: implementing the distributed simulation manager, Virtual Distributed
Geometric Machine (VirD-GM), which handles tasks such as scheduling, com-
munication, and synchronization required in distributed simulations (AVILA et al.,
2014).

(iv) Hardware Level: enlisting all the devices that can be used by the framework, from
regular desktops for sequential simulations to clusters with multiple GPU.

31

Figure 4 – The D-GM simulation framework. (AVILA et al., 2014).

In more recent years, the D-GM framework has been worked on in the LUPS/UF-
PEL projects, and a new paradigm for optimization of quantum computation simulations
was incorporated, which are in this case, mainly based on decomposition and reduc-
tion operators in order to control the granularity and distribution of the computations,
showing significant improvements compared to its previous version (AVILA et al., 2015,
2016b; AVILA; REISER; PILLA, 2016).

This consolidated structure already under development by both research groups,
the LUPS and MFFMCC, integrating HPC and DTM researches, justifies the support
in this work by the D-GM framework, for assistance in the design of the HybriD-GM
model as well as for developing its concepts through the D-GM extension.

In the next sections, the D-GM framework stage at the beginning of this work will
be detailed.

32

3.1 Reducing Simulation Complexity

The optimizations of the D-GM environment (AVILA et al., 2016a,b; AVILA; REISER;
PILLA, 2016), mainly related to reduce the spatial and temporal complexity associated
to QT by the smart use of the Identity operator (Id-operator), are described in the
following two subsections.

3.1.1 Avoiding replication and sparsity inhered from Id-operators

The first optimization explores the behavior associated with the Id-operator and
other QT by tensor products. In such cases, the Id-operator not only replicates the val-
ues of other operators but also introduces sparsity in the QT. Thus, it is possible to store
only the tensor product expansion among QT different from the Id-operator, decreas-
ing the spatial complexity by generating a reduced matrix (RM). See this behaviour
depicted in Eq. (14) related to the QT Id⊗H.

Id⊗H =

(
1 0

0 1

)
⊗

(√
2
2

√
2
2√

2
2
−
√
2
2

)
=


√
2
2

√
2
2

0 0
√
2
2
−
√
2
2

0 0

0 0
√
2
2

√
2
2

0 0
√
2
2
−
√
2
2

 (14)

Since the RM order is lower than the state dimension, it is not possible to perform
the multiplication between matrix/vector as it usually is done to calculate other new
amplitudes. This optimization adopts a different approach where information about the
calculation of each new amplitude is described as follows:

(i) Each bit of a new amplitude position is related to an operator; the most significant
bit to the 1st-qubit operator, the 2nd most significant bit to the 2nd-qubit operator,
and so on;

(ii) Bits related to operators diverse from I are considered on-bits;

(iii) The RM line used for the calculation is determined by the concatenation of the
on-bits;

(iv) Each element of this line is multiplied by an amplitude of the read state, deter-
mined replacing the bits that represent the element column by the on-bits of the
new amplitude; and

(v) The new amplitude value is the sum of these multiplications.

As an illustration, it considers a generic operator applied to the first qubit, Eq.(15),
and to the second qubit, Eq.(16), of an 2-dimensional state. RM elements are de-
scribed in the form mij, where i and j are its line and column, respectively. State

33

amplitudes are described in the form ab, where b is the amplitude position on the state,
with its on-bits in red for better visualization.

(
m00 m01

m10 m11

)
×


a00

a01

a10

a11

 =


a00 ×m00 + a10 ×m01

a01 ×m00 + a11 ×m01

a00 ×m10 + a10 ×m11

a01 ×m10 + a11 ×m11

 (15)

(
m00 m01

m10 m11

)
×


a00

a01

a10

a11

 =


a00 ×m00 + a01 ×m01

a00 ×m10 + a01 ×m11

a10 ×m00 + a11 ×m01

a10 ×m10 + a11 ×m11

 (16)

Although this concept optimizes the representation of QT involving Id-operators,
not all QT have (enough) Id-operators to make possible their representation through
a single matrix in memory. Overcoming this limitation, the next optimization considers
the decomposition of QT.

3.1.2 Decomposing QT based on Id-operators

An n-dimensional QT can be decomposed increasing the number of steps for its
computation, allowing to control the amount of Id-operators in each step, preserving
the behaviour and properties of the QT. Figure 5 shows the QT H ⊗H and its decom-
position in two steps, H ⊗ I and I ⊗ H, keeping the same behaviour regardless the
composition order of these steps.

Controlled QT can also be decomposed conserving the controls associated to the
operators, as show in Figure 6.

Figure 5 – Decomposition of non-controlled QT

Figure 6 – Decomposition of controlled QT

34

Using these optimized QT, the spatial complexity can be reduced, limiting the num-
ber of Id-operators in steps of decomposed QT, providing representation of each step
by a single matrix.

3.2 Improving scalability of QT

Despite the possibility of modeling QT with lower spatial complexity using the ap-
proach presented on the previous section, the size of read/write memory-states be-
comes a limit for n-dimensional QT, since it also increases exponentially (2n). For
example, a 28-dimensional QT needs 4 GB memory space to store both states. Once
the GPU memory is typically smaller than the main RAM, it is necessary to adopt an
approach providing scalability to multi-qubit QT.

The Mixed Partial Process (MPP) concept, presented in (AVILA et al., 2015), is
a control strategy over the increase in the size of read/write memory-states, improv-
ing the scalability related to QT computations. Additionally, based on the above, n-
dimensional QT with more qubits than the limit set by the GPU memory may have their
read/write memory-states partitioned into 2p sub-states, where p indicates the number
of qubits beyond the GPU memory limit, making its computation possible.

Using the MPP optimization, we are able to deal with the number of read sub-states
accessed by each write sub-state in order to perform the 2r calculations related to
their amplitudes, when r is the number of operators affected by the partition. Here,
affected operators refering to the number of operators different from Id-operator, which
is presented in the first p qubits of the current step of computations. Therefore, steps
with none affected operators need only the correspondent read sub-state, which makes
them totally independent.

Due to the access dependencies and the consistence preservation, affected steps
should have all sub-states previously calculated, before passing it to the next step.
Steps not affected may be calculated in an analogous way or by an iterative method,
sub-state by sub-state, since there are no dependencies. For controlled steps, only
sub-states satisfying the controls must be calculated or read.

3.3 Implementation

The integrated approach considering the concepts described on the previous sec-
tions aims to reduce spatial and temporal complexity in simulation of multi-qubits quan-
tum applications. The QT decomposition for executions on GPU is divided in two parts:

(i) classification of QT in groups, dividing operators non-controlled and with dis-
tinct controls;

(ii) definition of QT steps, each one is formed by operators that belongs to the same

35

group and act on consecutive qubits respecting the established limit of operators
by step. Affected and non-affected operators can not be part of the same step if
the memory was partitioned.

See Figure 7 for a 9 qubits QT considering limits of 3 operators by step and 8 qubits
for execution. QT is firstly divided into 3 groups and from these, in 5 steps. The group
1 is divided into 2 step, despite having 3 operators in consecutive qubits, since the
memory partition affects the first qubit.

Figure 7 – Decomposition of a 9-qubit quantum transformation.

3.3.1 CPU Execution

The best results in CPU using the decomposition approach are reached when limits
in the number of operators in steps 1 and 2 are considered. Hence, the option of
calculating operator by operator, or a limit of 1, was chosen for all simulations by two
classes of operators:

(i) Dense - operators defined by matrices without void elements, such as the
Hadamard operator. These operators do not allow the application of aggressive
optimizations; and

(ii) Sparse - operators with void elements in most positions but in the main diagonal,
as the Pauly Y operator, or in the secondary diagonal, such as the Pauly X op-
erator. In these cases, optimizations discarding calculations with void elements
may be applied without modifications in the results.

The calculation of dense operators is as described in Eq. (15). For sparse oper-
ators, Eq. (17) and (18) define how each amplitude can be calculated using a single

36

value from the matrix and state to be calculated, while dense operators require two
values of each structure.

(
m00 0

0 m11

)
×


a00

a01

a10

a11

 =


a00 ×m00

a01 ×m00

a10 ×m11

a11 ×m11

 (17)

(
0 m01

m10 0

)
×


a00

a01

a10

a11

 =


a10 ×m01

a11 ×m01

a00 ×m10

a01 ×m10

 (18)

The QT execution is realized operator by operator. For each one, its type is identi-
fied and then the corresponding loop is executed, where each iteration produces one
new amplitude. Parallel execution in CPU was implemented using OpenMP (OpenMP
Architecture Review Board, 2015), adding the “parallel for” pragma in these loops, so
each thread calculate 2n

th
new amplitudes, with n being the number of qubits of the state

and th the number of threads.

3.3.2 GPU Execution

After the decomposition, QT steps are calculated. As seen in Section 3.2, affected
steps are calculated one by one, a kernel call is performed for each combination of
write and read sub-states in its computation. Non-affected steps are iterative executed,
partition by partition, reducing the communication between host and GPU, since the
GPU memory space with the SUB-QT calculation related to that partition serves as
input to the execution of the next one, for the same partition.

All data that is used just for reading is stored on the GPU constant memory. Each
call of the CUDA kernel receive the following parameters:

• Read/Write memory states (sub-states);

• Reduced matrix from the current step;

• Controls value and positions (if there);

• Access information for these structured described above.

The CUDA kernel computation may be divided into 5 steps, as described below.

Step 1: Identifies each thread’s lineId from information about the current thread
and control information. The lineId defines the write position for each thread.

37

long read_shift = arg[SHIFT_READ];
long shift_write = arg[SHIFT_WRITE];
long lineId = (blockIdx.y*gridDim.x+blockIdx.x)* blockDim.x+threadIdx.x;
if (arg[CTRL_COUNT]){

for(i=arg[CTRL_COUNT]-1;i>=0;i--)
lineId = (lineId *2) - (lineId & (1<<(ctrl_pos[i]) -1));

lineId = lineId | arg[CTRL_VALUE];
}
lineId = lineId | shift_write;

Step 2: Initializes local variables using the lineId:

long p = arg[MAT_START];
long size = arg[MAT_SIZE];
long shift = arg[SHIFT];
long r_mask = (size -1) << shift;
long inc = 1 << shift;
long read_pos = (lineId & ~r_mask) + (p<<shift);
long base = ((lineId&r_mask)>>shift) * size;
long end = arg[MAT_END];
long r_shift = arg[SHIFT_READ];

Step 3: Computes the new amplitude partial update from variables calculated in
the previous step to control the reduced matrix and state access:

cuFloatComplex accum=make_cuFloatComplex (0.0 ,0.0);
for (;p<end;p++){

accum=cuCaddf(accum ,
cuCmulf(rMem[read_pos -r_shift],
matrix[base+p]));

read_pos += inc;}

Step 4: Stores and accumulates new amplitudes to the write memory state vector
in the GPU’s global memory. The first kernel provides a write memory partition, whose
values are stored in the next calls in the same write memory partition, and accumulated
with the previous values:

lineId -= shift_write;
if (arg[ACUMM])

wMem[lineId] = cuCaddf(wMem[lineId],accum);
else

wMem[lineId] = accum;

Step 5: Copies the complement positions associated to the QT control from the read
to the write memory state vector:

if (arg[CTRL_CMPL]){
lineId = lineId & (~arg[CTRL_MASK]);
for (i = 0; i < arg[CTRL_CMPL]; i++){

p = lineId | ctrl_cmpl[i];
wMem[p] = rMem[p];}}

38

3.4 Summarizing

The D-GM environment supports the strategy named ReDId, which provides op-
timizations based on minimizing replication and exploring Identity operators for sig-
nificant reduction in spatial complexity and, when combined with a decomposition of
quantum transformations, they can also be reduced from the temporal complexity of
the simulations.

In addition, quantum applications can explore the potential of the components VPE-
qGM and VirD-GM which integrate the D-GM environment.

For evaluation, modeling and implementation of the execution of quantum algo-
rithms, these strategies can be simulated in C/C ++ for executions over CPU, sequen-
tially and in parallel, and on CUDA for executions on in GPU, showing reduced temporal
complexity and, consequently, shorter simulation time and obtaining the highest possi-
ble performance in each one of these architectural structures.

4 QUANTUM COMPUTING SIMULATION: RELATED-WORK

One of the main obstacles for the adoption of quantum algorithm simulation is the
exponential increase in temporal and spatial complexities, due to the expansion of
transformations and read/write states by using tensor product in multi-dimensional ap-
plications. Simulation of these systems is very relevant to develop and test new quan-
tum algorithms (DE RAEDT et al., 2019).

Recently, relevant results have also been published in quantum computing simu-
lation, see, e.g. (HILLMICH; ZULEHNER; WILLE, 2020) promoting concurrency in
DD-based Quantum Circuit Simulation. In addition, quantum computing simulation has
the potential to provide solutions to many problems which are challenging or out of
reach of classical computers. See, e.e.g, several problems in rendering which are
amenable to being solved in quantum computers, as proposed in (ALVES; SANTOS;
BASHFORD-ROGERS, 2019) an implementation of Grover’s Algorithm (a quantum
search algorithm) for ray casting.

This Chapter presents the selected quantum simulators, their main characteriza-
tion, execution mode and simulation results, in order to provide the comparison and
analysis in Section 4.7 and summarizing related results at the end.

In the selection of six related work, the following characteristics were considered:

(i) Consolidate projects dealing with general purpose quantum computing simulation;

(ii) HPC approach having multi-core CPU, GPU and/or distributed executions; and,

(iii) Reporting optimizations that were considered relevant for this proposal.

In the sequence, a description for selected related work are presented.

4.1 LIQUi|〉

LIQUi|〉 which stands for Language Integrated Quantum Operations (WECKER;
SVORE, 2014), conceives as a software architecture and tool suited for QC being de-
veloped by the Quantum Architectures and Computation Group (QuArC) at Microsoft
Research, providing users with an end-to-end exploration and control environment from

40

algorithm writing, increasing visualization, simulation, emulation, and deployment on
target hardware, with an ultimate goal of controlling quantum hardware.

LIQUi|〉’s architecture is summarized in Figure 8. High level programming uses the
language F# and its compiler, interpreter, or any other high-level language (e.g., C#)
that can be linked with the LIQUi|〉 library.

Figure 8 – LIQUi|〉 architecture.

An executable Gate used in a QA is referred to in LIQUi|〉 as operation, mean-
ing an F# function whose signature is required to have the last argument as a list of
qubits (state vector).

4.1.1 Execution Modes and Simulation Results

Execution modes consider the following functions:

(i) Test mode, invoked from the command line, such as Shor’s algorithm.

(ii) Script mode, running directly from an F# text script (.fsx file) and allowing the
simulator to be operated by simply running the executable with no need to install
a complete development environment and also used for submission to Cloud ser-
vices.

(iii) Function mode, requiring a compilation environment (e.g., Visual Studio) and
the use of a .Net language (typically F#) and providing the full range of APIs to
extend the environment in many ways as well as allowing the users to build their
own complete applications.

(iv) Circuit mode, compiling a function mode into a circuit data structure, running
through built-in optimizers, having quantum error correction added, rendered as

41

drawings and exported for using in other environments, and may be running di-
rectly over all the simulation engines.

The largest number factored on LIQUi|〉 with Shor’s algorithm is a 14-bit number
(8193) which required 31 qubits in 50GB of memory, 28 rounds with half a million
gates per round (reduced to 18,000 using gate growing), and ran for 43,384 minutes
(30.1 days).

Figure 9 – Shor results for LIQUi|〉. Source: (WECKER; SVORE, 2014)

4.2 qHiPSTER

The qHiPSTER (Quantum High Performance Software Testing Environment) is
a distributed high-performance implementation of a quantum simulator on a classi-
cal computer developed by Intel’s Parallel Computing Lab (SMELYANSKIY; SAWAYA;
ASPURU-GUZIK, 2016), focusing on general single-qubit gates as well as two-qubit
controlled gates (including, controlled-NOT gate), which are known to be universal.
However, similar to the D-GM framework, they do not build the entire transformation,
storing only the single-qubit gate matrix.

The Single node implementation follows the explanation above, including optimiza-
tions as vectorization, threading and cache blocking through gate fusion integrated to
pseudo-code of computations.

In their distributed implementation, a state vector of 2n amplitudes (2n+4 bytes) is
distributed among 2p nodes, such that each node stores a local state of 2m amplitudes,
where m = n− p. For a gate operating on a qubit k, if k < m the operation is contained
within a node, otherwise communication is required. In the communication scheme,

42

each node stores its 2m local state vectors in two halves and has an extra 2m−1 tempo-
rary vector that is used to perform the pairwise exchange of such halves (pair of nodes
varies according to k). Then, the gate is computed on the temporary vector and the
halves are exchanged back. For controlled gates the approach is similar, using only the
target qubit to determine if communication will be needed. Enabling the simulation with
31 qubits and increasing the number of steps, it makes use of 8GB for the temporary
vector. As long as the amount of data exchanged within each step is large enough to
saturate the network bandwidth, the overall run-time remains the same.

(a) Quantum state (b) Single-qubit gate

Figure 10 – Example of two qubit state and single-qubit gate operations.
Source: (SMELYANSKIY; SAWAYA; ASPURU-GUZIK, 2016)

Figure 11 – Distributed implementation of a single-qubit gate operation.
Source: (SMELYANSKIY; SAWAYA; ASPURU-GUZIK, 2016)

4.2.1 Simulation Results

The performance and scalability of qHiPSTER was evaluated on the Stampede su-
percomputer (Texas Advanced Computing Center (TACC), 2017) consisted of of 6,400
compute nodes, each one with two Xeon E5-2680 sockets connected via QPI and
32GB of DDR4 memory per node (16GB per socket).

Several tests were made, showing single node and multi node performances for
single-qubit gates (and controlled gates) varying the qubit it is being applied (as well
for the controls of controlled gates). The performance for a QFT was reported varying
the number of qubits from 29 to 40, using local state vectors of size 229.

43

4.3 ProjectQ

ProjectQ is an Open Source Software Framework for QC, its interface is imple-
mented in Python because of its simple learning curve and its kernels in C++ for more
performance on simulation(STEIGER; HäNER; TROYE, 2018). The ProjectQ frame-
work can be seen in Figure 12, its main components (quantum program, compiler and
back-ends) are modular allowing for easier extensions.

Figure 12 – ProjectQ’s full stack software framework. Source: (STEIGER; HäNER;
TROYE, 2018)

QAs written in a high-level domain-specific language embedded in Python can be
compiled into low-level instruction sets supported by the various back-ends, including
interfaces to quantum hardware, a high-performance quantum simulator and an emu-
lator providing a circuit drawer and a resource counter.

4.3.1 Simulation Results

Simulation is restricted to Hadamard-transformations including a chain of controlled
Z-rotations, running on an Intel Core i7-5600U CPU. By simulation times shown in
Figure 13, ProjectQ was between 3× and 5× faster than its predecessor (HäNER
et al., 2016), which had already presented better results when compared to LIQUi|〉 and
qHiPSTER.

Figure 13 – Runtime comparison the simulator from (HäNER et al., 2016) to the Pro-
jectQ. Source: (STEIGER; HäNER; TROYE, 2018)

44

4.4 Haner Distributed Simulator

Haner and Steiger (2017) introduced a distributed simulator that most likely will be
included in the ProjectQ framework in a near future, since the authors are the same.
In (HäNER et al., 2016) they mentioned works on including a distributed massively
parallel quantum simulator to the framework.

Following most significant simulators, the full transformation matrix is not stored. So,
k-dimensional gates are directly applied to the state vector when k is the lower order,
allowing to store gate transformations in memory. To reduce the memory requirements
by a 2×-factor, the state vector calculation is performed in-place instead of using other
state vector for the output.

In simulations on single-core, the number of operations grows exponentially, mean-
ing that to apply a k-dimensional transformation (2k × 2k matrix position) to a state
vector of size 2n, all sets of amplitudes with equal neutral-bits (2n−k sets of size 2k)
are calculated at one time: loading their values into a temporary vector, performing
the matrix-vector multiplication and then writing the result (stored in another temporary
vector) back to the state vector.

The k-dimensional matrix is used at 2n−k times, improving performance by permut-
ing matrix before-hand sorted qubit indices and therefore a more local fashion memory
access. Related to the matrix size dependency, they make use of blocking computa-
tion related to an automatic code-generation/benchmarking feedback. The two main
optimizations at instruction level consist of:

(i) Vectorization, parallelizing updates of consecutive values of the output vector
within a block using AVX/AVX512 when it is supported;

(ii) Instruction Reordering, avoiding artificial dependencies and additional permuta-
tions related to a multiplication between one complex entry of the temporary vec-
tor with one complex entry of the gate matrix and also summing the result into
the temporary output vector.

In simulations on single-node, as long as the application remains memory bound,
larger gates can be required (almost) at the same amount of time on this simula-
tor. Thus, by combining multiple gates acting on k different qubits into one large k-
dimensional gate, it increases related performance. The choice of k-parameter takes
into account the peak performance, the memory-bandwidth, the cache-size & associa-
tivity of the system and the quantum application.

The simulation considers one kernel for each value of k-parameter, using OpenMP
with NUMA-aware initialization of the state vector, scaling beyond 1 NUMA node.

45

4.4.1 Circuit Optimizations and Simulation Results

The circuit was optimized in order to reduce the number of communication steps
and better use their kernels by considering the following two techniques, gate schedul-
ing and qubit mapping.

(i) Gate scheduling: The optimizations related to gate scheduling are divided into two
main steps described in the following:

(ii) Minimizing the number of communication steps by reordering (if possible)
the gates into stages, where each stage consists of a large sequence of
possible quantum gates, which only acts on local qubits.

(iii) By swapping global qubits with the lowest-order local qubits, the application
is able to achieve at an upper bound for the number of communication steps
required. Additionally, a search algorithm is considered to find better local
qubits.

(iv) Minimizing the number of k-qubit gates, considering sequences of consecu-
tive 1− or 2−dimensional gates into k-dimensional gates, greedily trying to
increase k till kmax, where kmax is the largest k for which the k-dimensional
gate kernel still shows good performance on the target system.

Qubit mapping: The bit-location of each qubit is remapped to reduce the number of k-
qubit gates with performance decreased resultant from the set-associativity of the
last-level cache. Initially, it is assigned to bit-location 0 the qubit that maximizes
the number of k-dimensional gates accessing this bit-location.

Simulations were performed on the Cori II system at the Lawrence Berkeley Na-
tional Laboratory (LBNL), with results showing the performance evaluation on single-
node varying the k-qubit gates kernel along with the qubits being applied (low and high
order); as well as the scaling behaviour for these kernels on multi-node. The only al-
gorithm simulation performed was of quantum supremacy circuits (BOIXO et al., 2018)
featuring 30, 36, 42, and 45 qubits and the speedup obtained with the increases in
number of nodes are shown, as well as the percentage in time spent in communication
on each configuration.

In order to compare with the results presented in (BOIXO et al., 2018), 30− and
36−dimensional quantum supremacy circuits were simulated on the Edison system,
also at LBNL. Using up to 64 sockets, each featuring a 12-core Intel R© Xeon R© Proces-
sor E5-2695 v2 at 2.4GHz. Showing a speedup of 3× and 4× for the single-node and
multi-node executions, respectively.

46

4.5 Gutierrez simulator in CUDA

Gutierrez et al. (2010) introduced a quantum computing simulator using the CUDA
programming model, with an implementation for a single GPU. QT are decomposed
into a sequence of stages, each stage has lower order than the transformation and is
defined by a group of gates in the original order, allowing a partition of the quantum
state into sets satisfying these three features:

(i) sets are closed for every gate in the stage;

(ii) the cardinality of all the sets is at most 2r, for a certain value r;

(iii) all the sets are at least c-coalesced for a certain c, which means that each set
can be divided into sequences with at least 2c amplitudes.

Each kernel call determines the calculation related to one stage, requiring each
CUDA block will be in charge of processing one (or several) closed groups and the
CUDA threads within a block will be responsible for computing a couple of amplitudes
up to a whole closed group depending on the defined granularity.

Related to the kernel call for a c-coalesced stage, firstly, each CUDA block transfers
its closed set(s) to the shared memory in a c-coalesced way. In the sequence, the gates
belonging to the stage are applied in-place over the subset in shared memory with a
thread-level synchronization between gates. Finally, the amplitudes are transferred
back to their positions on global memory in a c-coalesced way.

Figure 14 illustrates a CUDA block processing performed in the closed-set denoted
by P0. In this first stage, the amplitudes belonging to P0 are copied-in from global
memory to shared memory, keeping a coalescing degree of 2c. After that, all gates of
the stage are computed one by one, considering that each thread calculates a mini-
mum closed set of two amplitudes in-place on the shared memory. Observe that, a
thread level synchronization is necessary, integrating computations of each gate. Each
thread is in charge of computing a pair of coefficients operating in-place. Finally, the
amplitudes are copied back to global memory.

4.5.1 Simulation Results

Experiments were performed over a GeForce 8800GTX GPU NVIDIA, considering
a Hadamard transformation applied to all qubits and a QFT up to 26 qubits (memory
limit) showing their results for combinations of value c and r, explaining corresponding
differences in performance evaluation. Execution times were compared to the sequen-
tial simulator libquantum (BUTSCHER; H., 2017) achieving speedups of 95× for the
26 qubit QFT.

47

Figure 14 – Coalescing-aware strategy for a block. Source: (GUTIERREZ et al., 2010)

4.6 Zhang simulator

Zang et al. (2015) introduced a quantum computer simulator, which is able to con-
sider simulations over multiple GPU within a single node.

For GPU with capacity of allocating state vectors of size 2l, qubits < l are consid-
ered local and ≥ l global. Gates applied to local qubits do not require communication
between devices, in opposite situation of those applied to global qubits. This analysis
is analogous to discussion on distributed simulators, previously presented. In order to
avoid performing data transfer between each device for gates on global qubits, they
make use of the same idea of swapping global qubits with local qubits.

For local-qubit gates, only one transfer of 2l continuously amplitudes is made to
each device. And, for global-qubit gates, global qubits are swapped with the highest
local qubits. This way the size of each continuous batch is maximized, 2r were r is the
number of local qubits not swapped, while the number of batches transferred to each
device is minimized, 2s were s is the number of qubits swapped. Batches with the same
s bits on the highest local qubits are mapped to the same device.

Figure 15 shows an example for for n = 5 and l = 3. The size of each batch is
21 = 2, and 22 = 4 batches are transferred to each device. The workflow of a simulation
in n GPU within a node is shown in Figure 16, and its steps are detailed below:

1 - Initialization of the quantum state performed in CPU.

2 - The state amplitudes are distributed along the GPU, according to the explanation
above that minimizes the number of transfers.

3 - The GPU kernel computes the quantum gate. One closed set of amplitudes is
assigned to each CUDA block, which copies it to shared memory in a coalesced

48

Figure 15 – Data distribution for
n = 5 and l = 3. Source: (QUAN-
TUM COMPUTER SIMULATION
ON MULTI-GPU INCORPORAT-
ING DATA LOCALITY, 2015)

Figure 16 – The workflow of this
quantum computer simulation.
Source: (QUANTUM COMPUTER
SIMULATION ON MULTI-GPU IN-
CORPORATING DATA LOCALITY,
2015)

way following the same approach presented in (GUTIERREZ et al., 2010). Then
each CUDA thread in the block computes one amplitude.

4 - After the gate computation, a synchronization of multi-GPU is required.

5 - Consecutive quantum gates operating on local qubit are processed continuously
on the device memory. And then the amplitudes on shared memory are copied
back to global memory.

6 - After the kernel execution, the quantum state is transferred back to host and a
synchronization of multi-GPU is performed on the CPU side to guarantee data
consistency.

The simulation of a 4-qubit QFT in a node of 4 GPU is presented in Figure 17.

49

Figure 17 – Simulation of 4-qubits QFT in a node with 4 GPU. Source: (QUAN-
TUM COMPUTER SIMULATION ON MULTI-GPU INCORPORATING DATA LOCAL-
ITY, 2015)

4.6.1 Results

These tests were performed on a platform with four NVIDIA K20c @706 MHz GPU
and an Intel Xeon E5-2609 v2 @ 2.5 GHz CPU. QFTs were executed and the perfor-
mance of the simulator was evaluated by comparing the results of simulations with 1
GPU, 2 GPU and 4 GPU, to intermediate versions of their simulator and to the sequen-
tial simulation on CPU using the libquantum achieving speedups of 378× on 4 GPU
and 189× on 2 GPU for the 30 qubits QFT.

4.7 Analysis of selected quantum computing simulators

Now, the analysis of selected quantum simulators is presented, considering the use
and multicore structure, single or multi-GPU characterization, distribution of computa-
tions and circuit optimizations.

LIQUi|〉 simulator, reported in Section 4.1, which has it mains computation running
in a functional language (F#), presented as one of the best option for high per-
formance applications. Two interesting optimizations should to be emphasized:
(i) gate growing, allowing to greatly reduce the number of gates on a QA; and
(ii) full rewrite of the complex math package, reducing drastically simulation time.

qHiPSTER, see details in Section 4.2, presenting results to understand its perfor-
mance behaviour on a supercomputer but restrict to small cases, as complex

50

algorithms were not simulated. A multi-qubit simulation, over 29 qubits of a
Quantum Fourier Transformation (QTF) in a single node took 116.6 s while the
simulation on the D-GM took less then 5 s. Simulation time remains very large,
independently of the selected (double-/single-) precision storing the state vector.

ProjectQ, referred in Section 4.3, seems interesting as an open source framework but
the work on (STEIGER; HäNER; TROYE, 2018) does not present any detailed
information about its simulator for general QA. Despite presenting better results
than LIQUi|〉 and qHiPSTER, a simple hardware (notebook with only two cores)
was used on the simulations. Further investigations are needed to evaluate its
performance over robust parallel processing power architectures.

Haner’s simulator, reported from (HANER; STEIGER, 2017) in Section 4.4, applies
all the optimizations on the table for multi-core and distributed simulations. Since
it was built to primarily simulate quantum supremacy algorithms, main optimiza-
tions and presented results are target towards this algorithm types, making diffi-
cult an analysis performed over more complex algorithms.

Gutierrez’s simulator, Section 4.5, even though it was the oldest selected simulator
here (2010) impacting that GPU having further increased both performance and
memory storage since then, its strategy shows an approach similar to the D-
GM, by considering coalesced access to GPU global memory. However, it is not
possible to directly compare results with newer hardware.

Zhang’s simulator, presented in Section 4.6, considers a single node multi-GPU im-
plementation having a kernel similar to (GUTIERREZ et al., 2010) and using the
same approach presented in (HANER; STEIGER, 2017) to avoid communication
between devices and reducing memory transfers. The results presented con-
siders only QFT and comparison with intermediate versions of itself. And, an
analysis of the performance scalability is not discussed.

4.8 Summarizing

Table 1 summarizes an overview of the simulators showing main optimizations for
quantum computing simulation over multi-cores CPU, multi-nodes CPU and single-
node GPU (with single or multiple GPU). None of the simulators has a hybrid approach
combining CPU and GPU, and although they have several interesting optimization
strategies, many of those are targeted to a specific architecture. To overcome that,
the proposal of this work was conceived, considering a computational model for quan-
tum computing simulation that can be applied to any architecture while optimizing its
resources.

51

Ta
bl

e
1

–
O

ve
rv

ie
w

an
d

su
m

m
ar

y
an

al
ys

is
of

lit
er

at
ur

e
re

vi
ew

re
la

te
d

to
se

le
ct

ed
qu

an
tu

m
co

m
pu

tin
g

si
m

ul
at

or
s

D
-G

M
LI

Q
U

i|〉
qH
iP

S
TE

R
P

ro
je

ct
Q

D
is

t4
5

G
ut

ie
rr

ez
Zh

an
g

M
ul

ti-
co

re

M
od

el
fo

rP
ar

al
le

lP
ro

gr
am

m
in

g
O

pe
nM

P
F
#

O
pe

nM
P

O
pe

nM
P

O
pe

nM
P

–
–

AV
X

su
pp

or
t

X
X

X
•

•
–

–
C

ac
he

op
tim

iz
at

io
ns

X
•

•
X

•
–

–
In

st
ru

ct
io

n
R

eo
rd

er
in

g
X

X
X

X
•

–
–

S
in

gl
e-

or
M

ul
ti-

G
P

U

G
lo

ba
lM

em
or

y
C

oa
le

sc
ed

A
cc

es
s

X
–

–
–

–
•

•
U

se
s

S
ha

re
d

M
em

or
y

•
–

–
–

–
•

•
U

se
s

C
on

st
an

tM
em

or
y

•
–

–
–

–
X

X
M

an
y

ga
te

s
pe

rk
er

ne
lc

al
l

•
–

–
–

–
•

•

D
is

tr
ib

ut
ed

W
ith

X
A

zu
re

N
o

A
P

I
X

M
P

I
X

X
G

lo
ba

lG
at

es
op

t.
(c

on
tro

lle
d

an
d

sp
ar

se
s)

–
X

X
–

•
–

–

C
irc

ui
tO

pt
.

S
ch

ed
ul

in
g

X
X

X
X

•
X

X
G

at
e

G
ro

w
in

g
X

•
X

X
•

X
X

•
im

pl
em

en
te

d
X

no
ti

m
pl

em
en

te
d

–
ca

nn
ot

be

5 HYBRID-GM PROPOSAL: CONCEPTUAL MODEL

The state space and operators in QC are mathematically described by the Hilbert
space, where a quantum register comprising a number of qubits is given as a vector in
a multidimensional Hilbert space while quantum gates are Hilbert space operators that
rotate the quantum register vectors (HIRVENSALO, 2001). Since quantum computing
can be conceived as a process that incorporates interacting physical systems repre-
sented by quantum bits and quantum gates, the corresponding quantum circuit model
is also considered to graphically modeling computations(KNILL et al., 2002)(NIELSEN;
CHUANG, 2000).

Underlying the main quantum circuit model concepts, composition, normalization,
and projection operators are explored in the HybriD-GM model considering the follow-
ing targets: (i) modeling the computation of quantum states and transformations rep-
resented by matrix-structures in a quantum application; (ii) preserving different levels
in the interpretation for quantum transformations, based on the partiality of processes
to control the granularity of compelling computations; and (iii) minimizing redundancies
by promoting decomposition, reduction operations and making use of projections on
multidimensional systems.

In the following sections, the main characteristics of the matrix-structure of projec-
tion operators are presented, including a discussion about the dynamic of computations
based on projected structures.

5.1 Matrix-structure of quantum state projections

Projection operators applied to a multidimensional QS result on the partition of the
classical basis components. Thus, each new subset of basis components preserves
the corresponding amplitudes, meaning that it preserves the dimension of QS related
to the projected qubits.

By taking n as a non-zero natural number, n ∈ N∗, and m ∈ {1, . . . , n}, an m-qubit
projection of a n-dimensional QS (defined by n-qubits) will return a basis partition with
2m subsets, each one with 2m−n amplitudes, for n ≥ m, n,m ∈ N.

53

The amplitudes of n-dimensional QS are defined by memory values (complex
numbers), which are placed by classical basis (memory positions) of 2n numbers in
{0, 1, . . . , 2n − 1}, described binary digits.

Example 5.1.1 An example of the action of projection operator is considered for a 3-
dimensional QS, graphically described in Figure 18.

The 23 amplitudes of the QS were defined by values correspondent to their clas-
sical memory positions, represented using (3) binary digits, contained in the set
B = {000, 001, . . . , 111}.

Since each digit can be associated to a classic basis, they were didactically pre-
sented by using three colors: red to the first basis, blue to the middle basis and green
to the last one.

In this example, the projections are sequential performed over the second (2) and
third (3) basis, respectively. As consequence of the action of the projection over B3

give us the partition described as the following power-set B2:

{
B2(0) = {000, 001, 100, 101}, B2(1) = {010, 011, 110, 111}

}
. (19)

In sequence, the action of projection M2 in Eq.(19) results on the new power-set B23{
B2(0),3(0)={000, 100}, B2(0),3(1) = {001, 101}, B2(1),3(0)={010, 110}, B2(1),3(1)={011, 111}

}
.

This partition on classical basis will be reported as code memory-positions.

000

001

010

011

100

101

110

111





Projecting qubit 1 Projecting qubit 2

000

001

100

101





010

011

110

111





bas
is
0

basis 1

000

100




001

101




basis
0

basis 1

010

110




011

111




basis
0

basis 1

Figure 18 – Projection of qubits 1 and 2 of a 3-dimensional quantum state.

54

5.2 Matrix-structure of quantum transformation projections

In this proposal we propose the projection of a QT regarding its basis, which are
obtained by two approaches:

Write Basis (WB), regarding the matrix lines whenever the WB value is associated to
the QS basis it computes; and

Read Basis (RB), regarding the matrix columns, where the RB value is related to the
QS basis it uses for the computation.

Single-qubit quantum operators can be classified into 3 types according to their non-
zero values, their projections are shown in Figure 19. As can be observed, a operator
generates 4 projections with distinct combinations of WB and RB values. Projections
that have only zeros are called null-projections since they do not imply in any compu-
tation, and therefore can be discarded. For dense operators, each WB is associated to
two RB. Meanwhile, for sparse operators, each WB is associated to only one RB.

Operators Projections (WB,RB)

e00 e01

e10 e11

()
0

1

0 1

e00
()0,0

e01
()0,1

e10
()1,0

e11
()1,1

e00 0

0 e11

()
0

1

0 1

e00
()0,0

0
()0,1

0
()1,0

e11
()1,1

0 e01

e10 0

()
0

1

0 1

0
()0,0

e01
()0,1

e10
()1,0

0
()1,1

Figure 19 – Quantum operators projection.

Figure 20 shows a example for a generic 3-qubit QT having one basis (second)
being projected. The number of projections generated grows exponentially with the
number of basis being projected.

For QT derived from single-qubit quantum operators, instead of performing the ten-
sor product to generate the QT matrix and then perform the projections over it, a QT
projection for a given basis can be obtained by individually projecting the operator re-
lated to that basis and only then performing the multiplication of the projection values
with the tensor product between the other operators.

For example, lets consider the 2-dimensional QT given by Id⊗H and the projection
over the first basis which is related to the Id-operator. The Id-operator projection will
results in the following matrices

55

Generic 3-qubit QT

Projections of the Second Operator(WB,RB)

000

001

010

011

100

101

110

111

000 001 010 011 100 101 110 111

e00 e01 e02 e03 e04 e05 e06 e07

e10 e11 e12 e13 e14 e15 e16 e17

e20 e21 e22 e23 e24 e25 e26 e27

e30 e31 e32 e33 e34 e35 e36 e37

e40 e41 e42 e43 e44 e45 e46 e47

e50 e51 e52 e53 e54 e55 e56 e57

e60 e61 e62 e63 e64 e65 e66 e67

e70 e71 e72 e73 e74 e75 e76 e77





e00 e01 e04 e05

e10 e11 e14 e15

e40 e41 e44 e45

e50 e51 e54 e55





e02 e03 e06 e07

e12 e13 e16 e17

e42 e43 e46 e47

e52 e53 e56 e57





e20 e21 e24 e25

e30 e31 e34 e35

e60 e61 e64 e65

e70 e71 e74 e75





e22 e23 e26 e27

e32 e33 e36 e37

e62 e63 e66 e67

e72 e73 e76 e77





M0,0 M0,1 M1,0 M1,1

Figure 20 – Generic 3-qubit QT projection.

1
()0,0

0
()0,1

0
()1,0

1
()1,1

and then each value can be multiplied to the H-operator to obtain the QT projection,
resulting in the matrices presented in Figure 21.

√
2
2

√
2
2

√
2
2
−
√
2
2


 0 0

0 0


 0 0

0 0




√
2
2

√
2
2

√
2
2
−
√
2
2




0,0 0,1 1,0 1,1

Figure 21 – Projections of the first basis of the QT Id⊗H.

5.3 Computations with projections over matrix-structures

Given a QT and a QS projected on related qubits/operators (same basis), to apply
the QT on this QS you have to compute the multiplication between each QT projection
and the correspondent QS projection (defined by the RB value) and them sum of the
results associated to the same WB to have the QS resultant for that basis.

56

Figures 22 and 23 shows an example for a generic 2-qubit system having the first
qubit/operator projected. First the structures are projected, Figure 22, and then the
computations followed by the reconstruction of the QS are performed, Figure 23.

QS projection

QT projection

a0

a1

a2

a3


 a0

a1

()
a0

a1

()0 1

m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33




m00 m01

m10 m11


 m02 m03

m12 m13


 m20 m21

m30 m31


 m22 m23

m32 m33




0,0 0,1 1,0 1,1

Figure 22 – Structures projection for a generic 2-qubit system.

Computation

Immersion

QT 0,0 ×QS0 =
a0 ×m00 + a1 ×m01

a0 ×m10 + a1 ×m11




QT 0,1 ×QS1 =
a2 ×m02 + a3 ×m03

a2 ×m13 + a3 ×m13




a0 ×m00 + a1 ×m01 + a2 ×m02 + a3 ×m03

a0 ×m10 + a1 ×m11 + a2 ×m13 + a3 ×m13


+

0

QT 1,0 ×QS0 =
a0 ×m20 + a1 ×m21

a0 ×m30 + a1 ×m31




QT 1,1 ×QS1 =
a2 ×m22 + a3 ×m33

a2 ×m23 + a3 ×m33




a0 ×m20 + a1 ×m21 + a2 ×m22 + a3 ×m33

a0 ×m30 + a1 ×m31 + a2 ×m23 + a3 ×m33


+

1

a0 ×m00 + a1 ×m01 + a2 ×m02 + a3 ×m03

a0 ×m10 + a1 ×m11 + a2 ×m13 + a3 ×m13

a0 ×m20 + a1 ×m21 + a2 ×m22 + a3 ×m33

a0 ×m30 + a1 ×m31 + a2 ×m23 + a3 ×m33




Figure 23 – Computation of a generic 2-qubit system.

Example 5.3.1 Let |001〉 be an initial QS. The Hadamard operator H3 performed on

57

Computation

Immersion

QT 0,0 ×QS0 =

√
2
2
e00 +

√
2
2
e01

√
2
2
e10 −

√
2
2
e11


 QT 1,1 ×QS1 =

√
2
2
e22 +

√
2
2
e23

√
2
2
e32 −

√
2
2
e33




0 1

√
2
2
e00 +

√
2
2
e01

√
2
2
e10 −

√
2
2
e11

√
2
2
e22 +

√
2
2
e23

√
2
2
e32 −

√
2
2
e33




Figure 24 – Computing a 2-qubit system.

|001〉 results on the superposition state:

|φ〉 = 1

2
√
2



1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1





0

1

0

0

0

0

0

0


=

1

2
√
2



1

−1
1

−1
1

−1
1

−1


(20)

In this case, if the following matrix-structure is considered:

M0,0 =M0,1 =M1,0 =M1,1 =
1

2
√
2


1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (21)

By applying a partition as presented in Example 5.1.1, Eq.(19), over the quantum
state |001〉, we can obtain the related partition on the resulting QS |φ〉, as follows:

M0,0|001〉1(0) +M1,0|001〉1(0) = |φ〉1(0)
M0,1|001〉1(1) +M1,1|001〉1(1) = |φ〉1(1)

5.4 Summarising

In this chapter, first subject addressed was the matrix structure of the projection
operators, briefly describing their dynamic construction and step structure to consoli-
date the HybriD-GM conception. We also consider the action of projection operators
on quantum computing structures, reflecting on computations performed by projected
structures. Including illustrated exemplifications for such constructions.

6 HYBRID-GM PROPOSAL: ARCHITECTURAL MODEL

In this chapter, the main concepts structuring the architectural model of the HybriD-
GM model are exposed, displaying the architectural level structures of the model, which
includes detailed insights mainly related to the preprocessing structures, projection
layers, execution layers and also, its related extended execution approaches.

6.1 Structuring the HybriD-GM model

The HybriD-GM model explores the projection of quantum states and transforma-
tions to control the distribution and granularity of computations while optimizing hard-
ware resources. This work focuses on hybrid architectures dealing with CPU and GPU
on a single machine, but the model has a flexible structure enabling extensions to other
architectures.

In Figure 25, the architectural structure of the HybriD-GM model is graphically pre-
sented, and its main components levels are introduced.

6.1.1 Functionalities of component levels on the HybriD-GM model

In sequence, general functionalities of each level are summarized.

Preprocessing: The preprocessing goal is to receive the application’s input data, sim-
ulation type, quantum algorithm and quantum state, converting them into struc-
tures that can be manipulated by the subsequent level of the model.

Projection Control: This level manages and performs projection operators consid-
ering the configurations in the two next levels to define how they need to be
designed and executed. Both SEQ and PAR constructors can perform this task;
the former is responsible for support of sequential projections and the later, of
parallel projections.

Projections Layer: The configurations of projections are defined in this level, identify-
ing specifications of granularity and coalescence for various projection situations,

59

Figure 25 – Projection model overview.

60

considering each hardware structure available. It can model hybrid or non-hybrid
computations.

Execution Layers: This level contains all the operators and functions for comput-
ing projections over each hardware structure available. For that, it considers all
information related to the hardware to optimize its resources.

Hardware: The infrastructure level contains the target hardware of executions inte-
grate both multi-core and/or multiprocessor as CPU and/or GPU architectures,
according to each “type” hardware and application specifications.

6.1.2 Data-structures of component levels on the HybriD-GM model

And now, the main data-structures concerned to the model architecture of HybriD-
GM is described, containing data regarding quantum state, quantum transformations
and projections as listed below:

Projection Structure, module of data structure to support the following action: (i)
containing quantum state amplitudes which can be stored directly or indirectly;
(i) defining the quantum state dimension; (iii)including the number of additional
qubits related to the projections in case of indirect representation; (iv) identifying
the qubits related to a selected projection.

Projection Instance, as the data structure module: (i) providing reference to the
generated projection structure, (ii) enumerating the projected basis values.

Gate Structure, as the data structure module: (i) containing the Matrix construction;
(ii) informing the target qubit; and (iii) enumerating the control qubits and corre-
sponding values, if any.

In the following subsection 6.2, relevant characteristics of five levels of HybriD-GM
architecture are described, focusing in the dynamic of computations. The projection-
trees settings for distinct scenarios of simulation are presented in Section 6.3.

6.2 Main level components of the HybriD-GM model

See below, the five level in the architectural structures of the HybriD-GM.

6.2.1 Preprocessing in HybriD-GM model

This level of the of the HybriD-GM model receives the input data for simulation
which are the quantum application (quantum circuit), the quantum state and the type
of simulation. These data are converted into structures that can be used by the next
levels, carried out in two steps described below:

61

Decomposition of the quantum application: In this level, a quantum application is
represented as quantum circuit and defined by composition of quantum transfor-
mations can be decomposed into unitary gates, converted to gate structure data
and stored in a list preserving their occurrence order.

Conversion of the Quantum State: In this level, the vector representing a quantum
state of a quantum application can be converted to a projection structure contain-
ing a single instance in order to suit the input patterns, which will be performed
by the next levels of the model.

Even other optimization steps can be easily added to this model. See, for instance,
the concept of “fusion gates" as applied in (WECKER; SVORE, 2014) decreasing
the quantity of quantum transformations, or even the notion of “list restructure” similar
to (HANER; STEIGER, 2017), optimizing the projection steps, maintaining the execu-
tion consistence and resulting on the reduction in number of distributions.

After performed all preprocessing steps, the obtained results containing the list
of “gate structure” and “projection structure” data are passed to the next HybriD-GM
model level named as Projection Manager.

6.2.2 Projection Manager Structure

This level of the HybriD-GM model manages and performs the projections according
to the quantum application. The control module is responsible for carrying out the
projections in multiple layers, controlling the granularity of the computations as well as
optimizing the hardware resources.

6.2.2.1 Project manager methodology

The main builders in the project manager are used to define the graph data structure
as a tree describing projections/computations, and are described in the following:

• SEQ - to a single node, called a sequential projection;

• PAR - to multiple nodes called as parallel projections and having an intermediate
step to manage/synchronize the immediate descendent nodes.

The nodes presented in those builders have the following definition:

• PL - defining the projection layer, which are conceived as projection nodes;

• NL - indicating the next projection layer, which can be related to one of the two
builders type, SEQ and PAR, adding another projection layer; as well as an exe-
cution node (leaf) ending the branch of a projection tree.

62

In the manage constructor structure, projection-nodes included in the projection
layer level provide useful information to perform projections and execution layer level
nodes to perform the computations of a projection. So, intermediate-nodes are respon-
sible for projections and leaf nodes are responsible for executions.

In addition, see the following comments listing other main nodes characteristics in
the four graph structures:

Node-structure receive a projection structure and a list of gate structures to be pro-
jected or computed;

Root node receive the structures created in the preprocessing level;

Children nodes always have a smaller granularity than their parent node, meaning
that the lower the level in a branch-tree, the smaller the projection size they will
work on;

Sibling nodes, from the same parent node, will have the same granularity, but adja-
cent nodes belonging to another parent may have another.

Figure 26 illustrated the flow diagram for a projection node, which receives a pro-
jection structure and a list of gate structures.

The control module performs a loop requesting projection instances for the pro-
jection structure. Thus, for each instance perform another loop that, according to the
configurations defined to the node, on each iteration defines the next set of qubits (ba-
sis) to be projected and generate two structures using it:
(i) projection structure, from the projection instance, and
(ii) sub-list of gate structure, from list of gate structures.
And then, these structures are passed to NL (Next Layer) awaiting the return to move
on to the next iteration. After all instances have been computed the parent-node is
notified, concluding the control module execution.

6.2.2.2 Projection qubits selection methodology

Let m be the number of qubits to be projected and n be the number of qubits of
the quantum state. Then, the selection of the qubits to be project can be performed in
distinct approaches described as follows:

Interval approach, where the qubits selected for projection can be defined as an
m-dimensional interval considering two options:

1. Static structured, selected from a previously defined set of intervals, that
together cover all n qubits and, therefore, ensure that all quantum gates
will be associated to at least one interval. For example: taking intervals as

63

Figure 26 – Generic projection layer

64

follows: [0;m − 1], [m; 2m − 1], . . . , [n − m : n − 1], which can be selected
alternated and repeated until all operators have been computed;

2. Adaptable structured, the information of the next operators in the list of
gate structures are used to define the interval, by adding their target qubits
to a set until the interval between the smallest and the largest number not
exceeds the limit of m qubits.

Dynamic approach, where set of qubits can be defined dynamically, which allows
only qubits with operators to be chosen for the next projection step. The non-
executed operators can be iterated and non-duplicated target qubits are added to
a set until its size reaches m.

Fixed approach, where projections are always performed over predefined set of c
qubits, with c < m, implying the need for a combination with one of previous
approaches to cover select m qubits in total. After disregard those c qubits as se-
lection options, the other approaches can be performed to select the remaining
m− c qubits. When fixing the first c-qubits of a quantum state, implies that all pro-
jection instances will have contiguous segments with a minimal of 2c amplitudes.

6.2.2.3 Project quantum state methodology

Now, two types of projections are considered in the HybriD-GM model regarding
quantum states on projection structures, and are described in the following:

Direct approach, where amplitudes corresponding to a given projection instance are
copied/transferred to a new memory space. Therefore, information from previous
projections does not have to be carried out in order to further projections/compu-
tations be performed, and consequently can be interpreted as a root-projection.
Mainly related to projections from one memory architecture to another but noth-
ing prevents it to be applied in the same architecture. It is used in the context of
this work to project from CPU RAM to GPU RAM and GPU RAM to GPU shared
memory, but it is not limited to that, can also be used to perform projections of
HARD DISK to CPU RAM, or between nodes in a cluster for example.

Indirect approach, where the projection state containing the projection instance is
passed as a reference, implying the need to use information regarding the pro-
jection instance to determine the access of its amplitudes. When performing
successive indirect projections, is necessary to have the combined information of
previous projections in the branch-tree up to the closest that can be interpreted
as a root-projection. Its is mainly related to projections in the same memory ar-
chitecture, being able to prevent intermediate copies of the projections from being
performed when it is not necessary.

65

6.2.2.4 Project quantum transformation methodology

In sequence, two main characteristic addressing the project quantum transforma-
tion methodology are briefly described:

• After defining the projection qubits, operators acting on non-projected qubits are
transferred to another list of gate structures as long as they can be executed
preserving the computation consistency.

• Passing by reference can be applied if the state projection performed was indirect,
since the acting and control qubits remain the same. Otherwise, it is necessary
to copy/transfer the operator and map their target and control quits to match their
correspondent in the new quantum state, preserving the node-independence re-
lated to previous projection information in tree-branch modeling the application.

Example 6.2.1 As an example, consider the 6-qubit QA in Figure 27 containing 5 QT,
lets define two sets of qubits for projections [0− 2], [3− 5].

The only dependency present in the QA is the controlled transformation in the third
QT, which implies that all quantum gates on QT 1-2 have to be executed before the op-
erators in QT 4-5 to maintain the result consistency. So, the best projection sequence
would be to first project [0−2] and execute the gates in QT 1-2 for that interval, allowing
to then project [3− 5] and execute all gates in that interval to finally project [0− 2] and
execute the remaining gates in QT 4-5.

H

H

H

H

H

H

X

X

X

X

X

X

X

X

X

X

X

X

H

H

H

H

H

H

1 2 3 4 5

Figure 27 – Diffusion operator with 6-qubit.

Optimizations of quantum transformation projections were not included at the cur-
rent state of the model. So instead of having 3 steps of execution in the example above,
would be necessary 8 steps to perform the same QA.

66

6.2.3 Projections Layers

The projections layers level of the HybriD-GM model contemplate three categories
of projections in the contexts of hybrid architectures, related to the type of simulation:
CPU, GPU and Hybrid approaches. Wevare focusing to optimize hardware resources
for various projection scenarios by defining setup regarding:

1. Granularity;

2. Coalescence;

3. Selection form of projection qubits; and

4. Type of quantum state projections.

Such information for each scenario are detailed in the following:

1. CPU projections required for CPU simulations:

Single gate, this step has 1 of granularity and no coalescence, the target qubit
of the first operator in the list of gate structures is used to determine the
projection qubit and this operator is also project individually.

Single cache, where granularity and coalescence are defined w.r.t. the memory
space associated to the projected quantum state and its chunks of subse-
quent amplitudes in a way to not exceed the sizes of the last cache level
individual to each core and the first cache level, respectively. Uses the fixed
and the dynamic approach to select the projection qubits;

Single core, where the granularity and coalescence are always greater values
then the ones for Single Cache, with values depending on the type of simu-
lation.

2. GPU projections required for GPU simulations

GPU MIDDLE, granularity limited to not exceed the GPU memory size, and
coalescence to have the memory space of subsequent amplitudes equal or
higher then the minimum memory transaction size between CPU and GPU;

GPU PROJ, granularity defined to not exceed the GPU shared memory per
thread block, and coalescence to have chunks of subsequent amplitudes
matching the transaction size between the GPU global memory and shared
memory.

3. Hybrid projections allowing hybrid simulations in CPU and GPU, encapsulating
the projection configurations defined in the above categories as well as the follow
configuration:

67

DIVISOR, were granularity will be a equal or higher value, and coalescence a
equal value to its child nodes maximum values.

The quantum state in the projection-structure is indirectly projected for the above
scenarios, except to the GPU MIDDLE category, which performs a direct projection
transferring it to the GPU memory.

6.2.4 Execution Layers

The execution layers level of the HybriD-GM model contemplate two execution cat-
egories, CPU and GPU, which are described in the next subsections.

6.2.4.1 CPU Layers

Preliminary results performing computations using a generic projection size showed
the best results when resulting on a quantum state with granularity of 1 and 2. Hence,
was opted to use at this stage of the work granularity always equal to 1 for layers
of execution, implying on a gate by gate computation approach which allows further
optimizations according to the types of quantum gates, which can be classified into
two classes:

(i) Dense operators - defined by matrices without void elements, such as the
Hadamard operator; and

(ii) Sparse operators - with void elements in the main diagonal, as the Pauly X gate,
or in the secondary diagonal, such as the Pauly Y gate.

Thus, see Figure 28 showing the flow diagram describing the COMP GATE mod-
ule, which is responsible for managing the computation of a single gate for a given
projection structure.

The control module requires the matrix operator and the type of the gate, following
a loop that iterates through all instances of the projection-structure, requesting the pair
of amplitudes related to the current instance and invoke the computation module cor-
respondent to the gate type, passing the pair of amplitudes (a0, a1) and the matrix (M).

The computation modules for the tree types of gates are: (i) DENSE - for dense
operators, (ii) MAIN - for main diagonal operators, (iii) SEC - for secondary diagonal
operators. These corresponding computations are described by Algorithms 1, 2 and 3.

As can be observed the computations of Dense and Secondary Diagonal opera-
tors has use a temporary variable since the computation is performed in place and
the amplitudes are used on each other calculus, and Primary Diagonal and Secondary
Diagonal operator needs to perform only 2 multiplications instead of 4 since the multi-
plications involving the zeros in their matrix could be removed.

68

Figure 28 – Flow diagram for the Comp Gate module.

Algorithm 1: Dense
1: tmp← a0
2: a0 ← a0 ×M [0][0] + a1 ×M [0][1]
3: a1 ← tmp×M [1][0] + a1 ×M [1][1]

Algorithm 2: Primary Diagonal
1: a0 ← a0 ×M [0][0]
2: a1 ← a1 ×M [1][1]

Algorithm 3: Secondary Diagonal
1: tmp← a0
2: a0 ← a1 ×M [0][1]
3: a1 ← tmp×M [1][0]

6.2.4.2 GPU Layers

Figure 29 shows the flow diagram for the Kernel Layer responsible for requesting
the GPU computation of a projection, already having its quantum state in the GPU’s
memory. It perform the following steps:

69

Figure 29 – Flow diagram related to the Kernel Layer.

(i) Firstly, the quantum gates to be computed have their target-qubits and projection-
controls mapped and transferred to the GPU.

(ii) In sequence, their execution is requested to the GPU module;

(iii) The GPU module retrieves the projection structure information;

(iv) And then invokes the GPU kernel execution on each device, awaiting for their
return.

For multiple GPU executions just homogeneous hardware were considered in the
current state of this work.

The execution flow for the GPU kernel is showed in Algorithm 4 considering the
point of view of a GPU block, with n1 representing the number of projection instances
associated to the block. Detailed descriptions for a GPU kernel are given in the next
chapter.

6.3 Execution Approaches

This section shows how the projection manager combines projection and execution
layers to allows the simulation-types considered in this work.

70

Algorithm 4: Presenting flow data of a GPU kernel in a block point of view.
1 Project n1 instances of the shared memory ;
2 foreach Gate in QuantumGatesList do
3 Define the projection p2 for the quantum gate structure;
4 Distributes the the instances from p2 for block threads;
5 Perform thread-computations over their instances of p2;
6 end
7 Immerse n1 instances in the global GPU-memory;

For all cases, the structures generated by the preprocessing steps are considered
as input, that is, a projection structure containing a single instance and a list of Gate
Structures representing, respectively, the quantum state and the quantum algorithm to
be simulated.

The approach to a single core simulation in the HybriD-GM model can be observed
in Figure 30 referred as SINGLE CORE EXEC, containing four layers as described in
the following:

Figure 30 – Layers composition for
single core simulations.

Figure 31 – Layers composition for
GPU simulations.

(i) SINGLE CACHE - ensuring that the amplitudes accessed for computing an in-
stance will remain in the cache until the end of the computation;

(ii) SINGLE GATE - ensuring that computations can be carried out gate by gate;

(iii) COMP GATE - generating ordered instances and then ensuring the exploration
of the spatial locality of the lowest cache level, since each pair of amplitudes is
subsequent to the previous pair;

71

Figure 32 – Layers composition for multi core simulations.

(iv) EXE - this layer refers to one of the follows CPU execution layers, DENSE, MAIN
and SEC, depending on the quantum gate-type.

The simulation in a multicore execution approach is presented in Figure 32 referred
as MULTI CORE EXEC, containing two steps characterized as follows:

(i) SINGLE CORE - the projection structures generated are passed to n nodes, with
n being the number of cores being used in the simulation;

(ii) SINGLE CORE EXEC - each node is this level reports to a single core simulation,
since it follows the same flow of projection/computations.

The flow simulation of a GPU approach is presented in Figure 31. This structure is
performed based on the next layers:

1. GPU MIDDLE - generating projection structures which match the GPU memory
size and transferring it to GPU-memory;

2. GPU PROJ - generating structures compatible to the shared memory size per
GPU block;

3. KERNEL LAYER - performing kernel calls to accomplish the computation tasks.

Multiple GPU quantum simulations follow the same approach, but in the first layer
the quantum state from the projection structure is transferred in equal parts to each
GPU, and their global memory spaces have to be visible to each other.

There exist two approaches for hybrid simulations, corresponding to distinct layers,
which are considered in two steps, as presented in Figures 33a and 33b.

The first layer consisted by the DIVISOR layer is presented in both approaches pro-
viding projection structures for their child nodes, which is what differs in each approach.
The second level are described bellow:

72

(i) consisted by a pair of nodes, given by GPU EXEC and MULTI CORE EXEC; and

(ii) the other approach has n+ 1 child-nodes referring to GPU EXEC and n SINGLE
CORE EXEC.

Those difference in approach’s will result will results in different granularity associ-
ated to each CPU core.

(a) Approach 1 (b) Approach 2.

Figure 33 – Layers composition for hybrid simulations.

6.4 Summarizing

This chapter describes the structure of HybriD-GM model, considering the level of
their structured architecture, Preprocessing, Projection Manager, Projections Layers,
Execution Layers also detailing how those the former tow Layers are combined to con-
struct the types of simulations considered in this work.

7 HYBRID-GM PROPOSAL: EVALUATING APPLICATIONS

The HybriD-GM model proposed in this work can be applied to any of the simula-
tors presented. For validation and evaluation, an extension of the D-GM framework,
presented in the section 3, was implemented. This extension occurred as follows:

• Addition of a module with the structures and functions present in the model that
refer to the representation and manipulation of projections, it should be noted that
all logical functions were implemented using bitwise operations to minimize their
overhead;

• Re-implementation of computing functions in CPU and GPU following the HybriD-
GM model, referring to what was presented in Figures 32 and 31 respectively;

• Implementation of the Hybrid simulation approach combining CPU and GPU, we
chose to follow the form described in 33b as it does not have nested parallelism
and therefore facilitates the implementation.

The next section will describe the GPU kernel implemented, and the following sec-
tion present the results achieved.

7.1 GPU Kernel

The CUDA kernel is responsible for the execution of a projection structure, and its
characteristic, functionalities and computation methods are described in this section.
The quantum state and the list of gate structures are already in the GPU memory when
the execution is requested.

The CUDA kernel computation may be divided into 3 steps, as described below:

Step 1: Identify each block’s projection instances and copy their amplitudes to
the shared memory
In order to perform step 1, first each thread determines the projection instances
basis using its CUDA block unique identifier. Then, for each projection instance,
each thread copies two of its amplitudes from the state in global memory to

74

shared memory. Since they are accessed for the execution of each operator,
keeping it on the GPU’s global memory would have a very negative impact on
performance.
The pseudo-code for this step is shown in Algorithm 5.

Algorithm 5: GPU Kernel Step 1.
1 bId← GETBLOCKID();
2 thId← GETTHREADID();
3 foreach s in BlockProjInstances do
4 piId← GETPROJINSTANCEID(s, bId, ps);
5 s[thId]← state[GETGLOBALPOS(piId, ps, thId)];
6 s[thId+BS]← state[GETGLOBALPOS(piId, ps, thId+BS)];
7 end
8 SYNCTHREADS()

Step 2: Execution of the list of gate structures This step goes through the list of
quantum gates and performs their execution, at each iteration each CUDA thread
projects a pair of amplitudes according to the target qubit of the current quantum
gate. Then, it calculates those positions for all sub-states (if conditions defining
the quantum gate controls are satisfied). Barriers are used to synchronize these
threads within the same block before passing to the next quantum gate, guaran-
teeing that all amplitudes on the shared memory are up-to-date.
The pseudo code for this step is shown in Algorithm 6.

Algorithm 6: GPU step 2
1 foreach gate in GatesList do
2 p0, p1 ← GETPINSTANCEPAIR(thId, gate.qubit) ;
3 foreach s in BlockSubStates do
4 if MATCHCONTROLS(p0, gate) then
5 tmp← s[p0]× gate.matrix[0][0] + s[p1]× gate.matrix[0][1];
6 s[p1]← s[p0]× gate.matrix[1][0] + s[p1]× gate.matrix[1][1];
7 s[p0]← tmp;
8 end
9 end

10 SYNCTHREADS();
11 end

Step 3: Update the quantum state.
After calculating all quantum gates, the result stored in the shared memory are
copied to the quantum state on the GPU global memory.
The pseudo code for this step is shown in Algorithm 7.

75

Algorithm 7: GPU step 3
1 foreach s in BlockProjInstances do
2 piId← GETPINSTANCEID(s, bId, ps);
3 state[GETGLOBALPOS(piId, ps, thId)]← s[thId];
4 state[GETGLOBALPOS(piId, ps, thId+BS)]← s[thId+BS];
5 end

The auxiliary functions used on the GPU pseudo-codes are described in the follow-
ing:

• GETBLOCKID - providing the unique ID of the CUDA block;

• GETTHREADID - getting the ID of the CUDA thread within the block;

• GETPINSTANCEID - obtaining the ID for a given projection instance using the
block ID and projection structure information;

• GETGLOBALPOS - obtaining the position of an amplitude in the global memory
corresponding to a specific position in projection instance.

• GETPINSTANCEPAIR - providing a closed pair of positions in a gate projection
structure for a given thread ID and target qubit;

• MATCHCONTROLS - verifying if a position satisfies the controls of a quantum gate.

In the next section, will be described and discussed the results obtained by simu-
lating Shor’s and Grover’s algorithms in the extension of the D-GM framework.

7.2 Results

All tests on this paper were performed on a desktop with an Intel Core i9-7900X
processor with 10 cores, 32 GB RAM, and 2 NVidia GTX Titan X GPU. The experi-
ments were executed over Ubuntu Linux version 17.04, 64 bits, and CUDA Toolkit 9.0.
Average simulation times were calculated from 30 executions, and all cases presented
a standard deviation smaller than 1%.

Tables 2 and 3 shows LIQUi|〉 and ProjectQ parallel performances for simulations
of Shor’s and Grover’s algorithm in the architecture mentioned above, those results will
be used later to make comparisons with the HybriD-GM results. Other simulators were
not used because they are not available.

7.2.1 CPU Results

In this subsection is presented the results considering simulations only in CPU,
both algorithms were simulated sequentially and in parallel on CPU using the previous

76

Table 2 – LIQUi|〉 and ProjectQ simulation times for Shor’s algorithm, in seconds.

Qubits LIQUi|〉 ProjectQ
15 16.90 1.43
17 54.91 8.15
19 77.22 16.00
21 430.39 66.27
23 2192.49 574.786

Table 3 – LIQUi|〉 and ProjectQ simulation times for Grover’s algorithm, in seconds.

Qubits LIQUi|〉 ProjectQ
15 22.93 1.82
17 67.78 4.93
19 331.60 24.29
21 1879.58 656.16
23 − 5664.10

version of the D-GM and the extension HybriD-GM, varying the number of threads from
1 to 10 and considering a range of qubits from 15 to 25.

7.2.1.1 Shor

Table 4 shows the execution times obtained for simulations of the Shor’s algorithm
in the previous version of the D-GM.

Table 4 – Simulation times for Shor’s algorithm over CPU for previous implementation,
in seconds.

Qubits Seq. 1 Thread 2 Threads 4 Threads 8 Threads 10 Threads
15 4.66 4.66 2.44 1.29 0.70 0.59
17 30.24 30.24 15.65 7.96 4.14 3.38
19 186.81 186.81 96.52 48.98 24.85 20.06
21 1108.21 1108.21 573.53 290.98 157.48 132.35
23 13223.30 13223.30 6348.58 3276.57 1678.93 1134.27
25 35278.31 35278.27 18142.40 9290.41 6403.29 6000.35

Table 5 shows the execution times obtained for Shor’s algorithm in the HybriD-
GM. The speedups over the senquential simulation are shown in Figure 34, as can
be seen, all simulations with multiple threads showed performance gains, presenting
better scalability for simulations with a higher number of qubits reaching 9.18× for a 21
qubit simulation. This occurs because simulations with 15 and 17 qubits have a very
low execution time due to the small size of the quantum state (256 and 1024 kilobytes),
and thus operations other than amplitudes computations have a impact in the total time
of simulation.

HybriD-GM speedup over the previous D-GM are presented on Figure 35, show-
ing superior performance for all simulations increasing with the number of qubits and

77

Table 5 – Simulation times for Shor’s Algorithm over CPU for HybriD-GM, in seconds.

Qubits Seq. 1 Thread 2 Threads 4 Threads 8 Threads 10 Threads
15 0.64 0.64 0.37 0.21 0.14 0.14
17 3.99 3.99 2.12 1.14 0.64 0.57
19 23.87 23.87 12.38 6.40 3.35 2.79
21 140.20 140.20 71.09 36.17 18.98 16.12
23 1138.27 1138.27 574.74 288.99 149.10 123.86
25 6320.18 6320.18 3167.27 1590.55 831.10 696.75

Figure 34 – Shor’s algorithm speedups for HybriD-GM parallel simulation over sequen-
tial simulation.

achieving performances of 18× faster for 25 qubits simulations.

Figure 35 – Shor’s algorithm speedup for HybriD-GM over D-GM.

Speedups over LIQUi|〉 and ProjectQ are shown in Figure 36, using a logarithmic
scale for better visualization. Speedups over LIQUi|〉 started high, 117× for 15 qubits,
but declined and stabilized with the increase in the number of qubit, down to 17.7×.

78

For ProjectQ, the speedup presented a similar behaviour but on a small scale, with
a maximum of 14.2× with 17 qubits. HybriD-GM presented better performance for all
qubits values, achieving higher values for low qubits as a consequence of being more
efficient than these simulators for those executions.

Figure 36 – Shor’s algorithm speedup for HybriD-GM with 10 threads over LIQUi|〉 and
ProjectQ.

7.2.1.2 Grover

Table 4 shows the execution times obtained for simulations of Grover’s algorithm in
the previous version of the D-GM.

Table 6 – Simulation times for Grover’s algorithm over CPU for previous implementa-
tion, in seconds.

Qubits Seq. 1 Thread 2 Threads 4 Threads 8 Threads 10 Threads
15 2.04 2.04 1.03 0.52 0.27 0.22
17 18.77 18.77 9.39 4.70 2.37 1.91
19 168.73 168.73 84.59 42.36 21.21 17.00
21 1504.03 1504.03 753.44 378.17 191.32 153.82
23 13199.90 13199.90 6619.73 3324.60 1701.69 1391.06
25 115317.00 115317.00 57759.60 28991.90 14820.80 12288.80

Table 7 shows the execution times obtained for the CPU simulations of the Shor
algorithm in HybriD-GM. In the Figure. 37 speedups are presented in relation to se-
quential simulation. Simulations with multiple threads also showed performance gains
for all cases with a scalability similar to Shor’s, reaching up to 9.51× for the 21 qubit
simulation.

HybriD-GM speedup over D-GM are shown in Figure. 38, presenting a steady scal-
ability for 21-qubit simulations with a performance gain around 7.9×.

79

Table 7 – Simulation times for Grover’s algorithm over CPU for new implementation, in
seconds.

Qubits Seq. 1 Thread 2 Threads 4 Threads 8 Threads 10 Threads
15 0.27 0.27 0.15 0.08 0.05 0.05
17 2.43 2.43 1.27 0.66 0.35 0.31
19 21.68 21.68 11.28 5.82 2.97 2.50
21 192.03 192.03 96.52 49.40 24.92 20.19
23 1696.62 1696.62 850.74 434.20 219.12 180.72
25 14778.00 14778.00 7534.92 3780.28 1942.71 1616.72

Figure 37 – Grover’s algorithm speedups for HybriD-GM parallel simulation over se-
quential simulation.

Shor’s algorithm presented a higher gain in performance cause it is benefited by
the most improvements acting on simulating controlled operators, since the Grover’s
simulation algorithm have less controlled operations.

Figure 38 – Grover’s algorithm speedup for HybriD-GM over D-GM.

80

Speedups over LIQUi|〉 and ProjectQ are shown in Figure 39, using a logarithmic
scale for better visualization. Speedup over LIQUi|〉 also started high, 491.1× for 15
qubits, decaying and stabilizing as the number of qubits is increased, down to 93.1×.
For ProjectQ, the speedups went down from 39× with 15 qubits to 9.7× with 19 qubits,
and then raised up to 32× for 21 and 23 qubits, this implies that ProjectQ loses perfor-
mance in algorithms that have a little amount of controlled gates. HybriD-GM presented
a even better performance than for Shor’s algorithm.

Figure 39 – Grover’s algorithm speedup for HybriD-GM with 10 threads over
LIQUi|〉 and ProjectQ.

7.2.2 GPU Results

In this Section, first results with isolated Hadamard gates are presented. After-
wards, Shor’s and Grover’s Algorithms are simulated and compared with the previous
kernel presented in Section 3, then LIQUi|〉 and ProjectQ. Closing up with a discussion
of results.

7.2.2.1 Hadamard gates

In order to understand the impact in performance of coalescence and multi-
ple operators per projection, simulations containing a large amount of Hadamard
gates (100,000) were performed. This large number ensures that other factors such as
initialization and memory allocation do not impact on the total time.

The Coalescing Factor was varied from 0 to 6 (quantum state projection with 20 to
26 contiguous amplitudes) and the number of operators per each projection (i.e., per
each kernel call) between 10, 50, 100, 150 and 200, for 3 types of execution:

(1) 1 GPU - using only 1 GPU;

81

(2) 2 GPU global - using 2 GPU and gates operating over the last qubit, thus resulting
in communication between GPU when doing the steps 1 and 3 of the kernel; and

(3) 2 GPU local - using 2 GPU and gates not operating over the last qubit, thus not
needing communication between GPU.

Simulation results for each of the structures described before are presented in Fig-
ures 40 to 44, where each figure presents time in the vertical axis and the coalescing
factor in the horizontal axis. Each subsequent figure increases the number of gates
per projection. Simulations using controlled gates would show similar results since
only target qubits matters for the communication presented on steps 1 and 3 of the
kernel.

Figure 40 – Projections with 10 oper-
ators.

Figure 41 – Projections with 50 oper-
ators.

Figure 42 – Projections with 100 oper-
ators.

Figure 43 – Projections with 150 oper-
ators.

The results for the experiments in Figures from 40 to 44 show that:

(1) For all types, increasing the coalescing factor up to 4 the simulation time de-
creases but remaining the same after that. Such factor 4 determines that projec-
tion instances have 16(24) coalesced amplitudes resulting in coalesced memory
access of 128(28) bytes (8 bytes per amplitude), which is the minimum size per

82

Figure 44 – Projections with 200 operators.

memory request in this hardware, for both its own and to another GPU within
a computation node. Thus, any factor smaller than 4 will produce less efficient
memory requests; and larger ones will be break into multiple requests;

(2) Two GPU local was ≈ 2× faster than one GPU; this was expected since it has the
double of computational power and no communication between GPU is required;

(3) Two GPU global is slower than one GPU for small number of operators per pro-
jection, because the communication between GPU has a high cost. From 150 op-
erators per call and coalesced factor 4, it was ≈ 1.3× faster, showing that as long
the time spent computing operators (step 2 of the kernel) is high enough it can
absorb some of the overhead inserted by the communication between GPU thus
achieving some improvement in performance for this type of execution as well;

7.2.2.2 Shor’s Algorithm

Simulation times for Shor’s algorithm over the D-GM and the HybriD-GM are pre-
sented in Table 8. Speedups of the HybriD-GM over th D-GM are shown on Figure 46-
showing improvements, for 1 and 2 GPU respectively, up to 35.74× and 61.90×.

Regarding multi GPU simulations on the Hybrid-GM, executions with 2 GPU did
not show performance gain for small number of qubits due to the small amount of
computation, but from 19 qubits it started to show growing speedups up to 1.73×.

Table 8 – Average simulation times for Shor’s Algorithm in seconds.

Qubits Previous 1 GPU 2 GPU
15 0.76 0.081 0.088
17 2.48 0.198 0.174
19 11.83 0.571 0.492
21 63.84 2.116 1.480
23 363.39 11.01 6.648
25 2015.53 56.38 32.56

SL - Simulator Limit.

83

7.2.2.3 Grover’s Algorithm

Simulation time for Grover’s algorithm using HybriD-GM and D-GM can be seen in
Table 9.

Speedups of the HybriD-GM over the D-GM are shown on Figure 45, also showing
improvements up to 38.32× and 31.76× faster for 1 and 2 GPU respectively.

Regarding multi GPU simulation performance, it achieved better speedups than
Shor’s for all number of qubits when using 1 GPU, it happens because the circuit for
Grover’s algorithm has a lower average number of operators per projection, conse-
quently making this application more bound and thus the memory coalescing access
feature has a bigger impact on performance. For that same reason the execution with
two GPU was slower than with a single GPU, hence despite having coalesced access,
communication between GPU is slow and ends up having a large impact in runtime.

Table 9 – Average simulation times for Grover’s Algorithm in seconds.

Qubits Previous 1 GPU 2 GPUs
15 0.19 0.015 0.019
17 1.04 0.051 0.063
19 6.97 0.210 0.0294
21 56.31 1.469 2.015
23 489.52 13.215 15.770
25 4245.33 114.723 133.629

Figure 45 – HybriD-GM speedup over D-GM for GPU simulations.

7.2.2.4 Hybrid

In this subsection will be observed the results when performing a hybrid simulation
in CPU and GPU. For that, the GPU memory was limited for the next simulations in

84

Figure 46 – Speedup of simulations with 2 GPU over 1 GPU.

order to represent a scenario were the GPU in not able to store the entire quantum
state as on previous GPU simulations.

Simulations of Shor’s and Grover’s algorithm were performed for a 25 qubit simula-
tion and the results obtained when limiting the GPU memory to 20 qubits are shown in
Table 10.

As can be observed, simulations using only GPU increased in time for both algo-
rithms when compared to their times with no memory limitation, Shor’s algorithm only
increased 1.17× while Grover’s increased 25, 54×, this happens because for Shor’s
algorithm is possible to executes more operators per projection.

Reflecting on that, the hybrid simulation for Shor’s algorithm decreased the per-
formance with the increase in number of threads, once the GPU had to wait for the
threads end their computation to pass to the next projection. And for the Grover’s algo-
rithm was the opposite, the performance increased with the number of threads as the
projections were smaller not making the GPU idle.

Table 10 – Simulation times for a hybrid execution of 25-qubits Shor’s and Grover’s
algorithm with a limitation of 20 qubits for GPU memory, measured in seconds.

Only GPU 1 Thread 2 Threads 4 Threads 8 Threads 10 Threads
Shor 66.23 140.27 141.53 146.34 159.67 176.60

Grover 2930.19 2272.11 1835.71 1144.69 920.08 919.78

Those results showed that, depending on the algorithm, is possible to gain per-
formance using a hybrid approach when the quantum state cant be fully stored on
the GPU. And even for Shor’s algorithm, it would probably gain performance as well if
architecture used for the simulations had a slower GPU.

85

7.3 Summarizing

In this chapter, the GPU kernel is explained as follows:

• describing parameters integrating the block projections and shared memory;

• dynamic of synchronous computations of gates structures performing over ampli-
tude states;

• updating threads in the shared memory;

• exploiting auxiliary functions applied in GPU code.

In addition, an application of LIQUi|〉 and ProjectQ which is related to parallel per-
formances over Shor’s and Grover’s algorithms are reported and compared to parallel
executions (10 threads) of the HybriD-GM, showing better results for the HybriD-GM
achieving higher speedups for simulations with low qubits, up to 117× for Shor’s and
491× for Grover’s, and good speedups for simulations with more qubits, 4.64× for Shor’s
and 32× for Grover’s.

Results are also presented to simulations of CPU for the above classes of algo-
rithms, and the comparison of the hybrid D-GM extension with the previous D-GM ver-
sion showing improvements for Shor’s algorithm up to 18× and for Grover’s algorithm
up to 7.9×. These improvements are justified by specifications of HybriD-GM, which
are potentially more expressive over space matrices of controlled gates more present
in Shor’s than Grover’s algorithms.

For simulations over GPU, results proved that setting the projection coalescence
to match the GPU memory requests size will improve performance, as suggested by
the HybriD-GM model. When compared to the previous D-GM version, simulations of
Shor’s algorithm showed gains up to 35.74× and of Grover’s algorithm up to 38.32×.
For simulations with 2 GPUs, only Shor’s algorithms was able to show improvements,
up to 1.73×, as it presents a low amount of operators acting on the qubit that implies
the necessity of communication between GPUs.

8 CONCLUSION

The simulation of QC is an important application for HPC, as spatial and temporal
complexity increases exponentially with the dimension of quantum algorithms simu-
lated.

This research work proposed the HybriD-GM model, as a hybrid computational
approach, aiming to explore the use of projection operators to control computational
granularity and better utilize hardware resources.

8.1 Relevance of construction of HybriD-GM Model

The study of quantum computing foundations and general purpose HPC simulators
presented in the related works showed that they all have the principle of partitioning
the computations to perform the quantum computing simulations, with approaches that
have some similarities but with optimizations aimed to a specific architecture. Further-
more, none of them explore a hybrid approach considering CPU and GPU.

From that, it was considered the creation of a computational model that can provide
support for quantum computing simulation in any architecture and that also seeks to
optimize their resources.

The HybriD-GM model was then conceived, integrating HPC and QC, structured for
simulations on hybrid architecture, which was applied to extend the D-GM environment.
Those contributions characterize the originality of this work and intend to support the
development of the quantum computing research area.

8.2 Main Contributions

This work contributed to the development of the HybriD-GM model for quantum
computing simulation that explores the potentialities of High Performance Computing
providing functionalities that make use of projection operators acting on quantum struc-
tures, state and transformations, to manipulate the granularity and distribution of the
computation.

The HybriD-GM model strategy to define how computations will be performed is

87

structured as a tree, where intermediate nodes represent projection layers and final
nodes represent execution layers. Such structure is configured to optimize the hard-
ware resources for the proposed scenarios, which at the current state of the model are
based on simulations in CPU, GPU and hybrid approaches.

Validation and evaluation of the HybriD-GM model by extending the D-GM environ-
ment, so that its simulations take place in the form proposed by the model. Adding a
module with the structures and functionalities necessary to deal with projections, and
implementing functions to perform the computation of projections in CPU and/or GPU.

Simulations testing the HybriD-GM model’s efficiency were performed on the D-GM
extension mainly taking Shor’s and Grover’s quantum algorithms, and then comparing
the results obtained with the previous version of D-GM, and with LIQUi|〉 and ProjectQ
simulators.

Simulations of Shor’s and Grover’s algorithm achieved performance gains over the
previous version of 21× and 9.5× for parallel CPU simulations and of 61.9× and 38.32×
for GPU simulations, respectively.

Comparing the parallel simulation to LIQUi|〉 and ProjectQ showed higher speedups
for simulations with low qubits, up to 117× for Shor’s and 491× for Grover’s, and good
speedups for simulations with more qubits, 4.64× for Shor’s and 32× for Grover’s.

Hybrid simulations showed that is possible to increase performance for some
classes of algorithms when the size of the application does not allow full storage in
GPU, improving the simulation of Grover’s algorithm up to 3.18× over the simulation
only with GPU.

The results obtained showed that the application of model impacted positively on
all types of simulations, consolidating the D-GM environment as quantum computing
simulator and validating the HybriD-GM for modelling computation.

Additionally, the proposal HybriD-GM model supports new extensions, allowing the
addition of optimizations steps, scenarios of projection/computation and others types
of simulations. Also meaning that higher levels of quantum simulation demand a grow-
ing development of computer technology and can be accompanied by a corresponding
software evolution from hardware components to digital code. Moreover, such proposal
of a hybrid software architecture for quantum computing is conceived as independent
of hardware, where the computations can be performed from regular desktops for se-
quential simulations of multi-qubits quantum applications to clusters with multiple GPU.

8.2.1 Reporting the main publications

In the following, the main themes related to the topic of this doctoral thesis are
listed below. In addition, other publications related to collaborators in the research
groups of FFMMFCC/UFPEL, LUPS/UFPEL achieved during the doctoral period are
also presented.

88

8.2.1.1 Contributions reported in journal publications

1. AVILA, A.B. de; REISER, R.; PILLA, M. L., Improving in situ GPU simu-
lation of quantum computing in the D-GM environment. INTERNATIONAL
JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS. , v.1,
p.109434201882325 - , 2019.

2. AVILA, A.B. de; YAMIN, A.C.; PILLA, M. L.; REISER, R., State-of-the-Art Quan-
tum Computing Simulators: Features, Optimizations, and Improvements for D-
GM. NEUROCOMPUTING. , v.1, p.1 - 36, 2019.

3. AVILA, A. B.; Reiser, R.; PILLA, M. L., Quantum computing simulation through
reduction and decomposition optimizations with a case study of Shor’s algorithm.
Concurrency and Computation. , v.3961, p.1 - 15, 2016.

8.2.1.2 Contributions reported in events and congress proceedings

1. AVILA, ANDERSON; Reiser, Renata H.S.; YAMIN, ADENAUER C.; PILLA,
MAURICIO L. Efficient In-Situ Quantum Computing Simulation of Shor’s and
Grover’s Algorithms In: 2017 International Symposium on Computer Architecture
and High Performance Computing Workshops (SBACPADW), 2017, Campinas.

2. AVILA, A.B. de; REISER, RENATA H S; YAMIN, A.C.; PILLA, M.L. Parallel Simu-
lation of Shor’s and Grover’s Algorithms in the Distributed Geometric Machine In:
The 2017 13th International Conference on Natural Computation, Fuzzy Systems
and Knowledge Discovery (ICNC-FSKD 2017), 2017, Guilin, China.

3. AVILA, A.B. de; REISER, R.; PILLA, MAURICIO; YAMIN, A.C. Optimizing D-GM
Quantum Computing by Exploring Parallel and Distributed Quantum Simulations
Under GPUs Arquitecture In: WICC 2016 - IEEE CEC 2016, Congress on Evolu-
tionary Computation, 2016, Vancouver.

4. AVILA, A.B. de; REISER, R.; PILLA, M. L. Reduction and Decomposition Opti-
mizations in Quantum Computing Simulation Applied to the Shor’s Algorithm In:
CNMAC 2016 Congresso Nacional de Matemática Aplicada e Computacional,
2016, Gramado.

5. AVILA, A.B. de; REISER, R.; YAMIN, A.C.; PILLA, M. L. Scalable quantum sim-
ulation by reductions and decompositions through the Id-operator In: ACM/SI-
GAPP Symposium On Applied Computing (SAC), 2016, Pisa.

6. AVILA, A.B. de; REISER, R.; PILLA, M.L. Otimização de Simulação de Com-
putação Quântica em GPUs In: ERAD/RS 2016 - XVI Escola Regional de Alto
Desempenho, 2016, Porto Alegre.

89

8.2.1.3 Awards

The above evolution works were awarded.

• Selected papers in congresses as WAMCA, WSCAD, ICNC and WEIT.

8.3 Further Work

Once able to think "coherently", QC will be able to outperform any other calculating
machine by orders of magnitude and new studies based on classical simulation need
to be investigated integrated to results in HPC.

In the context of this research work, further work in the HybriD-GM project consists
on many research topics, see some ones listen below.

1. Consolidating the HybriD-GM model
Other main optimizations, related to speed and parallelism, can be performed
on the D-GM computational environment for massively parallel and non-standard
simulation of quantum computations, which are listed below:

• continuing to study the projection properties to improve even more the
HybriD-GM model;

• extending functionalities of HybriD-GM model as heterogeneous computing;

• adding more optimizations steps;

• exploring other architectures such as distributed systems;

• developing quantum applications by exploring the potential of extended D-
GM model; and

• extending the validation to other classes of quantum algorithms.

In LUPS/UFPEL, some research projects reflecting ongoing works have been de-
veloped, as descried in the two following perspectives:

2. Improvements over memory access and memory use in simulation of QA
One of the main problems of quantum computing comes from the memory, rep-
resenting a bottleneck not just for simulations, but for computer science research
as a whole. In order to mitigate the effects from memory limitations, in (NASCI-
MENTO et al., 2019/08) a strategy to work around these problems is presented,
providing improvements over memory access and memory use performed over
simulations of dense operators, primary diagonal, and secondary diagonal opera-
tors (simple and controlled), showing a reduced amount in the number of memory
access, and an improvement over the speed of execution. The methodology be-
hind this work can be extended to be used in further work as well, even though

90

it can not able to fix memory performance issues, it can manage to enhance
quantum simulations in the hybriD-GM model .

3. Simulation of intuitionistic fuzzy algorithms based on quantum computing
Computer systems based on intuitionistic fuzzy logic are capable of generating a
reliable output even when handling inaccurate input data by applying a rule based
system, even with rules that are generated with imprecision. The main contribu-
tion in (AVILA et al., 2019) is to show that quantum computing can be used to
extend the class of intuitionistic fuzzy sets with respect to representing intuition-
istic fuzzy Xor operators. This paper describes a multi-dimensional quantum reg-
ister using aggregations operators such as t-(co)norms based on quantum gates
allowing the modeling and in

This work can also be addressed to study new classes of quantum algorithms in
quantum computing topics as cryptography, code error correction or in development of
nanotechnologies.

“This study was financed in part by the Coordenação de Aperfeiçoamento de Pes-
soal de Nível Superior – Brasil (CAPES) – Finance Code 001”

91

REFERENCES

AARONSON, S.; CHEN, L. Complexity-Theoretic Foundations of Quantum Supremacy
Experiments. In: COMPUTATIONAL COMPLEXITY CONFERENCE (CCC 2017), 32.,
2017, Dagstuhl, Germany. Anais. . . Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 2017. p.22:1–22:67. (Leibniz International Proceedings in Informatics (LIPIcs),
v.79).

AHARONOV, D.; LANDAU, Z.; MAKOWSKY, J. The quantum FFT can be classi-
cally simulated. Computing Research Repository (CoRR), Cornell University, v.91,
p.147902, Oct 2007.

ALVES, C.; SANTOS, L. P.; BASHFORD-ROGERS, T. A Quantum Algorithm for Ray
Casting using an Orthographic Camera. In: INTERNATIONAL CONFERENCE ON
GRAPHICS AND INTERACTION, ICGI 2019, FARO, PORTUGAL, NOVEMBER 21-
22, 2019, 2019. Anais. . . IEEE, 2019. p.56–63.

AMARAL, R. B.; REISER, R. H. S.; COSTA, A. C. R. Interpretações do Interferômetro
de Mach Zenhder no Modelo qGM. TEMA Tendência em Matemática Aplicada e
Computacional, SBMAC, v.10, n.2, p.111–124, 2009.

AVILA, A. B. de; REISER, R.; PILLA, M. L.; YAMIN, A. C. Interpreting Xor Intuitionis-
tic Fuzzy Connectives from Quantum Fuzzy Computing. In: INTERNATIONAL JOINT
CONFERENCE ON COMPUTATIONAL INTELLIGENCE, IJCCI 2019, VIENNA, AUS-
TRIA, SEPTEMBER 17-19, 2019, 11., 2019. Proceedings. . . ENTCS, 2019. p.288–
295.

AVILA, A. et al. GPU-aware Distributed Quantum Simulation. In: ANNUAL ACM SYMP.
ON APPLIED COMPUTING (SAC), 29., 2014, New York. Proceedings. . . ACM, 2014.
p.860–865. (SAC ’14).

AVILA, A. et al. Optimizing Quantum Simulation for Heterogeneous Computing: a
Hadamard Transformation Study. Journal of Physics: Conference Series, Bristol,
UK, v.649, n.1, p.012004, 2015.

92

AVILA, A.; REISER, R.; PILLA, M. Quantum computing simulation through reduc-
tion and decomposition optimizations with a case study of Shor’s algorithm. Concur-
rency and Computation: Practice and Experience, New Jersey, USA, p.1–14, 2016.
cpe.3961.

AVILA, A.; REISER, R.; YAMIN, A.; PILLA, M. Scalable quantum simulation by re-
ductions and decompositions through the Id-operator. In: ACM SYMPOSIUM ON AP-
PLIED COMPUTING (SAC), 31., 2016, New York, USA. Proceedings. . . ACM, 2016.
p.1255–1257.

AVILA, A.; REISER, R.; YAMIN, A.; PILLA, M. Optimizing D-GM Quantum Computing
by Exploring Parallel and Distributed Quantum Simulations Under GPUs Arquitecture.
In: IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016., 2016, New
York, USA. Proceedings. . . IEEE, 2016. p.1–6.

AVILA, A.; SHMALFUSS, M.; REISER R.AND PILLA, M.; YAMIN, A. Scalable quantum
simulation by reductions and decompositions through the id-operator. In: ANNUAL
ACM SYMPOSIUM ON APPLIED COMPUTING (SAC), 30., 2015, New York, USA.
Proceedings. . . ACM, 2015. p.1–3.

BARENCO, A. et al. Elementary gates for quantum computation. Phys. Rev. A, Cornell
University, v.52, p.3457–3467, Nov 1995.

BEAUREGARD, S. Circuit for Shor’s Algorithm using 2N+3 Qubits. Quantum Info.
Comput., Paramus, NJ, v.3, n.2, p.175–185, 2003.

BENNETT, C. H. Time/Space Trade-Offs for Reversible Computation. SIAM Journal
on Computing, Society for Industrial and Applied Mathematics, v.18, n.4, p.766–776,
1989.

BENNETT, C. H.; SHOR, P. W. Quantum Information Theory. IEEE Transactions on
Information Theory, IEEE Xplore, v.44, n.6, p.2724–2742, 1998.

BISWAS, R. et al. A NASA Perspective on Quantum Computing. Parallel Comput.,
Amsterdam, The Netherlands, The Netherlands, v.64, n.C, p.81–98, May 2017.

BOIXO, S. et al. Characterizing quantum supremacy in near-term devices. Nature
Physics, Nature Publishing Group, v.14, n.6, p.595–600, 2018.

BRASSARD, G.; HØYER, P.; TAPP, A. Quantum Counting. In: INTL. COLLOQUIUM
ON AUTOMATA, LANGUAGES AND PROGRAMMING (ICALP), 25., 1998, Berlin, DE.
Proceedings. . . Springer Berlin Heidelberg, 1998. p.820–831.

BUTSCHER, B.; H., W. Libquantum library. Disponível em http://www.libquantum.

de. Accessado em: Nov. 2017.

http://www.libquantum.de
http://www.libquantum.de

93

CAFARO, C.; MANCINI, S. On Grover’s search algorithm from a quantum information
geometry viewpoint. Physica A: Statistical Mechanics and its Applications, Ams-
terdam, NL, v.391, n.4, p.1610–1625, 2015.

DE RAEDT, H. et al. Massively parallel quantum computer simulator, eleven years later.
Computer Physics Communications, Elsevier, v.237, p.47–61, 2019.

DENCHEV, V. S. et al. What is the Computational Value of Finite Range Tunneling.
Physical Review X, American Physical Society, p.1–17, 2016.

DEUTSCH, D. Quantum theory, the Church–Turing principle and the universal quantum
computer. Proceedings A. Mathematical and Physical Sciences, Royal Society of
London, v.400, n.1818, p.97–117, 1985.

DO, M. et al. Planning for Compilation of a Quantum Algorithm for Graph Color-
ing. Computing Research Repository (CoRR), Cornell University, v.abs/2002.10917,
2020.

FEYMANN, R. P. Simulating Physics with Computers. Journal of Theory Physics,
v.11, n.21, p.467–488, 1982.

GIRARD, J.; LAFONT, Y.; TAYLOR, P. M. Visual Object-Oriented Programming.
Cambridge: Cambridge University Press, 1989. 176p.

GROVER, L. A Fast Quantum Mechanical Algorithm for Database Search. Proceed-
ings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
ACM Digital Library, p.212–219, 1996.

GROVER, L. K. A fast quantum mechanical algorithm for database search. In:
TWENTY-EIGHTH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING,
1996. Anais. . . ACM Press New York, 1996. p.212–219.

GUTIERREZ, E.; ROMERO, S.; TRENAS, M.; ZAPATA, E. Quantum Computer Sim-
ulation Using the CUDA Programming Model. Computer Physics Communications,
Elsevier, p.283–300, 2010.

HANER, T.; STEIGER, D. S. 0.5 Petabyte Simulation of a 45-Qubit Quantum Circuit. In:
INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NET-
WORKING, STORAGE AND ANALYSIS, 2017, New York, NY, USA. Proceedings. . .
Association for Computing Machinery, 2017. (SC ’17).

HäNER, T.; STEIGER, D. S.; SMELYANSKIY, M.; TROYER, M. High Performance Em-
ulation of Quantum Circuits. In: INTERNATIONAL CONFERENCE FOR HIGH PER-
FORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, 2016, Pis-
cataway, NJ, USA. Proceedings. . . IEEE Press, 2016. p.74:1–74:9. (SC ’16).

94

HILLMICH, S.; ZULEHNER, A.; WILLE, R. Concurrency in DD-based Quantum Circuit
Simulation. In: ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE
(ASP-DAC), 2020., 2020. Anais. . . IEEE Xplore, 2020. p.115–120.

HIRVENSALO, M. Quantum Computing. Natural Computing Series: Springer Verlag,
2001.

JEFFERY, S.; MAGNIEZ, F.; WOLF, R. Optimal parallel quantum query algorithms. In:
EUROPEAN SYMP. ON ALGORITHMS (ESA), 22., 2014. Proceedings. . . Springer,
2014. p.592–604. (Lecture Notes in Computer Science, v.8737).

KAYE, P.; LAFLAMME, R.; MOSCA, M. An Introduction to Quantum Computing.
USA: Oxford University Press, Inc., 2007.

KNILL, E. et al. Introduction to Quantum Information Processing. , Cornell University,
2002. http://arxiv.org/abs/quant-ph/0207171.

KNILL, E.; LAFLAMME, R. Power of one bit of quantum information. Physical Review
Letters, American Physical Society, v.81, n.25, p.5672, 1998.

KNILL, E.; NIELSEN, M. Theory of quantum computation. arXiv preprint quant-
ph/0010057, Cornell University, 2000.

LI, K.; YANG, W.; LI, K. Performance analysis and optimization for SpMV on GPU us-
ing probabilistic modeling. IEEE Transactions on Parallel and Distributed Systems,
IEEE Xplore, v.26, n.1, p.196–205, 2015.

LU, T.-C.; JUANG, J.-C. Quantum-inspired space search algorithm (QSSA) for global
numerical optimization. Applied Mathematics and Computation, Amsterdam, NL,
v.218, n.6, p.2516–2532, 2011.

MARON, A.; REISER, R. H. S.; PILLA, M.; YAMIN, A. Expanding the VPE-qGM Envi-
ronment Towards a Parallel Quantum Simulation of Quantum Processes Using GPUs.
CLEI Electronic Journal, CLEI, v.16, n.3, p.1–18, 2013.

MARON, A.; REISER, R. H. S.; PILLA, M.; YAMIN, A. Quantum Processes: A Novel
Optimization for Quantum Simulation. TEMA: Trends in Applied and Computational
Mathematics, SBMAC, v.14, n.3, 2013.

MARON, A.; REISER, R.; PILLA, M. Correlations from Conjugate and Dual Intuitionistic
Fuzzy Triangular Norms and Conorms. In: IEEE/ACM INTERNATIONAL SYMPOSIUM
ON CLUSTER, CLOUD AND GRID COMPUTING (CCGRID), 2013, New York, USA.
Anais. . . IEEE, 2013. p.1–8.

95

NASCIMENTO, M.; AVILA, A.; REISEN, R.; PILLA, M. Towards Memory Access Opti-
mization in Quantum Computing. In: CONFERENCE OF THE EUROPEAN SOCIETY
FOR FUZZY LOGIC AND TECHNOLOGY (EUSFLAT 2019), 11., 2019/08. Anais. . .
Atlantis Press, 2019/08. p.467–473.

NIELSEN, M. A.; CHUANG, I. L. Quantum Computation and Quantum Information.
Cambridge: Cambridge University Press, 2000.

OpenMP Architecture Review Board. The OpenMP API specification for parallel pro-
gramming. Available at http://openmp.org/wp/openmp-specifications. Access in:
Oct. 2015.

PESSOA, O. Conceitos de Física Quântica. SP: Editora Livraria da Física, 2003.

PORTUGAL, R.; LAVOR, C.; MACULAN, N. Uma introdução à Computação Quân-
tica. SP: Notas em Matemática Aplicada - SBMAC, 2004.

WANG, G.; ZOMAYA, A.; MARTINEZ, G.; LI, K. (Ed.). Quantum Computer Simula-
tion on Multi-GPU Incorporating Data Locality. Cham: Springer International Pub-
lishing, 2015. p.241–256.

SCOTT, D. Some definitional suggestions for automata theory. Journal of Computer
and System Sciences, Elsevier, v.28, n.1, p.187–212, 1967.

SHOR, P. W. Algorithms for Quantum Computation: Discrete Logarithms and Fac-
toring. In: ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE,
SANTA FE, NEW MEXICO, USA, 20-22 NOVEMBER 1994, 35., 1994. Anais. . . IEEE
Xplore, 1994. p.124–134.

SHOR, P. W. Scheme for reducing decoherence in quantum computer memory. Phys-
ical Review A, American Physical Society, v.52, p.R2493–R2496, Oct 1995.

SHOR, P. W. Polynomial-Time Algorithms for Prime Factorization and Discrete Log-
arithms on a Quantum Computer. Society for Industrial and Applied Mathematics
Review, SIAM, v.41, n.2, p.303–332, 1999.

SILVA, A. J. da; OLIVEIRA, W. R. de; LUDERMIR, T. B. Weightless neural network
parameters and architecture selection in a quantum computer. Neurocomputing, El-
sevier, v.183, p.13–22, 2016.

SMELYANSKIY, M.; SAWAYA, N. P. D.; ASPURU-GUZIK, A. qHiPSTER: The Quantum
High Performance Software Testing Environment. , Cornell University, 2016.

STEIGER, D. S.; HäNER, T.; TROYE, M. ProjectQ: an open source software framework
for quantum computing. Quantum, Vienna, v.2, 2018.

http://openmp.org/wp/openmp-specifications

96

STOLLENWERK, T. et al. Quantum Annealing Applied to De-Conflicting Optimal Tra-
jectories for Air Traffic Management. IEEE Transactions on Intelligent Transporta-
tion Systems, IEEE Xplore, v.21, n.1, p.285–297, 2020.

Texas Advanced Computing Center (TACC). Stampede Supercomputer. Disponível
em: https://www.tacc.utexas.edu/stampede. Acesso em: Nov. 2017.

THAKER, D. D. et al. Quantum memory hierarchies: Efficient designs to match avail-
able parallelism in quantum computing. In: INTERNATIONAL SYMPOSIUM ON COM-
PUTER ARCHITECTURE (ISCA’06), 33., 2006, IEEE. Anais. . . IEEE Explore, 2006.
p.378–390.

TRIEU, D. B. Large-Scale Simulations of Error-Prone Quantum Computation De-
vices. 2009. Dr. (Univ.) — Univ. Diss. Wuppertal, Jülich. Record converted from VDB:
12.11.2012; Wuppertal, Univ. Diss., 2009.

VERDON, G. et al. Learning to learn with quantum neural networks via classi-
cal neural networks. Computing Research Repository (CoRR), Cornell University,
v.abs/1907.05415, 2019.

VIDAL, G. Efficient Classical Simulation of Slightly Entangled Quantum Computations.
Phys. Rev. Lett., Stanford University, EUA, v.91, p.147902, Oct 2003.

WECKER, D.; SVORE, K. M. LIQUi|>: A Software Design Architecture and Domain-
Specific Language for Quantum Computing. Computing Research Repository
(CoRR), Cornell University, v.abs/1402.4467, 2014.

YANG, W.; LI, K.; MO, Z.; LI, K. Performance Optimization Using Partitioned SpMV
on GPUs and Multicore CPUs. IEEE Transactions on Computers, IEEE Xplore, v.64,
n.9, p.2623–2636, Sept 2015.

YOUNG, T. The Double-Slit Experiment. Disponível em: http://www.

doubleslitexperiment.com. Acesso em: Nov. 2017.

https://www.tacc.utexas.edu/stampede
http://www.doubleslitexperiment.com
http://www.doubleslitexperiment.com

	Introduction
	Main Motivations
	Relevance of Quantum Computing
	Relevance of Quantum Algorithms
	Relevance of Quantum Computing Simulation

	Main research questions
	Proposal and main objectives
	Thesis Outline

	Quantum Computing Foundations
	Basic Concepts
	Postulates of Quantum Mechanics
	Quantum Circuit Model
	Quantum Transformations
	Quantum Measurements

	Shor's Algorithm for Quantum Factoring
	Grover's Algorithm for Quantum Search
	Summarizing

	D-GM framework
	Reducing Simulation Complexity
	Avoiding replication and sparsity inhered from Id-operators
	Decomposing QT based on Id-operators

	Improving scalability of QT
	Implementation
	CPU Execution
	GPU Execution

	Summarizing

	Quantum Computing Simulation: Related-work
	LIQUi|"526930B
	Execution Modes and Simulation Results

	qHiPSTER
	Simulation Results

	ProjectQ
	Simulation Results

	Haner Distributed Simulator
	Circuit Optimizations and Simulation Results

	Gutierrez simulator in CUDA
	Simulation Results

	Zhang simulator
	Results

	Analysis of selected quantum computing simulators
	Summarizing

	HybriD-GM Proposal: Conceptual Model
	Matrix-structure of quantum state projections
	Matrix-structure of quantum transformation projections
	Computations with projections over matrix-structures
	Summarising

	HybriD-GM Proposal: Architectural Model
	Structuring the HybriD-GM model
	Functionalities of component levels on the HybriD-GM model
	Data-structures of component levels on the HybriD-GM model

	Main level components of the HybriD-GM model
	Preprocessing in HybriD-GM model
	Projection Manager Structure
	Projections Layers
	Execution Layers

	Execution Approaches
	Summarizing

	HybriD-GM Proposal: Evaluating Applications
	GPU Kernel
	Results
	CPU Results
	GPU Results

	Summarizing

	Conclusion
	Relevance of construction of HybriD-GM Model
	Main Contributions
	Reporting the main publications

	Further Work

	References

