
UNIVERSIDADE FEDERAL DE PELOTAS
Centro de Desenvolvimento Tecnológico

Programa de Pós-Graduação em Computação

Tese

Energy-Efficient NoC-Based Systems for Real-Time Multimedia Applications
using Approximate Computing

Wagner Ishizaka Penny

Pelotas, 2021

Wagner Ishizaka Penny

Energy-Efficient NoC-Based Systems for Real-Time Multimedia Applications
using Approximate Computing

Tese apresentada ao Programa de Pós-Gradua-
ção em Computação do Centro de Desenvolvi-
mento Tecnológico da Universidade Federal de
Pelotas, como requisito parcial à obtenção do tí-
tulo de Doutor em Ciência da Computação.

Advisor: Prof. Dr. Bruno Zatt

Coadvisors: Prof. Dr. Daniel Munari Palomino
Prof. Dr. Marcelo Schiavon Porto

Pelotas, 2021

Universidade Federal de Pelotas / Sistema de Bibliotecas
Catalogação na Publicação

P416e Penny, Wagner Ishizaka
PenEnergy-efficient NoC-based systems for real-time
multimedia applications using approximate computing /
Wagner Ishizaka Penny ; Bruno Zatt, orientador ; Daniel
Munari Palomino, Marcelo Schiavon Porto, coorientadores.
— Pelotas, 2021.
Pen142 f. : il.

PenTese (Doutorado) — Programa de Pós-Graduação em
Computação, Centro de Desenvolvimento Tecnológico,
Universidade Federal de Pelotas, 2021.

Pen1. NoC. 2. Approximate computing. 3. Machine learning.
4. Video coding. 5. Hardware acceleration. I. Zatt, Bruno,
orient. II. Palomino, Daniel Munari, coorient. III. Porto,
Marcelo Schiavon, coorient. IV. Título.

CDD : 005

Elaborada por Maria Inez Figueiredo Figas Machado CRB: 10/1612

Wagner Ishizaka Penny

Energy-Efficient NoC-Based Systems for Real-Time Multimedia Applications
using Approximate Computing

Tese aprovada, como requisito parcial, para obtenção do grau de Doutor em
Ciência da Computação, Programa de Pós-Graduação em Computação, Centro de
Desenvolvimento Tecnológico, Universidade Federal de Pelotas.

Data da Defesa: 14 de dezembro de 2020

Banca Examinadora:
Prof. Dr. Bruno Zatt (orientador)
Doutor em Microeletrônica pela Universidade Federal do Rio Grande do Sul.

Prof. Dr. Daniel Munari Palomino (coorientador)
Doutor em Ciência da Computação pela Universidade Federal do Rio Grande do Sul.

Prof. Dr. Marcelo Schiavon Porto (coorientador)
Doutor em Ciência da Computação pela Universidade Federal do Rio Grande do Sul.

Prof. Dr. César Augusto Missio Marcon
Doutor em Ciência da Computação pela Universidade Federal do Rio Grande do Sul.

Prof. Dr. Júlio Carlos Balzano de Mattos
Doutor em Ciência da Computação pela Universidade Federal do Rio Grande do Sul.

Prof. Dr. Sergio Bampi
Doutor em Engenharia Elétrica Microeletrônica pela Stanford University (USA).

Dedico este trabalho aos meus filhos Thiago e An-
tonella, o sorriso de vocês é o meu sorriso.

AGRADECIMENTOS

Ao ler os agradecimentos de inúmeras outras teses que passaram pelos meus ol-
hos ao longo desses anos, percebo que este pequeno momento, breve, anterior à
grande quantidade de conteúdo técnico que uma tese requer (e que está por vir nas
páginas seguintes), é, sobretudo, um momento de reflexão, ao qual o doutorando, con-
tendo a ansiedade natural diante do momento de ter avaliado o trabalho de quatro anos
de sua vida, o fechamento de um ciclo, se dá ao luxo por um momento: de refletir, de
descontrair, de desabafar. Por que todas essas ações e inúmeras outras se traduzem
no ato de agradecer. Nada mais humano do que ter gratidão. Quando paramos para
analisar a nossa vida, e refletimos sobre todos os conjuntos de ações que nos troux-
eram até aqui, um conjunto quase infinito de ifs e elses, que, quando combinados,
resultam exatamente no momento que estamos vivendo, vemos que talvez as coisas
não aconteçam ao acaso, e que alguma força maior, invisível, talvez nos conduza.
Agradeço primeiramente a Deus, e não é um agradecimento vazio, por mera formal-
idade. Não acredito num Deus que magicamente faça as coisas acontecerem, que
tenha feito cair no meu colo anos de estudo e uma tese magicamente escrita. Acred-
ito, sim, numa força superior que me deu forças, que me proporcionou exatamente os
momentos que eu teria (e terei) que viver, porque são exatamente essas as experiên-
cias que preciso viver para me tornar um ser humano melhor, afinal, parafraseando
uma série que eu adoro (Dark – Netflix), “everything is connected”.

Como não agradecer aos meus orientadores e coorientadores? Ao professor Bruno
Zatt, meu orientador, incansável, paciente, dedicado. Com certeza este trabalho não
seria possível sem sua magnífica orientação. Foi meu orientador no mestrado, foi meu
orientador neste doutorado, e desejo seguir sendo parceiro de pesquisa ao longo dos
próximos anos. Ao professor Daniel Palomino, que passou a ser meu coorientador no
doutorado, que contribuiu de forma ímpar na execução deste trabalho. Ao professor
Marcelo Porto, meu coorientador de mestrado e também de doutorado, sempre incen-
tivando o grupo de pesquisa e cada um de seus membros, igualmente fundamental
para a execução deste trabalho. Por falar em grupo de pesquisa, que palavra forte
essa: GRUPO. Faço parte de dois grupos de pesquisa na UFPEL, o GACI (Grupo de
Arquiteturas e Circuitos Integrados) e o ViTech (Video Technology Research Group).
Segundo Aristóteles, “o homem é um animal social”, ao meu ver não existe frase mais
correta, e isso se traduz na pesquisa. Tenho muito orgulho de fazer parte desses
grupos, eles são a prova de que o trabalho em equipe é o caminho para o sucesso.
Agradeço aos professores Luciano Agostini e Guilherme Corrêa, que, apesar de não
me orientarem formalmente neste doutorado, foram fundamentais na minha jornada
até aqui, por seus ensinamentos e parceria. Agradeço ao professor Leandro Indrusiak,
que me recebeu por seis meses na Universidade de York, Reino Unido, junto ao Real-

Time Systems Group, durante meu estágio sanduíche. Foi um curto período no qual,
além da experiência de vida que me foi proporcionada, pude incrementar em muito
meus conhecimentos. Agradeço por todos seus ensinamentos e parceria. Agradeço
aos demais professores que cruzaram meu caminho ao longo de todos esses anos,
do ensino básico à graduação, e aos professores do PPGC da UFPEL, por todos os
seus ensinamentos.

Segundo Isaac Newton: “se enxerguei mais longe foi porque me apoiei nos ombros
de gigantes”. Parafraseando Newton, eu afirmo que “se cheguei até aqui foi porque
também estive apoiado nos ombros de gigantes”, mas neste caso, meus gigantes são
minha família. Agradeço a minha amada esposa Janice, que esteve ao meu lado ao
longo dos últimos dez anos, suportando todas as etapas (algumas felizes e outras
nem tanto) que a vida (tanto pessoal quanto acadêmica) proporciona. Agradeço por
seu companheirismo, amor, amizade, compreensão, parceria, e uma série de outras
tantas qualidades que eu poderia elencar. Com certeza este trabalho é um pouquinho
dela também. Agradeço aos meus filhos Thiago e Antonella por alegrarem cada dia
da minha existência. Sempre ouvi os antigos dizerem que o maior legado que os
pais podem deixar para os filhos é a educação, e hoje, muito mais experiente do
que outrora, enxergo claramente como são verdadeiras estas palavras. Agradeço
profundamente aos meus pais, Solmar e Rosa, por todo amor, carinho, suporte e
incentivo que me deram até hoje. A conclusão deste trabalho também passa por eles.
Agradeço ao meu sogro Jorge e minha tia Sílvia, por todo carinho e admiração ao
longo destes anos. Agradeço a minha irmã Amanda e cunhado Éder pelo carinho e
amizade.

Voltando às situações da vida em que tomamos decisões que impactam nosso fu-
turo de maneira drástica, volto ao momento no qual decidi cursar o curso técnico de
Eletromecânica, lá nos idos de 2005. No curso fui aluno do professor e amigo Vladimir
Afonso, quem muitos anos depois, quando eu concluía o curso de Engenharia Elétrica,
convidou-me para cursar o mestrado em Computação, da Universidade Federal de
Pelotas. Era um enorme desafio, uma mudança de área de pesquisa bastante drástica,
que me exigiu enorme dedicação e esforço. Num primeiro momento antes de terminar
a graduação, talvez por comodismo mesmo, eu não cogitasse a computação e per-
manecesse na engenharia elétrica. No entanto, a oportunidade oferecida pelo Vladimir
foi desafiadora, foi quando conheci os professores que me orientam e mudei comple-
tamente os rumos da minha vida acadêmica. Agradeço à parceria de meus colegas de
laboratório, bolsistas de iniciação científica, mestrandos e doutorandos, Ruhan Con-
ceição, Robson Domanski, Luciano Braatz, Anderson Martins, Jones Goebel, Roberta
Palau, Narúsci Bastos, Mário Saldanha, Ítalo Machado, Renato Souza, Maicon Car-
doso, Murilo Perleberg, Roger Porto, Ísis Bender, Cristiano Santos, Rafael Ferreira,
Gustavo Feijó, Marcel Moscarelli, Alex Borges, Carlos Betemps, Mateus Melo, Iago
Storch, Douglas Corrêa, Paulo Gonçalves, Thiago Bubolz, e mais algum outro que eu
possa estar injustamente esquecendo. A troca de experiências, regada a muito café
e momentos de descontração, torna muito mais fácil e produtiva a arte de pesquisar.
Uma pena que uma pandemia mundial tenha alterado nossa rotina na universidade.
Agradeço também ao grande amigo Gustavo Kunzel, o qual conheci durante o estágio
sanduíche, e foi uma parceira brasileira num laboratório com múltiplas nacionalidades
coexistindo na terra da rainha. Com certeza o mate que ele levava todas as manhãs
fez diferença na produtividade.

Agradeço a todas as instituições públicas de ensino por onde passei, desde a in-

fância até a pós-graduação: Escola Municipal Luciana de Araújo, Colégio Municipal
Pelotense, Centro Federal de Educação Tecnológica de Pelotas (CEFET-RS), Instituto
Federal Sul-rio-grandense (IFSUL – antigo CEFET-RS), e Universidade Federal de
Pelotas (UFPEL). Cada uma destas instituições tem sua parcela de contribuição e im-
portância na minha trajetória. Agradeço ao IFSul-Campus Pelotas e ao curso Técnico
em Eletrotécnica, onde sou professor, a oportunidade de afastamento para estudos,
fundamental para conclusão deste trabalho. Agradeço à Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior (CAPES) pela bolsa de doutorado sanduíche,
igualmente fundamental para a execução do presente trabalho.

Por fim, agradeço a todos aqueles que, de uma forma ou de outra, contribuíram
para o desenvolvimento deste trabalho.

Se caíste, ergue-te e anda. Caminha para frente. Regressa
aos teus deveres e esforça-te a cumpri-los. Ora, pedindo a
Deus mais força para a marcha. Muitas vezes a queda é
uma lição de vida. Quem cai sente o valor do perdão aos
caídos. O futuro te espera... Segue e confia em Deus.
— CHICO XAVIER

ABSTRACT

PENNY, Wagner Ishizaka. Energy-Efficient NoC-Based Systems for Real-Time
Multimedia Applications using Approximate Computing. Advisor: Bruno Zatt.
2021. 142 f. Thesis (Doctorate in Computer Science) – Technology Development
Center, Federal University of Pelotas, Pelotas, 2021.

This thesis presents an energy-efficient NoC-based system for real-time multimedia
applications employing approximate computing. The proposed video processing
system, called SApp-NoC, is efficient in both energy and quality (QoS), employing a
scalable NoC architecture composed of processing elements designed to accelerate
the HEVC Fractional Motion Estimation (FME). SApp-NoC architecture is organized
using neighbor Tiles, sized to enable scalability across distinct throughput demands -
depending on video resolution and frame rate - whereas reaching real-time processing
for 4K UHD videos at 120 fps. Approximate computing is deployed using four types
of processing elements implemented as dedicated hardware accelerators with distinct
levels of approximation, designed based on the application error resiliency analysis.
Therefore, two solutions are proposed: HSApp-NoC (Heuristc-based SApp-NoC),
and MLSApp-NoC (Machine Learning-based SApp-NoC). At design time, video
encoder statistical behavior is used to propose algorithms aiming the tiling definition,
to properly size the NoC and to instantiate and place the approximate processing
elements within SApp-NoC. At run-time, our application-aware dynamic task-mapping
algorithm guarantees real-time processing while reducing energy consumption with
low QoS degradation. When compared to a precise solution processing 4K videos
at 120 fps, HSApp-NoC and MLSApp-NoC reduce about 48.19% and 31.81% the
energy consumption, at small quality reduction of 2.74% and 1.09%, respectively. A
set of schedulability analysis is proposed in order to guarantee the meeting of timing
constraints at typical workload scenarios. Moreover, our system design methodology
is suitable to be applied to other error-resilient processing kernels targeting energy
saving with high throughput requirements.

Keywords: NoC. Approximate Computing. Machine Learning. Video Coding. Hard-
ware Acceleration.

RESUMO

PENNY, Wagner Ishizaka. Energy-Efficient NoC-Based Systems for Real-Time
Multimedia Applications using Approximate Computing. Orientador: Bruno Zatt.
2021. 142 f. Tese (Doutorado em Ciência da Computação) – Centro de Desenvolvi-
mento Tecnológico, Universidade Federal de Pelotas, Pelotas, 2021.

Esta tese apresenta um sistema de tempo real energeticamente eficiente, base-
ado em NoC, para aplicações multimídia utilizando computação aproximada. O
sistema de processamento de vídeo proposto, denominado SApp-NoC, é efici-
ente tanto em energia quanto qualidade (QoS), empregando uma arquitetura NoC
escalável composta por elementos de processamento projetados para acelerar a
Estimação de Movimento Fracionária (FME) do HEVC. A arquitetura SApp-NoC é
organizada usando blocos vizinhos, dimensionada para permitir escalabilidade em
diversos cenários de demanda - dependendo da resolução do vídeo e da taxa de
quadros - atingindo desempenho para o processamento em tempo real de vídeos
UHD 4K a 120 fps. A computação aproximada é aplicada utilizando quatro tipos
de elementos de processamento, implementados como aceleradores de hardware
dedicados com níveis distintos de aproximação, projetados com base na resiliência
a erros da aplicação. Dessa forma, duas soluções são propostas: HSApp-NoC
(Heuristc-based SApp-NoC), baseada em heurísticas, e MLSApp-NoC (Machine
Learning-based SApp-NoC), baseada em aprendizado de máquina. Em tempo de
projeto, o comportamento estatístico do codificador de vídeo é utilizado para dividir
e dimensionar a NoC adequadamente, e, também, para instanciar e posicionar os
elementos de processamento aproximados na SApp-NoC. Em tempo de execução,
um algoritmo de mapeamento de tarefas dinâmico baseado na aplicação garante
o processamento em tempo real enquanto reduz o consumo de energia com baixa
degradação de QoS. Quando comparado a uma solução precisa de processamento
de vídeos 4K a 120 fps, HSApp-NoC e MLSApp-NoC são capazes de reduzir em cerca
de 48,19% e 31,81% o consumo de energia, com uma pequena redução de qualidade
de 2,74% e 1,09%, respectivamente. Um conjunto de análises de escalonabilidade
é proposto a fim de garantir o atendimento das restrições de tempo em cenários
típicos de carga de trabalho. Além disso, nossa metodologia de projeto de sistema é
adequada para ser aplicada a outros kernels de processamento resilientes a erros,
visando economia de energia em aplicações com alta demanda em desempenho.

Palavras-chave: NoC. Computação Aproximada. Aprendizado de Máquina. Codifica-
ção de Vídeo. Aceleração em Hardware.

LIST OF FIGURES

1 Examples of NoC topologies: (a) regular mesh; (b) folded torus; (c)
irregular mesh-custom topology (BOLOTIN et al., 2004). 30

2 Example of a mesh 2D NoC 3x3 architecture with a priority-driven
VCs router detailing (adapted from INDRUSIAK (2014)). 31

3 Downstream indirect interference (adapted from INDRUSIAK;
BURNS; NIKOLIĆ (2018)). 39

4 End-to-end response time of a communicating task (INDRUSIAK,
2014). 40

5 Picture (public domain) encoded with: (a) original filters (b) approxi-
mate filters, detailing homogeneous (blue) and heterogeneous (red)
regions. 42

6 Frequency response of a precise FIR filter. 43
7 Frequency response of an approximate FIR filter. 43
8 HEVC block diagram. 45
9 Division of a frame into CTUs and a CTU in CUs (adapted from

ZHOU; ZHOU; CHEN (2013)). 48
10 Division of a CU into all possible PUs allowed by HEVC (adapted

from MCCNANN et al. (2014)). 49
11 Division of a frame into GOPs (CORRÊA, 2014). 49
12 Graphical presentation of LD configuration (MCCNANN et al., 2014). 51
13 Graphical presentation of RA configuration (MCCNANN et al., 2014). 51
14 Motion estimation steps. 53
15 IME details. 54
16 FME detailing for an 8x8 block: (a) integer best candidate block

within the reference matrix, (b) fractional samples from horizontal
and vertical filtering details, (c) filtering behavior from UP, MIDDLE
and DOWN, and (d) fifteen fractional blocks regarding one integer
block. 56

17 Example of a decision tree (CORRÊA, 2014). 57
18 RD curves employed on (a) BD-BR and (b) BD-PSNR calculation. . 59

19 Detailed methodology: (a) overview of the novel contributions of this
work and (b) adopted framework. 70

20 Instantiation algorithm pseudo-code. 75
21 Placement algorithm pseudo-code. 76
22 Task allocation algorithm pseudo-code. 77

23 Sub-regions for task allocation considering (a) HSApp-NoC 4x4, (b)
HSApp-NoC 5x5, (c) MLSApp-NoC 4x4, and (d) MLSApp-NoC 5x5. 78

24 HEVC FME hardware design. 81
25 FAPP0 MIDDLE hardware design. 82
26 FAPP0 UP/DOWN hardware design. 82
27 FAPP1 MIDDLE hardware design. 84
28 FAPP1 UP/DOWN hardware design. 84
29 FAPP2 hardware design. 85
30 FAPP3 hardware design. 86
31 Reference matrices scenarios for FAPP0, FAPP1, FAPP2, and FAPP3. 86
32 Search and comparison design: (a) top-level view of SEARCH AND

COMPARISON, (b) SAD TREE detailing, (c) SAD ACCUMULATOR
detailing, and (d) SAD COMPARATOR detailing. 87

33 Temporal diagram of HEVC FME operating with FAPP0 or FAPP2:
(a) processing of an 8x8 block, (b) processing of a 64x8 column, and
(c) processing of a 64x64 block. 89

34 FME modeled as a Sporadic Task-Chain. 95
35 SNFT pseudo-algorithm . 98

36 Heuristic-based application-aware approximation control pseudo-
code. 100

37 Neighbour Estimation Parameter. 101
38 Gaussian distributions for QPs (a) 22, (b) 27, (c) 32, and (d) 37. . . 102
39 Example of the structure of an ARFF file. 105
40 Confusion matrix of MLAAC decision tree. 106
41 Generated decision tree - MLAAC 106

42 SNFT results for HSApp-NoC processing FHD video sequences. . . 111
43 SNFT results for MLSApp-NoC processing FHD video sequences. . 112
44 SNFT results for HSApp-NoC processing 4K video sequences. . . . 113
45 SNFT results for SApp-NoC processing 4K video sequences. 113
46 Energy per frame (uJ) for Kimono sequence with QP37. 119
47 Y-PSNR (dB) per frame for Kimono sequence with QP37. 119
48 QoS results in terms of BD-BR for each class. 121
49 Response times of HSApp-NoC regarding tasks (T), flows (F), and

end-to-end (E) for FHD@30fps and 4K@30fps. 122
50 Response times of MLSApp-NoC regarding tasks (T), flows (F), and

end-to-end (E) for FHD@30fps and 4K@30fps. 122
51 Response times of HSApp-NoC regarding tasks (T), flows (F), and

end-to-end (E) for FHD@60fps and 4K@60fps. 123
52 Response times of HSApp-NoC regarding tasks (T), flows (F), and

end-to-end (E) for 4K@120fps. 123
53 Response times of MLSApp-NoC regarding tasks (T), flows (F), and

end-to-end (E) for FHD@60fps and 4K@60fps. 124
54 Response times of MLSApp-NoC regarding tasks (T), flows (F), and

end-to-end (E) for 4K@120fps. 124

LIST OF TABLES

1 HEVC FME Interpolation Filter Coefficients 55

2 FAPP Coefficients . 83
3 FAPP inputs and resources detailing 85
4 Synthesis results for ASIC TSMC 40 nm 91
5 Average power savings of approximate solutions (FAPP1-3) com-

pared with precise solution (FAPP0) 92
6 QoS results in terms of BD-BR (%) for each FAPP 93

7 FME memory reads computation time evaluation of 64x64 blocks . . 96

8 Evaluated Parameters . 101
9 Information Gain Attribute Evaluation for SApp-NoC Decision Tree . 105
10 QoS results in terms of BD-BR for the tested sequences 107

11 SApp-NoC synthesis results and comparison with related works . . 114
12 Average selection (%) of each FAPP during video sequences pro-

cessing at HSApp-NoC . 115
13 Average selection (%) of each FAPP during video sequences pro-

cessing at MLSApp-NoC . 116
14 Average energy consumption of HSApp-NoC during video se-

quences processing . 117
15 Average energy consumption of MLSApp-NoC during video se-

quences processing . 118
16 QoS results in terms of BD-BR (%) for SApp-NoC 120

LIST OF ABBREVIATIONS AND ACRONYMS

2D 2 Dimensions

AI All-Intra

ANN Artificial Neural Network

ARFF Attribute-Relation File Format

ASIC Application Specific Integrated Circuit

AV1 AOMedia Video 1

AVC Advanced Video Coding

AVS2 Audio and Video coding Standard 2.0

AUFF Approximate Unified FME Filters

BD Bjontegaard Difference

BD-BR Bjontegaard Difference bit-rate

BD-PSNR Bjontegaard Difference Peak Signal-to-Noise Ratio

BMA Block Matching Algorithm

BPU Basic Processing Unit

Cb Blue Chrominance

CGRA Coarse-Grained Reconfigurable Array

CNN Convolutional Neural Network

COVID Corona Virus Disease

CPU Central Processing Unit

Cr Red Chrominance

CRGA Coarse-Grained Reconfigurable Array

CTC Common Test Conditions

CTU Coding Tree Unit

CU Coding Unit

DAG Directed Acyclic Graph

dB Decibel

DBF Deblocking Filter

DCT Discrete Cosine Transform

DST Discrete Sine Transform

DVFS Dynamic Voltage and Frequency Scaling

EiB Exa Binary Byte

FAPP Approximate FME Filter

FHD Full-High Definition

FIFO First In First Out

FIR Finite Impulse Response

FME Fractional Motion Estimation

FPGA Field Programmable Gate Array

fps Frames per Second

FS Full Search

GACI Grupo de Arquiteturas e Circuitos Integrados

GoP Group of Pictures

GPB Generalized P and B picture

GPP General-Purpose Processor

GPU Graphics Processing Unit

H Height

HAAC Heuristic-based Application-aware Approximation Control

HARP Heterogeneous Accelerator-Rich Platform

HEVC High Efficiency Video Coding

HCS High Complexity Sequence

HD High Definition

HM HEVC Test Model

HSApp-NoC Heuristic-based Scalable Approximate Network-on-Chip

HVS Human Visual System

HW Hardware

IDCT Inverse Discrete Cosine Transform

IDR Instantaneous Decoding Refresh

IDST Inverse Discrete Sine Transform

IEC International Electrotechnical Commission

IFSul Instituto Federal Sul-rio-grandense

IG Information Gain

IGAE Information Gain Attribute Evaluation

IME Integer Motion Estimation

Int Interpolator

IoT Internet-of-Things

ITU International Telecommunication Union

ITU-T ITU Telecommunication Standardization Sector

JCT-VC Joint Collaborative Team on Video Coding

KDD Knowledge Discovery from Data

KLD Kullback-Leibler Divergence

LCS Low Complexity Sequence

LD Low Delay

LM Logarithmic Multipliers

ME Motion Estimation

MC Motion Compensation

MI Memory Input

ML Machine Learning

MLAAC Machine Learning-based Application-aware Approximation Control

MLSApp-NoC Machine Learning-based Scalable Approximate Network-on-Chip

MO Memory Output

MPB Multi-point Progressive Blocking

MPEG Moving Picture Experts Group

MPSoC Multiprocessor System-on-Chip

MSE Mean-Squared Error

MV Motion Vector

MVC Multiview Video Coding

NoC Network-on-Chip

PDF Probability Density Function

PE Processing Element

PSNR Peak Signal-to-Noise Ratio

PU Prediction Unit

QoS Quality-of-Service

QP Quantization Parameter

QVGA Quarter Video Graphics Array

RA Random Access

RCL Residual Coding Loop

RD Rate Distortion

RDO Rate Distortion Optimization

RGB Red Green Blue

RH Research Hypothesis

RQT Residual Quadtree

RTA Response Time Analysis

RTL Register Transfer Level

S&C Search and Comparison

SAD Sum of Absolute Differences

SAF Store-and-Forward

SAO Sample Adaptive Offset

SApp-NoC Scalable Approximate Network-on-Chip

SI Spatial Index

SNFT Schedulability breakdown NoC Frequency Tracking algorithm

SoC System-on-Chip

SQ Sub-Question

SW Search Window

TI Temporal Index

TU Transform Unit

TZS Test Zonal Search

UFPEL Universidade Federal de Pelotas

UHD Ultra-High Definition

VC Virtual Channel

VVC Versatile Video Coding

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

ViTech Video Technology Research Group

W Width

WBSN Wireless Body Sensor Node

WCRT Worst-Case Response Time

WEKA Waikato Environment for Knowledge Analysis

WHT Walsh Hadamard Transform

Y Luminance

CONTENTS

1 INTRODUCTION . 21
1.1 Research Question and Research Hypotheses 24
1.2 Goal and Novel Contributions . 26
1.3 Thesis Outline . 27

2 BACKGROUND . 29
2.1 Networks-on-Chip: General Aspects . 30
2.2 Real-Time Systems: Schedulability Analysis 32
2.2.1 System Model and Notation . 33
2.2.2 End-to-End Schedulability Tests for NoC-Based Multicores 36
2.3 Approximate Computing . 40
2.4 Video Coding: High Efficiency Video Coding (HEVC) 43
2.4.1 Basic Concepts . 43
2.4.2 General Aspects . 44
2.5 Fractional Motion Estimation . 53
2.6 Machine Learning: Decision Trees . 56
2.7 QoS Metrics for Video Coding . 58
2.8 Summary . 59

3 RELATED WORKS . 60
3.1 Approximate Computing for Complex Systems 60
3.1.1 General Purpose Complex Systems . 60
3.1.2 Video Coding . 61
3.2 NoC-Based Solutions . 62
3.2.1 Energy-Efficient NoC Solutions for General Applications 63
3.2.2 NoC Solutions for Video Coding . 64
3.3 Hardware Designs for Video Coding . 65
3.3.1 Precise Designs for FME . 66
3.3.2 Approximate Designs for FME . 66
3.4 Summary and Challenges . 67

4 SCALABLE APPROXIMATE NETWORK-ON-CHIP (SAPP-NOC) 69
4.1 Processing Elements Design . 74
4.2 Processing Elements Instantiation Algorithm 74
4.3 Processing Elements Placement Algorithm 76
4.4 Content-Based run-time Energy/QoS-Aware Task Allocation 77
4.5 Summary . 79

5 FME MULTI-LEVEL APPROXIMATE HARDWARE ACCELERATORS . . . 80
5.1 Filters Design . 81
5.2 Search and Comparison Design . 86
5.3 Synthesis and QoS Results . 88

6 NOC DESIGN AND APPLICATION MODELING 94
6.1 NoC Architecture . 94
6.2 Application Workload Modeling . 94
6.3 Schedulability breakdown NoC Frequency Tracking algorithm (SNFT) 97

7 APPLICATION-AWARE APPROXIMATION CONTROL 99
7.1 Heuristic-based Application-aware Approximation Control 99
7.2 Machine Learning-based Application-aware Approximation Control . 100
7.2.1 Evaluated Parameters . 100
7.2.2 Evaluation of Normalized RDCosts . 102
7.2.3 Generated Decision Tree . 104
7.2.4 QoS Results for Generated Decision Tree 107

8 RESULTS AND DISCUSSION . 108
8.1 Experimental Setup . 108
8.2 NoC Breakdown Frequency Results . 111
8.3 Power/Energy Results . 113
8.4 QoS Results . 118
8.5 Performance Analysis Results . 121
8.6 Results Summary . 123

9 CONCLUSION . 126
9.1 Future Works . 127

REFERENCES . 129

ANNEX A LIST OF PUBLICATIONS DURING THIS PHD 140

1 INTRODUCTION

Over the past few years, semiconductor technologies have advanced strongly, with
an ever-increasing number of processing cores integrated into a single die. The mar-
ket for semiconductor devices is one of the fastest-growing in the world, with an ex-
pected turnover of up to $403 billion in sales in 2020 (STATISTA, 2020a). Such huge
advance affects the electronic consumer market, which presents a fast-growing de-
mand for more powerful electronic devices. Therefore, current devices are now able
to handle applications with increasing processing demands, posed by several complex
and data/processing-intensive algorithms where performance for real-time throughput
is necessary, such as deep learning, video processing, Internet-of-things (IoT), com-
puter vision, networking, and so on.

This fast advance of the semiconductor industry was allowed by the continuous
technology shrinking of the transistor size. Indeed, during many years, microproces-
sors have improved their processing capacity by increasing clock frequency while di-
minishing gate size. However, this phenomenon did not last forever. Since the 2000s,
single-core solutions were no longer enough to provide performance enhancement,
facing challenges regarding the so-called power wall (ESMAEILZADEH et al., 2011;
VILLA et al., 2014). The threshold and supply voltage of transistors did not follow the
shrinking in the gate size, breaking the rules prescribed by Dennard’s Scaling Law
(DENNARD et al., 1974)(BOHR, 2007), which originally predicted that the density of
power would be kept constant with the increase in the number of transistors. Thus, the
increase in power density resulted in an unwanted increase in temperatures reached
by digital devices, which, in turn, resulted in increased cooling costs, being even more
challenging in embedded systems, given their posed area and power constraints.

The development of energy-efficient devices is of utmost importance nowadays,
mainly when considering the fast-paced expansion and popularization of mobile
battery-powered devices (like tablets and smartphones) in the market. For instance,
these devices were responsible for an Internet traffic that exceeded 19.01 EiB/month
in 2018, with an expectation of reaching up to 77.49 EiB/month in 2022 (where 1
EiB is equal to 260 bytes) (STATISTA, 2020b). Moreover, such an increase in Inter-

22

net traffic has indirectly posed strong energy demand for online (cloud) data centers,
e.g., Google, Facebook, Apple, and so on. Since they need to move, process, and
store more data, the data centers demand more energy. For instance, data centers
around the world were responsible for an annual energy consumption of 200 TWh in
2018, which represented the annual energy consumption of countries like Iran (JONES,
2018). Thus, one can notice that there is a need for the development of energy-efficient
devices.

The fast advances and popularization of digital devices leveraged the develop-
ment/improvement of several application domains, with a spotlight for multimedia ap-
plications. Multimedia content is widely present in our daily lives, pushed up by the
fast popularization of social media, like Facebook, Instagram, and TikTok, as well
as video streaming services, like Youtube, Netflix, Amazon Prime, and many others,
which have severely changed our current entertainment patterns. In fact, when looking
at our current life context, seriously affected by the worldwide COVID-19 pandemic,
such expansion has gained remarkable prominence. For instance, global social me-
dia content broadcasting has grown 32.6% (in April 2020) since the pandemic has
started (STATISTA, 2020c). Moreover, Internet demand regarding online gaming has
increased by 71% in the same period (VERIZON, 2020). Besides, according to CISCO
(2020), 90% of all global Internet traffic will be related to video broadcasting in 2023.
This growing demand for multimedia content, especially video processing, allied to the
increasing demand for higher resolutions and frame rates, has led to ever-increasing
demands in computational power. In addition, multimedia applications requiring real-
time throughput, like live videos, online conferencing, remote surgeries, and satellite
coupling, have also arisen, posing harder constraints for the video systems. Note that
all these trends show the need for the development of energy-efficient and processing-
efficient solutions targeting multimedia applications.

The aforementioned new features such as higher resolutions and frame rates re-
quired by current multimedia applications have implied an enormous amount of data
to be processed and stored. The video coding process arises as necessary to han-
dle such amount of data. For example, an Ultra-High Definition (UHD) 4K uncom-
pressed video, presenting a resolution of 3840x2160 pixels and a frame rate of 60
fps, requires a bandwidth of 7.46 Gbps to be transmitted in real-time; which means
that one hour of video would require 3.36 TB of storage (GRELLERT, 2018). Such
prohibitive values led to the development of many video coding standards along the
years, pursuing higher compression ratios, like the H.264/AVC (Advanced Video Cod-
ing) (RICHARDSON, 2003), the High Efficiency Video Coding (HEVC) (SULLIVAN
et al., 2012; ISO/IEC-JCT1/SC29/WG11, 2013; SZE; BUDAGAVI; SULLIVAN, 2014),
the Google VP9 (MUKHERJEE et al., 2013), the Audio and Video coding Standard
2.0 (AVS2) (HE et al., 2013), the AOMedia Video 1 (AV1) (LAYEK et al., 2017), and

23

so on. Current multimedia applications, such as video coding, implement complex
tools and algorithms, which, in addition to strict QoS (Quality-of-Service) and real-time
requirements, make them very complex applications, demanding high computational
effort, which leads to high energy consumption/power dissipation regardless the sys-
tem where the application is being implemented. Note that in this thesis the QoS was
measured in terms of coding efficiency, using the BD bit-rate (BD-BR) metric (BJON-
TEGAARD, 2001), which is widely used by the academic and standardization commu-
nity to fairly measure the quality losses. This metric informs, in percentage (%), the
bit-rate increase or decrease for the same objective quality, when comparing a given
encoding scenario with a baseline (see Section 2.7 for a detailed explanation). Such
aspect raises new challenges for systems design, especially when dealing with battery-
powered devices, regarding the development of real-time multimedia systems enabling
high QoS and low-energy consumption.

In general, the GPP (General-Purpose Processor) usage as a processing element
(PE) may not give real-time performance neither attend energy consumption/power
dissipation constraints or high QoS levels, demanded by real-time multimedia systems.
Indeed, considering their severe constraints, especially for embedded battery-powered
systems, dedicated hardware acceleration becomes mandatory. Furthermore, in order
to seek for greater energy efficiency ratios, researchers have been allying the hard-
ware acceleration design to the usage of approximate computing, which has been
seen as an alternative to improve performance/energy efficiency by compromising (in
acceptable ranges) the quality of the applications (VENKATARAMANI et al., 2015).
Approximate computing exploits the intrinsic error resilience of applications to realize
improvements in performance or energy efficiency. Generally, multimedia processing
is a suitable application to apply approximate computing since the resilience of the hu-
man visual system (HVS) to errors can be explored, by compromising the quality of
the application in tolerable ranges, aiming for the computational effort/power dissipa-
tion reduction. Therefore, we can infer that approximate hardware acceleration can be
seen as a promising alternative to achieve energy efficiency while keeping high QoS in
multimedia applications.

When handling embedded and high-performance computing applications, e.g., the
aforementioned video processing, performance requirements of applications, espe-
cially the ones posed by real-time constraints, cannot be satisfied by simply increasing
the frequency of the PE (SINGH et al., 2017), which would lead to high power and
heat dissipation. In order to overcome these bottlenecks, the exploration of paral-
lel and distributed solutions, deploying multi-/many core systems operating at lower
frequencies, has been proposed by chip manufactures. These solutions are intercon-
nected by Networks-on-Chip (NoC), where the cores can communicate with each other
(JERRAYA; WOLF, 2004)(BORKAR, 2007). NoCs can interconnect tens to hundreds

24

of processing cores by an on-chip packet-switching network that allows data to be
transferred between the local memory of each core and from/to external memory (IN-
DRUSIAK, 2014); compounding a complex Multiprocessor System-on-Chip (MPSoC),
capable of reducing the computational time and meeting the timing constraints of com-
plex applications, suitable for parallel processing (SMEI; JEMAI; SMIRI, 2017). Be-
sides, NoCs are scalable interconnections to support the growing communication de-
mands of System-on-Chip (SoC) components (BOKHARI et al., 2015) while allowing
heterogeneous processing elements, tiling, and partial power/clock gating that enable
performance/energy scalability. Scalability is desirable for real systems supporting dis-
tinct throughput demands such as video processing, which can require, for instance,
multiple video resolutions and frame rates. Based on this discussion, one may con-
clude that NoC infrastructures are promising solutions for deploying video processing
inherently parallel tasks.

Furthermore, scalability is also desirable in the context of problems posed by the
Dark Silicon era, i.e., a significant amount of on-chip resources cannot be operated at
full performance level at the same time (HENKEL et al., 2015). Besides providing guar-
antees for scalability, NoC-based infrastructure can also help with the management of
dark silicon by facilitating the application of techniques such as power gating in unused
circuit islands (BOKHARI et al., 2014).

1.1 Research Question and Research Hypotheses

There are several works in the literature employing NoCs, exploring the inherent
parallelism of applications and trying to provide scalabilty and performace improve-
ments. Some of them aim energy/power efficiency using NoCs for general applica-
tions (ZHAN et al., 2013; CLARK et al., 2018; ZHENG; LOURI, 2019), other works are
more specific, focusing on the usage of NoCs for multimedia applications (YEMLIHA
et al., 2008; ALIKHAH-ASL; RESHADI, 2016; PENNY et al., 2019a; MENDIS; AUD-
SLEY; INDRUSIAK, 2017; BARGE; ABABEI, 2017). Furthermore, NoC-based sys-
tems with hardware accelerators as processing elements for video coding are explored
by NOURI; GHAZNAVI-YOUVALARI; NURMI (2018); POURABED; NOURI; NURMI
(2018); and PENNY et al. (2019b). Approximate computing is being used to pro-
vide significant energy/power reduction in many research areas. Approximate dedi-
cated hardware accelerators for multimedia have being proposed by (EL-HAROUNI
et al., 2017; PRABAKARAN et al., 2019; SILVA; SIQUEIRA; GRELLERT, 2019; PAS-
TUSZAK; ABRAMOWSKI, 2015; CHATTERJEE; SARAWADEKAR, 2019; PRAVEEN;
ADIREDDY, 2013).

However, multiple aspects remain unsolved: How to create an energy-efficient
system providing high performance considering multiple usage scenarios while

25

delivering real-time support with acceptable QoS? In fact, it is a complex question,
and, perhaps, a trivial solution would not fulfill all features desired in the answer. To
simplify the discussion, we split such a research question into sub-questions (SQ),
listed below:

• SQ1 - How to provide scalability for multiple demands whereas sustaining high
performance for extreme scenarios?

• SQ2 - How to provide energy efficiency with real-time support?

• SQ3 - How to keep the QoS at acceptable range while reducing the energy con-
sumption?

Based on these questions, we draw a set of research hypotheses (RH) with poten-
tial to address each raised challenge.

• RH1 - Scalability and high performance can be achieved by exploiting the paral-
lelism of the applications. We hypothesize that employing NoC-based solutions
on application-specific systems may (i) facilitate parallel processing and commu-
nication leading to performance increase whereas (ii) enabling scalability across
multiple scenarios by providing ideal infrastructure for sector-based power gat-
ing and dynamic voltage and frequency scaling (DVFS). Indeed, the usage of
NoC-based solutions can provide great performance increase by splitting and
processing application tasks onto several processing elements, taking advantage
of the communication efficiency posed by NoCs. Furthermore, scalability can be
exploited by developing NoCs supporting different sizes, enabling only the neces-
sary PEs according to application requirements, employing power gating and/or
DVFS over the idle ones.

• RH2 - Energy efficiency with real-time support can be obtained by exploring ded-
icated hardware acceleration applying approximate computing techniques over
the applications. The hypothesis is that the usage of dedicated approximate hard-
ware, exploiting multiples levels of approximation, might enable an optimized ex-
ploration of the trade-off between energy and QoS. In general, multimedia appli-
cations present natural resiliency to errors due to the limited perception of image
details by the human visual system (HVS) (BAI et al., 2014). Thus, hardware ac-
celeration employing approximate computing can explore such a characteristic,
being a suitable technique to improve the energy efficiency of complex applica-
tions like video coding systems.

• RH3 - The reduction of energy consumption maintaining the application QoS
at acceptable range can be addressed by exploring application-specific proper-

26

ties/behavior with a run-time management. We hypothesize that using heuristic-
based and machine learning-based energy/QoS control can efficiently exploit the
application characteristics in order to maximize the energy savings while keep-
ing reasonable QoS. The main idea is to dynamically find at run-time regions
more suitable for approximate computing (more error-resilient), applying more
aggressive approximation in these regions, based on an exhaustive study of the
application behavior employing heuristics and machine learning (ML).

Considering the discussed research questions and research hypotheses, we can
notice that many research opportunities remain open. The listed hypotheses have led
to the goals of this thesis, as discussed in the next section.

1.2 Goal and Novel Contributions

The main goal of this thesis is to research and propose architectural solutions
that lead to energy-efficient and high-performance application-specific systems
with scalable real-time support for error-resilient applications.

The main contributions of this thesis are summarized in the following.

• Scalable multi-tiled NoC topology: we propose a NoC organized in multiple neigh-
bor Tiles to allow the NoC effective size to scale according to throughput require-
ments, i.e., the number of active processing elements varies according to perfor-
mance requirements.

• Design-time instantiation and placement algorithms: we developed algorithms
targeting the tiling definition, the PEs instantiation based on application behavior,
and the placement pattern, defining the PEs placement in order to reduce com-
munication distances and to guarantee availability of distinct PEs in different tiles
configurations.

• Run-time task allocation algorithms: we propose dynamic task-mapping algo-
rithms to allocate tasks onto different PEs considering their approximation level.
We exploited rule-based and machine learning-based solutions.

• Multi-level approximate hardware design: Approximate hardware design using
different levels of approximation were designed to be used as processing ele-
ments (PE) within the NoC. Application-specific knowledge regarding the error
resiliency is considered for PEs design.

• Scalable Approximate Network-on-Chip (SApp-NoC): We present SApp-NoC,
an energy-efficient real-time multimedia system built on top of a NoC employ-
ing hardware acceleration, using multiples levels of approximate computing,

27

leveraging application-specific properties/behavior through the use of heuris-
tics and machine learning techniques, leading to the proposal of two solutions:
Heuristic-based SApp-NoC (HSApp-NoC) and Machine Learning-based SApp-
NoC (MLSApp-NoC). SApp-NoC system represents a proof of concept designed
targeting video coding application - more specifically the Fractional Motion Esti-
mation (FME) step - in order to demonstrate the validity of our research hypothe-
ses.

1.3 Thesis Outline

This thesis is organized as follows:
Chapter 2 presents an overview of the background knowledge required to under-

stand this work. General aspects regarding Networks-on-Chip are presented with the
basic concepts necessary to understand the schedulabilty analysis. Additionally, the
main aspects regarding approximate computing are also presented. Afterwards, ba-
sic knowledge related to video coding targeting the HEVC standard is also provided.
Finally, fundamentals regarding machine learning focusing on decision trees are sum-
marized.

Chapter 3 introduces the discussion about the related works. Works focusing on
approximate computing for complex systems, from general applications to video pro-
cessing, are discussed. Next, the NoC-based solutions found in literature are pre-
sented. Furthermore, hardware designs for video coding are analyzed, embracing so-
lutions from precise to approximate design. Finally, a comparison listing the remaining
research challenges is presented.

Chapter 4 shows the top-level methodology for development of our case study so-
lution: Scalable Approximate Network-on-Chip (SApp-NoC). The developed algorithms
targeting the instantiation and placement of processing elements are presented. Ad-
ditionally, the developed content-based run-time energy/QoS-aware task allocation is
also discussed.

Chapter 5 presents the Fractional Motion Estimation (FME) Multi-level approximate
hardware accelerators design. The filters, interpolator, and search and comparison
designs are detailed. Besides, the synthesis and QoS results are discussed.

In Chapter 6 are presented the main aspects regarding the NoC design and the
method for application modeling. The NoC architecture is discussed and the developed
Schedulability breakdown NoC Frequency Tracking algorithm (SNFT) is presented.

Chapter 7 discusses the development of the application-aware approximation con-
trol. The adopted heuristics and machine learning using training benchmarks are
widely discussed while the generation of the resulting decision trees is also provided.
The found solution is tested and the QoS results are shown.

28

Chapter 8 presents a wide discussion about the main results. The experimental
setup is shown and the power/energy/QoS results are analyzed. Results regarding the
performance analysis, targeting the schedulabilty tests are also discussed.

Chapter 9 presents the final remarks of this thesis. All contributions are summa-
rized with a discussion comparing the main achievements with the thesis goals, point-
ing to future research opportunities and challenges.

2 BACKGROUND

This thesis aims the research of architectural solutions in order to achieve energy
efficiency and high-performance regarding application-specific systems with scalable
real-time support for error-resilient applications. Considering the highlighted research
questions and the main hypothesis to solve those problems, we have proposed strate-
gies in order to achieve our main goal. Our case study SApp-NoC embraces the an-
swers to the mentioned questions and aims to proof the feasibility of the proposed
solutions.

Since the adopted solutions cover different research fields, a detailed background
about the main aspects becomes necessary for a better understanding of this work.
The top-level platform of our work is based on networks-on-chip in order to provide
tools to explore the application parallelism. Thus, in Section 2.1, we revisit the ba-
sics about NoCs, analyzing their main general aspects such as NoC topologies and
communication behavior among nodes. Since real-time processing is targeted by our
solutions, Section 2.2 brings the background about real-time schedulability analysis
performed at NoC-based systems, establishing the ways to analyze their capabilities
of meeting timing constraints.

The hardware accelerators compounding the processing elements of SApp-NoC
solution are developed in multiples levels of approximation in order to achieve power
efficiency. In Section 2.3 we discuss the main subjects regarding approximate com-
puting techniques. Besides, SApp-NoC focuses on video coding as main application
due to its resiliency to errors (being suitable for approximate computing) and its inher-
ent parallelism (being suitable for NoCs). Therefore, we revisit the main aspects of
video coding, necessary for a complete understanding of our work. Finally, in Section
2.6, we show the basics regarding machine learning, presenting the general aspects
necessary for the understanding of the algorithms employed for the optimization of the
approximation level decision.

30

2.1 Networks-on-Chip: General Aspects

Networks-on-chip (NoCs) are common architectural templates for processors with
several cores, being, most of times, a scalable and configurable network compounding
a flexible platform that can be adapted to the needs of different workloads (JANTSCH;
TENHUNEN et al., 2003). The applied NoC topology can vary, depending on system
needs and module sizes and placement. Different topologies have been proposed in
the literature, as presented in Figure 1, like the regular mesh (Figure 1 (a)), the folded
torus (Figure 1 (b)), and the irregular mesh-custom topology (Figure 1 (c)) (BOLOTIN
et al., 2004).

Figure 1 – Examples of NoC topologies: (a) regular mesh; (b) folded torus; (c)
irregular mesh-custom topology (BOLOTIN et al., 2004).

Since we have adopted architectural features that are widely used in industry and
academia, our focus is put on understanding the widely used 2D mesh topology
(BOLOTIN et al., 2004; MORAES et al., 2004; AGARWAL, 2007; SHI; BURNS, 2008;
INDRUSIAK, 2014; INDRUSIAK; BURNS; NIKOLIĆ, 2018).

In Figure 2, we show a simplified representation of a simple 3x3 NoC architecture
based on a regular 2D mesh topology. All the nodes are interconnected, and each one
has a processing element PE where the tasks are executed. The PE can be, e.g., a
central processing unit (CPU), a graphics processing unit (GPU), a hardware acceler-
ator, and so on, where each PE is linked to a local cache (blue rectangles attached to
PE), which stores local information, and a router r, which routes the data packets to-
wards the destinations (it can be another PE, the off-chip memory, etc.) (INDRUSIAK,
2014). Note that packet is the notation adopted to depict the information crossing the
network, widely adopted by literature (BOLOTIN et al., 2004; SHI; BURNS, 2008; IN-
DRUSIAK, 2014; INDRUSIAK; BURNS; NIKOLIĆ, 2018). The communication between
the processing elements and the router is made by two unidirectional links (one from
PE to r and other from r to PE, depicted as orange arrows in Figure 2). The communi-

31

cation across the network follows an X-Y routing, which is simple and easy to be imple-
mented in the regular topology (SHI; BURNS, 2008). In this work, besides applying the
widely used 2D mesh topology, we have also considered the use of wormhole NoCs
with priority-preemptive arbitration, widely studied in the literature due to their ability to
provide real-time performance (SHI; BURNS, 2008; INDRUSIAK; BURNS; NIKOLIĆ,
2018), since wormhole buffer overhead is much smaller than other approaches like
store-and-forward (SAF). Furthermore, link allocation of wormhole switching networks
is more efficient than circuit switching approaches, once NoC links are only allocated
on the segments of the path where there is data ready to be transferred, i.e., there is
no necessity to reserve the complete path of a packet (INDRUSIAK, 2014).

Considering a wormhole switching network, the data are encapsulated into a packet
format, further divided into a number of fixed size flits (data words) for transmission.
The header flit takes the routing information and governs the route. With the advance
of the header along the specified path, the remaining flits follow the same path in a
pipeline way. When the header flit encounters a link already in use, it is blocked until
the link becomes available (NI; MCKINLEY, 1993). The router is based on priority-
preemptive virtual channels (VCs) for flow control (DALLY et al., 1992) as a way to
guarantee more predictability. The usage of VC technique decouples the resource
allocation by providing multiple buffers for each physical link in the network. Each of
these buffers is considered as a virtual channel, holding one or more flits of a packet
(SHI; BURNS, 2008).

Each packet has a different priority assigned, allowing packets with higher priority
preempt the ones with lower priorities. See in Figure 2 that in each input port there is
a FIFO buffer storing the incoming flits of packets arriving through different VCs. The
routing and flow controller decides the correct output port for each packet, according
to its destination. A credit-based approach based on BJERREGAARD; MAHADEVAN

Figure 2 – Example of a mesh 2D NoC 3x3 architecture with a priority-driven VCs
router detailing (adapted from INDRUSIAK (2014)).

32

(2006) was applied, ensuring the forwarding of the data only when there is enough
space in the next router’s VC. A given flit of a given packet will be sent through its
respective output port if it has the highest priority among the other packets being sent
out through the same port, and if it also has remaining credits (i.e., there is buffer
space available on the respective buffer of the neighboring node connected to that
output port). When the highest priority packet cannot send data because it is blocked
elsewhere in the network, the next highest priority packet can access the output link
(INDRUSIAK, 2014).

As a way to determine if application’s tasks being executed and communicating over
a specific NoC can fulfill the application’s required timing constraints, it is necessary to
perform a schedulability analysis, presented in the next section.

2.2 Real-Time Systems: Schedulability Analysis

In general, embedded systems typically have to fulfill timing constraints that are
related to their application domain and usage scenarios (INDRUSIAK, 2014). Video
processing is a classical example of a real-time application, ranging from scenarios
presenting soft timing constraints, like an user watching a video at a streaming platform
(when the loss of some frames would not be a huge problem), to safe-critical scenarios,
so called hard real-time scenarios, like robotic surgeries or a satellite coupling.

Usually, timing constraints are specified as the deadline to perform specific func-
tions, i.e., the maximum time an application has to execute a set of tasks. For example,
a Full-High Definition (FHD) video recorder must be able to capture, compress, and
store 30 video frames in a second in order to deliver a real-motion sensation to the
user, so there is an expectation that this constraint has to be met by the system in all
possible scenarios. Therefore, embedded systems designers must be able to evaluate
which design alternatives can fulfill those constraints and, for safety-critical applica-
tions, guarantee real-time behavior (INDRUSIAK, 2014). This process which deter-
mines the performance estimation of the applications is called schedulability analysis.

A NoC-based system is schedulable if, and only if, all its tasks and communicating
flows meet the deadlines. It can be determined by applying a performance estimation
tool over the application. According to KIASARI; JANTSCH; LU (2013), performance
estimation tools can be classified in simulation models and mathematical models. On
the one hand, simulation tools are flexible and accurate, however, the complexity of
modern SoCs imposes a limitation on what can reasonably be simulated. It also im-
poses a difficulty to draw conclusions from the simulation results regarding how to
adapt the system hardware and its programming, and how to determine the worst-case
behavior. On the other hand, mathematical (analytical) models can fairly estimate the
desired performance metrics very early on the design phase, in a fraction of the time

33

that simulation would take (KIASARI; JANTSCH; LU, 2013; INDRUSIAK, 2014).
In this work, we apply the end-to-end schedulability tests proposed in INDRUSIAK

(2014), with the improvements of INDRUSIAK; BURNS; NIKOLIĆ (2018). Such meth-
ods are based on classic Response Time Analysis (RTA) (AUDSLEY et al., 1993) and
on NoC traffic flow schedulability analysis (SHI; BURNS, 2008). The basics on the
methodology for modelling the system is given in the following. Next, the end-to-end
schedulabilty tests are detailed.

2.2.1 System Model and Notation

A co-design flow of embedded systems, which consists of a set of steps starting with
the specifications of requirements and ending with the hardware/software integration
into silicon chips (EHRLICH; RADKE, 2013), is of utmost importance nowadays. The
co-design modeling phase allows designers to explore the design space, making the
best architectural choices in order to meet user requirements, platform and application
constraints during the development phase (SMEI; JEMAI; SMIRI, 2017).

In this work, we follow a high level of abstraction modeling based on Sporadic Task
Model (SHI; BURNS, 2008; INDRUSIAK, 2014), where an application can be modeled
as a taskset defined in (1):

Γ = {τ1, τ2, ..., τn} (1)

Where each task τi is a 6-tuple, defined in (2) as follows:

τi = {Ci, Ti, Di, Ji, Pi, ϕi} (2)

The members of τi are respectively the worst-case computation time Ci, the period
Ti (minimum inter-release time interval), the deadline Di, the release jitter Ji (time
between the request of a task and it starts to be processed), the priority Pi, and a
message ϕi sent by τi (immediately after it finishes its computation), defined as a 3-
tuple ϕi, depicted in (3):

ϕi = {τd, Zi, Ki} (3)

Where τd is the destination task, Zi is the message’s size and Ki the maximum
release jitter (total time the packet takes to reach the destination, including preemption
and/or interference). A sporadic task-chain X is an ordered subset of Γ, which can be
defined as follows.

X = {τ1, τ2, ..., τx} (4)

In (4) each task τj sends a message to a subsequent task τj+1 in X. In this case,

34

all tasks within X have the same period and deadline. The final task of every task-
chain must be the empty set Ø, conceived as a task outside the taskset scope being
evaluated, since for the adopted assumption in this work loops are not allowed.

Still folowing what is stated in SHI; BURNS (2008) and INDRUSIAK (2014), the
modelling of the NoC platform (an example was presented in Figure 2) is composed
of a set of processing elements Π, a set of switches (routers) Ξ, a set of unidirectional
links Λ (between the router and its correspondent processing element and its neighbors
routers), depicted in (5), (6), and (7), respectively.

Π = {PE0, PE1, ..., PEm} (5)

Ξ = {r0, r1, ..., rm} (6)

Λ = {λPE0r0, λr0PE0, λr0r1, λr1r0, ..., λPEmrm, λrmPEm, λrmr(m−1), λr(m−1)rm} (7)

Where m = M − 1 and M is the total number of nodes in the NoC. When looking
to Figure 2, e.g., if we consider the links connected to node 1, there are two unidirec-
tional links connecting the router to the processing element (λPE1r1 and λr1PE1), and
six unidirectional links connecting the router to other routers (λr1r0, λr0r1, λr1r2, λr2r1,
λr1r4, and λr4r1).

The packets are forwarded in the NoC from source to destination according to a
routing algorithm. INDRUSIAK (2014) defines a function for routing, e.g. for a commu-
nication between PE0 and PE1, depicted as

route(PE0, PE1) = {λPE0r0, λr0r1, λr1PE1} (8)

Function route(PE0, PE1) in (8) denotes a subset of Λ used to transfer packets
from core PE0 to core PE1. A route includes links connecting the source and des-
tination PEs to their respective switches, and all the links between switches along
the way. Furthermore, INDRUSIAK (2014) also defines the cardinality of a route as
|route(PE0, PE1)|, informally referred as its hop count. For example in Figure 2, con-
sidering the communication between PE2 and PE8, we can define a routing function
as:

route(PE2, PE8) = {λPE2r8, λr2r5, λr5r8, λr8PE8} (9)

Thus, from (9) it can be observed that |route(PE2, PE8)| = 4 for most commonly
used routing algorithms (e.g. like the ones prioritizing the minimum distance between

35

two PEs).
Task mapping is a critical part of the design of multicore systems. It defines which

application tasks should be mapped onto which processing element (INDRUSIAK,
2014; INDRUSIAK; BURNS; NIKOLIĆ, 2018), i.e., where each task will be executed.
The mapping can be defined as a surjective function depicted in (10), which denotes
the processing element onto which a task is mapped.

map(τi) = PEj (10)

The inverse of this function is defined in (11) and returns all tasks mapped onto a
given PE.

map−1(PEj) = {τi, ..., τn} (11)

Likewise, the mapping of a message is given as

map(ϕi) = route(map(τi), map(τd)) (12)

In (12) it is informed the route of the packets of ϕi across the NoC. The inverse of this
mapping function represents all messages traversing a given link, and it is presented
in (13).

map−1(Λ) = {ϕi, ..., ϕn} (13)

Once the mapping of all tasks of Γ is defined, it is possible to calculate the basic
communication latency Li of every message ϕi, which represents the time spent by
the message to be completely transferred from its source to its destination, assuming
no contention over the NoC links (i.e. as if the message is the only one using the
NoC). The actual value of Li depends on implementation-specific characteristics of the
NoC (e.g. link width, time required for a packet header to cross a router, and for a flit to
cross a link) (INDRUSIAK, 2014). A common formulation for Li is given by INDRUSIAK
(2014):

Li = |map(ϕi)| · lhop + (|map(ϕi)| − 1) · lrouter + (Zi/width) · lhop (14)

The first term of (14) represents the time taken by the packet header to traverse all
the NoC links, expressed as the product of the message hop count and the latency lhop
for the header to traverse a single link. The second term represents the time taken by
the packet header to traverse all NoC routers, being expressed as the product of the
number of routers along the path (which is usually the number of hops minus one in
most direct networks) and the latency lrouter for the header to traverse a router. The
third term represents the time it takes for the packet payload to follow the header in

36

a wormhole fashion all the way to the destination, expressed by the message length
Zi (in bits) divided by the link width, i.e., the number of bits encapsulated into a single
flit, resulting in the number of payload flits of the message, multiplied by the single link
latency lhop (INDRUSIAK, 2014).

2.2.2 End-to-End Schedulability Tests for NoC-Based Multicores

From the application domain, we can derive the timing constraints of a given appli-
cation task-chain, which establish the end-to-end timing constraint or the end-to-end
deadline, e.g., every frame of a video must be processed in 33 ms or less. These con-
straints need to be met by specific components of the application (i.e. chains of com-
municating tasks) (INDRUSIAK, 2014). In order to establish whether all task-chains
of an application have their end-to-end deadlines met by a particular NoC-based plat-
form configuration, we have to perform the end-to-end schedulability test (INDRUSIAK,
2014; INDRUSIAK; BURNS; NIKOLIĆ, 2018). Such test considers the end-to-end la-
tency of each task of a task-chain, i.e., the time a processing element takes to execute
a task (computation latency) plus the time the NoC takes to transfer all data produced
by a task to the next one on the chain (communication latency). As aforementioned, the
schedulability tests adopted in this work are based on classic Response Time Analysis
(RTA) and on NoC traffic flow schedulability analysis.

2.2.2.1 Schedulability of tasks over a processing element

Firstly, the utilization of each PE must be verified to check if the processing element
is able to handle all tasks allocated in it, given as follows:

∑
τi ∈ map−1(PEa)

Ci
Ti
≤ 1 (15)

In this example, where Ci and Ti are the worst-case computation time and the period
of a task τi, respectively, the mapped tasks on processing element PEa are verified,
checking if all of them will be executed until the period ends. Although a given PE may
execute all the mapped tasks, it may not be able to execute all of them within their
deadlines. Response Time Analysis (RTA) (AUDSLEY et al., 1993) techniques can
evaluate how much the interference from higher priority tasks can delay the completion
time of task τi:

Ri = Ci +
∑

∀ τj ∈ hp(τi)

(⌈
Ri

Tj

⌉
· Cj

)
(16)

Equation (16) is defined in INDRUSIAK (2014) and calculates the worst case re-
sponse time Ri of τi, where the function hp(τi) denotes the set of all tasks that can
preempt τi, i.e., the ones mapped onto the same processing element having higher as-

37

signed priorities. Formally, hp(τi) includes every task τj ∈ Γ where map(τi) = map(τj),
and Pi < Pj. Thus, by applying what is stated in (16) it is possible to find the longest
possible time interval between the release of τi and its termination, by adding the com-
putation time Ci of τi with the computation times Cj of all releases of tasks τj (that
could preempt it). Since Ri appears in both sides of (16), iterative solutions like pro-
posed in AUDSLEY et al. (1993) are necessary. Strategies employing RTA has been
widely used to test schedulability of uniprocessor and statically mapped multiproces-
sor systems with fixed priorities (AUDSLEY et al., 1993; SHI; BURNS, 2008; KIASARI;
JANTSCH; LU, 2013; INDRUSIAK, 2014; INDRUSIAK; BURNS; NIKOLIĆ, 2018).

In NoC-based systems the communication latency introduced by the NoC when
tasks are accessing external memory or exchanging messages are extremely depen-
dent on the adopted task mapping, the communication behavior of the application,
and the network congestion. This leads to high variability in communication latencies,
which can be of the same order of magnitude of the computational time Ci of the tasks
(or even higher) (INDRUSIAK, 2014). Therefore, the schedulability tests of NoC-based
systems must also consider the analysis of communicating tasks, as presented in the
following.

2.2.2.2 Schedulability of communicating tasks

Many works in literature have been addressing the problem of schedulability tests
of communicating tasks for wormhole NoCs, built upon RTA investigations for off-chip
interconnection networks (KIM et al., 1998; SHI; BURNS, 2008; KIASARI; JANTSCH;
LU, 2013; INDRUSIAK, 2014; XIONG et al., 2017; INDRUSIAK; BURNS; NIKOLIĆ,
2018). The main concern of these investigations is the analysis of the influence of direct
and indirect interference of packets with higher priorities over a given packet traversing
a NoC, towards finding more precise models for real-time schedulability analysis of
communicating tasks.

Considering the routes of any two packet flows ϕi and ϕj, we can define a con-
tention domain cdi,j as a ordered set of links shared by these flows: cdi,j = routei ∩
routej. A direct interference group GD

i of ϕi is the set of flows presenting higher priority
than ϕi, sharing with it at least one network link (i.e. a non-empty contention domain)
(KIM et al., 1998):

GD
i = {ϕi ∈ Λ | Pi < Pj, cdi,j 6= ∅} (17)

Likewise, the indirect interference group GI
i of ϕi can be defined as the set of flows

that are not in GD
i , but interferes with at least one flow in that set (i.e. interferes with

the flows directly interfering with ϕi, but not directly with ϕi itself) (KIM et al., 1998;

38

INDRUSIAK; BURNS; NIKOLIĆ, 2018):

GI
i = {ϕk ∈ Λ | ϕk ∈ GD

j , ϕj ∈ GD
i , ϕk /∈ GD

i } (18)

The worst case latency Si of a packet ϕi transmitted over the considered NoC can
be found in (19), adapted from XIONG et al. (2017):

Si = Li +
∑

ϕj ∈ GDi

{⌈
Si +Kj +KI

j

Tj

⌉
·
(
Lj + Idownji

)}
(19)

The value of Si can be found by adding the basic latency Li of ϕi and the latencies
Lj of all releases of packets ϕj that could preempt it. It is worth to mention that the
release jitter of ϕj can also influence, many times it can preempt ϕi. In (19) two types of
release jitter are considered: Kj, which is caused by the execution of the task τj (that
releases ϕj), and KI

j , which is caused by aforementioned indirect interference. The
value of Kj is the maximum amount of time elapsed between the start of the period
of ϕj and its actual release, and since by definition a packet is released immediately
after its source task τj has finished computation, Kj = Rj. From SHI; BURNS (2008),
KI
j = Sj − Lj.

Furthermore, XIONG et al. (2017) have identified that downstream indirect interfer-
ence, represented by the term Idownji in (19), may cause a single packet of ϕj to directly
interfere on ϕi by more than its basic latency Lj. It happens when ϕj suffers interfer-
ence from any packet ϕk, not interfering with ϕi, and shares links with ϕj downstream
from the links it shares with ϕi, addressing a problem referred to as multi-point progres-
sive blocking (MPB) analysis. In this situation, every time ϕj is blocked by ϕk, it can
allow ϕi to flow through the network and potentially overtake ϕj flits that had already
blocked it earlier (INDRUSIAK; BURNS; NIKOLIĆ, 2018). For a better understanding
on this issue, look at the simple example in the following, adapted from INDRUSIAK;
BURNS; NIKOLIĆ (2018).

Consider a situation with only three flows ϕi, ϕj and ϕk, shown in Figure 3. Assume
that ϕi and ϕj present larger periods and longer packets (therefore larger Li and Lj)
than ϕk. Also assume that the releases of ϕk are not in phase with the others. The
priority order is Pi < Pj < Pk. In Figure 3(a), ϕi and ϕj are released at the same
time from PE0, and the higher priority ϕj gains access to the network, blocking ϕi.

In Figure 3(b), a packet of ϕk is then released, interfering with ϕj (downstream
from its contention domain cij with ϕi). Since ϕk has the highest priority, the flits of ϕj
are stopped from using the link between routers 3 and 4, generating backpressure on
all subsequent flits of that packet of ϕj, forcing them to stay buffered along the route
(depicted as stacked dots) all the way to the source in PE0. Note that now ϕj flits stop
using the links shared with the route of ϕi, thus ϕi becomes the highest priority flow

39

with buffer credits and the routers start transmitting its flits.

Figure 3 – Downstream indirect interference (adapted from INDRUSIAK; BURNS;
NIKOLIĆ (2018)).

When ϕk ends, the scenario goes back to the situation demonstrated in Figure
3(a), with only ϕj flowing through the network. However, before new flits of ϕj can
be released from node 0, the buffered flits (due to the blocking imposed by ϕk) must
first make way and release the backpressure along the route for upcoming flits from
ϕj. This is a key point to the MPB problem, first identified by XIONG et al. (2017) and
further improved by INDRUSIAK; BURNS; NIKOLIĆ (2018): these buffered flits of ϕj,
which have already caused interference on ϕi when first released out of node 0, will
cause interference again on ϕi, and, as a consequence, will delay ϕi by more than Lj
(zero-load latency of ϕj). This effect is called as buffered interference, which in turn
causes MPB.

For calculating the influence of downstream indirect interference Idownji in (19) we
have followed exactly what is stated in INDRUSIAK; BURNS; NIKOLIĆ (2018), applying
the so called Indrusiak Burns Nikolic (IBN) analysis:

• When computing downstream indirect interference caused by flows that do not
suffer from both upstream and downstream interference, Idownji is calculated as
follows:

Idownji =
∑

ϕk ∈ G
downj
Ii

{⌈
Sj +Kk

Tk

⌉
· min(biij, Lk + Idownkj)

}
(20)

where biij is the maximum buffered interference over the contention domain cdij,
defined as:

bij = buf(Ξ) · linkl(Ξ) · |cij| (21)

where buf(Ξ) informs the FIFO buffer size and linkl(Ξ) informs the amount of
time taken by a router to transmit a flit over any of its links (assuming no con-
tention).

40

• When computing downstream indirect interference caused by flows suffering from
upstream interference, which is the set Gupj

Ii
, defined as the set of flows ϕk ∈ GI

i

that interfere with the flows ϕj ∈ GD
i before ϕj interferes with ϕi, Idownji is calcu-

lated according to XIONG et al. (2017) as follows:

Idownji =
∑

ϕk ∈ G
downj
Ii

Ikj (22)

Hence, the worst case response time of each flow (communication latency) is cal-
culated by (19), applying the corresponding evaluation of Idownji according to each sce-
nario, by employing (20) or (22). Thus, the worst case end-to-end response time of a
task τi is given by EERi = Ri + Si, where Ri and Si are, respectively, its worst-
case computation response time and its worst case communication latency (INDRU-
SIAK, 2014), showed in Figure 4, which also presents a graphical visualization of other
aforementioned variables. Its end-to-end schedulability is verified by checking whether
EERi ≤ Di.

Figure 4 – End-to-end response time of a communicating task (INDRUSIAK, 2014).

2.3 Approximate Computing

The concept of approximate computing has gathered lot of research attention as
an alternative to improve performance/energy efficiency by compromising the quality
of the applications within tolerable ranges (VENKATARAMANI et al., 2015). The main
idea is to exploit the application resilience to errors in order to reduce or simplify compu-
tation at software and/or hardware level (LIU; LOMBARDI; SHULTE, 2020). According
to VENKATARAMANI et al. (2015), approximate computing lies on the notion that a
unique, a golden result, simply does not exist, but a range of answers could be accept-
able and even the best algorithms are not perfect, sometimes users are conditioned to

41

accept good-enough results (e.g., recognition problems). Approximate computing can
be applied at different levels of abstraction layers, from devices to systems including
hardware (devices, circuits, and architectures), software, algorithms, and programming
languages (LIU; LOMBARDI; SHULTE, 2020).

At hardware level, approximate arithmetic circuits (adders, multipliers, dividers, etc.)
have been widely studied based on the general principle of significance guided design
(fewer resources are provided for less significant parts with lower complexity). Fol-
lowing this principle, both logic reduction/pruning and voltage scaling for probabilistic
CMOS have been applied (LIU; LOMBARDI; SHULTE, 2020). Furthermore, regard-
ing approximate architectural systems, e.g., some solutions can explore the usage of
approximation in data storage and other solutions can even discard some calculation
steps when targeting hardware accelerators design.

At software and algorithm levels, LIU; LOMBARDI; SHULTE (2020) also explain that
one of the most effective approximate techniques is precision scaling, e.g. by reducing
the bit-width word size, which leads to both computation and storage resources sav-
ing. At a higher level, a program can even skip some tasks and memory accesses in
multicore architectures (GOIRI et al., 2015).

A common feature regarding approximate computing is the exploration of suitable
applications, which can tolerate the approximation leading to a complexity/energy re-
duction without significant quality loss. For instance, some video applications are nat-
urally error-resilient due to the limited perception of image details by the human visual
system (HVS) (BAI et al., 2014). Thus, approximate computing can explore such a
characteristic, being a suitable technique to improve the energy efficiency of complex
applications like video coding systems. However, it raises a new challenge regarding
the QoS of multimedia applications, since approximate computing introduces simplifi-
cations in the applications that may diminish QoS.

An interesting alternative to solve such an issue could be the exploration of
the nature of the application, leading to different levels of approximation and en-
ergy/performance efficiency, with different levels of error resiliency. On the one hand,
when applying approximate computing solutions, application steps presenting higher
error resiliency contribute to smaller losses on QoS. On the other hand, application
steps showing smaller tolerance to errors, could introduce remarkable degradation on
QoS if approximate computing is applied. Thus, the challenge of controlling dynam-
ically the use of approximate computing solutions, targeting the optimization of the
trade-off between energy consumption and error resiliency, is of utmost importance
since more aggressive approximation can be applied at suitable application steps im-
proving energy efficiency (more error resilient), with minimum impact over QoS, and
less aggressive or even no approximation can be applied at other application steps
(less error resilient).

42

The application resiliency to approximation is usually data dependent (XU;
MYTKOWICZ; KIM, 2015) and can be used to express where approximation is fea-
sible and how it may impact the results, however, determining approximation-suitable
data is not a trivial task, as well as determining the level of approximation that provides
good trade-off between computation/energy and QoS. Therefore, the level of approxi-
mation (if any) to be employed depends on the evaluation of data features, which is not
a trivial task, since several parameters present different impacts on QoS.

In order to illustrate this data dependency, Figure 5 shows an example of a picture
processed by two different interpolation FIR (Finite Impulse Response) filters: Figure 5
(a) with 8-tap FIR filters and Figure 5 (b) with approximate 6-tap FIR filters.

We know from signal processing (SMITH, 1997) that an ideal interpolation in con-
tinuous time can be described as a sinc function to predict the values of unknown
variables regarding a given distribution. When it comes to digital systems (discrete
time), the sinc function can be represented as a FIR filter with M coefficients. Since the
sinc function is infinite, it must be truncated with a constrained window at some point,
targeting its practical implementation. The larger the window the higher the number
of FIR coefficients (taps). On the one hand, a precise filter aim achieving a given fre-
quency response, on the other hand, an approximate filter aim at being as equal as
possible to the original one. Let analyze the images results.

In red it is detailed a heterogeneous region (hair detail) where it is possible to notice
quality degradation, posed by the approximate filtering (observe the blocking artifacts)
in comparison with the precise filter. Considering the homogeneous region (floor),
detached in blue, quality difference between approximate and precise solutions is not
noticeable. From this case study, one can observe that homogeneous regions are more
error-resilient, i.e., a simplified filter performs well, and heterogeneous regions are less
error-resilient, i.e., employing better filters is mandatory to avoid quality degradation.

When analyzing the impacts of the taps reduction, one can notice that it leads

Figure 5 – Picture (public domain) encoded with: (a) original filters (b) approximate
filters, detailing homogeneous (blue) and heterogeneous (red) regions.

43

to image quality losses. In order to investigate this reason, observe in Figure 6 the
frequency response of the original filter and in Figure 7 the frequency response of the
approximate filter. As expected, the FIR filter behaves like a low-pass filter, with no
gain. However, when analyzing the approximate filter, it can be observed a ripple effect
in the pass band, which leads to losses and consequent image quality degradation
(see Figure 5 the introduced block artifacts).

Figure 6 – Frequency response of a precise FIR filter.

Figure 7 – Frequency response of an approximate FIR filter.

The verified quality degradation changes the objective image quality encoded with
the approximate FIR. From the point of view of video coding, e.g., the insertion of
approximate computing can lead to sub-optimal choices during the encoding process,
which would lead to an overall loss on QoS. In the next section the basics about video
coding are provided, allowing a better understanding on how approximate computing
can be applied for this application.

2.4 Video Coding: High Efficiency Video Coding (HEVC)

2.4.1 Basic Concepts

A digital video is a sequence of digital static images (called frames or pictures),
presented sequentially to the viewer at a given temporal rate to give a motion sen-
sation, high enough to ensure a smooth transition-free visual perception. In general,

44

considering the human visual system (HVS), a frame rate to ensure a smooth motion
perception is around 30 frames per second (fps) (RICHARDSON, 2003). Modern video
applications have introduced more demanding requirements, increasing the need for
higher frame rates, requiring up to 120 fps in order to provide real motion sensation for
digital videos (SZE; BUDAGAVI; SULLIVAN, 2014).

These static images are digitally represented by a two-dimensional matrix of pixels
(numerical representation of picture elements), with horizontal dimension W (width)
and vertical dimension H (height), WxH, referred as the spatial video resolution.

Each pixel stores the color and luminosity information of its corresponding position
within each frame. There are several color spaces defining such a numerical represen-
tation of the pixel properties, like widely used RGB (Red, Green and Blue) and YCbCr
(Luminance, Blue Chrominance and Red Chrominance). Normally, video coding appli-
cations are based on the YCbCr color space, since the human visual system is much
more sensible to luminance than chrominance (color) information, and YCbCr color
system was conceived in order to take advantage of such a characteristic by allowing
a sub-sampling of the chrominance information (RICHARDSON, 2002).

In fact, the sub-sampling of chrominance channels can be seen as the primary
video compression, since the discarded information are imperceptible for the human
visual system and it reduces the amount of data required to represent the video. The
most common adopted sub-samplings configurations are the 4:2:2 and the 4:2:0, which
have, respectively, two Cb and two Cr samples for each four Y samples, and only one
Cb and one Cr sample for each four Y samples (RICHARDSON, 2003). The HEVC
standard supports the 4:4:4 configuration, when no sub-sampling is applied, and the
mentioned sub-sampling configurations (4:2:2 and 4:2:0). Since 4:2:0 configuration
is widely employed researchers, being the most used sub-sampling configuration, we
have considered 4:2:0 along all experiments presented in this thesis.

Video coding/compression seeks to reduce the amount of data considered redun-
dant in the representation of the image or video information. Data that do not contribute
with new visual information, relevant to the representation of the image, is consid-
ered redundant. There are basically three types of redundancy to be explored: spa-
tial redundancy, temporal redundancy and entropic redundancy (GHANBARI, 2003).
Depending on the application, video coding standards explore these redundancies in
order to reach the highest compression ratios keeping reasonable video image quality.

2.4.2 General Aspects

The High Efficiency Video Coding (HEVC) (SULLIVAN et al., 2012; ISO/IEC-
JCT1/SC29/WG11, 2013; SZE; BUDAGAVI; SULLIVAN, 2014) standard has been re-
leased in 2013 by the Joint Collaborative Team on Video Coding (JCT-VC), a joint
effort project of the Video Coding Experts Group (VCEG), from the ITU-T (Interna-

45

Figure 8 – HEVC block diagram.

tional Telecommunication Union - Telecommunication Standardization Sector), and the
Moving Picture Experts Group (MPEG), from the ISO/IEC (International Organisation
for Standardisation and the International Electrotechnical Commission), in order to re-
place older standards, as an alternative to improve the overall delivered compression
ratio and support HD (High Definition) and UHD (Ultra-High Definition) resolutions. In-
deed, HEVC is capable of reaching up to 40% higher compression efficiency when
compared with the previous H.264/AVC (Advanced Video Coding) encoder (VANNE
et al., 2012), delivering the same objective video quality levels (GROIS et al., 2013).
Such requirements make current video coding standards even more complex, for in-
stance HEVC is up to 18 times more complex than H.264/AVC in average (GROIS
et al., 2013) when considering the same video quality, which leads to higher energy
consumption/power dissipation regardless the system where the coding process is be-
ing implemented. Such an increase on energy consumption is due to the new features
of the HEVC, like the use of modern tools and techniques, introduced in order to ad-
dress those demanding requirements.

HEVC employs the widely used hybrid coding compression model, based on the
encoding of residues, composed of the following signal and data processing elements:
(i) intra and inter-frame prediction - exploiting spatial and temporal redundancy, respec-
tively; (ii) de-correlating transform; (iii) quantization; (iv) entropy coding; and (v) in loop
filtering, composed by the filters SAO (Sample Adaptive Offset) and DBF (Deblocking
Filter). Figure 8 shows the operational block diagram of HEVC standard, where we can
observe the hybrid coding model.

Firstly, the frames of the input video are split into equally-sized block-shaped re-
gions, called Coding Tree Units (CTUs). The first frame of the input video is always

46

encoded using only intra-frame prediction, since there are no frames previously en-
coded to be used as reference in inter-frame prediction. The remaining frames may
use both intra and inter-frame prediction.

The intra-frame prediction uses spatial neighboring samples in order to predict the
block being coded. During the inter-frame prediction, each block from previously en-
coded frames is predicted by the Motion Estimation (ME) and Motion Compensation
(MC) steps. ME seeks to find the most similar block in the reference frame when com-
pared with the current block being encoded. Motion Vectors (MVs) obtained from the
ME process determine the relative location of the best prediction block within the ref-
erence frame and are used in the MC process to reconstruct the block. The mode
decision control selects the best prediction mode (inter or intra).

The difference between the current block and the predicted block generates the so
called residues, which are used as input of the Residual Coding Loop (RCL). During
the RCL, direct transform is applied over the residues, converting the samples values
from the spatial to the frequency domain, in order to de-correlate the residue and con-
centrate the signal energy in a few low-frequency coefficients. This process makes
the information unnecessary to human visual perception more evident, which may be
later attenuated. HEVC employs at transform step the integer transforms Direct Sine
Transform (DST) and Direct Cosine Transform (DCT) (SZE; BUDAGAVI; SULLIVAN,
2014).

After transform stage, quantization step is applied over transformed coefficients,
which are attenuated, with stronger attenuation over high-frequency coefficients that
are not perceptually relevant (considering the human visual system) (GONZALEZ;
WOODS, 2010). This attenuation normally generates sparse matrices of coefficients
(with several zero values). It is worth to notice that the quantization inserts unrecov-
erable losses in the residual data. The strength of the quantization, i.e., how aggres-
sive the quantization must be, is controlled by the Quantization Parameter (QP). In-
creases on QP values lead to higher quantization strength, which in turn leads to more
losses during the encoding process. Therefore, higher losses are generally associated
to higher compression ratios. For example, the QP is frequently used to adapt the
required bandwidth to transmit the output bitstream over an unstable communication
channel (VIZZOTTO et al., 2012).

Finally, at the end of the encoding flow, the entropy coding applies data compres-
sion algorithms over all generated data (residues and other video control information).
The entropy coding step aims to reduce the generated data representation redun-
dancy (SZE; BUDAGAVI; SULLIVAN, 2014). HEVC applies the Context-Adaptive Bi-
nary Arithmetic Coding (CABAC) algorithm at entropy coding step (SZE; BUDAGAVI;
SULLIVAN, 2014). The output is commonly referred as output bitstream, which is sent
for properly transmission or storage.

47

Since the quantization stage generates irreversible losses of information, the coded
frame will be different from the original frame after reconstruction at the decoder side
(RICHARDSON, 2003). For this reason, the HEVC encoder replicates the decoder
processing loop, guaranteeing that both the decoder and the encoder use the same
reference samples for intra/inter-frame prediction, since the encoder discards the origi-
nal frame after being processed and stores the reconstructed frame. Therefore, despite
feeding the entropy coding, the quantized residue is fed to the inverse quantization and
inverse transform, allowing the reconstruction of the residual information, which, added
to the predicted samples, generates the reconstructed samples. As can be observed in
Figure 8, this result is delivered to the Deblocking Filter (DBF) and next to the Sample
Adaptive Offset (SAO), in order to smooth out artifacts caused by block-wise process-
ing and quantization. In this way, the encoded frame becomes the reference for both
encoding and decoding.

2.4.2.1 Video Partitioning Structures

According to MCCNANN et al. (2014), in contrast to schemes presented by previ-
ous video encoding standards like H.264/AVC, HEVC employs a video compression
scheme based on the partitioning of encoded blocks into a highly flexible hierarchy,
which allows the use of large blocks and multiple partitioning levels for prediction and
transform blocks, as well as new coding tools. All of these improvements make HEVC
a very efficient video encoder.

This video compression flexible hierarchy includes the partitioning of a frame into
square-shaped blocks called Coding Tree Units (CTUs) and three other block concepts:
Coding Unit (CU), Prediction Unit (PU) and Transform Unit (TU) (MCCNANN et al.,
2014). This division into different concepts allows each one to be optimized in the best
possible way.

Each CTU consists of a block of luminance samples together with two other chromi-
nance blocks. The sizes of the chrominance blocks will depend on the adopted color
sub-sampling (RICHARDSON, 2003). The maximum size of a CTU (and most usual)
is 64x64 samples of luminance, which also corresponds to the maximum size of a CU,
but a CTU can also have sizes 32x32, 16x16, or 8x8.

The CTU can be composed of one or more Coding Units (CUs), which are used in
both types of prediction and always assume square shapes with 2Nx2N size, where
N can be 4, 8, 16, or 32. Therefore, the value range of a CU is at least 8x8 samples
of luminance up to the maximum CTU size. The recursive division of CTU into CUs
allows a variation from small to large block sizes, composing a quadratic tree (quadtree)
formed by blocks of CU (SZE; BUDAGAVI; SULLIVAN, 2014).

Figure 9 shows the illustration of a frame divide into CTUs and a division of a CTU
into CUs. It can be seen that in the detailed CTU, the first depth presents the initial

48

CTU 64x64. This is the first level of the quadtree, however, each 64x64 block can still
be subdivided into four 32x32 blocks, making up the second quadtree level. Therefore,
recursively, each block can continue being subdivided until the fourth depth, in which
the CUs will have size 8x8. Note that according to encoding control decisions, the
CTUs assume different levels within the frame. Normally more heterogeneous regions
tend to split the CTU in more levels, and more homogeneous regions tend to make few
(or none) divisions.

During the prediction step (intra or inter), the CUs are divided into base blocks
called Prediction Units (PUs). Differently from CUs, PUs allow non-square shapes for
the blocks. Hence, since the blocks can be partitioned into different shapes, a more
precise picture detailing can be obtained. In Figure 10 it is presented the eight different
modes for partitioning a CU into PUs supported by the HEVC: four symmetric and four
asymmetric partitions. The values of N can be 4, 8, 16, or 32. Division NxN is only
allowed during intra-frame prediction (if N is equal to 4). On the one hand, during
the intra-frame prediction, only NxN and 2Nx2N partitions are enabled, on the other
hand, during the inter-frames prediction, both symmetric partitions (2NxN, and Nx2N)
and asymmetric partitions (2NxnU, 2NxnD, nLx2N and nRx2N) are allowed. Note that
asymmetric partitions are available only if N is bigger than four.

The TU is the base block unit used to the processes of Transform and Quantization.
TUs are always square-shaped blocks of size NxN, where N can have the same values

Figure 9 – Division of a frame into CTUs and a CTU in CUs (adapted from ZHOU;
ZHOU; CHEN (2013)).

49

Figure 10 – Division of a CU into all possible PUs allowed by HEVC (adapted from
MCCNANN et al. (2014)).

applied to the PUs (4, 8, 16, and 32). Each CU can have one or more TUs so that
the TUs can also be disposed as a quaternary tree structure having the CU as root, so
called Residual Quadtree (RQT).

In spite of partitioning frames into blocks, HEVC also allows the division of the video
sequence into other hierarchy levels. For instance, in the HEVC, a video sequence is
divided into a fixed-size Group of Pictures (GoP), which in turn is a set of frames.
According to the previous discussion, the frames are divided into CTUs, which in turn
are partitioned into CUs. At proper steps, the CUs are further partitioned into PUs and
TUs, performing the pursuit to reach the best coding efficiency. It is worth to notice
that a GoP is able to use as references only frames within the same GoP. In Figure 11
we show an example of a video divided into GoPs containing four frames each. The
concepts of frames I and B will be further explained.

Figure 11 – Division of a frame into GOPs (CORRÊA, 2014).

2.4.2.2 Common Test Conditions and Temporal Configurations

The specification of HEVC standard (ISO/IEC-JCT1/SC29/WG11, 2013) describes
the adopted syntax and decoding procedures. The researchers are free to implement

50

any changes at the encoder side, since the generated bitstream remain compliant with
the syntax and decoding rules established by the standard.

In order to guide tests using the HEVC, as a way to allow a fair comparison among
research works, the JCT-VC stipulated a document that establishes the so called Com-
mon Test Conditions (CTC) (BOSSEN, 2013), when dealing with the HEVC reference
software, the HEVC Test Model (HM) (BOYCE, 2014). The CTCs document defines
six classes of video sequences (from A to F), presenting different resolutions and mo-
tion/texture patterns, which should be used when performing tests using the HEVC
standard. The CTC also states that simulations must use four different QP levels: 22,
27, 32 and 37.

In addition, CTC document also establishes the structures of temporal prediction,
which are divided into three types: All Intra (AI), Low Delay (LD) and Random Access
(RA), which establish the way in which frames are distributed and referenced in a GOP.

In AI configuration all pictures in the video sequence are encoded as Instantaneous
Decoding Refresh (IDR) pictures, which are images containing only intra-frame predic-
tion. When encoding video according to this configuration, inter-frames prediction is
not allowed.

There are two types of LD configuration, type P (unidirectional prediction) or type
B (bi-directional prediction). In both conditions, only the first frame of the sequence is
encoded as an intra-frame. In the Low Delay B configuration, all successive frames
are encoded as GPB (Generalized P and B Picture) frames. The GPB frames are B
pictures that only allow using reference frames that appear before the current frame in
display order. B frames can use reference frames from two different lists (composed of
the previously stored reference frames), using two reference frames together to gener-
ate the prediction. P frames use only reference frames from one list. In the Low Delay
P configuration, all inter-frames are encoded as type P (MCCNANN et al., 2014). Fig-
ure 12 presents the graphical representation of a Low Delay configuration. The indices
above each frame indicate the encoding order. In the Low Delay setting, the coding
order is in the same order used for displaying.

When considering RA configuration, a hierarchy structure composed of bi-predicted
frames (B frames) is used in the encoding process. One IDR frame is always period-
ically inserted in order to refresh the reference lists. The frames located between two
IDR frames, considering the viewing order, are encoded as B frames. GPB frames
are used in the lowest level of the temporal layer. The second and the third temporal
layers are composed by referenced B frames. Finally, the highest level of the temporal
layer contains only non-referenced B frames (i.e., they are not used as reference for
any other frame). The QP value related to each inter-frame is obtained from an off-
set (which depends on the temporal layer), summed to the QP of the intra-frame. It
is worth to mention that the viewing order in Random Access configuration is not the

51

Figure 12 – Graphical presentation of LD configuration (MCCNANN et al., 2014).

same used in the encoding process. In Figure 13 is presented a graphical represen-
tation of RA configuration, where the numbers associated to each frame represent the
encoding order.

Figure 13 – Graphical presentation of RA configuration (MCCNANN et al., 2014).

2.4.2.3 Rate-Distortion Cost

Based on what was explained so far, one can notice that there are several pos-
sible combinations to encode a single CTU, like different prediction modes (intra or
inter), partition sizes, transforms sizes, QPs, and so on. In order to determine the

52

best encoding configurations, a decision called Rate-Distortion Optimization (RDO) is
implemented by the video encoders.

When analyzing the rate-distortion (RD) cost of a given configuration being tested,
the rate metric is related to the size (number of bits of the generated output bitstream,
and the distortion represents the objective quality provided by such a configuration.
Equation (23) presents the RD cost mathematical definition, where λ is the lagrangian
parameter that weights the trade-off between distortion (D) and rate (R) (λ depends on
the adopted QP).

RDcost = D + λ ·R (23)

The distortion is obtained through the application of any of the distortion metrics
(discussed in the next section) over the reconstructed blocks, for each particular con-
figuration. The rate is obtained after the transform, quantization and entropy coding
steps. During prediction, e.g., since the RD cost of each CU must be calculated during
the CTU quadtree decision, the transforms and quantization steps need to be called
many times just to decide the best prediction mode. In a similar way, during the RQT
decision, the entropy coding is executed several times in order to decide the best TU
size.

Considering that, one of the most prominent optimization problems regarding video
compression algorithms is the minimization of the RD cost, which leads to the max-
imization of the coding efficiency, and, for every decision made during the encoding
process, a repercussion (positive or negative) in the final coding efficiency will be ver-
ified. Therefore, optimal coding efficiency is achieved when every possible decision
during the encoding process is evaluated considering the RD cost calculation, which
leads to a huge computational effort spent by video encoders.

2.4.2.4 Distortion Metrics

During the video coding process any standard introduces distortion in the com-
pressed videos. In order to measure the objective video quality, different metrics can
be used. Normally, the objective metrics are based on direct comparisons between
pixels from different pictures or blocks, like the original and the reconstructed image.

The most used and known objective distortion metric is the Peak Signal-to-Noise
Ratio (PSNR) (RICHARDSON, 2003), which can be applied at different levels: from
a block or frame to a entire video. The PSNR is represented in decibels (dB), which
equation is defined in (24).

PSNRdB = 20 · log10
(
MAX√
MSE

)
(24)

MAX is the maximum value that a sample can assume (2n − 1 in HEVC, where n is

53

the number of bits per sample) and MSE is the Mean-Squared Error for the image or
block, a similarity criterion calculated according to (25).

MSE =
1

m · n

m −1∑
i =0

n −1∑
j =0

(Ri,j − Oi,j)
2 (25)

In (25), m and n are the picture dimensions, O and R represent the original and re-
constructed samples (luminance or chrominance), respectively. MSE metric expresses
the difference (distortion) between the samples from two frames or blocks in an objec-
tive way, thus we can also consider MSE itself as a distortion metric. When looking
for low-complexity distortion metrics, we can detach the Sum of Absolute Differences
(SAD) (KHUN, 1999), widely used in video encoders, especially in hardware implemen-
tations of video coding modules. SAD is computed as shown in (26) and its variables
are the same appearing in (25).

SAD =
m −1∑
i =0

n −1∑
j =0

|Ri,j − Oi,j| (26)

2.5 Fractional Motion Estimation

During the inter-prediction, at the motion estimation (ME) step, temporal redun-
dancy between two or more frames is exploited. As aforementioned, the frame is
divided into smaller blocks (PUs).

For each block being coded, there is a search for the best matching block within the
reference frame, constrained at a search window (SW). This search considers a simi-
larity criterion, usually the Sum of Absolute Differences (SAD). The ME block diagram
is presented in Figure 14. ME is divided into two steps: integer ME (IME), which is pre-
sented in Figure 15, and fractional ME (FME), our main case study, which is presented
in Figure 16.

Figure 14 – Motion estimation steps.

To find the best integer matching, a block matching algorithm (BMA) needs to be ap-
plied. Many types of BMA may be used, the HEVC reference implementation employs
the widely used Test Zonal Search (TZS) algorithm, which is a multi-step algorithm
that adapts to data properties and performs the search up to 23x faster at equivalent
quality when compared to the exhaustive Full Search (FS) algorithm (PURNACHAND;
ALVES; NAVARRO, 2012). During this step, the IME compares the current block (we

54

want to predict) with candidate blocks within the reference frames in order to find the
most similar.

TZS is implemented considering four stages: prediction, which moves the search
window to the region with the highest probability of matching (around the collocated
block in Figure 15 for simplicity); first search, performed around the central point,
assuming an expanding diamond shape (two expansion levels are shown on Figure
15); raster, performed only when the previous step fails (a reasonable block matching
is not found); and refinement, which improves the result found in the previous stages.
When the best integer matching is found, a motion vector (MV) is generated pointing
to the selected block. This information is then sent to the next step, the FME.

Figure 15 – IME details.

In order to improve the coding efficiency, FME is applied over the integer block found
at IME, allowing the matching in sub-pixel positions, with 1/2 or 1/4-pixel precision.
The FME consists of two steps: the interpolation and the search steps, as shown in
Figure 14. During interpolation, the calculation of the fractional samples is performed
using finite impulse response (FIR) filters with 7 or 8 taps, whose coefficient values are
presented in Table 1. These filters, following a nomenclature stated in AFONSO et al.
(2013), are called UP, MIDDLE or DOWN, according to the samples they calculate.
Table 1 also shows which sample each filter calculates.

Figure 16 presents the example of a detailed FME behavior when evaluating an
8x8 block. In Figure 16 (a) we show the best 8 x 8 candidate selected at IME, with
its sample borders necessary for the interpolation calculation (compounding a 15 x 15
reference matrix in the case of 8 x 8 blocks). The FME tries to refine the motion, by

55

Table 1 – HEVC FME Interpolation Filter Coefficients

Filter Coefficients Evaluated Samples
UP {-1, 4, -10, 58, 17, -5, 1}/64 a, d, e, f, and g

MIDDLE {-1, 4, -11, 40, 40, -11, 4, -1}/64 b, h, i, j, and k
DOWN {1, -5, 17, 58, -10, 4, -1}/64 c, n, p, q, and r

also searching in fractional positions. These positions do not exist in the image grid,
but their values can be estimated by interpolation, describing the sample values if the
motion was smaller than an integer sample precision.

Observe in Figure 16 (b) the detailing of the 8x8 integer block (depicted as orange
boxes). The interpolation is divided into two parts: (i) the horizontal filtering, which per-
forms the calculation of samples a, b, and c (depicted as yellow boxes), using neigh-
boring integer samples (A) in a row of the reference matrix, and (ii) the vertical filtering,
which performs the calculation of samples d, h, and n (depicted as red boxes), using
neighboring integer samples in a column, and the calculation of the remaining samples
(depicted as blue boxes), using the previously pre-calculated fractional samples (a, b,
and c). In Figure 16 (c) we present the behavior of the horizontal filtering process.
Each filter tap is multiplied by a given sample. The sum of these multiplications is fur-
ther divided per 64, in order to guarantee no gain after the filtering. For each 8 x 8
block, fifteen fractional blocks also sizing 8 x 8 are generated, depicted in Figure 16
(d), which are composed by samples a, b, c, d, and so on. Generalizing, fifteen n x
m blocks (considering that the block being coded has n x m dimension) containing the
calculated samples are generated for each integer n x m block. During search step,
these blocks are evaluated and compared, finally, the best fractional block is appointed
(in terms of applied similarity criterion, e.g. SAD).

As could be seen, the Fractional Motion Estimation is a very computation/power
demanding step, being responsible for up to 60% of total HEVC encoding effort
(GRELLERT; BAMPI; ZATT, 2016). For instance, the encoding of a single frame of
an UHD 4K video generates more than 120 million fractional samples (1/2 and 1/4
pixel) only for the 8x8 blocks. When we analyze other block sizes, considering only
square-shaped blocks (16 x 16, 32 x 32, and 64 x 64), this number grows exponen-
tially, reaching more than 10 billion samples to be calculated regarding a single 4K
frame. This huge number led the researchers to think in strategies in order to reduce
the computational effort while simultaneously achieve the required performance.

On the one hand, approximate computing emerges as an interesting solution in
order to reduce the computational effort/power demands of FME. The simplification of
some steps at FME may lead to sub-optimal choices but can introduce huge power
savings. On the other hand, the entire process does not present data dependency

56

Figure 16 – FME detailing for an 8x8 block: (a) integer best candidate block within the
reference matrix, (b) fractional samples from horizontal and vertical filtering details, (c)

filtering behavior from UP, MIDDLE and DOWN, and (d) fifteen fractional blocks
regarding one integer block.

between spatial neighbor blocks, i.e., all blocks evaluated by the FME can be processed
in parallel, bringing an interesting opportunity for parallelism exploration.

2.6 Machine Learning: Decision Trees

The concept of Knowledge Discovery from Data (KDD) (FAYYAD et al., 1996) has
gained lot of research attention recently, being currently applied to several knowledge
areas, such as medicine, market management, biology, and image processing. KDD
systems aim to extract information from both structured and unstructured sources, by
using strategies based on machine learning algorithms.

Machine learning (ML) is a branch of study in artificial intelligence that is concerned
with designing algorithms capable of obtaining knowledge from observations (RUS-
SELL; NORVIG, 2002). Regarding computational problems, such knowledge is rep-
resented as a model that estimates the output of a task based on some indicators.
This definition is intentionally broad, because it shows that machine learning can be

57

Figure 17 – Example of a decision tree (CORRÊA, 2014).

applied to many cases, as long as errors are allowed to some degree (GRELLERT,
2018). Techniques based on ML are used to determine the value of dependent vari-
ables by looking at the value of some attributes in the data set, identifying regularities
and building generalisation rules that can be expressed as models (CORRÊA, 2014).

In most cases, the training process is performed offline using the entire training set.
If the model generalizes well, a good performance is expected when it is tested against
an evaluation set, which must be different from the training one.

There are several methods of machine learning available in the literature, varying
according to their efficiency, complexity and applicability (CORRÊA, 2014). Decision
trees (QUINLAN, 2014) are widely used machine learning algorithms, where a depen-
dent variable can assume one among a finite number of outcomes.

According to CORRÊA (2014), when building decision trees, observations on a set
of training data are mapped into arcs and nodes, as demonstrated in Figure 17. Inner
nodes (A, B, C, and D) represent the tested variables (attributes), while the arcs are
the possible values that the attributes can assume. In a binary classification tree the
attributes can assume two results (e.g. x2 and y2 for attribute B in the given example).
The leaves of decision trees are the values that the class attribute can assume and
represent the possible outcomes of the whole decision process. In the example given
in Figure 17, the possible outcomes are L and R.

Decision trees usually achieve high prediction accuracy after trained for a set of
problems, being very easy for human beings understanding, thus being simple to im-
plement. Normally, there are many efficient algorithms to build them from training data,
like the widely used C4.5 (QUINLAN, 2014). Decision trees are very practical and can

58

handle both categorical and numerical values, executing predictions very fast. The
prediction process adds negligible extra computational complexity to the application
(CORRÊA, 2014).

2.7 QoS Metrics for Video Coding

There are several metrics in the literature targeting the coding efficiency assess-
ment of digital videos. The coding efficiency can be used to measure the QoS of video
coding applications. These metrics can employ two approaches for analysis, consid-
ering a subjective or objective assessment. Metrics based on subjective assessment
take into account the perception of the spectators, when watching both the original
and a modified video. Objective approaches use mathematical models to compare the
original and the modified video.

For objective analysis of video QoS, metrics based on bit-rate and PSNR are widely
used. However, the trade-off between compression and image quality cannot be ac-
curately verified if a individual analysis of these metrics is performed. In order to ad-
dress such an issue, the BD bit-rate (BD-BR), or simply BD-Rate, and the BD Peak
Signal-to-Noise Ratio (BD-PSNR) metrics are used, which are based on the Bjonte-
gaard Difference (BD) (BJONTEGAARD, 2001). The BD-BR can be interpreted as the
percentage variation of the bit-rate between a reference configuration and a test con-
figuration, considering videos with the same objective quality after encoding. Thus, a
positive BD-BR means loss of test encoding performance in relation to reference, a
negative BD-BR indicates gain, i.e., an encoding that resulted in a lower bit-rate video,
but with the same objective quality. The BD-PSNR can be interpreted as the variation
in decibels of PSNR between the reference and the test condition, considering videos
that have the same bit-rate. Thus, a negative BD-PSNR value indicates loss of quality
while a positive value represents an improvement in video quality, both of which having
the same bit-rate.

To obtain these metrics, configurations reference and test are coded for four differ-
ent Quantization Parameters (QP), producing eight pairs (PSNR, bit-rate). These pairs
are used to interpolate two curves through a third order interpolation function, generat-
ing two Rate-Distortion (RD) curves (BJONTEGAARD, 2001), presented in Figure 18.
The area between the curves is integrated using the Y axis as a reference for the BD-
BR (Figure 18 (a)) and the X axis as a reference for the BD-PSNR (Figure 18 (b)). The
equation for calculating BD-BR and BD-PSNR are given in (27) and (28), respectively.
REF and TEST in (27) and (28) represent the PSNR or bit-rate values for the curves,
regarding the reference and test encoding configurations, respectively. Variables A and
B, used as integration limits, represent the second minimum and the second maximum
PSNR values considering the eight pairs (bit-rate, PSNR), for the BD-BR calculation,

59

Figure 18 – RD curves employed on (a) BD-BR and (b) BD-PSNR calculation.

and they also represent the second minimum and the second maximum bit-rate values
considering the eight pairs (bit-rate, PSNR), for the BD-PSNR calculation.

BRBR =

∫ B
A

(REFPSNR(y) − TESTPSNR(y)) dy

B − A
(27)

BRPSNR =

∫ B
A

(REFbitrate(x) − TESTbitrate(x)) dx

B − A
(28)

2.8 Summary

In this chapter we have revisited several branches of the literature, extremely im-
portant for a better comprehension of this work. Basic fundamentals regarding com-
municating NoC and real-time schedulability analysis were provided. A background
regarding video coding concepts, ranging from basic aspects to specific features of
HEVC encoder was also provided. We revisited the adopted evaluation metrics and fo-
cused on more detailed explanation about some HEVC encoder steps, exploited by this
work, like the inter-prediction module. Finally, basic comments about machine learning
were provided, detailing the widely used decision trees, also exploited in this work.

3 RELATED WORKS

In this thesis, several computer science research branches were revisited to sup-
port our main contributions and innovations. In order to visualize the insertion of this
work in current state-of-the-art, we have analyzed several works in the literature. This
chapter aims to organize this comparison, showing the main challenges that are still
unsolved by current related works. In Section 3.1, we analyze many works propos-
ing approximate computing solutions, from general purpose complex systems to video
coding applications. Section 3.2 brings the discussion about NoC-based solutions, ex-
ploring the seek for energy efficiency in homogeneous and heterogeneous NoCs. In
Section 3.3, it is contemplated the study about works developing hardware acceler-
ation for video coding, specifically for our target case study, the FME. A discussion
about precise and approximate hardware is also provided. Finally, in Section 3.4, we
summarize related works contributions, listing and discussing the remaining research
challenges.

3.1 Approximate Computing for Complex Systems

As aforementioned in this thesis, approximate computing has being applied by re-
searchers to simplify the processes, aiming a reduction on energy, computational ef-
fort, external memory accesses, and so on, trying to insert the smallest errors on the
application QoS. Due to its versatility, approximate computing can be applied over sev-
eral applications, from general complex systems to video processing (our main focus),
allowing the energy consumption reduction while maintaining the overall QoS of the
application at tolerable ranges.

3.1.1 General Purpose Complex Systems

There are a wide range of works applying approximate computing for general com-
plex systems available in the literature. BOYAPATI et al. (2017) proposes an approx-
imate data framework for communicating network-on-chip architectures. The authors
propose APPROX-NoC, a data approximation framework for NoCs conceived in order

61

to alleviate the impact of heavy data communication stress on NoCs, by leveraging the
error tolerance of applications. They claim a reduction on the transmission of approxi-
mately similar data in the NoC, by delivering approximated versions of precise data to
improve the data locality for higher compression rate. The proposed framework uses
an approximation engine to adapt the error control logic, approximating a given data
block to the nearest compressible reference data pattern. By applying this solution,
APPROX-NoC is capable of reaching expressive reduction on communicating latency
under a small penalty on application error.

YIN et al. (2020) propose the design of a dynamic range of approximate logarithmic
multipliers (LM) for machine learning applications. In their work, the approximation is
realized by truncating the operation, compensating the adder results and using the in-
herent approximate characteristics of the LM. The proposed circuit level design is able
to deliver expressive energy savings, when compared with precise solutions, introduc-
ing small error on application. GUESMI et al. (2020) introduce a defensive approxima-
tion strategy, enhancing the security of Convolutional Neural Networks (CNNs) through
approximate computing usage. They implemented an approximate CNN hardware ac-
celerator, built upon an aggressively approximate floating point multiplier, which injects
data-dependent noise within the convolution calculation. By following this strategy, the
authors claim that their approximate computing model is capable to maintain the same
level of classification accuracy, without retraining requirements and reducing resource
utilization and energy consumption of the CNN.

Approximate computing is also explored by other research areas, such as IoT. In
GHOSH; RAHA; MUKHERJEE (2020), it is proposed the design of a low power hard-
ware prototype for algorithm implementation, built on a real-time microcontroller-based
IoT platform that operates as an end-to-end Wireless Body Sensor Node (WBSN) sys-
tem in real time, which is an IoT-based health system for monitoring patients outside the
hospital environment. Their experimental results have shown significant system-level
energy improvement at negligible impact on signal quality.

It can be observed that many works in the literature apply approximate computing
focusing on suitable applications (the ones presenting resilience to errors). Regarding
such a scenario, the video coding application emerges as a potential candidate for
approximate computing. Indeed, there are many works in the literature exploring these
aspects, as detailed in the following.

3.1.2 Video Coding

When it comes to approximate computing for video coding, different strategies can
be employed exploring the approximation at different levels, such as the ones based on
hardware simplifications (approximate arithmetic circuits, approximate storage, reduc-
tion on logic circuits, etc.), or software/algorithmic simplifications (exploring the preci-

62

sion scaling, with the skip of some tasks or memory accesses). Furthermore, there is
a wide range of solutions addressing different parts of the encoder steps, such as the
inter prediction (EL-HAROUNI et al., 2017; PRABAKARAN et al., 2019; PORTO et al.,
2020), intra prediction (PASTUSZAK; ABRAMOWSKI, 2015), transforms (CHATTER-
JEE; SARAWADEKAR, 2019), and in-loop filters (PRAVEEN; ADIREDDY, 2013).

In EL-HAROUNI et al. (2017) it is proposed a novel approximate architecture for
energy-efficient motion estimation in the HEVC encoder. Their solution employs dif-
ferent SAD accelerators with accurate and heterogeneous multi-level approximation
modes for different block sizes, allowing the exploration of the trade-off between energy
savings and video quality. Still, PRABAKARAN et al. (2019) propose an approximate
multi-accelerator tiled architecture for energy-efficient motion estimation, also target-
ing HEVC inter prediction steps. In such work approximate adders were developed in
order to build the SADs within the inter-frame prediction. Their design was conceived
in a configurable way, being able to achieve power, latency, and/or energy savings.
Furthermore, PORTO et al. (2020) also focus on HEVC inter prediction step, propos-
ing a fast and energy-efficient approximate motion estimation architecture employing
imprecise adders within the SAD calculation. They have designed the entire motion
estimation architecture, embracing both IME and FME while introducing the developed
approximate adders at SAD steps.

When looking for other encoding steps, PASTUSZAK; ABRAMOWSKI (2015) pro-
pose an algorithm and architecture design targeting the intra-frame prediction in the
HEVC encoder. They developed a computationally-scalable algorithm and its hardware
architecture in order to support the intra HEVC encoding. In their design, approximate
computing is applied in order to explore the trade-off between throughput and cod-
ing efficiency by simplifying rate-distortion decisions. CHATTERJEE; SARAWADEKAR
(2019) develops an approximated core transform architectures for HEVC using a de-
composition method based on the Walsh Hadamard Transform (WHT). This work fo-
cuses on the transform step, being able to reach huge energy savings when compared
with precise solutions. In PRAVEEN; ADIREDDY (2013) it is proposed an analysis
and approximation of SAO (Sample Adaptive Offset) estimation for CTU-level HEVC
encoder, thus targeting the in-loop filtering step. This work proposes two methods
that are very suitable for designing pipelined architectures, including both software and
hardware solutions.

3.2 NoC-Based Solutions

NoC-based systems present an interesting alternative to explore the inherent par-
allelism of the applications, since the processing of a given application can be split
over several processing elements. In addition, they also bring scalabiity for the pro-

63

cessing due to the ability of variation on the number of processing elements, which
becomes essential when dealing with applications presenting different throughput (e.g.
video processing, which can present different spatial resolutions and frame rates). Due
to these features, many works in the literature have been employing the use of NoC-
based solutions in order to explore parallelism and provide scalability.

3.2.1 Energy-Efficient NoC Solutions for General Applications

There are several works in the literature aiming for energy efficiency on NoCs for
general applications (ZHAN et al., 2013; CLARK et al., 2018; ALI et al., 2018; ZHENG;
LOURI, 2019; TARIQ; WU; ABD ISHAK, 2020; WANG et al., 2020). These works
propose energy-efficient NoC designs targeting real-time embedded systems running
general applications.

In ZHAN et al. (2013) it is developed an energy-efficient NoC for real-time embed-
ded systems through slack optimization. They propose a methodology to minimize the
NoC’s energy consumption without violating the deadlines of real-time applications, de-
veloping a formal approach based on network calculus to obtain the worst-case delay
bound of all packets. Thus, they produce a safe estimation of the number of cycles that
a packet can be delayed while meeting its deadline, which is so called worst-case slack.
Based on that, they developed an optimization algorithm in order to trade the slacks
for lower NoC energy, assigning different voltages and frequencies to different routers
to reduce energy, while meeting the deadlines for all packets. CLARK et al. (2018)
also develop a solution based on DVFS for NoC energy efficiency following a learning-
based approach. In this work, the authors have applied machine learning techniques
in order to enable energy-performance trade-offs at reduced overhead cost, in order to
control the DVFS system.

ALI et al. (2018) investigate contention and energy-aware real-time task mapping
on NoC-based heterogeneous MPSoCs. This architecture considers DVFS-enabled
processors, while contention and energy-aware static mapping for real-time Directed
Acyclic Graph (DAG) tasks with individual deadlines and precedence constraints is also
studied. In ZHENG; LOURI (2019) it is proposed an energy-efficient network-on-chip
design using reinforcement learning. They explore the dynamic interactions among
power gating, DVFS, and system parameters, in order to learn the critical system pa-
rameters. Thus, the usage of Artificial Neural Network (ANN) is introduced, aiming a
efficiently implementation of the state-action table required by reinforcement learning.

TARIQ; WU; ABD ISHAK (2020) propose an energy and memory-aware software
pipelining streaming applications on NoC-based MPSoCs. They explore the problem
of energy-aware scheduling of real-time applications, modelled by conditional retiming
task graphs in order to minimize the total energy consumption, while meeting memory
capacity constraints. In WANG et al. (2020) it is proposed an efficient task mapping

64

scheme targeting many-core systems. Since application task mapping has a significant
impact on the efficiency of many-core system computation and communication, the au-
thors proposed WAANSO solution, a scalable framework that incorporates a wavelet
clustering-based approach to cluster application tasks, reaching significant energy con-
sumption reduction.

3.2.2 NoC Solutions for Video Coding

3.2.2.1 Employing GPPs

Many works in current literature focus on video coding over NoCs (ALIKHAH-ASL;
RESHADI, 2016; PENNY et al., 2019a; MA et al., 2015; MENDIS; AUDSLEY; INDRU-
SIAK, 2017), exploring latency improvement (ALIKHAH-ASL; RESHADI, 2016), per-
formance evaluation targeting the meet of timing constraints (PENNY et al., 2019a),
and dynamic and static task-allocation algorithms for video encoders (MA et al., 2015;
MENDIS; AUDSLEY; INDRUSIAK, 2017; MENDIS; INDRUSIAK, 2016).

In ALIKHAH-ASL; RESHADI (2016) it is proposed a XY-Axis and distance-based
NoC mapping, by proposing a low complexity heuristic algorithm for the application
mapping onto NoC to improve latency, targeting the MPEG-4 encoder. In our previous
work (PENNY et al., 2019a), we make a performance evaluation of HEVC Residual
Coding Loop (RCL) mapped onto a NoC-based embedded platform. A set of analysis
exploring the combination of different NoC sizes and task mapping strategies were
performed, showing for the typical and upper-bound workload cases scenarios when
the application is schedulable and meets the real-time constraints.

MA et al. (2015) implement a MVC (Multiview Video Coding) decoding on homo-
geneous NoC, investigating the routing strategies. They analyze which is the most
suitable switching for the routers: a circuit or wormhole switching, by performing a
comparison on decoding speed of the whole system, link utilization, and delay between
these switching strategies. Their case study considers the decoding of an eight-view
QVGA (Quarter Video Graphics Array - 320 x 240 pixels) onto a 4x4 mesh NoC at 30
fps, leading to the selection of circuit switching for routing.

Furthermore, MENDIS; AUDSLEY; INDRUSIAK (2017) proposed a dynamic and
static task allocation for hard real-time video stream decoding on NoCs, targeting the
MPEG-2 decoder. They describe two application and platform-aware run-time task
mapping strategies, which attempt to decrease the end-to-end response-time of the
video stream decoding jobs. Besides, MENDIS; INDRUSIAK (2016) present a run-time
and low-communication overhead clustering-based HEVC tile to PE mapping scheme,
taking into account the workload and task blocking behaviour. They have illustrated
how a frame-level task graph can polynomially grow due to tile partitioning and inter-
prediction. The proposed task-mapper clusters dependent tasks together on to the
same or neighbouring PEs, reducing the inter-task data communication, leading to

65

significant reduction in data communication overhead and increased mean PE idle
periods, also resulting in reduced energy consumption.

3.2.2.2 Employing Hardware Accelerators

NoC-based systems with GPPs as processing elements might not address the nec-
essary performance to meet real-time constraints posed by energy/time demanding
applications like video coding. In order to adress such an issue, hardware acceler-
ation becomes essential, and its usage as processing elements in NoC-based en-
vironments has been addressed as an interesting solution by many works (NOURI;
GHAZNAVI-YOUVALARI; NURMI, 2018; POURABED; NOURI; NURMI, 2018; PENNY
et al., 2019b).

NOURI; GHAZNAVI-YOUVALARI; NURMI (2018) propose a design and implemen-
tation of multi-purpose accelerator on heterogeneous multi-core architecture, targeting
the HEVC transforms: Discrete Cosine Transform (DCT) and Discrete Sine Transform
(DST). They employ the usage of template-based Coarse-Grained Reconfigurable Ar-
rays (CGRAs) as accelerators on a Heterogeneous Accelerator-Rich Platform (HARP),
arranged in a 3x3 NoC mesh topology, reaching enough throughput to deal with FHD
videos at 30 fps. In POURABED; NOURI; NURMI (2018) it is proposed a similar solu-
tion, but focusing on the acceleration of the HEVC inverse transforms: Inverse Discrete
Cosine Transform (IDCT) and Inverse Discrete Sine Transform (IDST). They also em-
ploy template-based CRGAs as accelerators on HARP, delivering throughput to handle
FHD videos at 30 fps.

In our previous work (PENNY et al., 2019b), we have proposed a design space
exploration of HEVC RCL mapped onto NoC-based embedded platforms, combining
traditional CPUs and hardware accelerators as processing elements (PEs). We con-
sidered the encoding of FHD (1920 x 1080 pixels) and 4K (3840 x 2160 pixels) videos
at 30 fps, when running at CPUs and hardware accelerators, respectively. A set of
analysis exploring the combination of different NoC configurations and task mapping
strategies were performed, with the development of a search algorithm called SNFT
(Schedulability breakdown NoC Frequency Tracking algorithm). SNFT will be further
introduced in this thesis, as a way to find the minimum NoC frequency for each con-
figuration which becomes the system fully schedulable, showing for different workload
cases scenarios when the application is schedulable and meets the real-time con-
straints.

3.3 Hardware Designs for Video Coding

Considering the severe constraints posed by video coding, especially when dealing
with embedded battery-powered systems, dedicated hardware acceleration is manda-

66

tory, as widely demonstrated in current literature. The adoption of this strategy can im-
prove both energy and performance efficiency of the applications, enabling the power-
aware real-time processing of very demanding applications like video coding.

3.3.1 Precise Designs for FME

Many works in the literature propose hardware designs to deal with very complex
tasks of the HEVC encoder, such as the inter-frame prediction. In AFONSO et al.
(2016) it is developed a hardware design for the whole FME (interpolator + search),
capable of reducing memory communication and computational effort by the use of
only four sizes of squared-shaped prediction units (PUs), instead of using the 24 sizes
supported by HEVC motion estimation. Besides the reduction of memory accesses
and computational effort, it does not support other PU sizes and significantly affects the
coding efficiency. HE et al. (2015) propose a high-throughput architecture for HEVC
FME, also involving all FME steps. Besides reaching complexity reductions, it does not
show a complete evaluation of impacts of the adopted complexity-reduction strategy
whereas significantly affects coding efficiency. Furthermore, in PENNY et al. (2015) it
was proposed a real-time and high-throughput architecture targeting the HEVC codec.
In spite of the development of efficient hardware design, supporting all PU sizes, they
focus only on the motion compensation (MC) step. LUNG; SHEN (2019) also presents
the design and implementation of a highly efficient fractional motion estimation for the
HEVC encoder. Despite obtaining high throughputs by the use of reconfigurable data-
paths, neither of aforementioned works apply approximate computing solutions in their
architectures in order to reduce both energy consumption and external memory com-
munication.

3.3.2 Approximate Designs for FME

Many works introduce approximate computing solutions to develop architectures
targeting specific accelerators for HEVC inter-prediction blocks. DIEFY; SHALABY;
SAYED (2015) have proposed the development of efficient architectures for HEVC lu-
minance interpolation filters. It applies approximate computing by changing the number
of adders in the design, resizing the filter coefficients according to a proposed scal-
ing factor modification to reduce hardware implementation complexity. In PALUMBO
et al. (2016), it is developed a run-time coarse-grained adaptation solution to guaran-
tee energy reduction, in constraint-aware or user-defined situations, while introducing a
controllable quality degradation by approximate computing, targeting MC HEVC filters.
Although they have obtained expressive gains in performance and area, with small
quality degradation, they only act at the interpolation filters, not involving the whole
interpolator unit. Moreover, they focus only on the motion compensation tool, at the
decoder side, not targeting the FME step. Furthermore, SAU et al. (2017) proposed

67

an approximate hardware solution for the HEVC fractional pixel FPGA interpolator with
reconfigurable and multi-frequency approximate computing. It guarantees a tunable
interpolation system offering the energy-quality trade-off. However, it implements the
architecture only on FPGA and does not present QoS (in terms of coding efficiency)
results.

KALALI; HAMZAOGLU (2018) and SILVA; SIQUEIRA; GRELLERT (2019) propose
the hardware implementation of approximate HEVC FME interpolation filters, exploring
the idea of changing the coefficients of the interpolation filters in order to achieve com-
plexity/energy reduction, under a small penalty on coding efficiency. In our previous
work (PENNY et al., 2020), we have presented a low-power and memory-aware hard-
ware architecture for the HEVC FME interpolator, proposing the development of two
novel hardware designs for the interpolation filters, so called Approximate Unified FME
Filters (AUFF). These solutions exploit the usage of approximate computing at both
algorithmic and data levels, leading to a reduction in dissipated power and memory
bandwidth. Therefore, although many works in the literature address the development
of approximate hardware designs for the fractional motion estimation, many research
opportunities are still open for novel contributions.

3.4 Summary and Challenges

The works in the literature aiming energy efficiency on NoCs for general applica-
tions (ZHAN et al., 2013; CLARK et al., 2018; ALI et al., 2018; ZHENG; LOURI, 2019;
TARIQ; WU; ABD ISHAK, 2020; WANG et al., 2020) are unable to exploit the applica-
tion specific characteristics to deliver high-throughput and energy efficiency. In turn,
the works found in current literature that focus on video coding over NoCs (ALIKHAH-
ASL; RESHADI, 2016; PENNY et al., 2019a; MA et al., 2015; MENDIS; AUDSLEY;
INDRUSIAK, 2017), although proposing application-specific solutions, do not focus on
energy consumption, work at the decoder side (less complex than the encoder) tar-
geting low resolutions, and/or consider older video coding standards. NoC-based sys-
tems with hardware accelerators as processing elements for video coding are explored
in NOURI; GHAZNAVI-YOUVALARI; NURMI (2018); POURABED; NOURI; NURMI
(2018); PENNY et al. (2019b) but are not able to give energy/performance scalabil-
ity (since approximate computing was not applied) and/or they do not reach enough
throughput to deal with UHD videos. Regarding approximate computing for NoCs,
despite providing significant energy reduction, related work BOYAPATI et al. (2017)
focuses only on the NoC communication, not changing processing elements neither
applying approximate computing over them. When it comes to approximate dedicated
hardware accelerators for video coding, there is a wide range of solutions including dif-
ferent steps, such as inter-prediction (EL-HAROUNI et al., 2017; PRABAKARAN et al.,

68

2019; PORTO et al., 2020), intra-prediction (PASTUSZAK; ABRAMOWSKI, 2015),
transforms (CHATTERJEE; SARAWADEKAR, 2019), and in-loop filters (PRAVEEN;
ADIREDDY, 2013). However, none of these works makes a precise evaluation of ap-
plication’s resilience to errors and/or do not focus on high energy demanding steps like
the Fractional Motion Estimation. Furthermore, none of them considers the employ-
ment of NoC solutions, performance/energy scalability, and support to multiple QoS
levels.

Summarizing this discussion about related works, one can notice that many re-
search opportunities remain open in different research fields, regarding the real-time
processing of complex applications, guiding the development of this thesis, as follows:

• Exploiting the inherent parallelism of the applications to provide high-throughput ;

• Supporting scalability for distinct operation demands by employing different NoC
sizes;

• Exploring approximate computing for multimedia hardware designs by deploying
energy-efficient processing elements;

• Dealing with the trade-off between energy and QoS by leveraging application-
specific properties/behavior.

4 SCALABLE APPROXIMATE NETWORK-ON-CHIP (SAPP-
NOC)

This thesis aims to research and propose architectural solutions leading to power-
efficient and high-performance application-specific systems, allowing scalable real-
time support for error-resilient applications. In order to achieve this goal, we follow
a strategy exploiting parallelism to provide scalability and performance improvement,
hardware acceleration and approximate computing to provide high-performance with
power efficiency, and also by exploring application-specific behavior in order to keep
reasonable QoS.

The parallelism is exploited by building the solution onto a NoC-based system, ca-
pable to explore the application inherent communication parallelism and to provide
scalability across different demanding throughput. Approximate computing is exploited
by the development of hardware accelerators employing the simplifications at different
levels of approximation. Furthermore, the application QoS is kept at reasonable values
by leveraging application-specific behavior, exploring error-resilient areas/steps by the
employment of heuristics and machine learning-based solutions. All these assump-
tions lead to the development of the Scalable Approximate Network-on-Chip – SApp-
NoC – used as our main case study and focusing on the HEVC FME step. SApp-NoC
is presented in Figure 19 (a), as well as an overview of the main contributions of this
work. We have tagged in Figure 19 (a) each contribution with a small circle having the
corresponding chapter/section number where such a contribution is detailed. Further-
more, Figure 19 (b) shows the adopted methodology framework of this thesis.

Our NoC is organized in multiple neighbor Tiles to allow the NoC effective size to
scale according to throughput requirements, i.e., the number of active processing ele-
ments varies according to video resolution and frame rate. The processing elements of
the NoC are based on hardware acceleration, which could accelerate any application
step, but in our case study targets the HEVC fractional motion estimation, present-
ing multiple levels of approximation. Hardware accelerators were named Approximate
FME Filters - FAPPj, where j = [0, 1, 2, 3], varying the approximation level from pre-
cise (0) to most aggressive (3) (see Section 4.1 and Chapter 5 for a better detailing).

70

The hardware design takes into account the application behavior, focusing on low QoS
degradation. In Chapter 6 details about the NoC architecture, application modeling,
and Schedulability NoC Frequency breakdown Tracking algorithm (SNFT) algorithm
are presented. At design time, algorithms are proposed to define the PE type (i.e., the
approximation level), amount (Section 4.2) and placement (Section 4.3). Finally, at run-
time, tasks are smartly allocated on SApp-NoC, following application behavior-based
statistics (Section 4.4, whose fundamentals are described in Chapter 7).

Following what was stated in the background (Chapter 2), all the nodes are inter-

Figure 19 – Detailed methodology: (a) overview of the novel contributions of this work
and (b) adopted framework.

71

connected, and each one has a processing element PE, linked internally to a local
cache (omitted in the Figure 19 (a) for simplicity), which stores local information, and a
router r, which routes the data packets towards their destinations. The communication
between processing elements and the router is made by two unidirectional links (one
from PE to r and other from r to PE). In this work, according to what was previously
mentioned in Chapter 2, we have applied the widely used square-shaped 2D-mesh
topology, considering wormhole NoC with priority-preemptive arbitration, widely stud-
ied in the literature due to its ability to provide resources for hard real-time guarantees.
In order to determine whether application tasks being executed and communicating
over SApp-NoC can fulfill the required timing constraints, the schedulability analysis,
also presented in Chapter 2, was applied.

In Figure 19 (b) we present the adopted development framework. Our contribu-
tions are present at both software and hardware levels. At hardware level, we follow
a Register Transfer Level (RTL) design, making the FME hardware development and
employing a synthesis tool to estimate the power and chip area. At software level, the
video encoder reference software is employed to analyze the behavior of the proposed
simplifications, verifying the resulted QoS information for each proposed scenario. In
addition, encoding information are also gathered from the encoder software, in or-
der to allow the usage of approximation control. Such a control is also performed at
software level by employing heuristics and a machine learning tool. The generated
approximation control algorithm is inserted in the encoder software code, also aiming
the analysis of the QoS behavior. All the other contributions are made employing a
Java-based environment, were the application (HEVC FME), the NoC, and the off-chip
memory communication are modeled in a high level of abstraction. All the other pro-
posed algorithms and the schedulability analysis are performed considering the same
Java-based environment.

Considering the adopted square-shaped 2D-mesh topology, with n × n available
nodes, in order to define a proper sizing, we need to find an n such as PEActive =

n2 − m (where m is the number of nodes used for memory access, see Section 4.2
for details) is the number of processing elements that achieves real-time processing
given a target throughput (TPut). It is worth mentioning that we consider all PEs to
have the same processing performance regardless the approximation level (refer to
Chapter 5 for details of the hardware design). To guarantee scalability across distinct
throughput demands, we adopt the strategy of neighbor active topologies, here named
Tiles, where a larger Tile contains the smaller Tiles. For instance, consider a system
demanding two target throughputs TPut0 and TPut1 where TPut1 > TPut0. If the
NoC size n0 × n0 is enough to guarantee TPut1, the same Tile size can be used to
achieve real-time processing for both throughput scenarios. Otherwise, if n0×n0 is not
enough to guarantee TPut1, an n1 such as n1 > n0 (i.e., n1 = n0 +k) needs to be used.

72

Two neighbor Tiles must be used if scalability is desired, where Tile0 is sized n0 x n0

and Tile1 sized n1 × n1, i.e., (n0 + k) × (n0 + k). The NoC size required for the higher
defined throughput defines the maximum NoC size (Tile1 in this example).

To size and tile our system we have considered five throughput demands targeting
FHD and UHD resolutions and frame rates: (TPut0) FHD (1080p) at 30 fps (frames
per second); (TPut1) FHD (1080p) at 60 fps; (TPut2) 4K UHD (2160p) at 30 fps;
(TPut3) 4K UHD (2160p) at 60 fps; and (TPut4) 4K UHD (2160p) at 120 fps. We have
considered the operational frequency from the smallest throughput as the basic PE
frequency (fPE), i.e., all PEs within the NoC will have the same frequency. Besides,
considering a given NoC with n× n available nodes, and also considering a minimum
NoC size 3x3, the number of PEs dedicated for memory access is m = n− 2.

Let consider that each throughput demand TPuti has an operational frequency fi.
The relation between fi and fPE inform us how much faster is the application having
TPuti when compared with the basic PE frequency. Considering this simple relation,
and also considering the addition of an extra PE to ensure the desired performance,
the number of nodes Ni having frequency fPE, required to perform TPuti, is given as
follows.

Ni =

⌈
fi
fPE

⌉
+ 1 (29)

Therefore, the number of active PEs will be equal to Ni. However, we need to size
our NoC by finding its dimension n. Since PEActive = n2 − m, and m = n − 2, the
number of active PEs can be expressed as

PEActive = n2 − n+ 2 (30)

Substituting (30) in (29):

n2 − n+ 2 =

⌈
fi
fPE

⌉
+ 1 (31)

If we simplify (31) we find the equation depicted in (32), which describes the dimen-
sion n of the square-shaped NoC being designed.

n2 − n+

(
1−

⌈
fi
fPE

⌉)
= 0 (32)

The positive root of (32), given in (33), is the solution that informs the desired NoC
dimension n for any given throughput scenario making the same adopted assump-
tions (number of nodes reserved for memory access, minimum NoC 3x3, and square-

73

shaped NoC).

n =

⌈
1 +

√
4 · fi/fPE − 3

2

⌉
(33)

As a result, considering the proposed throughput, we obtained n = 1, for FHD@30;
n = 2, for FHD@60; n = 3, for 4K@30; n = 4, for 4K@60; and n = 5, for 4K@120.
Since we considered 3x3 as the minimum NoC size, the proposed NoC-based system
has three neighbor Tiles: Tile0 = 3× 3, Tile1 = 4× 4, and Tile2 = 5× 5. Considering
our case study, each PE was designed individually with a target frequency focusing on
the minimum target throughput, i.e., FHD at 30 fps. Note that in order to address higher
throughput the parallelism provided by the NoC infrastructure becomes essential.

Considering our case study, the methodology employed for the development of the
proposed system can be expanded to any application allowing multi-level approxima-
tion. The hardware accelerator for the FME, one of the most power/processing hungry
step in HEVC encoder (remember that a single 4K frame considering only square-
shaped blocks need to calculate more than 10 billion samples and also that the FME is
responsible for up to 60% of total encoding time in the HEVC (GRELLERT; BAMPI;
ZATT, 2016)), is designed exploring approximate computing techniques to achieve
power efficiency. The approximation is proposed at multiples levels by performing an
error resiliency analysis in order to find more suitable regions to apply the approxi-
mation. Such analysis is done in two ways: by employing heuristics to decide the
approximation level, leading to the development of the solution called Heuristic-based
SApp-NoC (HSApp-NoC), and by employing decision trees (based on machine learn-
ing techniques), leading to the development of the solution called Machine Learning-
based SApp-NoC (MLSApp-NoC). The developed hardware is employed as process-
ing elements compounding a Network-on-Chip topology, to enable parallel processing
featuring multiple neighbor Tiles to provide scalability. An algorithm for the multi-level
approximate PEs instantiation based on the average selection of each FAPP, obtained
as a consequence of the adopted heuristics/ML solution, is proposed in Section 4.2.
Furthermore, an algorithm for the multi-level approximate PEs placement in order to
reduce communication distances and guarantee availability of distinct PEs in different
Tiles configurations is also proposed in Section 4.3. At run-time it is proposed in Sec-
tion 4.4 a task-mapping algorithm to distribute the tasks between different multi-level
approximate PEs favoring power reduction whereas avoiding QoS degradation. The
application-specific step (FME) is modelled at high level of abstraction. The so called
Schedulability NoC Frequency breakdown Tracking algorithm (SNFT) is also proposed
aiming to find the optimal NoC communication frequency (discussed in Chapter 6) and
a schedulability analysis (discussed in Chapter 2) of the generated mapping is per-
formed to guarantee the meeting of real-time constraints.

74

4.1 Processing Elements Design

The processing elements of SApp-NoC were conceived having two natures: gen-
eral purpose processors (GPPs) or hardware accelerators. The GPPs are employed
in PEs used to process any kind of task, specifically in SApp-NoC they are used only
to process tasks related to memory communication (reading or writing). The hardware
accelerators are employed in PEs used to process the target application (in our case
study the HEVC FME). The design of these PEs considers both precise and approx-
imate solutions, which were named Approximate FME Filters (FAPP). As aforemen-
tioned, FAPPj, where j = [0, 1, 2, 3], varies the approximation level from precise (0)
to most approximate (3). As will be further discussed in Chapter 5, we have named the
FME filters as FAPPj. A given FME architecture (interpolation + search) implements
only one type of FAPP for filtering when performed at SApp-NoC. It means that the level
of approximation (if any) is always the same for a given FME architecture (the variation
of the approximation internally to the FME engine is not allowed). Each PE of SApp-
NoC (except the GPPs) is a unit performing the entire FME (precise of approximate),
which means that only one type of FAPP is used at a given PE. Hence, for simplicity,
we have also named the PEs as FAPPs, e.g., a PE FAPP1 will perform the entire FME
for a given block, using FAPP1 during the FME filtering steps. Chapter 5 details the
PEs design and discusses the main aspects about the developed architectures.

4.2 Processing Elements Instantiation Algorithm

Given the sizing and tiling of the NoC, and given the number of levels of approx-
imation supported by the multi-level approximate PEs (four in our case study), it is
necessary to instantiate these processing elements within SApp-NoC, establishing the
number of units for each PE (FAPP0, FAPP1, FAPP2, and FAPP3). For that, we ob-
serve the application and measure the percentage of occurrences (occurPEx) each type
of PE is called. Note: the algorithm responsible to select the level of approximation is
presented in Chapter 7, so the percentage of PEs ocurrences vary for HSApp-NoC
and MLSApp-NoC but the instantion algorithm is the same. Additionally, one restric-
tion applies: at least one instance of each PE type must exist within the smallest NoC
Tile in order to allow any approximation level even for less demanding scenarios. In
addition, the PEs design must be done considering if the individual PE would deal with
the smallest throughput alone, i.e., each PE is designed considering the necessary
frequency for FHD@30fps.

The instantiation pseudo-algorithm presented in Figure 20 starts by instantiating
the memory access units (line 3). General purpose processors (GPP) are used to
control the memory access. For NoCs up to 3x3 (n ≤ 3), one single GPP is enough
(numGPP = 1). However, every time n is incremented, a new GPP is required, i.e., for

75

n ≥ 3; numGPP = n− 2. After that, for each Tile, the percentage of call occurrences for
the approximate PE types are sorted in crescent order (line 5). Thus, the less called
PE types are instantiated first to the available PEs, respecting a simple proportional
relation defined according to what is given in line 8, as follows:

numPEx =
⌈(
availablePE ·

occurPEx
100

)⌉
(34)

This process is repeated for all PE types except for the most used one (lines 6-13).
The last PE type, the most called one, is instantiated to all remaining nodes available
within the NoC (line 11). This algorithm guarantees the instantiation of at least one PE
of each type if the number of total PEs in the NoC (nodes) is larger than the number of
PE types. This is always true for SApp-NoC.

1: determine the number of PEs (occurPE[], n)
2: availablePE = n× n
3: numPE[0] = numGPP = max(1, n− 2)
4: availablePE = availablePE − numGPP

5: occurPE = sort(occurPE[],
′crescent′)

6: for (x = 1, x ≤ PETY PES, x+ +) do
7: if (x 6= PETY PES) then
8: numPE[x] = ceil(availablePE · ocurPE[x]/100)
9: availablePE = availablePE − numPE[x]

10: else
11: numPE[x] = availablePE
12: end if
13: end for
14: return numPE

Figure 20 – Instantiation algorithm pseudo-code.

In our particular case study, the statistical distribution (deeply discussed in the fol-
lowing chapters) is as follows:

• HSApp-NoC: occurFAPP3 = 82.26%, occurFAPP1 = 8.94%, occurFAPP0 = 5.35%,
and occurFAPP2 = 3.45%. For Tile0 = 3 × 3, numGPP = 1, numFAPP0 = 1,
numFAPP1 = 1, numFAPP2 = 1, and numFAPP3 = 5. For Tile1 = 4× 4, numGPP =

2, numFAPP0 = 1, numFAPP1 = 2, numFAPP2 = 1, and numFAPP3 = 10. For
Tile2 = 5 × 5, numGPP = 3, numFAPP0 = 2, numFAPP1 = 2, numFAPP2 = 1, and
numFAPP3 = 17.

• MLSApp-NoC: occurFAPP2 = 35.72%, occurFAPP3 = 27.02%, occurFAPP0 =

20.62%, and occurFAPP1 = 16.64%. For Tile0 = 3×3, numGPP = 1, numFAPP0 = 2,
numFAPP1 = 2, numFAPP2 = 2, and numFAPP3 = 2. For Tile1 = 4 × 4,
numGPP = 2, numFAPP0 = 3, numFAPP1 = 3, numFAPP2 = 5, and numFAPP3 = 3.

76

For Tile2 = 5 × 5, numGPP = 3, numFAPP0 = 4, numFAPP1 = 4, numFAPP2 = 10,
and numFAPP3 = 4.

Note that different FAPP occurrences incur into different numbers of instantiated
FAPPs. The number of instantiated FAPPs for all considered scenarios can be ob-
served in Figure 23, presented in Section 4.4.

4.3 Processing Elements Placement Algorithm

Since we have determined the number of each PEs in the NoC, we use the place-
ment pseudo-algorithm presented in Figure 21 to place the PEs in the NoC. Note that,
similar to the instantiation algorithm, the different solutions (HSApp-NoC and MLSApp-
NoC) only impact on the placement algorithm decisions, being the same algorithm
applied over the both of them. For that, some constraints are taken into account. First,
any GPP must be at a NoC border and its position must be determined in order to
maximize the average distance among GPPs (line 3), favoring a better packet flow
distribution within the SApp-NoC. Once the best positions are defined, the GPPs are
assigned to the correspondent positions (line 4) in the previously initialized NoC struc-
ture (line 2). For SApp-NoC specific case, the Tile sizes range from 3x3 to 5x5 and
numGPP = 3. Thus, the best PEs to place the GPPs are 06, 09, and 20 (see Figure
19).

1: determine PE placement (numPE[], n)
2: initNoC (NoC[], n)
3: pos[] = findPositions (numPE[0], NoC[], ′maximize′)
4: place (pos[], NoC[], 0)
5: for (x = 1, x ≤ PETY PES, x+ +) do
6: pos[x] = findPositions (numPE[x], NoC[], ′minimize′)
7: place (pos[], NoC[], x)
8: end for
9: return NoC[]

Figure 21 – Placement algorithm pseudo-code.

Following the same order as the instantiation algorithm, the less used/instantiated
PEs are placed first aiming at minimizing the average distance to the GPPs (lines 6-
7). The rationale behind prioritizing the placement of less instantiated PE types is as
follows: since there will be less PEs of that specific type (in some cases a single one)
the run-time task-mapping algorithm will have few options for allocation, thus, to com-
pensate that, we minimize the distance to GPPs to provide more and shorter commu-
nication routes. Considering our specific case study, the GPPs are placed first, then
FAPP2, FAPP0, FAPP1, and FAPP3 are placed for HSApp-NoC; and after GPPs,

77

FAPP1, FAPP0, FAPP3, and FAPP2 are placed for MLSApp-NoC. The distance met-
ric is calculated adding the distance in X-axis to the distance in Y-axis (since a 2D-mesh
XY is applied). The findPositions() algorithm scans all NoC positions to find where
GPPs are, always a position is found, FAPPs less used are placed near to such point.
Given the small number of less used FAPPs it is enough to guarantee their positions
as close as possible to GPPs. Finally, the most used PE type is placed at all remaining
available PEs. SApp-NoC’s final PEs placement is shown in Figure 19.

4.4 Content-Based run-time Energy/QoS-Aware Task Allocation

Our run-time energy/QoS-aware task allocation algorithm leverages video con-
tent properties to reduce energy consumption by allocating tasks to approximate PEs
(FAPPs) whereas reducing quality degradation. For that, we exploit the application
knowledge, following decisions based on heuristics for HSApp-NoC and building a de-
cision tree based on Machine Learning in order to decide the best approximation level
for MLSApp-NoC. The heuristics consider the TZS behavior and the decision tree lever-
ages many encoding parameters to make the best decision. The whole study regarding
the approximation control is presented in Chapter 7. Considering our case study, the
heuristic decision (HSApp-NoC) and decision tree (MLSApp-NoC) are performed over
each block before the FME, thus every block arriving at the FME to be processed car-
ries with itself the information about the selected approximation level (approx_level).
Figure 22 details the allocation algorithm where approx_level denotes the approxima-
tion level that must be employed for a given block being coded. Each task in the tasks
set is an FME task for a 64x64 block (see Chapter 6 for application modeling compre-
hension).

1: determine task allocation (tasks, approx_level)
2: for task in tasks do
3: if task = mem_access then
4: allocate task at GPP
5: else if task = FME && approx_level = 0 then
6: allocate task at FAPP0

7: else if task = FME && approx_level = 1 then
8: allocate task at FAPP1

9: else if task = FME && approx_level = 2 then
10: allocate task at FAPP2

11: else if task = FME && approx_level = 3 then
12: allocate task at FAPP3

13: end if
14: end for

Figure 22 – Task allocation algorithm pseudo-code.

78

Whenever a task arrives at SApp-NoC, it will have a flag informing the approximation
level that must be used. Then, the task is allocated to an available PE of the proper
approximation level, according to the algorithm presented in Figure 22. In a simple
way, in cases where the task is the FME and approx_level = 0, the task is allocated to
one FAPP0 PE. When the task is the FME and approx_level = 1, the task is allocated
to one FAPP1 PE. In cases where the the task is the FME and approx_level = 2,
the task is allocated to one FAPP2 PE. Finally, for cases where the task is the FME
and approx_level = 3, the task is allocated to one FAPP3 PE. All tasks being mapped
will consider a crescent order of availability within the PEs of the same type. A task
never is allocated twice in a PE while all PEs of same type have not been allocated
already. Memory related tasks (reading and writing) are always allocated in GPPs. In
this case, the NoC is subdivided into regions of mapping, guaranteeing sub-regions of
traffic flows, as showed in Figure 23.

Figure 23 – Sub-regions for task allocation considering (a) HSApp-NoC 4x4, (b)
HSApp-NoC 5x5, (c) MLSApp-NoC 4x4, and (d) MLSApp-NoC 5x5.

79

In Figure 23, we also show the number of each instantiated FAPP and their placed
positions. In Figure 23 (a) and Figure 23 (b), we show the NoC distribution for HSApp-
NoC for sizes 4 x 4 and 5 x 5, respectively, and in Figure 23 (c) and (d) we show the
NoC distribution for MLSApp-NoC for sizes 4 x 4 and 5 x 5, respectively.

Note that for each GPP there is a sub-region containing other PEs. The memory
related tasks of a FME task (reading or writing) must be allocated at a GPP. In this
case, our allocation strategy guarantees that these tasks are always allocated in the
GPP within the same sub-region, avoiding longer traffic flows crossing the NoC. Each
GPP has its own sub-region, concentrating the allocation of memory related tasks of
all tasks allocated in the PEs within the same sub-region. Obviously, when SApp-NoC
sizes 3 x 3 there are no sub-regions to select, since only one GPP is available.

4.5 Summary

In this chapter we have summarized the methodology for the development of SApp-
NoC and the upcoming solutions HSApp-NoC and MLSApp-Noc, showing the main
contributions of this thesis. We discussed how SApp-NoC is sized and divided in
tiles. In Section 4.1 the processing elements design was briefly commented, since
in Chapter 5 it will be better detailed. Based on the application behavior, in Section
4.2 the instantiation algorithm was proposed in order to instantiate the amount of each
PE. A placement algorithm was proposed in Section 4.3 in order to place each PE in
SApp-NoC, favoring a better communication of flows across the NoC. Finally, in Sec-
tion 4.4 the task-allocation algorithm is also developed, conceived in order to guide
the mapping of tasks onto the corresponding PEs, according to the desired level of
approximation.

5 FME MULTI-LEVEL APPROXIMATE HARDWARE ACCEL-
ERATORS

This chapter discusses the design of the HEVC FME multi-level approximate hard-
ware accelerators, used as processing elements of our main contribution SApp-NoC.
Since the level of approximation can vary, we will have different architectures, but the
methodology of development and the final FME structure is the same, showed in Figure
24.

The HEVC FME multi-level approximate hardware architecture is presented in Fig-
ure 24, which shows the interpolator with the filtering and the other FME steps. Note
that this is a template architecture, the generic FAPP showed in Figure 24 can be any
of the considered FAPPs. The filters are instantiated in parallel within the interpolator
architecture to calculate the desired number of samples. The selected parallelism was
defined in the Basic Processing Unit (BPU) concept introduced in our previous works
(PENNY et al., 2015, 2019), which have demonstrated that any block size could be
processed using fixed BPU sizes - e.g., a 16x16 block can be processed using four
8x8 BPUs - and stated that the best BPU size for the HEVC is 8x8. Thus our design
contains eight horizontal filters (H-Filter) and eight vertical filters (V-Filter). The input
of the architecture is a row of the reference matrix read at every clock cycle, having a
variable number of samples (N in Figure 24), with M input samples on the filters, which
depends on the approximation level applied, i.e., which FAPP is operating. Note that
the FAPP detailing is present in Section 5.1.

Depending on the proposed design (they are conceived separately, there is not a
possibility for configurable FAPP usage in this work), each H-filter can have internally
the following distribution (represented as a generic box FAPP in Figure 24): FIR fil-
ters UP, MIDDLE, and DOWN, for the FAPP0 and FAPP1 solutions, a FAPP2 or a
FAPP3, for the other approximate solutions. They calculate the fractional samples a,
b, and c. Furthermore, there is a simple bypass for the integer sample. Note that,
eventually, depending on the approximation level chosen, these calculated samples
could assume slightly different values when compared with the FAPP0 case (original),
leading to losses on coding efficiency verified and presented in the next section.

81

Figure 24 – HEVC FME hardware design.

The outputs of the H-filters feed a register chain having eight positions. On each
cycle, each position of the register chain is forwarded. After eight cycles, all positions
are filled. Then, all their positions feed vertical filtering. Although V-filters are similar
to H-filters, at this time the number of input samples is four times greater, so four
FAPPs are needed. Inside these filters, all the other fractional samples are calculated.
Furthermore, integer samples (A), and the fractional samples (a, b, and c), bypass
the filters. The V-filter outputs are always a set of 16 samples (15 fractional and the
integer), related to each line from the original block, delivered at each clock cycle. After
fifteen clock cycles all samples (integer/half/quarter) from an 8x8 block are delivered
by the interpolator. These samples are further used at search and comparison step,
presented in the next section.

5.1 Filters Design

In HEVC the fractional samples are calculated using Finite Impulse Response (FIR)
filters, with 7- or 8- taps, whose coefficient values as well as calculated samples were
presented in Table 1 (Chapter 2). As aforementioned, these filters are called UP, MID-
DLE, and DOWN, according to the samples they calculate. Hardware implementation
of these filters is named Approximate FME Filters (FAPP). The design following exactly
the values defined by the standard is denoted as the FAPP0 solution, which is pre-
sented in Figure 25, showing FAPP0 MIDDLE design, and Figure 26, showing FAPP0

82

Figure 25 – FAPP0 MIDDLE hardware design.

Figure 26 – FAPP0 UP/DOWN hardware design.

UP/DOWN design. Note that since UP and DOWN filters share the same coefficients
(in the inverse order), they can share the same hardware design, only changing the in-
put order when necessary, i.e., UP/DOWN filter need to be instantiated twice for each
FAPP0, addressing both UP and DOWN filters in a parallel way. All multiplications and
divisions were replaced by shifts and adders in order to optimize the hardware design.

The inputs are the integer samples (si) regarding the corresponding reference ma-
trix from the block being encoded. The MIDDLE filter is an 8-tap FIR filter, so it requires
eight input samples. The same way, UP/DOWN (7-tap) requires seven samples. The
adopted hardware design tries to simplify the calculation, sharing coefficients when
possible. The bit depth during all steps is depicted in both Figures 25 and 26. The
input samples have 10 bit depth in order to handle samples coming from other cal-
culations (e.g. during the vertical filtering when receiving samples from the horizontal

83

filtering). Considering that we need to instantiate UP/DOWN filter twice within a sin-
gle FAPP0, plus a MIDDLE filter, in total, FAPP0 design demands 17 shifters and 32
adders/subtractors.

Approximate computing is applied in two distinct levels during the filters design. The
algorithm level approximation is performed by changing the coefficients to hardware-
friendly values. The data-level approximation is performed by discarding taps of the
interpolation filter. The proposed hardware-friendly coefficients (in format of 2n, repre-
sented in hardware by a simple shifter, shifted n times to the left if multiplying or to the
right if dividing) are presented on Table 2. Three approximate solutions are proposed:
in the first one, called FAPP1 (Figure 27, for FAPP1 MIDDLE, and Figure 28, for FAPP1
UP/DOWN), we have removed both external taps, keeping the other filter coefficients
original. In the second, called FAPP2 (Figure 29), we have changed the coefficients
into hardware-friendly values, keeping the same number of taps. In the third solution,
called FAPP3 (Figure 30), besides changing coefficients values, we have reduced the
number of taps from eight to two.

Table 2 – FAPP Coefficients

Filter Coefficients Evaluated Samples

FAPP0
UP {-1, 4, -10, 58, 17, -5, 1}/64 a, d, e, f, and g

MIDDLE {-1, 4, -11, 40, 40, -11, 4, -1}/64 b, h, i, j, and k
DOWN {1, -5, 17, 58, -10, 4, -1}/64 c, n, p, q, and r

FAPP1
UP {4, -10, 58, 17, -5}/64 a, d, e, f, and g

MIDDLE {4, -11, 40, 40, -11, 4}/64 b, h, i, j, and k
DOWN {-5, 17, 58, -10, 4}/64 c, n, p, q, and r

FAPP2
UP { -1, 4, -16, 64, 16, -4, 1 }/64 a, d, e, f, and g

MIDDLE {-1, 8, -8, 32, 32, -8, 8, 1}/64 b, h, i, j, and k
DOWN {1, -4, 16, 64, -16, 4, -1}/64 c, n, p, q, and r

FAPP3
UP { 3, 1}/4 a, d, e, f, and g

MIDDLE {1, 1}/2 b, h, i, j, and k
DOWN {1, 3}/4 c, n, p, q, and r

FAPP 1 design, presented in Figures 27 and 28, follows the same method applied to
FAPP0 (requiring two UP/DOWN designs and a MIDDLE design). The only difference
is the withdraw of more external taps. Since the removed taps present a small height,
one can infer that such changes will have small impact on coding efficiency (QoS) and
will present a reduction on the usage of hardware resources, demanding less samples
from the off-chip memory. Indeed, a single FAPP1 design requires 17 shifters and 26
adders/subtractors.

Note that, since there is a huge similarity between the coefficients when dealing
with designs presenting more aggressive approximation, the filters UP, MIDDLE, and
DOWN were merged into a unique filter, when considering FAPP2 and FAPP3 solu-
tions. FAPP2 design is presented in Figure 29, It has eight input samples (the same

84

Figure 27 – FAPP1 MIDDLE hardware design.

Figure 28 – FAPP1 UP/DOWN hardware design.

from FAPP0). All coefficients are in the form 2n, transforming the complex task of a mul-
tiplication into a simple shifter. Such assumption, along the sharing of subexpressions
lead to a hardware optimization, reducing the dissipated power.

FAPP3 design is presented in Figure 30, applying the most aggressive approxima-
tion. It has only two input samples, performing simple calculations with only two sam-
ples. In FAPP3 design it is reached the highest power saving due to the aggressive
adopted simplifications.

All FAPPs deliver the calculated samples of all fractional positions (half and quarter
precision). The architectures have outputs with different bit depths, depending on the
number of samples (si) received in the input and intermediary calculations. Thus, a
clipper (omitted in the figures to optimize the representation) keeps the outputs with
10-bit depth.

When considering the processing of 8x8 blocks, in FAPP1 a reduction on the num-
ber of samples fetched from the memory of up to 25% is reached, as we have previ-
ously showed in PENNY et al. (2020), whereas in FAPP3 a reduction on memory com-
munication of 64% can be observed, as detailed in Figure 31, since less input samples
are necessary. Commonly, interpolation filters with n taps require n − 1 sample bor-
ders, e.g. an 8x8 blocks requires a reference matrix of 15x15 samples (considering a

85

Figure 29 – FAPP2 hardware design.

filter having 8- taps). Observe in Table 3 and Figure 31 that, on the one hand, FAPP0
and FAPP2 require the original number of input samples, once they do not change the
number of taps, and, on the other hand, FAPP1 requires an input matrix of 13x13 and
FAPP3 requires an input matrix of 9x9. Table 3 summarizes the maximum number of
samples required by each FAPP in the input and the correspondent size of its input
matrix, as well as the number of operators that are spent by each FAPP (shifters and
adders/subtractors). When analyzing Table 3, one can notice that FAPP3 is the one
presenting the smallest amount of resource usage, thus we can infer that this FAPP
provides the highest power savings, as will be observed in Section 5.3.

It is worth to notice that the approximate solution was applied only at the FME step,
which belongs to the encoder side. Since standard compliance is mandatory at the

Table 3 – FAPP inputs and resources detailing

Filter Num. Input Samples Input Matrix Size Num. Shifters Num. Add/Sub
FAPP0 8 15x15 17 32
FAPP1 6 13x13 17 26
FAPP2 8 15x15 14 17
FAPP3 2 9x9 5 5

86

Figure 30 – FAPP3 hardware design.

decoder side, the decoder steps existing inside the encoding flow (e.g., the motion
compensation - MC), must not be altered, under penalty of making the encoded video
not compliant with the standard or inserting encoder-decoder drifting.

Figure 31 – Reference matrices scenarios for FAPP0, FAPP1, FAPP2, and FAPP3.

5.2 Search and Comparison Design

The calculated fractional samples are used at the Search and Comparison step,
detailed in Figure 32 (a), where a similarity criterion is applied in order to determine
the best results, i.e., which fractional block is the most similar when compared with the
current block (which is being predicted). The proposed architecture uses the Sum of
Absolute Differences (SAD) as similarity metric, previously explained in this work.

Once the interpolated samples are clipped (see Figure 24), in order to keep their
values between 0 and 255 (range of values assumed by samples regarding the bit
depth). The first step of search and comparison is the SAD TREE. During this step,
the SAD of all possible 15 blocks, compounded by fractional samples, are calculated.
In order to do that, the SAD TREE calculates the SAD between the fractional samples
and the current block integer samples (which is being predicted). SAD TREEs employ

87

three pipeline stages, as shown in Figure 32 (b). First it determines the difference
between the samples and obtains the absolute value. Next, all those differences are
summed up to determine the SAD.

Next, the calculated SAD values are stored, since the design does not evaluate all
samples at the same time. The SAD ACCUMULATOR (detailed in Figure 32 (c)) stores
the partial SADs. When all samples from a given block size are already calculated,
it forwards the calculated SADs and resets the registers. In the SAD COMPARATOR
unit, (detailed in Figure 32 (d)) the calculated SADs are compared with each other and
with the SAD of the best IME block, the smallest SAD (best SAD) is then delivered
along its motion vectors (MVs - in X-axis and Y-axis) (which points to the position of the
block having the best SAD).

Figure 32 – Search and comparison design: (a) top-level view of SEARCH AND
COMPARISON, (b) SAD TREE detailing, (c) SAD ACCUMULATOR detailing, and (d)

SAD COMPARATOR detailing.

The temporal behavior when calculating an 8x8 block is quite straightforward, how-
ever, when thinking in how to calculate bigger blocks, it is necessary a more careful
temporal behavior analysis. Furthermore, since HEVC FME hardware design is our

88

case study, the knowledge about its behavior is crucial. The case study will consider
the processing of 64x64 blocks. In order to calculate the corresponding fractional sam-
ples and determine the best SAD and MVs, we use the design focusing in 8x8 blocks,
presented in the previous section, in a serial way.

The processing of the 64x64 is split into 8x8 blocks. In order to help this under-
standing, we present in Figure 33 the temporal diagram for FAPP0 or FAPP2 (worst
cases regarding time since more samples need to be evaluated), detailing the behav-
iors. In Figure 33 (a) we show the necessary clock cycles to process a single 8x8
block. First, there is the latency to fulfill the interpolator register chains (8 cycles), at
this point, fractional samples start to be delivered in the output. Thus we have the
latency of the SAD TREES (3 cycles), when the first partial SADs start to be stored
at the SAD accumulators. From the point it starts, the interpolator takes 15 cycles to
calculate all fractional samples. However, the other steps start their operation in par-
allel, meanwhile the interpolation is happening. After the interpolator ends, the SAD
TREEs keep operating for 3 cycles whereas the SAD ACCUMULATOR takes one cycle
after SAD TREEs have ended. The SADs are then compared at SAD COMPARATOR,
which in turn spends 3 cycles. Therefore, the processing of an 8x8 block in our HEVC
FME design takes 22 cycles.

In order to evaluate a 64x64 block, let’s consider the partial analysis, presented in
Figure 33 (b). In this case, we consider the evaluation of a a block column, i.e., 64x8.
Look that when the calculation of an 8x8 finishes, samples already calculated can be
used. Therefore, all the column of input matrix (detailed in the figure) is processed.
It uses 75 clock cycles, however, when the entire block is being processed, since the
samples are still being fed, there is an overlapping of cycles, which in practice means
that for each column 71 cycles are necessary, as can be seen in Figure 33 (c).

Such approach can be applied to the other parts of the block, divided into eight
columns, as presented in Figure 33 (c). Each of them is processed sequentially, storing
the partial SAD values. Finally, they are compared in SAD COMPARATOR, spending
a total of 575 cycles. A similar analysis can be applied for FAPP1 and FAPP3 temporal
behavior. The only changes are related to the number of samples that need to be read,
69x69 and 65x65 integer samples for FAPP1 and FAPP3, respectively. Therefore, the
processing of a 64x64 block with FAPP1 would take 559 cycles and with FAPP3 would
take 527 cycles.

5.3 Synthesis and QoS Results

The developed architectures were described in VHDL and synthesized using a 40
nm TSMC standard cell library with 0.9 V (TSMC, 2020) using the Cadence RTL Com-
piler tool (CADENCE, 2020). The power results were generated using the default tool

89

Figure 33 – Temporal diagram of HEVC FME operating with FAPP0 or FAPP2: (a)
processing of an 8x8 block, (b) processing of a 64x8 column, and (c) processing of a

64x64 block.

switching activity (20%). The gate count was calculated based on the smallest 2-input
NAND (NAND2x1) that represents 0.9408 (µm)2 for TSMC (note that even for different
technologies the gate count can be fairly compared since it is a normalized metric).

The designed HEVC FME architectures (FAPPs) were evaluated by considering the
area and power dissipation results and by focusing on different performances: FHD
1080p@30fps; FHD 1080p@60fps; UHD 4K 2160p@30fps; UHD 4K 2160p@60fps;
UHD 4K 2160@120fps; UHD 8K 4320p@60fps; and UHD 8K 4320p@120fps - (8K)
resolution (7680x4320 pixels). The minimum throughput (1080p@30fps) was consid-
ered in order to guide the design of the processing elements (PEs) of our SApp-NoC
solution. In this case, higher throughput is achieved by SApp-NoC by exploiting the
inherent parallelism provided. The other throughput are considered to allow a compar-
ison with related works.

From each given scenario we derive the minimum operational frequency in order
guarantee the required global throughput (resolution@frame rate), determined by the

90

relation stated in (35).

Wres ·Hres · frame_rate
throughputFAPPi · frequency

= 1 (35)

In (35), Wres × Hres represents the spatial video resolution and
throughputFAPPi represents the number of delivered samples per cycle from
FAPPi interpolator. In our design, throughputFAPP02 = 4.27 samples/cycle,
throughputFAPP1 = 4.92samples/cycle, and throughputFAPP3 = 7.11samples/cycle.
Note that these values consider the processing of the video using only blocks 8x8
(Basic Processing Unit), which is the worst case in terms or processing time since
in this case the initial latency presents more prominence face the total time spent.
However, a frequency guaranteeing the global throughput for the worst case scenario
also guarantees the performance for other scenarios.

In Table 4 we present the synthesis results regarding Application Specific Integrated
Circuit (ASIC) solution, targeting a 40 nm technology. In this table we show the synthe-
sis results for all proposed designs: FAPP0 (precise), FAPP1 (approximate), FAPP2
(approximate), and FAPP3 (approximate). The results were generated aiming seven
global throughput, ranging from FHD@30fps to 8K@120fps. For each scenario we
show the corresponding operational frequency, the static power (Ps), the dynamic
power (Pd), and the total power (Pt), which is the sum of Ps and Pd. Furthermore,
area in terms of gate count is also provided.

As expected, FAPP0 presents the highest area and power dissipation values. Ac-
cording to the applied level of approximation, these values are significantly reduced
when compared with the precise design. The power savings are present in Table 5.
Note that the static power does not present significant changes for different through-
put, since it is related to the size of the architecture. The dynamic power increases with
the throughput once more intense switching activity is demanded.

In Table 5 we present the power savings provided by each FAPP, for each through-
put scenario. In general, the behavior regarding the power savings is quite con-
stant. FAPP1, which provides the less aggressive approximation, delivers an average
power saving of 17.025%. FAPP2, a medium case of approximation, delivers an aver-
age power saving of 34.970%. The more aggressive approximation solution, FAPP3,
provides an average power saving of 64.509%. Moreover, the approximate designs
FAPP1, FAPP2, and FAPP3 reduce area in 7.11%, 31.54%, and 56.74%, respectively.

The impact of the proposed approximate solutions in terms of QoS (coding ef-
ficiency) were evaluated using the reference software of the HEVC, the HM 16.18
(HEVC Test Model) (BOYCE, 2014), according to the Common Test Conditions (CTCs)
(BOSSEN, 2013), established by the HEVC standard. Our simulations took into ac-
count 200 frames from each of the 24 recommended video sequences and recom-

91

Table 4 – Synthesis results for ASIC TSMC 40 nm

Design Throughput Freq. (MHz) Ps (mW) Pd (mW) Pt (mW) Gate Count (K)

FAPP0

FHD@30fps 14.570 8.557 6.501 15.058

167.66

FHD@60fps 29.140 8.557 13.446 22.003
4K@30fps 58.220 8.577 25.673 34.250
4K@60fps 116.550 8.570 48.617 57.187

4K@120fps 233.100 8.560 82.849 91.409
8K@60fps 466.200 8.559 139.090 147.649

8K@120fps 932.400 8.746 214.217 222.963

FAPP1

FHD@30fps 12.644 7.904 4.572 12.476

155.73

FHD@60fps 25.288 7.936 10.142 18.078
4K@30fps 50.575 7.921 20.438 28.359
4K@60fps 101.150 7.935 38.993 46.928

4K@120fps 202.300 7.932 69.806 77.738
8K@60fps 404.600 7.919 115.130 123.049

8K@120fps 809.200 7.718 176.379 184.097

FAPP2

FHD@30fps 14,570 5.650 3.605 9.255

114.78

FHD@60fps 29.140 5.641 9.303 14.944
4K@30fps 58.220 5.662 17.787 23.449
4K@60fps 116.550 5.673 32.660 38.333

4K@120fps 233.100 5.688 53.391 59.079
8K@60fps 466.200 5.684 86.851 92.535

8K@120fps 932.400 5.511 135.020 140.531

FAPP3

FHD@30fps 8.750 3.658 2.366 6.024

72.53

FHD@60fps 17.500 3.641 3.334 6.975
4K@30fps 35.000 3.610 8.624 12.234
4K@60fps 70.000 3.633 14.809 18.442

4K@120fps 140.000 3.621 26.400 30.021
8K@60fps 280.000 3.636 52.236 55.872

8K@120fps 560.000 3.627 81.279 84.906

mended Quantization Parameter (QP) – 22, 27, 32, and 37. The coding efficiency
(BD-BR) results are present in Table 6 for each FAPP and video sequence. Note that
the classes and resolutions of each sequence, established by the HEVC CTC, are also
shown in Table 6.

The QoS of approximate solutions presented the same behavior of the power sav-
ings. The higher the approximation level, the higher the QoS degradation. Indeed,
such a behavior is expected, since we are simplifying the process when comparing
with the precise solution. Taking into account the 24 video sequences, in average,
FAPP1 presents 0.5591%, FAPP2 presents 1.0746%, and FAPP3 presents 7.2607%
of BD-BR increase. In a simple view, the growth on power savings leads to losses on
QoS, showing the necessity of an adaptive solution which we explore in this thesis.

Regarding specific cases, some videos require a more detailed analysis. On the
one hand, the sequence BQTerrace presented the highest values, thus presenting
higher QoS losses than the others. It happens for this video due its nature, since it clas-

92

Table 5 – Average power savings of approximate solutions (FAPP1-3) compared with
precise solution (FAPP0)

Design Throughput Power Saving (%) Avg. Power Saving (%)

FAPP1

FHD@30fps 17.147

17.025

FHD@60fps 17.838
4K@30fps 17.200
4K@60fps 17.939

4K@120fps 14.956
8K@60fps 16.661

8K@120fps 17.432

FAPP2

FHD@30fps 38.538

34.970

FHD@60fps 32.082
4K@30fps 31.536
4K@60fps 32.969

4K@120fps 35.369
8K@60fps 37.328

8K@120fps 36.971

FAPP3

FHD@30fps 59.995

64.509

FHD@60fps 68.300
4K@30fps 64.280
4K@60fps 67.751

4K@120fps 67.158
8K@60fps 62.159

8K@120fps 61.919

sified as a high complexity sequence (HCS) in terms of Temporal Index (TI) and Spatial
Index (SI) (CASSA; NACCARI; PEREIRA, 2012). Therefore, even small changes on
the encoding process can lead to huge quality losses. On the other hand, the sequence
SlideEditing presented QoS improvement for all FAPPs. In spite of this non-expected
result, such a behavior can be explained. This sequence consists of slides presenta-
tion being edited, so the background scene remains unchanged for considerable time,
which diminishes the impacts of the FME step. For this reason, even FAPP3 solution
did not introduce any QoS loss.

A comparison with related works regarding synthesis results, power savings and
QoS results is presented in Chapter 8.

93

Table 6 – QoS results in terms of BD-BR (%) for each FAPP

Class / Resolution Sequence FAPP1 FAPP2 FAPP3

Class A / 2560x1600

Traffic 1.1302 2.1284 13.1047
PeopleOnStreet 0.2609 0.6756 2.5497

Nebuta 0.1102 0.6605 2.4316
SteamLocomotive 0.9605 1.7301 13.2132

Class B / 1920x1080

Kimono 0.4477 0.7670 2.9604
ParkScene 0.8993 1.8404 11.7870

Cactus 0.3161 0.8166 3.1022
BQTerrace 2.4352 3.3906 26.6549

BasketballDrive 0.7345 1.2162 8.7508

Class C / 832x480

RaceHorsesC 0.5648 1.1512 9.2376
BQMall 0.7588 1.1705 7.4362

PartyScene 0.3498 0.2294 5.5861
BasketballDrill 0.0835 1.0932 12.2990

Class D / 416x240

RaceHorses 0.5192 1.1018 5.7615
BQSquare 1.0756 0.5914 6.3794

BlowingBubbles 1.0030 1.1522 8.2223
BasketballPass 0.4868 0.9432 5.0366

Class E / 1280x720
FourPeople 0.1828 0.5003 2.2968

Johnny 0.8822 1.7669 6.5710
KristenAndSara 0.3704 0.9022 3.2758

Class F / 1280x720

BasketballDrillText 0.3369 1.0562 12.2525
ChinaSpeed 0.0940 0.2031 0.7612
SlideEditing -0.0053 -0.0183 -0.0016
SlideShow 0.3806 0.8212 3.8887

Average 0.5591 1.0746 7.2607

6 NOC DESIGN AND APPLICATION MODELING

In order to observe to behavior of SApp-NoC when performing the execution of the
target application, we have modeled SApp-NoC architecture and the application, ac-
cording to the background provided in Chapter 2. Following a high level of abstraction,
we are able to model the distribution of application tasks over the PEs, analysing the
flows across the NoC and the system schedulability, as follows.

6.1 NoC Architecture

The NoC platform follows the architecture described in Chapter 2, with hetero-
geneous processing elements (GPP, FAPP0, FAPP1, FAPP2, and FAPP3), running
priority-preemptive task schedulers, distributed memory, 2D-mesh NoC interconnect
with XY dimension routing (3x3, 4x4, and 5x5 in this work), credit-based flow control, 8
virtual channels with 3-flit input buffers per port and priority-preemptive link arbitration.

In our approach, we considered that there is always enough memory space on a
given PE. The operational frequency of GPPs was set in 3.0 GHz, exclusively to run
memory related tasks. The frequency of FAPPs is based on their hardware synthesis,
and it is discussed in the next section. The frequency of the NoC communicating flows
can assume a wide range of values (SAYUTI; INDRUSIAK, 2015). In our solution, the
definition of this frequency is defined by a proposed algorithm, presented in Section
6.3.

6.2 Application Workload Modeling

We have modeled the application (HEVC FME) in high-level abstraction as a Spo-
radic Task-Model, as introduced in Chapter 2, and we have considered the processing
of only 64x64 blocks. Each step of HEVC FME was considered as one single task: in-
terpolation (Int) and search and comparison (S&C) calculation, as presented in Figure
34, but for purpose of modeling they are clustered into a FME task. Furthermore, the
first and last tasks of the chain are memory-related tasks: MI (Memory Input) and MO
(Memory Output), respectively.

95

Figure 34 – FME modeled as a Sporadic Task-Chain.

Each task has some characteristics assigned, which will guide its behavior: priority,
computation time, release jitter, and a task name. In this work, different priorities are
assigned to each task, in a crescent order, according to the task creation order. For
example, to the first task is given a priority 1, to the second task is given a priority 2,
and so on (the value 1 denotes the highest priority and larger integers denote lower
priorities). Note that flows have the same priority assigned to its source task. The
computation time informs the time the task takes to be executed. The release jitter of
tasks are assumed equals to zero, i.e., we consider that any task starts to be executed
at the same time it is requested. The task name is a tag, guaranteeing that each task
will give a different name in order to be easily identified.

The first task of model presented in Figure 34 represents the modeling of a block
being read from off-chip memory until reaches the Int. The final task is an empty
set, treated as a sink (i.e., computation time equals to zero), where the necessary
information is stored for the forward steps of the encoder. The payload, given in flits,
are packets containing information about the data being processed, having the size
given according to the block size (worst case 64x64 was considered in this work), NoC
flit size (depends on NoC topology – 64 bits in this work), and bit word size (8 bits for
FHD, 10 bits for UHD). In (36) we show the equation of payload between a memory
read (MI task) and the FME task.

payload =
Weigthref_matrix ×Heightref_matrix × bit_wordsize

NoCflit_size
+ 2 (36)

The payload between MI and Int considers the data information, which are the sam-
ples of the reference matrix (71x71 for FAPP0 and FAPP2, 69x69 for FAPP1, and 65x65
for FAPP3) multiplied by the bit word size, representing the total data in bits. When di-
viding by the NoC flit size such an information if then represented in flits. Finally, two
flits are added, which are used for the header of the packet. The payload between the
FME task and MO needs to embrace the best SAD and best vector information, which,
according to our hardware design, requires 21 bits. Thus for this payload we consider
the allocation of three flits (one for data and two from the header).

96

Table 7 – FME memory reads computation time evaluation of 64x64 blocks

Sequence QP Mean (ns) Upper Quartile (ns)

Traffic

22 542 553
27 549 561
32 550 561
37 548 561

Kimono

22 578 581
27 586 587
32 581 585
37 579 579

RaceHorsesC

22 581 582
27 586 586
32 560 557
37 576 577

BlowingBubbles

22 558 562
27 561 572
32 576 586
37 580 590

Johnny

22 593 608
27 595 610
32 590 606
37 593 607

ChinaSpeed

22 600 607
27 592 600
32 589 596
37 592 599

Average 576.458 583.875

To model MI we have analyzed FME step using the reference software of the HEVC,
the HM 16.18 (HEVC Test Model) (BOYCE, 2014). We have encoded 64 frames from
different video sequences, one from each class - Traffic, Kimono, RaceHorsesC, Blow-
ingBubbles, Johnny, and ChinaSpeed - presenting different resolutions and frame
rates, as recommended by the video community benchmarks, in the Common Test
Conditions (CTCs) document (BOSSEN, 2013), for each recommended QP (22, 27,
32, and 37), running isolated into an i7 core with a fixed frequency of 3.0 GHz. The
obtained computation times regarding the reading of a block 64x64 during HEVC FME
step are present in Table 7. In this table, we show the average computation time (mean
in nanoseconds) and the upper quartiles, also expressed in nanoseconds, of the statis-
tical distribution, for each sequence and QP. For the modeling of MI we have considered
the average among all upper quartiles, thus applying 583.875 ns as computation time
for MI during the application modeling.

The modeling of the FME task follows results from hardware synthesis. The full
processing of a 64x64 at FME takes 575 cycles at FAPP0 or FAPP2 (see Figure 33),

97

559 cycles at FAPP1, and 527 at FAPP3. Therefore, the computation time of FME is
given in (37) as follows:

comp_timeFME = number_of_cycles× clock_period (37)

In this thesis we adopted the smallest global throughput (FHD@30fps) as reference
to design the processing elements. Note that we adopted the same frequency for all
PEs in order to have the same clock at all PEs within SApp-NoC, differently from the
individual FME designs (where we applied different frequencies according to the level
of approximation desired). Thus, since the PE frequency is 14.57 MHz (see Table
4), its period is equals to 68.63 ns, which leads to a computation time at FME, when
processing a 64x64 block, of 39.46 µ s when executing FAPP0 or FAPP2, .

6.3 Schedulability breakdown NoC Frequency Tracking algorithm
(SNFT)

As previously mentioned, the schedulability of a given NoC-based system can be
defined by the analysis of its tasks and flows. The system will be fully schedulable only
if the both tasks and flows meet their deadlines (i.e., they are schedulable).

A given application mapped onto a NoC can be fully schedulable or not depending
on the NoC frequency. For the same configuration, presenting schedulable tasks, only
changing the NoC frequency, a previously unschedulable system can become schedu-
lable. In order to find out the schedulability breakdown frequency, i.e., the minimum
frequency that makes the system fully schedulable, we developed the Schedulability
breakdown NoC Frequency Tracking algorithm (SNFT) based in (SAYUTI; INDRUSIAK,
2015), presented in Figure 35.

Firstly, it is defined an initial NoC frequency f0. The application model is created and
then the other steps happen inside a loop. An auxiliary variable test_schedulability is
created to control the loop in order to vefify the system schedulabiity. The application
is first mapped onto a NoC, next the schedulability test is performed. Note that to
begin SNFT algorithm analysis all tasks need to be schedulable, otherwise there is no
breakdown frequency capable of turn the system schedulable. The definition criteria
for the next NoC frequency value is different only for the first iteration, being the same
for the following steps, and it is based on the frequency values and on the information
whether the system is fully schedulable or not, according to Figure 35. The stopping
criteria is based on a preset value, establishing an accuracy of 1 MHz. In addition, if
even reaching a frequency of 1.2 GHz the system still unschedulable, the loop finishes
and, in such a specific situation, the schedulability breakdown NoC frequency is not
found.

98

Inputs: Application Workload, NoC Characteristics
Outputs: Schedulability Results, Breakdown NoC Frequency
1: define f0, test_schedulability = 0, i = 0
2: create the application model
3: while test_schedulability = 0 do
4: map the application over the NoC
5: perform schedulability analysis
6: if i = 0 then
7: if system is fully schedulable then
8: fi+1 = fi - fi/2
9: ∆f = fi - fi+1

10: else
11: fi+1 = fi + fi/2
12: ∆f = fi+1 - fi
13: end if
14: else
15: if system is fully schedulable then
16: fi+1 = fi - ∆f /2
17: ∆f = fi - fi+1

18: else
19: fi+1 = fi + ∆f

20: ∆f = fi+1 - fi
21: end if
22: end if
23: if ∆f ≤ 106 or fi+1 ≥ 1.2 · 109 then
24: test_schedulability = 1
25: end if
26: i++
27: end while

Figure 35 – SNFT pseudo-algorithm

7 APPLICATION-AWARE APPROXIMATION CONTROL

Instead of applying approximate solutions for the whole frame, as previously dis-
cussed in Chapter 2, we propose applying the approximation only on suitable regions
of the frame, i.e., homogeneous regions, in order to keep the video quality whereas re-
ducing the FME power dissipation. The main challenge is to determine these regions
beforehand, thus applying the most suitable approximation level at FME. The monitor-
ing of other encoding parameters, measured before FME being executed, can give a
trust clue about the current block (homogeneous or not), and their combination can
provide a simple decision tree to allow the approximation level prediction. In order to
perform the selection of the approximation level, we propose in this thesis two solu-
tions: a heuristic-based solution (HSApp-NoC) and a machine learning-based solution
(MLSApp-NoC).

7.1 Heuristic-based Application-aware Approximation Control

Our Heuristic-based Application-aware Approximation Control (HAAC), which com-
pounds the HSApp-NoC solution, leverages video content properties to reduce energy
consumption by selecting the approximation level whereas reducing quality degrada-
tion. For that, HAAC exploits the application knowledge and considers the TZS be-
havior during the IME process as a descriptor for the video content. Considering that,
generally, the more complex (texture/motion) the data, the more steps/effort are nec-
essary, the TZS behavior may be a good descriptor of frame properties, a fast TZS
convergence gives a clue that the block being coded is likely to be homogeneous,
thus, being suitable for approximation due to error-resiliency nature, as stated in Chap-
ter 2. On the other hand, when TZS has a hard-to-match block, we assume it is likely
to be a heterogeneous block, thus requiring more precise processing (also refer to the
discussion in Chapter 2).

Let’s define acc_id as the parameter which decides the FAPP to process a given
block, when acc_id = 0 FAPP0 must be selected, when acc_id = 1 FAPP1 must be se-
lected and so on. For HAAC we have adopted as heuristic the behavior of the param-

100

eter tzs_step, which informs the convergence behavior at IME during TZS execution.
HAAC is presented in Figure 36.

1: determine acc_id (tzs_step)
2: if tzs_step = 0 then
3: acc_id = 3
4: else if tzs_step = 1 then
5: acc_id = 2
6: else if tzs_step = 2 then
7: acc_id = 1
8: else if tzs_step = 3 then
9: acc_id = 0

10: end if
11: return acc_id

Figure 36 – Heuristic-based application-aware approximation control pseudo-code.

In cases where the best matching is found in the first search step with two or less
iterations, tzs_step = 0, then FAPP3 must be selected (acc_id = 3). When the best
matching is found in the first search step with more than two iterations, tzs_step = 1,
then FAPP2 must be selected (acc_id = 2). In cases where the best matching is found
in the refinement step, tzs_step = 2, and, in this case, FAPP1 must be selected (acc_id
= 1). Finally, for cases where IME search was all the way to the raster step, tzs_step
= 3 and FAPP0 must be selected (acc_id = 0). The QoS results of this solution are
presented in Chapter 8.

7.2 Machine Learning-based Application-aware Approximation
Control

In order to improve the QoS results, we propose a deeper analysis of the applica-
tion behavior to find the most suitable regions within the frame for the employment of
approximate computing. Thus, we have developed a decision tree to select the approx-
imation level for each block being processed by the FME, based on machine learning,
so called Machine Learning-based Application-aware Approximation Control (MLAAC).

7.2.1 Evaluated Parameters

Some works in the literature (HE et al., 2015; PODDER; PAUL; MURSHED, 2016;
MAUNG; ARAMVITH; MIYANAGA, 2016; SILVA; SIQUEIRA; GRELLERT, 2019; MER-
CAT et al., 2019; LU et al., 2020) give hints of which parameters could affect the FME
behavior. The evaluated parameters are presented in Table 8, we choose to evaluate
seven parameters, which have the highest probability of affect FME behavior. Besides
common parameters like video resolution and quantization parameter. We have also

101

considered merge_flag (informs if the block selected at IME belongs to the merge list
candidates - merge_flag = 1), skip_flag (informs if the block selected at IME is skip -
skip_flag = 1), neigh_est (informs if the neighbor block, previously encoded, has se-
lected IME or FME – 0,1 – Figure 37 details neigh_est parameter), and tzs_step which
was detailed in the previous section. Parameter acc_id is the one to be predicted, it
defines the approximation level to be applied at FME, thus indicating the FAPP index
(0, 1, 2, or 3). Parameter skip informs that no movement or residual information were
transmitted during inter-prediction, in this case, the motion information is derived from
spatial and neighbor blocks. Parameter merge consists in deriving the motion param-
eters from other PU which is based on spatial or temporal neighbors (note that a skip
is always a merge, but a merge might not be a skip).

Table 8 – Evaluated Parameters

Parameter Description Parameter Values
Wres Weight Resolution Integer
Hres Height Resolution Integer
QP Quantization Parameter Integer

merge_flag Merge mode information {0, 1}
skip_flag Skip mode information {0, 1}
neigh_est Neighbour Estimation {0, 1}
tzs_step Convergence of TZS during IME {0, 1, 2, 3}
acc_id Parameter to predict - FAPP selection {0, 1, 2, 3}

Figure 37 – Neighbour Estimation Parameter.

102

7.2.2 Evaluation of Normalized RDCosts

The application of supervised Machine Learning algorithms implies the need of
feeding the algorithm the best selection for each situation. Thus, in order to allow
the application of such techniques, a method determining the best selection needs to
be provided. We decided to apply a selection criterion based on the normal distribu-
tion of normalized RDCosts for each proposed scenario (FAPP0, FAPP1, FAPP2, and
FAPP3).

First, we perform all traditional encoding steps until it reaches the FME. At this
point we make a branch, performing all proposed scenarios (precise + approximate)
and evaluating their RDCosts. The normalized RDCost (normRDi) of each FAPPi is
then calculated according to (38).

normRDi = RDCostFAPPi/RDCostFAPP0 (38)

These values are stored for further offline analysis. We have evaluated one video
sequence per class of HEVC Common Test Conditions (CTCs) (BOSSEN, 2013): Traf-
fic, BQTerrace, PartyScene, RaceHorses, Johnny, and ChinaSpeed, for all recom-
mended QPs (22, 27, 32, and 37), considering only square-shaped blocks (64x64,
32x32, 16x16, and 8x8), 200 frames (150 for Traffic since it is its maximum size), only
one reference frame, no bi-prediction, and Random Access (RA) configuration. The
measured values resulted in four Gaussian distributions, present in Figure 38, for each
recommended QP, informing the Probability Density Function (PDF) values for each
scenario.

Figure 38 – Gaussian distributions for QPs (a) 22, (b) 27, (c) 32, and (d) 37.

103

The average and standard deviation values are present in each graphic. The normal
distribution curves are plotted in yellow, red, and blue, representing FAPP1, FAPP2,
and FAPP3, respectively. Consider the PDF function f(x) defined as follows:

f(x) =
1√

2π · σ
· e−

(x−µ)2

2σ2 (39)

In (39) and Figure 38, µ and σ are, respectively, the average and the standard
deviation of the statistic distribution. Let consider two PDF functions f1(x) and f2(x),
the intersection between these curves is found when f1(x) = f2(x). The solution of this
approach returns a quadratic function:

Ax2 +Bx+ C = 0 (40)

where

A =
1

2σ2
2

− 1

2σ2
1

(41)

B =
µ1

σ2
1

− µ2

σ2
2

(42)

C =
µ2

2σ2
2

− µ1

2σ2
1

+ ln

(
σ2
σ1

)
(43)

The roots of (40) return the intersection points between two Gaussian functions.
The finding of these roots is mandatory in our analysis since the approach we apply in
this work depends on these intersection points.

Our criterion considers the intersection points among the curves as control points:
(P1) FAPP1-2, (P2) FAPP1-3, and (P3) FAPP2-3. The algorithmic decision is quite
simple: for each QP, for each encoding scenario, the normalized RDCosts of all pro-
posed FAPPs are evaluated and then compared. If any of their values are smaller than
1.0 (not showed in the graphics), then such FAPP must be chosen, if more than one
FAPP presents this result the FAPP providing higher power saving must be chosen
(i.e. FAPP3 →2→1). If any of their values are between 1.0 and P1 (inclusive), then
the selected FAPP must be the one providing higher power saving; if none of them is
at this interval, then the same evaluation is performed at P1-P2 interval and next at
P2-P3. If no FAPP normalized RDCost values are found at these intervals, so FAPP0
(precise) must be selected. This criterion selection resulted in an average QoS in terms
of BD-BR of only 1.15% when compared with precise encoding (FAPP0), with a result-
ing average FAPP selection of 4.064%, for FAPP0; 18.056%, for FAPP1; 33.411%, for
FAPP2; and 44.469%, for FAPP3.

Obviously, such approach is unpractical in real scenarios since it requires the pro-

104

cessing of the FME five times (once for each FAPP and then for the selected FAPP
again). In addition, a power analysis also does not make sense for this approach, due
to the enormous overhead that is inserted. However, such approach can guide the
development of machine learning-based algorithms in order to make those decisions
feasible, like the ones based on decision trees, as will be discussed in the following
section.

7.2.3 Generated Decision Tree

The data collected for training considered only ten frames of sequences with higher
resolutions (classes A and B) - Traffic and BQTerrace – a low complexity sequence
(LCS) and a high complexity sequence (HCS), respectively, providing a wide range
of motion and texture in terms of Temporal Index (TI) and Spatial Index (SI) (CASSA;
NACCARI; PEREIRA, 2012), whereas avoiding over-fitting to the data set. Considering
the prohibitive amount of data to handle if the full sequences were analyzed, we have
made the assumption that ten frames are enough to give a clue about the video behav-
ior in order to build the model. Furthermore, considering the configurations adopted
for SApp-NoC, only blocks 64x64 were considered. The evaluated parameters were
stored for each FAPP selection.

These collected values were analyzed using the Waikato Environment for Knowl-
edge Analysis (WEKA), which is a free, open-source machine learning tool (HALL
et al., 2009). The input for WEKA are the ARFF (Attribute-Relation File Format) files,
which contain a plain text describing a list of instances sharing different attributes (in
our case the selected encoding parameters) and the class (variable to be predicted).
In Figure 39 we show the structure of an ARFF file, using as example the ARFF file
employed by this work. It presents two major regions, separated by dashed boxes.
The first one is a header section, presenting the name of the relation (class) and the
attributes declaration (i.e., name and type of values of that attribute). In the second
section it is presented the training data, containing one instance per row and one at-
tribute value per column. When considering the building of decision trees, the last
line of the first section informs the class attribute, i.e., the variable for which the ML
algorithms will try to find a general (prediction) rule.

We evaluated the relevance of each parameter applying the Information Gain At-
tribute Evaluation (IGAE) method, which measures the information gain (IG), based
on the Kullback-Leibler Divergence (KLD), also known as relative entropy, which mea-
sures the divergence between two probability distributions. Therefore, IG indicates how
relevant each parameter is for constructing a decision tree model. In our case, it de-
cides which is the level of approximation that must be applied during FME, resulting in
the selection of FAPP0, 1, 2, or 3.

The definition of the attributes with more information gain allowed the construction

105

Figure 39 – Example of the structure of an ARFF file.

of the decision tree model for our adaptive FME approximation. The training process
considers the application of the C4.5 algorithm, implemented in WEKA framework as
the J48 tool. The default configuration was used, considering 0.25 as a confidence fac-
tor (used for pruning the trees – the less the value the more aggressive is the pruning).
The collected information from the selected video sequences was used for training,
evaluating more than 13,000 instances (after a class balancing, since some FAPPs
were more selected than the others, which required a re-sampling from the original
obtained ARFF file). Firstly, we removed the resolution from the analysis, in order to
build a simpler tree (we observed that the generated trees, when these parameters
were present, became very deep and complex). Next, C4.5 starts obtaining all input
instances, then calculating the IG of each attribute in order to perform the classification
(QUINLAN, 2014), which are present in Table 9.

Table 9 – Information Gain Attribute Evaluation for SApp-NoC Decision Tree

Attribute IG
QP 0.06129

merge_flag 0.01039
skip_flag 0.00881
neigh_est 0
tzs_step 0.06324

106

Figure 40 – Confusion matrix of MLAAC decision tree.

After the best attribute selection, it is used to divide the training data into two sub-
sets, being recursively applied to build the tree. Thus, after the training process, the
accuracy of the generated trees is observed by applying a 10- fold cross-validation
process and observing the percentage of correct decisions, based on the confusion
matrix presented in Figure 40, achieving a percentage of 64.33% on correctly classi-
fied instances. Note that we have considered any decision which not diminishes the
QoS as a correctly classified instance, e.g., if the correct choice would be FAPP3 but
FAPP2 is selected instead, we treat as a correct classification, if the correct choice
would be FAPP2 and FAPP3 is selected, we treat as an error.

The decision tree for the adaptive selection of the approximation level used at
MLSApp-NoC is presented in Figure 41. Note that tzs_step is placed at the root
since it presents the highest IG. The other selected parameters: QP, merge_flag and
skip_flag, guide the further decisions of the tree. Note that they are the ones pre-
senting the highest IGs according to Table 9. These attributes give a reasonable clue
about the homogeneity level of the block being coded, allowing improved exploration
of power/QoS trade-off.

Figure 41 – Generated decision tree - MLAAC

107

7.2.4 QoS Results for Generated Decision Tree

In order to verify the accuracy of the generated decision tree, we have repeated the
same experimental setup presented in the previous section, implementing the decision
tree within the inter-prediction code to decide the level of approximation when perform-
ing the FME for each block. Note that the overhead inserted by this tree is negligible,
since it is a small set of ifs and elses. However, by this time, we changed the ana-
lyzed video sequences in order to provide a different sort of encoding scenarios. We
have evaluated one sequence per class of HEVC CTC (BOSSEN, 2013): PeopleOn-
Street, Kimono, BasketballDrill, BlowingBubbles, KristenAndSara, and SlideEditing, for
all recommended QPs (22, 27, 32, and 37), considering only 64x64 blocks, 200 frames
(150 for PeopleOnStreet), only one reference frame, no bi-prediction, and Random Ac-
cess (RA) configuration. The QoS results in terms of BD-BR are present in Table 10.
Note that the same encoding scenario was considered for the encoding of the baseline
(without any changes, i.e., the precise solution FAPP0).

When analyzing the QoS results, it can be noticed that the results of the gener-
ated decision tree are even better than the results obtained with the decisions based
on normalized RDCosts. Firstly, the tested sequences are different from the train-
ing sequences, which itself is a reasonable reason for different results, since we are
analyzing videos with different TI and SI. Secondly, the assumption for using the nor-
malized RDCosts as an arbiter for the control of the level of approximation at FME is
an heuristic, which have provided reasonable QoS results but still being a sub-optimize
solution. Therefore, other heuristics can provide even better results, like the generated
decision tree. Looking the results in Table 10, we can also verify that, for small res-
olutions videos (like BasketballDrill and BlowingBubbles), the Qos results are worse,
since we are using only 64x64 blocks. For higher resolution videos such an approach
impacts less. Furthermore, SlideEditing sequence has presented an improvement on
QoS. This video is synthetic with a distinct behavior, showing a slide presentation be-
ing edited, with a background image not changing for a long time. In this case, the
approximation applied did not impact the video QoS.

Table 10 – QoS results in terms of BD-BR for the tested sequences

Sequence BD-BR (%)
PeopleOnStreet 0.585345

Kimono 0.749071
BasketballDrill 1.289618

BlowingBubbles 1.159798
KristenAndSara 0.911402

SlideEditing -0.018106
Average 0.779521

8 RESULTS AND DISCUSSION

In this thesis, different sort of experiments were performed to enable the whole
system modeling and achieve the final results. In this chapter we present the obtained
results and a discussion of our main contributions. In Section 8.1 we present the
adopted experimental setup. Section 8.2 discusses the obtained results from SNFT
algorithm. Next, Section 8.3 discusses the power and energy results of the proposed
solutions HSApp-NoC and MLSApp-NoC. In Section 8.4 the obtained QoS results are
discussed. Finally, Section 8.5 brings the discussion about the results regarding the
performance analysis.

8.1 Experimental Setup

Quality-of-Service results were obtained using the main profile of the HEVC refer-
ence software, the HM 16.18 (BOYCE, 2014), according to recommendations of video
community (BOSSEN, 2013). Our simulations reproduced the behavior of the approxi-
mate hardware accelerators (Chapter 5) being selected by heuristics and by a decision
tree (Chapter 7), in order to check the impacts on coding efficiency. It was taken into
account the processing of 64x64 block sizes using one reference frame, random ac-
cess temporal configuration, SAD as similarity criteria, and no bi-prediction to encode
200 frames from each of the 24 recommended video sequences (with exception of
Traffic and PeopleOnStreet sequences, which have a maximum length of 150 frames)
and Quantization Parameters (QP) – 22, 27, 32, and 37. The evaluation of the QoS for
this different set of cases was made using the BD-BR metric, as aforementioned in this
work.

As previously mentioned in Chapter 5, the PEs hardware design were described in
VHDL and synthesized using a 40 nm TSMC standard cell library with 0.9V (TSMC,
2020) using the Cadence RTL Compiler tool (CADENCE, 2020). To perform the power
estimation of the developed hardware, we have employed the default tool switching
activity (20%). Note that the synthesis of each FAPP was made individually, therefore,
when analysing the power of the PEs of SApp-NoC we need to consider the number

109

of instantiated PEs. However, this analysis of the average power dissipated by SApp-
NoC (for both proposed solutions) is not trivial. A simple sum of the individual powers
of each FAPP would be equivocated since they are not operating at full time. The num-
ber of each PE type, their active operating time, their idle time, the proportion between
the application throughput and the individual FAPP throughput, and the percentage of
FAPP selection must be taken into account in order to determine the average power of
the NoC. Note that in Chapter 5 we presented FAPP results targeting different frequen-
cies and frame rates, but, in the context of SApp-NoC, we have considered the usage of
the smallest throughput FHD@30fps at the processing elements of SApp-NoC (since
the inherent parallelism associated to NoCs).

When we design an ordinary hardware accelerator, we make the assumption that
the hardware will operate at full time when establishing the operational frequency of
the accelerator. When it comes to SApp-NoC it is necessary to check how much time
each PE will operate, i.e., we need to determine the level of utilization of each FAPP.
We define util_ratei as the variable which measures the utilization of each FAPPi,
established as follows.

util_ratei =
selFAPPi · numPEi ·RTAPE

PEActive
(44)

One can notice in (44) that the utilization of each PE will depend on the percent-
age of selection of each FAPP (selFAPPi), on RTAPE, defined as the relation between
the throughput of the application being processed at SApp-NoC (throughputapp) and
the throughput conceived for the design of a single PE (throughputPE), on the num-
ber of instantiated FAPPs (numPEi), and on the number of active PEs in SApp-NoC
(PEActive). Observe that this relation is true only when all PEs are designed with the
same frequency and the task allocation performs a uniform task-allocation (i.e., the
same number of tasks are mapped on PEs having FAPPs of the same type). The
relation between application’s and PE’s throughput is given by (45).

RTAPE =
throughputapp
throughputPE

=
resolutionapp · fpsapp
resolutionPE · fpsPE

(45)

Note that (45) is very straightforward, where RTAPE informs how many times the
application is more or less demanding than a single PE.

Therefore, the power dissipation of SApp-NoC can be estimated for the average
scenario by applying what is stated in (46).

PSAppNoC =
3∑
i=0

PFAPPi · util_ratei (46)

The energy estimation of SApp-NoC considers the power of each PE and the time
each one is active, or idle, although the power gating control was not physically imple-

110

mented (since the modeling of SApp-NoC is made at a high level of abstraction), we
consider the usage of power gating over each idle PE, disregarding its power dissipa-
tion when not active. Therefore, the energy consumption evaluation take into account
the PE’s total time of active processing (Tactivei), the power of the PEs (PFAPPi), and the
percentage of selection of each FAPP (selFAPPi), as presented in (47). Note that we
considered energy consumption evaluation only of the processing elements, without
taking into account the energy consumed at the communication across the NoC.

EnergySAppNoC =
3∑
i=0

selFAPPi · PFAPPi · Tactivei (47)

Where the time of active processing is given as follows:

Tactivei = NBPF ·NF ·NCFAPPi · clock_period (48)

On the one hand, in (47) we consider PFAPPi as the power of each single PE individ-
ually, which values were presented in Chapter 5. We made such an assumption taking
into account that the amount of samples to be processed by each PE is constant, no
matter the number of PEs their evaluation is split on. Thus when the number of PEs in-
creases (bigger NoCs) the time of active processing of each one reduces in the same
proportion. Therefore, the consumed energy is still constant for any given scenario
(obviously it means that the processing will occur faster, dissipating more power - ac-
cording to what we have stated in (46)). On the other hand, in (48) we present how we
calculate the total time each PE type is active in SApp-NoC. It depends on the number
of blocks to be processed regarding a single frame (NBPF) (obviously it will depend
on the video resolution), the number of frames (NF) to be evaluated, the number of
cycles each PE takes to evaluate a block (NCFAPPi) (refer to Chapter 5 for details),
and the clock period (defined by the PE operational frequency).

The modeling of HSApp-NoC and MLSApp-NoC architectures as well as instan-
tiation, placement, task mapping, and SNFT algorithms, were made in a java-based
environment. The NoC architecture was modeled in high level of abstraction, con-
sidering its topology, size and communication frequency. In the same way, the de-
veloped FAPPs were also modeled in a high level of abstraction and considering the
operational frequency of 14.57 MHz, obtained during the hardware synthesis and dis-
cussed in Chapter 6. The schedulability analysis was also performed at this java-based
environment, considering the modeling of the whole system which considers priority-
preemptive task schedulers, 2D-mesh NoC interconnected with XY dimension routing,
distributed memory, and eight virtual channels with priority-preemptive link arbitration.

111

8.2 NoC Breakdown Frequency Results

Regarding our case study targeting five throughput demands (FHD@30fps,
FHD@60fps, 4K@30fps, 4K@60fps, and 4K@120fps), we applied SNFT to all pos-
sible scenarios (i.e., different SApp-NoC solutions and configurations - HSApp-NoC
and MLSApp-NoC with different sizes), in order to determine the minimum breakdown
frequency meeting all scenarios requirements for HSApp-NoC and MLSApp-NoC. The
input considers a typical workload scenario, obtained from the reference software of
HEVC. We encoded FHD and 4K video sequences with the same configuration pre-
sented in the beginning of this chapter, obtaining the average FAPP selection for
HSApp-NoC and MLSApp-NoC. Therefore, a single frame employing such a behav-
ior was built as input to test HSApp-NoC and MLSApp-NoC. In Figure 42 and 43 we
show the results of SNFT when processing FHD video sequences, for HSApp-NoC and
MLSApp-NoC, respectively.

Figure 42 – SNFT results for HSApp-NoC processing FHD video sequences.

One can notice that, when analyzing Figures 42 and 43, the breakdown frequencies
are reached at relatively small values, even smaller when the NoC size grows (which
makes sense since the tasks are distributed over more PEs and the flows are better
spread across the NoC). Regarding this scenario, considering the NoC size as smallest
as possible, HSApp-NoC is schedulable at 17.58 MHz and 37.5 MHz, for FHD@30fps
and FHD@60fps, respectively, for a HSApp-NoC sizing 3x3; and MLSApp-NoC is
schedulable at 18.75 MHz and 37.5 MHz, for FHD@30fps and FHD@60fps, respec-
tively, for a MLSApp-NoC sizing 3x3.

In Figure 44 we show the results of SNFT for HSApp-NoC processing 4K video
sequences. This time, the breakdown frequencies are greater, since a more demand-

112

Figure 43 – SNFT results for MLSApp-NoC processing FHD video sequences.

ing scenario is found when processing 4K. The same way, considering the NoC size
as small as possible, HSApp-NoC is schedulable at 85.55 MHz for 4K@30fps, for a
HSApp-NoC sizing 3x3, at 103.13 MHz for 4K@60fps, for a MLSApp-NoC sizing 4x4,
and at 122 MHz for 4K@120fps, for a HSApp-NoC sizing 5x5. Note that Figure 44 does
not show results for 4K@120fps at HSApp-NoC 4x4 and 5x5. In these scenarios the
tasks were unschedulable. Although 4K@60fps being schedulable at HSApp-NoC 3x3
at a communicating frequency of 174 MHz we have not considered this result due to the
huge NoC frequency which is necessary, which would lead to processing waste when
performing less demanding scenarios. Therefore, if we analyze the minimum break-
down frequencies which were found, the minimum frequency guaranteeing the system
schedulability for any given scenario is 122 MHz, hence this value was selected for
HSApp-NoC communication frequency.

In Figure 45 we show the results of SNFT for MLSApp-NoC processing 4K video
sequences. This time, the breakdown frequencies are greater, since a more demand-
ing scenario is found when processing 4K. The same way, considering the NoC size
as small as possible, MLSApp-NoC is schedulable at 93.75 MHz for 4K@30fps, for
a MLSApp-NoC sizing 3x3, at 112.5 MHz for 4K@60fps, for a MLSApp-NoC sizing
4x4, and at 150 MHz for 4K@120fps, for a MLSApp-NoC sizing 5x5. Note that Figure
45 does not show results for 4K@60fps at SApp-NoC 3x3, neither for 4K@120fps at
SApp-NoC 4x4 and 5x5. In these scenarios the tasks were unschedulable. When ana-
lyzing the minimum breakdown frequencies which were found, the minimum frequency
guaranteeing the system schedulability for any given scenario is 150 MHz, hence this
value was selected for MLSApp-NoC communication frequency.

113

Figure 44 – SNFT results for HSApp-NoC processing 4K video sequences.

Figure 45 – SNFT results for SApp-NoC processing 4K video sequences.

8.3 Power/Energy Results

Table 11 presents HSApp-NoC and MLSapp-NoC synthesis results, making a com-
parison with related works that also propose ASIC hardware accelerators designs for
the HEVC FME (Interpolation + Search). HE et al. (2015) presented a power-efficient
architecture for HEVC FME with power dissipation of 198.6 mW and throughput of
8K@30fps (equivalent to 4K@120fps). In LUNG; SHEN (2019) it is proposed a VLSI
architecture and implementation of the HEVC FME. Their design achieves a maximum

114

Table 11 – SApp-NoC synthesis results and comparison with related works

Parameter HE (2015) LUNG (2019) HSApp-NoC MLSApp-NoC
Power (mW) 198.6 304.8 60.30 47.34

Norm. Power (mW) 91.94 101.6 - -
Gate Count (K) 1,183.00 525.40 1,994.57 2,731.50

Max. Throughput 4K@120fps 4K@39fps 4K@120fps 4K@120fps
Technology (nm) 65 90 40 40

Voltage (V) 1.2 1.2 0.9 0.9

throughput of 4K@39fps, with a power dissipation of 304.8 mW. Considering the dif-
ferent technologies and voltage supplies employed by these works, in order to make a
fair comparison, we have also calculated the normalized power of the related works for
40 nm/0.9V, following the method introduced by HE et al. (2015). When comparing the
normalized FME power of the related works with our solutions, it can be noticed that
our both solutions presented smaller power dissipation. Moreover, when compared in-
dividually, our PEs demand the smallest area among related works (refer to Table 4 in
Chapter 5). When considering the whole design (SApp-NoC), the area results must be
added according to the number of nodes used for active PEs, resulting, as expected,
in the biggest area among related works due to parallelism exploration (note that PEs
are turned off when idle). It is worth to mention that, in this comparison, only the power
dissipation of the FAPPs were considered, i.e., the power dissipation of the FME unit.
The power dissipation at GPPs, NoC routers, local memory, and communication links
was not considered in the comparison.

When analyzing the energy results, firstly we need to consider the average FAPP
selection at HSApp-NoC and MLSApp-NoC, in terms of how many times each FAPP is
selected, considering the four recommended QPs, for each video sequence, in order
to find the active time of each PE. In Tables 12 and 13 we show the average selection
of each FAPP for HSApp-NoC and MSApp-NoC, respectively, when processing 200
frames of all CTC (except Traffic and PeopleOnStreet which have only 150 frames)
and 4K sequences, not included in the CTC but also tested by our work (for simplicity,
we will refer 4K sequences as 4K class). In the energy consumption analysis we have
used the 4K sequences Beauty (MERCAT; VIITANEN; VANNE, 2020), Foreman and
Cactus (AMAZON, 2020). The frame rate and the SApp-Noc size are also presented
in Table 13.

In Tables 14 and 15 we present, for HSApp-NoC and MLSApp-NoC, for the same
video sequences and recommended QPs, the energy consumption per frame (Epf),
the energy consumption per second (Eps), the total energy consumption (Et) consid-
ering the encoding of 200 frames, and the energy savings when compared with FAPP0
solution (Es). Sequences from same class presented similar energy consumption,

115

Table 12 – Average selection (%) of each FAPP during video sequences processing at
HSApp-NoC

Class Sequence fps Size FAPP0 FAPP1 FAPP2 FAPP3

4K
Beauty4K 120 5x5 25.42 25.39 15.44 33.64

Foreman4K 60 4x4 16.94 15.25 11.07 56.76
Cactus4K 60 4x4 17.47 18.53 11.82 52.21

Average Selection 4K 19.95 19.72 12.81 47.54

A

Traffic 30 4x4 1.03 3.06 1.96 93.95
PeopleOnStreet 30 4x4 8.76 18.54 6.01 66.69

Nebuta 60 4x4 2.21 9.20 8.10 80.49
SteamLocomotive 60 4x4 9.28 11.65 3.04 80.49

Average Selection Class A 5.32 10.61 4.78 80.41

B

Kimono 24 3x3 5.30 14.64 7.21 72.86
ParkScene 24 3x3 2.13 5.39 3.28 89.20

Cactus 50 3x3 5.23 7.13 2.35 85.30
BQTerrace 60 3x3 2.46 5.34 2.52 89.69

BasketballDrive 50 3x3 11.79 17.42 3.92 66.87
Average Selection Class B 5.38 9.98 3.85 80.78

C

RaceHorsesC 30 3x3 12.69 21.64 7.07 58.60
BQMall 60 3x3 5.17 9.03 2.82 82.99

PartyScene 50 3x3 3.95 6.20 2.16 87.69
BasketballDrill 50 3x3 7.17 8.55 3.67 80.61

Average Selection Class C 7.25 11.36 3.93 77.47

D

RaceHorses 30 3x3 8.50 20.49 8.98 62.03
BQSquare 60 3x3 0.16 0.83 1.33 97.70

BlowingBubbles 50 3x3 2.19 4.47 3.41 89.92
BasketballPass 50 3x3 5.07 10.89 3.40 80.64

Average Selection Class D 3.98 9.17 4.28 82.57

E
FourPeople 60 3x3 0.89 2.97 1.01 95.13

Johnny 60 3x3 0.49 3.21 1.23 95.08
KristenAndSara 60 3x3 1.22 5.04 2.28 91.45

Average Selection Class E 0.87 3.74 1.51 93.89

F

BasketballDrillText 50 3x3 7.26 8.16 3.27 81.31
ChinaSpeed 30 3x3 17.46 15.33 2.91 64.29
SlideEditing 30 3x3 0.99 1.04 0.13 97.85
SlideShow 20 3x3 7.05 4.43 0.82 87.70

Average Selection Class F 8.19 7.24 1.78 82.79

which depend on the resolution, frame rate and SApp-NoC size. For higher resolutions
such as 4K, Beauty sequence presented the highest energy consumption, since it also
presents the highest frame rate.

In order to analyze the dynamic behavior of SApp-NoC, in Figure 46 we show the
energy per frame of Kimono video sequence being encoded with QP37. One can no-
tice a well-behaved consumption until frame 140, alternating the FAPP selection and
keeping the energy consumption smaller than FAPP2-only would provide. At this point,
where we have made a zoom for better detailing, change scene happens, from a more

116

Table 13 – Average selection (%) of each FAPP during video sequences processing at
MLSApp-NoC

Class Sequence fps Size FAPP0 FAPP1 FAPP2 FAPP3

4K
Beauty4K 120 5x5 8.73 5.86 70.98 14.43

Foreman4K 60 4x4 15.67 15.16 35.74 33.43
Cactus4K 60 4x4 13.65 14.02 39.67 32.67

Average Selection 4K 12.68 11.68 48.80 26.84

A

Traffic 30 4x4 24.44 20.84 19.46 35.26
PeopleOnStreet 30 4x4 17.17 11.63 61.41 9.79

Nebuta 60 4x4 21.94 16.32 48.23 13.52
SteamLocomotive 60 4x4 16.82 14.55 35.62 33.02

Average Selection Class A 20.09 15.83 41.18 22.90

B

Kimono 24 3x3 20.07 13.22 46.24 20.47
ParkScene 24 3x3 23.66 18.32 26.72 31.31

Cactus 50 3x3 21.31 19.08 28.25 31.36
BQTerrace 60 3x3 22.16 19.32 18.55 39.97

BasketballDrive 50 3x3 16.02 11.12 50.85 22.00
Average Selection Class B 20.64 16.21 34.12 29.02

C

RaceHorsesC 30 3x3 13.07 7.24 71.01 8.68
BQMall 60 3x3 21.42 17.26 38.92 22.42

PartyScene 50 3x3 22.56 18.99 36.25 22.20
BasketballDrill 50 3x3 21.15 15.06 40.64 23.16

Average Selection Class C 19.55 14.63 46.70 19.11

D

RaceHorses 30 3x3 14.50 7.96 71.52 6.03
BQSquare 60 3x3 25.14 22.44 18.98 33.44

BlowingBubbles 50 3x3 23.83 18.86 34.67 22.64
BasketballPass 50 3x3 19.58 13.93 48.50 17.99

Average Selection Class D 20.76 15.80 43.42 20.02

E
FourPeople 60 3x3 23.92 22.64 9.85 43.59

Johnny 60 3x3 22.47 21.83 11.21 44.49
KristenAndSara 60 3x3 23.23 20.56 14.78 41.43

Average Selection Class E 23.21 21.68 11.95 43.17

F

BasketballDrillText 50 3x3 21.22 15.64 40.69 22.46
ChinaSpeed 30 3x3 14.91 10.58 58.11 16.40
SlideEditing 30 3x3 24.45 24.01 3.64 47.91
SlideShow 20 3x3 19.95 18.04 23.12 38.89

Average Selection Class F 20.13 17.06 31.39 31.41

heterogeneous (look details detached in orange in the image) to a more homogeneous
scenario. Since the presence of more homogeneous regions (look the sky background
detached in red in the image detail), more aggressive approximation is applied, de-
creasing the energy consumption. Note that at some points the energy consumption
falls to zero, it happens due to the adopted temporal configuration (Random Access),
which inserts an All-Intra (AI) frame periodically, which keeps the entire SApp-NoC in
idle mode).

In order to verify the dynamic behavior of objective video quality (in terms of Y-

117

Table 14 – Average energy consumption of HSApp-NoC during video sequences
processing

Class Sequence fps Size Epf (mJ) Eps (mJ) Et (mJ) Es (%)

4K
Beauty4K 120 5x5 0.818 98.111 157.795 28.34

Foreman4K 60 4x4 0.698 41.855 134.635 38.86
Cactus4K 60 4x4 0.720 43.213 139.000 36.87
Average 4K 0.745 61.059 143.810 34.69

A

Traffic 30 4x4 0.264 7.921 38.283 55.57
PeopleOnStreet 30 4x4 0.338 10.151 49.063 43.06

Nebuta 60 4x4 0.292 17.535 56.404 50.82
SteamLocomotive 60 4x4 0.329 19.721 63.434 44.69

Average Class A 0.306 13.832 51.796 48.42

B

Kimono 24 3x3 0.152 3.652 29.366 46.66
ParkScene 24 3x3 0.132 3.178 25.555 53.58

Cactus 50 3x3 0.139 6.966 26.887 51.16
BQTerrace 60 3x3 0.132 7.946 25.560 53.57

BasketballDrive 50 3x3 0.165 8.239 31.801 42.23
Average Class B 0.165 8.239 31.801 42.23

C

RaceHorsesC 30 3x3 0.033 0.988 6.353 39.12
BQMall 60 3x3 0.027 1.615 5.196 50.21

PartyScene 50 3x3 0.026 1.288 4.971 52.36
BasketballDrill 50 3x3 0.028 1.376 5.311 49.11
Average Class C 0.028 1.317 5.458 47.70

D

RaceHorses 30 3x3 0.006 0.187 1.203 41.72
BQSquare 60 3x3 0.005 0.274 0.883 57.24

BlowingBubbles 50 3x3 0.005 0.246 0.950 53.96
BasketballPass 50 3x3 0.005 0.271 1.047 49.28
Average Class D 0.005 0.245 1.021 49.28

E
FourPeople 60 3x3 0.058 3.461 11.133 55.88

Johnny 60 3x3 0.058 3.454 11.112 55.96
KristenAndSara 60 3x3 0.060 3.571 11.488 54.47

Average Class E 0.058 3.496 11.244 55.43

F

BasketballDrillText 50 3x3 0.066 3.313 12.787 49.32
ChinaSpeed 30 3x3 0.078 2.349 15.109 40.12
SlideEditing 30 3x3 0.056 1.690 10.875 56.90
SlideShow 20 3x3 0.063 1.264 12.196 51.66

Average Class F 0.066 2.154 12.742 49.50
Average Energy Saving when Compared to FAPP0 48.19

PSNR), in Figure 47 we show the Y-PSNR behavior for along the processing of Ki-
mono sequence with QP37 at SApp-NoC. One can notice that, at the scene change,
a decrease on video quality happens, which happens due to the change of the frame
being encoded and the reference frame being the same from previous scene. After the
AI frame, the PSNR returns to the same average level. It is worth to notice that our
content-adaptive solution aims to keep the PSNR as close as possible to the PSNR of
the precise solution. Note that there are some peaks of PSNR, which happens when

118

Table 15 – Average energy consumption of MLSApp-NoC during video sequences
processing

Class Sequence fps Size Epf (mJ) Eps (mJ) Et (mJ) Es (%)

4K
Beauty4K 120 5x5 0.726 87.111 140.103 36.37

Foreman4K 60 4x4 0.743 44.598 143.457 34.85
Cactus4K 60 4x4 0.732 43.949 141.368 35.80
Average 4K 0.734 58.552 141.643 35.67

A

Traffic 30 4x4 0.414 12.429 60.075 30.28
PeopleOnStreet 30 4x4 0.412 12.363 59.757 30.65

Nebuta 60 4x4 0.426 25.582 82.290 28.25
SteamLocomotive 60 4x4 0.389 23.353 75.119 34.50

Average Class A 0.411 18.432 69.310 30.98

B

Kimono 24 3x3 0.196 9.811 37.871 31.20
ParkScene 24 3x3 0.198 4.758 38.261 30.50

Cactus 50 3x3 0.196 9.811 37.871 31.20
BQTerrace 60 3x3 0.193 11.554 37.166 32.48

BasketballDrive 50 3x3 0.189 9.470 36.554 33.60
Average Class B 0.195 8.061 37.549 31.79

C

RaceHorsesC 30 3x3 0.036 1.084 6.971 33.22
BQMall 60 3x3 0.038 2.274 7.313 29.92

PartyScene 50 3x3 0.038 1.920 7.413 28.97
BasketballDrill 50 3x3 0.037 1.872 7.225 30.77
Average Class C 0.037 1.787 7.230 30.72

D

RaceHorses 30 3x3 0.007 0.218 1.405 31.95
BQSquare 60 3x3 0.008 0.454 1.461 29.21

BlowingBubbles 50 3x3 0.008 0.382 1.474 28.60
BasketballPass 50 3x3 0.007 0.371 1.431 30.68
Average Class D 0.007 0.356 1.443 30.11

E
FourPeople 60 3x3 0.089 5.365 17.258 31.60

Johnny 60 3x3 0.088 5.290 17.016 32.56
KristenAndSara 60 3x3 0.089 5.332 17.152 32.02

Average Class E 0.089 5.329 17.142 32.06

F

BasketballDrillText 50 3x3 0.091 4.546 17.547 30.45
ChinaSpeed 30 3x3 0.087 2.624 16.883 33.09
SlideEditing 30 3x3 0.089 2.672 17.190 31.87
SlideShow 20 3x3 0.087 1.739 16.784 33.48

Average Class F 0.089 2.895 17.101 32.22
Average Energy Saving when Compared to FAPP0 31.81

the AI frames are processed (AI delivers higher PSNRs).

8.4 QoS Results

The Quality-of-Service results for all CTC is presented in Table 16 and considered
the experimental setup presented in the first section of this chapter, for the both solu-
tions HSApp-NoC and MLSApp-NoC. The evaluation of the QoS for this different set of
cases was made using the metric BD-BR. As previously mentioned in this thesis, the

119

Figure 46 – Energy per frame (uJ) for Kimono sequence with QP37.

BD-BR is widely used by the academic and standardization community to fairly mea-
sure the quality losses. Such a metric informs, in percentage (%), the bitrate increase
(positive BD-BR - which means a quality loss) or decrease (negative BD-BR - which
means a quality gain) for the same objective quality, when compared with a baseline
(in our case FAPP0 since it is a direct implementation of HEVC FME). It is worth to
notice that when dealing with approximate solutions, the results will always be pos-
itive (meaning quality losses) since we are removing functionalities from the original
implementation in order to simplify some variable (e.g. energy/power).

When analyzing the results present in Table 16, SApp-NoC balances the energy
consumption and QoS degradation reaching the energy reduction at a minimum aver-
age cost of 2.74% of BD-BR for HSApp-NoC, and of 1.09% of BD-BR for MLSApp-NoC.
Such results are due to our content-based task allocation that smartly selects the ap-
proximate PEs for more suitable regions, using heuristics and machine learning strate-
gies. When looking for quality results, our achieved QoS values are considerably good
when compared with related works. For instance, work HE et al. (2015) present a QoS

Figure 47 – Y-PSNR (dB) per frame for Kimono sequence with QP37.

120

of -0.04 dB (they have used another quality metric called BD-PSNR (BJONTEGAARD,
2001) for QoS), our average equivalent QoS degradation in this metric is -0.03564 dB
(for MLSApp-NoC) and -0.08999 dB (for HSApp-NoC), whereas work LUNG; SHEN
(2019) present 2.08% of quality losses.

Table 16 – QoS results in terms of BD-BR (%) for SApp-NoC

Class / Resolution Sequence HSApp-NoC MLSApp-NoC

Class A / 2560x1600

Traffic 7.712167 2.056503
PeopleOnStreet 1.315470 0.585345

Nebuta 0.979198 0.756005
SteamLocomotive 3.427029 1.725584

Class B / 1920x1080

Kimono 1.044242 0.749071
ParkScene 4.052259 1.735514

Cactus 1.221857 0.893556
BQTerrace 6.305922 2.669709

BasketballDrive 2.047288 1.457541

Class C / 832x480

RaceHorsesC 2.087318 1.199979
BQMall 3.267984 1.283681

PartyScene 1.579224 0.356868
BasketballDrill 8.638696 1.289618

Class D / 416x240

RaceHorses 1.160884 1.256889
BQSquare 2.448579 0.884385

BlowingBubbles 3.474428 1.159798
BasketballPass 1.287565 0.790805

Class E / 1280x720
FourPeople 1.118276 0.685059

Johnny 3.121819 1.738688
KristenAndSara 0.998400 0.911402

Class F / 1280x720

BasketballDrillText 7.975378 1.329306
ChinaSpeed 0.215654 0.273964
SlideEditing 0.001073 -0.018106
SlideShow 1.395129 0.865921

Average 2.736987 1.093655

For a visual comprehension, we have plotted the QoS results in terms of BD-BR
for each class. FAPP3 presents the worse results, since it employs a more aggres-
sive approximation. Regarding this scenario, class B presented the worse QoS among
all classes being executed by FAPP3. Such a behavior happens due to the nature of
some videos. Specifically, in class B there is the BQTerrace sequence, considered as
high complexity sequence (HCS) (indeed it presents the highest complexity among the
benchmarks (CASSA; NACCARI; PEREIRA, 2012)), presenting the highest impacts on
QoS when approximation is applied (look at Tables 6 and 48). In fact, when compared
to solutions that cannot adapt to the content, HSApp-NoC and MLSApp-NoC drasti-
cally reduce QoS degradation in relation to FAPP3 (class B makes the QoS difference
clearer), with MLSApp-NoC performing close to FAPP1 and FAPP2 in terms of QoS,

121

while reducing the energy consumption, since only homogeneous regions of the frame
are explored.

Figure 48 – QoS results in terms of BD-BR for each class.

8.5 Performance Analysis Results

The task-mapping adopted in this work is based on the application behavior. De-
spite being energy-QoS efficient, such allocation does not guarantee the meeting of
real-time constraints. On the one hand, a response time/schedulability analysis, tar-
geting dynamic task-allocation, covering any possible scenario, is not trivial to execute.
On the other hand, since a wide range of benchmarks (BOSSEN, 2013) is provided by
video community, a set of possible scenarios, describing a typical scenario, is proposed
in order to evaluate the end-to-end schedulability of SApp-NoC over different scenarios
through the verification of the worst-case response times: from tasks, flows and end-to-
end. In order to verify the schedulability, we focus on high resolution workloads (FHD
and 4K). We propose the evaluation of the encoding of FHD (class B, at 30 fps and
60 fps) and UHD videos (4K, at 60 fps and 120 fps), for the four recommended QPs,
covering different movement and texture situations. The average selection of each
accelerator was considered for each set (gathered from Tables 12 and 13, for HSApp-
NoC and MLSApp-NoC, respectively) and the performance analysis was applied for
each generated mapping, obtaining the worst-case latencies for each scenario.

In Figures 49 and 50 it is presented the response-time/schedulability analysis for
HSApp-NoC and MLSApp-NoC, presenting the worst-case response times (WCRT)
from tasks (T), flows (F), and end-to-end (E) (tasks plus flows) among the found worst-
case latencies for each generated mapping, considering a frame rate of 30 fps, where

122

each video workload was mapped onto different SApp-NoC sizes, FHD on 3x3 and 4K
on 4x4 (as aforementioned in this work). The both scenarios are schedulable, i.e., the
end-to-end WCRT is smaller than the deadline – 33.33 ms for 30fps).

Figure 49 – Response times of HSApp-NoC regarding tasks (T), flows (F), and
end-to-end (E) for FHD@30fps and 4K@30fps.

Figure 50 – Response times of MLSApp-NoC regarding tasks (T), flows (F), and
end-to-end (E) for FHD@30fps and 4K@30fps.

In Figures 51 and 52 it is made the same analysis for HSApp-NoC, and in Figures
53 and 54 it is made the same analysis for MLSApp-NoC, also showing the WCRT
from tasks, flows, and end-to-end, for 60 fps and 120 fps, respectively. In Figures
51 and 53 we have two scenarios, FHD videos mapped onto 3x3 SApp-NoC and 4K
videos mapped onto 4x4 SApp-NoC. In this case, we also demonstrate that the system
is capable of meeting the timing constraints (deadline equals to 16.67 ms for 60 fps)
for these scenarios, being also schedulable. In Figure 52 and 54 the most demanding

123

workload scenario is analyzed, when a 4K video is mapped onto a 5x5 SApp-NoC,
but with a harder timing constraint (deadline 8.33 ms for 120 fps). The system is
also schedulable at this scenario, but this time with an end-to-end WCRT closer to the
deadline.

Figure 51 – Response times of HSApp-NoC regarding tasks (T), flows (F), and
end-to-end (E) for FHD@60fps and 4K@60fps.

Figure 52 – Response times of HSApp-NoC regarding tasks (T), flows (F), and
end-to-end (E) for 4K@120fps.

8.6 Results Summary

In this chapter we have demonstrated the effectiveness of our proposed solutions
HSApp-NoC and MLSApp-NoC, by discussing the obtained results. First, we have
showed the importance of SNFT in the specification of a NoC breakdown communica-
tion frequency. Next, the results for both solutions were presented, regarding energy

124

Figure 53 – Response times of MLSApp-NoC regarding tasks (T), flows (F), and
end-to-end (E) for FHD@60fps and 4K@60fps.

Figure 54 – Response times of MLSApp-NoC regarding tasks (T), flows (F), and
end-to-end (E) for 4K@120fps.

consumption and QoS in terms of coding efficiency. On the one hand, HSApp-NoC pre-
sented higher energy savings, since it employs the approximation in a deeper level. On
the other hand, MLSApp-NoC employs a more precise approximation control, present-
ing smaller energy savings when compared with HSApp-NoC, but presenting better
QoS. For both solutions it was demonstrated with the schedulability analysis that they
are able to meet timing constraints, delivering real-time performance.

For the best of author’s knowledge, neither of the related works employs all strate-
gies we have proposed in the same solution, delivering a system exploring parallelism
by using NoCs, energy efficiency by using approximate hardware acceleration, QoS
control by exploring properties of error-resilient applications, and real-time guarantees
by performing a schedulability analysis. Related works proposing the exploration of

125

NoCs for video coding (PENNY et al., 2019a; MA et al., 2015; NOURI; GHAZNAVI-
YOUVALARI; NURMI, 2018; PENNY et al., 2019b) have the main focus on explor-
ing the performance to deal with real-time, without exploring approximate hardware
or error-resilience. When considering related works proposing hardware acceleration
for the HEVC FME (HE et al., 2015; LUNG; SHEN, 2019), our both solutions deliver
higher energy savings with better QoS. None of the related works exploring approxi-
mate computing for the HEVC FME hardware acceleration presented results for a fair
comparison, some of them focuses only on interpolation filters (KALALI; HAMZAOGLU,
2018; SILVA; SIQUEIRA; GRELLERT, 2019) or focuses on the motion compensation
step (DIEFY; SHALABY; SAYED, 2015; PALUMBO et al., 2016). Furthermore, some
of them do not present ASIC solutions (SAU et al., 2017) or focuses only on FME
approximate interpolator design, as our previous work (PENNY et al., 2020).

9 CONCLUSION

This thesis presented the exploration of energy-efficient NoC-based systems for
real-time multimedia applications using approximate computing. We defined some re-
search hypotheses in order to answer the main research questions, and we have tried
to verify the validity of each of them by addressing different strategies.

We proposed an energy/QoS-aware video processing system featuring scalable
NoC topology and multi-level approximate hardware acceleration, called SApp-NoC,
proposing a scalable NoC architecture targeting heterogeneous processing elements,
designed to accelerate the HEVC FME at multiple levels of approximation. In order
to allow scalability when dealing with distinct throughput demands (like frame rate and
resolution), our solution employed the strategy of neighbor Tiles to properly size SApp-
NoC, being able to deal with 4K UHD videos at 120 fps in a real-time processing.
The observed results demonstrate the validity of our research hypothesis RH1, which
suggests the use of NoC-based solutions to provide scalability in processing systems.

SApp-NoC processing elements were designed featuring four levels of approxima-
tion, implemented as dedicated hardware, and exploring the natural error resiliency
of video coding application. These implementations address our research hypothesis
RH2, which suggests that energy efficiency with real-time support can be obtained
by exploring dedicated hardware acceleration applying approximate computing tech-
niques over the application.

The NoC size, tiling definition as well as the processing elements instantiation and
placement within SApp-NoC were conceived at design time, using heuristics based on
the statistical behavior of the application, leading to HSApp-NoC solution, and machine
learning exploration, leading to MLSApp-NoC solution. Nevertheless, at run-time, the
developed application-aware dynamic task-mapping algorithm guarantees a real-time
processing exploiting the energy/QoS trade-off. The obtained results show the validity
of our research hypothesis RH3, which infers that the reduction of energy consumption
maintaining the application QoS at acceptable range can be addressed by exploring
application-specific properties/behavior with a run-time management.

A performance evaluation with a set of schedulability analysis was also proposed

127

for typical workload scenarios in video coding, guaranteeing the meet of timing con-
straints for different configurations. Therefore, MLSApp-NoC reduces about 31.81%
the energy consumption at small quality reduction (1.09% BD-BR), whereas HSApp-
NoC is capable of saving up to 48.19% the energy consumption with also small QoS
of only 2.74% in BD-BR.

When revisiting the literature, we verified that many challenges are still open re-
garding digital systems design for multimedia applications when our focus is to pro-
vide, simultaneously, scalability to multiples throughput, performance for real-time pro-
cessing and energy efficiency with low QoS degradation. We have hypothesized that
these challenges could be addressed by employing NoCs to provide scalability and
performance by parallelism exploration; by using hardware acceleration and approxi-
mate computing for energy efficiency, and by leveraging application-specific properties
exploring error-resilient applications using heuristics and machine learning. Our so-
lutions have successfully achieved our main goals by proposing different strategies
and integrating them into two solutions: HSApp-NoC and MLSApp-NoC. Moreover, our
methodology is also suitable to be applied to other error-resilient processing kernels
for energy saving.

9.1 Future Works

As future works we would like to introduce the following aspects:

• Perform a more detailed design space exploration of approximate FME hardware
accelerators, prioritizing further energy reduction while avoiding quality degrada-
tion;

• Introduce more parameters for evaluation during the machine learning analysis;

• Enhance SApp-NoC size in order to allow higher throughput;

• Reproduce the same methodology explored in this thesis on other video codecs
like the AV1 (AOMedia Video 1) and VVC (Versatile Video Coding);

• Reproduce the same methodology on other encoding steps, like intra-frame pre-
diction and integer motion estimation;

• Reproduce the same methodology on other multimedia applications, like Internet-
of-things (IoT), computer vision, immersive technologies, and so on;

• Perform a study in order to allow the dynamic schedulability analysis of SApp-
NoC (instead of the schedulability analysis applied for a typical workload, based
on statistical behavior, which was applied in this thesis).

128

Our work has demonstrated the effectiveness of the proposed solutions by exploit-
ing energy-efficient NoC-based systems for real-time multimedia applications using
hardware acceleration and approximate computing. However, an enormous research
space is still open regarding other contexts and applications. Thereby, this work has
open the opportunity for different researches focusing on the development of approxi-
mate dedicate hardware, NoC designs focusing on specific applications, heuristics and
algorithms exploiting the energy/QoS trade-off, and schedulability analysis methods for
real-time applications.

129

REFERENCES

AFONSO, V. et al. Hardware implementation for the HEVC fractional motion estimation
targeting real-time and low-energy. J. Integr. Circuits Syst., [S.l.], v.11, n.2, p.106–
120, 2016.

AFONSO, V.; MAICH, H.; AGOSTINI, L.; FRANCO, D. Low cost and high throughput
FME interpolation for the HEVC emerging video coding standard. In: IEEE 4TH LATIN
AMERICAN SYMPOSIUM ON CIRCUITS AND SYSTEMS (LASCAS), 2013., 2013.
Anais. . . [S.l.: s.n.], 2013. p.1–4.

AGARWAL, A. The tile processor: A 64-core multicore for embedded processing. In:
HPEC WORKSHOP, 2007. Proceedings. . . [S.l.: s.n.], 2007.

ALI, H. et al. Contention & energy-aware real-time task mapping on noc based hetero-
geneous mpsocs. IEEE Access, [S.l.], v.6, p.75110–75123, 2018.

ALIKHAH-ASL, E.; RESHADI, M. XY-axis and distance based NoC mapping (XY-ADB).
In: INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (IST), 2016., 2016.
Anais. . . [S.l.: s.n.], 2016. p.678–683.

AMAZON. Recursos de mídia e entretenimento. Disponível em:
<https://aws.amazon.com/pt/media/resources/>. Acesso em: 30 jul. 2020.

AUDSLEY, N. et al. Applying new scheduling theory to static priority pre-emptive
scheduling. Software engineering journal, [S.l.], v.8, n.5, p.284–292, 1993.

BAI, H. et al. Multiple description video coding based on human visual system char-
acteristics. IEEE transactions on circuits and systems for video technology, [S.l.],
v.24, n.8, p.1390–1394, 2014.

BARGE, I. J.; ABABEI, C. A network-on-chip based h. 264 video decoder prototype
implemented on fpgas. In: IEEE 25TH ANNUAL INTERNATIONAL SYMPOSIUM ON
FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM), 2017., 2017.
Anais. . . [S.l.: s.n.], 2017. p.197–197.

130

BJERREGAARD, T.; MAHADEVAN, S. A Survey of Research and Practices of
Network-on-chip. ACM Comput. Surv., New York, NY, USA, v.38, n.1, June 2006.

BJONTEGAARD, G. Calculation of average PSNR differences between RD curves
(VCEG-M33). Austin: [s.n.], 2001.

BOHR, M. A 30 Year Retrospective on Dennard’s MOSFET Scaling Paper. IEEE Solid-
State Circuits Society Newsletter, [S.l.], v.12, n.1, p.11–13, 2007.

BOKHARI, H. et al. darkNoC: Designing energy-efficient network-on-chip with multi-
Vt cells for dark silicon. In: ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE
(DAC), 2014., 2014. Anais. . . [S.l.: s.n.], 2014. p.1–6.

BOKHARI, H. et al. SuperNet: Multimode Interconnect Architecture for Manycore
Chips. In: ANNUAL DESIGN AUTOMATION CONFERENCE, 52., 2015, New York,
NY, USA. Proceedings. . . Association for Computing Machinery, 2015. (DAC ’15).

BOLOTIN, E.; CIDON, I.; GINOSAR, R.; KOLODNY, A. QNoC: QoS architecture and
design process for network on chip. JSA, [S.l.], v.50, n.2, p.105 – 128, 2004. Special
issue on networks on chip.

BORKAR, S. Thousand core chips: a technology perspective. In: OF THE 44TH
ANNUAL DESIGN AUTOMATION CONFERENCE, 2007. Proceedings. . . [S.l.: s.n.],
2007. p.746–749.

BOSSEN, F. Common test conditions and software reference configurations.
[S.l.: s.n.], 2013. JCTVC-L1100.

BOYAPATI, R. et al. Approx-noc: A data approximation framework for network-on-chip
architectures. In: ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHI-
TECTURE, 44., 2017. Proceedings. . . [S.l.: s.n.], 2017. p.666–677.

BOYCE, J. HM16: High Efficiency Video Coding Test Model (HM16) Encoder Descrip-
tion. [S.l.: s.n.], 2014. JCTVC-R1002, Sapporo.

CADENCE. Encounter RTL Compiler. Disponível em:
<https://www.cadence.com/content/cadence-www/global/en_US/home/training/all-
courses/84441.html>. Acesso em: 08 jul. 2020.

CASSA, M. B.; NACCARI, M.; PEREIRA, F. Fast rate distortion optimization for
the emerging HEVC standard. In: PICTURE CODING SYMPOSIUM, 2012., 2012.
Anais. . . [S.l.: s.n.], 2012. p.493–496.

131

CHATTERJEE, S.; SARAWADEKAR, K. Approximated Core Transform Architectures
for HEVC Using WHT-Based Decomposition Method. IEEE Transactions on Circuits
and Systems I: Regular Papers, [S.l.], v.66, n.11, p.4296–4308, 2019.

CISCO. Cisco Annual Internet Report (2018–2023) White Paper. Disponível em:
<https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-
internet-report/white-paper-c11-741490.html>. Acesso em: 27 jun. 2020.

CLARK, M.; KODI, A.; BUNESCU, R.; LOURI, A. LEAD: Learning-enabled energy-
aware dynamic voltage/frequency scaling in NoCs. In: ANNUAL DESIGN AUTOMA-
TION CONFERENCE, 55., 2018. Proceedings. . . [S.l.: s.n.], 2018. p.1–6.

CORRÊA, G. R. Computational Complexity Reduction and Scaling for High Effi-
ciency Video Encoders. 2014. 252p. Tese (Doutorado em Engenharia Eletrotecnica
e de Computadores) — University of Coimbra.

DALLY, W. J. et al. Virtual-channel flow control. IEEE Transactions on Parallel and
Distributed systems, [S.l.], v.3, n.2, p.194–205, 1992.

DENNARD, R. H. et al. Design of ion-implanted MOSFET’s with very small physical
dimensions. IEEE Journal of Solid-State Circuits, [S.l.], v.9, n.5, p.256–268, 1974.

DIEFY, A.; SHALABY, A.; SAYED, M. S. Efficient architectures for HEVC luma interpo-
lation filter. In: INTERNATIONAL CONFERENCE ON MICROELECTRONICS (ICM),
2015., 2015. Anais. . . [S.l.: s.n.], 2015. p.9–12.

EHRLICH, P.; RADKE, S. Energy-aware software development for embedded systems
in HW/SW co-design. In: IEEE DDECS, 2013., 2013. Anais. . . [S.l.: s.n.], 2013. p.232–
235.

EL-HAROUNI, W. et al. Embracing approximate computing for energy-efficient motion
estimation in high efficiency video coding. In: DESIGN, AUTOMATION & TEST IN
EUROPE CONFERENCE & EXHIBITION (DATE), 2017, 2017. Anais. . . [S.l.: s.n.],
2017. p.1384–1389.

ESMAEILZADEH, H. et al. Dark silicon and the end of multicore scaling. In: ANNUAL
INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA), 2011.,
2011. Anais. . . [S.l.: s.n.], 2011. p.365–376.

FAYYAD, U. M.; PIATETSKY-SHAPIRO, G.; SMYTH, P. et al. Knowledge Discovery and
Data Mining: Towards a Unifying Framework. In: KDD, 1996. Anais. . . [S.l.: s.n.], 1996.
v.96, p.82–88.

GHANBARI, M. Standard codecs: Image compression to advanced video coding.
[S.l.]: Iet, 2003. n.49.

132

GHOSH, A.; RAHA, A.; MUKHERJEE, A. Energy-Efficient IoT-Health Monitoring Sys-
tem using Approximate Computing. Internet of Things, [S.l.], v.9, p.100166, 2020.

GOIRI, I.; BIANCHINI, R.; NAGARAKATTE, S.; NGUYEN, T. D. Approxhadoop:
Bringing approximations to mapreduce frameworks. In: TWENTIETH INTERNA-
TIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING
LANGUAGES AND OPERATING SYSTEMS, 2015. Proceedings. . . [S.l.: s.n.], 2015.
p.383–397.

GONZALEZ, R. C.; WOODS, R. E. Processamento Digital De Imagens. 3.ed. São
Paulo: Pearson Prentice Hall, 2010.

GRELLERT, M. Machine Learning Mode Decision for Complexity Reduction and
Scaling in Video Applications. 2018. 196p. Tese (Doutorado em Ciência da Com-
putação) — Universidade Federal do Rio Grande do Sul.

GRELLERT, M.; BAMPI, S.; ZATT, B. Complexity-scalable HEVC encoding. In: PIC-
TURE CODING SYMPOSIUM (PCS), 2016., 2016. Anais. . . [S.l.: s.n.], 2016. p.1–5.

GROIS, D. et al. Performance comparison of H.265/MPEG-HEVC, VP9, and
H.264/MPEG-AVC encoders. In: PICTURE CODING SYMPOSIUM (PCS), 2013.,
2013. Anais. . . [S.l.: s.n.], 2013. p.394–397.

GUESMI, A. et al. Defensive Approximation: Enhancing CNNs Security through Ap-
proximate Computing. arXiv preprint arXiv:2006.07700, [S.l.], 2020.

HALL, M. et al. The WEKA data mining software: an update. ACM SIGKDD explo-
rations newsletter, [S.l.], v.11, n.1, p.10–18, 2009.

HE, G. et al. High-throughput power-efficient VLSI architecture of fractional motion es-
timation for ultra-HD HEVC video encoding. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, [S.l.], v.23, n.12, p.3138–3142, 2015.

HE, Z. et al. Framework of AVS2-video coding. In: IEEE INTERNATIONAL CONFER-
ENCE ON IMAGE PROCESSING, 2013., 2013. Anais. . . [S.l.: s.n.], 2013. p.1515–
1519.

HENKEL, J.; KHDR, H.; PAGANI, S.; SHAFIQUE, M. New trends in dark silicon.
In: ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2015., 2015.
Anais. . . [S.l.: s.n.], 2015. p.1–6.

INDRUSIAK, L. End-to-end schedulability tests for multiprocessor embedded systems
based on networks-on-chip with priority-preemptive arbitration. Journal of Systems
Architecture, [S.l.], v.60, n.7, p.553 – 561, 2014.

133

INDRUSIAK, L. S.; BURNS, A.; NIKOLIĆ, B. Buffer-aware bounds to multi-point pro-
gressive blocking in priority-preemptive NoCs. In: DESIGN, AUTOMATION & TEST IN
EUROPE CONFERENCE & EXHIBITION (DATE), 2018., 2018. Anais. . . [S.l.: s.n.],
2018. p.219–224.

ISO/IEC-JCT1/SC29/WG11. High Efficiency Video Coding (HEVC) text specifica-
tion draft 10. doc JCTVC-L1003.ed. [S.l.: s.n.], 2013.

JANTSCH, A.; TENHUNEN, H. et al. Networks on chip. [S.l.]: Springer, 2003. v.396.

JERRAYA, A.; WOLF, W. Multiprocessor systems-on-chips. [S.l.]: Elsevier, 2004.

JONES, N. How to stop data centres from gobbling up the world’s electricity.
Disponível em: <https://www.nature.com/articles/d41586-018-06610-y>. Acesso em:
27 jun. 2020.

KALALI, E.; HAMZAOGLU, I. Approximate HEVC fractional interpolation filters and
their hardware implementations. IEEE Transactions on Consumer Electronics, [S.l.],
v.64, n.3, p.285–291, 2018.

KHUN, P. Algorithms, Complexity Analysis and VLSI Architectures for MPEG-4
Motion Estimation. Boston: Kluwer Academic Publishers, 1999.

KIASARI, A.; JANTSCH, A.; LU, Z. Mathematical Formalisms for Performance Evalua-
tion of Networks-on-chip. ACM Comput. Surv., New York, NY, USA, v.45, n.3, p.38:1–
38:41, July 2013.

KIM, B.; KIM, J.; HONG, S.; LEE, S. A real-time communication method for wormhole
switching networks. In: INTERNATIONAL CONFERENCE ON PARALLEL PROCESS-
ING (CAT. NO.98EX205), 1998., 1998. Proceedings. . . [S.l.: s.n.], 1998. p.527–534.

LAYEK, M. A. et al. Performance analysis of H.264, H.265, VP9 and AV1 video en-
coders. In: ASIA-PACIFIC NETWORK OPERATIONS AND MANAGEMENT SYMPO-
SIUM (APNOMS), 2017., 2017. Anais. . . [S.l.: s.n.], 2017. p.322–325.

LIU, W.; LOMBARDI, F.; SHULTE, M. A Retrospective and Prospective View of Approxi-
mate Computing [Point of View. Proceedings of the IEEE, [S.l.], v.108, n.3, p.394–399,
2020.

LU, Y. et al. Hierarchical Classification for Complexity Reduction in HEVC Inter Coding.
IEEE Access, [S.l.], v.8, p.41690–41704, 2020.

LUNG, C.-Y.; SHEN, C.-A. Design and implementation of a highly efficient fractional
motion estimation for the HEVC encoder. Journal of Real-Time Image Processing,
[S.l.], v.16, n.5, p.1541–1557, 2019.

134

MA, N.; ZOU, Z.; LU, Z.; ZHENG, L. Implementing MVC decoding on homoge-
neous NoCs: Circuit switching or wormhole switching. In: EUROMICRO INTERNA-
TIONAL CONFERENCE ON PARALLEL, DISTRIBUTED, AND NETWORK-BASED
PROCESSING, 2015., 2015. Anais. . . [S.l.: s.n.], 2015. p.387–391.

MAUNG, H.; ARAMVITH, S.; MIYANAGA, Y. Improved region-of-interest based rate
control for error resilient HEVC framework. In: IEEE INTERNATIONAL CONFERENCE
ON DIGITAL SIGNAL PROCESSING (DSP), 2016., 2016. Anais. . . [S.l.: s.n.], 2016.
p.286–290.

MCCNANN, K. et al. High Efficiency Video Coding (HEVC) Test Model 16 (HM 16)
Improved Encoder Description (JCTVC-S1002). Strasbourg: [s.n.], 2014.

MENDIS, H. R.; AUDSLEY, N. C.; INDRUSIAK, L. S. Dynamic and static task allo-
cation for hard real-time video stream decoding on NoCs. Leibniz Transactions on
Embedded Systems, [S.l.], v.4, n.2, p.01–1, 2017.

MENDIS, H. R.; INDRUSIAK, L. S. Low communication overhead dynamic mapping
of multiple HEVC video stream decoding on NoCs. In: WORKSHOP ON PARALLEL
PROGRAMMING AND RUN-TIME MANAGEMENT TECHNIQUES FOR MANY-CORE
ARCHITECTURES AND THE 5TH WORKSHOP ON DESIGN TOOLS AND ARCHI-
TECTURES FOR MULTICORE EMBEDDED COMPUTING PLATFORMS, 7., 2016.
Proceedings. . . [S.l.: s.n.], 2016. p.19–24.

MERCAT, A. et al. Probabilistic Approach Versus Machine Learning for One-Shot
Quad-Tree Prediction in an Intra HEVC Encoder. Journal of Signal Processing Sys-
tems, [S.l.], v.91, n.9, p.1021–1037, 2019.

MERCAT, A.; VIITANEN, M.; VANNE, J. UVG dataset: 50/120fps 4K sequences for
video codec analysis and development. In: ACM MULTIMEDIA SYSTEMS CONFER-
ENCE, 11., 2020. Proceedings. . . [S.l.: s.n.], 2020. p.297–302.

MORAES, F. et al. HERMES: an infrastructure for low area overhead packet-switching
networks on chip. Integration, [S.l.], v.38, n.1, p.69–93, 2004.

MUKHERJEE, D. et al. The latest open-source video codec VP9 - An overview and pre-
liminary results. In: PICTURE CODING SYMPOSIUM, PCS 2013 - PROCEEDINGS,
2013., 2013. Anais. . . IEEE, 2013. p.390–393.

NI, L. M.; MCKINLEY, P. K. A survey of wormhole routing techniques in direct networks.
Computer, [S.l.], v.26, n.2, p.62–76, 1993.

NOURI, S.; GHAZNAVI-YOUVALARI, R.; NURMI, J. Design and implementation of
multi-purpose DCT/DST-specific accelerator on heterogeneous multicore architecture.

135

In: IEEE NORDIC CIRCUITS AND SYSTEMS CONFERENCE (NORCAS): NORCHIP
AND INTERNATIONAL SYMPOSIUM OF SYSTEM-ON-CHIP (SOC), 2018., 2018.
Anais. . . [S.l.: s.n.], 2018. p.1–10.

PALUMBO, F. et al. Runtime energy versus quality tuning in motion compensation filters
for HEVC. IFAC-PapersOnLine, [S.l.], v.49, n.25, p.145–152, 2016.

PASTUSZAK, G.; ABRAMOWSKI, A. Algorithm and architecture design of the H.
265/HEVC intra encoder. IEEE Transactions on circuits and systems for video
technology, [S.l.], v.26, n.1, p.210–222, 2015.

PENNY, W. et al. Real-time architecture for HEVC motion compensation sample in-
terpolator for UHD videos. In: SYMPOSIUM ON INTEGRATED CIRCUITS AND SYS-
TEMS DESIGN, 28., 2015. Proceedings. . . [S.l.: s.n.], 2015. p.1–6.

PENNY, W. et al. Performance evaluation of HEVC RCL applications mapped onto
NoC-based embedded platforms. In: SYMPOSIUM ON INTEGRATED CIRCUITS AND
SYSTEMS DESIGN (SBCCI), 2019., 2019. Anais. . . [S.l.: s.n.], 2019. p.1–6.

PENNY, W. et al. Design Space Exploration of HEVC RCL Mapped onto NoC-
Based Embedded Platforms. In: INTERNATIONAL SYMPOSIUM ON RECONFIG-
URABLE COMMUNICATION-CENTRIC SYSTEMS-ON-CHIP (RECOSOC), 2019.,
2019. Anais. . . [S.l.: s.n.], 2019. p.1–8.

PENNY, W. et al. High-throughput and power-efficient hardware design for a multiple
video coding standard sample interpolator. Journal of Real-Time Image Processing,
[S.l.], v.16, n.1, p.175–192, 2019.

PENNY, W. et al. Low-Power and Memory-Aware Approximate Hardware Architec-
ture for Fractional Motion Estimation Interpolation on HEVC. In: IEEE INTERNA-
TIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020., 2020. Anais. . .
[S.l.: s.n.], 2020. p.1–5.

PODDER, P. K.; PAUL, M.; MURSHED, M. A novel motion classification based inter-
mode selection strategy for HEVC performance improvement. Neurocomputing, [S.l.],
v.173, p.1211–1220, 2016.

PORTO, R. et al. Fast and energy-efficient approximate motion estimation architecture
for real-time 4 K UHD processing. Journal of Real-Time Image Processing, [S.l.],
p.1–15, 2020.

POURABED, M. A.; NOURI, S.; NURMI, J. Design and Implementation of 2D
IDCT/IDST-Specific Accelerator on Heterogeneous Multicore Architecture. In: IEEE

136

NORDIC CIRCUITS AND SYSTEMS CONFERENCE (NORCAS): NORCHIP AND IN-
TERNATIONAL SYMPOSIUM OF SYSTEM-ON-CHIP (SOC), 2018., 2018. Anais. . .
[S.l.: s.n.], 2018. p.1–6.

PRABAKARAN, B. S.; EL-HAROUNI, W.; REHMAN, S.; SHAFIQUE, M. Approximate
Multi-Accelerator Tiled Architecture for Energy-Efficient Motion Estimation. In: Approx-
imate Circuits. [S.l.]: Springer, 2019. p.249–268.

PRAVEEN, G.; ADIREDDY, R. Analysis and approximation of SAO estimation for CTU-
level HEVC encoder. In: VISUAL COMMUNICATIONS AND IMAGE PROCESSING
(VCIP), 2013., 2013. Anais. . . [S.l.: s.n.], 2013. p.1–5.

PURNACHAND, N.; ALVES, L. N.; NAVARRO, A. Fast motion estimation algorithm
for HEVC. In: IEEE SECOND INTERNATIONAL CONFERENCE ON CONSUMER
ELECTRONICS-BERLIN (ICCE-BERLIN), 2012., 2012. Anais. . . [S.l.: s.n.], 2012.
p.34–37.

QUINLAN, J. C4. 5: programs for machine learning. [S.l.]: Elsevier, 2014.

RICHARDSON, I. Video Codec Design: Developing Image and Video Compression
Systems. Chichester: John Wiley & Sons, Inc., 2002.

RICHARDSON, I. H.264 and MPEG-4 Video Compression: Video Coding for Next-
generation Multimedia. New York: John Wiley & Sons, Inc., 2003.

RUSSELL, S.; NORVIG, P. Artificial intelligence: a modern approach. [S.l.]: Prentice
Hall, 2002.

SAU, C. et al. Challenging the best HEVC fractional pixel FPGA interpolators with re-
configurable and multifrequency approximate computing. IEEE Embedded Systems
Letters, [S.l.], v.9, n.3, p.65–68, 2017.

SAYUTI, M.; INDRUSIAK, L. A Function for Hard Real-Time System Search-Based
Task Mapping Optimisation. In: IEEE ISORC, 2015. Anais. . . [S.l.: s.n.], 2015. p.66–
73.

SHI, Z.; BURNS, A. Real-Time Communication Analysis for On-Chip Networks with
Wormhole Switching. In: IEEE/ACM NOCS, 2008. Anais. . . [S.l.: s.n.], 2008. p.161–
170.

SILVA, R. da; SIQUEIRA, Í.; GRELLERT, M. Approximate interpolation filters for the
fractional motion estimation in HEVC encoders and their VLSI design. In: SYMPOSIUM
ON INTEGRATED CIRCUITS AND SYSTEMS DESIGN, 32., 2019. Proceedings. . .
[S.l.: s.n.], 2019. p.1–6.

137

SINGH, A. K.; DZIURZANSKI, P.; MENDIS, H. R.; INDRUSIAK, L. S. A survey and
comparative study of hard and soft real-time dynamic resource allocation strategies for
multi-/many-core systems. ACM Computing Surveys (CSUR), [S.l.], v.50, n.2, p.1–40,
2017.

SMEI, H.; JEMAI, A.; SMIRI, K. Performance Estimation of HEVC/h.265 Decoder in a
Co-Design Flow with SADF-FSM Graphs. IJCNS, [S.l.], v.10, p.261 – 281, 2017.

SMITH, S. The Scientist and Engineer’s Guide to Digital Signal Processing. [S.l.]:
California Technical Pub., 1997.

STATISTA. Semiconductor market size worldwide from 1987 to 2020. Disponível
em: <https://www.statista.com/statistics/266973/global-semiconductor-sales-since-
1988/>. Acesso em: 27 jun. 2020.

STATISTA. Global mobile data traffic 2017-2022. Disponível em:
<https://www.statista.com/statistics/271405/globalmobile-data-traffic-forecast/>.
Acesso em: 27 jun. 2020.

STATISTA. Coronavirus impact on online traffic of selected in-
dustries worldwide in week ending April 26, 2020. Disponível em:
<https://www.statista.com/statistics/1105486/coronavirus-traffic-impact-industry/>.
Acesso em: 27 jun. 2020.

SULLIVAN, G. J.; OHM, J. R.; HAN, W. J.; WIEGAND, T. Overview of the High Effi-
ciency Video Coding (HEVC) Standard. IEEE Transactions on Circuits and Systems
for Video Technology, [S.l.], v.22, n.12, p.1649–1668, 2012.

SZE, V.; BUDAGAVI, M.; SULLIVAN, G. J. High efficiency video coding (HEVC). In: In-
tegrated circuit and systems, algorithms and architectures. [S.l.]: Springer, 2014.
v.39, p.49–90.

TARIQ, U. U.; WU, H.; ABD ISHAK, S. Energy and memory-aware software pipelining
streaming applications on NoC-based MPSoCs. Future Generation Computer Sys-
tems, [S.l.], 2020.

TSMC. 40 nm Technology. Disponível em: <https://www.tsmc.com/english/dedicated
Foundry/technology/40nm.htm>. Acesso em: 08 jul. 2020.

VANNE, J.; VIITANEN, M.; HAMALAINEN, T. D.; HALLAPURO, A. Comparative Rate-
Distortion-Complexity Analysis of HEVC and AVC Video Codecs. IEEE Transactions
on Circuits and Systems for Video Technology, [S.l.], v.22, n.12, p.1885–1898,
2012.

138

VENKATARAMANI, S.; CHAKRADHAR, S. T.; ROY, K.; RAGHUNATHAN, A. Com-
puting approximately, and efficiently. In: DESIGN, AUTOMATION & TEST IN EUROPE
CONFERENCE & EXHIBITION (DATE), 2015., 2015. Anais. . . [S.l.: s.n.], 2015. p.748–
751.

VERIZON. Verizon’s Network COVID-19 Reliability Report. Disponível em:
<https://www.verizon.com/about/news/how-americans-are-spending-their-time-
temporary-new-normal>. Acesso em: 27 jun. 2020.

VILLA, O. et al. Scaling the power wall: a path to exascale. In: SC’14: PROCEEDINGS
OF THE INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUT-
ING, NETWORKING, STORAGE AND ANALYSIS, 2014. Anais. . . [S.l.: s.n.], 2014.
p.830–841.

VIZZOTTO, B. B. et al. A model predictive controller for frame-level rate control in multi-
view video coding. In: IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND
EXPO, 2012., 2012. Anais. . . [S.l.: s.n.], 2012. p.485–490.

WANG, X. et al. Efficient Task Mapping for Manycore Systems. arXiv preprint
arXiv:2004.03462, [S.l.], 2020.

XIONG, Q.; WU, F.; LU, Z.; XIE, C. Extending Real-Time Analysis for Wormhole NoCs.
IEEE Transactions on Computers, [S.l.], v.66, n.9, p.1532–1546, 2017.

XU, Q.; MYTKOWICZ, T.; KIM, N. S. Approximate computing: A survey. IEEE Design
& Test, [S.l.], v.33, n.1, p.8–22, 2015.

YEMLIHA, T. et al. Integrated code and data placement in two-dimensional mesh
based chip multiprocessors. In: IEEE/ACM INTERNATIONAL CONFERENCE ON
COMPUTER-AIDED DESIGN, 2008., 2008. Anais. . . [S.l.: s.n.], 2008. p.583–588.

YIN, P. et al. Design and Analysis of Energy-Efficient Dynamic Range Approximate
Logarithmic Multipliers for Machine Learning. IEEE Transactions on Sustainable
Computing, [S.l.], 2020.

ZHAN, J. et al. Designing energy-efficient NoC for real-time embedded systems
through slack optimization. In: ACM/EDAC/IEEE DESIGN AUTOMATION CONFER-
ENCE (DAC), 2013., 2013. Anais. . . [S.l.: s.n.], 2013. p.1–6.

ZHENG, H.; LOURI, A. An energy-efficient network-on-chip design using reinforce-
ment learning. In: ANNUAL DESIGN AUTOMATION CONFERENCE 2019, 56., 2019.
Proceedings. . . [S.l.: s.n.], 2019. p.1–6.

ZHOU, C.; ZHOU, F.; CHEN, Y. Spatio-temporal correlation-based fast coding unit
depth decision for high efficiency video coding. JEI, [S.l.], v.22, n.4, 2013.

Annexes

140

ANNEX A – List of Publications during this PhD

PENNY, WAGNER; PALOMINO, DANIEL; PORTO, MARCELO; ZATT, BRUNO.
Power/QoS-Adaptive HEVC FME Hardware using Machine Learning-Based Ap-
proximation Control. In: 2020 IEEE International Conference on Visual Communica-
tions and Image Processing (VCIP), 2020.

PENNY, WAGNER; CORREA, GUILHERME; AGOSTINI, LUCIANO; PALOMINO,
DANIEL; PORTO, MARCELO; NAZAR, GABRIEL; ZATT, BRUNO. Low-Power and
Memory-Aware Approximate Hardware Architecture for Fractional Motion Esti-
mation Interpolation on HEVC. In: 2020 IEEE International Symposium on Circuits
and Systems (ISCAS), 2020.

DOMANSKI, R.; GOEBEL, JONES; PENNY, WAGNER; PORTO, MARCELO;
PALOMINO, DANIEL; ZATT, BRUNO; AGOSTINI, LUCIANO. High-Throughput Mul-
tifilter Interpolation Architecture for AV1 Motion Compensation. IEEE TRANS-
ACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, v. 66, p. 883-887,
2019.

PENNY, WAGNER; PALOMINO, DANIEL; PORTO, MARCELO; ZATT, BRUNO; IN-
DRUSIAK, LEANDRO SOARES. Design Space Exploration of HEVC RCL Mapped
onto NoC-Based Embedded Platforms. In: 2019 14th International Symposium on
Reconfigurable Communicationcentric SystemsonChip (ReCoSoC), 2019, York. 2019
14th International Symposium on Reconfigurable Communication-centric Systems-on-
Chip (ReCoSoC), 2019. p. 1.

PENNY, WAGNER; GOEBEL, JONES; CORREA, DOUGLAS; MARTINS, AN-
DERSON; NAZAR, GABRIEL; AGOSTINI, LUCIANO; PALOMINO, DANIEL; PORTO,
MARCELO; ZATT, BRUNO. Energy-Efficiency Exploration of Memory Hierarchy
using NVMs for HEVC Motion Estimation. In: 2019 26th IEEE International Con-
ference on Electronics, Circuits and Systems (ICECS), 2019, Genoa. 2019 26th IEEE
International Conference on Electronics, Circuits and Systems (ICECS), 2019. p. 162.

141

PENNY, WAGNER; PALOMINO, DANIEL; PORTO, MARCELO; ZATT, BRUNO; IN-
DRUSIAK, LEANDRO. Performance evaluation of HEVC RCL applications mapped
onto NoC-based embedded platforms. In: Proceedings of the 32nd Symposium on
Integrated Circuits and Systems Design, 2019, São Paulo. Proceedings of the 32nd
Symposium on Integrated Circuits and Systems Design (SBCCI). New York: ACM
Press, 2019. p. 1-6.

PENNY, WAGNER; GOEBEL, JONES; PAIM, G. P.; PORTO, M. S.; AGOSTINI, L.
V.; ZATT, B.. High-throughput and power-efficient hardware design for a multiple
video coding standard sample interpolator. Journal of Real-Time Image Process-
ing, v. 1, p. 1-18, 2018.

MARTINS, ANDERSON; PENNY, WAGNER; WEBER, MATHEUS; AGOSTINI, LU-
CIANO; PORTO, MARCELO; PALOMINO, DANIEL; MATTOS, JULIO; ZATT, BRUNO.
Configurable Cache Memory Architecture for Low-Energy Motion Estimation. In:
2018 IEEE International Symposium on Circuits and Systems (ISCAS), 2018, Florence.
2018 IEEE International Symposium on Circuits and Systems (ISCAS), 2018. p. 1.

PENNY, WAGNER; UCKER, MARIANA; MACHADO, ITALO; AGOSTINI, LU-
CIANO; PALOMINO, DANIEL; PORTO, MARCELO; ZATT, BRUNO. Power-Efficient
and Memory-Aware Approximate Hardware Design for HEVC FME Interpolator.
In: 2018 25th IEEE International Conference on Electronics, Circuits and Systems
(ICECS), 2018, Bordeaux. 2018 25th IEEE International Conference on Electronics,
Circuits and Systems (ICECS), 2018. p. 237.

MACHADO, I. D.; PENNY, W. I.; PORTO, M. S.; AGOSTINI, L. V.; ZATT, B.. Char-
acterizing Energy Consumption in Software HEVC Encoders: HM vs x265. In:
8th Latin American Symposium on Circuits and Systems (LASCAS), 2017, Bariloche.
Proceedings of 8th Latin American Symposium on Circuits and Systems (LASCAS),
2017.

MARTINS, ANDERSON; PENNY, WAGNER; WEBER, MATHEUS; PALOMINO,
DANIEL; MATTOS, JULIO; PORTO, MARCELO; AGOSTINI, LUCIANO; ZATT,
BRUNO. Cache Memory Energy Efficiency Exploration for the HEVC Motion Es-
timation. In: 2017 VII Brazilian Symposium on Computing Systems Engineering
(SBESC), 2017, Curitiba. 2017 VII Brazilian Symposium on Computing Systems Engi-
neering (SBESC), 2017. p. 31. Obs.: BEST PAPER AWARD of the conference.

142

PENNY, WAGNER; MACHADO, ITALO; PORTO, MARCELO; AGOSTINI, LU-
CIANO; ZATT, BRUNO. Pareto-based energy control for the HEVC encoder. In:
2016 IEEE International Conference on Image Processing (ICIP), 2016, Phoenix. 2016
IEEE International Conference on Image Processing (ICIP). p. 814.

PAIM, GUILHERME; GOEBEL, JONES; PENNY, WAGNER; ZATT, BRUNO;
PORTO, MARCELO; AGOSTINI, LUCIANO. High-throughput and memory-aware
hardware of a sub-pixel interpolator for multiple video coding standards. In: 2016
IEEE International Conference on Image Processing (ICIP), 2016, Phoenix. 2016 IEEE
International Conference on Image Processing (ICIP). p. 2162.

PAIM, GUILHERME; PENNY, WAGNER; GOEBEL, JONES; AFONSO, VLADIMIR;
SUSIN, ALTAMIRO; PORTO, MARCELO; ZATT, BRUNO; AGOSTINI, LUCIANO. An
efficient sub-sample interpolator hardware for VP9-10 standards. In: 2016 IEEE
International Conference on Image Processing (ICIP), 2016, Phoenix. 2016 IEEE In-
ternational Conference on Image Processing (ICIP). p. 2167.

	Introduction
	Research Question and Research Hypotheses
	Goal and Novel Contributions
	Thesis Outline

	Background
	Networks-on-Chip: General Aspects
	Real-Time Systems: Schedulability Analysis
	System Model and Notation
	End-to-End Schedulability Tests for NoC-Based Multicores

	Approximate Computing
	Video Coding: High Efficiency Video Coding (HEVC)
	Basic Concepts
	General Aspects

	Fractional Motion Estimation
	Machine Learning: Decision Trees
	QoS Metrics for Video Coding
	Summary

	Related Works
	Approximate Computing for Complex Systems
	General Purpose Complex Systems
	Video Coding

	NoC-Based Solutions
	Energy-Efficient NoC Solutions for General Applications
	NoC Solutions for Video Coding

	Hardware Designs for Video Coding
	Precise Designs for FME
	Approximate Designs for FME

	Summary and Challenges

	Scalable Approximate Network-on-Chip (SApp-NoC)
	Processing Elements Design
	Processing Elements Instantiation Algorithm
	Processing Elements Placement Algorithm
	Content-Based run-time Energy/QoS-Aware Task Allocation
	Summary

	FME Multi-Level Approximate Hardware Accelerators
	Filters Design
	Search and Comparison Design
	Synthesis and QoS Results

	NoC Design and Application Modeling
	NoC Architecture
	Application Workload Modeling
	Schedulability breakdown NoC Frequency Tracking algorithm (SNFT)

	Application-Aware Approximation Control
	Heuristic-based Application-aware Approximation Control
	Machine Learning-based Application-aware Approximation Control
	Evaluated Parameters
	Evaluation of Normalized RDCosts
	Generated Decision Tree
	QoS Results for Generated Decision Tree

	Results and Discussion
	Experimental Setup
	NoC Breakdown Frequency Results
	Power/Energy Results
	QoS Results
	Performance Analysis Results
	Results Summary

	Conclusion
	Future Works

	References
	List of Publications during this PhD

