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ABSTRACT

BETEMPS, Carlos Michel. FPGA-Enabled Heterogeneous System Simulation
for Early Design Space Exploration. Advisor: Bruno Zatt. 2021. 156 f. Thesis (Doc-
torate in Computer Science) – Technology Development Center, Federal University of
Pelotas, Pelotas, 2021.

Heterogeneous systems architectures usually include processing elements such as
Central Processing Units and General Purpose Graphics Processing Units, frequently
enabling optimization opportunities in terms of execution time, consumed energy, re-
source utilization, and throughput. In turn, the heterogeneity brings a series of new de-
sign challenges when compared to homogeneous systems. An even more challenging
scenario appears when such heterogeneous systems feature hardware acceleration
through dynamic and partial FPGA (Field Programmable Gate Array) reconfiguration.
This work presents a Modeling and Simulation infrastructure for early Design Space
Exploration (DSE) of heterogeneous systems by comprising a methodology to create
high-level models of the system and a simulator complying with those models. A de-
signer can partition an FPGA into Partially Reconfigurable Regions (PRRs) that can
pass through a Dynamic and Partial Reconfiguration (DPR) during runtime. Consid-
ering those aspects, the modeling methodology contains the flow and automatic hard-
ware generation to annotate our simulation models. FEHetSS is an FPGA-Enabled
Heterogeneous System Simulator aiming to provide support for decision making in
early design phases. We describe FEHetSS presenting its structure, models, and sim-
ulation flow. FEHetSS considers the tasks’ latencies even those related to reconfigu-
ration, also estimating the processing elements’ power and resource utilization. Based
on case studies, we demonstrate the methodology and FEHetSS’s potentialities. First,
we model heterogeneous systems and use FEHetSS as a tool to evaluate single-points
in early DSE. Second, we conceive distinct hardware design (e.g., pipelining and par-
allelism) models for an application kernel and utilize FEHetSS as a tool to assist de-
signers considering a holistic system perspective. Third, we restrict a couple of design
spaces applying FEHetSS to perform exhaustive exploration. Last, we prepare a DSE
environment integrating an optimization heuristic and FEHetSS, performing simulations
based on exploration parameters. Case studies’ results and analysis demonstrate the
infrastructure features in the modeling and simulation of FPGA-enabled heterogeneous
systems.

Keywords: Heterogeneous System Simulator. FPGA Simulation. Early Design Space
Exploration. Dynamic and Partial Reconfiguration. Partially Reconfigurable Regions.



RESUMO

BETEMPS, Carlos Michel. Simulação de Sistemas Heterogêneos Habilitados
para FPGA visando Exploração Precoce do Espaço de Projeto . Orientador:
Bruno Zatt. 2021. 156 f. Tese (Doutorado em Ciência da Computação) – Centro de
Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, 2021.

Arquiteturas de Sistemas Heterogêneos usualmente incluem CPUs e GPUs
como elementos de processamento habilitando oportunidades de otimização no
tempo de execução, energia consumida, utilização de recursos e desempenho. Em
comparação ao projeto de sistemas homogêneos, novos desafios surgem com a
heterogeneidade, sendo estes potencializados pela inclusão de aceleradores de
hardware como FPGAs. Este trabalho apresenta uma infraestrutura de Modelagem
e Simulação em alto nível para a Exploração Precoce do Espaço de Projeto de
sistemas heterogêneos habilitados para incluir dispositivos FPGA. Tais dispositivos
podem ser particionados em Regiões Parcialmente Reconfiguráveis (PRR) que, por
sua vez, podem passar por Reconfiguração Dinâmica e Parcial (DPR). Considerando
esses aspectos, a metodologia inclui o fluxo de modelagem e a geração automática
de hardware necessários às anotações dos modelos de simulação. FEHetSS é um
simulador de sistemas heterogêneos habilitado para FPGAs que fornece suporte à
tomada de decisão em estágios iniciais de projeto, sendo este detalhado em relação
a sua estrutura, modelos e fluxo de simulação. Nas simulações são consideradas as
latências das tarefas de aplicação e aquelas referentes às reconfigurações, assim
como o consumo energético e utilização de recursos do sistema. Estudos de caso
demonstram as capacidades da infraestrutura. Primeiro, foram criados modelos de
sistemas heterogêneos para simulação via FEHetSS atuando como uma ferramenta
de avaliação na exploração precoce do espaço de projeto. Segundo, foram concebidos
diferentes modelos de hardware para o kernel de uma aplicação exemplo, sendo estes
submetidos ao FEHetSS para a avaliação do projeto em uma perspectiva holística
do sistema. Terceiro, foram definidos parâmetros de busca restringindo o espaço de
projeto para exploração exaustiva com FEHetSS. Por último, FEHetSS foi integrado
em um ambiente gerenciado por heurística de otimização visando a exploração
baseada em parâmetros do espaço de projeto. Os resultados e respectivas análises
demonstraram as potencialidades da infraestrutura na modelagem e simulação de
sistemas heterogêneos habilitados para FPGAs dinamicamente reconfiguráveis e
particionados em PRRs.

Palavras-chave: Simulador de Sistemas Heterogêneos. Simulação FPGA. Antecipada
Exploração do Espaço de Projeto. Reconfiguração Dinâmica e Parcial. Regiões Par-
cialmente Reconfiguráveis.
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1 INTRODUCTION

Today’s computing environments explore the capabilities of a wide range of proces-
sors – such as CPUs (Central Processing Units), DSPs (Digital Signal Processors),
media processors, vector processors, reconfigurable hardware (such as FPGAs - Field
Programmable Gate Arrays), and General Purpose Graphics Processing Units (GPG-
PUs, or just GPUs) (KAELI et al., 2015; WAIDYASOORIYA; HARIYAMA; UCHIYAMA,
2018). These systems integrate a relevant number of independent and heterogeneous
processing resources within the same environment (MIELE et al., 2015).

The workloads submitted to the systems usually present a series of different behav-
iors. It comprises applications with a mix of computational demands such as control-
intensive (e.g., searching, sorting, and parsing), data-intensive (e.g., image process-
ing, simulation and modeling, and data mining), and compute-intensive tasks (e.g.,
iterative methods, numerical methods, and financial modeling) (KAELI et al., 2015).
Thus, different workloads characterize the computing scenarios – consisting of a range
of applications with distinct performance requirements and varying amounts of data to
process (BOLCHINI et al., 2015), demanding diverse processing capabilities. In these
scenarios, the overall throughput is subject to the hardware (HW) devices’ compu-
tational efficiency. Moreover, there is no single architecture suitable for all types of
applications (KAELI et al., 2015).

Some applications, especially those that contain substantial fractions of sequential
code, run faster on the CPU. Others have extensive use of data parallelism finishing
their tasks earlier by running on Graphical Processing Units (GPUs) (SINGH et al.,
2017). Besides, several parts (excerpts) of the applications can be executed in parallel
– the so-called kernels of the applications. It allows the exploitation of task-level paral-
lelism (TLP) (SCARPAZZA et al., 2006). The multi-processed systems, including those
with a series of heterogeneous processing elements (PEs), exploit TLP.

Typically, heterogeneous systems better meet the workload’s demands. Computing
with heterogeneous resources such as FPGAs and GPUs can improve system perfor-
mance and energy efficiency (DURELLI et al., 2014; WAIDYASOORIYA; HARIYAMA;
UCHIYAMA, 2018). Providing a high computing capacity and energy efficiency, usually
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enabled by abundant parallelism of data (ROGERS, 2013), processing elements (PEs)
such as GPUs and FPGAs arise in the heterogeneous context with a very motivational
perspective. Thus, a promising approach to deal with current computing scenarios is
to exploit specialized computing resources integrated into heterogeneous system ar-
chitectures, such as asymmetric multi-core CPUs, specialized graphics coprocessors,
GPUs, and reconfigurable hardware like FPGAs (BOLCHINI et al., 2015). Multiproces-
sor System-on-Chip (MPSoC) is an instance of heterogeneous systems providing large
amounts of computing capability (hsafoundation, 2020). These systems commonly
contain CPUs (Central Processing Units) cores of different characteristics, GPGPUs
(General Purpose Graphics Processing Units) or GPUs (Graphics Processing Units)
processors, and perhaps other PEs – e.g., FPGAs (Field Programmable Gate Arrays)
devices, ASIC (Application Specific Integrated Circuit) HW accelerators, and DSPs –
Digital Signal Processors.

FPGA devices can provide enhanced performance combined with superior power
efficiency (MUSLIM et al., 2017), whereas keeping flexibility (not possible to ASIC ac-
celerators). These aspects plausibly have led to the deployment of FPGAs in cloud
computing architectures like F1 Instances of Amazon (AWS) (AMAZON, 2020), and
Project Catapult of Microsoft Research (MICROSOFT, 2020). Nonetheless, program-
ming FPGAs usually requires a low-level HW description language (e.g., Verilog or
VHDL) (SHATA; ELTEIR; EL-ZOGHABI, 2019). The design initiatives using this ab-
straction level demands longer development time. However, current High-level Syn-
thesis (HLS) tools have enabled the programming of these devices. It allows the use
of a high-level abstraction language in FPGA development. Indeed, FPGA vendors
currently release mature environments (INTEL, 2020a) (XILINX, 2020) that allow HW
description and synthesis in higher-level languages, such as OpenCL, C, and C++.

The design of a new HW/SW (hardware/software) system, such as an embedded
system, is a complex initiative. The exploring of alternative solutions to such systems
frequently occurs at a system-level abstraction (GRIES, 2004). System-level Simula-
tion (SlS) uses coarser models for architecture and applications (GRIES, 2004), al-
lowing reduced time of simulation and possibly a broader evaluation of the design al-
ternatives. The referred models require non-functional requirements that may include
latency, power estimates, HW area, and possibly others. Also, it depends on the sys-
tem workload and the target platform. We can obtain estimations data using platform
execution, cycle-accurate simulation, tool estimation, or even extracting from compo-
nent datasheets and academic works. Moreover, the employed modeling paradigm
must include a framework containing concepts and respective representations, provid-
ing the fundamental elements to describe the platform in its parts, such as architecture
and workload.

Design Space Exploration (DSE) is the process of finding a set of optimal (or near-
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optimal) configurations (the Pareto front) regarding some evaluation metrics and fol-
lowing design restrictions (SINAEI; FATEMI, 2018). DSE must evaluate the solutions
based on multiple optimization objectives – such as execution time, energy consump-
tion, utilization, cost, and others. Frequently, the objectives conflict and there is no
single solution that optimizes all (PIMENTEL, 2017). Resuming, we can state that the
DSE goal is to find the Pareto front (or the most proximal settings) of the design space
(PIMENTEL, 2017). Several works use heuristics to accelerate the DSE process such
as Simulate Annealing (SA) (SINAEI; FATEMI, 2018), Genetic Algorithms (GA) (JIANG;
ELES; PENG, 2016), and Ant Colony Optimization (ACO) (WANG et al., 2007). These
heuristics provide a search mechanism that systematically traverses the design space
aiming to find quality solutions.

Cycle and instruction accurate simulators frequently cannot deal with the demand
under DSE, given its long simulation time, architecture details (e.g., aspects of memory,
cache configurations, communication channels, etc.), low-level programming/parame-
terization, and so on. Initial design phases do not allow the time to define all these
system details. Many works present simulators and frameworks aiming at the evalua-
tion of architecture settings.

Some works employ low-level simulation, usually at register-transfer level (RTL), to
evaluate the architecture settings – such as FENG et al. (2017), LIANG et al. (2017),
SHAO et al. (2016), MAKNI et al. (2018), ZHONG et al. (2016), ZHAO et al. (2020),
HUANG et al. (2019), LIGNATI et al. (2021), QUADRI et al. (2010), GONG; DIES-
SEL (2014), and BRITO et al. (2007a,b)). Therefore, they likely demand long simu-
lation times and more detailed system models/artifacts, caused by the simulated de-
tails. In contrast, works like MIELE et al. (2015), SIGDEL et al. (2009a,b), DUHEM
et al. (2015), NOGUEIRA et al. (2016), AN; GAMATIÉ; RUTTEN (2015), and BLOUIN
et al. (2011) employ high-level simulation also using models of high-abstraction level.
Such approaches usually require less efforts in the models’ description and the simu-
lation itself. Others works utilize standard languages as UML (Unified Modeling Lan-
guage) (HUANG; HSIUNG; SHEN, 2010) and their extension UML/MARTE (Modeling
and Analysis of Real-Time and Embedded systems) (GRÜTTNER et al., 2013; HER-
RERA et al., 2014) (QUADRI et al., 2010) to model the platform using a series of model
transformations to generate simulation models, but most employing low-level abstrac-
tions.

Several works do not account for the system power/energy. But, those works that do
it usually employ some kind of component characterization (MIELE et al., 2015; SHAO
et al., 2016; NOGUEIRA et al., 2016; AN; GAMATIÉ; RUTTEN, 2015; GRÜTTNER
et al., 2013; MAKNI et al., 2018; LIGNATI et al., 2021) or even direct interaction with
HW (HUANG; HSIUNG; SHEN, 2010) to generate power/energy-related metrics.

FPGAs are configurable components. It can provide higher flexibility degree when
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Dynamic and Partial Reconfiguration (DPR) and Partially Reconfigurable Regions
(PRRs) are in use. DPR allows the configuration of a device’s portion while still op-
erating in other regions. PRRs are portions of the device that can pass by a DPR.
Although the previous works deal with FPGA fabric, DPR and PRR features are not al-
ways present. SIGDEL et al. (2009a) and DUHEM et al. (2015) deal with both features
but lack in power estimation. AN; GAMATIÉ; RUTTEN (2015), BLOUIN et al. (2011),
LIANG et al. (2017), FENG et al. (2017), and QUADRI et al. (2010) consider DPR
feature, but with gaps in the use of PRRs or even the accounting of reconfiguration
time/energy. GONG; DIESSEL (2014) and BRITO et al. (2007a,b) only focus on DPR
issues, not providing a wide system-level view. The goal in works like MAKNI et al.
(2018), ZHONG et al. (2016), and (ZHAO et al., 2020) is the FPGA’s Performance,
Power, and Area estimations, while in LIGNATI et al. (2021) the focus is on resource
provisioning in CPU-FPGA-based Cloud Systems.

Thus, these works lack some essential aspects during the evaluation of Heteroge-
neous System Architectures (HSA) in early design phases, as follows: the necessity
of low-level designing (e.g., to describe a task using HDL – hardware description lan-
guages, or describing floorplanning aspects), time-consuming evaluation due to de-
tailed simulations, absence of power modeling, the impossibility of deal with multiple
Partially Reconfigurable Regions (PRRs) or to model Dynamic and Partial Reconfigura-
tion (DPR), and even the non-compliance with HW (e.g., FPGA) accelerated systems.

FPGA-enabled system simulation appears to be a promising feature due to the pos-
sibility of using Dynamic and Partial Reconfiguration (DPR), or even the ability to define
one or more Partially Reconfigurable Regions (PRRs). Thus, a flow and a simulator
proficient in modeling an FPGA-capable system using a high abstraction level and sim-
ulating its behavior in terms of latency, power consumption, and HW utilization are of
paramount importance. Regarding the embedded systems domain, the employment
of large FPGA devices is usually not an option, hence, hampering the acceleration
of whole applications. Thus, wondering about a modeling methodology, the OpenCL
(KHRONOS, 2020) models and concepts appear to be suitable in this context where
a designer shall models an FPGA unit accelerating (only) the application’s kernels as
HW tasks, maintaining the remaining running in a general-purpose processor.

1.1 Thesis’ Research Challenges

We present the Research Challenges of the Thesis in this section, passing before
by a Motivational Scenario that contextualizes the work.
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1.1.1 Motivational Scenario

Consider a design initiative for a new embedded system. It must deal with a specific
workload and considers metrics such as execution time, power/energy consumption,
and processing elements/HW area utilization. Since probably no physical architec-
ture is available, early design evaluations must happen using high-level models. Thus,
System-Level Simulation is a way to assess the design points employing Virtual Plat-
forms (VP) modeling the system architecture, the workload, and their mappings. With
notions such as host/device processors and application kernels, OpenCL concepts
serve as a basis for modeling the system architecture&workload. Also, considering
High-Level Synthesis tools, it outcomes appropriate artifacts that enable modeling the
application’s kernel(s) running in FPGA units. FPGAs are customizable devices usually
providing performance and power efficiency. Besides, it offers features like Partially Re-
configurable Regions (PRRs) and Dynamic and Partial Reconfiguration (DPR). Each
PRR can potentially act as an independent HW accelerator. DPR enables dynamically
change the PRR’s configuration. Moreover, the custom capability of FPGA devices
allows experimenting with diverse HW task implementations aiming to obtain a good
trade-off between execution time, energy consumption, and resource utilization. Given
this scenario, how could a designer conduct early design space exploration (early-DSE)
activities in a feasible time considering high-abstraction descriptions of the system and
its applications, producing valuable design artifacts for initial decisions making? All of
this, before passing to more detailed and low-level HW/SW development.

1.1.2 Research Challenges

We define the Thesis Research Challenges through the following items:

• Challenge 01 (C01): How to enable early-DSE on heterogeneous systems that
include reconfigurable hardware acceleration through FPGAs?

• Challenge 02 (C02): How to assess (at early stages) different architectural FPGA
implementations for a specific application kernel, as an HW task, within a hetero-
geneous system?

• Challenge 03 (C03): How to model FPGA units at a high level, supporting PRRs
and DPR, focusing on high-level system simulation?

1.2 Work’s Main Contributions

In this work, we describe a methodology to construct models for Architecture and
Workload that can be employed in System-Level Simulation through FEHetSS (FPGA-
Enabled Heterogeneous System Simulator) simulator. In its simulations, FEHetSS
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Figure 1 – Thesis Contributions Context

may include, beyond CPUs and GPUs, virtual hardware accelerators (VirtualHWAc-
cels) modeled as FPGA devices. Our methodology includes the high-level modeling
of FPGA units featuring PRRs and DPR, also supported by FEHetSS. As part of case
studies, we describe the main capabilities of FEHetSS. Towards this end, our work
makes some contributions which are illustrated in Fig. 1, as a context diagram, and
listed in the following items:

• A Modeling and Simulation Infrastructure to support early-DSE of FPGA-capable
Heterogeneous Systems;

• A set of methodological steps aiming the high-level modeling of the system Ar-
chitecture and the Workload applications;

• The task-level modeling of an application considering sequential management
tasks (called main tasks) and heterogeneously accelerated potentially paralleled
tasks (named elaboration tasks);

• The high-level modeling of FPGA units supporting Dynamic and Partial Recon-
figuration (DPR) and the device partition in Partially Reconfigurable Regions
(PRRs);
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• The FEHetSS simulator and its simulation model for FPGA-Enabled Systems,
considering aspects such as latency, power, and resource utilization;

• A set of Case Studies demonstrating the modeling and simulation capabilities
of the proposed infrastructure (FEHetSS and models’ creation methodology), as
follows:

– (i) DSE of heterogeneous settings using FEHetSS as a single design point
assessing tool;

– (ii) Evaluation of HW Design Implementations of an application’s kernel, sup-
ported by the modeling steps and our simulator;

– (iii) Exhaustive Search of solutions in a customized design space employing
the rapid simulations of FEHetSS;

– (iv ) Embedding of FEHetSS in a Heuristic-based DSE Environment perform-
ing explorations in a parametrized design space.

In summary, the main goal of this work is to provide a modeling and simulation in-
frastructure to perform early Design Space Exploration (DSE) for heterogeneous sys-
tems featuring FPGA fabric for reconfigurable hardware acceleration. Moreover, the
framework also enables the design’s implementation assessment by considering the
hardware/software interface in a heterogeneous architecture.

1.3 Work’s Methodology Overview

For the development of the Thesis, we employ a set of tools, processes, and arti-
facts aiming to attend the presented Research Challenges. Since our main goal is to
explore design spaces of FPGA-enabled heterogeneous systems by simulation in the
early phases of development, we base our modeling steps on concepts that are com-
monly employed in programming languages like OpenCL (KHRONOS, 2020) - e.g.,
applications with portions of host code to manage and prepare the execution of the
kernel code which is possibly accelerated in devices like CPU, GPU, or FPGAs. To
make it possible to annotate our models, especially those related to FPGA devices,
we employ High-Level Synthesis (HLS) (INTEL, 2020a) tools to make estimations for
the models, providing details such as latency, power, and HW utilization. Besides, re-
garding CPU and GPU architectural elements, we use a real platform (HARDKERNEL,
2020) to extract measurements for the characterization of the processors’ power and
the applications’ tasks latencies.

We employ the Y-Chart approach (GRIES, 2004) to model our platforms, using
models to separately describe the architectural elements – such as the Processing
Elements (PEs) – and the workload – a set of applications. Our modeling elements
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include the characterization of CPU, GPU, and FPGA, describing them through power
models containing the operation power, idle power, and frequency. For the descrip-
tion of FPGA devices in the models, extra annotations depict aspects such as: (i)
the necessary HW resources to implement a custom processor within the device, (ii)
the annotations to describe the employment of Dynamic and Partial Reconfiguration
(DPR), (iii) the device partition in Partially Reconfigurable Regions (PRR), (iv ) the size
of the called bitstream files used to (re)configure the whole device or its PRRs, and
others.

To model the applications, we employ task graphs where each task represents an
application’s portion at a coarse-grained level – e.g., a whole procedure. A perfor-
mance model describes each task pointing out a PE type and model, as well as the op-
erating frequency and respective latency. Specialized tasks, called elaboration tasks,
model the application kernels allowing the mapping on distinct PEs (e.g., CPU, GPU,
and FPGA).

On top of our previously developed SAVE-htlp (BETEMPS et al., 2018) frame-
work, we develop the FEHetSS simulator using SystemC at Transaction Level Mod-
eling (TLM) abstraction level. Aiming to promote an agile utilization of FEHetSS, we
prepare a repository containing Architecture and Workload model portions capable to
be reused in the generation of different solutions to be simulated with FEHetSS. A
set of automation scrips accompany our model repository allowing us to automate the
interaction with FEHetSS.

As a proof of concept regarding the modeling methodology and aiming to exper-
iment simulations with FEHetSS, we prepare a set of Case Studies with FEHetSS
also employing the generation of solutions from our model repository. Using the GQM
(Goal-Question-Metric) approach (BASILI; CALDIERA; ROMBACH, 1994), we define
the Goal(s) of each Case Study by setting up Question(s) to be answered and the
Metric(s) to be extracted during the case studies. The answers to the Case Stud-
ies Questions give us support for the fulfillment assessment of the Thesis Research
Challenges.

The repository automation facilitates the performing of the Case Studies, especially
in the handle of a design space exhaustive traversing using FEHetSS, as well as an
integration of FEHetSS in a heuristic-based DSE environment. We employ Simulated
Annealing (SA) (FRANZIN; STüTZLE, 2019) as the DSE environment’s heuristic. SA
is a simple to formulate, robust, and compact strategy for single or multiple objective
optimization problems. It is a widely used heuristic commonly providing good solutions
even for mixed problems of discrete and continuous spaces (SUMAN; KUMAR, 2006;
FRANZIN; STüTZLE, 2019).



26

CHAPTER 7: ASSESSING THE RESEARCH CHALLENGES

CHAPTER 6: EVALUATING FEHETSS IN A HEURISTIC-BASED DSE ENVIRONMENT

CHAPTER 5: ASSESSING FEHETSS AS A SOLUTION EVALUATOR DURING DSE AND HW DESIGN ACTIVITIES

CHAPTER 4: FPGA-ENABLED HETEROGENEOUS SYSTEM MODELING AND SIMULATION

CHAPTER 3: RELATED WORK AND RESEARCH CHALLENGES

CHAPTER 2: BACKGROUND TOPICS

Embedded 
Systems Design

Design Space 
Exploration

System-Level 
Simulation OpenCL FPGA 

as an HW Accelerator

Related work 
according to 

Simulation Level

Related work 
according to 
Power Model

Related work according 
to DPR (Dynamic and 

Partial Reconfiguration)

Related work according 
to PRR (Partially 

Reconfigurable Region)

Methodology Task-Level 
Modeling

Heterogeneous 
Task-Level Parallelism

Architecture 
Modeling

Workload 
Modeling

FEHetSS 
Simulator

Workload 
Applications

ARCH. & 
WRKLD Models

Case Study 1:
DSE of Heterogeneous 

Settings

Case Study 2:
Evaluating HW 

Designs

Case Studies: 
Goals, Questions, 

Metrics

Case Study 3:
Exhaustive 

Search

Case Study 4:
Heuristic-based 
DSE Environment

Comparison and 
Positioning in the 

Area
Research 

Gaps
Research 

Challenges

Research Challenges 
Evaluation

Case Studies: 
Goals, Questions, 

Metrics

CHAPTER 8: CONCLUSIONS

Answers to the Research 
ChallengesWork’s Summary Future Perspectives

Methodology Task-Level 
Modeling

Heterogeneous 
Task-Level Parallelism

Figure 2 – Thesis’ Structure and Chapters’ Main Topics

1.4 Thesis Structure

The Thesis is structured as follows. Chapter 2 presents background topics of the
work. Next, in Chapter 3, we describe the related works and present the Thesis’ Re-
search Challenges. Chapter 4 presents the work’s main contributions passing by sec-
tions approaching the Thesis’ methodological view, the modeling of heterogeneous
task-level parallelism, the methodology to model Virtual Platforms, and the FEHetSS
simulator. Chapter 5 describes the experimentation of FEHetSS by manual DSE in
Case Studies #1 and #2, also presenting its results. After, Chapter 6 presents the Case
Studies #3 and #4 that automatically employ FEHetSS through an exhaustive search
and within a heuristic-based DSE environment, respectively. In Chapter 7, we present
an assessment of the Thesis’ Research Challenges based on the Case Studies results
and respective answered questions. Chapter 8 concludes the work by presenting an-
swers for the Research Challenges, also indicating some future perspectives for the
Thesis. Fig. 2 highlights the main topics approached in each chapter.



2 BACKGROUND TOPICS

This chapter presents some background aspects related to the thesis. Embedded
Systems (ES) are composed of SW and HW components, possibly including hetero-
geneous Processing Elements (PEs). The design of this type of system (Sec. 2.1) in-
volves the analysis of the feasible design points (solutions). Usually, the design space
of these systems is vast, with multiple objective functions to optimize. The Design
Space Exploration (DSE) (Sec. 2.2) is the process of evaluating the design points and
defining which one is the best trade-off. During the DSE, heuristics (Sec. 2.2.1) can
prune the design space and still provide quality solutions. Besides, System-level Sim-
ulation (Sec. 2.3) can rapidly assess the design points based on high-level models
describing Virtual Platforms (VPs) that include models for the architecture, the work-
load, and the mappings between both. The OpenCL standard (Sec. 2.4) provides a
programming model suitable to employ in the modeling of workload’s applications – de-
scribing tasks that manage the execution (main tasks) and the ones that represent the
application’s kernel (elaboration tasks). Elaboration tasks can run in different PEs, al-
lowing exploring the system’s heterogeneity. Besides, modern OpenCL programming
environments allow employing application kernels as HW tasks using the FPGA de-
vices flexibility (Sec. 2.5), making it act like an HW Accelerator. Also, Dynamic and
Partial Reconfiguration (DPR) enhances such flexibility even more. DPR allows con-
figuring multiple regions (called Partially Reconfigurable Regions - PRRs) separately
and dynamically. Indeed, each PRR can implement an HW task separately, making a
single FPGA device acting as several HW accelerators.

2.1 Embedded Systems and its Design

Embedded Systems (ES) provide specific and dedicated functions inside a host
(CAMPOSANO; WILBERG, 1996), being a component of a greater system control-
ling and monitoring it (GUESSI et al., 2012). ES are information processing systems
enclosed in a larger product, usually not visible to its users (MARWEDEL, 2006).

ES are highly diverse, varying from little systems – such as refrigerator controllers,
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ATMs, or intelligent sensors in construction automation – to complex and distributed
systems – e.g. automotive control and aerospace systems (VOELTER et al., 2013).
Embedded software is constantly growing in terms of functionality, size, and complexity
(HENDRIKS et al., 2016). Thus, ES design is in a competitive context that rapidly
evolves as new technologies are introduced (BERTELS, 2012). The transformation
of a design initiative in a successful product depends on the time-to-market as new
functionalities are proportioned obeying performance restrictions and accessible prices
(HERRERA et al., 2014; MISCHKALLA; HE; MUELLER, 2010).

According to Fig. 3, as systems containing HW and SW components, the design of
Embedded Systems involves modeling, validation, and implementation (DE MICHELI;
GUPTA, 1997). Modeling deals with the conceptualization and refinement of the speci-
fication, producing models of HW and SW. Validation aims to reach a reasonable level
of reliability that the system will run as designed. Implementation is the system’s
physical realization in terms of hardware and software. This thesis involves aspects of
modeling and validation regarding ES development.

Due to the complexity of the design of new products, the competitiveness in the
ES market, and the gap in the joint design of hardware and software, more and more
tasks of exploring solutions are carried out at the system level (GRIES, 2004; GAJSKI
et al., 2009; SINAEI; FATEMI, 2018), to enable decision making in the early stages
of development. In this context, models with a high level of abstraction are used to
describe the different architecture configurations and workloads to be submitted to the
system. As evaluations need to occur in the early stages of development, when usually
there is no availability of architecture and applications that can be executed, the use
of system-level simulation appears as an alternative for evaluating solutions during
Design Space Exploration (DSE).
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2.2 Design Space Exploration

Design Space Exploration (DSE) is the process to find a set of optimal (or near-
optimal) configurations (the Pareto front) regarding some evaluation metrics and fol-
lowing design restrictions (SINAEI; FATEMI, 2018)(PANERATI; SCIUTO; BELTRAME,
2017). It is the process of analyzing the set of possible solutions and defining which
one will be selected (MARWEDEL, 2006). The solutions in the Pareto front are the
optimal points that are not dominated by any other in the design space (PANERATI;
SCIUTO; BELTRAME, 2017). A set of metrics (or objective functions) express the
quality of a solution. Thus, DSE evaluates the solutions based on multiple optimiza-
tion objectives – such as execution time, energy consumption, utilization, cost, and
others. It characterizes an optimization problem (PALERMO; SILVANO; ZACCARIA,
2009) whose aim is maximization or minimization. Frequently the objectives conflict,
and there is no single solution that optimizes all (PIMENTEL, 2017) – potentially exist
several optimal solutions.

In a Multiobjective Optimization Problem (MOP), there is a solution space X in
which solutions have m decision variables (or independent variables). Moreover, the
DSE searches for a solution or solutions that minimizes (or maximizes) the n objective
values (or dependent variables), in the objective space Y , by evaluating objective func-
tions fi with 1 ≤ i ≤ n. Thus, during a DSE we search for MOP solutions characterized
by (PIMENTEL, 2017):

Minimize y = f(x) = (f1(x), f2(x), . . . , fn(x))

where x = (x1, x2, . . . , xm) ∈ X

y = (y1, y2, . . . , yn) ∈ Y

Aiming to evaluate the solutions during the DSE, the Pareto dominance relation is
usually used. A solution x1 ∈ X is said to dominate solution x2 ∈ X if and only if
x1 < x2 (PIMENTEL, 2017).

x1 < x2 ⇔∀i ∈ {1, 2, . . . , n} : fi(x1) ≤ fi(x2) ∧

∃i ∈ {1, 2, . . . , n} : fi(x1) < fi(x2)

Figure 4 illustrates the Pareto front and dominance relation concepts regarding a
two objective (f1 and f2) problem. Solutions A to F are in the Pareto front, being not
comparable with each other. These solutions cannot be ordered since each one is
better than the others in at least one objective function but worst in the other one(s).
Solutions B to D dominates H, which dominates solutions M to O. Solutions in the light
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Figure 4 – Pareto Front and Domination relation considering the objective functions f1
and f2, excerpted from (PIMENTEL, 2017).

grey areas are incomparable to H.
The performance of a system is dependent on a diverse set of factors, such as the

application architecture, platform HW architecture, which processing elements (e.g.
CPU, GPU, FPGA, ASIC, and DSP) are employed for each application task, beyond
parameters such as caches and memory sizes. Thus, DSE is a key activity to evaluate
the system under development since early design phases (HERRERA et al., 2014;
SINAEI; FATEMI, 2018). The DSE adjusts the system parameters aiming at the optimal
setting. In a general way, a DSE approach consists of four components (ASCIA et al.,
2011): i) an entry point represented by the initial configurations, (ii) an evaluation
model for the settings, (iii) an exploration strategy aiming to visit the design space via
transformation in the configurations, and (iv ) a stopping criterion.

According to Fig. 5, DSE usually follows the Y-chart approach (GRIES, 2004). Y-
chart separates the architecture and workload specifications, considers the mapping
between both, and succeeds in a performance analysis generating performance num-
bers that can guide changes in the specifications or the mappings. An application
model(s) represents the system workload – derived from the target application(s) –
describing the functional behaviour independently from the architecture. Also, an ar-
chitecture model defines the system resources in the architecture (the processing ele-
ments – PEs) and captures its performance constraints (JIA et al., 2013). The mapping
model links the previous ones allocating tasks in the architecture PEs (GRIES, 2004)
for execution (e.g. through simulation). The execution generates metrics for quanti-
tative assessment (JIA et al., 2013). Based on execution metrics, e.g., performance,
power, energy, and utilization – obtained by real hardware execution, simulation, or
estimates – an analysis is performed allowing to tuning the models for the architecture,
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workload, or mapping.
Obtaining the optimal Pareto curve requires the exhaustive search of it within the

design space (PIMENTEL, 2017) of a given system. However, the vast size of the
design space is a problem in most embedded system designs, and it can become even
more severe according to the non-functional design requirements (restrictions) (GLAß
et al., 2017; SINAEI; FATEMI, 2018). Thus, the main objective of the DSE can be
relaxed in the sense of seeking to minimize the exploration time while guaranteeing
good quality solutions (ASCIA et al., 2011) (not necessarily optimal). In general, DSE
approaches use strategies to prune the design space and minimize the number of
configurations to evaluate (ASCIA et al., 2011; SINAEI; FATEMI, 2018). In this context,
we can apply Heuristics (and Meta-Heuristics). Meta-heuristics are general, higher-
level methodologies that can guide strategies in the development of heuristics to solve
specific optimization problems (TALBI, 2009).

Therefore, the DSE process consists of two interdependent components that need
to be accelerated or improved, aiming to deal with the vast design space and to find
optimal (or close to it) solutions (GRIES, 2004; SINAEI; FATEMI, 2018):

• (i) the evaluation of each design point (configuration) of the solution space using,
for example, analytical models or simulation; and

• (ii) the search engine that systematically traverses the design space to find quality
solutions.

Considering the component (i), the use of system-level simulation has interesting
characteristics concerning aspects such as simulation time and the use of high-level
abstraction models (made with less effort in the early stages of development). As
for the component (ii), the use of heuristics for selecting and directing searches for
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candidate solutions can prune the design space (usually vast in the case of ES) to be
visited (examined).

2.2.1 A DSE Heuristic: Simulated Annealing

Meta-heuristics are solution methods that control the interaction between local im-
provement procedures and high-level strategies to create processes capable of escap-
ing from local optimal and that perform a robust search for a solution space (GEN-
DREAU; POTVIN, 2010, p. vii). On the other hand, TALBI (2009) defines meta-
heuristics as general high-level methodologies (templates) used as guiding strategies
in the development of related heuristics to solve specific optimization problems.

A widely used metaheuristic is Simulated Annealing (SA), which was adapted
to solve combinatorial optimization problems along the years (FRANZIN; STüTZLE,
2019). SA is a compact and robust technique for obtaining excellent solution(s) for
single or multiple objective optimization problems (SUMAN; KUMAR, 2006). The tech-
nique is based on an analogy of thermodynamics about the way metals cool and an-
neals (SUMAN; KUMAR, 2006; SINAEI; FATEMI, 2018). Commonly, SA provides good
solutions (not necessarily the best ones), is simple to formulate, and can handle mixed
problems of discrete and continuous space (SUMAN; KUMAR, 2006). An external pa-
rameter called temperature controls the evolution of the technique. SA assigns certain
energy for each configuration. When an initial configuration is disturbed, the energy
difference between the two states is responsible for the evolution of the system. When
the new state is favorable (the energy decreases), then the new configuration is ac-
cepted. On the contrary, the new state is accepted or rejected according to a proba-
bility distribution, which is a function of temperature – when it is high, the probability
of accepting an unfavorable state is greater (SINAEI; FATEMI, 2018). Starting from an
initial solution, Simulated Annealing (SA) is a stochastic local search algorithm that iter-
atively explores the neighborhood of the current solution (FRANZIN; STüTZLE, 2019).
SA always accepts improving settings. On the other hand, based on the Temperature
parameter, SA takes worsening solutions using a probabilistic equation.

SA employs an analogy of the Monte Carlo integration for solving equations of state
of physical systems composed of particles in statistical mechanics. At high tempera-
tures, the particles are free to move, and the structure is subject to substantial changes.
The temperature decreases over time, and so does the probability for a particle to move
until the system reaches a state of lowest energy, its ground state (FRANZIN; STüT-
ZLE, 2019).

(FRANZIN; STüTZLE, 2019) present a component view of the Simulated Annealing
(SA) algorithm, according to Alg. 1. The SA includes problem-specific and algorithm-
specific components, as follows.

The two problem-specific components are related to:
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Algorithm 1 Component-based formulation of SA (FRANZIN; STüTZLE, 2019). The
SA components are written in SMALLCAPS

Require: a problem instance π, a NEIGHBORHOOD N for the solutions, an
INITIAL SOLUTION s0, control parameters

Ensure: the best solution s∗ found during the search
1: best solution s∗ ← incumbent solution ŝ← s0
2: i← 0
3: T0 ← initialize temperature according to INITIAL TEMPERATURE
4: while STOPPING CRITERION is not met do
5: choose a solution si+1 in the NEIGHBORHOOD of ŝ according to

EXPLORATION CRITERION
6: if si+1 meets ACCEPTANCE CRITERION then
7: ŝ← si+1

8: if ŝ improves over s∗ then
9: s∗ ← ŝ

10: end if
11: end if
12: if TEMPERATURE LENGTH is met then
13: update temperature according to COOLING SCHEME
14: end if
15: reset temperature according to TEMPERATURE RESTART scheme
16: i← i+ 1
17: end while
18: return s∗

• the construction of an INITIAL SOLUTION, and
• the generation of a new candidate solution in the NEIGHBORHOOD

The seven algorithm-specific components that define an SA algorithm are:
• the choice of the INITIAL TEMPERATURE (line 3 of Algorithm);
• the STOPPING CRITERION, which determines when the execution is finished (line

4);
• the EXPLORATION CRITERION, which chooses a solution in the NEIGHBORHOOD

(line 5);
• the ACCEPTANCE CRITERION, which determines whether the new solution re-

places the incumbent one (line 6);
• the TEMPERATURE LENGTH, which indicates whether the temperature is updated

(line 12);
• the COOLING SCHEME, which updates the temperature (line 13);
• the TEMPERATURE RESTART, the component responsible for resetting the tem-

perature to its original or another high value (line 15).
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2.3 System-level Simulation

Simulation is a way to evaluate the different solutions in a specific design. Model-
ing and simulation using a high level of abstraction perform an essential role during the
early stages of development. Both allow the capture of the system’s behavior and its in-
teractions, usually requiring less modeling (fewer details to be modeled) and simulation
efforts (ERBAS et al., 2007). Several authors advocate high levels of abstraction dur-
ing Embedded Systems design: addressing its complexity (LEITE; WEHRMEISTER,
2016), favoring faster and cost-effective approaches to evaluate the design spaces
(AN; GAMATIÉ; RUTTEN, 2015), and enabling estimates at early stages based on
partial and uncertain information – pointing the design decisions in the correct direc-
tion (HENDRIKS et al., 2016).

Simulators with RTL (Register-Transfer Level) or cycle accuracy cannot meet the
processing demand required in DSE activities, given the high volume of details to sim-
ulate and their prohibitive simulation time (HERRERA et al., 2014; GRÜTTNER et al.,
2013; PALERMO; SILVANO; ZACCARIA, 2009). To overcome the problems related to
simulation with cycle precision, we have simulators at the system level. According to
Gries (GRIES, 2004), during a system-level simulation, the evaluation takes place at
a high level of abstraction, being the system described by an interconnection of archi-
tectural blocks that represent the processors, memories, and buses. Thus, platform
models or processing resources (processing elements - PEs) represent the system
architecture (INDRUSIAK; DZIURZANSKI; SINGH, 2016). In the case of workload
representation, coarse-grained models describe the applications, such as interaction
processes or even whole procedures (GRIES, 2004). For example, task graphs are a
common way of representing the workload (applications) in the context of embedded
systems (INDRUSIAK; DZIURZANSKI; SINGH, 2016), as occur in (MIELE et al., 2015;
BETEMPS et al., 2018). Other forms of representation include Kahn Process Networks
(KPN) (ERBAS et al., 2007; SIGDEL et al., 2009b), UML/MARTE models (GRÜTTNER
et al., 2013; HERRERA et al., 2014; LEITE; WEHRMEISTER, 2016), dataflow mod-
els (like Homogeneous Synchronous DataFlow - HSDF) (NOGUEIRA et al., 2016),
Petri Nets (as Colored Petri Net - CPN) (CALLOU et al., 2011), automata (as Timed
Automata) (JIANG et al., 2013; WANG et al., 2011), among others. These models
represent the workload in the systems under analysis/construction.

Nowadays, more and more design exploration initiatives perform their tasks at the
system level (GRIES, 2004; SINAEI; FATEMI, 2018), allowing decisions at early design
phases. System-level Simulation (SlS) employs abstract models with coarse granular-
ity to represent the architecture and the workload of the system under design. The
employment of simulation and models at this level of abstraction, combined with the
idea behind the early Design Space Exploration (DSE), directs the project towards the
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most promising solutions and restricts the number of settings to be further evaluated
in detail in lower levels of abstractions. Architectural and workload models are funda-
mental artifacts in the DSE process, mainly because the simulation allows us to test
different solutions (architectures) in the execution of a specific workload (set of appli-
cations). SlS provides a viable path for evaluation of the design settings through DSE.
Although SlS probably provides low precision results, its relevant information can as-
sist designers in decision-making at early design stages. It can help the guiding of
development initiatives into more detailed evaluations, preventing the assessment of
not-so-promising settings.

The level of abstraction of the projects has been increased to the system level also
to increase productivity, generating a great interest in TLM (Transaction-Level Model-
ing) (CAI; GAJSKI, 2003). TLM separates the details about communication from the
computing components through the concept of channels. TLM increases the speed of
simulation, allowing the exploration and validation of design alternatives using a higher
level of abstraction (CAI; GAJSKI, 2003). Typically, TLM works in conjunction with
SystemC (PATEL; SHUKLA, 2008). SystemC is a system-level design language with
strong industrial support, being part of many industrial design flows. The use of C++
infrastructure and its object-oriented nature extends the usability of SystemC, being a
suitable language for the co-simulation of hardware and software (PATEL; SHUKLA,
2008).

For System-level Simulation, high-level models of the system must be defined.
Such models include aspects of workload and architecture. Considering heteroge-
neous systems, which allows different types of PEs, some modeling pattern is desirable
to serve as a base. OpenCL provides such a programming model allowing to define
host code (that runs usually in CPU) and device code, also known as an application
kernel, that can run in diverse types of PEs in the exploiting of heterogeneity.

Fig. 6 shows a speed-accuracy trade-off spectrum, adapted from PIMENTEL
(2017), of the levels of abstraction in simulating the processing components and the
communication between the system components. Register-transfer level (RTL) is the
lowest level of abstraction for simulating a digital system where the flow of digital signals
between registers and combinational logic is explicitly simulated. Cycle-accurate sim-
ulation raises the level of abstraction by simulating the system components on a cycle-
by-cycle basis. Both levels typically are too slow to perform full-system scale DSE.
In the binary-translation technique, a simulation host computer executes an equiva-
lent sequence of instructions translated from the target binary instructions. Besides,
the host-compiled simulation uses a binary program directly compiled from the target
program. In binary-translation and host-compiled simulation, the source code can be
instrumented with timing and power consumption models according to the target archi-
tecture. When simulating communication by bus-cycle accurate simulation, the models
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include all signals of the communication bus in a cycle-accurate fashion. Transaction-
level Modeling (TLM) provides the highest level in the simulation of the communication
between the system components. At this level, communication details in terms of signal
and protocols are abstracted away by encapsulating entire transactions.

Still, according to PIMENTEL (2017), the previous techniques for processor sim-
ulation are all execution-driven simulation methods since we have the execution of
a program (or a representation of it). However, there are alternatives for that. One of
them is the trace-driven simulation in which the simulation is driven by event traces that
have been collected through the execution of a program (or even other simulations or
estimations of a program). To optimize the simulation speed, the trace events can rep-
resent computations and communications in a higher level of abstraction than machine
instructions – e.g., execution of basic blocks or even whole functions. In a high-level
simulation, an application model contains annotations describing the computation/com-
munication actions at a coarse-grained level, typically considering the executions of
entire functions. During the execution of the instrumented application model, it causes
the generation of traces of events that drive the underlying architecture model, allowing
to simulate the computation and communication events, also logging them in terms of
non-functional requirements like performance and power consumption.

2.4 OpenCL

OpenCL (Open Computing Language)(KHRONOS, 2020) is an open, royalty-free
standard for cross-platform and parallel programming for developing applications which
kernels execute across a range of device types (KAELI et al., 2015). It allows the
partition and programming of an application in two types of tasks (JÄÄSKELÄINEN
et al., 2019):



37

(i) the tasks which deal with the input and output interaction and manage the exe-
cution (its implementation is generally called host code); and

(ii) the tasks which are the applications’ core that can be accelerated by paralleliza-
tion (the called kernels).

According to (KAELI et al., 2015), the OpenCL specification defines four models, as
follows:

1. Platform model: it specifies that there is one processor coordinating the execution
(the host) and one or more processors (the devices) executing the OpenCL ker-
nels. It models an abstract HW model that directs the programmers while writing
kernels (OpenCL functions);

2. Execution model: this model describes how to configure an OpenCL context on
the host, preparing the host-device interaction, and describing a concurrency
model to execute kernels on the devices;

3. Memory model: it abstracts a memory hierarchy to devices’ utilization, regardless
of the actual underlying memory architecture;

4. Programming model: describes how to map the concurrency model on the phys-
ical HW.

Fig. 7 shows the OpenCL platform model, defining an abstract architecture for de-
vices. It defines a platform containing devices, each one organized as an array of
functionally independent compute units. Compute Units are further subdivided into
processing elements (KAELI et al., 2015). Considering the processor type for host
and devices, often host code runs on the CPU. However, kernels execute on devices
such as CPU, GPU, FPGA, DSP, etc., presenting an opportunity to exploit the sys-
tem’s heterogeneity. Thus, one can code SW using OpenCL (a high-level language)
and set the application executing on general-purpose processors, such as CPUs and
GPUs (considering the latter as General Purpose GPUs - GPGPUs), and even on HW
accelerators such as FPGAs.

Further, the OpenCL Execution Model defines the execution environment, host-
device interaction, and concurrency model for kernel configuring, i.e., how to decom-
pose an algorithm in OpenCL work-items and work-groups. The unit of concurrent
execution in OpenCL C is a work-item that executes the kernel function body. Instead
of manually strip-mining the loop, a programmer often maps a single iteration of the
loop to a work-item (KAELI et al., 2015). NDRange is an abstract index space defined
by an N-tuple of integer. It specifies the dimension and the number of kernel instances
(work-items) in the device (JÄÄSKELÄINEN et al., 2019). Each point in the index space
allocates a work-item. Work-groups organize one or more work-items.
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Figure 7 – OpenCL Platform Model (extracted from KAELI et al. (2015)).

Nowadays, OpenCL development environments, such as Intel FPGA SDK for
OpenCL Software (INTEL, 2020a) and Xilinx SDAccel (XILINX, 2020), allows the em-
ployment of HW accelerators in computing systems. The kernels written in OpenCL
enable a compilation that, through High-level Synthesis (HLS), creates an HW task
able to run in a specific FPGA device. Moreover, through pragma directives, the com-
pile/synthesis process can produce optimizations on the resulting modules according
to the processing element – e.g., loop unrolling and replicated compute units target-
ing FPGA devices (ZOHOURI, 2018). Therefore, OpenCL provides a suitable pro-
gramming model to explore heterogeneity and the performance/energetic efficiency of
FPGA devices, also serving as a base modeling pattern in a system-level simulation
context.

2.5 FPGA Devices as Hardware Accelerators

FPGA – Field Programmable Gate Array – is a configurable integrated circuit. It is
customizable according to the target application(s) needs even after its manufacturing
(SHATA; ELTEIR; EL-ZOGHABI, 2019). Two distinct layers compose the FPGA (Fig. 8):
(i) configuration memory layer and (ii) HW logic layer (VIPIN; FAHMY, 2018). The HW
logic layer contains computational resources, such as look-up tables (LUT), flip-flops,
digital signal processors (DSPs), memory blocks, transceivers, etc. It also contains
routing resources and switch boxes to connect the circuit components. The configura-
tion memory layer stores the information describing the circuit, such as values in the
LUT, memory block’s initialization, routing information, flip-flop statuses, and others. A
binary file stores the FPGA configuration information – usually called bitstream.

The complexity of FPGA HW description usually is the main hurdle in using it as
an accelerator (MUSLIM et al., 2017) since it requires that the designer uses RTL
(Register-Transfer Level) HW description languages such as Verilog or VHDL (SHATA;
ELTEIR; EL-ZOGHABI, 2019). However, the release of environments like Intel FPGA
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Figure 8 – FPGA Architecture – Layers (extracted from VIPIN; FAHMY (2018)).

SDK for OpenCL Software (INTEL, 2020a) and Xilinx SDAccel (XILINX, 2020) is chang-
ing this scenario, allowing the programming of kernels in OpenCL and, through High-
level Synthesis (HLS), the using of FPGAs as accelerators. Besides, decreasing the
development time and enabling portability of code for other devices, like CPUs and
GPUs (SHATA; ELTEIR; EL-ZOGHABI, 2019).

Major FPGA vendors (Xilinx and Intel) provide devices with a key capability -
Dynamic and Partial Reconfiguration (DPR) (VIPIN; FAHMY, 2018). DPR enables
changes at run-time. Partial Reconfiguration (PR) allows modifying some portions
of the device without stopping the remaining ones. Partially Reconfigurable Regions
(PRRs) define one or more areas of the FPGA (PAPADIMITRIOU; DOLLAS; HAUCK,
2011) – denoting the earlier parts. Partially Reconfigurable Modules (PRMs) can share
a PRR (PAPADIMITRIOU; DOLLAS; HAUCK, 2011). A partial bitstream configures the
PRM logic into a PRR. DPR occurs on one PRR (or the full device) at a time, since
normally there is a single PR controller. The smaller size of a partial bitstream allows a
cheaper reconfiguration time. Frequently, designers use a blank bitstream as a strategy
to reduce power consumption. A blank bitstream configures an empty PRR (even for
the full device) that clears the configuration and allows power saving (BONAMY et al.,
2014) (PAPADIMITRIOU; DOLLAS; HAUCK, 2011).

PR capabilities provide some advantages (VIPIN; FAHMY, 2018) (BONAMY et al.,
2014), such as: increasing the device’s logic density, reducing the reconfiguration time,
decreasing the device’s size and its static power, and online configuration according to
adaptive applications. A drawback happens when a necessary PRM is not available on
its PRR – in this case, a PRR reconfiguration will take place consuming time and power.
A sole FPGA device can be deployed as several Virtual Hardware Accelerators (Vir-
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tualHWAccel)s since each PRR is a potential processor. There is a trade-off between
the number of PRRs and their size (granularity), contrasting with the implementation of
the PRM and its kernels.

Fig. 9 illustrates the presented concepts. PRRs splits the FPGA device into many
portions that can contain the implementation (programmed by a partial bitstream) of a
PRM. Periphery HW resources are part of the FPGA device – e.g., transceivers and I/O
components, but not part of a PRR. The board interface region maintains the platform
interface logic – it is a static region (together with the periphery HW) normally config-
ured only in an initial full configuration process. A PRR contains core-only resources,
such as logic fabric, DSPs, and memory blocks.
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2.6 Chapter Summary

This chapter has presented background topics associated with the thesis theme.
Since we deal with computing systems composed of HW and SW components, Em-
bedded Systems (ES) is a representative concept. A designer needs to understand
the design steps of an ES, perceiving the importance of evaluating the HW/SW inter-
face and their co-design. Design Space Exploration (DSE) is a method to assess the
design points, usually through heuristics. DSE demands an evaluation scheme for the
design points. System-level Simulation (SlS) allows such an evaluation by handling
high-level models of the system and simulating its behavior, providing performance
metrics. OpenCL gives the model basis from which we describe the applications and
architecture. Based on OpenCL HLS tools, we handle kernel code. It allows generating
HW task implementations for an FPGA as well as performance and power estimations.
In the architecture, an FPGA may play a customizable reconfigurable HW accelerator
role. It can also be capable of PRR partitioning, employ the DPR feature, and imple-
ment different design optimizations of HW tasks.



3 RELATED WORKS AND RESEARCH CHALLENGES

Several works have treated themes related to system-level modeling and simula-
tion, reconfigurable architectures, and design space exploration (DSE). The design of
heterogeneous systems encharges designers with many issues to deal with during the
development initiatives. Moreover, the employment of different kinds of processing el-
ements (PE) enlarges the system’s design space. Custom PE (e.g., HW accelerators)
augments this scenario. Even more, if some reconfigurability is present. Regarding
this type of flexibility, FPGA devices are in the front line due to their custom and recon-
figuring features, beyond providing performance and power efficiency.

Regarding the design space, DSE is a suitable method to evaluate candidate so-
lutions (architecture configurations) for a computing system given a specific workload
(applications). Moreover, early DSE is of paramount importance since the decisions
made at this moment may influence all the following design directions. However, dur-
ing the first design steps, when possibly no real prototype is available, the designers
need method alternatives to evaluate a system under consideration, notwithstanding if
it doesn’t even exist.

System-level modeling and simulation is a way to describe and evaluate a system’s
architecture and workload – as a virtual platform. Regarding simulation, there is a
trade-off between accuracy and simulation performance. More detailed models dimin-
ish the performance whereas increasing accuracy. During early evaluations, there is no
much time to create detailed models. Hence, usually, practitioners employ high-level
system models describing and simulating it.

Considering methodologies, frameworks, simulators, and platforms for the DSE of
heterogeneous systems featuring HW accelerators and reconfigurability, several works
have been presented dealing with system design and DSE issues in this scenario.

The performance and power efficiency of HW accelerators (e.g., an FPGA) make
this sort of PE an interesting choice to include in the system’s design. Different ab-
straction levels describe the application’s (HW) tasks that run on such PE. Hardware
Description Languages (HDL) provide a low-level representation for HW tasks, nor-
mally HLS-obtained from C-like code. Works like LIANG et al. (2017); FENG et al.
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(2017); HUANG et al. (2019); LIGNATI et al. (2021) employ this representation level.
Other works employ high-level models or languages to describe HW tasks’ functional-
ity. Tasks graphs (MIELE et al., 2015), Kahn Process Networks (KPN) (SIGDEL et al.,
2009b; PIMENTEL; ERBAS; POLSTRA, 2006), Control and Data Flow Graph (CDFG)
(DUHEM et al., 2015), Homogeneous Synchronous DataFlow (HSDF) (NOGUEIRA
et al., 2016), Abstract Clock Models (AN; GAMATIÉ; RUTTEN, 2015), AADL (Architec-
ture Analysis and Design Language) descriptions (BLOUIN et al., 2011), UML (Unified
Modeling Language) (HUANG; HSIUNG; SHEN, 2010) and UML/MARTE (Modeling
and Analysis of Real-Time and Embedded systems) (GRÜTTNER et al., 2013; HER-
RERA et al., 2014; QUADRI et al., 2010) models are examples of it. Regarding the
architecture, the approaches usually model its elements in a generic way augmented
with profiled information – e.g., power, frequency, logic elements (area), and others.
Further, some works deal directly with HDL-alike code in standard HW design tools.

When simulating a (virtual) platform, the works employ many different levels. We
can observe simulation’s abstractions since RTL in standard simulators (QUADRI et al.,
2010; HUANG et al., 2019) and academic ones (Verilator) (FENG et al., 2017; LIANG
et al., 2017), to pre-RTL (represented by Dynamic Data Dependence Graphs – DDDG)
in SHAO et al. (2016), MAKNI et al. (2018), ZHONG et al. (2016), and ZHAO et al.
(2020). However, higher abstraction levels are preferred in other works using differ-
ent model representations implemented, for example, in SystemC (MIELE et al., 2015;
DUHEM et al., 2015; GRÜTTNER et al., 2013; HERRERA et al., 2014; BRITO et al.,
2007b). Other approaches simulate its high-level models using specific tools and for-
malisms such as DEVS (NOGUEIRA et al., 2016), rSesame (SIGDEL et al., 2009b),
CLASSY (AN; GAMATIÉ; RUTTEN, 2015), OSATE (BLOUIN et al., 2011), Rhapsody
(HUANG; HSIUNG; SHEN, 2010), and SCOPE+ (HERRERA et al., 2014).

Regarding the system’s architectures in the related works, HW accelerators (usually
implemented through FPGA devices) are the mainstream processing unit for dealing
with the application’s kernels. Considering the FPGA’s features, the research initia-
tives present their claims based on features like reconfigurability and DPR. The main
goals of the research projects usually include DSE activities and their outputs, and
the generation of design artifacts and code. However, these are not the only themes.
Some works put their efforts on reconfiguration issues such as bug detection (GONG;
DIESSEL, 2014) even as the DPR/PRR modeling and design (BRITO et al., 2007b;
QUADRI et al., 2010; DUHEM et al., 2015). Others focus on the design of specific do-
mains such Network Security Systems (HUANG; HSIUNG; SHEN, 2010), Multimedia
Embedded Systems (NOGUEIRA et al., 2016), Resource Management (MIELE et al.,
2015), FPGA Performance|Power|Area Estimations (MAKNI et al., 2018; ZHONG et al.,
2016; ZHAO et al., 2020), and CPU-FPGA-based Cloud System Resource Provision-
ing (LIGNATI et al., 2021). Evaluation of the interactions between the system’s HW ac-
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celerated PE and memory system is also a frequent study theme (SHAO et al., 2016;
LIANG et al., 2017; FENG et al., 2017). DSE completes the works’ main goal list,
with efforts in SoC evaluation (AN; GAMATIÉ; RUTTEN, 2015; BLOUIN et al., 2011;
HUANG et al., 2019), HW/SW co-design (GRÜTTNER et al., 2013; HERRERA et al.,
2014), and task mapping (SIGDEL et al., 2009b, 2012).

The works in the area use different abstraction-levels during the simulations, also
employing diverse representations for the workload and architecture itself. Moreover,
some works deal with energy/power perspectives but being a gap in others. FPGA
units figure in the works as a suitable and efficient processing element (PE). However,
key features of reconfigurable HW are not fully applied – like multiple Partially Recon-
figurable Regions (PRRs) and the utilization of Dynamic and Partial Reconfiguration
(DPR) within the FPGA’s portions (the PRRs). Thus, in the following sections, we dis-
cuss the related works’ main characteristics organizing them based on these raised
aspects.

3.1 Related Works

The related works deal with different levels to perform simulations. Also, there is a
dichotomy related to a power model as well as for DPR and PRR features. Thus, in the
next sections, we organize them according to these characteristics.

3.1.1 High-Level Simulation

In this section, the presented works employ high-level modeling in describing the
system’s components. The authors utilize some models representing the applications
and the processing elements during the simulations.

3.1.1.1 Works with Power Model

AN; GAMATIÉ; RUTTEN (2015) presents a modeling and analysis framework for
DSE of Adaptive applications on MPSoCs. It is a clock-based approach that describes
SW and HW exploiting the notion of abstract clock models borrowed from synchronous
dataflow languages. The framework uses the CLASSY (CLock AnalysiS SYstem) tool
(Fig. 10 (A)) for modeling, scheduling, and analysis (simulation). Moreover, the frame-
work includes a DSE module (implemented using the evolutionary algorithm NSGA-II).
The approach uses pre-profiled information to annotate the model elements about ex-
ecution latency and energy consumption, using probability distribution in the interval
best-worst cases regarding latency. Event occurrences and their precedence relations
represent an application. A set of static behaviors capture applications’ behavior inte-
grating dynamism by an associated controller (usually, a finite state machine – FSM)
that dictates the sequence of static behaviors along time. Fig. 10 (B) illustrates two



45

(A) (B)

Figure 10 – Overview of the CLASSY Tool (AN; GAMATIÉ; RUTTEN, 2015)

behaviors b1 and b2 – events e0 and e1 belong to task t0; events e2 and e3 belong to
task t1; and event e4 belongs to task t2. DPR feature is available, but reconfiguration
time/power is not taken into account. The work does not use multiple PRR within the
device’s reconfigurable zone. Besides, the approach doesn’t evaluate area aspects.

In BLOUIN et al. (2011), the authors present an extension of AADL (Architecture
Analysis and Design Language) intending to model reconfiguration features of a plat-
form. It regards the reconfigurable logic and power requirements within Multiprocessor
Reconfigurable System-on-Chip (MPRSoC). The reconfigurable resource is typically
an FPGA embedded in the MPSoC (known as eFPGA). The authors describe a multi-
layer approach using the AADL extension, with layers for describe:

• (i) the general characteristics of an FPGA device (Fig. 11 (a));

• (ii) the FPGA static (non-configurable) part of a specific device (Fig. 11 (b)); and

• (iii) the HW task allocation part – the actual use of the FPGA – where IP blocks
configure its region during the execution.

Thus, AADL descriptions define the static part – including IPs for generic proces-
sors and buses – and the configurable one – depicting elements such as memory,
buses, IP blocks, and ports. Next, the application’s descriptions delineate its basic
structure containing threads (including for the controller) and aspects related to the
deployment such as application, platform, connections, and bindings. An eclipse IDE-
based toolchain provides the infrastructure to deal with AADL language (OSATE tool –
Open Source AADL Tool Environment), requirements definition and analysis language
(RDALTE tool), and graphical editor (ADELE AADL). Requirements expressed in OCL
(Object Constraint Language) are attached to the models. It allows the tools to evalu-
ate (and trace) if the architecture does not meet some requirements. Although dealing
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Figure 11 – Multilayer Approach using the AADL Extension (BLOUIN et al., 2011)

with DPR, multiple PRR definition is not part of the AADL extension. Moreover, the ap-
proach does not model the reconfiguration time during an HW task configuration into
the configurable region.

MIELE et al. (2015) propose the SAVE system-level simulation framework imple-
mented in SystemC and TLM that aims to validate runtime resource management poli-
cies for Heterogeneous System Architectures. The framework intends to deal with
runtime management to allocate system resources to applications. For that, it uses
data about PE’s efficiency. Besides, it aims to fulfill Service Level Agreement while en-
forcing system-level constraints. Task graphs represent the applications encompassing
data about task types and latencies, performance counters, number of threads, among
others. Still, the architecture is modeled as a set of generic resources, describing
performance and power models. The model’s parameters can be extracted through
simulation, execution in real HW, or even estimated by an experienced developer. Task
graphs model the applications (Fig. 12 (A)). It includes main tasks (usually executed on
CPUs) and elaboration tasks. CPUs, GPUs, and HW Accelerators are the possible pro-
cessors to accelerate an elaboration task. Edges interconnect the tasks representing
the control dependencies between them. Regarding the edges, it is worth mention-
ing the branch edges. These edges indicate all alternative implementations for the
applications’ kernel(s).

The SAVE simulation framework contains SW and HW components (Fig. 12 (B)).
Processing units (e.g., CPUs, GPUs, and HW Accelerator) components represent the
system’s processors that communicate with the management (SW) components via
a communication channel (the latter represents a virtual communication and mem-
ory infrastructure). A workload generator represents the user actions with the system
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transmitting the workload to the System-calls Emulator. This emulator is in charge to
initiate/manage the applications, imitating the OS behavior. The Governor component
collects information from the system components, also serving as a stub where the
designer can implement the resource management policies under investigation. The
SAVE framework uses high-level models to describe the (virtual) platforms and deals
with performance, power, and utilization metrics. Thus, it is suitable to employ in the
early phases of a design initiative. However, although the authors list an HW accel-
erator in the system’s processors, it is not available in the framework implementation.
Moreover, there are no mentions of reconfiguration features (e.g., DPR and PRR) re-
lated to HW accelerator such as FPGA. In a partnership with the SAVE authors, we
have accessed the SAVE’s implementation code. We use this framework as a basis
to build SAVE-htlp (BETEMPS et al., 2018) – a framework (Sec. 4.2) capable of het-
erogeneous task-level parallelism between its processing elements during a platform
simulation of applications’ kernels. Additionally, we build our simulation infrastructure
(FEHetSS) on top of SAVE-htlp – as described in Sec. 4.4.

In NOGUEIRA et al. (2016), the authors present a DSE approach for the perfor-
mance evaluation of Multimedia Embedded Systems. Also, they propose a multi-
objective algorithm for system-level design explorations. In the system descriptions,
HSDF (Homogeneous Synchronous DataFlow) graphs represent the applications as
an ATG (Architecture Template Graph) directed graph describes the hardware platform.
A timing requirement (deadline) annotates each application task. On the other hand,
architectural elements have a set of values featuring their price, power, and idle power.
A GA (Genetic Algorithm) based DSE experiments the mapping alternatives between
applications and architecture resources during its processing. The approach applies
the Parallel DEVS (Discrete EVent system Specification) formalism enabling the mod-
eling, analysis, and simulation. During the DSE, probability distributions describe the
task execution times and their inter-arrivals times. Fig. 13 describes the methodology
of the work. In short, GA heuristic and stochastic simulation lead the DSE aiming to
find optimal (or near) Pareto solutions. The formalism in its usage demands devel-
opers with specific expertise. High-level models describe the system. However, the
approach does not take advantage of reconfigurable HW flexibility through reconfigu-
ration features (DPR and PRR).

The COMPLEX framework and methodology are described in GRÜTTNER et al.
(2013) and HERRERA et al. (2014), respectively. GRÜTTNER et al. (2013) describes
an approach of Platform-based Design that uses system-level time and power esti-
mation to perform the DSE detaching the use of UML/MARTE models as a design
input with the automatic generation of an executable SystemC model. According to
Fig. 14, COMPLEX is a reference framework that incorporates standard UML and
their profile MARTE. These models describe the architecture and workload elements
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(A)

(B)

Figure 12 – SAVE Framework: (A) Application Task Graphs. (B) Simulator Structure
in SystemC/TLM (MIELE et al., 2015)

of a virtual system. Using Model-Driven Engineering (MDE), an application model, a
system input stimuli, and an architecture description pass through a chain of models’
processing/transformations. It generates an executable prototype in SystemC contain-
ing timing and power annotations inserted from Custom HW and SW estimations and a
library with pre-existing IP/virtual components. In HERRERA et al. (2014), the authors
describe a DSE approach that includes MDE and Electronic System Level (ESL) tech-
nologies. The framework capture a set of solutions based on UML/MARTE models
and functional code. It produces an executable, configurable, and high-performance
model. Then, SCoPE+ tool (HERRERA et al., 2014) allows the simulation of different
solutions and generates performance estimates. SCOPE+ includes a performance
estimations library containing different architectural mappings. The framework de-
mands several system viewpoints as models describing data, functional, communica-
tion&concurrency, platform, architecture, and verification aspects. Thus, many complex
models are necessary to employ the approach at early design phases. Besides, the
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Figure 13 – The Proposed Method for GA-based DSE Using Parallel DEVS Formalism
to Evaluate the Candidate Solutions (NOGUEIRA et al., 2016)

employment of custom HW in the virtual system does not include DPR/PRR aspects.

3.1.1.2 Works with No Power Model

DUHEM et al. (2015) present FoRTReSS, a flow that automates the HW DSE infer-
ring a set of reconfigurable regions from task resources information. FoRTReSS relies
on a SystemC simulator, RecoSim, that allows the designer to develop and evaluate
its scheduling algorithms. Fig. 15 presents an overview of the FoRTReSS flow. It fol-
lows the Y-Chart approach describing the applications through control data flow graphs
(CDFGs) where each task has some timing characteristics (such as deadline) and a set
of possible implementations (with different performance, resources, and energy trade-
offs). The DSE maps tasks to HW (onto a PRR) or SW (in a processor core). The sys-
tem architecture describes an FPGA and a set of processor cores. FoRTReSS employs
the application resource requirements and FPGA description to find potential reconfig-
urable regions (PRRs). RecoSim validates the application’s quality-of-service, gener-
ating traces, statistics, and log files for every simulation. The output of the FoRTReSS
flow is an architecture fully defined in terms of PRR, including floorplan descriptions.
FoRTReSS does not deal with energy and power aspects in the DSE (such as energy
minimization), only planned for future versions of the flow. Besides, FoRTReSS might
require full netlists of each HW task implementation, demanding low-level descriptions.
Thus, the main focus of FoRTReSS is about the meeting of real-time constraints pro-
ducing PRR descriptions embracing low-level aspects such as floor planning.

Sesame (SIGDEL et al., 2009a) and rSesame (SIGDEL et al., 2009b) employ a
discrete-event (trace-based) simulation to evaluate applications in the form of Kahn
Process Networks (KPNs). In rSesame, Sesame is augmented to model and simulate
the dynamic reconfigurable behavior of the Molen dynamic reconfigurable architecture.
Three types of tasks are possible in rSesame:
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Figure 14 – The COMPLEX Reference Framework (GRÜTTNER et al., 2013)

• (i) SW Tasks: General Purpose Processor (GPP), such as CPU, executes it;

• (ii) HW tasks: it is executed on Reconfigurable Processors (RP), such as FPGAs;
and

• (iii) Pageable tasks: this type of task can switch between the two types of proces-
sors.

Fig. 16 shows the three layers of the rSesame architecture model. The application
layer contains the KPN model. On it, each task maps to a virtual processor in the
mapping layer. The Runtime Mapping Manager makes decisions about the proces-
sors’ allocation. GPP and RP form the architecture layer where a resource manager
maintains information that feeds the mapping manager. The RP may contain several
CCU (custom computing units). Each CCU can process events only after its config-
uration – as occurs with PRR. SIGDEL et al. (2012) presents an evaluation of task
mapping heuristics. It employs rSesame as a Modeling/Simulation framework employ-
ing the following metrics: execution time, percentage of HW and SW usage, number
of reconfigurations, time-weighted area usage, and reusability efficiency. Although the
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PR flow using FoRTReSSFigure 15 – FoRTReSS Overview (DUHEM et al., 2015).

rSesame environment deal with high-level representations of the system and applica-
tions, it does not present power or energy models for the architectural elements.

3.1.2 Low-Level Simulation

In this classification, the works usually employ RTL-level, Pre-RTL, cycle-accurate
simulation, or even direct interaction with HW devices to evaluate the system perfor-
mance. Pre-RTL is a dataflow representation obtained by a series of transformations
from C code to Dynamic Data Dependence Graph (DDDG) (SHAO et al., 2014). Thus,
the applications’ description may be at a high level but ends up in a low-level represen-
tation aiming simulation or even the applying of analytical models.

3.1.2.1 Works with Power Model

HUANG; HSIUNG; SHEN (2010) presents the UML-based Co-design Platform
(UCoP). Dynamically Partially Reconfigurable Network Security Systems (DPRNSS)
are the target applications. The authors advocate the employment of UML model-
ing&simulation (through Rhapsody UML tool) integrating a specific FPGA device (Xilinx
Virtex II) in the platform. According to Fig. 17, UCoP integrates FPGA-platform specific
libraries (FUSE APIs and PCI drivers) into the Rhapsody tool for file generation aim-
ing simulations and accurate estimations. The dynamic FPGA area implements two
PRR (re)configuring the applications’ HW functionalities – specifically cryptographic
and hash designs. Three categories classify the UML models: (i) SW application, (ii)
HW configuration, and (iii) system management. Through a partially reconfigurable
HW task template, designers can focus on their HW designs. The direct interaction
with real HW provides the system estimations. Indeed, the work does not employ sim-
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Figure 16 – rSesame Model for a Generic Reconfigurable Architecture (SIGDEL et al.,
2009b)

ulation, but a direct HW interaction. Albeit UCoP uses UML models to describe the
system’s aspects providing accurate estimations, it is directed to a specific device and
application domain, restricting their use.

LIGNATI et al. (2021) present MultiVers, a framework that exploits the automatic
generation from HLS to build libraries containing multiple versions of each incoming
kernel request. It implements an automatic resource provisioning solution for CPU-
FPGA Cloud Environments by allowing cloud providers to prioritize either parallelism
(low kernel area requirements), energy, or performance at run-time, according to its
requirements and workload at the moment. According to Fig. 18, the framework’s flow
contains five steps: (i) it collects the kernel requests; passing to the (ii) kernel selection
based on the cloud provider’s optimization goal, represented as an optimization tuple
regarding the kernel’s area, performance, and energy; the (iii) batch generation step
sends the versions of the previously selected kernel to a FIFO structure; passing to an
(iv) allocation strategy based on a collaborative allocation heuristic which generates a
collaborative solution containing a set of kernel arrangements over time, defining the
FPGA configuration (also considering its reconfiguration) and the CPU(s) allocation;
the (v) execution phase fires the kernels’ execution in the CPU-FPGA environment.
This work considers the PRR size and evaluates the necessary reconfigurations during
its experiments aiming to minimize them. Thus, MultiVers employs PRRs and DPR
features, even not explicitly defining multiple PRRs.

In gem5-Aladdin (SHAO et al., 2016), the integration of gem5 with Aladdin simulator
(SHAO et al., 2014) deals with System on Chip (SoC) models. As shown in Fig. 19
(B), these SoC models can encompass CPU cores and their memory components and
Accelerators with different memory arrangements like Cache and Scratchpad Acceler-
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Figure 17 – UCoP UML-based HW/SW Co-design Platform (HUANG; HSIUNG; SHEN,
2010)

Figure 18 – MultiVers Framework Overview (LIGNATI et al., 2021)

ator. According to the authors, ”accelerator” refers to an application-specific hardware
block. Thus, we can embrace this term as including FPGA devices. Fig. 19 (A) shows
the Aladdin framework in all its phases and artifacts. Aladdin (SHAO et al., 2014) is
a pre-RTL, power-performance simulator. It takes high-level descriptions (C code) of
the applications transforming them into a dynamic data dependence graph (DDDG) to
describe the accelerator’s code. DDDG is a dataflow description generated in a series
of transformations passing through an intermediate (and idealistic) representation to a
program and resource-constrained one. Besides, based on activity traces and power
characterizations of DDDG nodes (e.g., multipliers, adders, shifters, etc.) and registers,
the framework outcomes a power-performance accelerators model. gem5-Aladdin al-
lows evaluating the accelerator’s interactions with the other system components, like
CPU cores and memory settings. Albeit gem5-Aladdin deals with high-level models, it
does not consider DPR aspects, missing opportunities to take advantage of the inher-
ent flexibility of reconfigurable devices like FPGAs.

MAKNI et al. (2018) present the framework HAPE – High-level Area and Power Es-
timation – which employ high-level analytic models for the area and power estimations
aiming at accelerators based on FPGA devices. It uses a pre-RTL representation,
a DDDG, generated from an LLVM (Low-Level Virtual Machine) intermediate repre-
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Figure 19 – (A) The Aladdin Framework Overview (SHAO et al., 2014). (B) A SoC
Architecture Sample in gem5-Aladdin (SHAO et al., 2016).

sentation (IR) which is obtained from a dynamic execution trace to represent program
behaviors. The framework produces the IR during an optimization phase, using the dy-
namic execution trace and optimization pragmas – the latter is inserted in the high-level
specification of the program (in C/C++). During a generation phase, the framework pro-
duces an optimized DDDG. Based on the DDDG representation and in FPGA resource
constraints, HAPE uses its analytical models to produce a Performance-Area-Power
estimation. HAPE does not explore features related to DPR and PRR.

3.1.2.2 Works with No Power Model

ReSim (GONG; DIESSEL, 2014) is a cycle-accurate simulator that assists design-
ers in detecting fabric-independent bugs. Its designs encompass dynamic reconfigura-
tion. This simulator aims to deal with the reconfiguration machinery. It uses simulation-
only bitstreams to model two dynamic reconfiguration characteristics – the bitstream
traffic and the bitstream content. The focus of ReSim is to provide the apparatus to
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Figure 20 – ReSim Simulation Artifacts – Simulation-only Bitstream and Simulation-
only Layer (GONG; DIESSEL, 2014).

emulate the physical fabric of FPGAs. The goal is to assist designers during activi-
ties involving the user design’s testing/debugging/verifying in terms of reconfiguration
components. Fig. 20 shows the main simulation artifacts for a ReSim simulation. In
the simulations, simulation-only bitstream models two features of DPR. First, it exer-
cises the transferring datapath. Second, it checks if the correct bitstream arrives in the
Configuration Port (CP). About the CP artifact, it models the configuration port inter-
acting with the user-defined reconfiguration controller. Regarding the Reconfigurable
Region (RR), it is a placeholder of the Reconfigurable HW Modules that models DPR
features such as Module Swapping and Triggering Condition, besides Spurious Out-
puts and Undefined Initial State. Thereby, ReSim only models reconfiguration aspects
intending to find bugs in Dynamically Reconfigurable Systems designs, not providing
or simulating a system-level view.

PReProS (BRITO et al., 2007a) is a general-purpose partially reconfigurable
processor simulator based on a modified version of the SystemC kernel (BRITO;
MELCHER; ROSAS, 2006) that allows to dynamically switch (activate/deactivate) mod-
ules during simulation – a DPR related feature. By modifying the processor parameters,
the designers can evaluate its configuration, in a behavioral way, and the reconfigura-
tion scheduler. When using the PReProS simulator (Fig. 21 (A)), the designer should
just set the parameters and implement its blocks to configure the applications exchang-
ing data with PRePros. According to Fig. 21 (B) (BRITO et al., 2007b), an initial (TLM)
SystemC simulation is carried out, followed by a conversion to an HDL model aiming
at implementation and comparison. PReProS focuses on the reconfiguration aspects,
not simulating the application’s behavior. Also, it lacks in power modeling, only dealing
with reconfiguration performance and (HW) area usage metrics related to the reconfig-
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Figure 21 – (A) PRePros Overview (BRITO et al., 2007a) and (B) Adapted SystemC
Design Flow (BRITO et al., 2007b)

uration process.
PAAS (Processor Accelerator Architecture Simulator) (LIANG et al., 2017) is built

upon gem5 and Verilator, being gem5 responsible for simulating the CPU and mem-
ory infrastructure while Verilator is in charge of compiling Verilog code, generating an
executable file that implements the FPGA’s function. Fig. 22 shows the simulators’
integration and the interactions between the system modules. Based on inter-process
communication (IPC), the simulation occurs in parallel, aiming to reduce its time. Ver-
ilog describes the FPGA module implementation. PAAS deals with reconfiguration
aspects by allowing user (manual) parameters specifying reconfiguration latency. The
authors’ principal focus is the interactions of an HW accelerator with the other system
components, mainly memory sub-systems.

Another simulator based on the HDL simulator Verilator is HeteroSim (FENG et al.,
2017). It also includes a modified version of Multi2Sim providing models for x86 cores,
memory hierarchy, and cache coherence. HeteroSim co-simulates Verilog code and
x86 executable, allowing a cycle-accurate simulation. Fig. 23 presents the HeteroSim
Architecture, detailing the CPU part simulated by the modified Multi2Sim and the FPGA
part. FPGA part includes components for kernel management and execution dealing
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Figure 22 – PAAS Architecture (LIANG et al., 2017).

Figure 23 – HeteroSim Simulator Architecture (FENG et al., 2017).

with the definition of functions accelerated as kernels on FPGA, beyond a component
that interfaces the FPGA memory with the shared system memory. Again, this work
also puts more attention on the interactions with the memory system.

HeteroSim (FENG et al., 2017) and PAAS (LIANG et al., 2017) use a Verilator sim-
ulator to deal with FPGA tasks described in HDL (Verilog) code implementing DPR
feature, but only PAAS deals with reconfiguration time. Thus, the simulators’ utilization
requires low-level code, a demanding artifact for initial design phases. Moreover, both
works do not cover power/energy estimations during the simulations and do not employ
multiple PRR.

QUADRI et al. (2010) present an application-driven design flow that employs high-
level models using the UML MARTE profile in the modeling of reconfigurable SoCs. It
uses an MDE (Model-Driven Engineering) approach through a model-driven co-design
framework – Gaspard2. Based on UML MARTE models, the authors describe the
control semantics for the system adaptivity. It focuses mainly on the dynamic reconfig-
urability of SoCs. The authors present two factors related to the modeling of Dynamic
Reconfigurable Systems:

• (i) the description of the reconfigurable region that may have high-level application
models specifying different and mutually exclusive implementations; and

• (ii) the modeling of the reconfigurable controller semantics responsible for man-
aging the switching between the alternative modules related to the region.
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Figure 24 – The Model Transformation Chain in Gaspard2 (QUADRI et al., 2010)

A chain of model transformations enables the generation of implementation code from
high-level models – according to Fig. 24. A model-to-text conversion translates the
models of the factor (i) into an HW functionality (e.g., an HW accelerator and its differ-
ent implementations subject to executing on an FPGA device). Regarding key aspect
(ii), the control semantics provides the necessary elements (a state machine) to gen-
erate the source code related to the reconfiguration controller. As a case study, an
anti-collision radar detection system validates the design flow. It uses the code gen-
erated from the model transformations to validate the modeled functionality through
a ModelSim simulation. Also, synthesis with the PlanAhed design tool generates the
appropriate files for the eventual implementation of DPR. Although the flow establishes
high-level models employing DPR features targeting SoCs, it still applies standard tools
– with time-consuming simulations/processing – based on low-level descriptions (HDL
code) to simulate/evaluate/validate the design.

Centrifuge (HUANG et al., 2019) is a methodology and a flow (Fig. 25) that trusts
in a HLS toolchain and an open-source simulator – FireSim (KARANDIKAR et al.,
2019)) – to generate and evaluate heterogeneous SoCs. Aiming to accelerate the sim-
ulations, it uses an FPGA-enabled cloud platform (Amazon F1 instances) to simulate
SW/HW stacks. The designer generates C code, possibly including a function (marked
with pragma directive) to HW accelerate. This function code pass through a VIVADO
synthesis producing an HW task implementation which is wrapped to allow access by
the same interface. Modified LLVM compiler links the remaining C program through
a RISC-V assembly code. The HW accelerator and the binary runs on a Centrifuge
Accelerated SoC using the FPGA-based Cloud platform. Since the cloud instance
accepts the generated files, the system can produce a complete SoC integrating the
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Figure 25 – Centrifuge HLS Flow and Tools (HUANG et al., 2019)

HLS-generated accelerator simulating it in a cycle-accurate way, running a complete
SW stack. It supplies an end-to-end system evaluation capacity. The authors provide
no data regarding the necessary time for HLS synthesis and system setup. Moreover,
the simulation uses real devices (FPGAs) in its process demanding a ”large” FPGA
cloud structure to allow the system setup and subsequent simulation. The Centrifuge
uses standard design tools to generate RTL level code for simulation.

Lin-Analyzer (ZHONG et al., 2016) is a high-level accurate performance analysis
tool for FPGA-based accelerators that enables rapid design space exploration con-
sidering various HLS directives (pragmas) without requiring RTL implementations. It
leverages the dynamic evaluation by using dynamic data dependence graphs (DDDGs)
generated from program traces that represent the dataflow of the accelerator under
study. Making some assumptions regarding the resources of an FPGA device, Lyn-
Analyzer makes the performance estimation of FPGA-based accelerators directly from
high-level languages such as C/C++.

ZHAO et al. (2020) present COMBA, a comprehensive model-based analysis
(COMBA) framework. COMBA uses analytical models based on design descriptions
possibly containing directives (pragmas) related to functions, loops, and arrays, being
capable of analyzing the effects of those pragmas based on an HLS toolchain. Fig. 26
presents the elements of the COMBA framework. First, a design description in C/C++
is translated to an LLVM IR, passing to the recursive data collector (RDC) that com-
putes the parameters required by the analytical models based on the directives and
pre-characterization information. The parameters fit in two categories: static informa-
tion, e.g., the array element’s memory addresses, and dynamic information, e.g., the
iteration latency of loops. The Performance Models deal with five frequently used di-
rectives: loop unrolling (LU), loop pipelining (LP), array partitioning, function pipelining
(FP), and dataflow. On the other hand, the Resource Models estimate the required
resources, namely, BRAMs, DSPs, and LUTs. Afterward, a two-stage metric-guided
DSE (MGDSE-II) algorithm removes redundant design points (first stage) and uses
evaluation metrics to identify performance bottlenecks, verify the resource constraints
compliance, and define array partition type, in such a way indicating the directions of
the exploration (second stage).
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Figure 26 – COMBA Framework (ZHAO et al., 2020)

This works (ZHONG et al., 2016) (ZHAO et al., 2020) base its estimations on dy-
namic program traces using the LLVM IR to generate DDDG program representations.
Thus, using characterization information regarding the HW resources of a device, and
based on their analytical models, they produce estimations for FPGA-based acceler-
ators. However, these estimations regard only the accelerator, not accounting for the
whole system. Moreover, they only estimate performance and area metrics. Further-
more, features related to DPR and PRR are not explored.

3.2 A ”Bird’s Eye” View of the Related Works

Summarizing the presented works, Tab. 1 shows a comparative evaluation regard-
ing aspects of heterogeneous systems containing reconfigurable components as HW
accelerators during DSE activities. We define evaluation criteria that describe the pre-
vious works based on items related to simulation, platform description, reconfigura-
bility, power estimation, performance estimations, and works main goals. We also
include in Tab. 1 the aspects of the modeling and simulation infrastructure (including
the FEHetSS simulator described in Sec. 4.4) developed and used in this thesis. The
columns of Tab. 1 intends to map the previous aspects using the following evaluation
criteria scheme:

• Simulation

– What Simulation tool(s) is(are) used?

– What Simulation Level of the HW Tasks?

• (Virtual) Platform

– How is the Workload (Applications) description?

– How is the Architecture description?

• Reconfigurability
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Table 1 – Comparative Evaluation between the Related Works
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† Even the authors have inserted HW Accelerator in the SAVE PE alternatives, its is not available in the respective implementation.
‡ Considering the CLASSY’s alternative static behaviors of a task as an reconfiguration in a DPR System.
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– Does the work employ HW Accelerators in its architecture?

– Does the work employ DPR in its system assessments?

– Does the work account PRR Reconfiguration Time in its system evaluations?

– Does the work allow the evaluation of Multiple PRR in its Reconfigurable
Regions?

• Power

– Does the work provide a Power Model for its Reconfigurable HW Accelera-
tors?

• Performance Metrics

– Does the work provide Time or Latency Metrics?

– Does the work provide Power/Energy Metrics?

– Does the work provide Utilization/Area Metrics?

Considering the related works’ characteristics presented in Tab. 1, Tab. 2 shows the
positioning of each described initiative based on the features Simulation Level (high or
low), Power Model (Yes or No), DPR (Yes or No), and PRR (Yes or No). This positioning
highlights the context of this Thesis in the area.

Based on Tab. 1 and Tab. 2, we can observe some gaps in the area, mainly regard-
ing the simulation of (detailed) low-level models. Low-level simulations are impractical
in the early stages of the system’s design cause of its long simulation time. Besides the
absence of a power model – unable to generate power/energy estimates for theirs HW
accelerators. Moreover, although the works consider HW accelerators in their system’s
architecture, DPR and PRR features are not fully utilized, sometimes not accounting
details such as reconfiguration time.

The methodology and simulator FEHetSS, both developed in this thesis, in contrast
to the related works, allows us to model a Heterogeneous System Architecture (HSA)
including VirtualHWAccel (FPGA), simulating its behavior using SystemC modules in
TLM abstraction level. Moreover, FEHetSS is a system-level simulator that enables
modeling FPGA-Enabled architectures at a high abstraction level, modeling the archi-
tecture as a pool of resources and the applications as a tasks graph. In this work, we
use OpenCL concepts in our models for both applications and processing elements.
A virtual platform (VP) represents the input in FEHetSS. This structure describes the
architecture (processing elements - PE) and the workload (applications and its arrival
time), beyond the mapping of the applications’ tasks (kernel and host modules, corre-
sponding to ”elaboration” and ”main” tasks, respectively) to the available PE. Further-
more, it provides estimations – even in early design phases – for time, power/energy,
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Table 2 – Related Works Positioning based on Simulation Level, Power Model, DPR,
and PRR Features
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and utilization, also regarding FPGA features like the employment of multiple PRR and
the use of DPR accounting for its reconfiguration latency and power consumption.

3.3 Research Challenges

Evaluating the related work, we identify gaps that can be filled up by this thesis.
Most works deal with FPGA simulation but using low-level representations, as HDL
code (in RTL level), to describe the circuit implemented in the HW device. RTL simula-
tion is a high time-demanding task that specialized tools and designers must conduct,
maybe impractical in early design phases. Coarse-grained models in a high-abstraction
level are more easily defined/simulated. Moreover, some works provide DPR features,
but again based on low-level descriptions, or even being the only simulated aspect, not
estimating the workload execution itself in a system-level view. Further, even regard-
ing DPR features, some works do not account for reconfiguration time. Besides, the
modeling of multiple PRR is a rare situation.

Another aspect is the absence of a power model in several works. Power/Energy
related estimations are essential metrics to subsidize the decisions during the system
design. Together with execution time, energy/power metrics make the design points
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trade-off analysis richer. Also, utilization estimates (in terms of percentage of time or
consumed HW area) provides greater precision to the profiled solution, adding an extra
dimension for evaluation.

Considering the identified gaps, and before presents the research challenges of
this thesis, we recall our motivational scenario: Consider a design initiative for a new
embedded system. It must deal with a specific workload and considers metrics such as
execution time, power/energy consumption, and processing elements/HW area utiliza-
tion. Since probably no physical architecture is available, early design evaluations must
happen using high-level models. Thus, System-Level Simulation is a way to assess
the design points employing Virtual Platforms (VPs) modeling the system architec-
ture, the workload, and their mappings. With notions such as host/device processors
and application kernels, OpenCL concepts serve as a basis for modeling the system
architecture&workload. Also, considering High-Level Synthesis tools, it outcomes ap-
propriate artifacts that enable modeling the application’s kernel(s) running in FPGA
units. FPGAs are customizable devices usually providing performance and power ef-
ficiency. Besides, it offers features like Partially Reconfigurable Regions (PRR) and
Dynamic and Partial Reconfiguration (DPR). Each PRR can potentially act as an inde-
pendent HW accelerator. DPR enables dynamically change the PRR’s configuration.
Moreover, the custom capability of FPGA devices allows experimenting with diverse
HW task implementations aiming to obtain a good trade-off between execution time,
energy consumption, and resource utilization. Given this scenario, how could a de-
signer conduct early design space exploration (early-DSE) activities in a feasible time
considering high-abstraction descriptions of the system and its applications, producing
valuable design artifacts for initial decisions making? All of this, before passing to more
detailed and low-level HW/SW development.

Now, we can describe the research challenges of this thesis, as follows:

• Context: Regarding a System-level Simulation infrastructure enabled to (i) in-
clude HW tasks mapped in reconfigurable HW Accelerators (as an FPGA); em-
ploying (ii) high-abstraction level models in early design phases; (iii) simulating
the models at the same level; and (iv) supporting system estimations for time,
energy/power, and utilization.

– Challenge 01 (C01): How to enable early-DSE on heterogeneous systems
that include reconfigurable hardware acceleration through FPGAs?

• Context: When employing an FPGA device as an HW accelerator, multiple im-
plementations of an application kernel (as an HW task) are possible (e.g., a so-
lution using several compute units to accelerate the execution of the many items
to process or other that makes loop unrolling to diminish the iterations). Con-
sidering models of a Virtual Hardware Accelerator (VirtualHWAccel) and other
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components of a virtual platform (VP), a designer must be capable of evaluating
the application (and its kernel) using metrics like execution time, power/energy
consumption, and HW utilization.

– Challenge 02 (C02): How to assess (at early stages) different architec-
tural FPGA implementations for a specific application kernel, as an HW task,
within a heterogeneous system?

• Context: Considering: (i) the characteristics of the Partially Reconfigurable Mod-
ules (PRM) (application’s kernels implemented as HW tasks) to be configured;
(ii) the dynamic reconfiguration of the PRR while simulation goes on; and (iii) the
related reconfiguration time and its consumed power.

– Challenge 03 (C03): How to model FPGA units at a high level, supporting
PRR and DPR, focusing on high-level system simulation?

Based on the listed Research Challenges, this thesis proposes a modeling and
simulation infrastructure to perform early Design Space Exploration (DSE) for hetero-
geneous systems featuring FPGA devices concerning the reconfigurable hardware ac-
celeration, including aspects related to the architectural implementation of HW modules
and considering partial reconfiguration features such as the device’s partition in PRR
and the DPR flow. We discuss the infrastructure’s modeling aspects in Chapter 4 –
Sec. 4.3, followed by the simulation’s detailing in Sec. 4.4. Moreover, we planned
Case Studies performing experiments for the infrastructure evaluation (in Chacontain-
ingpters 5 and 6).

3.4 Chapter Summary

In this chapter, we presented some works that deal with HW accelerated systems’
modeling/simulation. These systems usually employ FPGAs as a VirtualHWAccels.
Some research initiatives take advantage of the FPGA’s flexibility utilizing reconfigu-
ration features. But, few regard the reconfiguration time and experiment a different
number of PRR. The simulation level employed in the works frequently resorts to low-
level models, likely impacting the simulation time. A power model and the generation
of power/energy estimations do not prevail in the related academic literature. The use
of HW devices itself appears as a design method alternative. But, it possibly restricts
the works’ applicability or maybe demands major HW infrastructures.

Moreover, based on identified gaps in the area, we list some research challenges
to tackle in this thesis. In essence, the challenges involve the modeling aspects related
to the VP and the use of HW tasks implemented in FPGA devices as a VirtualHWAc-
cel, beyond the definition of the number of PRR and the employment of DPR. This
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modeling shall consider high-level models for architecture and workload, aiming to em-
ploy in early DSE. The system’s simulation shall occur at an appropriate level. Also,
allowing rapidly-produced output evaluations containing estimations for Power/Energy,
Time, and Utilization. So, an early power model shall be available. Furthermore, the
challenges point out the necessity to deal with DSE initiatives and experimentation with
different architectural FPGA implementations of an application’s kernel.



4 FPGA-ENABLED HETEROGENEOUS SYSTEM MODEL-
ING AND SIMULATION

This chapter presents the core of the thesis describing its main contributions. The
focus of it is on FPGA-enabled Heterogeneous System Modeling and Simulation aim-
ing at Early Design Space Exploration (DSE). Virtual Platforms (VPs) models describe
these systems allowing to use of Virtual HW Accelerators (VirtualHWAccel)s – mod-
eled as FPGA devices. Partially Reconfigurable Regions (PRRs) partition the Virtual-
HWAccel permitting to deal with each PRR as a potential HW accelerator. Dynamic
and Partial Reconfiguration (DPR) enables the system to modify PRRs using Partial
Reconfigurable Modules (PRMs) according to the workload’s demand.

Fig. 27 presents the conceptual elements embraced by this thesis. The yellow
boxes indicate the chapter/section that presents the associated element. We envision
a scenario where a designer can model the system as a Virtual Platform (VP), simu-
lating its behavior considering a workload, and producing appropriate metrics to use
in a Design Space Exploration (DSE). Two model(s) sets compose a VP. An Architec-
ture model describes the Processing Elements (PEs) integrating the system. And a
Workload model describing the applications to submit to the system. A designer pro-
duces those models by employing methodological steps, tools, and artifacts defined
in the Architecture and Workload Modeling methodology. The produced models are
organized in a VP repository, being available to direct use as the input of a Simulation
Infrastructure (FEHetSS) or via a DSE environment driven by an Optimization Heuris-
tic. FEHetSS simulator uses the input models, especially their annotations, to derive
log metrics regarding time, power, energy, and utilization.

Considering the Architecture model, Fig. 27 presents a VP containing five PEs –
three CPUs, one GPU, and one FPGA. A PE model includes a power model indicating
its operation frequency, power, and idle power. In the case of an FPGA, the modeling
must regard some specific aspects. First, we can partition the device into PRRs, each
one capable of implementing an HW task. Besides, the device has a Periphery HW
responsible for communication and input/output (I/O) – e.g., transceivers and GPIO
(General-Purpose I/O). And a board interface (BI), a static region that facilitates com-
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Figure 28 – FEHetSS Framework’s Flow

munication with external interfaces. Each one has its power characterizations. Second,
the reconfigurable regions (PRRs) can pass through a Dynamic and Partial Recon-
figuration (DPR). It configures a PRR consuming time and power, using a bitstream
passing by a configuration controller. It configures one PRR at a time but maintains the
remaining PRRs in operation. Last, a simulation flow drives the FPGA mode (state)
transitions, managing the simulation in the device and PRRs scopes.

About the Workload model, Fig. 27 shows four applications in execution as the sys-
tem’s workload. Tasks graphs describe the application’s structure indicating the tasks
and their types. CPUs sequentially executes main tasks. Regarding the elaboration
tasks, all PE types (CPUs, GPUs, and FPGAs) can execute them in parallel. FPGA
device provides the capability of executing HW tasks in a custom and optimized way.
Main tasks manage the execution and prepare the Elaboration tasks allocation. The
latter represents the application’s kernels. The graph’s edges indicate the execution
flow via its forward (normal advance), backward (for loop structure), and branch (trig-
gering the elaboration tasks) variety. Regarding elaboration tasks executing in FPGA,
an HW task implementation (represented by a bitstream) configures a PRR preparing
its execution as a Virtual HW Accelerators (VirtualHWAccel)s.

Fig. 28 shows the flow describing the steps during the creation of the models in the
VP repository and its use through the DSE environment or directly via FEHetSS. Con-
sidering the DSE environment, it uses the VP repository to create any necessary VP. A
set of parameters defines the range and possibilities for the solutions’ components. An
Optimization Heuristic directs the DSE using FEHetSS as a Design Point performance
evaluator. FEHetSS provides metrics for each simulated VP. Through DSE iterations,
the heuristic produces an outcome with the most promising solutions.

In summary, the main goal of the work is to provide a Modeling and Simulation
infrastructure. It aims to support Early Design Space Exploration (DSE) for heteroge-



70

neous systems featuring FPGA fabric for reconfigurable hardware acceleration. More-
over, the proposed infrastructure also enables HW architecture design space explo-
ration regarding the HW/SW interface into a heterogeneous system.

We structure the remaining of this chapter in the following way. In Sec. 4.1, we
present a methodological view of the work. After, in Sec. 4.2, we describe Task-level
Modeling aspects passing through the idea of Heterogeneous Task-level Parallelism
(HTLP) and the Simulator SAVE-htlp (BETEMPS et al., 2018) developed during this
work aiming to deal with HTLP. Sec. 4.3 presents the methodological steps employed
in VP modeling, mainly its Architecture and Workload. The main aspects of the method-
ology are:

• The architectural organization of the Processing Elements, including Virtual-
HWAccels modeled as FPGA devices, and enabled to organize the device in
multiple PRRs;

• The DPR simulation regarding the Reconfiguration Time of a PRR and the whole
device;

• The Power Model for the FPGA device and their PRR, characterizing the Power
Consumption during Simulations, even during a PRR/device (re)configuration;

• The applications’ modeling, regarding its structure and tasks’ latency, includ-
ing the latency of the kernel when implemented as HW tasks executing into an
FPGA’s PRR;

• The Tools and Steps to estimate latency and power of the application’s tasks,
including the execution of kernel(s) in CPUs, GPUs, and especially in FPGA de-
vices; and

• The steps to take measures in a real HW Platform. These measures allow anno-
tations in the models describing the Processing Elements (PEs) and Applications.

Lastly, we introduce the simulator (FEHetSS) built during the development of the thesis
(Sec. 4.4). FEHetSS regards the described models aiming to simulate VPs. We
describe the FEHetSS main components, its input structure, and their mode-based
simulation flow.

4.1 Methodological View of the Thesis

The VP modeling methodology and the FEHetSS simulator make up an HW&SW
system design framework aiming at the evaluation of candidate solutions in Early DSE
circumstances. From a methodological angle, Fig. 29 describes a broad view of the
thesis. As researchers during the development of the work, we actuate in several
branches, as following discussed.

OpenCL Model. We adopt the concepts of OpenCL to model the workload appli-
cations, especially the concepts involving OpenCL’s Platform and Execution models.
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Figure 29 – Methodological View of the Thesis.

During an application modeling, we abstract the existence of tasks that execute on a
Host and those allocated on a Device. These tasks correspond to the main and elab-
oration tasks previously described, respectively. In a platform, usually, a CPU acts as
a Host. On the other hand, CPUs, GPUs, FPGAs, DSPs, or other processing ele-
ments can act as a Device. Moreover, we employ an OpenCL benchmark to serve as
applications’ examples, modeling them based on these conceptions.

HLS Tool. Regarding the modeling aspects of FPGA devices, we employ a High-
Level Synthesis (HLS) tool (aoc compiler) capable of providing the kernel and device-
related estimations – power and latency. HLS tool outcomes several reports and HW
design files. It allows extract kernels’ latency, HW resources, and maximum operat-
ing frequency. Besides, we use a power estimation tool (quartus/PowerPlay) based
on modified HW design files (from the HLS synthesis process) to estimate the power
consumption of an HW task module (core logic) in a PRR and other static regions of a
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device.
HW Platform Measurement. Since we aim to model heterogeneous systems, CPU

and GPU model characterizations are necessary. For these PEs, we depend on a
real HW platform measurement employing stamp statements in OpenCL code. We
use a time counter to extract latencies. For power-related extractions, we apply the
data provided by platform-embedded energy sensors. We employ the Odroid-XU3
(HARDKERNEL, 2020) board as the real HW platform.

Architecture and Workload Modeling. We define a methodology to derive VP
models. We base our modeling method on the Y-Chart approach, defining independent
modeling of architecture and workload. A mapping statement indicates what process-
ing element to allocate for an application task. As described earlier, CPU is the target
mapping of main tasks. On the other way, an elaboration task can map their threads
on CPUs, GPUs, or FPGAs. The methodology also includes aspects related to the
following elements:

• Steps to estimate the Power of :

– A PRM (HW task module) – a synthesis with the aoc compiler (INTEL,
2020a) characterizes a PRM implementation by generating several design
files and reports. Based on those files, we employ the PowerPlay tool (in-
tegrated into Quartus (INTEL, 2020b)) estimating power consumption for an
HW task module;

– A PRR in a partitioned FPGA device – initially, in a simulation, a blank bit-
stream configures a PRR. It allows power saving until a DPR occurs con-
figuring the PRR with a given PRM’s bitstream. After that, the PRR passes
to consume the respective power of the just configured PRM. This process
repeats at every reconfiguration;

– The reconfiguration’s method during a DPR – During the DPR, we model
the reconfiguration time according to the PR controller bandwidth and the
bitstream size of the incoming PRM. For the power consumption through the
DPR, we employ the Medium Grained Model presented in (BONAMY et al.,
2014) (represented by Eq. 2). It produces an interpolation of the static power
before DPR and that one immediately after; and

– The static regions of an FPGA device – Quartus tool (INTEL, 2020b) also
provides estimations for the static regions of a device. We use these esti-
mations to model the power consumption in such regions.

• Equations to estimate the kernel/block latencies while executing into an FPGA’s
PRR – the aoc compiler tool, integrated into Intel FPGA SDK for OpenCL Soft-
ware (INTEL, 2020a), provides reports estimating the latency of the kernels’
blocks. We model the latencies by applying a set of equations (3 to 6);
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• Annotation of performance models regarding the tasks – in an application de-
scription, a performance model describes each task including the reference fre-
quency and its latency. For elaboration tasks, there may be performance models
for each possible type of processing element. In the models, we insert annota-
tions based on real HW platform measurements or even estimations produced
by HLS tools (in our case, the aoc compiler) – the latter for the HW tasks imple-
mented in FPGA devices;

• Annotation of power models of CPU and GPU – for each processing element a
power model is profiling it including an operating frequency and the respective
power and idle power. For CPU and GPU, measurements on a real HW platform
provide the subsidies to generate the model’s annotations;

• Creation of a task graph describing the applications – considering the common
functions’ structure of an OpenCL program, we define a general task graph ca-
pable of describes an application. Considering real HW platform measurements
or tool estimations, we profile each application’s task;

• Annotation of an FPGA device model describing their power model, HW re-
sources, and DPR parameters – an FPGA device model contains some addi-
tional details comparing with other PE types. For power, we employ estimations
from Quartus generated from a kernel considering a specific device. Regarding
the HW resources, the aoc compiler tool (INTEL, 2020a) provides reports detail-
ing the necessary HW for each FPGA portion (dynamic and static regions). The
DPR parameters include data about the bitstream size (from aoc generated con-
figuration file) and the reconfiguration controller bandwidth (based on the Intel PR
controller IP (INTEL, 2020b)); and

• Annotation of an HW task indicating their HW resources, power consumption,
and bitstream size – for HW tasks, mapped to an FPGA unit, we annotate it with
data about the necessary HW resources to FPGA-implementing the task, and
its core logic information (composed by a frequency and its dynamic and static
powers). The aoc compiler tool (INTEL, 2020a) provides the HW estimation and
the bitstream size while Quartus estimates the powers.

FEHetSS simulator. We implement our model conceptions in a System-Level Sim-
ulator. FEHetSS (FPGA-Enabled Heterogeneous System Simulator) is responsible for
the performance analysis in our approach, simulating VPs and logging their metrics.
FEHetSS is written in SystemC using TLM as the abstraction level. It allows the em-
bedding of a Virtual HW Accelerator VirtualHWAccel – modeled as an FPGA device –
in system architecture. The VirtualHWAccel includes features of DPR and PRR.

VP repository. We prepare a Virtual Platform (VP) Repository. It contains the
model’s portions that are combined to form a VP. We also define automation scripts
that receive a VP description producing the appropriate VP model aiming to simulate it
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in FEHetSS.
DSE Environment. We envision our Modeling&Simulation infrastructure support-

ing Early DSE activities. Such an infrastructure frequently requires some DSE’s sup-
port. Usually, the design space is vast and exhaustive exploration is unfeasible. Opti-
mization Heuristics can prune the design space and yet still supplying quality solutions
– with ”quality” meaning solutions that are close to the optimal ones regarding a set of
objective functions.

Considering Use Cases for FEHetSS Users, she/he can use the VP repository au-
tomation scripts to create solutions providing a VP description or even creating a whole
solution manually. Based on an existing candidate solution, users can initiate simula-
tions with FEHetSS and evaluate the output metrics. In a more scalable scenario, a
user can employ a heuristic-based DSE environment. FEHetSS supports such inte-
gration allowing that a heuristic-driven DSE initiates several simultaneous simulations
evaluating candidate solutions through a series of iterations.

4.2 Task-level Modeling and Heterogeneous Task-level Paral-
lelism

As described in Chap. 3, we have accessed the SAVE simulator (MIELE et al.,
2015) source-code. This simulator’s code is the base for the implementations devel-
oped during this thesis. First, we identify that SAVE does not provide the capability of
splitting same purpose tasks in parallel threads, mapping them on different PEs types.
Hence, the original framework was modified, and we named this extended version as
SAVE-htlp (BETEMPS et al., 2018).

4.2.1 The SAVE-htlp Simulator

We develop some extensions in the original framework (MIELE et al., 2015) to deal
with Heterogeneous Task-Level Parallelism (HTLP), making up the SAVE-htlp simu-
lator (BETEMPS et al., 2018). In SAVE-htlp, a task graph describes an Application
containing Nodes and Dependencies sets. A Node represents tasks of two types:

• (i) Main tasks: which are application portions always executed sequentially by
the CPUs;

• (ii) Elaboration tasks: representing kernels executed by CPUs, GPUs, FPGAs, or
other PEs – likely in a parallelized and heterogeneous way.

Nodes contain a Performance Model consisting of latency and frequency values. A
Dependency represents edges of three types:

• (i) forward: indicates the application’s advance;
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• (ii) backward: represents a loop edge; and

• (iii) branch: indicates the advance to an elaboration task (a kernel). Distinct PEs
can execute it.

SAVE-htlp allows to start concomitant threads of different elaboration tasks imple-
mentations – i.e., implemented for distinct PEs – although all tasks/threads being part
of the same application, only indicating the possible executing models (e.g., CPU, GPU,
and FPGA). It characterizes the employment of heterogeneous parallelism. In this con-
text, there is a forward movement to a task set using branch edges. This set triggers
its threads in distinct PEs. It allows parallelizing an application’s kernel (elaboration
task) in a heterogeneous way. E.g., running in CPU and GPU units in parallel. More-
over, SAVE-htlp has a controller to handle the join (in forwarding tasks) of the created
threads. The original framework allows threads created from only one elaboration task
per time and application. The number of created threads from an elaboration task set
(in a TLP portion) can be explicitly defined and different for each TLP application por-
tion. Parameters in the application graph model allow these aspects. SAVE-htlp is
capable of dealing with nested loops by resetting the cycle counters. It aims to deal
with more complex application models that can contain many nested loop structures.

To illustrate the HTLP concept, Fig. 30 shows models for three sample applications
and the Odroid-XU3 architecture (HARDKERNEL, 2020). On the upright of Fig. 30,
two application model samples employ homogeneous parallelism using eight threads in
CPU and GPU, respectively. On the up left, the model uses heterogeneous parallelism
via the creation of eight threads to be executed concurrently in CPU and GPU. The
attributes hetParall and maxThreads (Fig. 31) defines each case.

SAVE-htlp receives an input describing the virtual platform (VP) as a XML file. Fig.
31 conceptually describes the input elements relationship by using an UML class dia-
gram (GOMAA, 2011). Parameters hetParall and maxThreads define the use (or not)
of heterogeneous parallelism and the number of employed threads, respectively. The
DEPENDENCY class (an edge in a task graph) of Fig. 31 and the annotations in Fig. 30
define these parameters.

Regarding the SAVE-htlp experimentation, we define the following main goal
(BETEMPS et al., 2018): ”to evaluate the HTLP by exploring the different kernels char-
acteristics of the BMA case study application by the use of system-level simulation”.
Next, we present the SAVE-htlp case study.

4.2.2 SAVE-htlp Case Study

We use a BMA (Block-Matching Algorithm) application as a case study for SAVE-
htlp, using an implementation presented in (MELO et al., 2016). Video coding (e.g.,
Motion Estimation) and computer vision (e.g., Object Tracking and Stereo Matching)
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Figure 30 – Heterogeneous Parallelism vs Homogeneous Parallelism.

domains normally use BMA applications/modules. Besides, the Odroid-XU3 platform
(HARDKERNEL, 2020) is the base architecture model. Fig. 32 shows the BMA appli-
cation model used in the SAVE-htlp experimentation (BETEMPS et al., 2018).

BMA applications must use similarity criteria such as, e.g., the Sum of Absolute
Differences (SAD). The original BMA implementation (MELO et al., 2016) uses SAD
aiming at GPU and FPGA processors. BMA has certain parallelization aspects making
it suitable to be explored in HTLP. In the BMA model (Fig. 32), each node presents
its mapping (CPU or GPU), latency, type, and input/output data. The tasks latencies
incorporate the memory operations delays. Thus, we have used zero values for all
task input and output data parameters. Thus, the model presents these values only for
modeling purposes. Regarding HTLP, we can observe three points (elaboration tasks)
able to parallelize the BMA application:

• srcB_filling: data preparation for sad_execute task. According to the number of
threads initiated for sad_execute, an equal one is triggered for this task.

• sad_execute: execution of SAD calculation. The number of threads for this task
changes the cycles in the edge (t14, t05_block_X ) — denoted by N in Fig. 32.
As more threads started, fewer iterations will be needed.

• sad_grouping: grouping of SAD values — from 8x8 pixels size blocks into 64x64
pixels size CTU blocks.
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Figure 31 – SAVE-htlp VP Input Elements and their Relationships.

Tab. 3 presents the SAVE-htlp experiment settings, including the configuration id
(#), the allocated PE type(s), the used number of threads, and the number of pro-
cessors (column A15, A7, Mali) for each PE type available in the architecture for the
srcB_filling, sad_execute, and sad_grouping tasks execution. Furthermore, we use
three SAVE-htlp resource mapping policies:

• Base: allocates all available CPUs (A15 and A7 clusters, in such order), according
to the number of threads;

• A7: allocates only the A7 CPUs, according to the number of threads;

• A15: allocates only the A15 CPUs, according to the number of threads.

In the configurations #1 to #4, only one thread is triggered for each elaboration task.
The PE type used in the srcB_filling task is always CPU since it has a nature of a mem-
ory transfer task. In all the configurations, the task sad_grouping uses only one thread
since it is a sequential procedure with abundant data parallelism. For the same task,
the used PE type is CPU or GPU (exclusively) in each configuration. Exceptionally,
setting #3 uses the CPU and GPU in an alternating way. The sad_execute task has
configurations with only one type of PE (CPU or GPU) except for the settings #3 to #10.
In #3 to #4 is used the alternated mapping between CPU and GPU. Settings #5 to #10
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Figure 32 – BMA Application Model used as Case Study of SAVE-htlp (BETEMPS
et al., 2018)

.
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Table 3 – SAVE-htlp Experiment Configurations

# ET1 threads ET2 threads ET3 threads A15, A7, Mali
1 CPU 1 CPU 1 CPU 1 4, 4, 1
2 CPU 1 GPU 1 GPU 1 4, 4, 1
3 CPU 1 CPU|GPU 1 CPU|GPU 1 4, 4, 1
4 CPU 1 CPU|GPU 1 GPU 1 4, 4, 1
5 CPU 2 CPU+GPU 2 CPU 1 4, 4, 1
6 CPU 4 CPU+GPU 4 CPU 1 4, 4, 1
7 CPU 8 CPU+GPU 8 CPU 1 4, 4, 1
8 CPU 2 CPU+GPU 2 GPU 1 4, 4, 1
9 CPU 4 CPU+GPU 4 GPU 1 4, 4, 1

10 CPU 8 CPU+GPU 8 GPU 1 4, 4, 1
11 CPU 2 CPU 2 CPU 1 4, 4, 1
12 CPU 4 CPU 4 CPU 1 4, 4, 1
13 CPU 8 CPU 8 CPU 1 4, 4, 1
14 CPU 2 GPU 2 GPU 1 4, 4, 1
15 CPU 4 GPU 4 GPU 1 4, 4, 1
16 CPU 8 GPU 8 GPU 1 4, 4, 1
17 CPU 2 GPU 2 GPU 1 4, 4, 2
18 CPU 4 GPU 4 GPU 1 4, 4, 2
19 CPU 8 GPU 8 GPU 1 4, 4, 2
20 CPU 8 CPU+GPU 8 GPU 1 0, 8, 1
21 CPU 8 CPU+GPU 8 GPU 1 8, 0, 1
22 CPU 4 GPU 4 GPU 1 4, 4, 4
ET1: srcB_filling task; ET2: sad_execute task; ET3: sad_grouping task.
CPU|GPU: alternated CPU/GPU mapping; CPU+GPU: heterogeneous CPU/GPU mapping.

use the HTLP. According to the number of threads and PEs, threads execute in both
PE types (GPU and CPU). In configurations #17 to #19, the sad_execute is performed
considering one additional GPU to deal with the sad_execute and sad_grouping ker-
nels. The settings #1 to #19 were simulated with the three previously cited SAVE-htlp
resource mapping policies (Base, A7, and A15). Settings #20 to #22 were executed only
with the Base policy. In #20 and #21, we use only A7 and A15 CPUs, respectively. In
#22, we extrapolate the number of GPUs to four in the kernels’ execution – four threads
in CPUs and GPUs for the srcB_filling and sad_execute tasks, respectively.

Using the configuration #1 in Base policy as the baseline, Fig. 33 (A), (B), (C),
and (D) presents an evaluation (as percentual gains) of the settings in the resource
mapping policies (Base, A7, and A15) using the metrics Time (seconds), Performance
(Frames per second), Energy (Joules), and Power (Watts) – extracted from SAVE-htlp
simulations. The percentage gains represent an increase in the Performance metric
meanwhile a decrease in the other metrics.

As we present in (BETEMPS et al., 2018), settings with HTLP shown better results
due to the fitter matching between the tasks, its number of threads, and used PE types.
Moreover, knowledge of the application characteristics allows obtaining benefits by
employing different PEs for each TLP portion. It also indicates advantages in the use
of heterogeneous architectures. Furthermore, executable high-level models permit,
even in the early phases of the initiatives and through (rapid) system-level simulation,
to evaluate candidate solutions to direct design decisions.

Moreover, we stress the importance of knowing the application characteristics to
obtain benefit from each TLP portion. The BMA has three such parts: (i) srcB_filling
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Figure 33 – Percentage gains for time (A), performance (B), energy (C), and power
(D) for each configuration in the three resource policies (Base, A7, and A15) with #1 in
the Base policy as baseline (BETEMPS et al., 2018).
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task prepares data to be processed and can be parallelized only in CPU threads, (ii)
sad_execute threads are numerous and are worth create them on GPUs and CPUs in a
parallel way (HTLP), and (iii) sad_grouping have abundant data parallelism processed
by the GPU sequentially.

SAVE-htlp represents the basis for the simulator implemented and used in this work
– FEHetSS (Sec. 4.4). FEHetSS extends SAVE-htlp providing the capability to include
FPGA devices as HW accelerators in the architecture. It also allows defining many
PRRs in the device and exploring the DPR feature during the simulations. For the
suitable employment of FEHetSS, the following sections present the modeling steps
related to annotations in the VP models regarding the system’s architecture and work-
load.

4.3 Modeling FPGA-enabled Virtual Platforms

Employing VirtualHWAccel (as an FPGA device) in System-level Simulations re-
quires modeling several concepts of the system to include in the VP descriptions. Such
modeling pass through aspects of the architecture and the workload. This section de-
scribes the modeling steps required for the simulation of FPGA-enabled Virtual Plat-
forms. Also describing the modeling aspects of other types of PE (CPU and GPU) and
the system’s workload.

Fig. 34 shows the flow and tools used to estimate the annotation data required to
model VPs. A VP represents the input of the FEHetSS simulator (described in Sec.
4.4). Regarding main/elaboration tasks for both CPU and GPU modeling, we use ex-
ecution measurements from a real platform. Alternatively, we can generate data from
cycle-accurate simulators, use information from component manufacturer datasheets,
or even employ data from published research works. Based on the OpenCL program-
ming model, we identify the application’s tasks in the OpenCL source code. We insert
statements to logging the tasks’ latencies. Using average latency measures, we define
performance models for each application’s task.

Some platforms provide energy sensors (HARDKERNEL, 2020). Hence, we use a
real platform to make measurements. We extract total execution time and consumed
energy. Thus, we use mean values to calculate the power consumption during the
execution of each application. Regarding the CPU and GPU, we create performance
and power models feeding a Virtual Platforms repository.

In turn, using an FPGA as a VirtualHWAccel in a VP requires estimations from tools
that are part of HW design flows, e.g., Quartus (INTEL, 2020b) and Intel FPGA SDK
for OpenCL Software (INTEL, 2020a). FPGA-based OpenCL platforms such as Intel
FPGA SDK (INTEL, 2020a) use High-level Synthesis (HLS) to produce design files and
reports from which we can make estimations of power, latency, and HW resources. The
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Figure 34 – Methodology for VP Modeling.

following sections present the FPGA modeling aspects regarding the architecture and
the workload.

4.3.1 Architecture Modeling

Fig. 34 shows the activities related to FPGA modeling aspects. Employing OpenCL
kernel codes, we use the aoc compiler (INTEL, 2020a) in a full device compilation. An
aoc compilation generates several HLS design files and reports. From the reports, we
can extract the maximum frequency (fmax) for the kernel, its required HW resources,
and the latencies of each of their blocks. The synthesized files from HLS flow allow
using tools obtaining power estimations – e.g., Intel Quartus (INTEL, 2020b).

Regarding the HW resources, we can use the estimated values for the applications’
kernel to annotate the simulator concerning the HW utilization. Abstracting the HW
resources as the number of ALUTs, we obtain the HW percentage in use by multiple
HW tasks in the following way: (i) Obtain the number of ALUTs in the board interface
(HwBI); (ii) Sum the number of ALUTs in use within each PRR P executing a HW task
(HwPRRs =

∑n
P=1Hw_HwTskP ); and (iii) Dividing the sum of HwPRRs with HwBI
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by the number of ALUTs available in the device (HwDevice) – Eq. 1.

HwUtilization = (HwPRRs+HwBI)÷HwDevice (1)

4.3.1.1 Power Modeling

Since aoc generates HW design files from a kernel file (.cl), we use them to estimate
power. With the Quartus tool (INTEL, 2020b), we modify the design settings of the file
top.qpf (quartus project file) to make power estimations. We set the kernel frequency
(in the files top.sdc and base.sdc) using the value of fmax (from aoc report). After,
using the PowerPlay Power Analyzer (embedded in the Quartus tool), we estimate
the power for the device using the default toggle rate (12.5%). PowerPlay reports the
following estimations:

1. Transceiver Standby Thermal Power Dissipation

2. Transceiver Dynamic Thermal Power Dissipation

3. I/O Standby Thermal Power Dissipation

4. I/O Dynamic Thermal Power Dissipation

5. Core Dynamic Thermal Power Dissipation

6. Device Static Thermal Power Dissipation

The standby power for the periphery hardware (SPPH) is the sum of items 1 and 3
– Fig. 9 identifies the periphery HW of a FPGA. Summing the values of items 2 and
4 we obtain the value for dynamic power for the periphery hardware (DPPH). The esti-
mations for the first four items are nearly constant (only item 4 suffers little variations),
even in the case of several kernel being synthesized. SPPH and DPPH are device-level
estimations and they fit to the device model in the simulation. Item 6 (Device Static
Thermal Power Dissipation) express the standby power for the device (SPD). Regarding
the item 5, it is the dynamic power for the core (DPC), i.e., the dynamic power during
PRM’s execution when it is configured in a PRR.

As for the cited estimates, Alg. 2 shows the steps to assess the power consumption
of a PRR partitioned FPGA. A device can stand in four states: (i) PowerUp_Mode, (ii)
Configuration_Mode, (iii) User_Mode, and Wait (Fig. 39-A). When in User_Mode,
any given PRR p can be in three states: (i) PRR_Executing, (ii) PRR_Configuring,
and (iii) PRR_Idle (Fig. 39-C).

In PowerUp_Mode, we model the device consuming only the standby (static) power
for periphery and fabric HW resources. During a full configuration, we consider a blank
bitstream configuring the entire device and its PRRs. For the blank bitstream, we
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Algorithm 2 Computing Power Consumption
Require: f : FPGA object representing the device and its features
Require: t: TASK object representing a HW task possibly executing on a PRR
1: if (sc_time_stamp() == SC_ZERO_TIME) then
2: return 0.0
3: else if (f.State == PowerUp_Mode) then
4: return f.SPD + f.SPPH
5: else if (f.State == Configuration_Mode) then
6: return f.SPPH + f.DPPH + f.configPower()

. configPower() - set and return f.SPD and f.DPC during a configuration
7: else if (f.State == User_Mode) then
8: pwr = 0.0
9: pwr += f.SPPH + f.BIHW ÷ f.HW × f.SPD

. static power for periphery resources (PH) and board interface (BI) HW
10: for each PRR p of f do . evaluates each device’s PRR
11: if (p.State == PRR_Executing) then
12: pwr += t.HW ÷ (t.HW + f.BIHW )× t.Power

. Dynamic Power for a PRR, without the BI Dynamic Power
13: pwr += (p.HW − t.HW )÷ f.HW × f.SPD

. static power for the unused HW in the PRR
14: pwr += (t.HW )÷ f.HW × t.StaticPower

. static power for the used HW in the PRR
15: else if (p.State == PRR_Configuring) then
16: return p.configPower()
17: else if (p.State == PRR_Idle) then
18: if (p is configured for some task t) then
19: pwr += (p.HW − t.HW )÷ f.HW × f.SPD

. static power for the HW in the PRR not used in the core logic (PRM)
20: pwr += t.HW ÷ f.HW × t.StaticPower

. static power for the HW in the PRR used in the core logic.
21: else . p configured according the initial full (blank) bitstream
22: pwr += p.HW ÷ f.HW × f.SPD

. static power (of the blank bitstream) for the unused HW in the PRR
23: end if
24: end if
25: end for
26: if ((some PRR p is Executing) OR (some PRR p is (re)Configuring)) then
27: pwr += f.DPPH

. Dynamic Power of the periphery HW (PH) resources
28: if (some PRR p is Executing) then
29: Let hp be the highest dynamic power of the running HW tasks
30: Let hpP be the PRR configured with this highest dynamic power task
31: pwr += f.BIHW ÷ (f.BIHW + hpP.HW )× hp

. Dynamic Power of the Board Interface (BI) resources
32: end if
33: end if
34: return pwr
35: end if

use an "empty" kernel (only its prototype – kernel’s name and its arguments) to gen-
erate the required annotations (power estimations). During a (re)configuration, the
periphery HW maintains static and dynamic power consumption. Regarding the con-
figuration of a PRR or even the full device, the fabric core follows the Medium Grained
Model presented by Bonamy et al. (BONAMY et al., 2014) – abstracted as the func-
tion configPower() (Alg. 2). During a configuration process, this model stands that the
power consumption of the region is related to the static power values of before (Pprevious)
and after (Pnext) the configuration, beyond the dynamic power of the configuration con-
troller (Pcontroller). Moreover, the model uses the bitstream size – that configures the
region – and the time to transfer a 32-bit word – as a transferring time unit. With the
bitstream size (in bytes) and the bandwidth of the configuration controller, we can cal-
culate the time for the configuration of a 32-bit word and the whole bitstream. Based on
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(BONAMY et al., 2014), Eq. 2 shows the calculation of power during the configuration
of the Wth word (regarding the total configuration time T(Re)Config):

P (Wth) = Pfpga + Pprevious + Pcontroller+

(Pnext − Pprevious)×Wth ÷ T(Re)Config

(2)

Equation 2 produces an interpolation between the static power in points immediately
before and after the configuration. Pfpga represents the device’s remaining power con-
sumption, e.g., the periphery HW in a full device configuration or even the consuming
power in other PRRs that are executing an application kernel (or are in idle) while a
specific PRR is in a configuring state (PRR_Configuring).

Alg. 2 uses abstractions (like objects in object orientation) to represent the FPGA
(f ), the PRRs on it (p), and tasks in execution on a given PRR (t). The FPGA abstrac-
tion (f ) has attributes about its operation State, power consumption (SPPH, SPD,
DPPH, andDPC), and HW resources – for the device as a whole (HW ) and the board
interface (BIHW ). In this case, the number of ALUTs denotes the HW resources. Sim-
ilarly, the device’s PRR (p) provides its features such as operation State, HW resources
(number of ALUTs in a PRR – HW ), and the function to estimate the power consump-
tion during a (re)configuration (configPower()). Regarding the HW tasks executing in a
PRR, the object t maintains information about the number of ALUTs (HW ) required by
the PRM in the execution of t, the value for dynamic (Power) and static (StaticPower)
power considering only the PRM.

4.3.2 Workload Modeling

We use OpenCL applications to define workload scenarios. The tasks identification
and task graph construction activity (Fig. 34) demand the analysis of the codes and
identification of relevant steps in the OpenCL programming model. Due to OpenCL
programming model, there are some similarities across OpenCL applications. We an-
alyze the code structure and model it using a task graph. Fig. 35 shows a model of
OpenCL applications, highlighting the identified tasks and their types (Main and Elabo-
ration), beyond the edges and its variety (forward, backward, and branch). In general,
the model depicts the structure of OpenCL applications. Usually, there are backward
edges in application models where attribute N represents the number of additional cy-
cles (defining a loop).

Based on the application’s structure, we modify its code aiming to log the tasks’
latencies (code instrumentalization in Fig. 34) and execute the applications (execution
for latencies extraction - workload) in a real platform. We use average values of ten
executions to characterize the task latencies (at a range of frequencies). In this manner,
we define performance models for the application tasks that execute in CPUs or GPUs.
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4.3.2.1 FPGA Kernel Latency

Using the aoc compiler to generate simulation files, we can employ ModelSim
(MODELSIM, 2020) to simulate the kernel execution. This simulation produces wave-
form log files (.wlf ) suitable to evaluate the kernel execution behavior and its latency.
The analysis of simulation logs (signals in the .wlf file) allows estimating kernels’ la-
tency precisely. We can use specific generated signals like start_kernel and com-
pleted_items to determine the required number of cycles per item during a kernel exe-
cution. However, this strategy demands a long time involving compiling for simulation
and simulating the kernels itself, being time feasible only with small size inputs. Thus,
aiming to use a faster estimation procedure, we adopt another strategy, as follows.

Regarding HW tasks that execute in FPGA devices, we employ estimations based
on reports provided by aoc compiler (Fig. 34). Fig. 36 shows the System Viewer
portion of an kernel report. A kernel source code (.cl) contains a set of kernels (K ). A
set of blocks (B) composes each kernel k. Each block b in a Kernel k has its latency
(Lb). A block b may contain a loop with Ib iterations. Also, a block has its own thread
capacity TCb . A kernel k may have WIk work-items to execute. The kernel latency
Lk of a kernel k is given by Eq. 3 using the number of cycles (Ck) executed by a
kernel k and its operation frequency (Fk). The number of cycles executed by a kernel
k (Ck) is given by Eq. 4, regarding the number of work-items (WIk) that each kernel k
must execute and the number of cycles per item consumed by kernel k (CIk). Eq. 5
calculates the number of cycles per work-item (CIk) of a kernel k. To calculate CIk, we
need the number of consumed cycles per each block b (CBb in Eq. 6) of a kernel k and
the thread capacity of block b (TCb). The consumed cycles per block b (CBb in Eq. 6)
considers if the block has only one iteration or a loop. It is worth mentioning that in the
case of using multiple compute units in a kernel’s implementation, the number of work-
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Figure 36 – System Viewer portion of an kernel Report.

items to be processed by each compute unit will be decreased by a ratio proportional
to their number. Moreover, when employing loop unrolling, the number of iterations of
a kernel block containing unrolled loop will diminish according to its unrolling factor.

Lk = Ck ÷ Fk (3)

Ck = d
|K|∑
k=1

WIk × CIke (4)

CIk =

|B|∑
b=1

CBb ÷ TCb (5)

CBb =

(Lb +WIk)÷WIk Ib = 1

Ib × Lb otherwise
(6)
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4.4 FEHetSS – FPGA-Enabled Heterogeneous System Simulator

This section describes the FPGA-Enabled Heterogeneous System Simulator (FE-
HetSS). FEHetSS was built on top of SAVE-htlp Simulator (BETEMPS et al., 2018),
which is an extension of the SAVE simulator (MIELE et al., 2015).

FEHetSS is written in SystemC using TLM (Transaction Level Modeling) as abstrac-
tion level (CAI; GAJSKI, 2003). It uses task graphs to model the workload (applications)
– including annotations of performance model (e.g., frequency and latency) – and a set
of generic (HW) resources to set up the architecture – describing the PE type and its
power model (frequency, power, and idle power). In this work, we include a Virtual-
HWAccel – FPGA unit – that simulates the execution of an kernel as performed by a
HW accelerator. In FEHetSS, a VirtualHWAccel also features the capacity to model
PRR portions and considers DPR during the simulations.

FEHetSS receives an XML file containing a Virtual Platform which describes the
workload (applications as task graphs) and the architecture (architectural blocks) mod-
els. Fig. 37 presents an UML class diagram (GOMAA, 2011) that conceptually depicts
the elements of the FEHetSS input. Primarily, a Virtual Platform consists of an Ar-
chitecture, a Workload, and an Orchestrator. Processors compose the Architecture,
being featured by DVFS (Dynamic Voltage and Frequency Scaling) elements (Power,
Idle Power, and Frequency ). When the Processor element is a FPGA, it contains
some extra annotations. First, the Hardware Resources available in the FPGA de-
vice in terms of ALUTs (Adaptive Look-Up Table), FFs (flip-flops), RAMs (memory
blocks), and DSPs (Digital Signal Processing blocks). Secondly, the same types of
HW resources set the device’s board interface, i.e., the number of components in the
board interface. Lastly, some Operational Parameters defines the FPGA operation,
as follows: the latency for the device power-up, the size of the full bitstream file, the
bandwidth for the (re)configuration process, the dynamic power for PR controller, and
its base operating frequency.

A Workload includes all Applications. A task graph describes an Application con-
taining Nodes and Dependencies. A Node represents tasks of two types: (i) Main
tasks, which are application portions always executed sequentially by the CPU (host)
and representing tasks that coordinate the execution; (ii) Elaboration tasks (possibly
paralleled) that represent kernels executed by CPU, GPU, or FPGA. Nodes contain a
Performance Model consisting of latency and frequency values. Dependency repre-
sents edges of three types: (i) forward – designates the normal application’s advance,
(ii) backward – represents a loop edge, and (iii) branch – indicates the advance to an
elaboration task (a kernel) that can be possibly executed in distinct PEs. When a Node
represents an Elaboration Task and its mapping is FPGA, a Core Logic element de-
scribes information about the PRM operating status in the device: power, static power,
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Figure 38 – Main Components of FEHetSS System-level Simulator.

frequency, and partial bitstream file’s size. Further, a Hardware Resource element de-
scribes the number of elements in the core logic, i.e., an HW task – a kernel executed
as HW accelerator in FPGAs.

Fig. 38 describes the FEHetSS main components. The XML input file sets up
the components’ properties. The FPGA implementation employs a SystemC mod-
ule (sc_module), like the other PE types. Also, a PRR class allows representing the
concept of PRRs inside a device. The Communication Channel, as an sc_module,
provides a communication component representing buses and memory. Each PE has
a FIFO (first in, first out) scheduler to manage the execution of the tasks’ threads. In a
CPU, those threads can be interrupted. The described elements represent HW compo-
nents. Furthermore, FEHetSS has some SW components. Workload Generator uses
the descriptions of the applications in the input file and acts like a system-user trigger-
ing its beginning. The component System-calls Emulator manages the applications
executions, sending threads of the tasks to execute on the available PEs, according
to the mapping inside the applications. Orchestrator component produces logs of the
simulation including data about power, utilization, scheduling, and the simulation itself.

4.4.1 FPGA Processing Element Simulation Flow

The FPGA simulation follows the code of a module executed as a SC_THREAD, ac-
cording to the state machine described in Fig. 39 - A. Initially, the device pass through
a PowerUp_Mode, following to a full device configuration (Configuration_Mode) con-
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sidering a blank bitstream. After, there are two possible states: User_Mode and Wait.
When no HW task thread is ready to execute, the device enters a Wait state. Existing
a thread ready to execute, FPGA pass to User_Mode, executing its procedure (Fig.
39-C). User_Mode procedure executes when a new HW task thread is ready to start.
First, it searches for a previously configured PRRs that is idle – if any available, it ex-
ecutes the thread using that PRR. Otherwise, if no (pre)configured PRR is available, it
searches for an idle PRR, reconfigures it, and executes the thread. In the case of no
PRR available, the thread waits. All device’s PRRs, during system operation, follow the
state machine in Fig. 39-B. Having a previously configured HW task, a PRR can pass
to a PRR_Executing state. In turn, a PRR_Configuring state is necessary before the
execution. The FEHetSS simulation is based on a VP model, as presented in Sec. 4.3.

Considering the modeling aspects described in this chapter, we can proceed (Chap.
5) describing some experiments with the FEHetSS simulator, aiming to evaluate its
capabilities and the meeting of the thesis research challenges.

4.5 Chapter Summary

In this chapter, we have presented the modeling&simulation aspects of the the-
sis. First, we describe the SAVE-htlp simulator – presented in (BETEMPS et al.,
2018). SAVE-htlp allows to model threads with the Heterogeneous Task-level Paral-
lelism (HTLP). In HTLP, different implementations of a task (e.g., aiming CPU, GPU,
and FPGA) execute in parallel, making the called Heterogeneous Task-level Paral-
lelism.

After, we describe the modeling steps involving FPGA-Enabled architectures. It in-
cludes the modeling of the Architecture. About CPU and GPU, we use profiled data
from a platform (featuring power sensors) execution using OpenCL instrumented code.
Regarding FPGA modeling, we apply HW design tools providing estimations for la-
tency and power. The HLS tool Intel FPGA SDK for OpenCL Software (INTEL, 2020a)
provides reports and produces HW design files. From these reports, we collect esti-
mations related to maximal frequency, HW resources, and block latencies. With the
HW design files, we use the PowerPlay tool, integrated into Quartus (INTEL, 2020b)
tool, to make power estimates. Regarding Workload modeling, we use the reports from
aoc compiler (a tool from (INTEL, 2020a)) to extract the kernel’s block latencies. Thus,
with the power and latency data, we employ a power model to describe the FPGA de-
vices and a latency estimator to define an application’s HW task description capable of
execution in a VirtualHWAccel.

Last, we present the main SystemC modules of the FEHetSS simulator. We also de-
scribe its input file’s structure and the FPGA’s simulation flow. FPGA simulation allows
the device to act as a PE, or even several PEs if applying DPR features and multiple
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PRRs. FEHetSS receives a VP as input containing models of the Architecture and the
Workload. The model generation follows the methodological steps also presented in
this chapter. Architecture and Workload models are available in a VP Repository. This
repository makes its VP models available through a series of automation scripts.

In a large view, the VP modeling methodology and the FEHetSS simulator make
up an HW&SW system design framework for the evaluation of candidate solutions in
an Early DSE context. As researchers, during the development of the approach, we
actuate in many branches, as follows:

• the choice of OpenCL programming model (Host and Device code) as a basis to
model applications, employing the Polybench benchmark application’s kernel as
examples;

• the use of an HLS tool (aoc compiler) to provide kernel and device estimations;

• the utilization of HW design tool (quartus/PowerPlay) aiming to estimate power to
the HW tasks core logic and the device itself;

• the performing of platform executions with OpenCL code to extract data about
CPU and GPU power and latency;

• the preparation of the VP Repository and its VP creation scripts;

• the use of the Architecture and Workload Modeling methodology creating VP
models, including the Power and Kernel/Block(s) Latency models for FPGA de-
vice; and

• the implementation of VirtualHWAccel making up FEHetSS simulator, including
features of DPR and PRR modeling&simulation.

We can also highlight the main developed thesis’ elements, which are:

• The Architecture and Workload Modeling Methodology considering different PEs,
especially the VirtualHWAccel modeled as an FPGA featuring DPR and PRR;

• The FEHetSS simulator implementing our conceptions regarding reconfigurable
PRR-partitioned FPGA devices including the account of reconfiguration time and
power during DPR; and

• The VP repository containing several annotated model portions being available
to create solutions based on a VP description.



5 ASSESSING FEHETSS AS A SOLUTION EVALUATOR
DURING DSE AND HW DESIGN ACTIVITIES

To demonstrate the capabilities of FEHetSS, we plan four Case Studies employing
the artifacts produced by applying the methodological steps (Sec. 4.3) and the FE-
HetSS simulator (Sec. 4.4). In this chapter, we present the first two Case Studies. In
Sec. 5.1, we use the GQM approach (BASILI; CALDIERA; ROMBACH, 1994) present-
ing the Goal of each Case Study by defining the Question to answer and the Metrics to
evaluate on each one. Sec. 5.1.1 presents the workload applications, followed by the
detailing of the generation of the Architecture and Workload models (Sec. 5.1.2) by ap-
plying our methodology. Regarding the experiments, we first present a (manual) DSE
Case Study defining some heterogeneous settings to simulate/evaluate with FEHetSS
(Sec. 5.2). After, in Sec. 5.3, we employ FEHetSS to evaluate HW Design alternatives
of an application’s kernel.

5.1 Case Studies Goals and Preparation

Tab. 4 resumes the planned Case Studies evaluating FEHetSS and the mod-
eling methodology. We use the GQM (Goal, Question, Metric) Approach (BASILI;
CALDIERA; ROMBACH, 1994) to describe each Case Study and its scenarios by char-
acterizing its Goal, what Question we want to answer, and which Metric(s) we use in
each case. In the metrics column, we insert plot types aimed to show the results.

5.1.1 Experiment Workload

In the experiments, we use the Polybench benchmark (POUCHET, 2012) modeling
all its applications (1 to 15). Polybench (POUCHET, 2012) is written in C/C++ language
with OpenCL kernels. Tab. 5 describes some features of each application – including
its category, the arrays size, the number of kernels (# K), and the index space dimen-
sions. Fig. 35 (in Sec. 4.3.2) shows the Polybench applications structure – modeled
as from OpenCL codes. Most of the applications do not exhibit loops outside the ker-
nels (backward edge with N equal to zero). However, three applications comprise it
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Table 4 – Summary of Case Studies #1 and #2

Case
Study Scenario Goal Question Metric(s) Architecture

Type
Workload

Appl. Section

#1 1

Evaluate the FEHetSS’s Capability
during a (manual) DSE of
Heterogeneous Architectures
(settings), considering high-level
models produced basing the
OpenCL programming model.

Based on high-level models,
can FEHetSS provide
appropriate log metrics in
heterogeneous architectures’
evaluation during a
(manual) DSE?

- System’s Time, Energy, and
Utilization, and Simulation’s
Time.
Graphs: 3D Scatter plot and
Line chart.

- Homogeneous and
Asymetric (only CPU)
- Heterogeneous
(CPU and GPU)
- Heterogeneous (CPU
and GPU and FPGA)
- Heterog. (CPU and
FPGA) with Optimizations

All Polybench
Appl. (1-15) 5.2

#2 1

Evaluate the FEHetSS’s Capability
while assessing HW Tasks Design
Alternatives regarding high-level
models describing the FPGA
device and different HW
implementations for an
application’s kernel.

Can FEHetSS be used to
assess different HW task
implementations based on
high-level models describing
the tasks themselves and
the HW accelerator
device (FPGA)?

- System’s Time, Energy, and
Utilization, and Simulation’s
Time.
Graphs: 3D Scatter plot and
Line chart.

Heterogeneus (FPGA) 3 5.3

#2 2

Evaluate the FEHetSS’s Capability
while assessing HW Tasks Design
Alternatives regarding high-level
models describing specific FPGA
devices with different resources
and distinct HW implementationsOverview
for an application’s kernel.

Can FEHetSS be used to
assess different HW task
implementations based on
high-level models describing
the tasks themselves and the
HW accelerator devices
(FPGA) with diversified
resources?

- System’s Time, Energy, and
Utilization.
Graphs: 3D Scatter plot with
Pareto Front regarding HW
Task Implementation and
Specific FPGA Device.

Heterogeneus (FPGA) 3 5.3

Table 5 – Polybench/GPU (OpenCL) Applications (POUCHET, 2012)

ID App Description Category Array
Size

Data-
Type # K Index Space

(x,y)

# Loops
Outside
Kernel(s)

1 2DCONV 2D Convolution Convolution 4096 float 1 (32,8) 1
2 3DCONV 3D Convolution Convolution 256 float 1 (32,8) 254
3 2MM 2 Matrix Multiplications (d=a.b; e=c.d) Linear Algebra 2048 float 2 (32,8) 1
4 3MM 3 Matrix Multiplications (e=a.b; f=c.d; g=e.f) Linear Algebra 512 float 3 (32,8) 1
5 ATAX Matrix Transpose and Vector Multiplication Linear Algebra 4096 float 2 (256,1) 1
6 BICG BiCG Sub Kernel of BiCGStab Linear Solver Linear Algebra 4096 float 2 (256,1) 1
7 GEMM Matrix-multiply (C=alpha.A.B+beta.C) Linear Algebra 512 float 1 (32,8) 1
8 GESUMMV Scalar, Vector and Matrix Multiplication Linear Algebra 4096 float 1 (256,1) 1
9 GRAMSCHM Gram 4 -Schmidt decomposition Linear Algebra 2048 double 3 (256,1) 2048
10 MVT Matrix Vector Product and Transpose Linear Algebra 4096 double 2 (256,1) 1
11 SYR2K Symmetric rank-2k operations Linear Algebra 2048 float 1 (32,8) 1
12 SYRK Symmetric rank-k operations Linear Algebra 1024 float 1 (32,8) 1
13 CORR Correlation Computation Datamining 2048 float 4 † (256,1), (32,8) 1
14 COVAR Covariance Computation Datamining 2048 float 3 ‡ (256,1), (32,8) 1
15 FDTD-2D 2-D Finite Different Time Domain Kernel Stencils 2048 float 3 (32,8) 500

†: (256,1) for kernel 1, 2 and 4. (32,8) for kernel 3. ‡: (256,1) for kernel 1 and 3. (32,8) for kernel 2.

with the respective value for N: (2 - 3DCONV) 253; (9 - GRAMSCHM) 2047; and (15 -
FDTD-2D) 499.

5.1.2 Generating Architecture and Workload Models

Considering the methodological steps described in Sec. 4.3 for CPU and GPU
modeling, we perform the measures of latency and power in a real platform. We use
the Odroid-XU-3 platform featuring the Exynos 5422 MPSoC (HARDKERNEL, 2020).
This MPSoC features a big.LITTLE architecture – clusters with A15 and A7 quad-core
ARM processors – as well as a MALI-T628 MP6 GPU, also providing energy sensors
for A7 and A15 cores, Mali GPU, and memory. For idle power and (operation) power
measurement, we proceed to alter the CPU affinity during the application’s execution
(command taskset). Thus, we use real platform executions (at least ten times per
configuration) to obtain a power model for these PE types. The frequency range for the
CPU is 400 to 1400 MHz for the A7 core and 400 to 2000 MHz for the A15 core. In the
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Table 6 – Arria10GX Product Family, Available Resources, Powers, and Bitstream

Device Model
Arria10 GX 160 GX 220 GX 270 GX 320 GX 480 GX 570 GX 660 GX 900 GX 1150

ID (VP) 9 8 7 6 5 4 3 2 1
HW Resources:
Logic Elements (K) 160 220 270 320 480 570 660 900 1150
ALUTs 123020 160660 203240 239800 367180 434160 503360 679240 854400
FFs 246040 321320 406480 479600 734360 868320 1006720 1358480 1708800
RAMs 440 587 750 891 1431 1800 2131 2423 2713
DSPs 156 192 830 985 1368 1523 1687 1518 1518
Transceivers 12 12 24 24 36 48 48 96 96
GPIO 288 288 384 384 492 696 696 768 768
Power (PW) and
Idle Power (IPW):
Core Fabric IPW (W) 0.5399 0.7051 0.8920 1.0525 1.6116 1.9055 2.2093 2.9812 3.7500
Core Fabric PW (W) 0.3456 0.4513 0.5709 0.6736 1.0314 1.2196 1.4139 1.9080 2.4000
Periphery HW IPW
(Transc. + IO) (W) 0.8328 0.8328 1.3518 1.3518 1.8904 2.5858 2.5858 4.1520 4.1520

Periphery HW PW
(Transc. + IO) (W) 1.6028 1.6028 2.5965 2.5965 3.6283 4.9646 4.9646 7.9500 7.9500

Bitstream Size:
Full Device (bytes) 24940599 32571587 41204091 48616124 74440652 88019918 102049258 137706488 173217748

case of GPU, we use only the (max) 600 MHz frequency. Figures 40 and 41 present
the values, used in the VP models, for the Power (A) and Idle Power (B) of the A7 and
A15 cores, respectively. Besides, Fig. 42 presents the Power and Idle Power for the
MALI GPU (at 600MHz frequency).

For the FPGA device modeling, we choose a specific device family for the case
studies – Arria10GX (INTEL, 2018) – using Intel FPGA SDK for OpenCL Software
(INTEL, 2020a) and Quartus (INTEL, 2020b) as supporting tools to perform the pow-
er/latency estimations. According to (INTEL, 2018), the Intel Arria 10 devices are ideal
for high-performance, power-sensitive, midrange applications in diverse markets. We
generate the estimations using the specific device Arria10GX1150 (Arria10 - product
line GX 1150). However, we generate power estimates for all the other specific de-
vices in the Arria10GX family. The power estimates consider the values obtained for
GX 1150 device and proportionally calculates the values regarding the number of each
type of resource available in the respective product.

Since it is mandatory to annotate the FPGA model with the size of bitstreams, we
use the size of the configuration files generated by the aoc compilation (.aocx file). It
indicates the bitstream size concerning the initial full (blank) configuration regarding
the Arria10GX1150 product (Tab. 6). We calculate the bitstream size for the other
devices taking as a basis the latter (Arria10GX1150) and considering the number of
ALUTs in each specific product, proportionally calculating the size of the bitstreams.
Further, for each PRR, we use the size of the (.aocx) files built for a single kernel aiming
simulation with ModelSim – considering that this file contains only the information of
the simulated HW. Associated with the bitstreams is the PR controller. We use the
expected bandwidth for the Intel PR controller (INTEL, 2020b) to meet the VP model –
maximum frequency of 100MHz using 32-bit words (400 MB/s).
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Figure 40 – A7 Core: (A) Power and (B) Idle Power (by Application and Frequency).
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Figure 41 – A15 Core: (A) Power and (B) Idle Power (by Application and Frequency)

Tab. 6 resume the devices’ features showing the product name, the available HW
resources, the estimated powers for the whole device (and considering a blank bit-
stream) given by the supporting tools, and the bitstream sizes for each Arria10GX
specific device.

Regarding the workload modeling, we use the OpenCL codes of the Polybench
(POUCHET, 2012) in its original form. These implementations do not employ any op-
timization in the code. Using the aoc compiler from Intel FPGA SDK for OpenCL Soft-
ware (INTEL, 2020a), we generate reports, bitstream, and other design files for each
Polybench application. Following the steps described in Sec. 4.3.2.1, we calculate
the kernels’ latencies of each application of the Polybench. Moreover, we estimate the
kernel’s latencies considering some optimizations. Tab. 7 resumes the estimated la-
tencies. For all applications, we estimate the latency and the respective powers for the
core (module’s implementation of a kernel), also estimating the core’s HW resources
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Figure 42 – MALI-T628 Power and Idle Power (by Application at 600 MHz)

Table 7 – HW Tasks’ Implementations of the Workload’s Applications

ID Description Loop
Unrolling

Compute
Unit Applications

1 Original Kernel(s) Code – one Compute Unit and without Loop Unrolling. No 1 All

2 Two (2) Loop Unrolling (LU), applied in the kernel’s loop (when present)
and only in the most internal in the case of nested loops. 2 1 All

3 Two (2) Compute Units (CU). No 2 All

4 Four (4) Loop Unrolling (LU), applied in the kernel’s loop (when present)
and only in the most internal in the case of nested loops. 4 1 2MM(3)

5 Four (4) Compute Units (CU). No 4 2MM(3)

6 Eight (8) Loop Unrolling (LU), applied in the kernel’s loop (when present)
and only in the most internal in the case of nested loops. 8 1 2MM(3)

7 Eight (8) Compute Units (CU). No 8 2MM(3)

and the size of the partial bitstream. Besides, we consider three variants of the code:
original, with (two) loop unrolling optimization, and using two computing units in the
HW task implementation (according to Tab. 7). Tables 8, 9, and 10 show the features
of the Partial Reconfigurable Modules associated with the mentioned code variants.
Furthermore, for application 2MM (3), we estimate the same elements considering the
Loop Unrolling optimization with four (4) and eight (8) as unrolling factor; and the mul-
tiple Compute Unit optimization with also the values four (4) and eight (8). Tab. 11
present these elements.

To perform the FEHetSS simulations in the simulations of Case Studies #1 and
#2, we use the following computer: A notebook with four Intel Core i5-7200U CPUs
@ 2.5GHz, 64 bits, 4GB memory, running Linux Ubuntu 18.04.5 LTS Operating Sys-
tem. Whenever possible, we use several FEHetSS threads according to the number of
available processing cores.

5.2 Case Study #1 – DSE of Heterogeneous Settings

Tab. 12 presents the Architecture Scenarios used in the first Case Study – config-
urations 1 to 10. Regarding the workload, we use the original code of the Polybench
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Table 8 – HW Tasks’ Latencies, Powers, and Partial Bitstreams - Original Codes

ID Appl.
Freq.
(MHz)
(fmax)

Latency
(us)

Latency
(cycles)

Core
Dynamic

Power

Core
Static
Power

Core
ALUTs

Core
FFs

Core
RAMs

Core
DSPs

Partial
Bitstream

1 2DCONV 357.95 46870.91 16777441 4.2968 4.0533 11824 21317 83 13 10059016
2 3DCONV 287.50 229.14 65877 4.3516 4.0823 10070 36424 188 28 11652168
3 2MM 316.40 54072518.60 17108544885 8.5548 4.9577 19584 36902 256 11 12064052
4 3MM 307.29 1308736.79 402161727 6.0787 4.3923 29214 54972 374 16 13140096
5 ATAX 319.44 104542.57 33395079 4.6038 4.1124 13862 28496 196 5 11818240
6 BICG 306.81 108846.62 33395231 4.4123 4.0819 15173 32433 208 5 11822072
7 GEMM 301.13 445392.16 134120940 3.7126 3.9726 10984 21864 155 7 11141480
8 GESUMMV 328.12 50965.66 16722853 4.9995 4.1685 11110 29095 198 5 11656760
9 GRAMSCHM 301.13 41649.81 12542007 6.4463 4.4407 43561 63920 347 49 16182832

10 MVT 321.42 103952.78 33412502 5.1336 4.1934 22504 34720 198 11 12828428
11 SYR2K 290.17 29512170.46 8563546503 4.0922 4.0414 17143 31532 242 10 11271148
12 SYRK 306.25 3496088.35 1070677058 3.7732 3.9702 11030 21821 156 7 11072096
13 CORR 285.15 15048366.82 4291041798 6.8479 4.5287 33279 76139 432 30 15607692
14 COVAR 302.08 5777583.75 1745292498 5.4510 4.2415 19981 46246 255 14 13388068
15 FDTD-2D 335.22 37537.96 12583476 6.3249 4.4029 23562 49406 193 19 13496324

Table 9 – HW Tasks’ Latencies, Powers, and Partial Bitstreams - Two Loop Unrolling

ID Appl.
Freq.
(MHz)

(fmax)

Latency
(us)

Latency
(cycles)

Core
Dynamic

Power

Core
Static
Power

Core
ALUTs

Core
FFs

Core
RAMs

Core
DSPs

Partial
Bitstream

1 2DCONV 357.95 46870.91 16777441 4.2968 4.0533 11824 21282 81 13.5 10059016
2 3DCONV 287.50 229.14 65877 4.3434 4.0812 10070 36357 186 28.5 11652168
3 2MM 275.57 31027527.59 8550199363 4.7363 4.1472 26258 46389 338 16.0 12531588
4 3MM 275.00 733001.32 201575362 6.1897 4.4450 39297 69672 498 24.0 13140096
5 ATAX 312.50 53400.28 16687589 4.7411 4.1349 14659 31996 210 8.0 11818240
6 BICG 329.86 50589.91 16687645 5.1744 4.1925 15958 35899 219 8.0 11822072
7 GEMM 290.63 168574.54 48991975 3.8690 3.9954 14312 26573 195 11.0 11141480
8 GESUMMV 319.44 26150.05 8353489 4.9626 4.1703 11927 30557 209 7.5 11656760
9 GRAMSCHM 278.13 22613.15 6289282 7.5715 4.7117 68075 96376 523 66.0 16182832

10 MVT 335.94 49720.75 16703063 6.3340 4.3976 32281 44432 218 20.0 12828428
11 SYR2K 300.00 14278239.90 4283471971 4.5353 4.1118 18557 29851 249 15.5 11271148
12 SYRK 307.29 1743713.55 535828643 3.9421 4.0050 11724 20996 155 9.5 11072096
13 CORR 287.50 2402291.15 690658705 7.6481 4.6896 35301 86590 477 39.0 15607692
14 COVAR 322.92 2554513.89 824895109 6.7041 4.4657 21441 54031 288 19.0 13388068
15 FDTD-2D 335.22 37537.96 12583476 6.3249 4.4029 23562 49339 191 19.0 13496324

suite, triggering all 15 applications in the arrival time 0 (zero) during the simulation.
To evaluate optimization alternatives, implemented through pragmas in OpenCL code,
we also simulate VPs considering two optimization strategies (settings 9 and 10 in Tab.
12). The first one aims to raise the parallelism using two computing units in the kernels’
execution (__attribute__((num_compute_units(2)))). The other optimization focuses on
increasing the kernel pipeline employing loop unrolling (#pragma unroll 2) in the loop of
the kernels code (when present and in the most internal one in case of nested loops).
Increasing the number of computing units also extends HW utilization and memory
contention (INTEL, 2020c). Loop unrolling replicates its body multiple times allowing it
to reduce its trip count but also raising the HW resources (INTEL, 2020c).

Regarding the static and dynamic power of the CPU, since the first Case Study
simulates the execution of 15 applications together, we estimate the CPU power in
the following way. For each application a and power type pt (static or dynamic), we
obtain the weighted power Ppt using the previously calculated power of each ap-
plication (Powera,pt) times the execution time of the application (ExecT imea) during
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Table 10 – HW Tasks’ Latencies, Powers, and Partial Bitstreams - Two Compute Units

ID Appl.
Freq.
(MHz)

(fmax)

Latency
(us)

Latency
(cycles)

Core
Dynamic

Power

Core
Static
Power

Core
ALUTs

Core
FFs

Core
RAMs

Core
DSPs

Partial
Bitstream

1 2DCONV 340.28 24652.57 8388721 5.6180 4.2623 12529 33211 180 27 11023928
2 3DCONV 268.23 122.80 32939 5.7762 4.3577 19005 70589 354 57 11720396
3 2MM 284.72 30044508.44 8554272443 6.6277 4.5639 37288 70400 490 22 12126912
4 3MM 276.04 728443.88 201080864 8.2426 4.8393 55791 105319 726 33 13239924
5 ATAX 293.75 56842.69 16697540 5.8032 4.3415 25844 53588 370 10 11874256
6 BICG 278.65 59924.15 16697616 5.5110 4.2841 28406 60973 394 10 11875908
7 GEMM 305.56 219470.63 67060470 5.1610 4.2140 20831 41393 288 15 11172328
8 GESUMMV 298.30 28030.69 8361427 6.3002 4.4111 21167 56374 374 11 11732940
9 GRAMSCHM 296.88 14077.31 4179202 10.2987 5.2917 84437 123016 672 99 16279660

10 MVT 278.65 59955.14 16706251 6.1507 4.4047 43128 66036 374 22 12891816
11 SYR2K 266.20 16084574.30 4281773252 5.3001 4.2974 33195 61080 462 21 11319524
12 SYRK 318.75 1679493.42 535338529 5.4636 4.2598 20923 41307 290 15 11113488
13 CORR 285.15 4860531.87 1385980663 10.4023 5.3352 63018 145545 842 61 15752900
14 COVAR 292.61 2980841.40 872234842 8.0703 4.7920 37245 87512 488 28 13483516
15 FDTD-2D 302.08 20827.82 6291738 8.0762 4.8159 44421 94151 364 39 13598276

Table 11 – HW Tasks’ Latencies, Powers, and Partial Bitstreams for Application 2MM
(3) with FPGA Optimizations

Optimiz. Imp.
ID

Freq.
(MHz)

(fmax)

Latency
(us)

Latency
(cycles)

Core
Dynamic

Power

Core
Static
Power

Core
ALUTs

Core
FFs

Core
RAMs

Core
DSPs

Partial
Bitstream

4 LU 4 248.26 17260797.25 4285232651 5.1298 4.2673 39670 68318 510 26 13177424
4 CU 5 270.83 15792522.41 4277136222 9.8094 5.2247 72668 137197 962 44 12249816
8 LU 6 236.11 9118911.59 2153076348 6.6940 4.6341 67198 110431 866 46 14631544
8 CU 7 224.54 9524346.15 2138568111 12.2300 6.0948 143458 270856 1906 88 12501400

the measurements, dividing it by the sum of the execution time of the applications
(
∑15

a=1ExecT imea) – according Eq. 7. We apply the same estimation principle in the
other case studies, only adjusting the applications according to the specific workload.

Ppt = (
15∑
a=1

Powera,pt × ExecT imea)÷ (
15∑
a=1

ExecT imea) (7)

To perform the FEHetSS’s assessment in the Case Study related to DSE Context,
Tab. 12 (settings 1 to 10) describes the used architecture settings, including information
about the architectural scenario, type and number of PE, and the involved applications.
In all settings, the frequency to A7, A15, and MALI are, respectively, 1.4GHz, 2.0GHz,
and 0.6GHz. We explore the following scenarios in this Case Study:

• Homogeneous: only homogeneous CPU (A7 or A15).

• Asymmetric: distinct CPU processors making a big.LITTLE architecture (A7 and
A15).

• Heterogeneous (GPU Accelerated): a big.LITTLE architecture augmented with a
MALI GPU.

• Heterogeneous (GPU + FPGA Accelerated): a big.LITTLE architecture aug-
mented with MALI GPU and Arria10GX FPGA, with the applications’ kernels al-
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Table 12 – Architecture Scenarios for Case Study #1 (settings 1-10))

ID Scenario[, Acceleration, Optimization] CPU GPGPU FPGA (# PRR) Appl.
1 Homogeneous 8 A7 - - all
2 Homogeneous 8 A15 - - all
3 Homogeneous Asymmetric 4 A7 + 4 A15 - - all
4 Heterogeneous, GPU Accelerated 4 A7 + 4 A15 1 MALI - all
5 Heterogeneous, FPGA Accelerated 4 A7 + 4 A15 - 1 Arria10GX (1 PRR)* all
6 Heterog., GPU + FPGA Accelerated 4 A7 + 4 A15 1 MALI 1 Arria10GX (1 PRR)* all
7 Heterog., FPGA Accelerated 4 A7 + 4 A15 - 1 Arria10GX (2 PRRs)* all
8 Heterog., FPGA Accelerated 4 A7 + 4 A15 - 1 Arria10GX (4 PRRs)* all
9 Heterog., FPGA Accel., Optim. (2 comp. units) 4 A7 + 4 A15 - 1 Arria10GX (3† PRR)* all
10 Heterog., FPGA Accel., Optim. (2 loop unrol.) 4 A7 + 4 A15 - 1 Arria10GX (4 PRRs)* all

* Each application kernel operates at a different frequency (fmax).
† Regarding the use of four equally sized PRR, its size does not support each HW task implementation of the kernels.
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Figure 43 – Energy vs Time vs Utilization of Case Study #1 - DSE Settings (1-10 of
Tab. 12).

ternating the mapping between these PE.

• Heterogeneous (FPGA Accelerated with multiples PRRs): a big.LITTLE architec-
ture augmented with an FPGA device (Arria10GX), using a different number of
PRRs.

5.2.1 Results of Case Study #1 – DSE of Heterogeneous Systems

This section presents the results of the Case Study regarding aspects of DSE (set-
tings 1 to 10 of Tab. 12 – Sec. 5.2). Performing DSE activities, we can evaluate
metrics of the selected DSE settings. Fig. 43 presents a 3D scatter plot showing the
metrics Energy, Time, and Utilization regarding the execution of all applications – time
measures the last finished application and energy is for the system, while utilization
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is the average value between the PEs within the architecture. In Fig. 43, we can ob-
serve the heterogeneous architecture’s advantages – especially when using FPGAs
with multiples PRRs (settings 7 and 8) and employing optimized HW tasks (9 to 10).
Multiple PRRs allow using the FPGA device as multiple PEs, each PRR executing a
distinct HW task. Moreover, even with a large HW, heterogeneous FPGA settings (7–
10) can achieve better energy efficiency. In these cases, even though the HW has a
higher power dissipation, the HW tasks’ performance within the PRRs allows a lower
total energy consumption compared to other configurations.

The optimized configurations 9 and 10 provide the best trade-off for the metrics,
showing the advantages of customized (and optimized) HW tasks to process the appli-
cations’ kernels. Regarding settings 9 and 10, Fig. 44 shows a detailed plot describing
the power consumption (Fig. 44 A and B) and HW utilization (Fig. 44 C and D) of each
PE along time. These graphs show an important feature of the FEHetSS simulator –
the ability to log metrics for each PE, allowing observe the system’s behavior during the
workload execution.We can notice the variation of power and utilization, identifying the
points in time of PRRs reconfigurations. Fig. 45 presents a Power along with Time plot
of setting 9 detailing the reconfiguration points of the PRRs (at top) and the completion
of the application (at the bottom). For the reconfiguration points, we include a label
in the format r(App-PRR) – e.g., r(7-0) indicates the configuration of the Application 7
HW task in the PRR 0. In the label of application completion, the plot shows the appli-
cation ID. In this configuration (setting 9), we can note that the increase of computing
units causes a higher power dissipation and HW utilization but compensates with lower
execution time.

FEHetSS allows a rapid evaluation of VPs describing distinct architectures. The
simulations of the case study #1 settings were ≈ 24 to ≈ 166 seconds long according
to Fig. 46. The longer ones have associated with the ”time worst” configurations since
the simulation in these cases takes longer times. The preparation of the FEHetSS
inputs demands applying the presented flow and some supporting tools. However,
the possibility of quickly assessing design points from a system’s point of view is an
essential feature, even more during the initial phases of a design.

We model the applications’ kernels as a sole HW task (Fig. 35 in Sec. 4.3.2 – task
t07-FPGA), even if the implementation uses more than one OpenCL kernel – many
Polybench applications have more than one kernel according Tab. 5. These coarse
HW tasks use more resources and diminish the feasible number of PRRs. However,
if we model each of these (sub) kernels as an independent HW task, more PRRs
concurrently in use will be possible, but paying the price with more reconfiguration
points. It is a possibility to evaluate in future FEHetSS’s experimentations.

Ultimately, we can answer the question ”Based on high-level models, can FEHetSS
provide appropriate log metrics in heterogeneous architectures’ evaluation during a
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Figure 44 – Power Consumption (A and B) and HW Utilization (C and D) along time of
each PE for settings 09 and 10, respectively (top to bottom).
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Figure 45 – Power Consumption of Setting 09 detailing the Reconfiguration Points (top)
of each PRR of the Arria10GX Device and the Applications Completions (bottom).
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Figure 46 – Simulation Times for Settings 1 to 10.

Table 13 – Architecture Scenarios for Case Study #2 (settings 11-16)

ID Scenario[, Acceleration, Optimization] CPU GPGPU FPGA (# PRR) Appl.
11 Heterog., FPGA Accel., Optim. (2 comp. units) 1 A15 - 1 Arria10GX (1 PRR)* 2MM
12 Heterog., FPGA Accel., Optim. (4 comp. units) 1 A15 - 1 Arria10GX (1 PRR)* 2MM
13 Heterog., FPGA Accel., Optim. (8 comp. units) 1 A15 - 1 Arria10GX (1 PRR)* 2MM
14 Heterog., FPGA Accel., Optim. (2 loop unrol.) 1 A15 - 1 Arria10GX (1 PRR)* 2MM
15 Heterog., FPGA Accel., Optim. (4 loop unrol.) 1 A15 - 1 Arria10GX (1 PRR)* 2MM
16 Heterog., FPGA Accel., Optim. (8 loop unrol.) 1 A15 - 1 Arria10GX (1 PRR)* 2MM

* Each application kernel operates at a different frequency (fmax).

(manual) DSE?”
The answer is Yes. Based on the presented methodological steps, we generate

VPs models for the case study settings. Considering the (manual) DSE outputs, es-
pecially the metrics for time, energy, and utilization, the results provide a feasible way
to evaluate design points basing early design decisions. The case study contains set-
tings featuring HW optimizations and considering heterogeneous PEs to allocate in the
kernel’s execution. The custom settings using optimized HW tasks show the benefits
of employing HW accelerators. Also, enhanced by the reconfigurable characteristics of
FPGA devices. The total time of simulation takes almost 13 minutes for all ten config-
urations (if sequentially simulated).

5.3 Case Study #2 – Evaluating HW Design Alternatives

The second Case Study uses a single application – 3 (2MM). According to settings
11 to 16 of Tab. 13, the scenarios included in the architecture one CPU (A15@2.0GHz)
and one FPGA device (Arria10GX1150 with one PRR). Moreover, the implementation
of 2MM application extends the use of optimization statements including multiple com-
pute units (2, 4 and 8 compute units) for the kernel execution, and loop unrolling (2, 4,
and 8 as the unrolling factors) in the kernels’ loop.
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Figure 47 – Energy vs Time vs Utilization of HW Evaluation Settings (11-16 of Tab.
13).

Also aiming to evaluate the HW design alternatives, we planned another experiment
with the 2MM (3) application. We prepare an exhaustive search regarding the different
HW task implementations modeled for this application (IDs 1 to 7 in Tab. 7) and the
available specific devices of Arria10GX family (IDs 1 to 9 in Tab. 6). The architecture
settings include one CPU (A15@2.0GHz) and one FPGA device with one PRR. Thus,
we define VPs for all possible combinations of the HW task implementations and the
specific devices, totaling 63 settings. However, only 44 configurations are feasible for
2MM since we have some ”small” devices and ”big” implementations that do not match
the respective HW resources.

5.3.1 Results of Case Study #2 – HW Designs Evaluation

This section presents the results of the Case Study #2 regarding aspects of HW
design evaluations (settings 11 to 16 in Tab. 13) and the exhaustive search considering
all the available HW tasks implementations and the specific devices of the Arria10GX
FPGA family.

In the first part of Case Study #2, FEHetSS allows the evaluation of two optimization
alternatives: (i) the increase of the parallelism using multiple compute units, and (ii) the
augmenting of pipeline stages, decreasing the iterations through loop unrolling. Fig. 47
shows a scatter plot with Energy, Time, and Utilization for each HW design evaluation
setting (11 to 16 in Tab. 13). Fig. 48 and 49 show the power consumption and utiliza-
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Figure 48 – FPGA Power Consumption along Time (settings 11 to 16 of Tab. 13).
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Figure 49 – FPGA HW Utilization along Time (settings 11 to 16).

tion, respectively, along time of the FPGA device for settings 11 to 16. We can observe
the higher HW utilization in settings 12, 13, and 16 since they employ multiple com-
puting units (4 and 8, respectively) and loop unrolling (setting 16 with 8-loop unrolling).
Loop unrolling causes a smaller increase in HW resources. The variations of multiple
compute units and loop unrolling influence power dissipation, but it is less intense with
the latter. Further, the lower execution time and power consumption of setting 16 (with
an eight loop unrolling factor) provide a better trade-off, providing the lowest energy
consumption. For the 2MM (3) application, loop unrolling (with unrolling factor equal
to 8) appears to be the more performance efficient optimization, overcoming the use
of the same number of computing units. A designer can use FEHetSS to enable early
exploration and evaluation of HW component design alternatives, including FPGA op-
timizations assessment. Fig. 50 shows the simulation times for the configurations 11
to 16.

Answering the question ”Can FEHetSS be used to assess different HW task imple-
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Figure 50 – Simulation Times for Settings 11 to 16.

mentations based on high-level models describing the tasks themselves and the HW
accelerator device (FPGA)?”, we believe the answer is Yes. When modeling optimiza-
tions, like loop unrolling and multiple computing units, each HW task implementation
demands different HW resource amounts as power dissipation (and, consequently, en-
ergy consumption). Also, the task latency influences the applications’ execution time.
Thus, these aspects characterize an optimization problem since we need to find a
trade-off considering time, energy, and HW utilization by varying the PRM implemen-
tation. Through OpenCL pragmas, we indicate to the HLS tools which optimization ap-
plies. Regarding FEHetSS models, the optimizations change the models’ annotations
in terms of kernel latency, core logic power, and HW resources demanding. Thus, a
simple modification in the VP models allows FEHetSS to produce a valuable system
design outcome.

Regarding scenario 2 of Case Study #2, we complement the first scenario by per-
forming an exhaustive search of VPs (solutions) using the 2MM (3) application as the
system’s workload and evaluating the combinations of the available FPGA-related mod-
els in the VP repository, specifically the HW tasks implementations and the specific
devices of the Arria10GX device family. Fig. 51 presents the 44 evaluated solutions
and its Pareto front (PF). For each solution in the PF, we identify the respective pair
{specific device, HW task implementation}. It is worth to note that the implementation
six (6) – using eight-loop unrolling (Tab. 7) – appears five times in the 10-points PF,
being accompanied by the devices 1 to 5 (Tab. 6). We can highlight the pairs {5, 6},
{4, 6}, and {3, 6}. These settings allow a finer tune between the eight-loop unrolling
implementation (6) and devices five to three (5, 4, and 3), providing a lower energy
consumption. The HW task implementation (6) can only match with the devices one
(1) to five (5) since the smaller devices (6-9) cannot accommodate the respective mod-
ules (the HW task implementations). The smallest device (9) appears in the PF but
only supports the simpler HW task – the original 2MM (ID 1 in Tab. 7).
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We advocate the answer for the question:
”Can FEHetSS be used to assess different HW task implementations based on

high-level models describing the tasks themselves and the HW accelerator devices
(FPGAs) with diversified resources?” is also Yes.

In this case study scenario, we employ all Arria10GX devices (according to Tab. 6),
combining them with the 2MM (Appl. 3) HW task implementations (Tab. 7) totaling 63
combinations. Through the search, some settings result in errors. It happens due to the
non-matching between the available HW resources in a PRR and the respective PRM.
In the end, forty-four combinations produce suitable outcomes. Utilizing the created
models, we use FEHetSS to evaluate HW designs with different optimizations for an
application’s kernel. Besides, VPs simulations with FEHetSS allow the assessment of
the device’s ”size” to employ in a system design.

5.4 Chapter Summary

This chapter has presented the first two experiments employing the modeling
methodology and the FEHetSS simulator, organizing them according to the Case Study
and Scenarios. Case Study #1 has promoted a manual DSE using different archi-
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tecture types in ten settings with a mix of processing elements employed to process
the applications’ kernels. Scenario one of Case Study #2 has experimented with the
FEHetSS’s capability in evaluating HW design implementations considering an FPGA
device also employing distinct optimizations for the HW task. In scenario two, we have
combined FPGA devices from the Arria10GX family and HW optimizations.



6 EVALUATING FEHETSS IN A HEURISTIC-BASED DSE EN-
VIRONMENT

This chapter presents the Case Studies #3 and #4, both aimed to answer the Ques-
tions described in Sec. 6.1. In Case Study #3 (Sec. 6.2), we employ FEHetSS to
rapidly evaluates solutions in conducting two exhaustive searches considering specific
design spaces. Regarding Case Study #4, Sec. 6.3 evaluates the performance of
FEHetSS integrated into an Optimization Heuristic-based DSE environment designing
some simulation scenarios for them. This Case Study aims to provide a proof of con-
cept that employing System-level Simulators (like FEHetSS) acting as a design point
evaluation tool is a feasible and worth choice.

6.1 Goals for Case Studies #3 and #4

Sections 5.1.1 and 5.1.2 has presented the workload applications and the gener-
ation of model artifacts available in the VP repository for setting up simulations with
FEHetSS. Thus, Case Studies #3 and #4 use the repository in the generation of the
solutions. In this section, we present the goals of the experiments also using the GQM
approach (BASILI; CALDIERA; ROMBACH, 1994). Tab. 14 shows the Case Stud-
ies and its scenarios by depicting its Goals, the Questions to be answered, and the
Metric(s) for evaluation to be employed in each case. In the metrics column, we insert
a plot type aimed to show the results.

In the simulations of the Case Studies #3 and #4, we use a desktop with six Intel
Core i5-8400 CPUs @ 2.8GHz, 64 bits, 8GB memory, running Linux Ubuntu 18.04.5
LTS Operating System. Whenever possible, we use several FEHetSS threads accord-
ing to the number of available processing cores.

6.2 Case Study #3 – Using FEHetSS in Exhaustive Search

FEHetSS is a System-level Simulator that provides a rapid simulation of VPs. Aim-
ing to show this feature, we planned exhaustive searches to perform with some Poly-
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Table 14 – Summary of Case Studies #3 and #4

Case
Study Scenario Goal Question Metric(s) Architecture

Type
Workload

Appl.
Planning
Section

#3 1

Assess FEHetSS simulator
performing Exhaustive
Searches of VPs aiming to
find the design space PF.

Can FEHetSS be used to
perform Exhaustive Searches
in a feasible time, providing
suitable Metrics to identify the
design space’s PF?

- System’s Time, Energy, and
Utilization.
Graphs: 3D Scatter plot with
Pareto Front regarding Appl.
and its Kernel(s) Mappings.

Heterogeneous
(GPU and FPGA) 4, 7, and 12 6.2

#3 2

Assess FEHetSS simulator
performing Exhaustive
Searches of VPs aiming to
find the design space PF.

Can FEHetSS be used to
perform Exhaustive Searches
in a feasible time, providing
suitable Metrics to identify the
design space’s PF?

- System’s Time, Energy, and
Utilization.
Graphs: 3D Scatter plot with
Pareto Front regarding Appl.
and its Kernel(s) Mappings.

Heterogeneous
(GPU and FPGA) 3, 14, and 15 6.2

#4 1

Evaluate FEHetSS integrated
into a Heuristic-based DSE
Environment acting as a design
point evaluator. A set of DSE
parameters configures the
design exploration.

Can a designer employs
FEHetSS as a solutions’
evaluator into a Heuristic-based
DSE Environment that produces
good PF approximations of the
design space?

- System’s Time, Energy, and
Utilization, and DSE
Performance Indicators
(HV and HR).
Graphs: 3D Scatter plot with
Pareto Front regarding Appl.
and its Kernel(s) Mappings,
and Boxplots for HV and HR

Heterogeneous
(GPU and FPGA) 4, 7, and 12 6.3

#4 2

Evaluate FEHetSS integrated
into a Heuristic-based DSE
Environment acting as a design
point evaluator. A set of DSE
parameters configures the
design exploration.

Can a designer employs
FEHetSS as a solutions’
evaluator into a Heuristic-based
DSE Environment that produces
good PF approximations of the
design space?

- System’s Time, Energy, and
Utilization, and DSE
Performance Indicators
(HV and HR).
Graphs: 3D Scatter plot with
Pareto Front regarding Appl.
and its Kernel(s) Mappings,
and Boxplots for HV and HR

Heterogeneous
(GPU and FPGA) 3, 14, and 15 6.3

#4 3

Evaluate FEHetSS integrated
into a Heuristic-based DSE
Environment acting as a design
point evaluator. A set of DSE
parameters configures the
design exploration.

Can FEHetSS be integrated
into a Heuristic-based DSE
Environment providing
diversified quality solutions?
Also, demonstrating the
exploration of the architecture
features during the
solutions quest?

- System’s Time, Energy, and
Utilization.
Graphs: 3D Scatter plot with
Pareto Front regarding
Architecture Features.

Heterogeneous
(GPU and FPGA)

1, 2, 5, 6, 8,
and 10 6.3

bench applications. First, we define the VP’s workload to initiate the applications 4
(3MM), 7 (GEMM), and 12 (SYRK) at the time zero. According to (COSTA et al., 2019),
GPU is suitable to execute the kernel of the application 4 (3MM), as well as CPU has
a better performance with 12 (SYRK), regardless of both PEs providing good perfor-
mance with 7 (GEMM). Thus, we consider these applications to be from different pro-
files. Moreover, we reduce the design space restricting the architecture characteristics
in the experiment scenario, as shown in the following items.

• 3 Applications from Polybench

– 3MM (4), GEMM (7), and SYRK (12) - Tab. 5

• Architecture including:

– A7 and A15 CPUs, Mali-T628 GPU, and Arria10GX FPGA as PE

• CPU clusters with 2 or 4 cores

• Frequencies range:

– 600-1400 for A7 CPU in 200MHz steps

– 600-2000 for A15 CPU in 200MHz steps

– 600MHz for MALI GPU

– 100 MHz for Arria10GX FPGA (except for the PRR)

• 1, 2, or 3 PRRs in Arria10GX FPGA device
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• Specific Devices from Arria10GX Family (matching with the HW tasks)

– Arria10GX320, Arria10GX480, and Arria10GX570 (IDs 6, 5, and 4 in Tab. 6)

• 3 HW task implementations

– (1) original, (2) with 2-loop unrolling, and (3) with 2 compute units (IDs ac-
cording to Tab. 7)

As a second exhaustive search, we elect other three applications of Polybench, also
considering as from different profiles (COSTA et al., 2019) but being applications with
higher computational cost in terms of execution time. The applications are 2MM (3),
COVAR (14), and FDTD-2D (15). The architecture may include the same types of PEs
as the previous search. Besides the number of CPUs in the clusters, the frequencies
range, the number of PRRs, and the HW task implementations maintain the same as
the first exhaustive search. The employed devices are Arria10GX480, Arria10GX570,
and Arria10GX660 (IDs 5, 4, and 3 in Tab. 6).

For both scenarios, we prepare automation scripts that initiate separate threads
executing different VPs. It logs the results of each simulation. It is worth mentioning the
architecture/workload models of the VP may do not match each other – e.g., may occur
a situation where an HW task demands more resources than the available on a PRR
into an equally PRR-partitioned FPGA device. In this situation, FEHetSS produces an
error message and the searching script passes to the next VP evaluation.

6.2.1 Results of Case Study #3 – FEHetSS in Exhaustive Search

This section shows the results of Case Study #3. The exhaustive searches consider
3MM (4), GEMM (7), and SYRK (12) applications in the first scenario. After, the 2MM
(3), COVAR (14), and FDTD-2D (15) applications are the workload.

Fig. 52 (A) presents a scatter plot of the first space exploration using three dimen-
sions – Time, Energy, and Utilization – it is worth to recall we desire solutions that
minimize Time and Energy, maximizing Utilization. Also, Fig. 52 (B) shows only the
Pareto Front (PF) solutions (VPs) of the evaluated Design Space. We also indicate the
VPs profile presenting the mapping of the applications’ kernel(s) using the following
IDs: (1) CPU; (2) GPU; and (3) FPGA. For each profile, we present its number of solu-
tions. In a similar way, Fig. 53 (A) presents a scatter plot of the second design space
evaluation, also detailing the PF in Fig. 53 (B). We write a Python code, based on an
idea presented in (SHIELDS, 2015), to extract the PF from the simulations logs.

Analysing Fig. 52, we notice the high number of PF solutions in the { (4,2) (7, 3) (12,
1) } profile. This indicates its mappings providing a good trade-off for the applications
4, 7, and 12. It also corroborates, in part, with the claims of (COSTA et al., 2019)
indicating GPU to process the kernel(s) of application 4 and CPU to application 12.



114

(A)

Time(s)
0510152025303540

Energy(J)

050100150200250300

Ut
iliz

at
io

n(
%

)

0

10

20

30

40

50

60

70

Evaluated Solutions (112442)
pf{ (4, 3) (7, 1) (12, 2) }(4)
pf{ (4, 2) (7, 1) (12, 1) }(1)
pf{ (4, 1) (7, 3) (12, 2) }(6)
pf{ (4, 1) (7, 2) (12, 2) }(1)
pf{ (4, 2) (7, 1) (12, 2) }(3)
pf{ (4, 2) (7, 2) (12, 1) }(6)
pf{ (4, 2) (7, 3) (12, 1) }(40)
pf{ (4, 3) (7, 2) (12, 3) }(7)
pf{ (4, 2) (7, 1) (12, 3) }(4)

(B)

Time(s)
0510152025303540

Energy(J)

050100150200250300

Ut
iliz

at
io

n(
%

)

0

10

20

30

40

50

60

70

pf{ (4, 3) (7, 1) (12, 2) }(4)
pf{ (4, 2) (7, 1) (12, 1) }(1)
pf{ (4, 1) (7, 3) (12, 2) }(6)
pf{ (4, 1) (7, 2) (12, 2) }(1)
pf{ (4, 2) (7, 1) (12, 2) }(3)
pf{ (4, 2) (7, 2) (12, 1) }(6)
pf{ (4, 2) (7, 3) (12, 1) }(40)
pf{ (4, 3) (7, 2) (12, 3) }(7)
pf{ (4, 2) (7, 1) (12, 3) }(4)

Figure 52 – Case Study #3: (A) Exhaustive Search for Appl. 4, 7, and 12. (B) Only
its Pareto Front (PF). {(Appl. ID, Map. PE), ...}(# Solutions). PE - 1: CPU; 2: GPU; 3:
FPGA.
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Figure 53 – Case Study #3: (A) Exhaustive Search for Appl. 3, 14, and 15. (B) Only
its Pareto Front (PF). {(Appl. ID, Map. PE), ...}(# Solutions). PE - 1: CPU; 2: GPU; 3:
FPGA.
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The kernel(s) of application 7 better match with FPGA, since 46
72

(63.88855%) of the PF
solutions use this mapping, against 11

72
(15.2771%) for applications 4 and 12 individually.

On the other hand, Fig. 53 presents fewer profiles in the PF solutions, but main-
taining the majority (56

83
, ≈ 67.46979%) in two profiles – pf{(3, 2) (14, 3) (15, 1)} and pf{(3,

2) (14, 3) (15, 3)} – where applications 3 and 14 show better results with the mappings
to PE 2 (GPU) and 3 (FPGA), respectively. Moreover, we can perceive that FDTD-2D
(15) application, specifically its kernel(s), enables a good performance when executed
in any of the three evaluated PE (CPU(1), GPU(2), or FPGA(3)).

Usually, an exhaustive search is not an option when dealing with HW/SW systems
due to the design space size. However, if a designer can diminish that space by re-
stricting the search parameters, FEHetSS allows a rapid evaluation. In scenario 1,
the search demanded a little over a day to complete (25.51 h). In the second situa-
tion, which contains time demanding applications, the demand took almost 15 days
(14.72 days). In both scenarios, regarding architecture parameters, we have the fol-
lowing items: two values for the number of CPU cores; five and eight values in the
A7 and A15 frequency ranges, respectively; two CPU models (A7 and A15); three val-
ues for PRR; three different devices; and three HW task implementations. About the
applications/mappings, we have three possible kernel mappings for three different ap-
plications. Therefore, the number of solutions to evaluate in both exhaustive searches
is (2×5×8×2×3×3×3)× (33) = 116640. We recall that several solutions are not fea-
sible due to incompatibility between the HW task implementation (PRM) and the PRR.
The available HW resources on each PRR vary according to their number (with more
PRRs, fewer HW resources are available). Thus, the number of feasible (evaluated)
solutions were 112442 and 114240 for scenarios 1 and 2, respectively.

Aiming to answer the question ”Can FEHetSS be used to perform Exhaustive
Searches in a feasible time, providing Metrics to identify the design space’s PF?”, we
evaluate two scenarios related to exhaustive searches. In both cases, FEHetSS evalu-
ates more than one hundred thousand settings. The first considers a light-demanding
application set, while the second includes applications that take longer simulation
times. Even with reduced design space, the second exploration took several days
to conclude. Both scenarios simulate the whole application. One way to shrink the
exploration time is to model only the applications’ kernels, discarding most of the other
tasks. Although abstracting away a significant part of some applications, such reduc-
tion could still provide a workload core’s evaluation in a shorter time. Although the
produced logs characterize the design spaces, the time demand exposes a necessary
trade-off in apply exhaustive searches – simulation time versus optimal Pareto front
identification. Thus, we answer the question as follows: Yes, but it depends on the de-
sign space size, simulation demand, and outcome breadth. If the designer can make
their evaluation based on ”reduced” search parameters, the time to pay in simulation
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and searching may be worth.

6.3 Case Study #4 - Evaluating FEHetSS in an Heuristic-based
DSE

We prepare a DSE environment including an optimization heuristic – Simulated
Annealing (SA) (FRANZIN; STüTZLE, 2019) – and our system-level simulator – FE-
HetSS. SA guides the exploration of the design space, and FEHetSS evaluates the
design points during DSE. A set of C++ functions implements the simulated annealing
heuristic. It integrates FEHetSS in the heuristic strategy by initiating simulation threads
that evaluate a given solution (a virtual platform). Figure 27, described in the beginning
of Chapter 4, provides a representative view of the environment components and its
interactions.

Based on the DSE parameters, the heuristic deals with the solutions, randomly cre-
ating and altering them, using models available in the Virtual Platform (VP) repository.
The DSE parameters contain the alternatives or range of values of the VP elements.
As for architecture, the parameters describe the feasible PE types, the number of PEs,
the frequency range for each PE model, the number of PRRs (for HW accelerators
– FPGA) to be used, the available specific devices (for FPGA), and the HW task im-
plementations usable as HW tasks (FPGA). The parameters describe the workload
defining each application (as an ID) and its arrival time in the simulation.

VP repository contains power models for the architecture elements (PE), sorted by
the PE type (CPU, GPU, and FPGA), its respective model, the application, and the
frequency range. Regarding the workload, the available application’s models describe
the performance annotations considering the different types of tasks (elaboration or
main) existing in the applications and according to a frequency range. We can use the
VP repository in several ways: manually, through an automation script, or within a DSE
environment/heuristic. A collection of text files (in XML format) organized in folders
according to the applications and processors (PE) make up the VP repository. On the
other hand, a set of shell scripts allows creating a FEHetSS’s input file that describes
a VP – an XML file with a structure according to Fig. 37 (Chap. 4).

SA creates random settings as candidate solutions to evaluate during the DSE by
using the FEHetSS simulator. According to the metrics provided by FEHetSS, the
evaluation model component provides the solution evaluation. Using a Random Walk
component, SA extracts the average evaluation differences (avg∆) between two con-
secutive solutions evaluating a fixed number of random solutions. This averaged value
dictates the initial and final Temperature to use in the DSE processing. After the ran-
dom walk, SA initiates its flow using stop and acceptance criteria to assess the DSE
termination and acceptance of solutions. The Temperature parameter controls the
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Table 15 – Architecture Types Description and Its Processing Elements

ARCH
ID Architecture Description A7 A15 MALI Arria10GX

0 Homogeneous (LITTLE - A7) 3 7 7 7
1 Homogeneous (big - A15) 7 3 7 7
2 Asymmetric (LITTLE, big) 3 3 7 7
3 Heterogeneous - GPU Accelerated (LITTLE, Mali) 3 7 3 7
4 Heterogeneous - GPU Accelerated (big, Mali) 7 3 3 7
5 Heterogeneous - GPU Accelerated (LITTLE, big, GPU) 3 3 3 7
6 Heterogeneous - FPGA Accelerated (LITTLE, FPGA) 3 7 7 3
7 Heterogeneous - FPGA Accelerated (big, FPGA) 7 3 7 3
8 Heterogeneous - FPGA Accelerated (LITTLE, big, FPGA) 3 3 7 3
9 Heterogeneous - FPGA+GPU Accelerated (LITTLE, GPU, FPGA) 3 7 3 3

10 Heterogeneous - FPGA+GPU Accelerated (big, GPU, FPGA) 7 3 3 3
11 Heterogeneous - FPGA+GPU Accelerated (LITTLE, big, GPU, FPGA) 3 3 3 3

DSE. SA’s algorithm includes procedures for cooling, restarting, or increasing this pa-
rameter. The next section describes the Simulated Annealing (SA) heuristic integrated
with a DSE environment.

6.3.1 Simulated Annealing as a DSE Heuristic

We adapt the component-based SA description presented by (FRANZIN; STüT-
ZLE, 2019) in a DSE environment that includes the FEHetSS simulator as a solution
evaluation component. The simulated annealing (SA) module separately executes the
DSE for each type of architecture. Alg. 3 describes the SA heuristic used in the DSE
environment. Alg. 4 describes the strategy to explore the neighborhood of an initial
and random generated solution. Once a solution assessment is necessary, the SA
fires threads from the FEHetSS simulator to perform such an evaluation.

In the algorithms, for the evaluation of a solution S, we use the magnitude of a 3D
vector (Eq. 8) – from the origin (0, 0, 0) the lower the better – in a space with the dimen-
sions Time, Energy, and 1.0 ÷ Utilization (inverse of the utilization) obtained with a
FEHetSS simulation. Thus, when comparing two solutions (VPs), the best is that with
the lowest evaluation value. The purpose regarding Time and Energy is minimization.
About Utilization, the goal is maximization intending to find solutions that use most of
the architectural elements. We advocate this strategy aiming to minimize the system
cost.

S.Evaluation =
√
S.T ime2 + S.Energy2 + (1÷ S.Utilization)2 (8)

The algorithms refer to an Architecture Type code (defined by an ID). It describes
the PE models present in the solution (VP). This information indicates to the DSE
the feasible elements to include in the VP. The VP repository contains models of the
A7 (LITTLE) and A15 (big) CPUs, MALI-T628 GPU, and Arria10GX FPGA. Tab. 15
describes the Architecture Types indicating the PE Models included on each.

A set of parameters configures the DSE execution using the SA heuristic, according
to Fig. 54. These parameters describe the range of possible values of each charac-
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Algorithm 3 DSE using the Simulated Annealing (SA) Heuristic – based on the SA
formulation presented on (FRANZIN; STüTZLE, 2019)
.
Require: Architecture Type (arch) - featured by its processing elements (PE)
Require: current, next, best - solution 〈description, results〉

1: 〈avg∆, current〉 ← RandomWalk(rwSize, arch)
. rwSize is the size of the Random Walk

. Random Walk evaluates rwSize
solutions (with FEHetSS) and calculates the average Delta (avg∆) value between
the Evaluations of two subsequent solutions to use in the calculation of the Initial
and Final Temperatures. Besides it returns the best evaluated solution.

2: best← current . Maintain the best solution so far
3: i← 0
4: 〈InitialTemp, F inalTemp〉 ← InitializeTemperature(avg∆)

. Calculate the Temperatures – initial and final
. According to avg∆, calculates the necessary temperature to

get a user-defined initial probability (0.9) to accept worsening solutions. Similarly,
calculates the final temperature (probability of 0.001)

5: T ← InitialTemp
6: while StoppingCriterion(T ) is not met do

. Stops when the Temperature T achieves FinalTemp
7: i← i+ 1
8: next← EvaluateNeighborhood(arch)

. Creates a new solution, evaluates it, and its "near" neighbors returning to
next the best-evaluated solution.

. EvaluateNeighborhood is described in Alg. 4
9: if AcceptanceCriterion(next, current, T ) then

. ∆ = next.Evaluation− current.Evaluation
. if (∆ < 0.0) ∨ (e

−∆
T >= randomV alue())

10: current← next
11: if ImprovesOver(current, best) then

. if current is better than best
12: best← current . update best
13: end if
14: end if
15: if TemperatureLength(T ) is met then . at least one accepted solution
16: T ← CoolingScheme(T ) . T = T × 0.90
17: end if
18: T ← TemperatureRestart(T )

. restart T if k (10) moves without an accepted solution
19: end while
20: return best(s)
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Algorithm 4 EvaluateNeighborhood
.
Require: Architecture type (arch) - featured by its processing elements (PE)
Require: maximum concomitantThreads for VP simulations using FEHetSS

1: initSol← NewCandidateSolution(arch) . New random (initial) solution
2: best← EvaluateSolution(initSol)

. Evaluate the received solution with FEHetSS maintaining it as the best
solution so far.

3: n← 0
4: size← NeighboursToEvaluate(arch, initSol) . Identify the changeable
features (and its number) to modify in the initial solution. Changeable features are
characteristics with more than one possible value in the VP description.

5: while size neighbours is not evaluated do . Evaluates each one of the size
neighbours – according to the number of the changeable features

6: nThreads← suitable value according concomitantThreads and size
7: for a← 1 to nThreads do
8: Neighborhooda ← Neighbour(initSol, arch, n+ a)

. creates a ”near” neighbour (identified by n+ a) changing one feature in
initSol

9: Neighborhooda ← fork(EvaluateSolution(Neighborhooda))
. creates a thread for the Neighborhooda evaluation using FEHetSS

10: end for
11: wait() . wait the threads join
12: for a← 1 to nThreads do
13: if ImprovesOver(Neighborhooda, best) then

. Verifies if Neighborhooda is a better solution than best
14: best← Neighborhooda . maintain the best solution
15: end if
16: end for
17: n← n+ nThreads
18: end while
19: return best . return the best solution between the evaluated neighbours

teristic of the solutions. Based on the DSE parameters, SA can generate random
solutions (Virtual Platforms - VPs) – each one with the structure described in Fig. 55,
called VP description. A VP description indicates what PEs participate in the sys-
tem’s architecture and what applications are in the system’s workload, also defining
the mapping of the applications’ tasks (including HW tasks to run in an FPGA device)
in the architecture’s PE. Fig. 55 also illustrates the changeable features of a solution.
Alg. 4 uses these features to explore the (near) neighbors of a randomly generated
solution – i.e., generates a new solution that is near from the original one, but with
at least one different feature. A VP mainly contains the Architecture (ARCH) and the
Workload (WRKLD) descriptions, also detailed in Figures 56 and 57, respectively.

Fig. 56 shows the alternatives and possible values of the architecture’s PE charac-
teristics. The PE features description includes its type, number, model, and frequency,
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Figure 54 – Parameters for DSE Configuration

also describing the number of PRRs and specific devices in the case of FPGA. Besides,
Fig. 57 illustrates the elements that model each application of the workload, indicating
its ID and arrival time, beyond the PE type, its model, and frequency for the reference
mapping of the main tasks, as well as for the elaboration tasks. For the elaboration
tasks mapped to FPGA, the description indicates which HW task implementation to
use. All these VP model elements are available in the VP repository presented in Sec.
4.1.

6.3.2 Heuristic-based DSE Experimentation

Integrated into a heuristic-based DSE environment, the experimentation with FE-
HetSS follows the hypothesis that a System-level Simulator provides, in a feasible time,
suitable metrics in the early phases of the system’s design, even based on high-level
models describing the VP. With this in mind, we prepare DSE executions considering
some of the Polybench applications as workload. To allow the DSE’s performance
evaluation, we planned to employ the outputs of Case Study #3, presented in Sec. 6.2,
as a basis for comparison between the DSE and Exhaustive Search simulations. As
previously described in this section, the DSE Environment receives some parameters
that direct the exploration. Thus, aiming to allow a fair comparison, we employ com-
patible parameters with the exhaustive searches presented in Sec. 6.2. We plan three
experimentation scenarios using the DSE environment, as follows:

1. Applications 4 (3MM), 7 (GEMM), and 12 (SYRK) running in an architecture
type 11 – Heterogeneous: FPGA+GPU Accelerated (LITTLE, big, GPU, FPGA)
– since the time zero. The possible HW task implementations for the applica-
tions’ kernel are 1, 2, and 3, according to Tab. 7. The CPU clusters may con-
tain two or four cores using a sparse frequency range each (400-1400 MHz and
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400-2000MHz, in steps of 200 MHz, for A7 and A15 cores, respectively). The
architecture may contain only one GPU (at 600MHz) and one FPGA (at 100MHz,
except for PRR portions). The latter with 1, 2, or 3 PRRs. The specific FPGA
devices are 4, 5, and 6 (according to Tab. 6). We run 30 times this scenario
aiming to evaluate the DSE performance.

2. Applications 3 (2MM), 14 (COVAR), and 15 (FDTD-2D) initiating at time zero. The
architecture features are the same of scenario 1, except for the FPGA devices –
IDs 3, 4, and 5 according to Tab. 6. This scenario simulates 15 times in the DSE
Environment.

3. Applications 1 (2DCONV), 2 (3DCONV), 5 (ATAX), 6 (BICG), 8 (GESUMMV),
and 10 (MVT) starting at time zero. Tab. 16 shows the DSE parameters for this
scenario.

To evaluate the DSE results, specifically the experimentation scenarios 1 and 2, we
employ the output of the first and second experiments of Case Study #3 (Sec. 6.2),
respectively. These outputs come from exhaustive searches and contain a Pareto Front
(PF). Therefore, these PFs can represent the optimal solutions of a Design Space. It is
suitable to employ in the DSE output’s evaluation since we can extract the respective
PF from the DSE outputs and use them as PF approximations. We implement a Python
code, based on a sample code from a stackoverflow forum (SHIELDS, 2015), to extract
the PF from the DSE logs.

Considering the PF and its approximations, we can use performance indicators to
evaluate the DSE. One of these indicators is the Hypervolume (also known as S met-
ric, hyper-area or Lebesgue measure), one of the most used and relevant measures
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Figure 56 – Architecture Description Details

to evaluate Multi-Optimization Problems according to several authors (RIQUELME;
VON LüCKEN; BARAN, 2015)(HALIM; ISMAIL; DAS, 2020)(AUDET et al., 2020). It
is defined as a volume in the objective function space that covered by pi(i = 1, . . . , N)

of non-dominated set solutions (HALIM; ISMAIL; DAS, 2020). Hypervolume is a unary
metric that measures the size of the objective space covered by an approximation set
(RIQUELME; VON LüCKEN; BARAN, 2015) – a PF approximation. It is the volume of
the space in the objective space dominated by the PF approximation A and delimited
from above by a reference point r ∈ Rm such that for all z ∈ A, z ≺ r (AUDET et al.,
2020) (≺ means dominates). Hypervolume (HV) is given by Eq. 9 , where λm is the
m-dimensional Lebesgue measure (AUDET et al., 2020). Fig. 58 illustrates the Hyper-
volume indicator in a two objective space (FONSECA; PAQUETE; LOPEZ-IBANEZ,
2006). A reference point (r in Fig. 58) must be used to calculate the covered space
(RIQUELME; VON LüCKEN; BARAN, 2015).

HV (A, r) = λm(
⋃
z∈A

[z; r]) (9)

We employ a HV implementation (WESSING, 2020), available in (RUDOLPH,
2020), to calculate the HV indicator. This code is a reimplementation of the HV cal-
culation algorithm presented in (FONSECA; PAQUETE; LOPEZ-IBANEZ, 2006), being
able to extract the HV from PF in design spaces of two or more dimensions.

Hyperarea ratio (HR) is another relevant indicator. If the PF is known (as the PF of
an exhaustive search) and given a reference point r, the HR of an approximation A (as
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Figure 58 – Hypervolume Indicator in a Two-Objective Space (extracted from (FON-
SECA; PAQUETE; LOPEZ-IBANEZ, 2006))

the DSE output’s PF ) is given by Eq. 10.

HR(A,PF, r) =
HV (A, r)

HV (PF, r)
(10)

The lower the ratio is (converges toward 1), the better the approximation is (AUDET
et al., 2020). Both HV and HR are convergence and distribution indicators (AUDET
et al., 2020).

Regarding the reference point r, we employ a simple strategy to calculate it.
Considering all points of a PF in the exhaustive search, we calculate the respec-
tive Nadir point (WANG; HE; YAO, 2017). We can derive Nadir point using the ex-
treme points of a non-dominated solution set (PF) considering the objective functions
in a design space (WANG; HE; YAO, 2017). Fig. 59 presents an illustration of a
Nadir Point in a two-dimensional space, additionally showing the Ideal and Worst
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Table 16 – DSE Parameters for Experimentation Scenario 3

Feature Parameters
Architecture Types 6 7 8 9 10 11 (according to Tab. 15)
# CPUs (alternatives for the number
of CPU cores in a cluster) 2 3 4 5 6 7

CPU Model 1 Freqs (A7) 400 500 600 700 800 900 1000 1100 1200
1300 1400

CPU Model 2 Freqs (A15) 400 500 600 700 800 900 1000 1100 1200
1300 1400 1500 1600 1700 1800 1900 2000

# GPUs 1 2
GPU Model 1 Freqs (MALI) 600
# FPGAs 1
FPGA Model 1 Freqs
(not in PRRs) (Arria10GX) 100

FPGA: # PRRs 1 2 3 4 5 6
FPGA: Specific Devices (IDs) 1 2 3 4 5 6 7 8 9 (according to Tab. 6)
FPGA: HW Task Implementation 1 2 3 (according to Tab. 7)

points. In the experimentation scenario, we derive Nadir point using the higher in-
dividual values for Time, Energy, and 1.0

Utilization
from the PF solutions gathered dur-

ing the respective exhaustive search. The use of Utilization’s inverse allows us to
treat the experiment as a minimum-goal in all objective functions. Thus, the point
(max(Time),max(Energy),max( 1.0

Utilization
) represents the reference point r.

The experimentation scenario 3 aims to demonstrate the use of different architec-
ture types within the DSE environment. Moreover, it augments the design space’s size
(mainly the mapping possibilities) since more applications raise the number of possible
mappings combinations. We run this scenario ten times, detailing the logs resulted
from the second run since it produces the highest HV value. The remaining runs we
use to analyze the DSE times and their behavior using the HV indicator. We calcu-
late the Nadir point, in this case, using the maximum value in each dimension (time,
energy, and 1.0

utilization
) considering all PF approximations – since we do not execute an

exhaustive search corresponding to this scenario.

6.3.3 Results of Case Study #4 – FEHetSS in an Heuristic-based DSE

This section presents the results related to Case Study #4. Regarding Scenario 1,
Fig. 60 (B to F) shows 3D (with dimensions Time, Energy, and Utilization) scatter plots
for five runs of the DSE environment considering the same input parameters. Time
measures the last finished application. Energy is for all system PEs. Utilization corre-
sponds to an average between the PEs. Fig. 60 (A) presents the PF of the respective
exhaustive search (Sec. 6.2, Case Study #3, Scenario 1) for comparative sake. The
plots show the PF approximations’ points (marked with ”pf” in the legends). It also
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Figure 59 – Representation of a Nadir Point in a Two-Objective Space (based on
(WANG; HE; YAO, 2017))

describes the application’s mapping and the number of solutions with the same profile
in the PF approximation. Besides, Fig. 60 (B to F) presents the ”best” solutions that
the heuristic has find during its processing. From a certain point of view, these ”best”
solutions indicate the heuristic’s main path through the DSE. Simulated annealing (SA)
implementation uses randomness to create solutions and their neighbors. Thus, each
DSE produces different solutions and, consequently, PF approximations. Visually, we
can observe the higher number of solutions in the approximation of runs 12, 1, and
24 (B, C, and F in Fig. 60). However, we notice that run 24 (F in Fig. 60) provides
solutions closest to the ideal point.

Using the DSE environment, we perform 30 runs of Case Study #4, Scenario 1. Fig.
61 presents a bar chart describing the HV (Hypervolume) indicator (presented in Sec.
6.3.2) of the PF and all DSE approximations. Regarding the HR (Hyperarea Ratio) indi-
cator (described in Sec. 6.3.2), Fig. 62 (A) presents a box plot describing the DSE’s PF
approximations, followed by their statistics (B). Recalling, we use the PF extracted from
Case Study #3 – Scenario 1 (Sec. 6.2) – acting as PF in the HR calculation. Besides,
we use the inverse of the Utilization metric in the HV and HR calculations. It aims the
minimization for all objective functions. The five DSE runs in Fig. 60 (B-F) correspond
to approximately the 15th, 25th, 50th, 75th, and 90th percentiles of the HR indicator
regarding all the (30) DSE’s PF approximations. Therefore, we arrange the plots B to
F (Fig. 60) in ascending order (worst to better) according to the DSE’s performance in-
dicators (HV and HR), corroborating with the visual insight of the approximations. Box
plot of Fig. 62 indicates that 50% of the DSE PF approximations obtain values between
0.94 and 1.16 (1st and 3rd quartiles) for HR indicator. We consider these values as
representing good solutions compared to the PF. Regarding the simulation times, Fig.
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Figure 60 – (A) Pareto Front from Exhaustive Search and (B-F) DSE Runs 14, 12,
1, 27, and 24 (≈ the 10th, 25th, 50th, 75th and 95th percentiles of the HR values
regarding the DSE PF Approximations, respectively) considering the Applications 4, 7,
and 12.
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Figure 61 – Bar Plot of the HV (Hypervolume) Indicator for the Exhaustive Search PF
and the DSE Runs #1 to #30 (Applications 4, 7, and 12).
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63 presents the respective box plot (A) and their statistics (B).
Regarding the Case Study #4 - Scenario 2, Fig. 64 shows scatter plots (B-F)

resulting from five DSE runs according to parameters described in Sec. 6.3. We run
this DSE scenario 15 times. Fig. 64 also includes the PF plot (A) resulting from the
exhaustive search of Case Study #3 - Scenario 2 (described in Sec. 6.2). We extract
the HV indicator for the 15 DSE runs (Fig. 65) and the respective HR values (Fig.
66 A). The scatter plots B to F in Fig. 64 shows the runs 14, 15, 13, 7, and 12,
corresponding to approximately the 14th, 28th, 50th, 72th, and 92nd percentiles of the
HR values regarding the DSE PF approximations. We notice the higher variation in
the PF approximations’ mapping profiles (B-F) comparing to PF (A). However, the DSE
runs provide good PF approximations as indicates Fig. 65. It shows a bar plot of the
HV indicators that correspond to the 15 PF approximations generated by the DSE runs
and the PF produced by the respective exhaustive search (following the same steps
described for Case Study #4 - Scenario 1). On the other hand, Fig. 66 shows a box
plot of the HR (Hyperarea Ratio) indicator corresponding to the PF approximations. We
notice that all HR values are close to one (1), indicating quality approximations. Fig. 67
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cations 4, 7, and 12). (B) Box Plot Statistics.

presents the simulation times of the DSE scenario 2 – box plot (A) and their statistics
(B).

Considering scenarios 1 and 2, we claim the answer to the question ”Can a designer
employs FEHetSS as a solutions’ evaluator into a Heuristic-based DSE Environment
that produces good PF approximations of the design space?” is Yes. Figures 60 and 64
show DSE outcomes highlighting some runs samples. In both scenarios, if we compare
with the exhaustive search output (PF), the HV and HR indicators demonstrate DSE
PF approximations close to the design space PF. The Simulated Annealing heuristic
is simple to deploy, providing a feasible DSE strategy to generate PF approximations.
In scenario 1, DSE runs took on average ≈ 0.17 hours to produce an approximation.
The respective exhaustive search demands 25.51 hours. Thus, DSE demand (≈ 0.169

25.51
)

0.66223% of the time providing solutions covering at least 82% (lower whisker in Fig.
62) of the PF’s design space. Regarding scenario 2, DSE runs on average were ≈
2.31 hours long. It is ≈0.65308% ( 2.31

353.41
) of the exhaustive search time. In this case, the

approximations cover at least 97% (lower whisker in Fig. 66) of the PF’s design space.
It is worth mentioning that Simulated Annealing (SA) is only one possible heuristic to
employ in DSE between a list of alternatives.

Fig. 68 shows a scatter plots derived from the Case Study #4 - Scenario 3, specif-
ically run two (2). According to Sec. 6.3 and Tab. 16, this scenario extends the input
parameters allowing the DSE environment to employ any combination of the architec-
ture elements available in the VP repository, but always including an FPGA device.
Also, the increased number of applications raises the possible mapping combinations.

Plot (A) of Fig. 68 shows all evaluated solutions and detach the PF and ”best” so-
lutions. In a zoomed view, item (B) highlights the profiles of PF and ”best” solutions
showing the PE types in the architecture (1 for CPU; 2 for GPU; and 3 for FPGA)
and the respective models – 1 (A7) and 2 (A15) for CPU, 1 (Mali) for GPU, and 1 (Ar-
ria10GX) for FPGA. The ”best” solutions detach the DSE choices during its processing,
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Figure 64 – (A) Exhaustive Search and (B-F) DSE Runs 14, 15, 13, 7, and 12 (≈ the
14th, 28th, 50th, 72th, and 92th percentiles of the HR values regarding the DSE PF
Approximations, respectively) for Applications 3, 14, and 15.
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PF from Study Case #3, Scenario 2 [and] DSE Runs of Study Case # 4, Scenario 2
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Figure 65 – Bar Plot of the HV (Hypervolume) Indicator for the Exhaustive Search PF
and the DSE Runs #1 to #15 (Applications 3, 14, and 15).
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Box plot Statistics (Applications 3, 14, and 15)

being the (24) solutions accepted by the SA heuristic. The SA strategy aims for solu-
tions with lower evaluations (according to Eq. 8). Thus, it makes the SA path trending
to the DSE’s PF generation. There are 22 solutions of different profiles in the PF inter-
connected by a red dashed line in Fig. 68 (B). About the Applications’ Mapping, plot
(C) shows the ”Best” solutions. We notice the variability of the solutions generated by
the heuristic. It derives from the heuristic experimenting with the possible mappings for
each application. Detailing the PF about the FPGA device characteristics, Fig. 68 (D)
shows the PF plot. Each profile begins by describing the FPGA device (Tab. 6) and the
number of PRRs on it (e.g., 4-5: device 4 with 5 PRRs). Thus, we notice that device
7 (according to Tab. 6) appears in 8

22
solutions. Analyzing the PF plot, we observe

the profiles with devices 9 and 8, beyond employing 3 to 6 PRRs, providing points with
good energy consumption and low times. Next, the profile describes each application’s
mapping (PE: 1 for CPU, 2 for GPU, and 3 for FPGA) and HW Task implementation
(only for FPGA) – 1, 2, or 3, according to Tab. 7, e.g., (1, 3, 2): application 1, map-
ping 3 (FPGA), and HW Task Impl. 2 (2-loop unrolling). Thus, regarding the kernel(s)
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Figure 67 – (A) Box Plot of the Simulation Times of Case Study #4 Scenario 1 (Appli-
cations 3, 14, and 15). (B) Box Plot Statistics.

Table 17 – Characterization of DSE Runs of Case Study #4, Scenario 3

Run Evaluated
Solutions

Solutions
in PF HV HV

Rank
DSE

Time (h)

Evaluated
Solutions
per Minute

1 4604 17 28.42 3 1.91 40.17
2 6559 22 28.68 1 2.62 41.72
3 4958 19 27.67 7 2.01 41.11
4 4609 20 27.78 6 1.90 40.43
5 5030 23 26.96 8 2.05 40.89
6 6005 28 26.34 9 2.55 39.25
7 5710 25 27.85 5 2.37 40.15
8 5255 25 28.46 2 2.21 39.63
9 5858 36 26.03 10 2.48 39.37
10 3986 17 28.15 4 1.67 39.78

mean 5257.40 22.18 27.63 n/a 2.18 40.25
standard deviation 776.30 5.77 0.91 n/a 0.32 0.80

variance 602644.93 33.29 0.83 n/a 0.10 0.64

mapping, the DSE points out that applications 1 and 8 better match FPGA, while the
kernel of applications 2, 5, and 10 also includes the CPU mapping as a good choice.
Application 6 can take benefit from all three PE types.

Tab. 17 shows the characterization of scenario 3 with their ten DSE runs. It in-
cludes columns for the number of evaluated solutions and those of which are in the PF
approximation. Also, it presents the HV values and their rank (better to worst), and the
DSE times. Besides, Fig. 69 presents box plots describing the runs in terms of the
number of evaluated solutions and those in the PF, as the HV indicator and DSE times.

We regard the better value for the HV indicator for run 2. Considering a common
Nadir point, run 2 achieves a PF approximation that ”dominates” a larger volume of the
design space comparing the other runs (Fig. 70). However, the difference is not so
significant. Moreover, according to Fig. 71, we identify no relation between the number
of evaluated solutions and those in the PF. The HV values present little variation among
the runs, although the number of PF’s solutions does a greater diversification. The SA
randomness and their exploring strategy produce diversified solution sets. However,
we consider the DSE runs’ performances very similar.

The answer for the question(s) ”Can FEHetSS be integrated into a Heuristic-based
DSE Environment providing diversified quality solutions? Also, demonstrating the ex-
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{ (1, 1) (2, 1) (5, 1) (6, 1) (8, 1) (10, 3) }(1)
{ (1, 3) (2, 3) (5, 1) (6, 1) (8, 1) (10, 3) }(1)
{ (1, 3) (2, 1) (5, 2) (6, 1) (8, 1) (10, 3) }(1)
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{8-3: (1,3,2)(2,2,-)(5,2,-)(6,1,-)(8,3,2)(10,1,-)}(1)
{5-4: (1,3,3)(2,1,-)(5,3,1)(6,1,-)(8,3,3)(10,1,-)}(1)
{7-5: (1,2,-)(2,3,1)(5,2,-)(6,1,-)(8,2,-)(10,3,2)}(1)
{7-2: (1,3,2)(2,1,-)(5,3,2)(6,3,2)(8,1,-)(10,3,3)}(1)
{8-5: (1,1,-)(2,3,3)(5,2,-)(6,1,-)(8,3,1)(10,2,-)}(1)
{9-6: (1,2,-)(2,1,-)(5,1,-)(6,2,-)(8,3,2)(10,1,-)}(2)
{7-2: (1,3,3)(2,3,1)(5,3,1)(6,1,-)(8,3,3)(10,3,2)}(1)
{5-5: (1,1,-)(2,3,3)(5,1,-)(6,3,2)(8,1,-)(10,1,-)}(1)
{7-2: (1,1,-)(2,3,3)(5,3,1)(6,2,-)(8,2,-)(10,1,-)}(1)
{4-5: (1,3,1)(2,3,1)(5,1,-)(6,3,2)(8,3,3)(10,1,-)}(2)
{7-5: (1,2,-)(2,1,-)(5,2,-)(6,1,-)(8,3,3)(10,3,2)}(1)
{9-3: (1,1,-)(2,1,-)(5,1,-)(6,1,-)(8,1,-)(10,3,1)}(1)
{9-4: (1,2,-)(2,1,-)(5,2,-)(6,2,-)(8,2,-)(10,3,2)}(1)
{9-1: (1,1,-)(2,3,3)(5,3,1)(6,2,-)(8,2,-)(10,1,-)}(1)
{7-2: (1,3,3)(2,3,3)(5,3,2)(6,1,-)(8,1,-)(10,3,1)}(1)
{7-2: (1,1,-)(2,1,-)(5,3,1)(6,1,-)(8,3,3)(10,1,-)}(1)
{6-3: (1,3,3)(2,3,3)(5,3,1)(6,3,1)(8,3,2)(10,1,-)}(2)
{8-5: (1,1,-)(2,1,-)(5,1,-)(6,2,-)(8,1,-)(10,3,3)}(1)
{7-2: (1,3,3)(2,1,-)(5,3,2)(6,1,-)(8,3,3)(10,3,1)}(1)

Figure 68 – DSE for Applications 1, 2, 5, 6, 8, and 10: (A) All Evaluated Solutions
Highlighting the PF and DSE’s ”Best” Solutions. (B) Architecture Elements of PF and
DSE’s ”Best” Solutions. (C) ”Best” Solutions Detaching the Applications Mappings. (D)
PF Solutions Indicating the Specific FPGA Device and Number of PRRs, followed by
the Appl. ID (Tab. 5, its Kernel Mapping (1: CPU, 2: GPU, and 3: FPGA), and the used
HW Task Implementation for FPGA (Tab. 7).
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Figure 69 – Box Plots for (A) Evaluated Solutions, (B) Solutions in PF, (C) HV Indicator,
and (D) DSE Time for Case Study #4, Scenario 3.
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Figure 70 – No Relation Between the PF’s Size and the HV Indicator (Case Study #4,
Scenario 3).

ploration of the architecture features during the solutions quest?” is Yes. Our claim is
based on the following observations:

• The solutions’ diversity of the PF and ”best” sets provided by the SA heuristic.
Both the solutions’ sets on the PF and those called ”best” present different types
of architecture (according to Fig. 68 – B), employing varied combinations of PEs;

• In addition, DSE uses varied mappings for application kernels during its execution
(according to Fig. 68 – C);

• Furthermore, in cases of mapping to FPGA, the implementations available as
HW tasks provide a more in-depth assessment of the use of HW accelerators,
including the experimentation with devices equipped with different amounts of
HW resources organized in a number of PRRs (Fig. 68 – D);

• Figures 69 (C) and 70 shows that DSE produce similar PF approximations, inde-
pendent of the sets’ cardinality;
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Figure 71 – No Relation Between the Sets Cardinalities of Evaluated Solutions and
Solutions in PF (Case Study #4, Scenario 3).

• Tab. 17 shows that FEHetSS simulates several solutions per minute (≈ 40), pro-
viding rapid evaluation results;

6.4 Chapter Summary

This chapter has presented the Case Studies #3 and #4. We organize the presen-
tation by Case Study using sections 6.2 and 6.3 for that sake. In Case Study#3, we
performed exhaustive searches in restricted design spaces. During Case Study #4,
those same design spaces were explored by a heuristic-based DSE environment inte-
grating FEHetSS for design points evaluation. We have employed Simulated Annealing
as a heuristic strategy to traverse the design space. At the end of each section pre-
senting the results (Sections 6.2.1 and 6.3.3), we answered the respective questions
described in Tab. 14 to the achievement of each case study’s goal.



7 ASSESSING THE RESEARCH CHALLENGES

This chapter evaluates the modeling methodology and the FEHetSS simulator re-
garding the Research Challenges presented in Sec. 3.3. We follow the modeling steps
described in Sec. 4.3 creating models (or portion of) that feed a VP repository. At-
tached to the repository, we prepare a set of automation scripts. Using the repository
and scripts, we can define a VP according to each case study through a string repre-
sentation argument. The string follows the VP description structure described in Fig.
55. This structure enables/facilitates the creation of solutions in the form of XML files.
FEHetSS simulator receives an argument indicating the (XML) file containing the vir-
tual platform (VP) to simulate. Thus, all these facilities support an easy interaction
during the creation and evaluation of the case study’s design points.

Previously, we evaluate the results of each case study answering the respective
questions defined in Tables 4 (in Sec. 5.1) and Tab. 14 (Sec. 6.1). Tab. 18 briefs
those questions and theirs answers. Based on these answers and the presented re-
sults in sections 5.2.1, 5.3.1, 6.2.1, and 6.3.3, we can proceed to evaluate the Thesis’
Research Challenges.

7.1 Evaluating Challenge 01: How to enable early-DSE on hetero-
geneous systems that include reconfigurable hardware accel-
eration through FPGAs?

The proposed methodology (illustrated by Fig. 34 in Sec. 4.3) describes how to
make estimations/definitions about virtual platforms (VPs). Specifically for VPs includ-
ing FPGA devices, we use an OpenCL HLS tool (INTEL, 2020a), through its aoc com-
piler, providing several estimates suitable for annotating our simulator. These annota-
tions include data for latency and a maximum frequency of the application’s kernel(s)
implemented as an HW task(s). Besides, data about the HW resources necessary for
it. Moreover, aoc generates HW design files (such as quartus project file - ”.qpf”) that
a designer can configure aiming to subsequently estimate power consumption for the
device’s portions – using PowerPlay tool from Quartus (INTEL, 2020b). The power
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Table 18 – Briefing of the Case Studies’ Questions

Case
Study

Sce
nario(s) Question Answer

#1 1

Based on high-level models,
can FEHetSS provide
appropriate log metrics in
heterogeneous architectures’
evaluation during a
(manual) DSE?

Yes. FEHetSS simulates the settings and produces
metrics to appropriately evaluate the design points.
The case study highlights the benefits of using HW
accelerators, especially if employing optimized
implementations for an HW task.

#2 1

Can FEHetSS be used to
assess different HW task
implementations based on
high-level models describing
the tasks themselves and
the HW accelerator
device (FPGA)?

Yes. The case study shows that when employing
optimized HW task implementations, the FEHetSS
models suffer alterations on its annotations, changing
the HW resources, power consumption, and latency
of a kernel. Thus, simple modifications in the VP
models allow producing valuable system design
outcomes.

#2 2

Can FEHetSS be used to
assess different HW task
implementations based on
high-level models describing
the tasks themselves and the
HW accelerator devices
(FPGA) with diversified
resources?

Yes. In this scenario, we employ a series of nine FPGA
models combining them with the seven implementations of
a kernel (2MM). We observe that some combinations are not
feasible. Also, the experiment allows the assessment of an
important aspect: What device ”size” and HW task
implementation better match each other?

#3 1, 2

Can FEHetSS be used to
perform Exhaustive Searches
in a feasible time, providing
suitable Metrics to identify the
design space’s PF?

Yes, but it depends on the design space size, simulation
demand, and outcome breadth. If a designer can make their
evaluation based on a ”reduced” design space, the time to
pay in simulation and searching may be worth it. Thus, there
is a trade-off between simulation time and optimal PF
identification.

#4 1, 2

Can FEHetSS be employed as
a solutions’ evaluator into a
Heuristic-based DSE
Environment that produces
good PF approximations of
the design space?

Yes. In this case study, both DSE scenarios produce PF
sets comparable to those generated in the respective
exhaustive searches but taking less than one percent of
the time. Simulated Annealing is simple to deploy,
providing a feasible strategy to generate PF
approximations in a DSE environment.

#4 3

Can FEHetSS be integrated
into a Heuristic-based DSE
Environment providing
diversified quality solutions?
Also, demonstrating the
exploration of the architecture
features during the
solutions quest?

Yes. This case study shows a diversified set of outcomes
generated by the DSE. We also notice a spread variation
in the architecture components and the application mappings.
Other DSE parameters, such as the number of PRRs and
specific devices, have demonstrated the broad scattering
during the heuristic strategy. The DSE runs produced similar
PF approximations, showing uniformity between the simulations.
We evaluate the quality of the PF approximations using the HV
indicator based on a common reference point. The results
corroborate with the quality solutions idea.

annotations describe the PRR portions employed for the HW task implementations.
Also describing the board interface and periphery HW, both latter playing a static role
(configured once) in the FPGA device.

Considering these annotations, FEHetSS employs a power model (described in
Alg. 2) that computes the power regarding each PRR (in any of their states), the
board interface, and the periphery hardware. Moreover, using an aoc compiler report,
we define a set of equations (eq. 2 to 6) aiming to estimate the kernel(s) latency
implemented as an HW task.

Case studies #1 (Sec. 5.2) and #4 (Sec. 5.3) deal directly with this challenge by
employing FEHetSS and solutions created through the VP Repository. Case study #1
makes the exploration manually, while #4 uses a heuristic-based DSE environment.
The results of both cases corroborate the accomplishment of challenge 01 by showing
the solutions in a three-dimensional design space, highlighting the Pareto front (PF). It
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provides designers a panoramic view enabling them to decide the design directions.

7.2 Evaluating Challenge 02: How to assess (at early stages) dif-
ferent architectural FPGA implementations for a specific appli-
cation kernel, as an HW task, within a heterogeneous system?

Considering a specific HW design of an application kernel, the second case study
(Sec. 5.3) presents the attending of the challenge 02. The modeling steps allow creat-
ing VPs characterizing optimizations such as multiple compute units and loop unrolling.
The VP simulations in FEHetSS describe the impact of each optimization on the pro-
duced metrics. Multiple compute units increase the used HW resources and the power
consumption. In turn, it decreases the number of work-items to be processed by each
HW module. Further, loop unrolling also increases power consumption and HW re-
sources but diminishes the kernel(s) loop iterations. Thus, the optimizations affect all
logged metrics, decreasing the execution time and increasing power and utilization,
featuring a multi-objective optimization problem.

In addition to the optimized HW tasks, scenario 2 of Case Study #2 provides
the opportunity to evaluate an HW/SW interaction by combining devices with differ-
ent amounts of available logical blocks. Although each HW implementation does not
change from one device to another, each device’s capacity entails its pressure by
power, reflecting on the general device consumption. Moreover, since the HW de-
mand of the tasks varies according to the optimization parameters, scenario 2 shows
that the modeling assumptions and FEHetSS simulations allow evaluating the appro-
priate device’s ”size” given an experimentation case. The presented analysis for per-
formance and power are richer than only evaluate the HW task of the kernel in an
isolated manner. Modeling the platform equipped with a CPU and an FPGA, also at-
tending a specific load of an application (main tasks and elaboration task), we can
consider the actual demand of the kernel against the system reality. An evaluation of
only the kernel’s HW does not carry this information. Thus, with few modifications in
the VPs models, FEHetSS provides metrics regarding the optimized HW tasks and the
employed devices, allowing to evaluate the trade-off between them.

7.3 Evaluating Challenge 03: How to model FPGA units at a high
level, supporting PRR and DPR, focusing on high-level system
simulation?

The methodological steps described in Sec. 4.3 include aspects related to PRR and
DPR. The power model (represented by Alg. 2 in Sec. 4.3.1) regards the device par-



139

tition in PRR by evaluating each one separately, considering its size and task demand
for power. In an application model, the task graph embraces a characterization for
each task, describing its type and performance model. However, for elaboration tasks
mapped to an FPGA, the description includes data about the required HW resources
and the core logic (HW task implemented in the FPGA fabric) operation parameters
(e.g., powers, frequency, and bitstream size). During a simulation, FEHetSS uses this
data to verify a PRR capacity to accommodate the HW task, simulate the reconfigura-
tion process (DPR) when necessary and the execution itself, considering latency and
power consumption. The FPGA modeling regards the number of PRR to employ in the
device, besides the board interface and the periphery HW such as transceivers and
I/O components. Thus, the modeling abstracts the device as being a component ag-
gregation. Consequently, during the simulation, each component influence the virtual
platform, contributing to the system’s metrics.

7.4 Chapter’s Considerations

In this chapter, we have presented an evaluation of the Research Challenges of the
Thesis based on the answered questions and results of the performed Case Studies.
Tab. 18 shows a brief version of each pair question/answer. It helps us to evaluate the
Research Challenges.

In general, there are some features that we can highlight about FEHetSS and the
modeling methodology.

• FEHetSS provides rapid simulations producing metrics suitable to evaluate the
VP performance. The case study #3 shows such capacity by performing exhaus-
tive searching in restricted design spaces but evaluating more than one hundred
thousand solutions.

• Some solutions embrace VirtualHWAccels as FPGA devices, including multiple
PRR and considering the DPR process. FEHetSS produces metrics that account
for the PRR partitions and considers the required time/power to perform the de-
vice/PRR configuration.

• The following FEHetSS’s metrics present some interesting characteristics:

– time, shows the beginning/ending of each task (main or elaboration) of the
running applications.

– power, describes the power consumption of each PE, including CPU, GPU,
and FPGA types.

– energy, based on the previous two metrics, we can calculate the consumed
energy of each PE and for the whole system.
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– utilization, shows how much used is a PE during the simulation. In the case
of an FPGA, utilization measures the allocated HW resources compared to
those available in the FPGA device (taking the number of ALUTs as the
measuring unit).

• The modeling methodology allows considering optimization aspects for the HW
task implementations. Through OpenCL pragmas and tooling, we annotate mod-
els complying with the aimed optimizations producing outputs subsiding designs
comparison.



8 CONCLUSIONS

This work has presented a Modeling and Simulation Infrastructure for FPGA-
enabled Heterogeneous Systems. The Modeling methodology includes the steps to
create high-level models describing the systems’ architecture and workload. We call
these models Virtual Platforms (VPs), employing XML files to specify them. Architec-
ture models incorporate each PE describing the operating frequency, power, and idle
power. For FPGA, the model separates the power model in core fabric and periphery
HW, also including the device’s HW resources, board interface resources, and opera-
tional parameters. For the workload, a task graph depicts the applications. Each node
contains a performance model indicating the frequency and latency. For an HW task
implemented in the FPGA fabric, nodes include its HW resources, power model for
the core logic, and its bitstream size. The edges define the simulation’s sequence. It
offers forward, backward, and branch transitions – the latter allowing advance for an
elaboration task which allows exploring the system heterogeneity by being executed
in any of the PEs available in the architecture. We presented the flow and supporting
tools that meet the VPs model’s creation. Besides, we describe a power model for the
VirtualHWAccels considering estimations from such SW (e.g., Quartus). Moreover,
we employed the reports from an HLS tool (aoc compiler) to model the HW compo-
nents and the latency aspects. Thus, this modeling framework provides appropriate
elements and properties to describe a heterogeneous system even in the presence of
a PRR-partitioned Dynamically Reconfigurable VirtualHWAccel described as an FPGA
unit.

In compliance with the modeling methodology, we presented a System-Level Sim-
ulator named FEHetSS. It allows VP assessment in early Design Space Exploration
(DSE). We described the FEHetSS’s structure highlighting the FPGA processing el-
ement (PE) feature. As soon as a VP arrives, FEHetSS creates the PEs and the
applications. For each PE, FEHetSS generates a module representing its behavior. A
workload generator module uses the applications’ models to push their tasks’ threads
to simulate in a PE through the system-calls emulator, passing by a communication
channel till the target processor which, in the case of elaboration tasks, can be a CPU,
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a GPU, or an FPGA.
Regarding the VirtualHWAccels, an FPGA model includes details about their par-

tition in PRRs and DPR processing. FEHetSS simulates the reconfiguration time and
the respective power, passing the PRR just configured to a different power profile. The
simulation flow obeys mode-based device transitions as well as PRR defined in the
FPGA fabric.

We consider both FEHetSS and Modeling Methodology dealing with the essential
elements for a VP simulation providing suitable model elements and properties. FE-
HetSS also produces valuable metrics supporting designers in decision-making in early
design duties. We performed four case studies to detach both the modeling methodol-
ogy and FEHetSS simulator capabilities:

• (i) design point evaluation tool during an early DSE;

• (ii) HW designs evaluation tool;

• (iii) rapid simulation framework during exhaustive searches; and

• (iv) setting metrics generation tool embedded in a Heuristic-based DSE environ-
ment.

Using FEHetSS as a DSE evaluation tool allows a designer to assess different
architecture setups – e.g., homogeneous or heterogeneous, GPU or FPGA acceler-
ated, employing or not employing DPR and multiple PRRs – and considering specific
workloads with different mappings for the applications’ kernels. Conforming Sec. 5.2.1,
FEHetSS is capable of generating evaluation metrics that can be analyzed by search-
ing for the Pareto’s front of the design space.

FEHetSS provides high-level evaluation of HW design alternatives. We anno-
tated the simulator models with estimations provided by the supporting tools applying
OpenCL pragmas to optimize applications’ kernels. Further, we used the simulation
and its results to assess the optimizations’ impact through FEHetSS’s metrics – such
as execution time, power consumption, and PE (HW) utilization. Besides, as presented
in Sec. 5.3.1, FEHetSS was also charged with models of a variety of devices from the
Arria10GX FPGA family. It allowed a trade-off evaluation of what better amount of
logical resources necessary in an FPGA unit while accomplishing HW design imple-
mentations of an application kernel (2MM).

The rapid FEHetSS simulations offer opportunities to perform exhaustive
searches in a design space. The required time for a exhaustive space exploration
is not always a feasible choice. However, in the case of restricted design spaces, the
trade-off may be worth it. The design space restriction can be the use of a lower range
of frequencies, a reduced set of devices, a lower number of HW task implementations,
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or even a combination of factors. In Sec. 6.2.1, two exhaustive searches produced
design space explorations considering a reduced range of the search parameters.

Regarding a less computationally demanding workload, the first scenario finishes
the examination after ≈ 25 hours while the second scenario took circa 15 days in the
exploring. Aiming to shrink the simulation time, a designer could model an application
containing nearly only its kernel, simulating it in FEHetSS in a full exploration context.
It could allow a relevant evaluation, possibly in a reduced simulation time.

As an independent simulator, we plugged FEHetSS in a heuristic-based DSE envi-
ronment performing the generation of settings’ evaluation metrics. It is a part of a
DSE process following the Y-Chart approach. The environment’s solutions generator
demanded our VP repository feeding settings to the environment’s simulations through
several FEHetSS’s threads. The output metrics passed to the DSE solution evaluator
generate evaluation values for each setting. The environment’s heuristic used them on
their strategy to accept (or not) new solutions. Sec. 6.3.3 has presented the results
of using FEHetSS, the VP repository, and the simulated annealing as an optimization
heuristic. Compared to the exhaustive search Pareto front, the first two scenarios using
the DSE environment cover at least 82% and 97% of the respective design spaces, us-
ing≈ 0.66% and 0.65% of the full search time, respectively. Scenario 3 showed the DSE
environment exploring a vast design space. Summing all possible configurations in this
scenario, we obtained 594712368 different settings. The average number of evaluated
solutions by the DSE runs was ≈ 5257 (0.0009% of the possible configurations). Be-
tween the ten DSE runs in scenario 3, the second presented the best value for the HV
indicator – considering a common Nadir point for all approximations. However, all runs
showed nearby values for HV, indicating similar performances of the DSE environment.

8.1 Answering the Research Challenges: Thesis’ Contributions

We delineated three research challenges for the Thesis. These challenges directed
the work through a series of steps involving aspects such as:

• Adoption of modeling elements based on the OpenCL concepts – e.g., host and
device processors, applications’ structure model. Besides, the use of OpenCL
codes from a benchmark (Polybench) serving as workload applications;

• Identification of HW tools capable to provide estimations for FPGA latency&power
profiles (aoc and Quartus);

• Utilization of real HW measures aiming to profile the power of CPU and GPU
processors, beyond the tasks’ latencies;

• Definition of a methodology to describe Virtual Platforms containing Architecture
and Workload models. The methodology included steps and elements related to:
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– FPGA device power estimations, e.g., static (board interface, periphery HW)
and dynamic (PRRs) portions;

– HW task modeling;

– PRR partitioning;

– DPR reconfiguration process;

– Kernel/blocks latencies;

• Implementation of the model conceptions through FEHetSS System-Level Simu-
lator;

• Preparation of a Virtual Platform (VP) models repository and a VP creation inter-
face (automation scripts);

Thus, considering the developed work, we answer the research challenges in the
following paragraphs presenting the main contributions of the Thesis.

(Challenge 01) How to enable early-DSE on heterogeneous systems that in-
clude reconfigurable hardware acceleration through FPGAs?

We defend that our methodology provides the flow steps and model elements de-
scribing models of heterogeneous systems. It also includes features of reconfigurable
HW described as FPGA. High-level models describing an FPGA unit embraces recon-
figuration properties by considering PRR partition and DPR processing. Task-level
descriptions used in the task-graphs allow modeling an application considering its
setup/management portions (main tasks) and core parts (elaboration tasks). Thus,
the Modeling&Simulation Infrastructure provides the essential components to fulfill the
challenge. FEHetSS implements those components as a System-Level Simulator. The
presented Case Studies demonstrate the early-DSE capability of FEHetSS by perform-
ing exploration in manual (Sec. 5.2) ), exhaustive (Sec. 6.2), and heuristic-based (Sec.
6.3) manners.

(Challenge 02) How to assess (at early stages) different architectural FPGA
implementations for a specific application kernel, as an HW task, within a het-
erogeneous system?

Our Modeling&Simulation infrastructure includes elements and properties capable
of describing architectural details of HW tasks’ implementations. Regarding HW task
modeling, the annotations for latency and power come from HW tools. It considers
the distinct features of the possible realizations. Moreover, an HW task implementa-
tion can demand different resources in an FPGA unit. Since a better match between
an HW module and its chosen device also concerns a system designer, our device
model properties permit us to describe each specific device, characterizing it in terms
of available resources and power profile. Our second case study (Sec. 5.3) presented
an evaluation showing that optimizations like loop unrolling and multiple compute units
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affect the kernels’ implementations, impacting the overall performance. Additionally,
the second part of the case study evaluates the system-level effects regarding the
combinations of seven (7) different HW task implementations with nine (9) samples of
an FPGA device family (Arria10GX). Therefore, we advocate that our model structures
and properties attend the challenge.

(Challenge 03) How to model FPGA units at a high level, supporting PRR and
DPR, focusing on high-level system simulation?

According to the presented Modeling&Simulation infrastructure, we modeled FPGA
as an HW device containing a PRRs set beyond other static components. Each PRR
has its available HW resources property. On the other side, an HW task requires some
HW resources amount, being modeled by appropriate attributes. Powers, frequency,
and partial bitstream are also properties of an HW module. For the simulation of an
HW task execution in a not yet configured device’s PRR, a (re)configuration must oc-
cur first. Thus, during a partial reconfiguration (PR) process, the FEHetSS simulator
regards the DPR feature by considering the size of a partial bitstream and operational
parameters of the PR controller, simulating its latency and power consumption. More-
over, the power estimation module uses the power profile of the previously configured
task and the one that will take its ”place” to estimate the power consumption in three
time periods: right before the PR, during the PR, and soon after the PR. All performed
case studies considered PRR and DPR features, but especially case study 4 – sce-
nario 3 (Sec. 6.3.3) experiments a larger number of possibilities regarding the number
of PRRs and applications, causing a lot of reconfigurations during the scenario sim-
ulation. We claim that the developed infrastructure deals with PRR and DPR feature
attending the related challenge.

8.2 Future Perspectives for the Thesis

During the development of this Thesis, we do not approach some aspects in an ideal
or wished way. Thus, we can glimpse some future viewpoints about the enhancement
of the Thesis. We use this space to present such panoramas.

We plan to expand the integration of FEHetSS in DSE environments by experiment
with other heuristics to direct the exploration. Some alternatives as DSE heuristics
are Genetic Algorithms (AN; GAMATIÉ; RUTTEN, 2015; NOGUEIRA et al., 2016), Ant
Colony Optimization (DORIGO; STÜTZLE, 2010; WANG et al., 2007), and Particle
Swarm Optimization (SINAEI; FATEMI, 2018).

A current weakness of FEHetSS is the lack of an explicit memory contention model,
mainly the data transfer between host and device. Currently, FEHetSS considers the
communication along with the execution itself. In the tasks’ modeling, we include in
their latencies memory transfer operations. We intend to incorporate memory aspects
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in the virtual platform by modeling and simulating the memory structure. The inclusion
of memory details in the VP models would affect the FEHetSS simulator’s communica-
tion channel module. A memory model can enhance the FEHetSS simulation by giving
a more precise system model in terms of overall latency as well as energy consumption
by adding a new type of architectural component – the main memory.

In the task-level modeling of the applications, we consider the kernels as a whole,
even that the original OpenCL kernel(s) file has more than one kernel function. Thus,
in this Thesis, we employ the coarser version of the kernel as a sole HW task in the
modeling of the applications’ task graphs. As presented in Sec. 5.2.1, we can modify
this granularity by defining each kernel’s function as a separate elaboration task in the
application model. This can impact the size of the PRRs since smaller kernels will re-
quire a lower amount of the device’s resources, allowing to use of a larger number of
PRRs and, consequently, more HW tasks being executed concomitantly. Clearly, this
scenario will demand more reconfiguration points during the simulation, even that each
reconfiguration will occur more rapidly also demanding less energy. Thus, there is a
trade-off between the raising of PRRs and parallel HW tasks, against the higher num-
ber of less demanding reconfigurations. We plan to elaborate experiments evaluating
this trade-off.

Currently, the CPU model of FEHetSS considers its power in a simplified way. We
verify that each application requires its specific energy demands. However, FEHetSS
models define only one power profile for a CPU core. It causes the definition of a
weighted power estimation (Eq. 7) when simulating multiple applications together.
Moreover, a CPU has different demands when executing host tasks and device tasks.
Thus, we envision that an application model can bring power annotations detailing each
task type apart. Thereby, when running in a CPU processor, an application’s main task
has its power demand, which is different from an elaboration one charging the same
core type.

Another related aspect that worths research initiative is to enhance FEHetSS aiming
to deal with the system’s adaptability by allowing it to adapt its PEs mapping strategy
respecting the system’s goals and restrictions – e.g., maximal performance, energy-
saving, and area constraints. Considering an execution scenario, the tasks of workload
applications can be started at different moments of a simulation, also employing distinct
mappings according to the current system conditions and priorities. The FEHetSS’s
Orchestrator component can be extended to implement mapping strategies aiming at
the architectural resources allocation.

Currently, the preparation of the models in the VP repository occurs manually. It is
an onerous task that demands the tooling and modeling skills of a designer, requiring
the applying of HLS and HW design tools, possibly with high compilation times. A
possible enhancement to FEHetSS is to adapt in the methodology a (rapid) estimation
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tool related to performance, power, and area aspects of an FPGA-based PE, as well as
CPU and GPU. For FPGA, HAPE (MAKNI et al., 2018) and COMBA (ZHAO et al., 2020)
are candidate tools. Regarding the task-level modeling of the FEHetSS applications,
by using a task graph model, we envision a tool that automatically recognizes these
elements in C/C++/OpenCL codes constructing the correspondent model to employ in
the FEHetSS’s inputs, also allowing to annotate them with suitable estimations.
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