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“Accessing memory is more like mailing a letter than
making a phone call”

( T H E A R T O F M U LT I P R O C E S S O R

P R O G R A M M I N G , PA G E 4 7 1 )



ABSTRACT

PASQUALIN, Douglas Pereira. Sharing-Aware Thread Mapping in Software Trans-
actional Memory. Advisor: André Rauber Du Bois. 2021. 114 f. Thesis (Doctorate in
Computer Science) – Technology Development Center, Federal University of Pelotas,
Pelotas, 2021.

Software Transactional Memory (STM) is an alternative abstraction for thread
synchronization in parallel programming. One advantage is simplicity since it is
possible to replace the use of explicit locks with atomic blocks, while the STM runtime
is responsible to ensure a consistent execution, for instance, without deadlocks and
race conditions. Regarding STM performance, many studies already have been made
focusing on reducing the number of transactional aborts and conflicts. However, in
current multicore architectures with complex memory hierarchies, it is also important
to consider where the memory of a program is allocated and how it is accessed. This
thesis proposes the use of a technique called sharing-aware mapping, which maps
threads to cores and memory pages to NUMA nodes based on their memory access
behavior to achieve better performance in STM systems. The first major contribution of
this thesis is a mechanism to detect sharing behavior directly inside the STM library by
tracking and analyzing how threads perform STM operations. The collected information
can be used to perform an optimized mapping of the application’s threads to cores
in order to improve the efficiency of STM operations. The second contribution of this
thesis is the characterization of the sharing behavior of STM applications by using
information extracted from the STM runtime, providing information to guide thread
mapping based on their sharing behavior. The third contribution is a mechanism
to perform sharing-aware thread mapping in STM applications. We first introduce
Static-SharingAware (SSA), which map threads to cores based on a previous analysis
of the sharing behavior of STM applications. Next, we introduce STMap, an online, low
overhead mechanism to detect the sharing behavior and perform the mapping directly
inside the STM library, by tracking and analyzing how threads perform STM operations
during the execution. In experiments with the STAMP benchmark suite and synthetic
benchmarks, both mechanisms showed performance gains when compared to the
default Linux scheduler.

Keywords: Software Transactional Memory. Sharing-aware. Thread Mapping. Commu-
nication.



RESUMO

PASQUALIN, Douglas Pereira. Mapeamento de Threads Baseado em Comparti-
lhamento em Memórias Transacionais em Software. Orientador: André Rauber
Du Bois. 2021. 114 f. Tese (Doutorado em Ciência da Computação) – Centro de
Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, 2021.

Memória Transacional em Software (MTS) é uma abstração para a sincroniza-
ção de threads na programação paralela. Uma de suas vantagens é a simplicidade,
pois é possível substituir o uso de bloqueios por blocos atômicos. Além disso, a
implementação de MTS é responsável por garantir uma execução consistente, por
exemplo, sem deadlocks ou condições de corrida. Com relação ao desempenho
de MTS, existem muitos estudos focados na redução do número de cancelamentos.
Contudo, nas atuais arquiteturas multicore, com complexas hierarquias de memória,
é também importante considerar onde a memória do programa está alocada e como
ela é acessada. Esta tese propõe o uso de uma técnica chamada mapeamento
baseado em compartilhamento a qual consiste em mapear threads para núcleos de
processamento e páginas de memória para nós NUMA com base no seu padrão de
acesso à memória para melhorar o desempenho de aplicações que utilizam MTS. A
primeira contribuição desta tese é um mecanismo para detectar o padrão de acesso
à memória em bibliotecas de MTS. Ele consiste em rastrear e analisar como threads
executam operações de MTS. As informações coletadas podem ser utilizadas para
criar um mapeamento otimizado de threads para núcleos de processamento, com o
objetivo de melhorar a eficiência das operações de MTS. A segunda contribuição é
a caracterização do padrão de acesso à memória de aplicações que utilizam MTS,
fornecendo informações para guiar um mapeamento de threads com base no padrão
de compartilhamento da aplicação. A terceira contribuição é um mecanismo para
efetuar um mapeamento de threads baseado em compartilhamento para aplicações
que utilizam MTS. Primeiramente é apresentado Static-SharingAware (SSA), que
baseado em uma análise prévia do padrão de compartilhamento da aplicação, mapeia
threads para núcleos de processamento de forma estática. Após, é apresentado
STMap, um mecanismo que opera dinamicamente e com baixa sobrecarga, com
o objetivo de detectar o padrão de acesso à memoria e efetuar o mapeamento de
threads durante a execução do programa. Em experimentos com o benchmark
STAMP e outras aplicações sintéticas, ambos mecanismos apresentaram ganhos de
desempenho quando comparados com o escalonador padrão do Linux.

Palavras-chave: Memória Transacional em Software. Sensibilidade ao compartilha-
mento. Mapeamento de thread. Comunicação.
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1 INTRODUCTION

At the beginning of the year 2000, multicore processors started to be produced.
This decision was taken due to the microarchitectural limitations and, higher power
consumption and heat dissipation involved on improving the performance of a single
CPU (TRONO, 2015). Since then, the number of cores in a single chip is growing every
year. Today, desktops and even cellphone processors are multicore. Besides, servers
normally have many processors and each one is multicore.

The simplest architecture for multiprocessors systems are based on a single bus,
i.e., one or more processors and memory modules use the same bus for communication.
In this architecture, every memory word can be read with the same latency. Hence,
they are named UMA (Uniform Memory Access). However, these architectures have a
scalability problem as the number of CPUs grow, as all communication needs to pass
by the single bus.

One alternative is to replace the single bus with multiple nodes, where each node
is a multiprocessor connected directly to a local memory module (GAUD et al., 2015).
These architectures are called NUMA (Non-Uniform Memory Access) and are becoming
dominant in servers (CALCIU et al., 2017). In NUMA machines, programs have access
to the entire memory. In a transparent way, data can be stored in the local node or in a
node that belongs to other processor (remote node). Interconnect links between nodes
are asymmetric and have different bandwidths (LEPERS; QUÉMA; FEDOROVA, 2015).
Hence, the location of the data plays an important role in the performance.

Accessing a remote node implies higher latency, making the access time non-
uniform, i.e., depends on the location of the data.

In order to better exploit the parallelism available in these modern architectures, soft-
ware must be parallel and scalable (GRAHN, 2010). An important issue that arises in
parallel programming is thread synchronization, and it is the major cause that prevents
the scalability of applications (DAVID; GUERRAOUI; TRIGONAKIS, 2013). Synchro-
nization is necessary when multiple concurrent threads need to access at the same time
a shared variable and, at least one thread needs to write to this shared variable. If there
is no synchronization, a race condition can happen (NETZER; MILLER, 1992), possibly
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leading to non-deterministic results (TRONO, 2015). The block of code that needs to
be protected in order to not be accessed at the same time by different processes is
called critical section (RAYNAL, 2013).

Mutual-exclusion locks are one of the most used abstractions to protect critical
sections (FRASER; HARRIS, 2007). However, the semantics of locks is not intuitive.
Programmers need to explicitly acquire and release locks, making the source code hard
to read and debug (ANTHES, 2014). Besides, if more than one lock was acquired in a
critical section, they need to be released in the same order, to avoid deadlocks (HER-
LIHY; SHAVIT, 2008). The performance of locks depends on the size of the critical
section that it protects. Coarse-grained locks are easy to program but the parallelism is
limited (DICE; SHALEV; SHAVIT, 2006). On the other hand, fine-grained locks provide
good performance but they are hard to use (DICE; SHAVIT, 2007).

An alternative abstraction to replace mutual-exclusion locks in parallel programming
is the Transactional Memory (TM) (HARRIS; LARUS; RAJWAR, 2010; GRAHN, 2010),
in which critical-sections are accessed using transactions similar to the ones available
in databases. With TM, instead of explicitly acquiring and releasing locks, the program-
mer only needs to delimit the block of code that he wants to be executed atomically as
a transaction. The TM runtime is responsible to ensure a consistent execution, e.g.,
without deadlocks and race conditions. A transaction that has executed without conflicts
can commit, i.e., update the memory with the new values. If a conflict was detected
an abort is executed and a transaction is reinitialized until a commit is possible. Thus,
an impression of atomicity is given to the programmer. Although there are TMs imple-
mented in hardware (HTM) and in software (STM), this thesis focuses on the study of
STM, where transaction consistency is guaranteed by a software library. An advantage
of an implementation in software is that it is more flexible and not dependent on hard-
ware. Also, it does not have the same resource limitations as in hardware (GRAHN,
2010).

1.1 Motivation

There are many compilers and programming languages that already support trans-
actional memory constructs, such as C++ (since the standard C++111), Haskell, Scala
and .NET Framework (GRAMOLI; GUERRAOUI, 2017). Besides, some researches al-
ready showed that STM can outperform locks in some scenarios (DICE; SHAVIT, 2007;
DRAGOJEVIĆ et al., 2011). Unfortunately, there are scenarios where the overhead
added by the management of internal metadata of the STM or a high number of aborts,
limits good performance (GRAMOLI; GUERRAOUI, 2014). Due to these limitations,
improving performance of STM is an active research area. There are several proposals

1<https://gcc.gnu.org/wiki/TransactionalMemory>

https://gcc.gnu.org/wiki/TransactionalMemory
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for increasing the performance of STM systems. However, the majority of them focus
on reducing the number of conflicts (transactional aborts). One technique is the use of
a transactional scheduler, acting proactively, using heuristics to prevent conflicts and to
decide when and where a transaction should be executed (DI SANZO, 2017).

Current multicore architectures have complex memory hierarchies and different
latencies for memory accesses. Hence, a thread placement that improves the use
of memory controllers and data locality is important to achieve good performance. A
technique called sharing-aware mapping2 (CRUZ; DIENER; NAVAUX, 2018) aims to
map threads to cores and memory pages to NUMA nodes considering their memory
access behavior. Since STM is used to synchronize data accessed by multiple threads,
an efficient mapping will help to make better usage of caches and memory controllers,
hence improving the overall performance. Besides, STM provides interesting mapping
opportunities since the STM runtime has precise information about memory areas that
are shared between threads, their respective memory addresses, and the intensity with
which they are accessed by each thread. Hence, contrary to prior works on sharing-
aware thread mapping, it is not necessary to keep track of all memory access of the
applications, only the STM accesses. Therefore, the proposed mechanism will have
a low overhead and can perform sharing-aware thread mapping accurately for STM
applications.

1.2 Contributions

The main objective of this thesis is to investigate the use of sharing-aware mapping
in the context of STM. Contrary to previous sharing-aware mapping proposals that rely
on memory traces of the entire application, our proposal has lower overhead and better
accuracy because only memory accesses that are in fact shared between threads are
traced. Beyond that, this sharing-aware mapping will improve the overall performance
of STM applications by improving the cache usage and interconnection traffic. More
specifically, this thesis makes the following contributions:

• We developed a low overhead mechanism to detect the sharing behavior of
STM applications, by tracking and analyzing how threads perform STM opera-
tions (Chapter 4).

• We made an in-depth characterization of STM applications, regarding mem-
ory access behavior, using the proposed mechanism. This characterization is
used to define the suitability for a thread mapping based on communication be-
havior and defining which type of mapping policy is more appropriate (static or
dynamic) (Chapter 5).

2This research field is also known as topology-aware mapping (JEANNOT et al., 2013; UNAT et al.,
2017).
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• We show how a static thread mapping (where threads are mapped to cores at
the beginning of execution, and never migrated) is sufficient to improve the overall
performance of the majority of STM applications (Chapter 6, Section 6.1).

• We extend the proposed mechanism to perform online detecting sharing be-
havior and mapping. We developed a heuristic to disable the mechanism if it
determines that the application will not benefit from a new thread mapping (Chap-
ter 6, Section 6.2).

1.3 Publications

The following papers were published during the PhD program and contain material
that is relevant to this thesis:

1. Douglas P. Pasqualin, Matthias Diener, André R. Du Bois, Maurício L. Pilla.
“Thread Affinity in Software Transactional Memory.” 19th International Sym-
posium on Parallel and Distributed Computing (ISPDC), July 2020 (PASQUALIN
et al., 2020b).

2. Douglas P. Pasqualin, Matthias Diener, André R. Du Bois, Maurício L. Pilla.
“Online Sharing-Aware Thread Mapping in Software Transactional Memory.”
32nd International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD), September 2020 (PASQUALIN et al., 2020a).

3. Douglas P. Pasqualin, Matthias Diener, André R. Du Bois, Maurício L. Pilla.
“Characterizing the Sharing Behavior of Applications using Software Trans-
actional Memory.” Benchmarking, Measuring, and Optimizing (Bench’20).
November 2020. (Best Paper Award and Award for Excellence for Repro-
ducible Research) (PASQUALIN et al., 2021).

The following papers were also submitted for publication and are currently under
peer-review:

1. Douglas P. Pasqualin, Matthias Diener, André R. Du Bois, Maurício L. Pilla.
“STMap: Sharing-Aware Thread Mapping in Software Transactional Mem-
ory.” Journal of Parallel and Distributed Computing (JPDC).

2. Douglas P. Pasqualin, Matthias Diener, André R. Du Bois, Maurício L. Pilla.
“Sharing-Aware Data Mapping in Software Transactional Memory.” SAMOS
XXI - International Conference on Embedded Computer Systems: Architectures,
Modeling and Simulation.
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1.4 Document organization

The remainder of this thesis is organized as follows. Chapter 2 presents the back-
ground of different topics used in this thesis, such as TM and sharing-aware mapping.
Chapter 3 presents the works related to the thesis subject. Also, we discuss the dif-
ferences between our contributions with related work. Chapter 4 presents the first
contribution of this thesis, i.e, a mechanism to detected the sharing behavior of STM
applications, by tracking and analyzing how threads perform STM operations. Chapter 5
uses the proposed mechanism of Chapter 4 to perform an in-depth characterization of
STAMP, a frequently used TM benchmark suite, regarding memory access behavior. It
includes information about the suitability for thread mapping of each STAMP application,
its communication pattern, and its dynamic behavior, among others. Chapter 6 shows
how to use the proposed mechanism to perform static and online thread mapping based
on the memory access behavior of STM operations. Finally, Chapter 7 presents the
conclusion and future work. We also included Appendix A which shows how to extend
the online sharing-aware thread mapping mechanism to include data mapping.



2 BACKGROUND

This chapter covers the background on the range of different topics which are im-
portant to this thesis. It starts by explaining transactional memory (Section 2.1) and
sharing-aware mapping (Section 2.3). Benchmarks for STM are briefly described in
Section 2.2. We also include a small experiment to show the benefits of sharing-aware
thread mapping for STM applications (Section 2.4).

2.1 Transactional Memory

Transactional memory (TM) is an abstraction to synchronize accesses to shared vari-
ables. Instead of using locks, the programmer only needs to enclose the critical section
in an atomic block, which will be executed as a transaction. The concept of transactions
was borrowed from Databases. In fact, the first idea to use Database transactions in
programming languages was described by Lomet (1977). Sixteen years later, Herlihy
and Moss (1993) proposed hardware support for TM. The first implementation purely
on software (STM) was proposed by Shavit and Touitou (1995) as a flexible alternative
not dependent on hardware. There are also hybrid approaches (DAMRON et al., 2006)
that combine implementation both on hardware and software.

2.1.1 General Concepts

The execution of a transaction needs to be atomic. Atomicity requires that a trans-
action is executed as a whole or it needs to appear as it was never executed (HARRIS;
LARUS; RAJWAR, 2010; GRAHN, 2010). This property is also known as “all-or-nothing”
(ÖZSU; VALDURIEZ, 1996). A transaction commits if executed without conflicts, hence
all operations and results are made visible to the rest of the system (GRAHN, 2010).
If conflicts are detected, a transaction aborts, i.e., all operations are discarded, and
the transaction needs to restart until a commit is possible. This idea is associated with
another important property called isolation: all memory updates of a running transaction
can not be visible to other transactions before a commit.

The sequence of operations performed by all transactions in a given execution is
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called history (GUERRAOUI; KAPALKA, 2008). If one transaction executes only after
the end of the other they are serial, otherwise concurrent (HARRIS; LARUS; RAJWAR,
2010). If they are concurrent, conflicts could occur between them. A conflict occurs
when two transactions perform operations in the same memory location, and at least
one of these operations is a write.

As transactions can execute concurrently, correctness criteria were proposed to
ensure that the TM system produces correct results. One of the most used criteria is
Opacity (GUERRAOUI; KAPALKA, 2008), that is an extension of the classical database
criteria Strict Serializability (PAPADIMITRIOU, 1979). Serializability says that the result
of executing concurrent transactions in a given history must be equal to a serial exe-
cution. Strict Serializability says that real-time order must be respected. If T1 finishes
before T2 starts, then T1 must occur before T2 in the equivalent serial execution (HAR-
RIS; LARUS; RAJWAR, 2010). Opacity extends these concepts to aborted transactions,
i.e., all transactions in a given history, including aborted, must appear to be executed in
a serial order.

2.1.2 Design Choices

Although the main purpose of TM is to provide a simple interface to manage ac-
cesses to shared resources, its implementation is not trivial. Many different design
options are available such as transaction granularity, version management, conflict
detection and resolution. The next subsections describe these design options.

2.1.2.1 Version Management

TMs use version management of memory locations to manage the writes of con-
current transactions. Two approaches are used (HARRIS; LARUS; RAJWAR, 2010;
FELBER et al., 2010):

• Eager, direct update or write-through: data is modified directly in memory.
Older values are stored in an undo-log. In case of an abort the log is used to
restore the old values.

• Lazy, deferred update or write-back: instead of updating data directly in mem-
ory, new values are stored in an redo-log. During a commit, the log is used to set
new values to memory. In case of an abort, the log is discarded.

Eager versioning makes committing faster, whereas lazy versioning makes aborting
faster (GRAHN, 2010).

2.1.2.2 Transaction Granularity

The granularity is the dimension used for conflict detection, i.e., the level used for
keeping track of memory locations. One option is to use memory word granularity. The
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main advantage is that no false conflicts happen. However it adds a high overhead
in terms of time and space to keep the metadata (GRAHN, 2010). Object granularity
is most used in object-based languages (CASTRO, 2012). However it can lead to
false conflicts, i.e., transactions accessing the same object but different fields (LARUS;
KOZYRAKIS, 2008). For HTM, cache line granularity is the most suitable (GRAHN,
2010).

2.1.2.3 Conflict Detection

Similar to version management, there are two approaches to deal with conflict de-
tection between concurrent transactions (GRAHN, 2010):

• Eager, early, pessimistic or encounter-time: conflicts are verified on each mem-
ory location read or written exactly when it occurs. In STM this could be done
using locks or version number on memory locations. Thus, to access a value, a
transaction needs to acquire its ownership, preventing others from accessing it
(BANDEIRA et al., 2015).

• Lazy, late, optimistic or commit-time: conflicts are verified only at commit time.
It allows multiple transactions to access shared data and continue executing
even if they conflict, as the TM system will detect and resolve them on commit
time (HARRIS; LARUS; RAJWAR, 2010, p. 20).

These options could be combined, for instance, lazy conflict detection for reads and
eager for writes (BANDEIRA et al., 2015).

2.1.2.4 Conflict Resolution

All operations executed by a transaction that aborts could be seen as a wasted work
(SPEAR et al., 2009; ANSARI et al., 2009; ZHOU et al., 2016). Thus, the total aborts in
an execution have a strong relationship with the final performance. In case of conflicts,
choosing which transaction needs to be aborted is a responsibility of the Contention
Manager (CM) (YOO; LEE, 2008). When two transactions TA and TB conflict, the
transaction that has detected the conflict, suppose TA, asks the CM what to do. The
actions could be, for instance, abort immediately or wait a determined time, allowing TB

to finish, or force and abort of TB (GUERRAOUI; HERLIHY; POCHON, 2006). There are
many CMs proposed in the literature with different purposes. A few examples of them
are (SCHERER III; SCOTT, 2005; SPEAR et al., 2009; HARRIS; LARUS; RAJWAR,
2010; GRAHN, 2010):

• Passive: the transaction that detected the conflict aborts and restart its execution.

• Polite: the transaction that detected the conflict could abort the conflicting one.
However, aborting is delayed for a period of time, waiting the conflicting transaction
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to end accessing values. The transaction can also wait for a fixed number of
exponentially growing intervals before aborting the enemy.

• Karma: use priorities to define which transaction must abort. The priority is
defined by the total of memory locations that a transaction has accessed. The
total is cumulative, i.e., taking in consideration all aborts and re-executions.

• Timestamp: aborts the transaction that started earlier.

• Polka: a hybrid between Polite and Karma.

2.1.3 STM Implementation

The first STM implementations were non-blocking (SHAVIT; TOUITOU, 1997),
more specifically obstruction-free (HERLIHY et al., 2003). However, according to En-
nals (2006), obstruction-free is essential in distributed systems but not appropriate for
non-distributed STM. In the same publication, Ennals shows that lock-based STM are
simpler to implement and faster. As a consequence many state-of-art STM implemen-
tations, for instance, TL2 (DICE; SHALEV; SHAVIT, 2006), TinySTM (FELBER et al.,
2010) and SwissSTM (DRAGOJEVIĆ; GUERRAOUI; KAPALKA, 2009) are lock-based.

Other characteristic used in the first implementations was visible reads, i.e., all
transactions knew who read a specific memory location. To implement this approach it
is necessary a list to store all transactions who read a specific memory location. Thus,
when a transaction writes new values in memory, it is possible to notify the readers
that there is a conflict. The disadvantage of this approach arises when many distinct
threads read the same memory location (FELBER et al., 2010). As most workloads
are read-intensive, this approach limits the performance (SUTRA et al., 2018). The
opposite solution is to use invisible reads, where other threads do not know who read
a specific memory location. However, using this approach, a thread could be in an
inconsistent state (due to a conflict) and does not know yet. Letting this transaction
continue execution could bring an unwanted result, not guaranteeing Opacity or other
consistency. Thus, a solution to using invisible reads is to periodically validate the read
set, verifying if the memory locations read are still consistent. On the other hand, this
solution is expensive, mainly if a transaction has read many memory locations. This
cost keeps growing as the transaction keeps reading different memory locations. This
problem is known as incremental validation (HARRIS; LARUS; RAJWAR, 2010).

To use invisible reads without the problem of incremental validation the concept
of global clock was introduced in an independent way in the algorithms TL2 (DICE;
SHALEV; SHAVIT, 2006) and LSA (Lazy Snapshot Algorithm) (RIEGEL; FELBER;
FETZER, 2006). The global clock is a counter utilized for versioning memory locations.
When a transaction writes new values to memory, the global clock is incremented and
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the new clock value is used as a version number for modified memory locations. In STM
implementations that use a global clock, transactions still need to validate their read set,
but in general, this is necessary only for write transactions during the commit phase.
Read only transactions can commit without validation, because memory location were
validated when read.

2.1.3.1 Using a global clock

This section presents an overview of how an STM implementation that uses a global
clock for versioning memory locations works. The operations described are based on
algorithms TL2 (DICE; SHALEV; SHAVIT, 2006) and TinySTM (FELBER et al., 2010).
However, minor details could be different depending on the STM implementation.

Figure 1 – Data structures utilized internally by the STM library TinySTM. Source: (FELBER et
al., 2010). R/W sets stands for read and write sets. A snapshot corresponds to a range of valid
linearization points. LB and UB stand for lower and upper bounds, i.e, the validity range of the
snapshot.

Figure 1, represents the internal organization of TinySTM. Each transaction has
two internal linked lists, called read-set (RS) and write-set (WS). These lists are utilized
to keep track of memory locations read and written by transactions. Another important
data structure for STMs, is the lock array, implemented using a hash table. This table
is utilized to map memory locations to their related versioned locks. When a versioned
lock is locked, its last bit is set to one and the remaining bits contain the owner of
the memory location. If the lock is free, it contains the current version of the memory
location, also called timestamp (Figure 1). Some authors call the lock array as owner-
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ship records (orecs), because it associates memory locations with their current owners
(DALESSANDRO; SPEAR; SCOTT, 2010).

To summarize, a transaction performs the follow operations. To make it simpler, we
do not intent to cover all possible algorithm cases. The main idea is to show the basics
of how an STM algorithm works.

• Begin Transaction: The current global clock value is copied to a local variable of
the transaction. Normally, the variable name is rv which stands for read version.
This value will be utilized to validate reads on memory locations.

• Read or Load: With eager version management (Section 2.1.2.1), the transac-
tion verifies if it owns the lock of the memory location that is being read. If true,
it returns directly the value stored in memory. If the lock of the memory location
belongs to another transaction, an abort is necessary. Using lazy version man-
agement, the transaction first verifies if the memory location that it wants to read
is in their WS. In that case, the transaction has already written to this location and
the value in the WS must be returned. Otherwise, it is verified if the memory loca-
tion is locked by another transaction. If true, an abort is necessary. Otherwise, the
version associated with the memory location is compared with rv. If the version
of the memory locations is greater than rv, an abort is necessary, as the memory
location was updated after the transaction that is accessing it started. In case
of abort, independently of the version management, the CM (Section 2.1.2.4) is
triggered. STM implementations, such as TinySTM, try to do additional process-
ing before aborting a transaction, for instance, the use of timestamp extension
technique (RIEGEL; FELBER; FETZER, 2006). Finally, the address read is added
to the RS and the content of the memory location is returned.

• Write or Store: First, it is necessary to verify if the memory location is locked.
If true an abort is necessary. The next step, in case of eager conflict detection
(Section 2.1.2.3) is to lock the memory location. If eager version management
(Section 2.1.2.1) is utilized, the new value is updated directly on memory and the
old one is stored in an undo-log. If the version management is lazy, the new value
is stored in the WS to be updated at commit time.

• Commit: Read-only transactions can commit directly, as the memory locations
were validated on the Read step. For write transactions, the first step is to validate
the RS, verifying each address, if it is locked by other transaction and if the rv is
still valid. If the implementation uses lazy version management (Section 2.1.2.1),
all address in the WS should be locked. If it fails, the transaction aborts. In
case of eager version management, addresses have already been locked in the
Write step. Then, the global clock is advanced by 1 and the result is used as
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Table 1 – Applications from STAMP benchmark. Source: (MINH et al., 2008).

Application Domain Description

bayes machine learning Learns structure of a Bayesian network
genome bioinformatics Performs gene sequencing
intruder security Detects network intrusions
kmeans data mining Implements K-means clustering
labyrinth engineering Routes paths in a maze
ssca2 scientific Creates efficient graph representation
vacation online transaction processing Emulates travel reservation system
yada scientific Refines a Delaunay mesh

the new version for the values being updated. If lazy version management is
used, the new values are updated in the memory. In the case of eager version
management, the new values were updated in the Write step. A final step, for
both version managements, is to release the locks and set the new version value
of the memory location.

• Abort: If the implementation uses eager version management, all values from the
undo-log must be restored. Otherwise, the redo-log is discarded. A final step is
to release all locks, if acquired.

2.2 Benchmarks for STM

Together with the first STM proposals, researches also developed benchmarks for
testing. In most of the cases, these benchmarks were simple, based on sets, lists
and maps (HERLIHY et al., 2003; HARRIS; FRASER, 2003; SCHERER III; SCOTT,
2005; RIEGEL; FELBER; FETZER, 2006; DICE; SHAVIT, 2007). Hence, it was nec-
essary to develop specific TM benchmarks to evaluate TM systems. More specifically,
benchmarks with realistic characteristics. One of the first benchmarks proposed for eval-
uating STM systems were STMBench7 (GUERRAOUI; KAPALKA; VITEK, 2007) and
Lee-TM (ANSARI et al., 2008c). After that, other suites and standalone benchmarks
applications were proposed to evaluate TM systems, for instance, Eigenbench (HONG
et al., 2010), RMS-TM (KESTOR et al., 2011) and, Memcached (RUAN et al., 2014).

Despite the effort on STM benchmarks proposal, the most used for evaluat-
ing TM implementations is the STAMP (Stanford Transactional Applications for Multi-
Processing) (MINH et al., 2008). This suite is composed of 8 applications with realistic
characteristics and that represent several application domains. Table 1 shows the
domain and a short description of each application from STAMP benchmark.

STAMP still is the most used STM benchmark suite, as can be seen in recent re-
searches (CHEN; GIBBONS; MOWRY, 2020; CARVALHO et al., 2020; DI SANZO et al.,
2020; YU; ZUO; ZHAO, 2019; POUDEL; SHARMA, 2019; MURURU; GAVRILOVSKA;
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PANDE, 2019).

2.3 Sharing-Aware Mapping

Data locality is an important factor in modern multicore and NUMA systems. One
way to better explore locality is to map threads and data according to their memory
access behavior (DIENER et al., 2016a). Hence, two types of mappings are possible
(CRUZ; DIENER; NAVAUX, 2018):

1. Thread mapping: threads are associated to cores, improving the cache usage
and interconnections, i.e., threads are mapped to cores that are close to each
other in the underlying architecture.

2. Data mapping: memory pages are associated with NUMA nodes, optimizing the
usage of memory controllers, i.e., memory pages are mapped to the same NUMA
node where the core that is accessing them belongs.

Thread and data mapping based on the memory access behavior of applications is
called sharing-aware mapping (CRUZ; DIENER; NAVAUX, 2018). Although the Linux
kernel handles thread and data mapping, for thread mapping it does not take memory
access patterns into consideration. For instance, the Completely Fair Scheduler (CFS)
(WONG et al., 2008) used by default in the Linux kernel (DIENER et al., 2016a) mainly
focuses on load balancing. For data mapping, the default policy is called first-touch
(GAUD et al., 2015) where the memory is allocated in the NUMA node where the first
access to the memory page is performed. Another data mapping policy available is
interleave, that focuses on balance, allocating pages in a round-robin way on the NUMA
nodes (LAMETER, 2013).

To perform a thread mapping, it is necessary to know how threads share data
(DIENER et al., 2016a). This information is usually represented as a communication
matrix (BORDAGE; JEANNOT, 2018). Also required is information about the hardware
hierarchy, which can be discovered using tools such as hwloc (BROQUEDIS et al.,
2010a). A mapping algorithm uses the communication matrix and hardware hierarchy
to choose an improved mapping of threads to cores.

For data mapping based on memory access, the accesses of each NUMA node
to pages must be known (CRUZ; DIENER; NAVAUX, 2018). Current systems have
millions or even billions of memory pages. For this reason, only a small group of pages
must be considered for the mapping decision, avoiding a high overhead (DIENER et al.,
2016a).

As mentioned in Section 1.1, STM provides interesting mapping opportunities since
the STM runtime has precise information about memory areas that are shared between
threads. The main idea of this thesis is to use information about transactional shared
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variables inside STM runtime to perform an efficient mapping. Hence, this thesis will
focus on sharing-aware thread mapping. For efficient data mapping is necessary to
have a global vision of the memory pages of an application, not only the ones accessed
by the STM runtime. Nevertheless, in Appendix A we made some experiments with
sharing-aware data mapping in STM to confirm this hypothesis.

2.3.1 Communication/sharing matrix

To determine a better placement of threads and data, an affinity measure is required.
For thread mapping, a common measure is a communication or sharing matrix (BOR-
DAGE; JEANNOT, 2018; MAZAHERI; WOLF; JANNESARI, 2018), in which each cell
represents the amount of communication between pairs of threads (SASONGKO et al.,
2019). Since the amount of communication between thread i and j is the same between
j and i, the communication matrix is symmetric and diagonals are zero (MAZAHERI;
WOLF; JANNESARI, 2018). Figure 2 shown examples of communication matrices,
where axes show thread IDs. In Figure 2(b), the matrix is represented graphically,
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Figure 2 – Examples of communication matrices

where darker cells indicate more communication between pairs of threads (DIENER et
al., 2016b).

2.4 Improving STM applications with Thread Mapping

To show how sharing-aware thread mapping can improve the performance of an
STM application, we designed an experiment that illustrates sharing-aware mapping
of an STM application that calculates the sum of 16 million array elements. In the
application, each group of 2 threads computes the sum of their respective array part
in a shared sum variable. For example, with 8 threads, there are 4 shared variables
for computing the sum. The memory access behavior is known in advance: threads
0 and 1 access a shared variable, threads 2 and 3 another shared variable, and so
on. Algorithm 1 shows how the sum function works. Lines 5-12 verify the number of
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Algorithm 1 Function executed by each thread on the array sum application
1: function S U M

Require:
tid: thread ID that is accessing this function

2: pinThreadToCore(tid, coreId) . bind thread to core according to the strategy
3: for all value in array do
4: stm_start_transaction() . begin transaction
5: if (tid in 0, 1) then
6: stm_write(sum_0_1, stm_read(sum_0_1) + stm_read(value))
7: else if (tid in 2, 3) then
8: stm_write(sum_2_3, stm_read(sum_2_3) + stm_read(value))
9: else if (tid in 4, 5) then

10: stm_write(sum_4_5, stm_read(sum_4_5) + stm_read(value))
11: else if (tid in 6, 7) then
12: stm_write(sum_6_7, stm_read(sum_6_7) + stm_read(value))
13: stm_commit() . try to commit

the thread that is performing the sum and stores it in the respective shared variable.
Thus, keeping threads that share a sum variable on sibling cores improves the cache
usage. We used the TinySTM (FELBER et al., 2010) library for the synchronization
of shared variables, with the default configuration: lazy version management, eager
conflict detection and CM suicide.

We executed this application on the following NUMA machines: Xeon, with 8 Intel
E5-4650 processors, totaling 96 cores and 8 NUMA nodes and Opteron, with 4 AMD
Opteron 6276 processors, totaling 64 threads and also 8 NUMA nodes (more details on
the machines in Section 6.1.1). For the tests, 4 different configurations were used: the
default “Linux scheduler”, “no cache sharing”, “Cache sharing - Balance” and “Cache
sharing - Socket”. With exception of “Linux scheduler”, the mapping strategies are
shown in Figure 3.

Socket 2 / NUMA node 2Socket 1 / NUMA node 1

1 2 3 4

L2 L2
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1 2 3 4
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(a) No cache-sharing.
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(b) Cache sharing - Balance.
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Cache sharing - Socket

(c) Cache sharing - Socket.

Figure 3 – Thread mapping strategies for the Array Sum application.
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The idea of “no cache sharing” is to map threads that share the same variable
to different NUMA nodes, forcing remote accesses and cache coherency messages
between the nodes. In contrast, in the “Cache sharing - Balance” approach, the idea
is to map threads that share a variable to sibling cores on the same NUMA node to
share caches. However, for this configuration we map each pair of shared variables to
different sockets.

Finally, for “Cache sharing - Socket”, the idea is to place threads on sibling cores,
sharing all cache levels. Since this application uses 8 threads, using this configuration
all threads will be mapped to only one socket. To pin threads to cores the function
pthread_setaffinity_np was utilized. The mapping was applied when a thread
calls the function stm_init_thread of the TinySTM library. This function informs
the STM runtime that the thread that has called it will perform transactional operations.
Figure 4 presents the execution time in seconds on each machine.
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Figure 4 – Execution time of the Array Sum application.

On the Opteron machine, the Linux scheduler had similar results as the “no cache
sharing” configuration. When the application was running, we observed that the sched-
uler tries to balance threads, distributing them to the NUMA nodes, without taking the
sharing behavior into account. This explains that the results are similar to “no cache
sharing”. On Xeon, the NUMA effects are more clear since forcing threads to run on dis-
tinct sockets, i.e., “no cache sharing” configuration, presented the worst performance.

For the “Cache sharing - Balance” configuration, on Xeon the execution time was
reduced by 9.46% whereas in Opteron it was reduced by 43.02%. However, the most
interesting result appears using “Cache sharing - Socket” mapping on the Xeon. Using
this configuration, the execution time was reduced by 88.46%. Although in Opteron the
result of “Socket” was also positive (30.69% of reduction time), the “Balance” configura-
tion was better. We think that the good results of “Socket” on Xeon can be explained
by the size of the last-level cache (LLC). The size of the data structures used by the
array sum is 64MB. The size of LLC of the Xeon is 30MB whereas in Opteron it is
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6MB. In that case, almost half of the memory used by the application fits entirely on the
LLC of the Xeon. For the Opteron, mapping the variables to distinct cores increases
the performance gains compared to “Socket” configuration, because more cache was
available to the application.

2.5 Summary

This chapter presented the background related to this thesis. It also included a small
experiment with a synthetic application to illustrate the possible benefits of sharing-
aware thread mapping for STM applications.



3 RELATED WORK

This chapter presents the works related to the thesis subject. Section 3.1 describes
transactional schedulers, one technique used to reduce the number of aborts during
transactional execution, hence, improving the performance. Recent works use schedul-
ing techniques for STM with the objective of optimizing resources, like cache and page
sharing or to reduce the latency on data access. This kind of schedulers are described
in Section (3.2), which presents an exhaustive list of works that uses thread and data
mapping to improve the performance of STM applications. The next Section (3.3) also
describes works that explore thread and data mapping to improve the performance of
applications that do not use STM. To perform a successful mapping it is necessary to
perform an in-depth analysis of STM applications, regarding sharing behavior. Hence,
Section 3.4 describes works that perform workload characterization of STM applications
and sharing behavior of general applications.

3.1 Transactional schedulers

Albeit a Contention Manager (CM) can help to reduce the number of aborts in a
transactional execution, it has limitations. The CM acts only in a reactive way, dealing
with a conflict when it occurs and not avoiding it (YOO; LEE, 2008; DRAGOJEVIĆ et
al., 2009; NICÁCIO; BALDASSIN; ARAÚJO, 2012). Transactional scheduling acts in a
proactive way, using heuristics to prevent conflicts and to decide when and where a
transaction should be executed (DRAGOJEVIĆ et al., 2009).

This section presents state-of-the-art transactional scheduling techniques. In order
to identify the works on this subject, the surveys (HENDLER; SUISSA-PELEG, 2015)
and (DI SANZO, 2017) were used as a basis. Also, this section describe works pub-
lished after the surveys. However, transactional schedulers focused on HTM, GPU
(Graphics Processing Unit) or real-time systems are not included, because they are
not on the scope of this thesis. Di Sanzo (2017) classifies the schedulers as reactive,
prediction-driven, feedback-driven (all heuristic based) and machine learning or analyti-
cal (based on performance models (TAY, 2018)). In the next sections, we will follow this
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classification to describe the transactional schedulers.

3.1.1 Feedback-driven

Feedback techniques are based on constantly comparing if the actual behavior of a
system is the desired (JANERT, 2013). Application parameters are monitored during
the execution of a transaction (actual behavior ), and in each new iteration, they are used
as input for the scheduler to take decisions, i.e., a corrective action in order to achieve
the desired behavior. This step is repeated during execution, trying to dynamically
adjust the application (DI SANZO, 2017).

One of the first works to propose a transaction scheduler for STM was the Adaptive
transaction scheduling (ATS) (YOO; LEE, 2008), and the idea was to work together
with the CM: each thread has a contention intensity (CI), recalculated each time that a
transaction finishes (commit or abort). When the CI is great than a predefined threshold,
threads are inserted in a global queue to be serialized. This approach takes into
consideration that when the CI is high, it is better to limit parallelism, avoiding possible
conflicts.

In Ansari et al. (2008a), an adaptive concurrency control (ACC) technique was pro-
posed which limits the maximum number of concurrent threads executing transactions.
The idea is that an excessive number of threads can hurt the performance in a high
contention environment, mainly due to a higher number of aborts. The technique keeps
track of a Transaction Commit Ratio (TCR), i.e., the percentage of committed transac-
tions in the total number of transactions executed, and uses it to dynamically adapt the
number of concurrent threads. The ACC uses two parameters: a target TCR range and
a time interval for calculating the TCR. Four adaptive concurrency control algorithms
were proposed, varying the heuristic to change the total number of active threads, but
all based on TCR.

In Ansari et al. (2008b), the authors proposed a new concurrency control algorithm,
called P-only Concurrency Controller (PoCC), extending the ACC work. The main idea
is to keep TCR at a configurable value (called set point) instead of a range as in the
previous work. If a high set point is chosen, then the number of threads will quickly
reduce when TCR decreases. On the other hand, it will have a slower response when
TCR grows suddenly.

Chan, Lam and Wang (2011) also propose a new concurrency control technique.
For this purpose, a parameter quota is recalculated every predetermined amount of
time. When a new transaction is to be started, it needs to check if there is sufficient
quota available, otherwise, it will wait. There are two proposals for calculating the quota.
The first one, called Throttle, adjusts the quota based on the commit ratio, which is
compared with a predefined threshold, and the quota is adjusted according to it. The
second one, called Probe, uses commit rate (total of commits per unit of time) instead
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of ratio. Also, it uses a try and error approach to find the best quota, instead of a fixed
threshold.

Ansari (2014) published another work using TCR as the main heuristic. The dif-
ference from their first work (ANSARI et al., 2008a) and PoCC is that in this new algo-
rithm, called Weighted Adaptive Concurrency Control (WACC), the TCR is calculated per
thread. Similar to PoCC, that tried to keep TCR at a configurable value (set point), WACC
uses the notion of expected TCR. It predicts the global TCR that should be achieved if
the determined subset of threads is activated. Thus, it is possible to predict if the set
point will be reached if the determined subset of threads will be allowed to concurrently
run. Like in the first work (ANSARI et al., 2008a), four approaches are proposed, using
different heuristics (all based on TCR) to define the total number of threads.

One of the main objectives of Rito and Cachopo (2014), is to avoid excessive serial-
ization using a fine-grained approach. They have proposed the ProPS (Progressively
Pessimistic Scheduling) technique. In ProPS, a global concurrency level (CL) matrix
keeps information about pairs of atomic operations i and j. For the authors, each
transaction that executes the same block of code, execute the same operation of type i.
Accessing the matrix on the index CLij, it is possible to know how many transactions
executing atomic operations of type i could be executed concurrently with another one
executing j atomic operations. In the beginning, the values in the matrix are set to be
equal to the maximum of threads or cores of the machine, i.e., all cores could execute
all types of transactions without restriction. When a specific CLij decreases (typically
by an abort of i or j), ProPS reduces the number of transactions executing i and j. By
design, ProPS reduces exponentially (progressively pessimistic) the concurrency on
aborts between atomic operations and increases it linearly at commit.

The idea proposed by Pereira, Amaral and Araújo (2014) is to use the percentage
of effective work (PEW) of a transaction as the main heuristic. The PEW replaces CI in
approaches like ATS. It is calculated for each transaction, and it is based on the total of
cycles executed until the transaction finishes (commit or abort). Transactions with less
effective work done are prioritized. If a transaction aborts and the PEW is high, then it is
wasting too many work (cycles) and should have a lower priority. There are queues of
transactions according to their priorities. The authors noted that only using PEW, there
is still a high number of conflicts between transactions with the same priority. Thus,
an additional heuristic was included: a success-reward policy (SRP). According to a
predefined reward threshold, a transaction could change its position in the queue.

In Ravichandran and Pande (2014), the authors classified applications as fully scal-
able and scalability limited. Applications under the former classification decrease their
execution time as the number of cores of the machine grows. The latter is the opposite,
hurting the application performance as the number of cores is increased. The authors
have proposed F2C2-STM (Flux-based Feedback-driven Concurrency Control), which
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focuses on scalability limited applications. F2C2-STM is inspired by TCP’s (Transmis-
sion Control Protocol) network congestion control algorithm, to adjust the maximum
number of concurrent threads allowed to run. The heuristic utilized is the transac-
tion throughput. However, to compute the global throughput between all threads, a
global variable is needed. To avoid synchronization, the authors chose to calculate the
throughput only in one thread. Thus, they have assumed that the transactional work-
load is roughly the same between all threads. To find the best concurrency level, like in
Chan, Lam and Wang (2011), they have used a try and error approach, monitoring the
transaction throughput on each modification.

3.1.2 Reactive

Reactive techniques are activated after a conflict is detected. The main objective is
to avoid the same conflict to occur again (DI SANZO, 2017).

The Collision Avoidance and Resolution (CAR-STM) scheduling-based mechanism
(DOLEV; HENDLER; SUISSA, 2008) presents two new CMs and a scheduler. Each
core has one queue, and the runtime system restricts the maximum number of threads
to be equals to the cores available. The first CM proposed is called Basic. When it
detects a conflict between two transactions, it aborts the newer transaction and move
it to the queue of the older. The second, called Permanent, also aborts the newer
transaction in case of conflicts. However, it marks the aborted as a subordinate of the
older. If a transaction needs to be moved to another queue, Permanent will also move
all its subordinates. A proactive centralized module tries to choose the queue for a
new transaction, based on a conflict probability with the running transactions on each
queue.

On Steal-on-Abort (SoA) (ANSARI et al., 2009), the idea is to find dynamically an
optimal order to execute transactions, minimizing aborts. Each thread has two queues.
The first one, called main queue, keeps new transactions that should be processed by
the thread. The second queue is called “steal”. When a transaction aborts due to a
conflict, instead of restarting immediately, the opponent transaction “steals” the aborted
one and put in the steal queue of the thread. When the opponent transaction commits,
transactions on the steal queue are moved to the main queue. The authors proposed
different strategies to choose in what position of the queue the stolen transaction will
be put in. According to the authors, SoA benefits applications that have a high number
of repeated conflicts.

In Attiya and Milani (2009, 2012), the focus of the proposed schedulers are work-
loads with read-dominated transactions and lazy versioning. The authors explain that
many proposed schedulers focuses on avoiding repeated conflicts, serializing transac-
tions. Also, they do not perform well under read-dominated workloads, serializing more
transactions than necessary. With this motivation, the BIMODAL scheduler is proposed.
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On BIMODAL, each core has a work queue. Also, a global RO-queue, for read-only
transactions is shared between all cores. When two transactions conflict, if the aborted
is a writing one, it will be moved to the same queue of the conflicting. If it is read-only, it
will be moved to the RO-queue. When the RO-queue reaches a threshold of enqueued
transactions (or the other queues are empty), the BIMODAL will prioritize the transac-
tions in the RO-queue. The scheduler is proposed in a theoretical way. It was formally
proved and compared with SoA.

Sharp and Morgan (2013) argue that prior transactional schedulers deal with con-
current conflicts only, i.e., between a reader and a writer. The objective of the authors is
to deal with semantic conflicts. This kind of conflict occurs when there is no concurrent
conflict and yet it is not possible for transactions to proceed. They have cited as an ex-
ample a transaction that needs to consume an item from a buffer but the buffer is empty,
or a withdraw in an account without funds. With this motivation the Hugh scheduler is
proposed. When a transaction aborts, it first needs to register itself in a transaction
table. Next, a speculative phase begins, executing a permutation of transactions that is
in the transaction table. This phase tries to find a permutation where the maximum of
pending transactions can commit. Finally, in the commit phase, all successful permu-
tations are sent to an algorithm to decide which permutation can commit. It chooses
the permutation with the greatest number of transactions. The authors also proposed
Hugh2 (SHARP; BLEWITT; MORGAN, 2014), using the same idea on a different STM
implementation.

The second-hop conflict is a concept proposed in the RelSTM scheduler (SAINZ;
ATTIYA, 2013). If a transaction T1h conflicted with Tx, and another T2h has conflicted
with T1h, then T2h is a second-hop of T1h. Upon a conflict, the transaction registers its
opponent and those that have conflicted with the opponent too. When restarting, the
transaction is serialized if the opponents are still running. Otherwise it could wait if a
percentage of second-hop transactions that are still running is greater than a predeter-
mined threshold.

3.1.3 Prediction-driven

Schedulers under this classification, use prediction techniques, trying to increase
the probability to make the right decision on scheduling (DI SANZO, 2017).

The Shrink scheduler (DRAGOJEVIĆ et al., 2009) tries to predict the future mem-
ory accesses of transactions based on past accesses. The authors use the concept of
temporal locality of the read-set. They have identified that multiple consecutive commit-
ted transactions in a thread access similar addresses. A per thread Bloom Filter 1 keeps
track of the last read addresses. When an address is read, Shrink verifies if it is in the

1Bloom Filter is a probabilistic data structure which allows fast search and insertion of data (BLOOM,
1970).
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Bloom Filter. If true, it was recently accessed and it is included in the predicted read-set
of the thread. In case of abort, the write-set is copied to the predicted write-set. Each
thread has a commit rate, calculated every time that a transaction commits or aborts.
When the commit rate is greater than a predefined threshold, Shrink verifies, before
starting a transaction, if some address in the prediction sets (read or write) are being
written by other threads. If true, the serialization is activated.

In Heber, Hendler and Suissa (2009, 2012), the focus is to avoid too much oscillation
between serialization and non-serialization periods. The authors proposed a mecha-
nism called Low-Overhead Serializing algorithm (LO-SER) which aims to keep certain
stability between serialization times. The scheduler collects statistics like past commits
and aborts. This data can be local (per thread) or global. The proposed stabilizing
mechanism calculates a contention level (CL) each time that a transaction aborts or
commits. Then, a low (lt) and a high threshold (ht) needs to be defined, i.e., a range.
Serialization is applied if CL is greater than ht and deactivated when CL is lower than
lt.

Atoofian (2011) uses the intuition that if a transaction aborted, it will fail again in
the future. This theory is called locality of contention. To avoid it, it is important that
the transaction that caused the abort should finish before restarting the aborted. With
this motivation, the Speculative Contention Avoidance (SCA) mechanism is proposed.
Each thread has a Contention Predictor (CP), composed by a contention bit (CB) and
a saturating counter (SC). The CB shows the result of the last transaction executed
on the thread (1 if failed or 0 if committed). The SC is similar to branch predictors
used in pipelines processors (YEH; PATT, 1992). It is incremented each time that a
transaction conflicts and zeroed when commits. Before a thread executes, it consults
the SCA, that will serialize the transaction if CB is equals to 1 and SC is greater than a
given threshold.

3.1.4 Mixed Heuristics

This section describes works that use mixed strategies according to different trans-
action profiles. For instance, a transaction initially uses a lightweight feedback-driven
technique. However, if the size of a transaction (for instance, based on the amount
of memory locations read) is above a given threshold, the system switches to a more
complex heuristic.

In Nicácio, Baldassin and Araújo (2011, 2012), the Light-Weight User-Level Transac-
tion Scheduler (LUTS) is proposed. In LUTS, each transaction that executes the same
critical section shares an identifier (ID). The main idea is to have different scheduling
heuristics according to transaction length. The number of cycles is utilized to define if
a transaction is long or short. If it is considered short, the heuristic used is similar to
ATS, using a contention intensity (CI). The difference is that the CI is calculated per
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transaction ID, instead of per thread like in the original ATS. Moreover, if a transaction
is serialized, LUTS tries to choose one with different ID to replace it. If a transaction is
considered long, a more sophisticated (and expensive) heuristic that uses additional
data structures is utilized, trying to predict and avoid conflicts. The system uses a fixed
thread that is responsible for calculating the length of transactions. Another feature,
like in CAR-STM, is to restrict the maximum number of threads to be equal to the cores
available.

An extension for LUTS was proposed in (PEREIRA et al., 2013), called BAT (Best
Alternative Transaction). In LUTS, the CI is utilized for short transactions only. BAT

utilize the CI for long transactions too, as an additional parameter for helping to choose
the best transaction to be scheduled. In other words, CI is calculated for all transactions.
For short ones, it is the unique parameter used to decide which transaction is allowed
to run, i.e., with less probability of conflicts. For long transactions, there are more data
structures used together with CI to decide it.

The ProVIT scheduler (RITO; CACHOPO, 2015) uses the same idea from LUTS,
where there are distinct heuristics according to transaction lengths. However, in ProVIT
it is possible to have two heuristics active at the same time, i.e., each thread using a
different heuristic. A transaction is considered long if the size of their read-set is greater
than a predefined threshold. This information is updated dynamically and, on start,
transactions are considered short. For short transactions, the heuristic is based on the
previous work of the authors, ProPS, described in Section 3.1.1. When a transaction
aborts, the read-set is verified to check if it is a long transaction. If true, it is marked as a
VIT (Very Important Transaction) and its read-set is copied to a data structure available
for all threads. Before a writing transaction commits, it needs to check if its write-set has
any intersection with the read-set of any VIT transaction. If it has, the commit should be
delayed, giving priority to the VIT. The idea is to avoid a VIT to abort again.

3.1.5 Others

This Section describes works that use machine learning (ML), analytical perfor-
mance models of applications or other techniques. As these techniques are out of
scope of this thesis, they will not be described in details.

Extending the Linux Kernel for supporting STM scheduling was explored in Maldon-
ado et al. (2010, 2011).

The idea of using ML and analytical models in schedulers was widely explored
by Rughetti and Sanzo. Controlling the total of threads allowed to concurrently run
was proposed in SAC-STM (RUGHETTI et al., 2012), using neural networks, and in
CSR-STM (DI SANZO et al., 2013) with analytical performance models. Also, in Rughetti
et al. (2014a) a work integrating SAC-STM and CSR-STM, named AML was proposed.
Later, Rughetti et al. (2014b) describe an extension to SAC-STM, called DSF-STM. In



41

Di Sanzo et al. (2016, 2020), a Markov chain-based analytical performance model is
proposed to dynamically control the total of concurrent threads executing transactions
allowed to run. Castro et al. (2011, 2012) have used ML techniques to choose the best
thread mapping for improving STM performance. Popovic, Kordic and Basicevic (2017)
and Popovic et al. (2019), proposed schedulers for Python-STM (POPOVIC; KORDIC,
2014), using ML techniques.

Finally, Marques and Baldassin (2016), have proposed Dynamic Serializer (DS).
Different from prior approaches, they have focused on reducing energy consumption
instead of performance.

3.2 Thread and data mapping in STM

The works studied so far use transactional scheduling to avoid conflicts between
transactions. This section describes works which aim to use scheduler techniques on
STM focusing on optimizing resources. For example, trying to keep threads on sibling
cores to share caches or load balance in multiprocessor systems.

Castro, Góes and Méhaut (2014) have studied how thread mapping could be uti-
lized for improving STM performance. First of all, they describe four different possible
thread mappings that could be utilized: Scatter, Compact, Round-Robin and Linux. The
proposed mechanism dynamically collects information to decide the mappings. The
first strategy was called Conflict. It uses the abort ratio (AR) as the main heuristic. The
intuition utilized is: if AR is high (based on a threshold), the application is accessing a
great quantity of shared data. In these cases, using a Compact mapping could be use-
ful for sharing caches. If AR is moderated, Round-Robin, the intermediate solution, is
used; otherwise Scatter. The second strategy is called Test. It uses the three mappings
on a fixed period of time and computes the execution time of each of them. At the end,
the mapping that had the minor execution time is selected.

In Chan, Lam and Wang (2015) a thread mapping mechanism called Affinity-Aware
Thread Migration is proposed. It aims to detect threads that access common data,
keeping them in sibling cores on the same processor to share caches. To compute
which threads are sharing data, they have used a matrix n×n, where n is the maximum
of threads that the system supports. When a thread i conflicts with a j, i.e., aborts,
the respective index i, j is updated in the matrix, using the CI (contention intensity)
proposed in ATS (Section 3.1.1). The intuition used is: if two threads conflict, they were
accessing the same shared data. This matrix represents a graph, with edges and their
weights. The objective is to reduce the sum of edges between processors. Only a pair
is migrated per time.

In Zhou et al. (2018) a concurrency control mechanism to dynamically adjust the
total number of active threads executing transactions is proposed. Also, as the total of
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threads changes, the authors also adjust thread mapping. The mappings utilized are
the same from Castro, Góes and Méhaut (2014), i.e, Scatter, Compact, Round-Robin
and Linux. The heuristic for deciding the total number of active threads is based on
commit ratio (CR) and throughput. In the beginning, two or more threads (configurable)
are allowed to run concurrently. Each period of time, the CR and the throughout are
computed, adjusting the total of threads according to it. For thread mapping, the STM
system is initialized with the Linux default mapping, and after a certain time, it changes
to Round-Robin (intermediate solution). If the throughput is higher, then Compact is
used. If performance decreases, then Scatter is used.

Góes et al. (2014) focused on STM applications that have a worklist pattern, i.e.,
they have a single operation responsible to process an item of work from a dynamically
managed worklist. Regarding STAMP benchmark, four applications present this pattern:
intruder, kmeans, vacation, and yada. The idea is encapsulated STM application as a
skeleton framework, improving the memory affinity by using static page allocation (bind
or cyclic) and data prefetching by using helper threads. Helper threads make use of
idle cores to bring potentially useful data for the LLC. The memory affinity mechanism
is called SkelAff and it was implemented inside a proposed OpenSkel framework.
Hence, STM applications need to be rewritten with this framework to be able to use the
memory affinity improvements. It is worth noting this proposed framework is only able
to deal with one specific kind of sharing pattern.

3.3 Thread and data mapping in general applications

This section presents works that use thread and/or data mapping to improve data
locality of applications that do not use STM, running on shared memory architectures.
To identify the works on this subject, the surveys (DIENER et al., 2016a) and (CRUZ;
DIENER; NAVAUX, 2018) were used as a basis. We exclude two works described
in the papers, because they were out of scope: compiler analysis and fixed runtime
options. The former relies on complex analysis that will modify the entire application
and not only the STM implementation. Also, this technique usually is limited to specific
compiler versions (DIENER et al., 2016a). The latter is used to specify global and
static policies, that will be kept fixed until the application finishes, such as interleave for
data or round-robin for thread mapping. The remaining techniques will be grouped into
two groups: offline and online techniques. Finally, works that focuses on distributed
memory, like Message Passing Interface (MPI) will not be included, as this thesis does
not focus on STM for distributed systems. Although MPI can be used for shared memory
architectures, the form of communication is explicit, i.e, tracking the sent messages is
possible to discover threads the are communicating often (CRUZ; DIENER; NAVAUX,
2018).
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3.3.1 Offline Techniques

This kind of technique consists of analyzing the source code of the application
or profiling and executing it, to identify the memory access behavior (DIENER et al.,
2016a). Then, the application is modified, either manually or automatically, applying an
improved mapping. Behavior analysis happens before execution. At run time, no profile
information needs to be collected. However, if the application changes its behavior
dynamically, the profile phase will fail on getting precise information about memory
access (DIENER et al., 2016a). Profiling could be implemented manually, using system
call functions or with the help of instrumentation tools like Pin (LUK et al., 2005).

Regarding manually analyzing and source code modifications, some tools could
help programmers in this task. libnuma (KLEEN, 2004) is a library and command-
line tool that is a wrapper for kernel system calls to set memory policies on NUMA
architectures. Using libnuma as a library, it is possible to allocate memory on a
specific NUMA node and the policy to be used, like interleave. Also, it is possible to
bind a thread to run on the CPUs of a specific NUMA node. Ribeiro et al. (2009, 2011)
have proposed the tools MAi (Memory Affinity interface) and Minas. MAi is a user-level
interface focused on numerical scientific HPC applications. It provides optimizations
for arrays and memory policies to manage data allocation. The main optimization was
made on arrays. When using MAi to allocate memory for an array, the programmer can
specify the data distribution, i.e., how rows and columns should be distributed in the
NUMA nodes. Also, MAi implements thread scheduling to ensure data locality. Minas
is a portable framework for managing memory affinities explicitly or automatically on
NUMA architectures. Minas has a preprocessor to perform automatic source code
modifications and optimizations analyzing the NUMA architecture where the application
is compiled. For manual controlling of the memory affinity in the source code, Minas
uses MAi. Another library is TBB-NUMA (MAJO; GROSS, 2015; MAJO; GROSS, 2017),
that is an extension of the Intel Threading Building Blocks (TBB) (REINDERS, 2007).
It includes functionalities for manual management of data allocation between NUMA
nodes, automatic thread mapping and other features to make the library NUMA-aware.

Two works use the described tools to achieve better thread and data affinity. Dupros
et al. (2010) have studied the impact of memory affinity in seismic simulations. After
a detailed study of the source code and the underlying NUMA architecture where the
application was executed, MAi was utilized for efficient thread and data mapping of the
application. Cruz et al. (2011) made similar studies on the NAS Parallel Benchmark
(NPB) (JIN; FRUMKIN; YAN, 1999), and after the detailed analysis of the applications,
they have used Minas for applying the improved thread and data mapping.

There are works that first execute an application to get detailed information about
the memory access pattern. Then, this information is used to improve performance.
Diener et al. (2010) recorded in a communication matrix which threads have accessed
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the same memory location. After that, an algorithm uses this matrix to find the best
placement of the threads. If a machine support 16 threads at maximum, then it is
feasible to do an exhaustive search, i.e., trying every possible placement. Otherwise,
an heuristic is applied. Majo and Gross (2012) have studied the access pattern of
scientific benchmarks. The applications were profiled using hardware counters of the
Intel Nehalem processor. Also, the source code of the applications were studied in
detail, to identify the access patterns of matrices, a common data structure on scientific
computation. With this information, the authors have proposed new primitives to be
used in OpenMP, to have better control on data distribution and loop iterations over
the data structures. Mariano et al. (2016) have made a detailed study in the source
code of the HashSieve algorithm, which is used in the context of the lattice-based cryp-
tography technique (MICCIANCIO; REGEV, 2009). The optimization was made by
reordering some operations to leverage cache locality, prefetching data and changing
data structures used in the algorithm. Denoyelle et al. (2019) have created ML models
to choose the best placement of threads and data of applications. They have used
different types of thread placement (compact and scatter), data policies (first-touch and
interleave) totaling 4 combinations. The application is executed using a default configu-
ration (compact and first-touch) and a set of metrics are collected using instrumentation
and hardware counters. Hence, these metrics are processed and used as an input
parameter to mathematical and machine learning models. These trained models can
identify the best placement for the applications.

Analyzing tools were proposed to collect information about memory access of ap-
plications. These tools help to understand how applications share data. Numalize

(DIENER et al., 2015b) is based on the Pin instrumentation tool (LUK et al., 2005). The
authors also proposed metrics to characterize communication and page usage of ap-
plications. Thus, Numalize generates a memory trace of applications and calculates
the proposed metrics. The generated information helps to choose the best placement
of threads and data. TABARNAC (BENIAMINE et al., 2015) is similar to Numalize

and provides graphical visualization of memory access behavior, like the distribution
of the accesses by threads and data structures. A most recent tool, NumaMMa (NUMA
MeMory Analyzer) (TRAHAY et al., 2018) uses hardware counters of a processor to
generate memory traces. When the application finishes, NumaMMa processes the trace
and analyzes the cost of memory accesses of each object and how threads access
them. Also, graphical visualization of the processed information is available.

Denoyelle et al. (2019), obtain information about the characteristics of applications
through a preliminary execution. This information is collected using instrumentation
or hardware performance counters. After that, using machine learning, the collected
information is processed and, resulting in information if application is sensitive to locality
and the best thread and data placement. Then, the application is re-executed using the
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proposed placement.

3.3.2 Online Techniques

Online techniques collect information about memory access during the execution
of the application and perform mappings dynamically. The main advantage is that
no prior execution is needed to collect information. However, the main challenge is
to create an heuristic that takes into consideration the trade-off between accuracy
and runtime overhead (DIENER et al., 2016a). Analyzing all memory accesses of an
application is the best strategy for deciding mappings, but the overhead added makes
it unfeasible (CRUZ; DIENER; NAVAUX, 2018). Thus, usually, the methods used to
collect information about memory accesses is based on sampling. Also, the migration
of threads and pages represent an overhead that should be considered.

Ogasawara (2009) have used the Garbage Collector (GC) of the Java programming
language to identify the preferred NUMA node for objects. During the collection phase,
the proposed method determines which threads have most accessed certain objects,
i.e., the Dominant Thread (DoT). Then, the GC migrates the objects to the NUMA
nodes where the DoT is running.

ForestGOMP (BROQUEDIS et al., 2010b) is an extension of OpenMP that uses
hints provided by application programmers, compiler techniques and hardware coun-
ters to perform dynamically thread and memory placement. It uses internally libraries
like hwloc to compute the underlying hardware hierarchy and the BubbleScheduler

framework (THIBAULT; NAMYST; WACRENIER, 2007). Threads that share data or syn-
chronize often are organized in bubbles. The main objective of the proposed scheduler
used by ForestGOMP is to improve the cache usage by making each “bubble” access
the local memory, migrating pages if necessary. The scheduling actions are triggered
when resources are (de)allocated, a processor becomes idle or a hardware counter
exceeds a predefined threshold.

autopin (KLUG et al., 2011) is a framework that extends the pfmon utility from the
perfmon2 package (ERANIAN, 2005). pfmon is a command line tool that accesses
hardware performance counters of processors. Through an environment variable it is
possible to choose a set of mappings, i.e., the cores to be used and the order that
they should be assigned to threads. A command-line parameter is available for setting
a hardware counter that autopin should use for calculating the performance rate.
After the initialization, if more than one set of mappings was defined, autopin will
test each one, calculating the performance based on the timestamp and the hardware
counter chosen. After all mappings have been tested, the one which achieves the best
performance will be chosen and will be active until the application finishes.

The focus of the BlackBox scheduler (RADOJKOVIĆ et al., 2013) is applications
with a low number of threads and many instances, like networking applications. It tries to



46

test all possible thread mappings (assignments) and chooses the one that achieves the
best performance. It has 3 distinct phases. The first one profiles the target application.
The main information collected are conflicts and shared resources, like caches and
memory controllers. The second phase uses the information collected to predict the
performance of a determined thread assignment. If the number of threads and instances
are low, all possibilities are tested. Otherwise, only 1000 combinations are evaluated.
The last phase chooses the best 5 predicted models and tests them to make sure that
the best one was chosen.

Tam, Azimi and Stumm (2007) have used hardware performance counters of the
IBM Power5 processor to track cache misses between chips, i.e., if the miss was local
or remote. Each thread has a data structure to keep track of data regions accessed
that caused a remote cache miss. This information is retrieved from a counter in the
processor. Analyzing all cache misses would be unfeasible, thus, the authors sampled
the monitoring. The next step is to analyze data structures looking for data sharing
between threads. If found, threads are mapped to the same chip, for sharing caches.
After that, the monitoring phase starts again. The proposed scheduler was tested
with a synthetic micro-benchmark and three commercial server workloads. In Azimi
et al. (2009) the authors have extended the studies of how the hardware performance
counters could be utilized for improving locality of threads. They have presented the
usability and importance of hardware performance counters as a low-overhead resource
to get accurate online information about performance.

Regarding data mapping, Löf and Holmgren (2005) have studied how a next-touch
directive could improve the performance of industrial applications. One application was
chosen that uses a large matrix initialized by the main thread. After the initialization,
it consumes about 500 MB of memory. Using the default Linux OS data mapping,
first-touch, all pages will be allocated in the first node. With next-touch, the data will
be migrated according to the accesses of threads. The author has identified a great
overhead on page migrations, due to TLB (translation look-aside buffer) shootdowns,
i.e., the mechanism that keeps the TLB’s coherent (VILLAVIEJA et al., 2011). To
overcome this limitation, they have proposed to use larger pages, e.g., 64Kb instead of
8Kb.

The Communication Detection in Shared Memory (CDSM) (DIENER et al., 2015a)
is a Linux kernel module to detect communication patterns of parallel applications and
migrate threads according to their memory affinity. It keeps track of page faults to
detect the communication between threads. The kernel Memory Affinity Framework
(kMAF) (DIENER et al., 2016c) is implemented directly in the Linux kernel, extending the
idea of CDSM to the problem of data mapping in NUMA architectures. The Carrefour
mechanism (DASHTI et al., 2013) is also implemented directly in the Linux kernel.
However, it uses Instruction-Based Sampling (IBS) available only in AMD processors.
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Barrera et al. (2020) have the same objective of Denoyelle et al. (2019) (described
in Section 3.3.1), however their model works online, and they have added prefetching
optimizations beyond thread and data placement.

3.4 Workload characterization

In Barrow-Williams, Fensch and Moore (2009), the Splash-2 and Parsec bench-
mark suites were characterized regarding their memory access behavior. They also
showed other characteristics such as temporal and spatial characterization of the com-
munication. All information was gathered through the use of a simulator. Using the
collected information, they proposed changes to the communication systems to be
used in future chip multiprocessors (CMP). Different communication characteristics of
Splash-2 and Parsec were also studied in (MOHAMMED; ABANDAH, 2015). Rane
and Browne (2011) proposed to instrument the source code of applications using the
LLVM compiler, to extract memory trace of applications. Then, they compute metrics
using the collected data, such as cycles per access; NUMA hit ratios; access strides,
etc. With this information, they manually changed a subset of programs of the Rodinia
benchmark suite and were able to improve the performance. The numalize tool to
extract information about communication behavior was proposed in (DIENER et al.,
2015b). Also, they have analyzed different benchmark suites and proposed metrics
that describes spatial, temporal, and volume properties of memory accesses to shared
areas.

Hughes et al. (2009) proposed a set of transactional characteristics to classify the
similarity of transactional workloads. The main idea is to select a subset of programs
that present distinct transactional characteristics, to be used in benchmarks or tests. In
(CASTRO et al., 2011), a generic mechanism was proposed to intercept any function of
STM libraries. The mechanism is implemented as an external tool, allowing developers
to extract and calculate information accessed inside the STM library. Baldassin, Borin
and Araujo (2015) characterized the memory allocation of STAMP.

Other studies aim to characterize the energy consumption of STM workloads. Bal-
dassin et al. (2012) studied the difference of energy consumption of the STAMP bench-
mark using three STM libraries, along with three different conflict resolution scheme.
This analysis was made using a simulator. As a result of the studies, they have proposed
to integrate a dynamic voltage and frequency scaling (DVFS) inside the contention man-
ager, to improve the energy efficiency and performance. Rico et al. (2015) also studied
the energy consumption of STM using the STAMP benchmark. However, the study was
made using a real machine, instead of a simulator.
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Table 2 – Comparison of related work on thread and data mapping for STM applications.

Work Year Thread mapping Data Mapping Sharing based

Castro, Góes and Méhaut 2014 X
Góes et al. 2014 X P
Chan, Lam and Wang 2015 X P
Zhou et al. 2018 X
This thesis 2021 X P X

3.5 Discussion

As described in Section 3.1 a transactional scheduler is a well-known technique for
improving the performance of STM. The majority of described transactional schedulers
focuses on serializing transactions to avoid conflicts. They rely on the idea that aborting
a transaction is a waste of time and resources, and it is necessary to avoid it. Although
avoiding aborts in an STM execution is also important for improving performance, in
current multicore architectures with complex memory hierarchies and different latencies,
it is also important to consider where the memory of a program is allocated and how it
is accessed. Hence, our idea is to work with thread mapping in STM, investigating the
use of sharing-aware mapping (Section 2.3) in an STM implementation. This technique
aims to map threads to cores and memory pages to NUMA nodes considering their
memory access behavior.

Table 2 makes a direct comparison of our proposed work with the related work
on thread and data mapping for STM (Section 3.2). The works of Castro, Góes and
Méhaut (2014) and Zhou et al. (2018) do not take into consideration memory access
behavior to decide the thread mapping (column Sharing based). Góes et al. (2014)
focused on a specific sharing pattern (worklist) and their mechanism to exploit memory
affinity were implemented in a framework. Hence, applications need to be rewritten with
this framework to be able to use the memory affinity improvements. Also, their data
mapping is based on static page allocation. Thus, we classified data mapping support
in their work as partial (P) in Table 2. We propose not to rely on a specific sharing
pattern, as we intend to calculate the thread mapping based on the sharing pattern,
stored in a communication matrix (Section 2.3.1). Also, it would not be necessary to
rewrite the STM application, only recompile it, since the mechanism for thread mapping
will be integrated into the respective STM runtime. The main focus of this thesis is on
thread mapping. However, we show how data mapping can be added to the proposed
mechanism of sharing-aware thread mapping. Hence, we classified our data mapping
support as partial (P). Finally, Chan, Lam and Wang (2015) take into consideration
the memory access behavior of applications. However, they proposed to compute the
sharing behavior only when a transaction aborts. The intuition is that if two transactions
conflict, they were accessing the same shared variable. The disadvantage is that their
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mechanism does not capture the sharing behavior between read-only transactions.
Besides, in low contention workloads, applications present a low number of aborts.
Therefore, their mechanism could not capture an accurate sharing behavior of these
STM applications. Our idea is to compute the sharing behavior using transactional
reads and writes, making it more accurate. Furthermore, our proposed mapping is
global, i.e., taking into consideration all threads, not only one pair each time.

Concerning the characterization of STM applications regarding sharing behavior,
Section 3.4 showed that so far, no works in the literature were proposed with this
objective.

3.6 Summary

This chapter presented the related work on the thesis subject. There are several
works on transactional schedulers. Although reducing the number of aborts improves
the performance, recent works use schedulers (thread and data mapping) with the ob-
jective of improve cache usage, page sharing or reduce the latency on data access.
However, no work on STM applications takes into consideration memory access behav-
ior to performing thread and data mapping. Besides, this chapter showed that no related
work performed a characterization of STM applications regarding sharing behavior. The
next chapters will explore these research opportunities to advance the state-of-the-start
on this subject.



4 DETECTING MEMORY ACCESS BEHAVIOR IN STM AP-
PLICATIONS

In this chapter, a mechanism to detect the sharing behavior of STM applications is
proposed. It is the base mechanism used in all thesis contributions.

4.1 Overview

Detecting the memory access behavior is the first step to perform a sharing-aware
thread mapping. It is necessary to know which memory address is being accessed and
which thread is accessing it. In shared memory programming models, communication
is implicit, i.e., it is performed through access to shared memory areas. This charac-
teristic adds more challenge to detect the memory access behavior in shared memory
architectures.

Detecting the communication behavior accurately with tools such as numalize (DI-
ENER et al., 2015b) cause high overheads. Hence, it necessary to use a heuristic to
detect communication events accurately and with low overhead. A communication event
happens when at least 2 threads access the same shared variable. Although writes to
memory are more expensive, i.e., they imply in cache invalidation and interconnection
traffic between remote notes, we will not differentiate reads from writes in the proposed
mechanism. Besides, we will take into consideration the operations performed by all
transactions, including aborted. If one transaction aborts, it is accessing shared vari-
ables with other transactions. If we take into consideration only committed transactions,
this relationship would not be registered, making the mechanism less precise. Also, it
is important to have a heuristic to avoid false temporal communication, i.e., two threads
access the same shared variable but in long difference execution intervals. In that case,
during the second access, the first one already has been evicted from the cache lines.

To store the amount of communication between pairs of threads, we use a commu-
nication matrix (Section 2.3.1), where each matrix position represents the amount of
communication between pairs of threads. Since access to a shared variable from the
same thread does not represent a communication event, matrix diagonals are zero.
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4.2 Mechanism

The main idea of this mechanism is to work inside the STM library, by only keeping
track of STM accesses. To detect the memory access behavior of an application, it is
necessary to know which addresses the application is accessing. In STM runtimes,
each transactional data access operation explicitly includes the addresses used in the
operation. For instance (HARRIS; LARUS; RAJWAR, 2010):

T ReadTx(T *address);
void WriteTx(T *address, T value);

As this is already available to the STM runtime, it is not necessary to rely on external
tools or add instrumentation overhead to get this information. Besides, the STM runtime
knows which thread is performing the access. Since STM runtimes have precise infor-
mation about shared variables, it is possible to determine the communication behavior
by tracking transactional reads and writes instead of tracking all memory accesses. Our
detection mechanism works as follows. When at least 2 distinct threads access the
same address, a communication event between them is updated in a communication
matrix.

ReadTx  
WriteTx

Address

Hash Table Last 2 threads 
accesses

T0  T2struct

Communication 
matrix

3

2

1

0

STM Operation

0 1 2 3
+1

+1

Figure 5 – Mechanism for detecting communication patterns. Data structures are shown for an
application consisting of 4 threads (0-3.)

Our mechanism to detect the communication pattern of an application is shown in
Figures 5–6 and detailed in Algorithm 2. This mechanism is executed before each
transactional read or write operation. To keep track of accessed addresses, a hash
table is used, in which keys are memory addresses. Each position of the hash table
contains a structure with the memory address and the last 2 threads that have accessed
it. Following the intuition of previous work, we store only the last 2 thread access, to
avoid false temporal communication (DIENER et al., 2016b). In case of hash conflicts, a
linked list with all memory addresses with the same hash is kept. In line 1, the function
getAddressInfo gets from the hash table the structure containing information about
the address being accessed. The next step is to get how many accesses this address
had before the current one (line 2). If it is the first access (line 3), we only store the
thread that is accessing it (line 4), i.e., no communication events have happened yet.
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Transactional
Read / Write get_addr_info

# of 
accesses 
to address

save share_1 save share_2

Update comm
Matrix

Replace share_1 with share_2
Save cur_tid as share_2

0 accesses 1 access

2 accesses comm(share_1,share_2)

comm(cur_tid, share_1)
comm(cur_tid, share_2)

End

Figure 6 – Flowchart of the proposed mechanism.

The next case is if the address had one access before the current (line 5) and it was
made by a different thread (line 6). If true, we have a communication event. In that
case, we call the function update_comm_matrix (line 7) to update the communication
matrix, increasing the amount of communication between the two threads. The matrix
is square and symmetric because the amount of communication, for instance, between
threads 0 and 2 is the same from 2 and 0 (Figure 5). Also, the matrix has an order
equal to the maximum number of threads. Using the matrix, we update the threads
that accessed the address (lines 8 and 9). It is worth noting that write accesses to
the communication matrix are not synchronized. This decision was made because
the high overhead involved to synchronize the access. Besides, the collateral effects
expected due to the parallel updates on the matrix, for instance, incorrect pairs of thread
being incorrectly updated in the matrix, are considered eventual and not harmful to the
mechanism.

The final case is if the address had 2 previous accesses (line 10), then there are
3 sub-cases. The first one is if the current thread accessing the address is different
from the 2 previous (line 11). In that case, we have a third distinct thread accessing
the address, and we update the communication matrix between the 3 (lines 12 and 13).
After that, the oldest access is removed (line 14). However, if the test of the line 11
was false, it means that the current thread accessing the address is the same from a
previous one. In that case, we need to check which thread is accessing again (lines 16
and 18), and update the communication matrix correctly. Also, since we keep only the
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Algorithm 2 Detecting communication patterns.
Require:

addr: memory address being accessed
tid: thread ID of the thread that is accessing the address

. elem is a struct that stores the memory address and the last 2 threads that have
accessed it

1: elem← getAddressInfo(addr)
2: accesses← getAccesses(elem)
3: if (accesses = 0) then . First access to the address
4: elem.t1← tid
5: else if (accesses = 1) then . One previous access
6: if (elem.t1 6= tid) then
7: update_comm_matrix(tid, elem.t1)
8: elem.t2← elem.t1
9: elem.t1← tId

10: else if (accesses = 2) then . Two previous accesses
11: if (elem.t1 6= tid) and (elem.t2 6= tid) then
12: update_comm_matrix(tid, elem.t1)
13: update_comm_matrix(tid, elem.t2)
14: elem.t2← elem.t1
15: elem.t1← tid
16: else if (elem.t1 = tid) then
17: update_comm_matrix(tid, elem.t2)
18: else if (elem.t2 = tid) then
19: update_comm_matrix(tid, elem.t1)
20: elem.t2← elem.t1
21: elem.t1← tid

last 2 accesses to the memory address, when a third thread access the address, it is
necessary to replace the oldest one (line 20).

4.3 Implementation

We implemented our proposed mechanism inside the state-of-art STM library
TinySTM (FELBER et al., 2010), version 1.0.5. The majority of the modifications
were made in the file stm_internal.h. The Algorithm 2 is called inside the functions
stm_write and stm_load from TinySTM.

4.4 Evaluation

This section describes experiments made in order to evaluate the proposed mecha-
nism to detect the sharing behavior of STM applications.
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Table 3 – Default arguments for the programs used in the experiments.

Application Arguments

bayes -v32 -r8192 -n10 -p40 -i2 -e8 -s1 -t num_threads
genome -g49152 -s256 -n33554432 -t num_threads
intruder -a10 -l128 -n262144 -s1 -t num_threads
kmeans -m40 -n40 -t0.00001 -i random-n65536-d32-c16.txt -p

num_threads
labyrinth -i random-x1024-y1024-z9-n1024.txt -t num_threads
ssca2 -s21 -i1.0 -u1.0 -l3 -p3 -t num_threads
vacation -n4 -q90 -u100 -r1310720 -t16777216 -c num_threads
yada -a15 -i ttimeu1000000.2 -t num_threads
redblacktree -u 20 -i 1000000 -d 500000000 -n num_threads
hashmap -u 20 -i 1000000 -d 500000000 -n num_threads

4.4.1 Methodology

We used the proposed mechanism to collect the communication matrices of STM
applications by using the modified version of the TinySTM library (Section 4.3), with
the default options: lazy version management, eager conflict detection and contention
manager suicide.

The applications used in the experiments were all eight benchmarks from the Stan-
ford Transactional Applications for Multi-Processing (STAMP) (MINH et al., 2008) ver-
sion 0.9.10, and two micro-benchmarks (HashMap and Redblacktree) from Diegues,
Romano and Rodrigues (2014). The input arguments used to run each application
are shown in Table 3. Most parameters are larger than the largest ones suggested in
the original paper (MINH et al., 2008) to achieve more substantial execution times on
modern machines. To run the experiments, we used the the following NUMA machine
(node distances were gathered with numactl (KLEEN, 2004)):

• Xeon: 8 Intel Xeon E5-4650 processors and 488 GiB of RAM running Linux kernel
4.19.0-9. Each CPU has 12 2-HT cores, totaling 96 cores. Each CPU corresponds
to a NUMA node (for a total of 8 NUMA nodes), and 12× 32 KB L1d, 12× 32 KB
L1i, 12× 256 KB L2 and 30 MB L3 cache. Node distances: 50 – 65. Applications
were compiled using gcc 8.3.0.

4.4.2 Communication matrices

Figures 7–10 shown the collected communication matrices using the proposed
mechanism for 16, 32, 64 and 96 threads. In the figures, axes show threads IDs and
darker cells indicate more communication between pairs of threads.

The two micro-benchmarks (HashMap and Redblacktree) present a communication
pattern where neighbor threads communicate often. In that case, darker cells are local-
ized closer to the main diagonal of the matrix. For this pattern, it is interesting to map
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Figure 7 – Communication matrices - 16 threads.

0

5

10

15

20

25

30

0 5 10 15 20 25 30

(a) bayes

0

5

10

15

20

25

30

0 5 10 15 20 25 30

(b) genome

0

5

10

15

20

25

30

0 5 10 15 20 25 30

(c) intruder

0

5

10

15

20

25

30

0 5 10 15 20 25 30

(d) kmeans

0

5

10

15

20

25

30

0 5 10 15 20 25 30

(e) labyrinth

0

5

10

15

20

25

30

0 5 10 15 20 25 30

(f) ssca2

0

5

10

15

20

25

30

0 5 10 15 20 25 30

(g) vacation

0

5

10

15

20

25

30

0 5 10 15 20 25 30

(h) yada

0

5

10

15

20

25

30

0 5 10 15 20 25 30

(i) redblacktree

0

5

10

15

20

25

30

0 5 10 15 20 25 30

(j) hashmap

Figure 8 – Communication matrices - 32 threads.

threads on sibling cores to share all cache levels. On Genome, only threads with higher
IDs communicates often. Applications such as ssca2 and vacation have an intense com-
munication with all threads, know as all-to-all pattern (BARROW-WILLIAMS; FENSCH;
MOORE, 2009). On the other hand, labyrinth and bayes present low communication
intensity, but they are considered as an all-to-all pattern as well.

4.4.3 Overhead

To compare the overhead generated by tracking and generating the communication
matrices, we compare our mechanism with a memory tracing tool called numalize (DI-
ENER et al., 2015b). For some applications numalize crashes and it is not possible
the extract the communication matrix. This problem was also observed in others studies
that have used this tool (SOOMRO; SASONGKO; UNAT, 2018): “Unfortunately, in some
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Figure 9 – Communication matrices - 64 threads.
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Figure 10 – Communication matrices - 96 threads.

cases, Numalize crashes because of the large memory requirements of an application
in addition to its own internal data structures”. Hence, we were only able to run kmeans
using numalize.

Numalize depends on Intel’s Pin tool (LUK et al., 2005) to instrument the applica-
tion and trace all accessed addresses, not only the ones accessed by the STM system.
Therefore, numalize captures a different memory access behavior compared to our
mechanism. This is visualized in Figure 11 which compares the collected matrices of
kmeans with 32 and 64 threads using both mechanisms.

Another disadvantage of numalize is the overhead added to trace all memory
accesses. On kmeans, using 64 threads, numalize took 690.90 seconds to execute
the application and collect the communication matrix. By contrast, our mechanism took
only 46.20 seconds for the same operation, almost 15× less. The normal execution
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Figure 11 – Comparing numalize and our mechanism on kmeans.

time for kmeans without tracing anything is 18.05 seconds, such that numalize added
a overhead of 38.27×, whereas the overhead was 2.5× with our mechanism. Although
the overhead of our mechanism can be considered low, it is unfeasible to be used in an
online mechanism. In Section 6.2.1, we will show how to reduce this overhead to be
able to perform the detection of sharing behavior during runtime.

4.5 Summary

This chapter presented a mechanism to detect the sharing behavior of STM applica-
tions. Since STM runtimes need the memory address on each data access operation
and have precise information about shared variables, it is possible to determine the
communication behavior by tracking transactional reads and writes instead of all mem-
ory accesses. Using the proposed mechanism it was possible to extract the sharing
behavior of STM applications with lower overhead than other memory trace tools, such
as numalize. Although the proposed mechanism has lower overhead, additional ex-
periments are necessary to verify if the collected information is accurate, for instance,
if they can be used to calculate an efficient thread mapping. These experiments will be
made in Chapter 6.



5 CHARACTERIZATION OF SHARING-BEHAVIOR OF STM
APPLICATIONS

For a successful thread mapping, it is necessary to perform an in-depth analysis of
STM applications, for instance, if the memory access pattern changes in each execution;
the number of addresses accessed inside transactions, etc. This analysis is important to
guide decisions regarding mapping, such as determining if an application is suitable for
a thread mapping based on communication behavior and defining the type of mapping
policy (static or dynamic).

In this chapter, we characterize the applications from STAMP (MINH et al., 2008), by
gathering sharing information through the proposed mechanism in Chapter 4, providing
information to guide thread placement based on their sharing behavior. The STAMP

benchmark was developed with the intention to represent realistic workload charac-
teristics and different application domains. Besides, STAMP covers a wide range of
transactional behavior, for instance, varying transaction lengths, contention, quantity
of transactions, etc. Hence, we expect that the characterization done in this chapter
could represent a wide range of real STM applications. Using the proposed mechanism
we are able to gather information about the suitability for thread mapping of each ap-
plication, its communication pattern, and its dynamic behavior, among others. We also
show how this mechanism can be used to detect false sharing of cache lines of STM
operations.

5.1 Methodology of the Characterization

5.1.1 Detecting sharing in STM applications

The characteristics of memory access behavior presented in this thesis are based
on the communication matrices of applications. To extract the matrices we have used
the mechanism proposed in Chapter 4. STAMP was compiled with gcc 8.3.0. If not
specified otherwise, all applications were executed ten times using 64 threads and the
default input parameters shown in Table 3. We also used the same Xeon machine
described on Section 4.4.1 to run the experiments.
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5.1.2 Mean squared error (MSE)

Since the analysis of the communication behavior of the applications is based on
communication matrices, we used Mean squared error (MSE) (WANG; BOVIK, 2009)
metric to compare the difference between them, which has been used in prior work for
this purpose (DIENER et al., 2016b). The equation to calculate the MSE is shown in
Eq. 1.

MSE(A,B) =
1

N2

N−1∑
i=0

N−1∑
j=0

(A[i, j]−B[i, j])2 (1)

where:

A,B = input matrices
N = matrix order, i.e., number of threads
i, j = matrix indexes

If the MSE of two matrices is zero, then the matrices are exactly the same. Higher
MSE values indicate higher differences. This metric is useful to compare, for instance,
if the memory access behavior of one application changes on each execution.

5.1.3 Experiments

We performed the following experiments to characterize the sharing behavior of the
STAMP applications:

1. We collected information about the total of accessed addresses inside the STM
library. The information is useful to understand how much data is accessed by
STM operations (Section 5.2.1).

2. We executed the same application ten times to verify if the communication pattern
changes between executions. This experiment will show if a communication matrix
collected in a previous execution can be used to make a static thread mapping
(Section 5.2.2).

3. We executed the same application ten times, changing the input parameters
from the default. This experiment will show if it is possible to use a collected
communication matrix with different input parameters to make a static thread
mapping (Section 5.2.3).

4. We executed the same application ten times, changing the total number of threads
from the previous experiments, with the same goal as in the previous item (Sec-
tion 5.2.4).
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5. We collected the communication matrix several times during the execution of
an application, to determine if an application needs an online mechanism to
detect the sharing behavior and perform the thread mapping multiple times during
execution (Section 5.2.5).

5.2 Characterization of sharing behavior

This section presents the characterization of the STAMP applications, regarding
memory access behavior.

5.2.1 STM memory access information

The first data set is not directly related to sharing behavior but is useful to explain
further the behavior of applications. The total number of distinct memory addresses
accessed by STM operations was collected as well as the total number of accesses
made to these addresses such as read or write operations. With this data, it is possible
to calculate other information:

• Number of distinct cache lines: This was calculated based on the default cache
line of most current microarchitectures, 64 bytes.

• Number of distinct pages: This was calculated based on the default page size
of many current microarchitectures, 4096 bytes.

• Percentage of cache lines with false sharing: We consider that a cache line
has false sharing when multiple threads perform STM operations on more than
one word at the same line.

Table 4 – Analysis of accessed STM memory addresses in STAMP applications.

Application Distinct
addresses

Distinct
cache lines

Distinct
pages

Total
accesses

% of lines with
false sharing

bayes 1,082 497 122 15,928,303 89.33
kmeans 682 101 4 833,954,131 100.00
labyrinth 824,126 290,083 18,213 1,994,315 83.05
genome 19,750,104 11,216,870 452,651 2,840,508,725 36.21
intruder 23,292,164 8,131,906 297,629 4,105,619,590 99.00
yada 25,055,077 13,932,226 848,045 610,446,722 81.38
vacation 33,671,744 10,796,118 799,129 7,212,365,036 99.08
ssca2 91,335,091 13,907,852 528,387 270,369,505 99.90

Results are shown in Table 4 and indicate that the applications have different charac-
teristics regarding the number of accessed addresses. kmeans has the lowest amount
of distinct addresses accessed. However, it has a large number of total accesses made
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Figure 12 – Stability of the sharing behavior across different executions.

to these addresses. On the other hand, ssca2 has the largest amount of distinct ad-
dresses accessed, but not the largest total of accesses, which belongs to vacation.
Regarding false sharing, the majority of applications have a large percentage of false
sharing. For instance, in kmeans, all addresses share common cache lines. On the
other hand, genome has the least amount of false sharing which indicates that more
than half of the accessed addresses has at least 64 bytes or the addresses that conflict
in the same cache line are accessed outside the STM library.

5.2.2 Stability of sharing behavior across different executions

The goal of this experiment is to determine if the communication pattern changes
across different executions of the same application, using the same input parameters
and number of threads. To answer this question, we executed all applications one time
and collected the communication matrix, to be used as a baseline for comparison. After
that, we run each application nine more times, collecting the communication matrix in
each execution. Then, we calculated the MSE of each resulting matrix, comparing it to
the first execution. Results are shown in Figure 12.

Some applications, for instance bayes, genome and labyrinth, present the same
communication behavior in all executions. This observation can be visualized in two
different communication matrices of bayes (Figure 13(a) and Figure 13(b)). Axes show
threads IDs. In contrast to bayes, ssca2 presents a not so similar behavior on each
execution. However, looking at two ssca2 matrices (Figure 13(c)) and Figure 13(d)) it is
possible to note that although the basic communication behavior is the same (all-to-all
(BARROW-WILLIAMS; FENSCH; MOORE, 2009)), the total amount of communication
between threads is very different. This can be explained by the non-deterministic
behavior of TM applications, mainly due to the fact that the total number of aborts varies
in each execution. More aborts imply in more work to be done, consequently more
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Figure 13 – Matrices with highest and lowest MSEs between different executions.

communication between threads. In that case, even having a higher MSE between
executions, ssca2 has a similar behavior of communication between threads (all-to-all
pattern) in all executions.

5.2.3 Stability of sharing behavior when changing input parameters

For this experiment, instead of using the default input parameters shown in Table 3,
we used a smaller input data set. The changed parameters are shown in Table 5. Then,

Table 5 – Small input parameters used in the experiments in Section 5.2.3.

Application Arguments

bayes -v16 -r4096 -n15 -p40 -i2 -e8 -s1 -t num_threads
genome -g16384 -s64 -n16777216 -t num_threads
intruder -a10 -l64 -n131072 -s1 -t num_threads
kmeans -m15 -n15 -t0.00001 -i random-n65536-d32-c16.txt -p

num_threads
labyrinth -i random-x512-y512-z7-n512.txt -t num_threads
ssca2 -s18 -i1.0 -u1.0 -l3 -p3 -t num_threads
vacation -n4 -q60 -u90 -r1048576 -t4194304 -c num_threads
yada -a20 -i ttimeu100000.2 -t num_threads

we collected ten communication matrices using the same methodology of Section 5.2.2.
Lastly, a comparison of the MSE using the default parameters (Section 5.2.2) was made,
comparing with the small parameters (Table 5). This comparison is shown in Figure 14.

As in the previous experiment, ssca2 has a different pattern on each execution. For
instance, Figure 15(c) and Figure 15(d) show two different executions of ssca2, using
the small parameters (Table 5). However, with the new parameters, it is possible to ob-
serve that some groups of threads communicate more often than others (Figure 15(c)).
Besides, there is a difference between communication patterns taking into consideration
the default and small parameter sets. This can be visualized by comparing Figure 13(c)
and Figure 15(c). Other applications such as intruder, kmeans, and vacation have a
small difference between communication patterns when changing input parameters.
While others, such as genome have almost the same communication pattern, even
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Figure 14 – Stability of the sharing behavior when changing input parameters.
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Figure 15 – Matrices with highest and lowest MSEs.

when changing the input parameters (Figure 15(a) and Figure 15(b)).

5.2.4 Stability of sharing behavior with different numbers of threads

Figure 12 in Section 5.2.2 showed the communication matrices for 64 threads. We
used the same methodology to collect them for 32 and 96 threads, and show the re-
sults in Figure 16. The most different behavior occurs with vacation and 96 threads.
However, looking at the communication pattern of two executions with the highest MSE
(Figure 17(c) and Figure 17(d)) we saw the same behavior for ssca2 in Section 5.2.2.
With 96 threads, vacation has an all-to-all communication pattern, and the main differ-
ence between executions is the total amount of communication, which can be explained
by the difference of aborts between each execution. On the other hand, applications
such as genome present a similar behavior even changing the number of threads, for
instance, with 32 threads (Figure 17(a) and Figure 17(b)).
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Figure 16 – Stability of the sharing behavior when changing the number of threads.
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Figure 17 – Matrices with the lowest and highest MSEs.

5.2.5 Dynamic behavior during execution

The goal of this experiment is to determine if the communication pattern changes
during the execution of applications. For this experiment, we store multiple communi-
cation matrices in different execution phases of the applications. We analyzed the total
of addresses accessed by each application (Table 4) and used it as a parameter to
define a save interval, i.e., when to collect the communication matrix. After collection,
we reset the data structure responsible to store the communication matrix. For instance,
for labyrinth the mechanism collected eight matrices, whereas for kmeans nineteen
matrices were collected. We run the applications using the default parameters (Table 3)
and 64 threads.

In the previous sections, the MSE was compared with the first collected matrix, i.e.,
the baseline was the first execution. For this experiment, the baseline was the last
collected matrix. For instance, after two matrices collected it is possible to calculate the
MSE between them. When a third matrix is collected, we calculated the MSE between
the third and the previous execution (second matrix) onward. Figure 18 presents the
results.

Analyzing the graph, ssca2 has the highest difference in communication patterns
during the execution, followed by genome. However, as in Sections 5.2.2 and 5.2.3 the
biggest difference in the communication matrices was in the amount of communication
between threads since this application has an all-to-all behavior. This is visualized in
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Figure 19 – Communication matrices in different execution phases.

Figure 19(a)-(d). On the other hand, genome has a varying communication pattern dur-
ing its execution. There is an intense communication between threads in the beginning
of the application, whereas in the end there is little communication (Figure 19(e)-(h)).
Other applications have a similar communication behavior during their execution.
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Table 6 – Kmeans performance gains with source code changes to reduce false sharing.

Execution time

# Threads Baseline Reduced false sharing Performance gains

32 17.36s 16.01s 7.81%
64 18.05s 17.15s 4.97%
96 19.36s 17.24s 10.97%

5.3 False sharing in kmeans

We also performed an experiment to determine if the STM performance can be
improved by reducing false sharing (Section 5.2.1). We selected kmeans for this exper-
iment since it had the highest percentage of false sharing (Table 4). The information
collected by our mechanism showed that most of false sharing happened in a matrix of
floats (new_centers) used by kmeans. Analyzing its source code, we identified that
the rows of new_centers were not padded correctly to different cache lines, take into
consideration current architectures, as showed in the highlighted line (252) in Figure 20.
The cache line size in current microarchitectures is typically 64 bytes. Probably the

Figure 20 – Original source code of kmeans application.

developers of the application have used a machine with a cache line size of 32 bytes.
Besides, they kept this parameter fixed in the source code. We modified the source
code, changing the value of the highlighted line to 64 and obtained performance gains
between 4.97% and 10.97% compared to the Linux baseline, as shown in Table 6.
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5.4 Summary

This chapter presented a characterization of the STAMP applications regarding their
sharing behavior using the mechanism proposed in Chapter 4. Since the STAMP bench-
mark was developed to represent realistic workload characteristics and it covers a wide
range of transactional behavior, we expect that the characterization done in this chapter
could represent a wide range of real STM applications. The first experiments showed
that the sharing behavior of applications does not change between executions using the
same configurations, for instance, same input parameters or thread number. Besides,
even during execution, the majority of applications do not present a dynamic sharing
behavior. Hence, our hypothesis is that a static thread mapping approach is sufficient
to improve the performance of the applications that are suitable for a thread mapping
based on their sharing behavior. This hypothesis will be tested in Chapter (6). Beyond
that, we were also able to analyze and reduce false sharing in STM memory areas,
achieving performance gains when the false sharing was reduced.



6 SHARING-AWARE THREAD MAPPING IN STM

This chapter describes two mechanisms to perform sharing-aware thread mapping
in STM applications. We start proposing a static mechanism (Section 6.1), i.e., where
threads are mapped to cores at the beginning of execution, based on a previous analysis
of the sharing behavior of the application. Next, an online mechanism is presented (Sec-
tion 6.2). In an online strategy, the detection of sharing behavior and thread migration
is performed based on information gathered during execution.

6.1 Static thread mapping

Since the experiments in Chapter 5 showed that STAMP applications do not present
dynamic sharing behavior, our hypothesis is that a static thread mapping mechanism
(where threads are mapped to cores at the beginning of execution, and never migrated)
is sufficient to improve the performance of STAMP applications. Many tools are avail-
able to calculate a thread mapping based on a communication matrix, for instance,
Scotch (PELLEGRINI, 1994), TreeMatch (JEANNOT; MERCIER; TESSIER, 2014),
EagerMap (CRUZ et al., 2019) and ChoiceMap (SOOMRO; SASONGKO; UNAT,
2018). We opted to use TopoMatch (JEANNOT, 2020) which integrates Scotch and
TreeMatch in the same library to deal with any kind of machine topology. TopoMatch
uses the hwloc library (BROQUEDIS et al., 2010a) to compute the hierarchical topol-
ogy of the machine. The thread mapping is calculated taking into consideration the
machine topology. Hence, the idea is to use the mechanism described in Chapter 4 to
extract the communication matrices of STM applications, TopoMatch to calculate the
best thread placement and, re-execute applications with the calculated thread mapping.

6.1.1 Methodology

The applications used in the experiments were all eight benchmarks from the Stan-
ford Transactional Applications for Multi-Processing (STAMP) (MINH et al., 2008) version
0.9.10, and two micro-benchmarks (HashMap and Redblacktree) from (DIEGUES; RO-
MANO; RODRIGUES, 2014). The input arguments used to run each application are
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Figure 21 – Thread mapping strategies.

shown in Table 3. To run the experiments, we used two NUMA machines with the
following characteristics. Node distances were gathered with numactl (KLEEN, 2004):

• Xeon: 8 Intel Xeon E5-4650 processors and 488 GiB of RAM running Linux kernel
4.19.0-9. Each CPU has 12 2-HT cores, totaling 96 cores. Each CPU corresponds
to a NUMA node (for a total of 8 NUMA nodes), and 12× 32 KB L1d, 12× 32 KB
L1i, 12× 256 KB L2 and 30 MB L3 cache. Node distances: 50 – 65. Applications
were compiled using gcc 8.3.0.

• Opteron: 4 AMD Opteron 6276 processors and 128 GiB of RAM running Linux
kernel 4.15.0-96. Each CPU has 8 2-SMT cores, totaling 32 cores. Each CPU
has 2 memory controllers (for a total of 8 NUMA nodes), and 16× 32 KB L1d,
8× 64 KB L1i, 8× 2 MB L2 and 2× 6 MB L3 caches. Node distances: 16 – 22.
Applications were compiled using gcc 7.5.0.

Each application was executed 10 times using different mapping strategies:

• Linux is the default Linux CFS scheduler (WONG et al., 2008) used as our base-
line.

• Compact places threads on sibling cores that share all cache levels, thus poten-
tially reducing the data access latency if neighboring threads communicate (CAS-
TRO; GÓES; MÉHAUT, 2014) (Figure 21(a)).

• Scatter distributes threads across different processors, avoiding cache sharing,
thus, reducing memory contention (CASTRO; GÓES; MÉHAUT, 2014) (Fig-
ure 21(b)).

• Round-Robin is a mix between compact and scatter, where only the last level of
cache is shared (CASTRO; GÓES; MÉHAUT, 2014) (Figure 21(c)).
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• Static-SharingAware (SSA) is our proposed static approach. We first trace the
behavior of each application in order to determine the communication pattern.
Then, we calculate the new thread mapping offline using TopoMatch and re-
execute the application with this static mapping, binding threads to cores using the
function pthread_setaffinity_np. This approach has no runtime overhead,
but is not able to handle changes in the application behavior (during execution or
if the behavior is different between executions).

6.1.2 Results on the Xeon Machine

Figure 22 shows the execution time (in seconds) on the Xeon machine. Also, each
bar shows the average and a confidence interval of 95%. The Static-SharingAware
approach will be abbreviated as SSA in the discussion. Percentages of improvement
are always compared to Linux, if not specified.

Bayes does not present a deterministic behavior, and it is not suitable to compare
execution times as the order of commits at the beginning of an execution affects the
final execution time (RUAN; LIU; SPEAR, 2014). Thus, we will not discuss the results
of this application.

Genome has low contention and spends lots of time inside transactions (MINH et
al., 2008). This application is not suitable for sharing-aware thread mapping. Even
though threads with higher IDs have a well-defined pattern (Section 4.4.2), it was not
enough to put them closer to increase the performance. In fact, SSA decreased the
performance when compared to Linux. Round-robin had better performance gains
in all scenarios. As observed by Castro, Góes and Méhaut (2014), transactions in
genome access disjoint data most of time, hence the low contention. Thus, it is better
to map threads in order to keep more cache available for each thread, i.e., a Scatter or
Round-Robin mapping or similar.

Intruder has high contention and spends medium time inside transactions (MINH et
al., 2008). SSA was the best mapping in 32 threads, achieving performance gains of
27.54%. However, for other thread numbers, and mainly for 96 treads, SSA decreased
the performance.

Kmeans has low contention and spends little time inside transactions (MINH et al.,
2008). For this application, SSA achieved good results in all thread configurations. The
best performance gain of 58.28% appeared on 32 threads. For 96 threads the perfor-
mance improvement of SSA was 17.14%, with Compact performing better (24.73%).

Labyrinth has high contention and spends lots of time inside transactions (MINH
et al., 2008). Although this application has very different contention from genome, the
results were similar. In that case, SSA and Compact decreased the performance, with
Scatter and Round-robin having similar results. It is worth noting that the best mapping
configurations performed similarly to Linux.
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Figure 22 – Execution time results on the Xeon machine.

Ssca2 has low contention, spending little time inside transactions (MINH et al.,
2008). Similar to kmeans, for this application SSA delivered the highest performance
gain for all thread numbers used. We have a similar performance gain of 65% for 32
and 64 threads, and 38.5% for 96 threads.

Vacation has medium contention and spends high time inside transactions (MINH
et al., 2008). For 32 threads, all mappings have similar results, with scatter performing
slightly better. However, for 64 and 96 threads SSA had the highest performance gain
of 35.55% and 31% respectively.

Yada has medium contention and spends a lot of time inside transactions (MINH
et al., 2008). This is another example of an application where SSA had a good perfor-
mance in all thread configurations. The highest performance gain was achieved under
32 threads, with 61.20%.

The last two micro-benchmarks, Hashmap and Redblacktree have a very similar
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Figure 23 – Execution time results on the Opteron Machine.

communication pattern (Section 4.4.2), where communication occurs often between
neighboring threads. In Redblacktree, SSA had the highest performance gain in 64 and
96 threads (53.9% and 45.34% respectively). In Hashmap, Linux had a poor perfor-
mance, with all thread configurations delivering expressive performance improvements.
Under 96 threads, SSA had performance gains of 79.2%.

6.1.3 Results on the Opteron Machine

Figure 23 shows the performance results on Opteron. Since the characteristics of
the benchmarks were already discussed in the previous section, we will only discuss
the performance results.

For Genome, it is possible to observe the same behavior on the Xeon machine,
where SSA decreases the performance. However, for this machine Scatter was not the
best mapping in all thread numbers. For 16 threads Linux performed better, and slightly
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similar to Scatter and Round-Robin on 32 and 64 threads.
In the Xeon machine, Intruder has good performance only with 32 threads. Similarly,

in Opteron, the performance gain of SSA was expressive with 32 threads (38.26%).
With 16 threads, the performance improvement of SSA was even better, 41.57%. How-
ever, with 64 threads the performance started to decrease with SSA. Hence, this
application is suitable for a sharing-aware thread mapping only with low thread num-
bers.

In Kmeans, SSA had an expressive performance improvement of 39.25% under 32
threads. For 16 threads, all mapping performed similarly. Under 64 threads, Compact
was the best mapping.

In Labyrinth, it is possible to observe the same results as in the Xeon machine.
This is another application that is not suitable for sharing-aware thread mapping. SSA
and Compact decreased performance with 16 and 32 threads. Under 64 threads all
mappings performed similarly.

For Ssca2, SSA delivered the highest performance gain for all thread numbers used,
mainly for 16 (13.8%) and 32 threads (11.52%). Hence, the results were similar to the
Xeon machine.

Vacation had a very different behavior compared to the Xeon machine. In Opteron,
no mapping had a great impact on the final performance. All performed slightly similar.

Yada is similar to Vacation. However, in 64 threads, the Linux performance was poor,
increasing execution time in more than 10×.

Overall, the last two micro-benchmarks, Hashmap and Redblacktree have a very
similar performance to the Xeon machine. SSA was the best mapping in both 16 and 32
threads. In Redblacktree the performance gains were 11.47% and 26.31% respectively,
whereas in Hashmap it was 11.62% and 26.54%.

6.1.4 Discussion

As shown in the results, not all applications are suitable for sharing-aware thread
mapping. On both machines, Genome and Labyrinth prefer a mapping that reduces
memory contention, such as Scatter. However, overall, SSA improved the performance
of many applications, being the mapping with the highest performance improvement.
In the Xeon machine the highest performance gains of SSA over Linux were achieved
by Hashmap using 96 threads (79.2%) and by Yada using 32 threads (61.2%). On
the Opteron machine, the highest performance gains were achieved by Yada using 32
threads, achieving gains of 84.82% over Linux and by Intruder (41.57%).

It is worth noting that only transactional operations were tracked to determine the
sharing behavior. The intuition is that if a memory location is shared by more than one
thread, it will be protected by transactional operations.

To summarize, Table 7 shows the average performance gains of each mechanism
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Table 7 – Average performance gains of each mechanism over Linux.

Machine Compact Scatter RoundRobin SSA

Xeon 15.88% 13.14% 14.50% 22.32%
Opteron 7.96% 5.86% 3.15% 6.50%

over Linux, taking into consideration all applications and thread configurations. As
shown in Section 2.4 in the experiment of the array sum, the Xeon machine is more
sensitive to a sharing-aware thread mapping, since TopoMatch prioritizes the place-
ment of threads first inside the same socket. As explained, this machine has a larger
LLC cache on each socket, showing higher gains than Opteron.

It is worth noting that the experiments so far only showed that some applications are
suitable for sharing-aware thread mapping and others are not. However, at this point,
we do not know which kind of characteristics make an application suitable for a sharing-
aware thread mapping. In the next Section (6.2), we intend to do thread mapping
during runtime. Hence, additional experiments will be made in order to discover the
characteristics that make an application suitable for a sharing-aware thread mapping.

6.2 Online thread mapping

Although the experiments of the previous section (6.1) show that a static sharing-
aware thread mapping is sufficient to improve the performance of STM applications,
this section presents an online mechanism, called STMap. Contrary to SSA, STMap
does not need prior information about the sharing behavior of the application, since the
detection of sharing behavior and thread migration are performed based on information
gathered solely during execution.

6.2.1 Reducing the overhead of online detection

Since we are interested in detecting communication and performing thread mapping
online, keeping track of every accessed address would be infeasible, due to the high
overhead added to the application. Hence we use the concept of sampling. The goal is
to choose a sampling interval (SI) with a high accuracy but low overhead. To choose
the SI, we ran an experiment using all eight benchmarks from STAMP.

We start with a sampling interval of zero, i.e., all addresses are sampled in the com-
munication matrix. The next sampling interval is 10, i.e., only execute Algorithm 2 (Chap-
ter 4) once for every ten addresses accessed. The other sampling intervals are always
ten times the previous one. To avoid contention, every thread has their own sampling
interval counter.

Figure 24(a) shows the overhead results. Applications with many addresses ac-
cessed such as Intruder and ssca2 have a high overhead even when using a sampling
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Figure 24 – Overhead and MSE when varying the sampling interval.

interval of 10. We also studied how the accuracy of the collected communication matri-
ces is affected by each SI. We used the mean squared error (MSE) (Section 5.1.2) as
a metric to compare the resulting matrices of each sampling interval, comparing them
to the sampling interval of 0.

Figure 24(b) shows the results. Lower values are better. Analyzing the graphs, we
chose a sampling interval of 100, where the applications presented the best trade-off
between overhead and accuracy.

Finally, we need to choose the mapping interval (MI), i.e., when the new thread
mapping should be calculated. Migrating threads incurs an overhead due to cache
misses and other collateral effects. In NUMA machines, these effects can be even
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worse, due to messages of cache invalidation between nodes. Hence, our idea is to
reduce the number of times that thread mapping is performed. We need to choose a
mapping interval as early as possible, taking into consideration the trade-off between
accuracy and overhead. Our mapping interval is based on the total number of accessed
addresses (not just the number of sampled addresses). Thus, we made a previous
analysis of the applications and chose an MI of 100,000 (more details about these
thresholds will be explained in Section 6.2.2). Hence, we calculate the new thread
mapping when the application accessed ‘’mapping interval” addresses. Again, to avoid
contention we decided to track the total of accessed addresses of only one thread.

6.2.2 Calculating the mapping

To calculate the thread mapping, the communication matrix created by the Al-
gorithm 2 is used as input for the TopoMatch mapping algorithm (JEANNOT,
2020). Using the generated mapping, threads are pinned to cores using the
pthread_setaffinity_np function. TopoMatch has an important feature for
NUMA machines: when calculating the new thread mapping, it tries to minimize the
communication costs between sockets/nodes. Hence, it prioritizes the placement of
threads first inside the same socket.

As showed in the experiments with SSA (Section 6.1), not all STM applications are
suitable for sharing-aware thread mapping. Thus, we use a heuristic which is measured
before calculating a new thread mapping to verify if the application would benefit from
using the proposed approach. To define a heuristic, we analyzed different application
characteristics. The idea is to try to discover common characteristics between appli-
cations where the sharing-aware thread mapping decreased the performance. Similar
to the experiments made in Chapter 5, we use STAMP applications for this analysis,
since it was developed to represent realistic workload characteristics and it covers a
wide range of transactional behavior. To have a low overhead mechanism, we tried as
much as possible to measure the desired characteristics on the main thread, avoiding
thread synchronization. The initial analyzed characteristics were: the total numbers of
commits and aborts, the total number of transactions, the average size of the read and
write-set and the commit and abort ratios. Also, we analyzed two global metrics: the
total number of accessed addresses and the amount of distinct addresses accessed.
Based on Section 6.1 we already know the kinds of applications that are not suitable
for sharing-aware thread mapping. Hence, we are interested in finding a heuristic to
disable the mechanism on such applications. Analyzing the collected characteristics,
we decided to take into consideration the number of distinct addresses (da) accessed by
all threads and the commit and abort ratio (cr and ar ) of thread 1. Besides, we used the
same experiment to decide the mapping interval, i.e., the metric used to decide when
a new thread mapping should be calculated. Table 8 shows the chosen metrics using
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Table 8 – Characteristics used to define the heuristic and the mapping interval.

MI: 10K, 32 Threads MI: 50K, 32 Threads MI: 50K, 96 Threads

Application da cr ar da cr ar da cr ar

bayes — — — — — — — — —
genome 476 0.35 0.65 20,698 0.96 0.04 6,816 0.00 0.00
intruder 593 0.00 0.00 1,922 0.00 0.00 1,314 0.00 0.00
kmeans 19 0.06 0.94 21 0.04 0.96 20 0.00 0.00
labyrinth 4,279 1.00 0.00 14,144 0.70 0.30 — — —
ssca2 2,833 1.00 0.00 21,363 1.00 0.00 69,087 1.00 0.00
vacation 2,447 0.00 0.00 10,622 0.00 0.00 4,911 0.00 0.00
yada 989 0.00 0.00 1,857 0.01 0.99 7,075 0.00 0.00
redblacktree 604 0.00 0.00 2,832 0.00 0.00 10,232 0.74 0.26
hashmap 216 0.00 0.00 1,692 0.00 0.00 35,290 1.00 0.00

Algorithm 3 Heuristic used to determine if the thread mapping should be calculated
1: function E N A B L E M A P P I N G

2: da← getTotalDa()
3: if (da <= da_threshold) then
4: return true . Compute the new thread mapping
5: else
6: commits← getTotalCommitsThread() . Only for thread 1
7: aborts← getTotalAbortsThread() . Only for thread 1
8: transactions← commits+ aborts
9: if (transactions > 0) then

10: cr ← commits/transactions
11: ar ← aborts/transactions
12: return ar > cr
13: else
14: return false . Zero transactions so far. It is not possible do calculate the ratios

different thread numbers and MI’s. It is worth noting that in bayes it was not possible to
collect the information, even when using a mapping interval of 10,000 addresses. This
application accesses a very low number of addresses. Nevertheless, this application is
not adequate to compare execution time, since its behavior is not deterministic (RUAN;
LIU; SPEAR, 2014). When both cr and ar are zero in Table 8, it means that the appli-
cation does not completed any transactions when the MI was reached. In that case,
it was not possible to calculate the ratios. When using a mapping interval of 50,000
it was possible to define a heuristic to disable the thread mapping for the applications
that were not suitable for sharing-aware thread mapping. In the case of STAMP, the
applications less suitable for sharing-aware thread mapping are Genome, Intruder and
Labyrinth. Since the applications that are not sensitive to our mechanism present a
similar behavior on the analyzed characteristics, we expect that other applications that
are not suitable for a sharing-aware thread mapping present the same characteristics.
Hence, the heuristic is shown in Algorithm 3.
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The da is calculated from the hash table (Chapter 4, Figure 5), inside the heuristic
(line 2). The value of da_threshold was set to 10,000 based on the analysis of the data in
Table 8. Thus, if the application had accessed less than 10,000 distinct addresses, the
new thread mapping should be calculated. The intuition used here is that if there many
distinct addresses accessed, the application probably does not have a well-defined
communication pattern between threads. However, if there are more than 10,000
distinct addresses, the commit and abort ratio of thread 1 are used for determining
if the mechanism should be disabled (lines 6 to 14). The intuition here is based on
the works of Castro, Góes and Méhaut (2014) and Chan, Lam and Wang (2015), who
determined that if the abort ratio is high, then the application is accessing too much
shared data. Thus, putting them closer would increase cache sharing between the
shared data, which is one of the main objectives of sharing-aware thread mapping.
For these reasons, if the ar is higher than the cr, the new thread mapping should be
calculated (line 12).

A final remark is related to the mapping interval when using 96 threads. The Xeon
machine that will be used for the experiments has 96 physical cores. Analyzing the data
for this configuration in Table 8, we do not see the same da of 10,000 for the application
that we are interested in disabling the mechanism. Overall, the da was lower. Hence,
our idea is also to include in the experiments a higher mapping interval, in that case,
100,000 addresses.

6.2.3 Final algorithm

In this Section, we present the final algorithm to detect and perform the thread
mapping dynamically (Algorithm 4). Also, Figure 25 shows the updated version of the
basic mechanism to detect the communication pattern, proposed in Chapter 4.

First, the thread private variable addr_sample (line 1) is incremented to verify if it
is time to sample the memory access. Then, on the line 2 we verify if the counter of the
current thread is greater than the sampling interval (Section 6.2.1). If true, we zero the
variable to be able to detect the next trigger time (line 3), and Algorithm 2 is executed.

The next part of the algorithm controls when to perform the new thread mapping. In
line 5, we determine if the current thread is the one responsible to control the total of
addresses accessed, i.e., thread one. If true, we increment the thread private variable
total_addr (line 6). Thus, in line 7 the algorithm determines if it is time to trigger the
new thread mapping, checking if the total of accesses is greater than or equal to the
mapping interval (Section 6.2.1). If true, it is necessary to verify if the application will
benefit from a new mapping. This verification is done through the Algorithm 3 (line 8).
Finally, if Algorithm 3 returns true, we compute the new thread mapping according to
Section 6.2.2.
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Figure 25 – Flowchart of the proposed mechanism to detect and perform thread mapping during
runtime. In this Figure, Thld stands for threshold and TM for thread mapping.

Algorithm 4 Triggering communication events and thread mapping.
Require:

addr: memory address being accessed
tid: thread ID of the thread that is accessing the address
addr_sample : thread private variable used to determine if is time to sample the memory
address
total_addr : thread private variable used to determine if is time to trigger the thread mapping
si: sample interval. Default 100
mi: mapping interval. Default 100,000

1: addr_sample← addr_sample+ 1
2: if (addr_sample > si) then
3: addr_sample← 0
4: Execute algorithm 2 . Proposed in Chapter 4
5: if (tid = 1) then
6: total_addr ← total_addr + 1

7: if (tid = 1) and (total_addr ≥ mi) then
8: if (EnableMapping()) then . Algorithm 3
9: Compute new thread mapping



80

6.2.4 Implementation

We extended the implementation of the proposed mechanism to detect the sharing
behavior, described in Section 4.3. The extension included the Algorithm 4 inside the
function stm_write and stm_load.

One key aspect of the implemented mechanism is that we only trigger the thread
mapping once during the execution of the application. The experiments in Chapter 5
showed that the STAMP applications do not present dynamic sharing behavior, i.e., they
have the same sharing pattern during all execution time. For this reason, after the first
mapping interval is triggered, the mechanism is disabled, stopping to collect memory
access information. Nevertheless, we do not expect significant performance penalties
if the mechanism is enabled during all the execution time. As shown in Figure 24(b) the
chosen sampling interval of 100 represents a very small overhead to the final execution
time.

6.2.5 Results on the Xeon Machine

Figure 26 shows the execution time (in seconds) on the Xeon machine. Also, each
bar shows the average and a confidence interval of 95%. When discussing the distinct
addresses accessed and commit and abort ratios, these metrics are based on when the
mapping interval was triggered. Percentages of improvement are always compared to
Linux. As some results can be explained by the level of contention of each application,
this information will be included again, for each application analyzed, such as in the
static results discussion (Section 6.1.2).

Genome has little contention and spends lots of time inside transactions (MINH et al.,
2008). It accesses a large number of distinct addresses, roughly twice the da_threshold
metric (Section 6.2.2). Since it has little contention, i.e, the abort ratio is low, the online
mechanism was disabled correctly. Although there is a large difference between SSA
and STMap, Scatter performed better. Looking at 96 threads SSA had a performance
loss of 26% whereas in STMap we can reduce this loss to 7.1%, by disabling the
mechanism.

Intruder has high contention and spends medium time inside transactions (MINH et
al., 2008). Results with 32 threads were similar for Compact and SSA. The performance
gain achieved with STMap was 25% in this configuration. However, as the number
of threads grows, the advantages of a sharing-aware mechanism diminish. With 64
threads the performance gains were still the best, followed by Linux, but with 96 threads
we had a performance loss of 16%. This indicates that Intruder has a sharing pattern
that is strongly related to the number of threads.

Kmeans has little contention and spends little time inside transactions (MINH et
al., 2008). Due to the low contention, we can expect similar results as in Genome.
However, this application accesses a very small amount of distinct addresses (roughly



81

0

5

10

15

20

32 64 96

Number of Threads

E
xe

c
u
tio

n
 T

im
e
 (

se
c)

Bayes

0

5

10

15

20

32 64 96

Number of Threads

E
xe

c
u
tio

n
 T

im
e
 (

se
c)

Genome

0

20

40

60

32 64 96

Number of Threads

E
xe

c
u
tio

n
 T

im
e
 (

se
c)

Intruder

0

5

10

15

20

32 64 96

Number of Threads

E
xe

c
u
tio

n
 T

im
e
 (

se
c)

Kmeans

0

20

40

32 64 96

Number of Threads

E
xe

c
u
tio

n
 T

im
e
 (

se
c)

Labyrinth

0

20

40

60

80

32 64 96

Number of Threads

E
xe

c
u
tio

n
 T

im
e
 (

se
c)

ssca2

0

10

20

30

32 64 96

Number of Threads

E
xe

c
u
tio

n
 T

im
e
 (

se
c)

Vacation

0

25

50

75

100

32 64 96

Number of Threads

E
xe

c
u
tio

n
 T

im
e
 (

se
c)

Yada

0

25

50

75

32 64 96

Number of Threads
E

xe
c
u
tio

n
 T

im
e
 (

se
c)

Redblacktree

0

25

50

75

32 64 96

Number of Threads

E
xe

c
u
tio

n
 T

im
e
 (

se
c)

Hashmap Mapping

Linux

Compact

Scatter

Round-Robin

Static-SharingAware (SSA)

STMap

Figure 26 – Execution time results on the Xeon machine.

20), and all accesses are made to these addresses. This shows that we cannot rely
only on commit and abort ratios to predict if the application is suitable for a sharing-
aware thread mapping. Using 64 and 96 threads we achieved good results with STMap,
with performance gains of 30.3% and 21.5%, respectively. Also, it is worth noting that
with 96 threads our results were even better than the SSA mechanism. This can be
explained because the application has a different sharing pattern on each execution.
Thus, only an online mechanism can adapt to this behavior. In 32 threads SSA achieved
performance gains of 58.3%. Hence, we expected similar results with STMap. However,
we noticed an issue with the mapping interval of 100,000 used on this machine. Only
in the case of 32 threads, this mapping interval was too high, and the application never
triggered the mechanism.

Labyrinth has high contention and spends lots of time inside transactions (MINH et
al., 2008). However, it accesses a large number of distinct addresses and the mech-
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anism was correctly disabled here. Using the SSA approach we had a performance
loss of 53.5% with 32 threads. However, the STMap mechanism performed similar to
Linux, in all configurations. Also, it is worth noting that all mappings performed similarly,
except Compact and SSA. This application shows the importance of having a heuristic
to disable the mechanism, if the mechanism can predict that the final performance
would be worse.

Ssca2 has little contention, spending little time inside transactions (MINH et al.,
2008). The best mapping was SSA in all configurations. This application has simi-
lar characteristics as Genome, hence, the mechanism was disabled and the results
achieved with STMap were similar to Linux.

Vacation has medium contention and spends lots of time inside transactions (MINH
et al., 2008). This application has complex characteristics that are harder to predict
in all thread configurations. We have three distinct cases. Using 32 threads, SSA
had performance gains of 5.2% over Linux. However, due to the overhead of the
mechanism, STMap was similar to Linux. Using 64 threads, the abort and commit ratio
was not deterministic. We had roughly half of the times the mechanism disabled, due
to a higher commit ratio. However, it is possible to see in the error bar, that sometimes
the mechanism was enabled, and performed better than SSA. In 96 threads, the
mechanism was incorrectly disabled all the time.

Yada has medium contention and spends lots of time inside transactions (MINH
et al., 2008). It accesses a medium amount of distinct addresses. The results in all
configurations of threads were similar, with Compact and SSA performing better than
other mappings. STMap performed better than Linux in all thread configurations, with
performance gains of 47.1%, 12.7%, and 48.2%, respectively.

Redblacktree’s threads communicate often with their neighbors. Thus, Compact has
a good performance, but when using 96 threads, STMap had the highest performance
gain (58%) over Linux.

Hashmap has a communication pattern similar to Redblacktree, but STMap did not
result in the highest gains using 32 and 64 threads. Specifically with 64 threads, in
some runs the da_threshold was higher, and since the commit ratio of this application
is high, the mechanism was disabled (Algorithm 3). The execution time varies between
19 (mechanism enabled) to 71 seconds. This explains the large error bar. However,
using 96 threads the mechanism was enabled in all executions, achieving performance
gains of 77.7% over Linux.

6.2.6 Results on the Opteron Machine

Figure 27 shows the performance results on Opteron. Since we already discussed
the characteristics of the benchmarks in the previous section, we will only discuss the
performance results.
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Figure 27 – Execution time results on the Opteron Machine.

Genome had a similar behavior as on the Xeon machine, and STMap was disabled
correctly. Using SSA, we had a performance loss with 32 and 64 threads. With 64
threads, STMap achieved the best results, roughly equal to Linux.

In Intruder the results were similar for Compact and SSA, both for 32 and 64 threads.
Nevertheless, the performance gain achieved with STMap with 16 threads was one of
the best for the Opteron machine (39.4%). Using 32 threads, the performance gains
were 36.4% compared to Linux.

In Kmeans, contrary to the Xeon machine, the STMap mechanism was not disabled
and the performance gain achieved was up to 9,1% in 64 threads.

In Labyrinth, the behavior was similar to Xeon. Since it accesses a large number of
distinct addresses and the commit ratio is higher, the mechanism was correctly disabled.
SSA resulted in performance losses, mainly with 16 and 32 threads. On the other hand,
the STMap mechanism performed similarly to Linux.
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Table 9 – Average performance gains of each mechanism over Linux.

Machine Compact Scatter RoundRobin SSA STMap

Xeon 15.88% 13.14% 14.50% 22.32% 19.07%
Opteron 7.96% 5.86% 3.15% 6.50% 9.78%

Ssca2 is another application with similar behavior on both machines. Unfortunately,
since the best mapping was SSA we expected good results with STMap as well. How-
ever, as on the Xeon machine, STMap was incorrectly disabled for this application.

Vacation accesses a large number of distinct addresses and the abort ratio was
slightly greater than the commit ratio in this machine. Thus, the mechanism was cor-
rectly disabled. However, no mapping had a big impact on the performance.

Yada accesses a medium number of distinct addresses (roughly 2,000). However,
contrary to the Xeon machine, we did not observe big differences between the map-
pings, with exception of Linux with 64 threads. Nevertheless, SSA and STMap had
similar results as Linux.

In the last two benchmarks, Hashmap and Redblacktree, SSA was the best map-
ping. STMap had slightly smaller gains compared to SSA that can be explained by the
overhead in performing the mapping online.

6.2.7 Discussion

As expected, creating a unique heuristic that fits in all cases is a challenge. The
main drawback of the proposed STMap mechanism appeared with Ssca2. On both
machines, STMap was disabled by the heuristic, but we had good results using the
SSA approach. On the other hand, in Genome and Labyrinth the mechanism was
correctly disabled, avoiding a greater performance loss if the mechanism was enabled.
Analyzing the results, sharing-aware thread mapping in STM depends on a low number
of distinct addresses with a lot of accesses in these addresses. Also, applications with
low and medium contention had higher gains.

Prior work on sharing-aware mapping focused solely on analyzing the communica-
tion matrix to detect if applications would benefit from a new thread mapping (DIENER
et al., 2015b; BORDAGE; JEANNOT, 2018). However, our proposal to perform on-
line sharing-aware thread mapping inside STM applications is based on the distinct
addresses, commit, and abort ratios and proved to be accurate.

On the Opteron machine, the highest performance gain over Linux was achieved by
Yada using 64 threads (85.8%) and by Intruder using 16 threads (39.4%). On the Xeon
machine, the highest performance gain was achieved by Hashmap, achieving gains
of 77.7% over Linux. To summarize, Table 9 shows the average performance gains
of each mechanism over Linux, taking into consideration all applications and thread
configurations.
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6.2.8 Mechanism sensitivity

The STMap performance improvements are sensitivity to the mapping interval used
in the heuristic to trigger the mechanism (Algorithm 4). We execute additional experi-
ments varying the mapping interval, between 25,000 to 200,000 to verify if the chosen
mapping interval of 100,000 was in fact the best one for the two machines. Figure 28
shows the performance gains achieved with each mapping interval, grouped by ma-
chine.
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Figure 28 – Mechanism sensitivity when changing the mapping interval.

The results confirm that a mapping interval of 100,000 presents the best overall re-
sults on both machines. The mapping interval of 200,000 does not present good results
because the majority of the applications do not access these quantity of addresses in
one thread. Hence, for these applications the mechanism was never triggered, because
the mapping interval was never reached. Although a mapping interval of 25,000 in the
Xeon machine presents, on average, good results, some observations are necessary.
We choose 2 applications for this discussion. Figure 29 compares the results of STMap
using the best mapping interval of 100,000 to the mapping interval of 25,000.
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As mentioned in Section 6.2.2, Genome is an application that is not suitable for a
sharing-aware thread mapping. Hence, it is necessary to disable the mechanism to not
hurt the performance. However, as shown in Figure 29, using a mapping interval of
25,000 the mechanism was enabled. However, it was not deterministic, with sometimes
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the mechanism being disabled, as shown in the large errors bars. We see similar non-
determinism in Ssca2. As mentioned in Section 6.2.7, Ssca2 was the main drawback
of the mechanism in the mapping interval of 100,000. Nevertheless, on average, in
Ssca2 the results of the mapping interval of 25,000 were better, helping to decrease
the average execution time of the mechanism using 25,000.

6.3 Summary

This chapter presented two mechanisms to perform sharing-aware thread mapping
for STM applications. Although only transactional operations are tracked to extract the
memory access behavior, the experimental results of the Static-SharingAware (SSA)
mechanism shown that only the information inside the transactional memory system is
enough to improve the performance of STM applications.

The next proposed mechanism, STMap, which is an online mechanism to extract
the memory access behavior of STM applications and use this information to calculate
a sharing-aware mapping of threads to cores. The main advantage is that no prior
knowledge is necessary, all phases are executed while the application is running. Also,
applications are not modified, only the STM system. Although we only trigger thread
mapping one time, since the used applications do not present dynamic sharing behavior,
we believe that the mechanism can work for a wide range of STM applications since
(1) the chose sampling interval of 100 represents a very small overhead to the final
execution time and (2) if the mechanism was not disabled, the next trigger time would
in the mapping interval of 200,000. However, the experiments made on the mechanism
sensitivity (Section 6.2.8) showed that the majority of the applications do not access
these quantities of addresses in one thread.

Overall, both mechanisms showed performance gains when compared to other static
thread mapping strategies and the default Linux CFS scheduler.



7 CONCLUSION

Transactional memory (TM) provides a high-level abstraction for thread synchroniza-
tion in parallel programming. It can be implemented in hardware (HTM), software (STM),
or both (hybrid). This thesis focused on STM. There are many studies on how to im-
prove the performance of STM systems. Most of them focus on reducing the number of
aborts, using different techniques, such as contention managements and transactional
schedulers. Although reducing the number of aborts improves the performance, this
thesis showed that in current multicore architectures with complex memory hierarchies
it is also important to consider where the memory of the program is located and how
it is accessed. Thus, the placement of threads and data is important to performance,
improving the locality of memory accesses. Hence, this thesis used the concept of
sharing-aware mapping, which aims to map threads and data of an application con-
sidering their memory access behavior. Besides, STM provides interesting mapping
opportunities since the STM runtime has precise information about memory areas that
are shared between threads, their respective memory addresses, and the intensity with
which they are accessed by each thread.

The first contribution of this thesis (Chapter 4) is a mechanism to detect the sharing
behavior of STM applications. Since the STM runtime needs the memory address on
each data access operation and has precise information about shared variables, it is
possible to determine the communication behavior by tracking transactional reads and
writes instead of all memory accesses. Using the proposed mechanism it was possible
to extract the sharing behavior of STM applications with lower overhead than other
memory trace tools.

The second thesis contribution (Chapter 5) is a characterization of the sharing behav-
ior of STM applications. This characterization is important to guide decisions regarding
mapping, such as determining if an application is suitable for a thread mapping based
on communication behavior and defining the type of mapping policy (static or dynamic).
The main findings are that most of the characterized STM applications are suitable for a
static thread mapping approach to improve the performance since (1) the applications
do not present dynamic behavior and (2) the sharing pattern does not change between
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executions. Furthermore, it was shown that the sharing information gathered from the
STM runtime can be used to analyze and reduce false sharing in STM applications.

Using the proposed mechanism to detect the sharing behavior and the characteri-
zation of the sharing behavior of STM applications, it was proposed two mechanisms
to perform sharing-aware thread mapping for STM applications. The first mechanism is
static (Chapter 6, Section 6.1), i.e., where threads are mapped to cores at the beginning
of execution, based on a previous analysis of the sharing behavior of the application.
This mechanism was called as Static-SharingAware (SSA). The second mechanism,
STMap (Chapter 6, Section 6.2), does not need prior information about the sharing be-
havior of the application, since the detection of sharing behavior and thread migration
are performed based on information gathered solely during execution. In experiments
with the STAMP benchmark suite and synthetic benchmarks, both mechanisms showed
performance gains when compared to the default Linux scheduler. We conclude that
applications that are suitable for a sharing-aware thread mapping, in general, present a
low number of distinct addresses accessed by the STM runtime with a lot of accesses in
these addresses. Also, applications with low and medium contention had higher gains.
Even though the experiments were focused on the STAMP benchmark, we expect that
the observed results can be generalized for a wide range of STM applications since
STAMP was developed to represent realistic workload characteristics and it covers a
wide range of transactional behavior.

Albeit this thesis focuses on sharing-aware thread mapping, in Appendix A we show
how STMap can be extended to include sharing-aware data mapping.

7.1 Future work

The research presented in this thesis can be extended in the following ways:

• Include balance on thread mapping. Both SSA and STMap uses TopoMatch
to calculated the thread mapping. As described in Section 6.2.2, when calculating
the new thread mapping, TopoMatch tries to minimize the communication costs
between sockets/nodes. Hence, it prioritizes the placement of threads first inside
the same socket. However, as shown in the experiments, applications such as
Genome and Labyrinth prefers mapping that reduces memory contention, i.e.,
balance instead of locality. This characteristic can be explored in future extensions
of STMap.

• Identify false sharing. We showed in Chapter 5 that it is possible to identify
false sharing of cache lines of STM operations using the proposed mechanism to
detect the sharing behavior of STM applications. In HTM, false sharing is one of
the main causes of conflicts, since the granularity of conflict detection is normally
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the cache line. Hence, the mechanism proposed in this thesis could be extended
to detected false sharing, reducing the number of conflicts in HTM applications.
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APPENDIX A SHARING-AWARE DATA MAPPING IN STM

This appendix shows how STMap (Section 6.2) can be extended to include sharing-
aware data mapping. We opted for including the experiments on data mapping in
the appendix since the main focus of this thesis is on sharing-aware thread mapping.
The goal of data mapping is to optimize the usage of memory controllers, by mapping
memory pages to the same NUMA node where the core that is accessing them belongs.
To summarize, thread mapping aims to avoid access to the memory, prioritizing caches.
On the other hand, if access to the memory is necessary, data mapping tries to map the
memory that needs to be accessed to a local NUMA node, avoiding remote accesses.

A.1 Algorithm

To perform a sharing-aware data mapping in STM, it is necessary to know which
NUMA nodes are accessing each memory page address. For this purpose, we follow
the same intuition of the mechanism to detect thread communication, proposed in
Section 6.2.3, with some modifications, shown in Figure 30 and detailed in Algorithm 5.

ReadTx  
WriteTx

Addr >> 12

Hash Table

struct

STM Operation

+1
0 1 2 3

NUMA nodes 
array

Node 2

Figure 30 – Mechanism for detecting page accesses. Data structures are shown for a NUMA
machine with 4 nodes (0-3).

Lines 1, 2 and 3 are exactly the same of the Algorithm 4 (Section 6.2.3), i.e., it is
used to verify if it is time to sample the accessed memory page, based on the value of
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Algorithm 5 Detecting memory pages accesses and performing data mapping.
Require:

addr: memory address being accessed
node: NUMA node that is accessing the memory page
tid: thread ID of the thread that is accessing the address
addr_sample : thread private variable used to determine if is time to sample the
memory address
total_addr : thread private variable used to determine if is time to trigger the thread
mapping
si: sample interval. Default 100
dmi: data mapping interval.
PAGE_SIZE_BITS: 12 for page size of 4096 bytes

1: addr_sample← addr_sample+ 1
2: if (addr_sample > si) then
3: addr_sample← 0
4: pageaddr ← addr >> PAGE_SIZE_BITS . Right shift
5: elem← getPageInfo(pageaddr)
6: if (!elem.moved) then . Verify if the memory page already have been moved
7: elem.nodes[node]← elem.nodes[node] + 1 . Increase the amount of access
8: if (tid = 1) then
9: total_addr ← total_addr + 1

10: if (tid = 1) and (total_addr ≥ dmi) then
11: Compute new data mapping
12: dmi← dmi ∗ 2

sampling interval. Since the STM runtime has access to the full memory address, we
first need to bit shift the address to get the information of the memory page (line 4). To
keep track of accessed memory pages, a hash table is used whose keys are memory
pages. Each position of the hash table contains a structure with the memory address
and an array of size equals to the NUMA nodes of the machine (Figure 30). Each
position of this array contains the number of accesses to the memory page performed
by each NUMA node. Hence, on line 5, the function getPageInfo gets from the hash
table the structure containing information about the memory page being accessed. To
avoid unnecessary page moves, we only update the number of accesses to this page
(line 7) if the page not already have been moved (line 6). In summary, instead of calling
Algorithm 2 (Chapter 4) to detect the sharing behavior between threads, the modified
algorithm keep track of the number of times which each NUMA node is accessing a
specific memory page (lines 4–7).

The lines 8 to 10 are the same of the Algorithm 4 (Section 6.2.3), keeping track of
the amount of memory address accessed, in order to trigger the data mapping. On
the line 11 the data mapping is triggered. This step is simpler than thread mapping:
we verify on the hash table each memory page that not have been moved and which
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NUMA node has most accessed it. Then, while the application is running, we send
these information to the function move_pages of the libnuma library (KLEEN, 2004)
to perform the page move.

Contrary to thread mapping, where our previous study showed that STAMP applica-
tions do not present dynamic sharing behavior (Chapter 5), hence, not being necessary
to perform more than one time the thread mapping, on data mapping we cannot disable
the mechanism after the first trigger. For thread mapping, just keeping track of a few
memory accesses it is possible to deduce, with a certain level of accuracy, the memory
access pattern of the application. For data mapping, it is not possible to deduce the
future memory pages that will be accessed and which NUMA nodes will access them.
However, to avoid a high overhead of moving pages, after each data mapping, on line
12, we double the next data mapping interval (dmi).

A.2 Improving STM applications with Data Mapping

Similar to the experiment made on Section 2.4 for thread mapping, we create an
experiment with a synthetic array sum application. This application consists of an array
of 230 integer elements. In that case, the array uses approximately 4 Gigabytes of
memory. We force the array to be initialized with zeros in the main thread. Hence,
using the default first touch police, all memory will be allocated in the NUMA node of
the main thread. To force the use of more than one NUMA node, the application was
executed using 64 threads. The objective of this application is very simple. Each thread
iterates through their array part thirty times. On each iteration, it updates the respective
array position, incrementing the current value by one. We implemented the proposed
mechanism of this Appendix inside the TinySTM and used it for synchronization of
shared variables used in the array. Hence, the STM runtime will be aware of all the
memory addresses that belong to the array. We iterate through the array thirty times
to guarantee that if a memory page is migrated then it will be accessed again in the
appropriate NUMA node, regarding the locality of the access.

The default Linux kernel already has routines to improve the memory page balancing
of NUMA nodes. It keeps track of the page faults, moving the page automatically to the
node that most accessed it. This mechanism is called NUMA balancing (RIEL; FENG,
2020). To test our proposal, we executed the array sum application in the Xeon and
Opteron machines, described in Section 6.1.1. For comparison we used the following
configurations:

• Linux-NBOff is the default Linux CFS scheduler, however with the NUMA balanc-
ing mechanism disabled.

• Linux-NBOn is the default Linux CFS scheduler with the NUMA balancing mech-
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anism enabled. This approach will be useful to verify if the application is suitable
for data mapping, or if the default first-touch approach is more efficient.

• STMap is the mechanism proposed in Section. 6.2. However, since we are inter-
ested in verifying the benefits of data mapping together with thread mapping, we
do not use the heuristic proposed in Algorithm 3, hence, the thread mapping is
always triggered one time.

• STMap+DM in this approach, we first trigger the thread mapping one time. After
that, we begin to keeping track of the memory pages being accessed, triggering
the first data mapping on dmi of 100,000 addresses such as in thread mapping
(Sect 6.2).
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Figure 31 – Execution time of the Array Sum application.

It is worth noting that the NUMA balancing (RIEL; FENG, 2020) was enabled only
in Linux-NBOn approach. In all other approaches, this mechanism was disabled.
Figure 31 show the results. In the Xeon machine, it is possible to observe that NUMA
balancing (Linux-NBOn) reduced the execution time by 35.5% when compared to the
same mechanism without the balancing (Linux-NBOff). This proves that this synthetic
application has an unbalanced memory page allocation. Although it was not possible to
beat NUMA balancing, our proposed STMap+DM mechanism achieved performance
gains of 23.3% when compared to Linux-NBOff and, 19% when compared to STMap.
However, when analyzing the results in the Opteron machine, it is not possible to see
any benefits of the data mapping. In fact, NUMA balancing decreases the performance
by 12% when compared to Linux-NBOff.

As related in Section 6.1.1 the information about NUMA nodes distances gathered
with numactl (KLEEN, 2004) indicates that the nodes distances in the Xeon machine
are three times more distant than Opteron. This could explain in part the lack of results
for data mapping in Opteron. To be sure about this information, we used a tool1 to

1<https://github.com/matthiasdiener/numafac>

https://github.com/matthiasdiener/numafac
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calculate the NUMA factor of the two machines, regarding bandwidth and latency of
remote accesses. This tool uses Lmbench (MCVOY; STAELIN, 1996) to calculate the
latencies. The NUMA factor is defined as the latency between memory accesses to
remote NUMA nodes divided by the latency to access local nodes (MARIANO et al.,
2016). Table 10 show the results. Although the bandwidth of the Xeon machine is

Table 10 – NUMA factor of the machines used in the experiments.

NUMA factor

Machine Node distances Bandwidth Latency

Xeon 50 – 65 1.96 6.90
Opteron 16 – 22 1.28 2.16

larger than Opteron, the latency of remote accesses is three times slower in Xeon.
This could explain in part why the array sum application only presented results on the
Xeon machine. Nevertheless, in Section A.4 we will test the proposed data mapping
mechanism using more realistic workloads.

A.3 Methodology

Although the experiments made on Section A.2 with the array sum application were
not conclusive regarding the Opteron machine, we executed all eight benchmarks from
STAMP and the two micro-benchmarks (HashMap and Redblacktree) using the pro-
posed data mapping mechanism. The STAMP applications represent realistic workloads,
being more appropriate to verify the efficiency of the proposed mechanism. We also
added two more mechanisms to the comparison:

• DM-100K in this approach the thread mapping is not used, only data mapping,
triggering the first mapping on 100,000 addresses.

• DM-50K this approach is used to verify if a more aggressive data mapping is
better, triggering the first mapping on 50,000 addresses, i.e., half of the previous
approach.

A.4 Results

The results of sharing-aware data mapping in both machines were similar. Hence,
we will not discuss each application individually. Alternatively, we calculated the average
speedup using Linux-NBOff as a baseline. Also, the results were grouped by thread
number and machine. Figure 32 show the results.

Overall, the proposed mechanism does not improve the performance of STM appli-
cations. The best speedup was achieved by STMap, i.e., only triggering thread mapping,
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Figure 32 – Average speedup of the mappings when compared to Linux-NOff.

with exception of Opteron in 64 threads. When the data mapping was enabled together
with thread mapping (STMap+DM) it decreased the performance. In that case, the
overhead of the data mapping mechanism was not compensated by the better explo-
ration of the locality of memory pages. However, analyzing the speedup, overall, on
both machines the NUMA balancing mechanism (Linux-NBOn) decreased the perfor-
mance. On the Xeon machine, all proposed mechanisms performed better than NUMA
Balancing. In that case, the default first-touch police were more efficient. Hence, ini-
tially, two hypotheses can be formulated. The first is that the applications utilized in
the experiments are not suitable for data mapping. The second is that the proposed
mechanism failed in exploring data mapping. However, this second hypothesis was
tested in Sect A.2 and showed results in the Xeon Machine.

A.5 Discussion

Albeit the proposed mechanism in this appendix does not improve the performance
of the STM applications used in the previous chapters, a synthetic application showed
that in specific scenarios it can improve the performance. More specifically, it is nec-
essary an STM application with atomic blocks that protect a large amount of distinct
variables and a NUMA machine with high latency in remote node accesses.

Since STM runtime has precise information about shared variables, this information
can be used to choose which threads should be mapped closer to each other to share
caches, i.e., it is not necessary a global vision of the application sharing behavior
(Chapter 6). However, for an efficient data mapping, it is necessary a global vision of
the memory pages of the application, not only the ones accessed by the STM runtime. In
the synthetic array sum application presented in Sect A.2, the STM runtime was aware
of all the 4 Gigabytes of the array. Nevertheless, data mapping showed improvements
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only in the Xeon machine, with high latencies on remote node access.
Using more realistic workloads, we do not see performance improvements. Probably,

in the majority of STM applications, the STM runtime is not aware of the entire memory
pages of the application.

A.6 Summary

This appendix proposed an extension to STMap to include sharing-aware data
mapping. The extension keeps track of the number of accesses of each NUMA node to
each memory page. On each data mapping interval, the memory page is moved to the
NUMA node that most accessed it.

Using a synthetic array sum application, it was showed that the proposed mechanism
could increase the performance on NUMA machines with high latency on remote mem-
ory access. However, using more realistic workloads, it was not possible to improve the
performance. Our thoughts are that it could be infeasible to perform a sharing-aware
data mapping take into consideration only STM operations because it represents only
a fraction of the memory pages used by the entire application.
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