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ABSTRACT 

Saldanha, Mário Roberto de Freitas. Exploration of Encoding Time 

Reduction Solutions for Intra-Frame Prediction of VVC Encoders. Advisor: 

Luciano Agostini 2021. 134f. Thesis (Doctorate in Computer Science) – Graduate 

Program in Computing, Technology Development Center, Federal University of 

Pelotas, Pelotas, 2021. 

The Versatile Video Coding (VVC) standard was developed to supply the 

current demand for the upcoming video applications, enabling higher compression 

performance than previous video coding standards and high versatility to adapt to 

different types of applications and videos. VVC brings several innovations and 

enhancements in the coding modules, including larger block sizes, more flexible block 

partitioning, more angular intra-frame prediction modes, affine motion compensation, 

and multiple transform selection. Although VVC can provide a high compression 

performance, these new tools significantly increased the encoding effort. This Thesis 

proposes timesaving solutions to reduce the encoding effort of the VVC intra-frame 

prediction. A performance analysis of VVC intra-frame prediction is firstly presented to 

identify the most time-consuming modules that must be prioritized to accomplish the 

objective of this work. Subsequently, timesaving solutions based on heuristic and 

machine learning approaches are presented regarding different intra-frame prediction 

steps of VVC encoding, including block partitioning of luminance and chrominance 

samples, mode selection of luminance samples, and the transform selection of 

luminance samples. It was possible to achieve between 8.5% and 61.3% of encoding 

time reduction with Bjontegaard Delta Bit Rate (BDBR) ranging from 0.4% to 2.4%. 

These solutions presented competitive results when compared to the related works. 

 

 

 

 

Keywords: Video Coding, VVC, Intra-Frame Prediction, Encoding Time Saving, 

Machine Learning. 



RESUMO 

Saldanha, Mário Roberto de Freitas. Exploração de Soluções de Redução 

de Tempo de Codificação para a Predição Intra-Quadro do Codificador VVC. 

Orientador: Luciano Agostini. 2021. 134f. Tese (Doutorado em Ciência da 

Computação) – Programa de Pós-Graduação em Computação, Centro de 

Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, 2021. 

O padrão de Codificação de Vídeo Versátil, do inglês Versatile Video Coding 

(VVC), foi desenvolvido para atender a demanda atual relacionada às aplicações de 

vídeo, fornecendo maior eficiência de compressão quando comparado a padrões 

anteriores de codificação e alta versatilidade para se adaptar a diferentes tipos de 

aplicações e vídeos. O VVC insere várias inovações e melhoramentos nos módulos 

de codificação, incluindo blocos de tamanhos maiores, particionamento de bloco mais 

flexível, mais modos angulares para a predição intra-quadro, compensação de 

movimento afim, e seleção múltipla de transformadas. Embora o VVC seja capaz de 

fornecer alta eficiência de compressão, essas novas ferramentas aumentaram o 

esforço de codificação significativamente. Esta Tese propõe soluções eficientes para 

reduzir o esforço de codificação da predição intra-quadro do VVC. Uma análise de 

performance da predição intra-quadro do VVC é apresentada inicialmente para 

identificar os módulos que consomem mais tempo e que devem ser priorizadas para 

alcançar o objetivo do trabalho. Posteriormente, soluções para redução do tempo de 

codificação baseadas em heurísticas e em aprendizado de máquina são 

apresentadas, considerando diferentes etapas da predição intra-quadro do codificador 

VVC, incluindo o particionamento de bloco das amostras de luminância e de 

crominância, a seleção de modo de amostras de luminância e a seleção de 

transformada de amostras de luminância. Foi possível alcançar entre 8,5% e 61,3% 

de redução no tempo de codificação com o Bjontegaard Delta Bit Rate (BDBR) 

variando de 0,4% a 2,4%. Essas soluções apresentaram resultados competitivos 

quando comparados aos trabalhos relacionados. 

Palavras-chave: Codificação de vídeos, VVC, Predição Intra-Quadro, Redução do 

Tempo de Codificação, Aprendizado de Máquina. 
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1. INTRODUCTION 

The development and popularization of new devices capable of handling digital 

videos continue to grow, mainly due to the interest of users for high video quality and 

experiences with immersive technologies such as 3D video, 360º video, Virtual Reality 

(VR), Augmented Reality (AR), and Mixed Reality (MR) (SHERMAN; CRAIG, 2018). 

Over the past few years, industry and academia have dedicated efforts to develop 

devices capable of efficiently handling different types of video content. Currently, users 

can access a wide variety of these devices, like TVs, notebooks, smartphones, tablets, 

video games, 360º cameras, and VR glasses. At the same time, advances in 

telecommunication infrastructures increasing the internet transmission capacity and 

speed have enabled higher information sharing between devices and, consequently, 

increased the popularization of digital videos through different services, including 

Netflix, Amazon Prime Video, YouTube, Instagram, Facebook, and WhatsApp. 

However, this continuous increase in digital video traffic on the internet has created 

enormous pressure for increased bandwidth (CISCO, 2020). This became even more 

noticeable in the COVID-19 pandemic scenario, where the multimedia content 

consumption over the internet increased a lot, forcing streaming providers to reduce 

the video quality to support the current demand (DHAPOLA, 2020). 

To support this demand for video transmission and storage with increasingly 

higher resolutions and immersive technologies, it is necessary to develop new 

advanced techniques for video encoding and decoding systems. There are many 

challenges in developing these systems, such as reducing the size of the encoded 

video (bitstream), providing high video quality, achieving real-time processing, 

achieving low energy consumption, using computational resources according to the 

environment availability, among others. Therefore, a great effort by industry and 

academic research groups has been carried out in recent years to define advanced 

video coding standards, such as Advanced Video Coding (H.264/AVC) (MARPE; 

WIEGAND; SULLIVAN, 2006), High Efficiency Video Coding (HEVC) (SULLIVAN et 

al., 2012), VP9 (MUKHERJEE et al., 2013), Audio Video Coding Standard 2 (AVS2) 

(HE et al., 2013), AOMedia Video 1 (AV1) (CHEN et al., 2018), and Versatile Video 

Coding (VVC) (BROSS et al., 2021). 

Although H.264/AVC has been widely adopted by consolidated platforms, such 
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as Netflix and YouTube, the emergence of Full-High Definition (FHD) and Ultra-High 

Definition (UHD) video content, immersive technologies, and advanced computer 

architectures for parallel processing demonstrated that the H.264/AVC did not present 

enough performance to meet this demand. For this purpose, Joint Collaborative Team 

on Video Coding (JCT-VC) developed the HEVC video coding standard to increase 

the coding efficiency over the H.264/AVC and support the growing demand for higher 

resolutions and immersive technologies. The HEVC was released in 2013, providing 

the double of compression rate for the same video quality compared to the previous 

standard (SULLIVAN et al., 2012). This improvement in the coding efficiency comes at 

the cost of encoding complexity increases of 3.2 and 1.2 times compared to H.264/AVC 

in All-Intra (AI) and Random-Access (RA) configurations, respectively (VANNE et al., 

2012). Besides, HEVC followed the technological advances in the industry with the 

multicore processors and Graphics Processing Unit (GPU), introducing Tiles and 

Wavefront Parallel Processing (WPP) (SULLIVAN et al., 2012) to allow an efficient 

parallelism exploration in the encoding and decoding systems. With the growing 

demand for immersive technologies that provide experiences beyond 2D videos, JCT-

VC has also developed HEVC extensions, such as MV-HEVC and 3D-HEVC 

(SULLIVAN et al., 2013). 

Forecasts by Cisco (2020) indicate that video resolutions, new immersive 

technologies, and internet video traffic will continue to increase significantly over the 

next years. Thus, HEVC encoders and decoders are no longer sufficient to meet the 

market requirements. For this purpose, Joint Video Experts Team (JVET) was created 

in a collaboration between ISO Moving Picture Experts Group (MPEG) and ITU-T 

Video Coding Experts Group (VCEG) to develop the VVC standard, which was 

established as a Final Draft International Standard (FDIS) in July 2020. JVET has 

designed VVC with a focus on specifying a video coding technology with compression 

efficiency significantly higher than HEVC and having high versatility for efficient use in 

a broad range of applications and different types of video content, including UHD, High-

Dynamic Range (HDR), screen content, 360º video, and resolution adaptivity. 

Moreover, to overcome the inhibited industry adoption of HEVC due to the lack of 

reliable and consolidated licensing structure, a new body called Media Coding Industry 

Forum (MC-IF) (SAMUELSSON, 2020) was established to define a clear and 

reasonable licensing model for VVC. Additionally, the first version of VVC already 

brings several new coding tools to deal with different video applications and contents 
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beyond the standard- and high-definition camera-captured content coding. 

VVC introduces several novel techniques and enhancements for block 

partitioning, intra- and inter-frame prediction, transform, quantization, entropy coding, 

and in-loop filters to improve the coding efficiency. These improvements include larger 

block sizes, flexible block partitioning using a Quadtree with nested Multi-Type Tree 

(QTMT) structure (HUANG et al., 2020, 2021), a higher number of angular intra-frame 

prediction modes (PFAFF et al., 2021), Affine Motion Compensation (AMC) (ZHANG 

et al., 2019a), Multiple Transform Selection (MTS) (ZHAO et al. 2016, 2021), Luma 

Mapping with Chroma Scaling (LMCS) (LU, 2020), extended maximum Quantization 

Parameter (QP), improved implementations of quantization and entropy coding 

(CHEN; YE; KIM, 2020). 

These new tools improved the encoding efficiency but raised the encoder 

complexity expressively. Our analysis presented in (SALDANHA et al., 2020a) and the 

work of Bossen et al. (2021) showed that the VVC Test Model (VTM) (CHEN; YE; KIM, 

2020) demands about 27 and 8 times more computational effort than the HEVC Test 

Model (HM) (ROSEWARNE et al., 2015) for AI and RA encoder configurations, 

respectively. VVC is a video coding standard that tends to be widely adopted by the 

industry to meet future market requirements; however, this encoder demands a high 

computational effort and efficient simplifications are needed to enable real-time 

processing with low energy consumption. 

1.1. Research Question and Research Hypothesis 

VVC outperforms HEVC in terms of coding efficiency by 50% for the same 

video quality at a high computational cost (BROSS et al., 2021). The substantial 

increase of processing time becomes a challenge to the real-time implementation; it is 

necessary to work on efficient algorithmic solutions to reduce the VVC encoder 

complexity while preserving the coding efficiency provided by the new coding tools. 

There are several works in the literature proposing solutions to reduce the 

HEVC encoding complexity. Some of these works propose solutions to reduce the 

processing time of the block partitioning decision (XU et al., 2018; LIU et al., 2019; 

CORREA et al., 2019), whereas the works (KIM et al., 2014; GAO et al., 2015) present 

solutions to reduce the processing time of intra- and/or inter-frame prediction mode 

decisions. Furthermore, other works focus on the complexity control of the HEVC 

encoding process (CORREA et al., 2015; DENG; XU, 2017). 
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Although these solutions present outstanding results in the HEVC encoding 

process, they cannot be used directly in VVC since it introduces several new tools and 

modifications in the coding structure, significantly changing the encoding process and 

context compared to HEVC. Several of these changes have been made to intra-frame 

prediction, which is the focus of this work, where the computational effort increases by 

27 times over HEVC (SALDANHA et al., 2020a). Based on this fact, we define our 

main research question as: 

How to create efficient solutions to reduce the VVC encoding time in 

the intra-frame prediction while maintaining the coding efficiency? 

This question is the base for defining the research hypothesis as: 

Exploring heuristic and machine learning techniques as potential 

approaches for providing impressive encoding time reduction in VVC intra-

frame prediction with minimal impact on coding efficiency. 

Considering the developed investigation and the reached results, we define 

the thesis of this work as: 

It is possible to reduce encoding time significantly with negligible 

coding efficiency losses for the novel VVC intra coding tools, exploring 

heuristics and machine learning techniques. 

1.2. Main Objective and Specific Goals 

The main objective of this Thesis is to investigate and propose new algorithmic 

solutions to reduce the encoding time of VVC intra-frame prediction. Figure 1 presents 

a high-level diagram of the VVC encoder and the Thesis contributions, indicating the 

chapters where the contributions are detailed according to each coding module. 

This Thesis lies in exploring new algorithms and specialized techniques for the 

design of efficient solutions for reducing the encoding time of VVC intra-frame 

prediction at several levels of the encoding process. The approaches used are mainly 

focused on heuristics based on statistical analysis and machine learning techniques. 

Applying these approaches based on an in-depth analysis of the computational effort 

and the usage distribution of each encoding mode allowed us to develop efficient 
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solutions and obtain significant results of timesaving with low impact on the coding 

efficiency. 

 
Figure 1 – High-level diagram of the VVC encoder with the Thesis contributions. 

To achieve the main objective of this Thesis the following specific goals were 

accomplished: 

• Analyze the processing time and the usage distribution of each block size 

and coding mode (SALDANHA et al., 2020a, 2021a, 2021e). 

• Create fast decision algorithms to speed up the block partitioning selection 

(SALDANHA et al., 2020b, 2021b, 2021d). 

• Create fast decision algorithms to speed up the intra-frame prediction mode 

selection (SALDANHA et al., 2021c). 

• Create fast decision algorithms to speed up the intra-frame prediction 

transform selection. 

1.3. Outline 

This Thesis is organized into eleven chapters to present the VVC encoding 

concepts and contributions. Chapter 2 presents a theoretical background about VVC, 

discussing some basic aspects of video coding and the main novelties in VVC. Chapter 

3 presents the VVC intra-frame prediction, detailing the encoding flow, the novel 

prediction, and transform coding tools. Chapter 4 presents and discusses a dense set 

of related works. Chapter 5 presents an extensive performance analysis of VVC intra-

frame prediction, showing encoding time and usage distribution analysis. Chapters 6 
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to 10 present the developed solutions for encoding time reduction and this structure 

was oriented towards the main publications generated during this doctorate. Chapter 

6 presents a fast decision scheme based on heuristic for the block partitioning of 

luminance blocks. A configurable fast block partitioning solution based on machine 

learning for luminance blocks is presented in Chapter 7. Chapters 8 and 9 present fast 

decision schemes for intra mode selection and transform mode selection based on 

machine learning for luminance blocks, respectively. Chapter 10 presents a fast block 

partitioning scheme based on statistical analysis for chrominance blocks. Finally, 

Chapter 11 concludes this Thesis. 
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2. VERSATILE VIDEO CODING 

This chapter describes the VVC theoretical background employed in this 

Thesis. Section 2.1 introduces some basic concepts about video coding, which are 

necessary for a complete understanding of this work, and Section 2.2 describes the 

general aspects of VVC encoding structure, the novel coding tools, and the main 

innovations of each coding module. 

2.1. Basic Concepts 

A video sequence consists of a series of static images (commonly called 

frames) presented sequentially to the viewer at a given temporal rate, and at least 24 

frames per second (fps) is required to achieve a smooth motion perception (WIEN, 

2015). However, recent video applications have introduced more demanding 

requirements, increasing the need for higher frame rates. Generally, frame rates of up 

to 60 fps and 120 fps are specified for High Definition (HD) and UHD videos, 

respectively (WIEN, 2015). Besides, even higher frame rates are considered for more 

immersive video (SALMON et al., 2011). 

Each frame is represented by a two-dimensional matrix of pixels with horizontal 

and vertical dimensions, which defines the spatial resolution. The spatial resolution of 

a video sequence can assume arbitrary values, but some predefined formats are often 

adopted by industry and supported on many devices, such as 1280×720 (720p), 

1920×1080 (1080p), and 3840×2160 (2160p). The perceived video visual quality is 

highly related to the number of pixels in the image; consequently, the higher the spatial 

resolution, the better tends to be the visual quality. 

Each pixel stores the information of color and luminosity of its corresponding 

position within each frame. There are several color spaces such as RGB (red, green, 

and blue), HSV (hue, saturation, and value), and YCbCr. The color space YCbCr is 

frequently referred to as YUV and denotes luminance (Y), blue chrominance (Cb or U), 

and red chrominance (Cr or V). In video coding applications, the YCbCr color space is 

widely adopted in order to take advantage of the lower resolution capability of the 

human visual system for color (chrominance) with respect to luminosity. This color 

space enables handling the luminosity information separately from the color 

information. Moreover, this color space allows performing a subsampling of 

chrominance information, which is commonly applied in consumer applications (WIEN, 
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2015). 

The subsampling of chrominance components can be considered a kind of 

video compression since it discards part of the video data without perceptible visual 

degradation. The most common chrominance subsampling configurations adopted are 

4:2:2 and 4:2:0. In the 4:2:2 configuration, there are two Cb and two Cr samples for 

each four Y samples, whereas, in the 4:2:0 configuration, there is one Cb and one Cr 

sample for each four Y samples. VVC supports 4:2:2 and 4:2:0 subsampling 

configurations beyond 4:4:4 and 4:0:0. In the 4:4:4 configuration, no subsampling is 

applied, whereas, in 4:0:0, only the luminance channel is available. Since the 

chrominance subsampling configuration 4:2:0 is widely used for several video 

applications and for most of the work in the literature, we have considered 4:2:0 

subsampling configuration along all experiments carried out in this Thesis. 

Video coding aims to reduce the amount of redundant data in the 

representation of the video information, exploring spatial redundancy, temporal 

redundancy, and entropic redundancy (RICHARDSON, 2010). The spatial redundancy 

refers to the correlations between samples in the same frame of a video sequence and, 

in this case, the intra-frame prediction is applied (LAINEMA et al., 2012). The 

redundancies between neighboring frames are encoded by inter-frame prediction, 

which explores the correlation of a current frame with previously encoded frames 

(GHANBARI, 2003). The entropic redundancy refers to the probabilities of occurrences 

of the coded symbols. In this case, the entropy coding assigns a smaller number of 

bits to represent symbols with higher occurrence and a larger number of bits to 

represent symbols with lower occurrence. Current video encoders also include in-loop 

filters to increase the subjective visual quality (WIEN, 2015). 

2.2. Encoding Structure and Novel Coding Tools 

VVC follows a block-based hybrid video coding approach, an underlying 

concept of all major video coding standards, such as H.264/AVC and HEVC. This 

approach splits each video sequence frame into blocks and processes all blocks 

sequentially by intra- or inter-frame prediction, transform, quantization, and entropy 

coding. Figure 2 presents the general encoder structure, demonstrating the data flow 

at the encoder from the input video sequence to the generated output bitstream. 

For each block, a prediction process is performed where either intra- or inter-

frame prediction can be applied. The intra-frame prediction explores spatial 
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redundancies, where only information within the frame being encoded is used to 

explore the correlations between the blocks. The inter-frame prediction explores 

information present in frames temporally close to the frame being encoded to reduce 

temporal redundancies. To determine which prediction process to apply for each block, 

the encoder has an internal decision mode that considers the distortion between the 

predicted and the original block and the number of bits to represent the prediction. 

 
Figure 2 – General encoder structure. 

The prediction step generates residues computed from the difference between 

the predicted and the original block. These residues are processed by the transform 

module, which converts the values from the spatial domain to the frequency domain. 

Thus, the quantization step is applied to the transformed values, exploring the 

characteristics of the human visual system to discard the frequencies that are less 

relevant to human perception (WIEN, 2015). The transform and quantization steps are 

called residual coding. After the residual coding, the entropy coding processes the 

quantized values exploring occurrence probabilities; the values with a higher 

probability of occurrence are stored with smaller codes in the bitstream. 

Since the encoder needs to have the same reference samples as the decoder, 

the encoder has a reconstruction loop operating as a decoder inside the encoder, 

ensuring that intra- and inter-frame prediction at the encoder uses the same sample 

values as the decoder. Since the prediction steps use the samples (or frames) that 

have already been encoded as references for the next encoding blocks and the 

quantization is a lossy process, the output of residual coding is also sent to the inverse 

quantization and inverse transform steps to perform the reconstruction of the residual 

values. Afterward, the residual values are added to the predicted samples and the 
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reconstructed samples are used as references for intra-frame prediction. For the 

reconstructed frames, used as references in inter-frame prediction, some in-loop filters 

are applied to smooth the artifacts inherent to the coding process (WIEN, 2015). 

Typically, these filters are applied in the decoding system to provide higher visual 

quality, and, after the filtering process, these frames are used as references in the 

decoding process. Therefore, the encoder should also apply these filters to have the 

same reference in the encoding process. 

Modern video encoders use a complex Rate-Distortion Optimization (RDO) 

process to select the best combination of block partitioning and prediction mode. The 

encoding possibilities are evaluated to select the combination that provides the lowest 

Rate-Distortion cost (RD-cost). The RD-cost is calculated based on the distortion 

between the predicted and the original block and the bit rate required for prediction 

(SULLIVAN; WIEGAND, 1998). 

Each video sequence can be divided into a group of frames for the prediction 

process, known as Group of Pictures (GOP). A GOP is a set of encoded frames 

containing all the information needed to decode within itself; a GOP is independent of 

the frames that do not belong to it. All GOPs have the same size, which is statically 

defined by an encoder configuration parameter. 

A GOP can contain three types of frames: (i) I-frame, (ii) P-frame, and (iii) B-

frame. I-frames are encoded using only intra-frame prediction. P-frames and B-frames 

can use both intra- and inter-frame prediction. P-frames which in addition to intra-frame 

prediction also allows inter-frame prediction from one reference frame per block using 

one motion vector and one reference index. Finally, B-frames which in addition to intra 

and uni-prediction also allows inter-frame prediction using two motion vectors and two 

reference indices (SULLIVAN et al., 2012). 

In VVC, each video sequence frame can be divided into slices, which represent 

a frame region that can be independently decoded from other regions in the same 

frame. Each slice groups sequences of Coding Tree Units (CTUs), which can be 

divided into Coding Units (CUs). These structures will be better discussed later. Each 

CU in a slice is encoded according to a predefined slice type, which can be I, P, or B. 

In I-slices, all CUs are encoded using only intra-frame prediction. In P-slices, in addition 

to intra-frame prediction, CUs can also be encoded with unidirectional inter-frame 

prediction. In B-slices, in addition to intra-frame prediction and unidirectional inter-

frame prediction, CUs can also be encoded with bidirectional inter-frame prediction. 
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Slices are used to avoid significant losses of the encoded data in case of transmission 

errors of the bitstream and are also used as a strategy for parallel processing. VVC 

also allows other types of frame divisions used for different applications, such as Tiles, 

Wavefront, and Subpictures (BROSS et al., 2021), but that are outside the scope of 

this work. More details can be found in (CHEN; YE; KIM, 2020). 

Although VVC follows a similar coding structure to HEVC, it introduces several 

novel techniques and enhancements for block partitioning, intra- and inter-frame 

prediction, transform, quantization, entropy, and in-loop filters to improve the encoding 

efficiency. 

2.2.1. Block Partitioning 

Since block partitioning plays an essential role in the compression efficiency 

of modern video encoders, several schemes of block partitioning structure were 

investigated for VVC. Currently, VVC supports block sizes larger than HEVC to provide 

an efficient compression rate, especially for high and ultra-high video resolutions. The 

VVC standard splits each input frame into CTUs covering square regions of at most 

128×128 samples. Moreover, each CTU is further recursively partitioned into smaller 

blocks referred to as CUs. 

VVC adopts a coding-tree-based splitting process that, in addition to the HEVC 

Quadtree (QT) structure, introduces the Multi-Type Tree (MTT) partitioning structure, 

enabling rectangular CU shapes through Binary Tree (BT) and Ternary Tree (TT). 

These combined structures (QT+MTT) are named Quadtree with nested Multi-Type 

Tree (QTMT) and allow six types of partitions shown in Figure 3. A CU can be defined 

as no split, and the coding process is carried out with the current CU size. Otherwise, 

a CU can be split with QT, BT, and TT structures. QT splits a CU into four equal-sized 

square sub-CUs. BT divides horizontally (BTH) or vertically (BTV) a CU into two 

symmetric sub-CUs. TT splits a CU into three sub-CUs with the ratio of 1:2:1, and the 

division also can be performed in horizontal (TTH) and vertical (TTV) directions. 

 
Figure 3 – Partition types of the QTMT partitioning structure. 

No split QT BTH BTV TTH TTV
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A CTU is firstly recursively partitioned with a QT structure. Subsequently, each 

QT leaf node can be further recursively partitioned with an MTT structure using binary 

and ternary splits. However, when an MTT split is performed, a QT split is no longer 

allowed. The CU sizes may vary from 4×4 samples up to 128×128 (maximum CTU 

size) with a total of 28 block sizes from the CTU, including square and rectangular 

shapes. The QT and MTT leaf nodes represent the CUs, which also are the units used 

for prediction and transformation. Therefore, the VVC partitioning structure removes 

the separation among CU, Prediction Unit (PU), and Transform Unit (TU) concepts 

used in HEVC, where each unit may have a different block size (CHEN; YE; KIM, 

2020). An exception occurs when the CU size is larger than the maximum transform 

length and it is automatically split in the horizontal and/or vertical direction to meet the 

transform size restriction in that direction (CHEN; YE; KIM, 2020). 

The CTU partitioning for luminance and chrominance can be jointly or 

independently, referred to as single-tree or Dual-Tree (DT) – also known as Chroma 

Separate Tree (CST), respectively. The single-tree is employed for P- and B-slices, 

where both intra- and inter-frame predictions can be applied, whereas the dual-tree is 

used for I-slices, where only the intra-frame prediction can be performed. More details 

about the partitioning process for intra-frame prediction are provided in Chapter 3. 

The QTMT partitioning structure enables high flexibility to represent the block 

sizes and shapes. Thus, these block partition types can adapt to various video 

characteristics resulting in better coding efficiency. However, this high flexibility also 

results in a more computational effort since each CU needs to be evaluated using the 

RDO process to select the optimal CU partitioning. This evaluation is performed 

recursively with all splitting possibilities structure, including no split, QT, BTH, BTV, 

TTH, and TTV. 

2.2.2. Prediction Tools 

VVC also introduces several modifications for intra- and inter-frame prediction, 

aiming to improve the encoding performance further. For this purpose, enhancements 

in the HEVC-based coding tools and novel approaches were adopted. This section 

briefly describes these improvements, and an extensive discussion of the intra-frame 

prediction, which is the focus of this Thesis, is provided in Chapter 3. 

VVC intra-frame prediction brings several innovations, mainly for the 

luminance channel. Regarding the conventional intra-frame prediction approach used 
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in HEVC, VVC uses the Planar and DC modes like HEVC and provides finer-granularity 

angular prediction, extending the HEVC angular prediction modes from 33 to 65 

angular modes. VVC enables the intra-frame prediction for rectangular block shapes 

using the Wide-Angle Intra Prediction (WAIP) approach (ZHAO et al., 2019). 

Additionally, Position Dependent Prediction Combination (PDPC) (PFAFF et al., 2021) 

and two types of 4-tap interpolation and smoothing filters are used in the prediction 

process to reduce the prediction error and to improve the coding efficiency. Multiple 

Reference Line (MRL) (CHANG et al., 2019) allows more reference lines for VVC intra-

frame prediction. 

Matrix-based Intra Prediction (MIP) (SCHAFER et al., 2019) is a novel 

prediction tool designed by a learning-based method and is an alternative approach to 

the conventional angular intra-frame prediction modes. Intra Sub-Partition (ISP) (DE-

LUXÁN-HERNÁNDEZ et al., 2019) divides a CU into sub-partitions, reducing the 

distance of the reference samples, but all partitions must use the same coding mode. 

For chrominance intra coding, Cross-Component Linear Model (CCLM) 

(ZHANG et al., 2018) predicts the chrominance samples based on the reconstructed 

luminance samples by using linear models whose parameters are derived from 

reconstructed luminance and chrominance samples. 

VVC maintains and enhances several inter-frame prediction tools of HEVC, 

including Advanced Motion Vector Prediction (AMVP) (LIN et al., 2013) and merge 

mode, and introduces novel techniques. In VVC, the Merge Candidate List (MCL) 

extends the prediction possibilities and includes five types of candidates in the 

following order: (i) Motion Vector (MV) from neighboring spatial CUs; (ii) MV from 

neighboring temporal CUs; (iii) history-based MV; (iv) pairwise average MV; (v) zero 

MV. The MCL construction process follows a specific order, and it is finished when all 

positions of the MCL are filled, where the maximum allowed length is six. 

VVC uses the same approach of HEVC to derive spatial and temporal 

candidates, where up to four candidate blocks are selected from five possible spatial 

neighbors, and one candidate block is selected from two possible temporal neighbors 

(CHEN; YE; KIM, 2020). Additionally, VVC extends the prediction possibilities of the 

merge mode with History-based Motion Vector Prediction (HMVP) (ZHANG et al., 

2019b) and pairwise average MV. In HMVP, a table stores the MVs of the last five 

encoded blocks maintained and updated using a first-in-first-out (FIFO) rule (BROSS 

et al., 2021). The pairwise average MV candidates are obtained from the average of 
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MVs in the first two positions of MCL. Finally, zero MVs are added in the last positions 

of MCL when the list is not full. 

Besides the merge mode that directly derives the motion information from 

neighboring, historical, or zero motion information, VVC introduces Merge Mode with 

Motion Vector Difference (MMVD) (CHIEN et al., 2021) to refine the derived motion 

information transmitted by the conventional merge mode approach. In MMVD, one of 

the first two candidates in MCL is selected as base MV, and a Motion Vector Difference 

(MVD) represented by a direction and a distance is encoded as a refinement of the 

base MV (CHIEN et al., 2021). Four directions and two distance tables with eight 

entries are predefined in the encoder, which signals the selected merge candidate, 

direction, and distance, as detailed in (CHIEN et al., 2021). 

In HEVC, motion-compensated prediction considers only the translational 

motion model, which cannot efficiently represent many kinds of motion present in a 

real-world video, such as rotation, scaling (zoom in/out), and shearing. VVC introduces 

the Affine Motion Compensation (AMC) (ZHANG et al., 2019a) to predict non-

translational motion and improve the motion-compensated prediction efficiency. AMC 

describes the CU motion using MVs of two control points located at the top-right and 

top-left corners of the CU (four-parameter model) or three control points located at the 

top-right, top-left, and bottom-right corners of the CU (six-parameter model). The four-

parameter model represents simpler transformations, such as rotation and scaling, and 

the six-parameter model is applied in more complex transformations, such as shearing. 

Like the conventional motion-compensated prediction, an affine AMVP and an affine 

merge mode are also supported in VVC for efficient prediction and coding of affine 

motion parameters. In the affine merge mode, VVC derives the control point MVs of 

the current CU based on the motion information of neighboring CUs (ZHANG et al., 

2019a). 

Geometric Partitioning Mode (GPM) (GAO et al., 2021a) is another new coding 

tool for inter-frame prediction, enabling motion compensation on non-rectangular block 

partitions as an alternative to the merge mode. When GPM is applied, the current CU 

is split into two partitions by a geometrically located straight line. In this case, each 

partition is predicted with motion information, and only the unidirectional prediction with 

the merge mode is allowed; that is, each partition has one MV and one reference frame 

index. In total, 64 geometric partitions are supported by the GPM encoding tool. After 

predicting each partition, the sample values are combined using a blending processing 
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with adaptive weights along the geometric partition line. 

Combined Inter/Intra-picture Prediction (CIIP) (CHIANG, 2018) combines an 

inter-frame prediction signal with an intra-frame prediction signal. When a CU is coded 

with the merge mode, this signal is combined with an intra-frame prediction signal 

generated using the Planar mode. The inter- and intra-frame prediction signals are 

combined using weighted averaging, where the weight value is derived based on 

whether above and left neighboring CUs are encoded using intra-frame prediction or 

not. 

VVC also supports MVs that usually lead to better prediction with higher 

resolution than HEVC. The MVs accuracy for luminance samples supported in VVC is 

1
16⁄  instead of 1 4⁄  in HEVC. Moreover, VVC adopts a scheme of adaptive resolution 

of MVs called Adaptive Motion Vector Resolution (AMVR) (CHIEN et al., 2021); MVs 

can be coded with different accuracy depending on the prediction mode. For inter-

frame predicted CUs with conventional AMVP mode, the selected MV resolution can 

be 1 4⁄ , 1 2⁄ , 1, or 4, luminance samples. For CUs coded with affine AMVP mode, MV 

resolution can be 1 16⁄ , 1 4⁄ , or 1 luminance sample. 

Aiming to enhance the coding efficiency of the bi-prediction, VVC introduces 

three techniques called Bi-prediction with CU-level Weights (BCW) (CHEN et al., 

2016), Bi-directional Optical Flow (BDOF) (ALSHIN; ALSHINA, 2016), and Decoder-

side MV Refinement (DMVR) (GAO et al., 2020b). 

HEVC calculates the bi-prediction signal by averaging two prediction signals 

obtained from two different reference frames and/or using two MVs. In VVC, BCW 

extends this approach by applying a weighted averaging between the two bi-prediction 

signals, where a predefined set of weights are evaluated through the rate-distortion 

cost. 

BDOF is a method applied in VVC to optimize the signal generated by the bi-

prediction and is based on optical flow, which assumes that the movement of an object 

is performed smoothly. For each 4×4 sub-block in a CU, an MV is calculated to refine 

the motion information and minimize the displacement difference between the samples 

of the two reference frames for bi-prediction. 

DMVR refines the bi-prediction motion of the conventional merge mode by 

using a bilateral search step without transmitting additional information in the bitstream. 

The searching process consists of an integer sample MV offset search and a fractional 
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sample MV offset refinement process. 

2.2.3. Residual and Entropy Coding 

VVC enables larger transform-block sizes than HEVC, which is especially 

useful for higher resolution videos, such as 1080p and 4K. VVC supports transform 

block sizes of up to 64×64 luminance samples instead of 32×32 samples of HEVC, 

including square and rectangular transform block sizes that range from 4×4 to 64×64.  

HEVC allowed only squared transform unities with sizes ranging from 4×4 to 32×32. 

Besides, VVC introduces Multiple Transform Selection (MTS) (ZHAO et al., 

2016; ZHAO et al., 2021) encoding tool that enhances the transform module by 

including Discrete Sine Transform VII (DST-VII) and Discrete Cosine Transform VIII 

(DCT-VIII) to decorrelate better the prediction residual. Like HEVC, VVC applies DCT-

II for horizontal and vertical directions. Still, when MTS is enabled, DST-VII and DCT-

VIII can be combined, and separate transforms in horizontal and vertical directions can 

be applied. MTS is allowed only for 32×32 or smaller blocks and can be applied for 

both intra- and inter-frame predicted blocks. 

In the intra-frame prediction, a secondary transform can be applied to low-

frequency coefficients of blocks that selected DCT-II as primary transform to explore 

better the directionality characteristics of the intra-frame prediction residual signals. 

For this purpose, Low-Frequency Non-Separable Transform (LFNST) (KOO et al., 

2019; ZHAO et al., 2021) encoding tool is applied between the forward transform and 

forward quantization in the encoder and between the inverse quantization and inverse 

transform in the decoder. 

In the inter-frame prediction, Sub-Block Transform (SBT) (ZHAO et al., 2021) 

encoding tool allows to encode only a sub-partition of the block and skips the remaining 

portion. There are eight SBT partition modes available in VVC with different 

configurations of splits and sizes. When SBT is applied, the transform block is either 

half or quarter size of the residual block regarding horizontal or vertical direction, and 

the remaining part of the block is discarded. 

The quantization module processes the residual information of the encoding 

block, attenuating or removing the less relevant frequencies to the human visual 

system; thus, causing information losses. Quantization Parameter (QP) defines the 

quantization level - lower QP values preserve the image details and higher QP values 

provide a higher compression rate at the cost of image quality losses (BUDAGAVI; 
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FULDSETH; BJONTEGAARD, 2014). The main novelties in this module, when 

compared to the HEVC, are the maximum QP value increase from 51 to 63 and 

Dependent Quantization (DQ), which enables the use of a second scalar quantizer 

(SCHWARZ et al., 2019, 2021). Furthermore, Joint Coding of Chroma Residual 

(JCCR) (SCHWARZ et al., 2021) allows using a single residual block for both 

chrominance components (Cb and Cr) when they are similar to each other. 

As H.264/AVC and HEVC, the entropy coding of VVC is based on the Context 

Adaptive Binary Arithmetic Coding (CABAC) (MARPE; SCHWARZ; WIEGAND, 2003) 

that performs a well-established coding process for a significant bitstream reduction by 

performing lossless entropy compression at the syntax elements generated by 

quantization. VVC introduced some improvements, such as the multi-hypothesis 

probability update model, separate residual coding for transformed blocks and blocks 

encoded with Transform Skip Mode (TSM), and context modeling for transform 

coefficients (SCHWARZ et al., 2021). VVC maintains two estimators for the probability 

estimation and computes the average probability between them for coding. Each 

estimator is independently updated with different adaptation rates, which are pre-

trained based on the statistics of the associated bins (SCHWARZ et al., 2021). Thus, 

entropy coding allows calculating the RD-cost of all possibilities of block partitioning, 

encoding modes, and transform combinations, enabling the encoder to select the most 

suitable one to predict the current block according to the encoding context. 

2.2.4. In-loop Filters 

VVC applies three filters in the frame reconstruction loop, which are processed 

in the following order: (i) Deblocking Filter (DF); (ii) Sample Adaptive Offset (SAO); and 

(iii) Adaptive Loop Filter (ALF). The DF filter reduces the blocking artifacts and its 

design is based on the one in HEVC but it is extended to consider the new block 

structures and coding tools with longer deblocking filters and a luminance-adaptive 

filtering mode designed specifically for HDR video (KARCZEWICZ et al., 2021). The 

SAO filter is applied to attenuate the ringing artifacts and its design is the same as in 

HEVC. The ALF filter was adopted in some early versions of the HEVC standardization 

process, but it was removed from the final standard version due to its computational 

complexity. Although ALF still has a high complexity, especially for the decoder, it 

increases coding efficiency; thus, VVC has adopted ALF after some implementation 

changes. ALF is applied to correct further the signal based on linear filtering and 
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adaptive clipping (KARCZEWICZ et al., 2021).  Additionally, before processing the in-

loop filters, Luma Mapping with Chroma Scaling (LMCS) (LU et al., 2020) is applied to 

adjust the range of the luminance input sample values to improve the subjective and 

objective quality of the encoded video sequence. 
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3. VVC INTRA-FRAME PREDICTION 

This chapter presents a detailed description of the VVC intra-frame prediction, 

which is the focus of this work, including a specific discussion of the block partitioning 

structure, the enhancements in the HEVC-based coding tools, and the novel coding 

tools for the prediction and transform processes. 

3.1. Block Partitioning 

As previously discussed, VVC allows split chrominance blocks separately from 

the luminance blocks for I-slices; a luminance CTU forms one coding tree, and a 

chrominance CTU (containing Cb and Cr components) forms a separate chroma tree. 

This coding structure is called Dual-Tree (DT) or Chroma Separate Tree (CST). This 

approach is motivated by the fact that luminance usually has a finer texture than 

chrominance, which results in a higher number of smaller CUs in luminance than those 

in chrominance. 

The maximum and minimum luminance CU sizes processed in the intra-frame 

prediction are 64×64 (maximum transform block size) and 4×4 samples, respectively. 

Regarding chrominance, the maximum and minimum sizes are 32×32 and 16 samples 

(8×2 or 4×4), respectively. Besides, VVC allows chrominance blocks to have 16×2 and 

32×2 samples. Blocks 4×2 and 2×H, where H is the height of the block, are excluded 

from addressing memory architecture and throughput requirements (HUANG et al., 

2021). 

Figure 4 exemplifies the QTMT partitioning applied for a 128×128 luminance 

CTU split into several CU sizes with different QT and MTT levels. Each colored line 

represents a block partition type; black lines denote the QT splitting, green and orange 

lines indicate the BTH and BTV splitting, respectively, and blue and red lines represent 

TTH and TTV splitting, respectively.  

Since the intra-frame prediction is performed only for 64×64 or smaller blocks, 

the 128×128 luminance CTU is partitioned by QT splitting, resulting in four 64×64 CUs. 

Then, the QTMT depth starts from level one for the intra-frame prediction. From that, 

each CU can be recursively partitioned using the QT structure and each QT leaf node 

can be further recursively partitioned using the MTT partitioning structure. 
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Figure 4 – Illustration of the QTMT block partitioning structure. 

Figure 5 presents the CU size distribution (luminance) for the first frame of the 

BasketballPass video sequence encoded with VTM 10.0 (CHEN; YE; KIM, 2020; VTM, 

2020) using all-intra configuration and QP 37, allowing the usage case analysis of 

these partition types in the intra-frame prediction. One can notice that the VVC block 

partition structure is strongly correlated with the image details, as expected. Figure 5(a) 

and (b) illustrate this effect detaching a smooth region encoded with larger block sizes 

and a detailed region encoded with smaller block sizes, respectively. Several MTT 

structure levels and different directions of BT and TT partitions are employed in the 

detailed region, according to the texture characteristics. In contrast, few QT and MTT 

splitting levels are required to provide effective compression in the smooth region.  

 
Figure 5 – CU size distribution for BasketballPass video sequence highlighting (a) smooth and (b) 
detailed regions. 
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3.2. Intra-Prediction Coding Tools 

Figure 6 presents a diagram of the VVC intra-frame encoder for luminance 

samples; the encoder evaluates several encoding modes to minimize the RD-cost. 

Thus, the encoding process selects the prediction mode that reaches the lowest RD-

cost. Similar to the HEVC Test Model (HM) (ROSEWARNE et al., 2015; HM, 2018), 

the intra-frame prediction of the VTM employs Rough Mode Decision (RMD) and Most 

Probable Modes (MPM) (ZHAO et al., 2011) to build a list of promising candidates 

named Rate-Distortion list (RD-list). RMD performs a local evaluation to estimate the 

encoding cost of each candidate mode instead of evaluating all encoding possibilities 

by their RD-cost using the RDO, which involves more complex operations, implying a 

prohibitive computational effort. 

 
Figure 6 – Diagram of the VVC intra-frame prediction for luminance blocks. 

RMD estimates the required bits to encode the prediction mode and the 

encoding cost through the Sum of Absolute Transformed Differences (SATD) (between 

the original and predicted block samples). Then, the algorithm orders the modes 

according to their SATD-based costs and inserts a few modes with the lowest costs 

ordered into the RD-list. Following, MPM gets the default modes (the most frequently 

used ones), and the modes in the left and above neighbor blocks and inserts at most 

two additional modes into the RD-list. For all-intra encoder configuration, the RD-list 

starts with sizes of 8, 7, and 6 modes for 64×64, 32×32 and the remaining blocks 
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(32×16, 16×32, 16×16, 32×8, 8×32, 32×4, 4×32, 16×8, 8×16, 8×8, 16×4, 4×16, 8×4, 

4×8, and 4×4), respectively. However, the final size of the RD-list can vary significantly 

according to the block size since it changes dynamically based on the encoding context 

and the use of fast decisions. 

Angular Intra Prediction-1 (AIP-1) in Figure 6 represents the same HEVC intra-

frame prediction modes, but VVC also brings novel intra-frame coding modes 

compared to HEVC, including Angular Intra Prediction-2 (AIP-2) (BROSS et al., 2021), 

Multiple Reference Line (MRL) (CHANG et al. 2019), Matrix-based Intra Prediction 

(MIP) (SCHAFER et al., 2019), Intra Sub-Partition (ISP) (DE-LUXÁN-HERNÁNDEZ, 

2019), and an intra mode coding method with six MPMs instead of three MPMs as in 

HEVC (PFAFF et al., 2021). In the VVC intra coding method with six MPMs, Planar 

mode is always coded as the first MPM, DC and angular modes are coded using the 

remaining five positions of the MPMs list that are derived from intra prediction modes 

from left and above neighboring blocks. 

After processing these prediction tools, the modes inserted into the RD-list are 

processed by the residual coding, including Transform and Quantization (TQ) steps. 

Subsequently, the RD-costs are obtained applying Entropy Coding (EC) in the TQ flow 

results. The transform module encompasses Multiple Transform Selection (MTS) 

(ZHAO et al., 2016) and Low-Frequency Non-Separable Transform (LFNST) (KOO et 

al., 2019) as will be detailed in Section 3.2.6. 

For chrominance blocks, VVC inherits the HEVC prediction modes and inserts 

Cross-Component Linear Model Prediction (CCLM) (ZHANG et al., 2018), where 

chrominance samples are predicted based on the reconstructed luminance samples 

by using a linear model. 

The next sections present the novel intra-prediction tools defined in VVC. 

3.2.1. Angular Intra Prediction 

The HEVC angular prediction modes are extended from 33 to 65 angular 

modes to represent various texture patterns and provide higher accuracy for intra-

frame prediction. Figure 7 illustrates the VVC angular intra-frame prediction modes, 

where the solid black lines depict the modes already used in HEVC intra-frame 

prediction, and dotted red lines are the ones introduced in VVC. Adding Planar and DC 

modes, the number of intra-frame prediction modes has increased to 67. These two 

modes remain with the same approach used in HEVC. Although Planar and DC are 
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non-angular prediction modes, we call this tool of Angular Intra Prediction (AIP) for 

simplicity. 

 
Figure 7 – VVC angular intra-frame prediction modes (CHEN; YE; KIM, 2020). 

The VTM encoder divides AIP into AIP-1 and AIP-2 steps to avoid an 

exhaustive evaluation of the 67 intra-frame prediction modes for each available block 

size. AIP-1 evaluates through the RMD process the Planar, DC, and 33 angular modes 

inherited from HEVC (solid black lines in Figure 7) and inserts a few modes into the 

RD-list. AIP-2 evaluates the angular modes adjacent to the angular modes already 

included in the RD-list (i.e., the best modes selected in AIP-1) and orders the RD-list 

based on the obtained SATD-based costs of these two steps. Thus, a reduced set of 

the new VVC angular intra-frame prediction modes is evaluated (CHEN; YE; KIM, 

2020). 

Since VVC allows the intra-frame prediction of rectangular blocks due to the 

CU shapes obtained in the QTMT partitioning structure, it includes Wide-Angular Intra 

Prediction (WAIP) (ZHAO et al., 2019) coding tool to handle these block shapes 

properly. This tool was developed because the 35-conventional angular modes were 

defined targeting squared blocks, and good prediction samples may not be reached 

for rectangular blocks because of the predefined angles. Thus, if the block width is 
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larger than the block height, prediction modes with angles beyond 45 degrees in the 

top-right direction are evaluated. Otherwise, if the block height is larger than the block 

width, prediction modes with angles beyond 45 degrees in the bottom-left direction are 

evaluated. WAIP does not increase the number of intra-frame prediction modes 

evaluated since, in this case, these wide-angle modes replace the prediction modes in 

the opposite direction with conventional angles (CHEN; YE; KIM, 2020). Additionally, 

for rectangular blocks, the DC prediction mode considers only the larger block side 

samples to provide a computationally efficient implementation. 

3.2.2. Multiple Reference Line Prediction 

The MRL prediction (CHIANG et al., 2019) allows more reference lines for the 

VVC intra-frame prediction than the ones used in HEVC. Figure 8 shows a block size 

of 4×4 samples and the reference lines used in the VVC intra-frame prediction when 

the MRL prediction is enabled. 

 
Figure 8 – Illustration of the MRL intra-frame prediction. 

Reference 1 (index 0) refers to the nearest reference line, which is considered 

for the AIP tool. References 2 and 3 (indexes 1 and 2) are the two additional reference 

lines evaluated by the MRL tool. The evaluation of these two farther reference lines 

can improve the coding efficiency of the intra-frame prediction since the adjacent 

reference line may significantly differ from the predicting block due to discontinuities, 

leading to a meaningful prediction error. 
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The MRL tool evaluates each combination of prediction mode and reference 

line using RMD and updates the RD-list (which already contains the best modes 

selected in the AIP tool). However, evaluating all available intra-frame prediction 

modes with this extra number of reference lines increases the encoder complexity 

significantly. Thus, the MRL prediction evaluates only MPMs, excluding Planar mode, 

for the two extra reference lines (reference lines 2 and 3) (PFAFF et al., 2021). Planar 

mode is not considered for the MRL encoding tool since this combination does not 

provide additional coding gain for the VVC intra-frame prediction (PFAFF et al., 2021). 

3.2.3. Matrix-based Intra Prediction 

MIP (SCHAFER et al., 2019) is an alternative approach to the conventional 

angular intra-frame prediction modes, representing a new concept of intra predictors 

designed by data-driven methods (PFAFF et al., 2021). MIP performs the intra-frame 

prediction through matrix multiplication and samples interpolation. Figure 9 

demonstrates the MIP process for a block of 8×8 samples, where neighboring samples 

of the adjacent reference lines are also used as prediction input. These neighboring 

samples are subsampled to perform the matrix multiplication, followed by the addition 

of an offset (bk) and a linear interpolation (horizontal and vertical) to obtain the 

predicted block (SCHAFER et al., 2019). A set of matrices were defined according to 

the block size by offline training through neural networks, and each matrix represents 

a prediction mode. 

 

Figure 9 – Matrix-based intra prediction flow for a block size of 8×8 samples. 
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MIP allows 16 matrices for 4×4 blocks, eight matrices for 8×8 blocks and 

blocks with exactly one side of length 4, and six matrices for the remaining block sizes. 

Besides, the transposed matrices are also considered, doubling the number of 

prediction modes for each set. These prediction modes are also evaluated using RMD, 

and the RD-list is updated with the lowest SATD-based costs among AIP, MRL, and 

MIP prediction modes (CHEN; YE; KIM, 2020). 

MIP improves the encoding efficiency enabling predictions that vary in more 

than one direction (i.e., non-linear prediction), which is impossible with conventional 

angular modes. 

3.2.4. Intra Sub-Partition 

ISP (DE-LUXÁN-HERNÁNDEZ et al., 2019) explores the correlations among 

block samples to improve the VVC intra-frame prediction. ISP divides the current block 

horizontally or vertically into sub-partitions sequentially encoded using the same intra-

frame prediction mode. The sub-partitions are processed from top to bottom (horizontal 

split) or left to right (vertical split). The reconstructed samples of each encoded sub-

partition are used as reference samples for the next sub-partition, increasing the 

reference sample correlation compared to the conventional approach, which locates 

the reference samples at the left and above boundaries of the predicting block. Figure 

10 exemplifies ISP for a 16×16 block split into 16×4 horizontal and 4×16 vertical sub-

partitions. 

 

Figure 10 – Intra Sub-Partition for a 16×16 block split into 16×4 horizontal and 4×16 vertical sub-
partitions. 

VVC keeps the 16-samples throughput splitting 4×8 and 8×4 blocks into two 

sub-partitions instead of four and disabling ISP for 4×4 blocks; ISP splits the current 

block with the remaining sizes into four sub-partitions. 

ISP cannot use the RMD process since it requires the real reconstructed 
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samples used as a reference to get the next sub-partition prediction, which can only 

be obtained by performing the complex RDO process. Consequently, VTM adopts 

some strategies to derive the most promising prediction modes. Firstly, RDO is 

performed with the RD-list containing the best SATD-based costs among AIP, MRL, 

and MIP. Thus, ISP can use the SATD-based costs and RD-costs of the AIP tool 

(including AIP-1, AIP-2, and WAIP) to build a promising candidate list. The MRL and 

MIP tools are not considered for ISP mode derivation; then, the ISP list is generated 

alternating the split types (horizontal and vertical) in the following order: (i) Planar, (ii) 

angular modes ordered by RD-cost, (iii) DC, and (iv) the best AIP SATD-based costs 

discarded of the RD-list after processing MRL and MIP. Thus, the ISP list can derive 

up to 16 prediction modes being the same eight modes for the horizontal and vertical 

split. 

3.2.5. Cross-Component Linear Model 

The VVC intra-frame prediction for chrominance blocks considers a list of eight 

candidate modes: (i) Planar (mode 0); (ii) horizontal (mode 18); (iii) vertical (mode 50); 

(iv) DC (mode 1); (v) CCLM_LT; (vi) CCLM_L; (vii) CCLM_T; and (viii) Derived Mode 

(DM). The first four prediction modes are the same applied to luminance samples, but 

in this case, only the chrominance samples are considered for prediction. The last four 

prediction modes explore the correlation between the luminance and chrominance 

components, where chrominance samples are predicted using information present in 

the luminance prediction. 

The CCLM prediction modes use the reconstructed luminance samples as 

references to predict the chrominance samples, using a linear model as follows  

𝑃(𝑖, 𝑗) = 𝑎 ∙ 𝑟𝑒𝑐′
𝐿(𝑖, 𝑗) + 𝑏  (1) 

where 𝑃(𝑖, 𝑗) refers to the predicted chrominance samples and 𝑟𝑒𝑐′
𝐿(𝑖, 𝑗) represents 

the reconstructed luminance samples. The parameters 𝑎 and 𝑏 are derived based on 

reconstructed neighboring luminance and chrominance samples (ZHANG et al., 2018). 

Three CCLM prediction modes are supported in VVC, including CCLM_LT, 

CCLM_L, and CCLM_T. These prediction modes differ only in the locations of the 

reference samples that are used for model parameter derivation, where CCLM_L uses 

reference samples from the left boundary, CCLM_T involves reference samples from 

the top boundary, and CCLM_LT uses reference samples from both the top and left 
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boundaries. 

DM refers to the prediction mode derived from the collocated luminance block; 

i.e., a prediction mode that has already been selected to encode the luminance block 

is inserted as a candidate to perform the prediction of the chrominance block. If the 

derived mode is equal to any conventional prediction modes applied to luminance 

blocks (first four modes: planar, horizontal, vertical, or DC), mode 66 (diagonal 45º, 

see Figure 7) is added in place of this conventional mode. If the collocated luminance 

block uses MIP, the Planar mode is applied, except for the 4:4:4 chrominance color 

format with a single partitioning tree that the same MIP mode is applied for the 

chrominance block (PFAFF et al., 2021). 

3.2.6. Transform Coding 

VVC enhances the transform coding for the intra-frame prediction by including 

Multiple Transform Selection (MTS) (ZHAO et al., 2016) and Low-Frequency Non-

Separable Transform (LFNST) (KOO et al., 2019), which are tools for primary and 

secondary transform modules, respectively. Figure 11 presents the transform coding 

process for the VVC intra-frame prediction of luminance samples. The RD-list defined 

by the intra-prediction steps are the inputs for the transforms, and VVC enables 

combining different transforms intending to minimize the RD-cost. 

In addition to DCT-II, used as the main transform in HEVC, VVC also enables 

using DST-VII and DCT-VIII, increasing the contribution of this module to the global 

coding efficiency, but raising a lot the computational effort required to process the 

transforms, if compared to HEVC. VVC also defines the use of Transform Skip Mode 

(TSM), as in HEVC. TSM is available for 32×32 or smaller blocks; in this case, the 

prediction residues are directly sent to the quantization step, avoiding the use of 

transforms. 

VVC transform coding has three main processing paths regarding the primary 

transform application, as presented in Figure 11: (i) the first one using DCT-II for 

horizontal and vertical directions; (ii) the second one using TSM, and (ii) the third one 

using MTS, where DST-VII and DCT-VIII are used. The paths (i) and (ii) are similar to 

the HEVC transforms. The use of MTS in the path (iii) allows a combination of DST-VII 

and DCT-VIII in horizontal and vertical directions; then, four combinations are 

evaluated: (i) DST-VII and DST-VII, (ii) DST-VII and DCT-VIII, (iii) DCT-VIII and DST-

VII, and (iv) DCT-VIII and DCT-VIII (ZHAO et al., 2021). The VTM implementation 
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process these steps sequentially, starting with DCT-II, then TSM, and later the MTS 

processing. 

 

Figure 11 – Diagram of transform coding in VVC intra-frame prediction. 

The primary transform block sizes are different where DCT-II has sizes ranging 

from 4×4 to 64×64, and DST-VII and DCT-VIII have sizes ranging from 4×4 to 32×32. 

All these cases enable square and rectangular shapes, and MTS is applied only for 

luminance samples. 

The ISP coding tool is an exception for the processing flow of the primary 

transforms; it enables combinations between DCT-II and DST-VII and decides which 

transform will be used in horizontal or vertical direction considering the width and height 

of the processed sub-partition. For other prediction tools, combinations of DCT-II and 

DST-VII/DCT-VIII are not allowed due to the limited coding gain and increased 

complexity for introducing additional encoding evaluations with more transform 

combinations (ZHAO et al., 2021). 

High-frequency coefficients are zeroed out for transforming blocks with sizes 

(width or height, or both width and height) equal to 64 for DCT-II and 32 for DCT-VIII 
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and DST-VII to decrease the computational complexity. Thus, only low-frequency 

coefficients are retained. 

LFNST is a non-separable secondary transform of the VVC intra-frame 

prediction that further decorrelates the low-frequency primary transforms coefficients 

(top-left region of the transform block). LFNST may be applied for luminance blocks 

ranging from 4×4 to 64×64 samples, including square and rectangular block shapes. 

However, LFNST can be applied only for intra coded blocks that use DCT-II as primary 

transform, as presented in Figure 11. LFNST contains two secondary transform sets 

(LFNST 1 and LFNST 2) with four non-separable transform matrices for each set 

(ZHAO et al., 2021). The transform matrix evaluated for each set is defined based on 

the intra-frame prediction mode (ZHAO et al., 2021). The VTM process the evaluation 

of DCT-II without LFNST (also referred to as LFNST 0), DCT-II with LFNST 1, followed 

by DCT-II with LFNST 2. When LFNST is not applied, the DCT-II results are sent 

directly to quantization. Analogously to the luminance blocks, LFNST also can be 

applied for chrominance blocks. 
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4. RELATED WORKS 

This chapter presents a collection of works found in the literature that propose 

solutions for reducing the computational effort of the VVC encoder based on heuristic 

and machine learning techniques. These solutions were developed targeting different 

steps of the VVC intra-frame prediction, including block partitioning, intra mode 

decision and transform coding. All related works mentioned in this chapter were 

evaluated under all-intra encoder configuration. 

Fu et al. (2019a) propose a fast block partitioning algorithm using a classifier 

based on the Bayesian decision rule. The information derived from the current block 

and horizontal binary splitting is used as an input feature for the classifier, responsible 

for deciding when skipping the vertical split types. Additionally, the horizontal ternary 

split is skipped if the cost of the vertical binary split is lower than the cost of the 

horizontal binary split. Their solution was implemented in VTM 1.0, reducing 45% the 

encoding time and increasing 1.02% the Bjontegaard Delta Bit Rate (BDBR) 

(BJONTEGAARD, 2001). 

The work of Yang et al. (2020) presents a scheme composed of a fast block 

partitioning solution based on decision tree classifiers and a fast intra mode decision 

to reduce the number of angular intra-frame prediction modes evaluated. They trained 

one decision tree classifier for each split type using the texture information of the 

current and neighboring blocks. Since the classifiers are responsible for deciding the 

best split type before predicting the current block size (i.e., not split type), they used 

only texture information features of the current and neighboring blocks. The proposed 

scheme was implemented in VTM 2.0. The fast block partitioning solution saves 

52.59% of encoding time for a 1.56% of BDBR increase. The fast intra mode decision 

reduces 25.51% of the encoding time and increases 0.54% of the BDBR. The overall 

solution provides 62.46% of encoding time saving with a 1.93% of BDBR increase. 

Chen et al. (2020a) present a solution to reduce the VVC intra coding time 

using SVM classifiers to decide between horizontal and vertical partitioning. Six 

classifiers are trained online using only texture information of the current block during 

the first frame encoding; the remaining frames are encoded, applying the decisions of 

the trained classifiers. The proposed solution was implemented in VTM 2.1, providing 

50.97% encoding timesaving with a BDBR increase of 1.55%. 

Lei et al. (2019) present a fast solution to decide in advance the direction of 
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BT and TT partitions. Their solution evaluates a subset of directional intra-frame 

prediction modes for virtual sub-partitions of the current block to estimate the horizontal 

and vertical splitting costs of the current block. Based on the estimated costs, their 

solution can decide by skipping horizontal or vertical partitions. Their approach, 

implemented in VTM 3.0 and, saves 45.8% of the encoding time with a 1.03% BDBR 

increase. 

The work of Zhang et al. (2020) proposes a scheme composed of two 

solutions, the first one avoids the evaluation of some block partitions and the second 

one reduces the number of AIP modes evaluated in the intra-frame prediction. For the 

block partitioning, the proposed solution was defined in two steps, where the first step 

classifies the texture CU as homogeneous or complex. The texture complexity is 

measured based on the difference and standard deviation of block samples, and the 

classification is performed through a comparison with predefined threshold values. 

When a CU is homogeneous, the splitting process is finished; otherwise, Random 

Forest (RF) classifiers are applied to define the split type to evaluate, including no split, 

QT, BTH, BTV, TTH, and TTV. To reduce the number of AIP modes evaluated in the 

RMD process, the second solution divides these modes into four sets based on their 

directions. After, the Canny edge detector algorithm is applied to identify the texture 

direction and to define only two sets of prediction modes to be evaluated. Finally, the 

SATD costs of MPM modes are computed and the prediction modes with SATD cost 

higher than the MPMs are discarded, except Planar, DC, horizontal, and vertical 

modes. The proposed scheme was implemented in VTM 4.0, reaching 54.91% 

encoding time reduction with a 0.93% BDBR increase. 

The work of Tang et al. (2019) presents solutions to reduce the computational 

effort of both intra- and inter-frame predictions, but in this section, only the solution for 

intra-frame prediction is discussed. The proposed solution for intra-frame prediction 

applies Canny edge detector algorithm to identify the texture direction of the block and 

to classify the block texture complexity based on predefined threshold values. When 

the block is classified as homogenous, the partitioning process is finished; otherwise, 

the texture orientation is verified and classified as horizontal or vertical. When the 

algorithm classifies the texture as vertical, only BTV and TTV split types are evaluated. 

In contrast, only BTH and TTH split types are evaluated when the texture is classified 

as horizontal. This solution was implemented in VTM 4.0.1rc1, providing 36.18% of 

encoding timesaving at the cost of 0.71% BDBR increase. 
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Cui et al. (2020) present a scheme to reduce the computational effort of VVC 

intra coding based on the direction of the sample gradients to decide the best block 

partitioning structure. Their scheme performs the decision on three partitioning 

possibilities, including split or not, horizontal or vertical, and BT or TT. To perform the 

decision, the gradients of current block sub-partitions are computed in four directions 

and compared with predefined threshold values. Their scheme was implemented in 

VTM 5.0, reaching 50.01% of encoding timesaving with an increase of 1.23% in the 

BDBR. 

The works of Tissier et al. (2020), Zhao et al. (2020), and Li et al. (2021a) 

propose encoding timesaving solutions based on the Convolutional Neural Network 

(CNN) to define the best block partitioning. The solution of Tissier et al. (2020) was 

implemented in VTM 6.1. The experimental results showed 42.2% encoding 

timesaving with a 0.75% BD-rate increase. The solutions presented in (ZHAO et al., 

2020; LI et al., 2021a) were implemented in VTM 7.0. The first solution reduces the 

encoding time by about 39.39%, with a BD-rate increase of 0.86%; the second one 

saves 46.13% of encoding time with a 1.32% BD-rate increase. 

The work of Fan et al. (2020) proposes a solution based on the current block 

variance, sub-partition variances, and Sobel Filter. The current block variance is 

computed to check the homogeneity of 32×32 blocks and early terminate the QTMT 

evaluation. The sub-partition variances are calculated to choose only one split among 

QT, BTH, BTV, TTH, and TTV. The Sobel filter is used to decide by skipping the BT/TT 

partitions and evaluating only the QT partitioning. Their solution was implemented in 

VTM 7.0. The proposed solution reached a 49.27% encoding timesaving with a 1.63% 

BDBR increase. 

Li et al. (2021b) developed a timesaving solution to skip binary and ternary 

splitting based on residual block variances of sub-partitions, obtained through the 

absolute difference between original and predicted samples. The absolute difference 

between variances of vertical and horizontal sub-partitions is computed and compared 

with predefined threshold values to early skip BT and TT evaluations. Their solution 

was implemented in VTM 7.1, saving 43.9% of the encoding time with a 1.50% BDBR 

increase. 

The work of Zhang et al. (2019c) presents a technique to reduce the 

computational cost of arithmetic operations in the transform coding. For this purpose, 

a fast algorithm for DST-VII and DCT-VIII was developed. This algorithm explores the 
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correlation of the transform coefficients to reduce the number of operations, such as 

the reuse of calculations with coefficients that are only with signal changes or flipped 

positions. The proposed solution was implemented in VTM 1.1 and evaluated with all-

intra, random-access, and low delay B configurations. The results for all-intra 

configuration demonstrated that this solution could reduce the encoding time by 3% 

without impacting the coding efficiency. 

Fu et al. (2019b) propose an early decision scheme for the MTS encoding tool 

focusing on the intra-frame prediction. This scheme verifies if all the neighboring spatial 

blocks were encoded with DCT-II to skip the DST-VII and DCT-VII evaluations; 

otherwise, the frequency of the transforms used in the neighboring blocks is computed 

and the transforms are evaluated from the most frequent to the least frequent. In this 

case, if an intra-frame prediction mode in the current transform evaluation obtained a 

higher RD-cost than in the previously evaluated transform, that prediction mode is 

discarded from the next transform evaluations. This solution was implemented in VTM 

3.0, saving 23% encoding time with a 0.16% BDBR increase. 

4.1. Summary of Related Works  

Table 1 summarizes the 14 related works focusing on reducing the 

computational effort of the VVC encoder. This table indicates the module of the VVC 

encoder considered in each solution, including QT, MTT, Mode, and Transform (T). 

The column “Mode” indicates that the work reduces the computational effort of 

selecting intra prediction modes, such as reducing the number of AIP modes evaluated 

in the RMD process. Furthermore, this table provides the VTM version employed in the 

experiments and BDBR and Encoding Time Saving (ETS) results. The works listed in 

this table are sorted by VTM version. 

One can notice from this table that most of these works focused on the 

partitioning structures (MTT and QT) for intra-frame prediction. Although these works 

have been recently published, these solutions targeted old VTM versions that did not 

include several standardized coding tools. Besides, most of these works focus only on 

a specific module of the encoder. Therefore, since VVC is a recent video coding 

standard and few works have been developed so far, there is a vast space for further 

research and proposals of new solutions to reduce the VVC encoder computational 

effort. The fast encoding solutions developed in this Thesis aim to fill this gap by 

proposing novel solutions exploring heuristics and machine learning techniques for 
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block partitioning, intra-frame prediction mode selection, and transform mode selection 

able to achieve impressive encoding time reduction with minimal impact on coding 

efficiency, considering all novel VVC intra coding tools. 

Table 1 – Summary of the related works focusing on reducing the computational effort of the VVC intra-
frame prediction. 

Work QT MTT Mode T VTM BDBR (%) ETS (%) 

(FU, 2019a)  ×   1.0 1.02 45.00 

(ZHANG, 2019c)    × 1.1 0.00 3.00 

(YANG, 2020) × × ×  2.0 1.93 62.46 

(CHEN, 2020a)  ×   2.1 1.55 50.97 

(LEI, 2019)  ×   3.0 1.03 45.80 

(FU, 2019b)    × 3.0 0.16 23.00 

(ZHANG, 2020) × × ×  4.0 0.93 54.91 

(TANG, 2019) × ×   4.0.1 0.71 36.18 

(CUI, 2020) × ×   5.0 1.23 51.01 

(TISSIER, 2020) × ×   6.1 0.75 42.20 

(ZHAO, 2020) × ×   7.0 0.86 39.39 

(LI, 2021a) × ×   7.0 1.32 46.13 

(FAN, 2020) × ×   7.0 1.63 49.27 

(LI, 2021b)  ×   7.1 1.50 43.90 
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5. PERFORMANCE ANALYSIS OF VVC INTRA-FRAME PREDICTION 

This chapter presents the VVC intra-frame prediction performance analysis. 

Section 5.1 introduces the methodology used in the experiments, Section 5.2 presents 

a computational effort and compression performance evaluation between VVC and 

HEVC, Section 5.3 displays the encoding time distribution of luminance and 

chrominance components, Section 5.4 analyzes the block size time and usage 

distribution, Section 5.5 shows encoding-mode time and usage distribution, Section 

5.6 shows transform time and usage distribution, and Section 5.7 presents a rate-

distortion and computational effort evaluation of VVC intra-frame coding tools. Finally, 

Section 5.8 presents a general discussion, indicating possibilities for reducing the 

computational effort of VVC intra-frame prediction. The results of these analyses were 

published in (SALDANHA et al., 2021a). 

5.1. Methodology 

All the analyses presented in this chapter followed the Common Test 

Conditions (CTC) (BOSSEN et al., 2020) for Standard Dynamic Range (SDR) video 

sequences with chrominance subsampling configuration 4:2:0 specified by JVET. The 

experiments considered the all-intra configuration, where only intra-frame prediction 

tools are available. The experiments were executed using the VTM software (version 

10.0), which serves as a reference implementation of all the encoding features defined 

in the VVC standard. VTM implements all encoding tools defined in VVC and 

implements some heuristics to reduce the encoder complexity, as discussed later. It is 

important to highlight that although new VTM versions are still being released with 

some new functionalities for different applications (e.g., high bit depth and other 

chrominance formats), the intra coding flow for conventional camera-captured video 

sequences in VTM 10.0 remains without modifications and provides the same 

performance results compared to the latest VTM version. The experiments for HEVC 

were executed in HM software (version 16.20) with evaluations regarding the all-intra 

encoder configuration. For both VTM and HM encoder configurations, the default 

temporal subsampling factor of 8 was considered (i.e., the encoding process is 

performed at every 8 frames). 

The CTC specification has been developed to be a benchmark to evaluate 

coding tools and to allow a fair comparison of different techniques. The video 
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sequences specified to be encoded inside CTC contain several distinct characteristics 

to provide a robust evaluation. The CTC specifies the encoding of six classes of video 

sequences with distinct video resolutions. Classes A1 and A2 refer to six UHD 4K 

(3840×2160 resolution) video sequences. Class B has five video sequences with 

1920×1080 resolutions. Class C and D represent videos with 832×480 and 416×240 

resolutions, respectively, each one with four video sequences. Finally, Class E 

indicates three video sequences with 1280×720 resolution, totalizing 22 video 

sequences. Moreover, each video sequence should be encoded with 22, 27, 32, and 

37 QP values. More details about the CTC used in the experiments for VVC are 

provided in APPENDIX A of this Thesis. 

The compression performance and computational effort were measured using 

BDBR and encoding time, respectively. Modifications and additional functions were 

included in the VTM reference software for obtaining the encoding time and usage 

distributions of the encoding tools. 

5.2. VVC vs HEVC Compression Performance and Computational Effort 

The first experiment compares the compression performance and the 

encoding time of VTM and HM. Figure 12 presents the compression efficiency of VTM 

for luminance (Y) and chrominance components (Cb and Cr) compared to HM, 

considering all-intra encoder configuration. 

 

Figure 12 – Compression Efficiency of VTM compared to HM for the all-intra configuration. 

One can notice from Figure 12 that VTM performs better than HM for all cases 

regarding video resolution and encoding components. For luminance and chrominance 
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components VTM obtains a BDBR reduction of up to 29.3% (Class A2) and 34.4% 

(Class A1), respectively. Considering the luminance component, the smallest BDBR 

reduction is noticed for Class D (18.5%), whereas the highest BDBR reductions are 

observed for Classes A1 and A2. This noticeable gain for high-resolution video occurs 

mainly due to the larger block sizes and block partitioning structure, which allows the 

encoding of larger blocks for uniform regions and more flexible partition types for 

detailed regions. Thus, this experiment showed that VVC can provide an important 

higher compression rate than HEVC for intra-frame prediction, especially for high-

resolution videos. 

Figure 13 displays the encoding time increase for each class of video 

sequences and QP values.  

 

 

Figure 13 – Encoding time increase of VTM compared to the HM for the all-intra configuration. 

One can notice that QP=22 has the highest encoding time increase rates for 

all classes, where VTM is 40 times slower than HM, on average. This result is expected 

because VTM performs several evaluations of block sizes and intra-frame prediction 

modes to preserve more image details for lower QPs. The encoding time of VTM 

compared to HM increases about 32, 26, and 19 times for QPs equal to 27, 32, and 

37, respectively. Classes C and D showed the highest encoding time increase over 

HM (39 and 43 times, on average) because lower video resolutions tend to be encoded 

with smaller block sizes, implying the QTMT expansion to evaluate several 

combinations of block sizes and prediction modes. In contrast, higher video resolutions 
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tend to be encoded with larger block sizes, and fast decisions can avoid expanding 

QTMT early. On average, VTM takes 27 times more encoding time than HM for intra-

frame prediction. 

This analysis proved that the enhancements performed in VVC intra-frame 

prediction enable a higher compression rate, outperforming the compression efficiency 

of HEVC considerably and enabling the transmission of high-resolution video at a lower 

bit rate. However, this efficiency requires a very high computational effort, hampering 

the real-time video coding. 

5.3. Computational Effort Distribution of Luminance and Chrominance 

Figure 14 displays the VTM intra-frame encoding time distribution, considering 

luminance and chrominance components and the QP values defined in CTC. Since 

the encoder enables the use of distinct coding tree structures for both components, 

this analysis allows identifying the impact of each channel in the total encoding time. 

 

 

Figure 14 – Encoding time distribution for luminance and chrominance components considering the QP 
values defined in CTC. 

The luminance coding has the highest computational cost in VTM intra-frame 

coding, obtaining a maximum and minimum of 89% and 84% of the total encoding time 

when considering QP=32 and QP=22, respectively. It occurs because the chrominance 

component is subsampled and assesses only eight prediction modes applying DCT-II 

or TSM, and LFNST for residual coding. In contrast, luminance still evaluates AIP, 

MRL, MIP, ISP, and MTS coding tools. On average, luminance coding demands 87% 

of the computational effort of the VTM encoder in the all-intra scenario. 
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The next evaluations consider the encoding time and usage distribution of VVC 

intra-frame prediction focusing on analyzing the luminance block sizes and coding 

tools. 

5.4. Block Size Analysis 

Figure 15 and Figure 16 presents the encoding time distribution and the usage 

distribution for each available luminance block size considering the QP corner cases, 

respectively. The blue and orange bars denote the results for QP=22 and QP=37, 

respectively. The x-axis represents each block size, ordered from the largest to the 

smallest one, ranging from 64×64 to 4×4 samples. Note that there are no rectangular-

shaped blocks with a width or height of 64 samples since MTT partitioning is only 

performed over 32×32 blocks or smaller, regarding I-slices (HUANG et al., 2021). 

 

Figure 15 – Encoding time distribution for luminance block sizes considering QP=22 and QP=37. 

For both QPs evaluated in Figure 15, the most time-consuming blocks have 

sizes of 16×16, 16×8, or smaller. However, the QP variation produces different 

encoding time distribution for each block size; lower QPs concentrate the encoding 

effort in the block sizes with smaller areas, whereas higher QPs have a more 

heterogeneous complexity distribution. For instance, the total encoding time of block 

sizes smaller than or equal to 8×8 is 66.8% for QP=22 and 46.2% for QP=37. 

Analyzing the average occurrence of each available block size in Figure 16, 

one can notice that the block size selection is highly dependent on the QP value; higher 

and lower QP values imply selecting larger and smaller block sizes, respectively. 
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Figure 16 – Usage Distribution for luminance block sizes considering QP=22 and QP=37. 

The block selection for QP=22 concentrates in 16×8 samples or smaller, with 

84% of the occurrences. Blocks larger than 16×8 occur less than 2% of the times, 

except for the 16×16 block that occurs 5.7% of the times. A more heterogeneous 

distribution is noticed with QP=37, where blocks from 16×8 samples or smaller occur 

59.3% of the times, showing a reduced usage compared to QP=22. Hence, the 

percentage of blocks larger than 16×8 has increased to a total of 40.7%. This 

distribution happens because low QP values retain more image details, producing 

more heterogeneous regions, which are better encoded with smaller blocks. In 

contrast, to raise the compression rate, high QP values attenuate the image details, 

producing more homogeneous regions that are better encoded with larger blocks. 

5.5. Encoding Mode Analysis 

Figure 17 displays the encoding time distribution of the encoding intra 

prediction steps according to the block size and the QP corner cases. This analysis 

considers AIP-1, AIP-2, MRL, and MIP as prediction steps, and TQ+EC as the residual 

coding flow regarding transform, quantization, and entropy coding. ISP and MPM have 

negligible processing time since they derive the prediction modes from predefined lists; 

thus, these tools were not considered in this analysis as a prediction step. 

The residual coding (TQ+EC) is the most time-demanding process for all block 

sizes and both corner QPs; all the other steps together are responsible for less than 

30% of the total encoding time in all cases. Then, Figure 17 omits part of the residual 

coding distribution to visualize better the other steps. Figure 17(a) presents the 

encoding time distribution with QP=22 and Figure 17(b) with QP=37. Comparing both 

graphs, one can conclude that the computational burden of residual coding decreases 
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for higher QPs; in this case, the prediction tools represent a higher percentage of the 

encoding time. AIP-1 and MIP are the prediction tools that concentrate the highest 

encoding effort in both cases, with a maximum of 8.9% and 4.7% of the total encoding 

time (QP=37). MRL and AIP-2 demand, together, less than 4.5% of the encoding time, 

on average, in both cases. 

 

 
(a) QP=22 

 
(b) QP=37 

Figure 17 – Encoding time distribution for the intra-frame prediction tools considering (a) QP=22 and 
(b) QP=37. 

The high computational cost of the residual coding is mainly noticed in the 

transform and quantization steps, demonstrating that MTS and LFNST evaluations 

increased the encoding complexity of the transform process. Additionally, VVC 

95
100 AIP-1 AIP-2 MIP MRL TQ+EC

95

100

0

5

10

15

20

25

30

Block size

En
co

d
in

g 
Ti

m
e

 d
is

tr
ib

u
ti

o
n

 (%
)

95

100

0

5

10

15

20

25

30

Block size

En
co

d
in

g 
Ti

m
e

 d
is

tr
ib

u
ti

o
n

 (%
)



60 

 

introduces several new intra prediction modes to be evaluated by the residual coding. 

Although ISP presents a negligible processing time in the prediction step, this tool can 

add up to 48 prediction modes (16 modes for each LFNST index) in the RD-list to be 

evaluated by the residual coding, contributing to this high complexity. Another 

conclusion when observing Figure 17 is as smaller is the block size, as higher tends to 

be the percentual effort spent in the prediction steps. This occurs mainly because of 

the relation of the available encoding options and the number of samples per block 

size. This relation tends to concentrate the prediction effort in the smaller block sizes. 

This analysis showed that the residual coding of VVC intra-frame prediction 

had significantly raised its computational effort, presenting the highest encoding time 

for all assessed cases. It occurs because, for each prediction mode in the RD-list, the 

residual coding flow is done several times, considering new prediction modes and 

different combinations of primary and secondary transforms. 

Another interesting analysis to understand the encoder decisions is related to 

the encoder modes distribution using intra-frame prediction. The next analysis 

considers the prediction mode selection distribution among the available intra-frame 

prediction modes. Figure 18 shows this analysis considering AIP-1, AIP-2, MRL, MIP, 

and ISP prediction modes. For both QP values in Figure 18(a) and Figure 18(b), AIP-

1 is the most used mode, followed by MIP. MRL is more used than ISP for lower QPs, 

but this order is inverted for higher QPs. 

For all evaluated QPs, more than 45%, 20%, and 10% of the cases use AIP-

1, MIP, and AIP-2, respectively. The QP value has a different impact on the encoding 

mode distribution; the higher the QP value, the higher the use of AIP-1, AIP-2, and ISP 

tools. Naturally, MIP and MRL present the opposite behavior. 

The encoding tools also have different usage behavior, considering the block 

sizes. The higher the block size, the higher the use of MIP, especially for lower QPs. 

Considering the QP=22, the MIP is even more used than the AIP-1 for some blocks 

larger than 16×16 samples. AIP-2 and MRL tend to be less used for larger block sizes, 

mainly for lower QPs. ISP also follows this trend but with a less linear behavior. 

This analysis demonstrates that although VVC brings new tools for intra-frame 

prediction, the HEVC intra-frame prediction modes (AIP-1) remain used a lot, providing 

high coding efficiency for several cases. Nevertheless, the new VVC intra-frame coding 

tools are essential to increase this encoding performance since these tools are 

selected more than 51.5% of the times, on average. 
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(a) QP=22 

 
(b) QP=37 

Figure 18 – Mode selection distribution for intra-frame prediction tools considering (a) QP=22 and (b) 
QP=37. 

5.6. Encoding Transform Analysis 

Since the transform step demand a high computational effort, the following 

analysis exhibits the encoding time distribution of primary transform combinations. 

Figure 19 displays the average encoding time for multiple transform selection 

regarding each block size and QP corner cases. This analysis considers six horizontal 

and vertical transform combinations: DCT-II for both directions (DCT2_DCT2), DST-

VII for both directions (DST7_DST7), DCT-II for vertical and DST-VII for horizontal 

direction (DCT2_DST7), DST-VII for horizontal and DCT-II for vertical direction 

(DST7_DCT2), DST-VII for horizontal and DCT-VIII for vertical direction 

(DST7_DCT8), and DCT-VIII for horizontal and DST-VII for vertical direction 

(DCT8_DST7). Since VTM evaluates DCT2_DCT2 and TSM in the same execution 

flow (MTS index 0), the encoding time of DCT2_DCT2 also encompasses the encoding 
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time of TSM. 

 

 
(a) QP=22 

 
(b) QP=37 

Figure 19 – Encoding time distribution for multiple transform selection considering (a) QP=22 and (b) 
QP=37. 

It is important to highlight that the DCT-II and DST-VII transforms can be 

combined only for the ISP predicted blocks and LFNST index 0 (i.e., without secondary 

transform), as discussed in Section 3.2.6 of this Thesis. In this case, DST-VII is 

implicitly applied in the horizontal, vertical or both directions if the block width, height 

or both have between 4 and 16 samples (inclusive); otherwise, DCT-II is applied. Even 

though MTS allows DCT-VIII for horizontal and vertical directions (DCT8_DCT8), this 

transform combination has not been performed for any block size. Besides, note that 

combinations of DST-VII and DCT-VIII for vertical and horizontal directions 

(DST7_DCT8 and DCT8_DST7) have low representativeness in the encoding time 
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distribution, and it is impossible to find them in the graphs since these transforms are 

responsible for less than 0.1% of the encoding effort, on average. 

Figure 19(a) and Figure 19(b) show that DCT2_DCT2 is the most time-

consuming transform operation for all block sizes and both QPs. DST7_DST7 shows 

the second-highest encoding effort. On average, for the corner QPs, DCT2_DCT2 and 

DST7_DST7 represent about 70% and 25% of the encoding effort, respectively. The 

remaining transform combinations have less than 6.8% of the encoding time. For 

higher QPs, the DCT2_DCT2 combination tends to have a relative encoding time 

slightly higher than the other transforms. On the other side, the use of transforms 

according to the block size does not correlate significantly. 

DCT2_DCT2 presents the highest encoding time because this process in VTM 

evaluates DCT-II and TSM without secondary transform (i.e., LFNST index 0), and 

DCT-II with secondary transform-sets one and two (i.e., LFNST indexes 1 and 2), 

whereas LFNST is not performed for the remaining transform combinations. The 

prediction modes that obtained high RD-cost using DCT2_DCT2 are discarded for the 

next evaluations of transform combinations. Besides, VTM implements fast decisions 

based on the obtained RD-cost by applying DCT-II/TSM to evaluate the next transform 

combinations conditionally. 

The next analysis was done to evaluate the usage distribution of multiple 

transforms. The primary transforms were evaluated regarding each available transform 

block size and the QP corner cases. Figure 20 presents this evaluation, considering 

the same transform combinations of the encoding time distribution shown in Figure 19. 

This analysis considers a TSM computation separated from DCT2_DCT2. 

DCT2_DCT2 and DST7_DST7 are the most selected transform combinations 

for both QPs, obtaining together more than 94% of the usage distribution, on average. 

Another observation is that the higher the QP value, the higher is the use of 

DCT2_DCT2, and the opposite behavior is noticed for DST7_DST7. For QP=37, 

DCT2_DCT2 is the most used transform combination for all block sizes. However, for 

QP=22, DST7_DST7 is the most selected transform combination for block sizes 

32×16, 16×16, 16×8, 8×16, 16×4, and 4×16. 

The higher the QP value, the lower the use of TSM, DST7_DCT8, and 

DCT8_DST7 combinations. TSM is used 4.2% and 2.5% in QP=22 and QP=37, 

respectively, and DST7_DCT8 and DCT8_DST7 are used less than 0.1% in both 

cases. DCT2_DST7 and DST7_DCT2 have the opposite behavior, slightly increasing 
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from 1.4% (QP=22) to 1.6% (QP=37). This occurs because these combinations are 

only allowed when ISP is used, which is more used for higher QPs. According to the 

block size, the behavior of the transforms does not present any observable trend for 

most of the combinations, considering the two QP values. Only TSM has a clear trend 

to be more selected for smaller block sizes for both QPs. 

 

 
(a) QP=22 

 
(b) QP=37 

Figure 20 – Selection distribution of multiple primary transforms considering (a) QP=22 and (b) QP=37. 

The low usage of transform combinations using DCT-VIII matrices is justified 

because MTS was designed without considering a secondary transform operation for 

DCT-II. The current VTM implementation inserts LFNST into the encoder resulting in 

satisfactory rate-distortion performance for most cases by evaluating only the DCT-II 

(with and without LFNST), TSM, and DST-VII transforms; therefore, justifying the low 
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usage of transform combinations using DCT-VIII matrices. 

Figure 21 illustrates the encoding time distribution among the LFNST encoding 

possibilities according to the block sizes and QP corner cases.  

 

 
(a) QP=22 

 
(b) QP=37 

Figure 21 – Encoding time distribution of LFNST considering (a) QP=22 and (b) QP=37. 

LFNST 0 refers to the residual coding without applying the secondary 

transform (i.e., only primary transform is applied), and LFNST 1 and LFNST 2 

represent the use of secondary transform-sets one and two, respectively. For both 

QPs, LFNST 0 represents the highest encoding effort, followed by LFNST 1 and 

LFNST 2. It occurs because the VTM encoder generates and processes RD-list with 

DCT-II/TSM during the LFNST 0 evaluation. When LFNST 1 and LFNST 2 are 

processed, only DCT-II is evaluated, and the RD-list is derived from LFNST 0 
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processing. The VTM encoder follows a sequential evaluation, where LFNST 0 is 

always evaluated. In contrast, LFNST 1 and LFNST 2 are conditionally evaluated 

based on the obtained RD-cost by performing LFNST 0 and the generated Coded 

Block Flag (CBF) of the previous evaluation that signals if the block has any significant 

(i.e., non-zero) coefficients. Nevertheless, considering the total encoding time of both 

secondary transform evaluations (LFNST 1 and LFNST 2), these operations represent 

more than 55% of the coding time, on average. Finally, observing Figure 21, one can 

conclude that the computational effort of LFNST does not directly correlate with the 

used QP value and block size. 

Figure 22 depicts the selection distribution of the secondary transform, also 

considering each available block size for the two corner QPs.  

 

 
(a) QP=22 

 
(b) QP=37 

Figure 22 – LFNST selection distribution considering (a) QP=22 and (b) QP=37. 
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The secondary transform (LFNST 1 and 2) is less frequently used for lower 

QPs, being used 29.1% of the times with QP=22 and 55.3% of the times with QP=37, 

on average. This occurs because the LFNST is applied only for the DCT2_DCT2 

transform combination; then, this usage distribution follows the same trend presented 

in the previous analysis, where DCT2_DCT2 is also more used for QP=37. Another 

important observation is that LFNST 1 is higher used than LFNST 2 for all evaluated 

cases. Figure 22 displays that there is no clear correlation between the use of the 

secondary transform and the block size variation. 

5.7. Rate-Distortion and Computational Effort of VVC Intra-Frame Coding 

Tools 

This section presents a rate-distortion and computational effort evaluation of 

the new block partitioning structure with binary and ternary partitions and the novel 

intra-frame coding tools when running in the VTM 10.0 under all-intra configuration. 

This analysis shows the impact of each block partition structure and intra-frame coding 

tool by removing it from the encoding flow. The evaluation measures the compression 

efficiency and computational effort through BDBR and encoding time saving, 

respectively. 

Table 2 presents the BDBR increase and Encoding Time Saving (ETS) results 

when removing BT, TT, or both partitioning structures of VVC intra-frame coding for 

each class of CTC test sequences. These partitions are removed for both luminance 

and chrominance coding trees.  

Table 2 – Compression efficiency and timesaving results when removing BT, TT, or both partitioning 
structures. 

Class 
BT less TT less BT+TT less 

BDBR ETS BDBR ETS BDBR ETS 

A1 4.4% 72.9% 0.7% 42.1% 12.4% 90.9% 

A2 4.9% 78.7% 1.0% 48.6% 16.0% 94.5% 

B 5.8% 77.6% 1.1% 48.4% 22.1% 94.7% 

C 8.5% 79.7% 1.6% 51.9% 36.2% 95.5% 

D 6.7% 77.5% 1.3% 51.4% 30.7% 93.1% 

E 8.6% 76.0% 1.8% 48.1% 39.3% 92.9% 

Avg. 6.5% 77.1% 1.2% 48.4% 26.1% 93.6% 

This evaluation allows us to assess the influence of the new partitions in the 

QTMT structure. On average, when the BT partitioning is disabled of the VTM encoder 
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(BT less in Table 2), the encoding time is reduced by 77.1% at the cost of a BDBR 

increase of 6.5%. When disabling the TT partitioning (TT less in Table 2), BDBR 

increases by 1.2%, and the encoding time is reduced by 48.4%. Disabling both BT and 

TT partitions (BT+TT less in Table 2), i.e., when only QT partitions are available, the 

encoding time is decreased by 93.6%, but, as a drawback, the BDBR is increased by 

26.1%, on average. 

Although the impact in BDBR is high for all classes of test sequences, the 

impact of disabling BT and TT partitions is more prominent for video resolutions lower 

than 3840×2160 (Classes A1 and A2). It is justified because lower resolutions are 

better encoded with smaller block sizes, and BT and TT partition structures can enable 

different block sizes and shapes, providing a higher compression performance. 

Table 3 presents BDBR and ETS results when removing horizontal (BTH and 

TTH) and vertical (BTV and TTV) partitions. This analysis displays that both horizontal 

and vertical partitions provide similar average results of TS and BDBR increase. The 

horizontal partition removal provides 79.9% of TS with a 5.3% increase in BDBR; 

disabling the vertical partitions reduces about 79.5% of the encoding time with a 5.5% 

BDBR increase. 

Table 3 – Compression efficiency and timesaving results when removing the horizontal or vertical 
partitions. 

Class 
Horizontal less Vertical less 

BDBR ETS BDBR ETS 

A1 3.8% 74.7% 3.3% 74.2% 

A2 3.7% 80.4% 4.0% 80.0% 

B 5.6% 81.0% 4.3% 80.0% 

C 6.5% 83.2% 6.5% 82.6% 

D 5.7% 81.9% 6.2% 80.9% 

E 6.6% 78.4% 8.6% 79.0% 

Avg. 5.3% 79.9% 5.5% 79.5% 

These results presented a similar behavior to the results obtained in Table 2, 

demonstrating the high coding efficiency provided by horizontal and vertical partitions 

for all classes of video resolutions; however, the impact in BDBR of disabling horizontal 

and vertical partitions is also more noticeable for lower video resolutions. These 

analyses show that the QTMT partitioning structure provides significant compression 

performance gains while raising the VVC intra-frame coding complexity expressively. 

Table 4 presents the average results of BDBR increase and encoding time 
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savings when removing each intra-frame coding tool from the VTM intra-frame coding 

flow. The highest timesaving results are obtained when disabling LFNST or ISP tools. 

In contrast, the highest encoding efficiency impacts are noticed when disabling the 

residual coding tools LFNST or MTS, increasing BDBR by 1.2%. 

Table 4 – Compression efficiency and timesaving results when removing each VVC intra-frame coding 
tool 

Class 
AIP-2 less MRL less MIP less 

BDBR ETS BDBR ETS BDBR ETS 

A1 0.6% -0.7% 0.1% 0.8% 1.0% 10.3% 

A2 0.6% 1.3% 0.2% 0.4% 0.6% 10.7% 

B 0.7% 1.4% 0.4% -0.1% 0.5% 11.4% 

C 0.9% 1.6% 0.7% 0.8% 0.5% 13.0% 

D 0.8% 0.4% 0.2% 0.9% 0.6% 11.7% 

E 1.4% 0.2% 0.3% -0.1% 0.7% 10.5% 

Avg. 0.8% 0.7% 0.3% 0.5% 0.6% 11.3% 

Class 
ISP less MTS less LFNST less 

BDBR ETS BDBR ETS BDBR ETS 

A1 0.1% 13.0% 1.4% 10.3% 1.8% 24.8% 

A2 0.3% 14.2% 1.4% 13.9% 0.7% 28.7% 

B 0.4% 15.1% 1.4% 14.3% 1.0% 26.7% 

C 0.7% 17.7% 0.9% 15.7% 1.4% 27.1% 

D 0.6% 15.9% 0.7% 15.2% 1.1% 25.4% 

E 0.8% 15.1% 1.4% 14.0% 1.5% 25.5% 

Avg. 0.5% 15.2% 1.2% 13.9% 1.2% 26.4% 

Disable AIP-2 and MRL produce few gains in encoding time reduction (less 

than 1%). However, while removing the MRL represents the smallest impact in the 

coding efficiency, when removing the AIP-2, the BDBR is increased by almost 1%, 

representing the highest BDBR increase considering the prediction tools. When MIP is 

disabled, the encoding time is reduced by 11.3% at the cost of a BDBR increase of 

0.6%. 

The highest BDBR impacts of AIP-2, MRL, and MIP prediction tools are 1.4% 

(Class E – 1280×720 pixels), 0.7% (Class C – 416×240 pixels, and 1.0% (Class A1 - 

3840×2160 pixels), respectively. ISP presents the highest and the lowest BDBR impact 

for Class E and Class A1/A2, respectively. MTS and LFNST transform tools present 

similar behavior between the classes of video sequences, except in classes C and D, 

where the MTS coding tool obtained a lower BDBR impact compared to the others. 
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This evaluation showed that each new VVC intra-frame prediction tool 

contributes to increasing the coding efficiency. However, this efficiency comes at the 

cost of a high computational effort, especially for the residual coding, which is 

performed several times to choose the best combination of prediction mode, primary 

transform, and secondary transform. 

5.8. General Discussion 

All new intra-frame coding tools were added to the VVC specification because 

they improve the encoding efficiency. Therefore, for scenarios requiring high coding 

efficiency these tools cannot be directly removed from the encoding flow to reduce the 

complexity. However, based on the analyses presented in previous sections, several 

ideas and conclusions can be taken to elaborate efficient timesaving solutions for VVC 

intra-frame prediction beyond those solutions already inserted in the VTM or proposed 

in the literature. 

Firstly, encoding small blocks such as 4×4, 4×8, 8×4, and 8×8 takes more time 

compared to encoding larger block sizes, independent of the quantization scenario. 

Moreover, the selection of small blocks decreases according to the QP increase. In 

contrast, larger blocks are less frequently selected with low QPs. However, in this case, 

the encoding time distribution presents slight variations among the evaluated QPs. 

Therefore, QP can be considered when designing a timesaving solution by adaptively 

limiting the depth and skipping the top level of the QTMT structure. Since the QTMT 

structure comprises three partitioning structures, some approaches for time reduction 

solutions can be considered, including the following predictions: quadtree depth, MTT 

depth, when using BT, TT, or both, and when using MTT horizontal or vertical 

partitioning. 

The analyses of the intra-frame coding flow demonstrated TQ+EC is the most 

time-consuming module regardless of the quantization scenario. In this case, solutions 

that can reduce the number of prediction modes evaluated in the TQ+EC flow (i.e., 

reduce the RD-list) should be considered to provide more impressive encoding time 

reduction results. A more limited encoding time reduction can be obtained if 

considering the prediction tools. In this case, AIP-1 is the most time-demanding tool 

and simplifying the RMD search step can also save the encoding time. 

The residual coding is responsible for a considerable encoding effort to 

evaluate each intra-frame prediction mode through the TQ+EC flow for all available 
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block sizes. This computational burden is mainly due to the evaluations of primary and 

secondary transforms. Regarding the primary transform, DCT2_DCT2 and 

DST7_DST7 are the most complex transform operations for all evaluated quantization 

scenarios. While DST7_DST7 is more selected for a low QP (reducing the usage of 

DCT2_DCT2), for a high QP, the use of DST7_DST7 decreases, and the use of 

DCT2_DCT2 increases expressively. For the secondary transform, the three 

possibilities of LFNST encoding take similar encoding time for evaluated QPs. 

However, the analysis demonstrated that LFNST 1 and LFNST 2 are less frequently 

selected for lower QPs, whereas the opposite happens for higher QPs. In this case, 

solutions considering the encoding context can be developed to reduce the number of 

transform combinations evaluated in the intra-frame coding flow, including predicting 

the primary transform combination and when to use or not the secondary transform. 
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6. FAST MULTI-TYPE TREE DECISION SCHEME FOR LUMINANCE BLOCKS 

This chapter presents a fast decision scheme for the MTT block partitioning 

structure based on statistical analysis for luminance blocks. As the conventional 

angular intra-frame prediction modes (AIP in Section 3.2.1) and ISP mode tend to 

indicate the texture direction of the block, the best mode of AIP and ISP sub-partitions 

direction (ISPhor and ISPver) can be an effective predictor for the MTT partitioning 

decision. Furthermore, the features of the block samples can be explored to decide the 

direction of the binary and ternary split since MTT tends to divide the block into regions 

sharing more similar sample values for providing accurate predictions. For this 

purpose, we design a scheme composed of two strategies that explore the correlation 

of the intra-frame prediction modes and samples of the current CU for deciding the split 

direction of binary and ternary partitions. Based on this information, our scheme can 

avoid unnecessary evaluations of binary and ternary partitions, reducing the encoding 

time with similar coding efficiency. This solution and original results were published in 

(SALDANHA et al., 2020b). 

6.1. Motivational Analysis 

Figure 23 presents the luminance CU partitions for the first frame of the 

BasketballPass video sequence, which was encoded with QP 37 and all-intra 

configuration; three blocks with horizontal splits are detached in blue boxes, and three 

blocks with vertical splits are highlighted in red boxes. To correlate the luminance 

samples for deciding the direction of binary and ternary split, we defined two variance 

values for a given luminance block: (i) varhor refers to the sum of the variance values 

of upper and lower partitions, considering the current block is horizontally subdivided 

into two equal-sized regions, and (ii) varver indicates the sum of the variance values of 

the left and right partitions for a current block vertically subdivided into two equal-sized 

regions. On the one hand, Figure 23 shows that when the horizontal CU partitioning 

(blue boxes) occurs, varhor tends to be smaller than varver. On the other hand, when 

varver is smaller than varhor (red boxes), the CU tends to split vertically. Thus, varhor and 

varver can be employed to predict the direction of binary and ternary split, avoiding 

unnecessary MTT evaluations. 
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Figure 23 – CU partitioning of BasketballPass video sequence with variance values of the highlighted 
blocks. 

Additionally, we correlate the encoding context through the AIP modes when 

it was chosen as the best mode for the current CU to further improve the performance 

of this strategy. Therefore, motivated by the work of Fu et al. (2019a), we divided the 

AIP modes into two categories, where AIP modes from 10 to 28 (horizontal mode ± 8) 

are defined as the horizontal directions (AIPhor), and AIP modes from 42 to 58 (vertical 

mode ± 8) are specified as the vertical directions (AIPver). 

Based on this analysis, we proposed a strategy called Fast Decision based on 

Variance (FDV). The FDV strategy identifies the texture direction according to the 

variance values and the best AIP mode of the current CU. Thus, if varhor is smaller than 

varver and the intra-frame prediction mode is AIPhor, the encoder can skip the vertical 

binary and ternary splitting evaluations; otherwise, if varver is smaller than varhor and 

the intra prediction mode is AIPver, the encoder can skip the horizontal binary and 

ternary splitting. 

The second strategy, named Fast Decision based on ISP (FD-ISP), correlates 

the ISP with the MTT structure due to the partitioning similarity. Thus, if the best mode 

is ISPhor, the encoder can skip the vertical binary and ternary splitting evaluations; 

otherwise, if the best mode is ISPver, the encoder can skip horizontal binary and ternary 

splitting. 

We evaluated seven video sequences with different characteristics under the 
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all-intra configuration for four QP values (22, 27, 32, and 37) to analyze the accuracy 

of these strategies. These sequences include Campfire, CatRobot, BasketballDrive, 

RitualDance, RaceHorsesC, BasketballPass, and FourPeople. Figure 24 presents the 

accuracy of FDV, FD-ISP, and Overall, which presents the result when both strategies 

are jointly evaluated. Accuracy measures the ratio of correct predictions over the total 

number of instances evaluated. One can notice that the accuracy of FDV is higher than 

92% for all cases evaluated, whereas the accuracy of FD-ISP is higher than 88%. The 

Overall results demonstrate the effectiveness of the proposed scheme with high 

accuracy of 92.1%, on average. 

 

Figure 24 – Accuracy for FDV, FD-ISP, and Overall strategies. 

6.2. Designed Scheme 

Figure 25 shows the flowchart of the proposed fast partitioning decision 

scheme, which was designed based on the previous analysis. For encoding a CTU, 

the intra prediction and QTMT partitioning are performed sequentially. If the current 

CU is partitioned by QT structure, no coding simplification is performed, and the next 

QT depth is evaluated since the proposed scheme works only in the MTT structure. 

However, if the current CU is partitioned using the MTT structure with horizontal 

splitting, the encoder verifies the proposed fast partitioning decision FDhor. When FDhor 

is true, the current CU is classified as vertical texture direction, and the horizontal 

binary and ternary splitting are skipped; otherwise, no simplification is done, and the 

next MTT depth is evaluated. FDver is analogous to FDhor but skipping the vertical 

splitting. 
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Figure 25 – Flowchart of the proposed solution. 

Equation 2 defines FDhor, which is responsible for the fast decision to skip the 

horizontal binary/ternary splitting evaluations. Equation 3 specifies FDver, which 

controls the fast decision to skip the vertical binary/ternary splitting. 

𝐹𝐷ℎ𝑜𝑟 =  {
𝑇𝑟𝑢𝑒,       𝑖𝑓 (𝐴𝐼𝑃𝑣𝑒𝑟 𝑎𝑛𝑑 𝑣𝑎𝑟𝑣𝑒𝑟 < 𝑣𝑎𝑟ℎ𝑜𝑟) 𝑜𝑟 𝐼𝑆𝑃𝑣𝑒𝑟

𝐹𝑎𝑙𝑠𝑒,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                            
 (2) 

𝐹𝐷𝑣𝑒𝑟 =  {
𝑇𝑟𝑢𝑒,       𝑖𝑓 (𝐴𝐼𝑃ℎ𝑜𝑟 𝑎𝑛𝑑 𝑣𝑎𝑟ℎ𝑜𝑟 < 𝑣𝑎𝑟𝑣𝑒𝑟) 𝑜𝑟 𝐼𝑆𝑃ℎ𝑜𝑟

𝐹𝑎𝑙𝑠𝑒,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                             
 (3) 

6.3. Results and Discussion 

The proposed fast partitioning decision scheme was implemented inside the 

VTM version 5.0 and evaluated following the JVET CTC for SDR video sequences 

(details in APPENDIX A). This was the first solution developed in this Thesis and it was 

designed and published before the VVC standardization; consequently, the published 

results considered a draft version of the VVC reference software. However, new 

experimental results using the VTM version 10.0 with all standardized coding tools also 

were generated for this Thesis and presented in this section. The evaluations were 

performed under the all-intra encoder configuration and considered the six classes of 

CTC video sequences. All the results presented in the next solutions of this Thesis also 

consider VTM version 10.0 following the CTC under all-intra encoder configuration. 
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Table 5 presents the results achieved with the proposed solution for VTM 10.0; 

the encoding efficiency was measured by the BDBR metric and encoding timesaving 

(ETS). The proposed solution obtained an ETS of 28.78%, on average, which varies 

from 8.12% to 43.23% according to the encoded video sequence. As a drawback, 

BDBR increases by 0.80%. These results demonstrated that our solution reduces the 

encoding time significantly, with a minor impact on the encoding efficiency. 

The video sequences with a low selection of ISP and AIP modes, as the 

ParkRunning3, obtained smaller ETS since our solution takes advantage of these 

prediction modes to accelerate the encoder. For example, in BasketballDrive, 33.42% 

of the encoded CUs are predicted with ISP, whereas in ParkRunning3, ISP is used 

only 10.21% in the encoded CUs. However, even in this case, our solution can achieve 

satisfactory timesaving results with small BDBR loss. 

Table 6 summarizes the comparison of the proposed solution with related 

works. The related works (YANG et al. 2020; FU et al.; 2019a; LEI et al. 2019) also 

developed fast solutions for accelerating the VVC intra coding focusing on the block 

partitioning structure. Yang et al. (2020) proposed a solution that achieves an average 

encoding time saving of 52.59% with a BDBR increase of 1.56%. Fu et al. (2019a) 

proposed a scheme that reduces the encoding time by 45% with a BDBR loss of 

1.02%. Lei et al. (2019) proposed a method capable of reducing 40.7% of the encoding 

time with a BDBR increase of 0.84%. Our solution reaches lower ETS than these works 

but provides better BDBR results. It is important to mention that the works (FU et al.; 

2019a; YANG et al. 2020; LEI et al. 2019) were evaluated in VTM 1.0, VTM 2.0, and 

VTM 3.0, respectively. VTM 10.0 already includes several other fast decisions, such 

as split cost prediction and ternary split restriction. Additionally, VTM 10.0 includes 

tools such as MIP and ISP that completely change the behavior of the encoder (VTM, 

2020). 

The work of Cui et al. (2020), implemented in VTM 5.0, provides 51.01% of 

ETS and 1.23% of BDBR increase. The work of Zhao et al. (2020), implemented in 

VTM 7.0, reaches 39.39% of ETS and 0.86% BDBR. Again, our solution achieves 

better BDBR results with lower ETS. However, it is necessary to note that our solution 

focuses only on the MTT structure, whereas three related works focus on the QT and 

MTT structures. Based on this fact, the proposed solution also can be combined with 

other techniques focusing on accelerating QT structure or other encoding modules to 

provide more impressive ETS results. Nevertheless, the scheme designed provides 
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competitive results of ETS and BDBR compared to the related works. 

Table 5 – Proposed Solution results for CTC evaluation under all-intra configuration. 

Class Video Sequence BDBR ETS 

A1 

Tango2 0.30% 13.53% 

FoodMarket4 0.26% 14.57% 

Campfire 0.38% 12.81% 

A2 

CatRobot 0.72% 21.76% 

DaylightRoad2 0.92% 29.48% 

ParkRunning3 0.15% 8.12% 

B 

MarketPlace 0.24% 14.47% 

RitualDance 0.54% 25.79% 

Cactus 0.78% 27.54% 

BasketballDrive 0.97% 37.46% 

BQTerrace 1.33% 38.57% 

C 

BasketballDrill 1.37% 27.67% 

BQMall 1.21% 43.23% 

PartyScene 0.88% 42.31% 

RaceHorsesC 0.58% 27.71% 

D 

BasketballPass 0.98% 37.03% 

BQSquare 1.01% 40.19% 

BlowingBubbles 0.75% 35.50% 

RaceHorses 0.62% 25.98% 

E 

FourPeople 1.11% 39.13% 

Johnny 1.17% 33.52% 

KristenAndSara 1.26% 36.78% 

Average 0.80% 28.78% 

Standard Deviation (σ) 0.38 10.70 

Table 6 – Comparison of the proposed solution with related works. 

Work 
VTM 

Version 
Module BDBR ETS 

Our 10.0 MTT 0.80% 28.78% 

(FU et al., 2019a) 1.0 MTT 1.02% 45.00% 

(YANG et al., 2020) 2.0 QT+MTT 1.56% 52.59% 

(LEI et al., 2019) 3.0 MTT 0.84% 40.70% 

(CUI et al., 2020) 5.0 QT+MTT 1.23% 51.01% 

(ZHAO et al., 2020) 7.0 QT+MTT 0.86% 39.39% 
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7. CONFIGURABLE FAST BLOCK PARTITIONING SCHEME WITH LIGHT 

GRADIENT BOOSTING MACHINE FOR LUMINANCE BLOCKS 

The second solution presented in this Thesis is an evolution of the previously 

presented scheme. This solution is also focused on the luminance block partitioning 

decision, based on machine learning approach. Our solution considers the QTMT 

block partitioning as a multiple binary classification problem, where a Light Gradient 

Boosting Machine (LGBM) classifier is offline trained for each split type. Each classifier 

is responsible for deciding to perform the split type or not, avoiding the evaluation of 

split types that are unlikely to be chosen as the best ones. We decided to use LGBM 

since it presented significantly higher performance (in terms of accuracy) than a single 

decision tree classifier and other similar classifiers in our early stage of evaluations 

and tests. Besides, this classifier has a high potential for improving the performance 

due to the high flexibility of the hyperparameters configuration. This solution was 

published in (SALDANHA et al., 2021b). 

7.1. Background on LGBM Classifiers 

Ensemble models in machine learning combine the decisions of multiple weak 

learners to improve the overall system performance (NATEKIN; KNOLL, 2013), 

providing higher accuracy results than individual models. The two main types of 

ensemble approaches are bagging that creates individual classifiers for taking 

decisions based on the majority votes of all classifiers, and boosting, which builds the 

classifiers iteratively, minimizing the error of the earlier trained classifiers (NATEKIN; 

KNOLL, 2013). 

LGBM is a gradient boosting framework developed by Microsoft researchers 

using tree-based learning algorithms (KE et al., 2017). Figure 26 exemplifies the LGBM 

training approach that builds a decision tree ensemble sequentially to minimize losses 

and improve the model at each iteration step. Each iteration determines a new decision 

tree model training concerning the error of the entire ensemble learned so far. The 

learning rate controls the gradient descent approach used to minimize the loss when 

adding trees. 
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Figure 26 – LGBM training approach. Source: Adapted from (BOEHMKE, B., GREENWELL, B., 2019). 

LGBM achieves a solid predictive model by combining N tree models (f1, f2, f3, 

…, fn), and the final result described in (4) aggregates the results from each step. 

𝑓(𝑥) = ∑ 𝑓𝑛

𝑁

𝑛=1

(𝑥) (4) 

Unlike other tree-based learning algorithms, LGBM grows tree leaf-wise 

(vertically) since it can reduce the prediction loss more efficiently than algorithms that 

produce level-wise trees (horizontally). Moreover, conventional implementations of 

Gradient Boosting Machines (GBM) scan all the data instances to estimate the 

information gain of all possible split points, which is very time-consuming for the 

training process. LGBM uses Gradient-based One-Side Sampling (GOSS) and 

Exclusive Feature Bundling (EFB) to overcome this problem. GOSS and EFB are 

sampling methods for data selection, discarding some well-trained instances (small 

training error), and reducing the dimensionality of the features while maintaining high 

accuracy (KE et al., 2017). 

In summary, LGBM has many advantages compared to other machine-

learning models, such as (i) ability to handle large-scale data, (ii) support of parallel 

and Graphics Processing Unit (GPU) learning, (iii) low memory usage, (iv) fast training 

speed, (v) simple implementation with tree-based algorithm (vi) high accuracy, and (vii) 

low inference time. The last three characteristics are crucial for this solution since it 

reduces the VVC encoding time without harming the coding efficiency. 

The LGBM techniques provide a highly flexible training process to control the 

learning rate hyperparameters, dataset sampling, and decision tree characteristics, 

generating a high-efficient model when adequately optimized. 

7.2. Methodology 

We used data mining to discover strong correlations between the coding 

context and its attributes for defining machine learning models that determine when to 

perform a QTMT split type, saving coding time with negligible reduction in coding 
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efficiency. Our solution divides the block partition decision into five binary classification 

problems instead of creating an LGBM classifier that solves the QTMT structure 

multiclass problem directly (more details in APPENDIX B). This approach allows the 

design of specialized classifiers for each split type, saving expressive encoding time 

while minimizing the coding efficiency loss. For this purpose, we offline trained an 

LGBM classifier for each split type, including QT, BTH, BTV, TTH, and TTV, and each 

classifier decides to skip or not the corresponding split type. 

Figure 27 presents the framework used to train and implement the LGBM 

classifiers in the VTM encoder. A set of video sequences were selected to extract the 

features and train the classifiers. The VTM encoder was modified to collect several 

statistical data with relevant information for the CU split decision and generate the 

dataset of each split type. The datasets are composed of relevant features from the 

encoded video sequence, encoder attributes, and the split decision. The preprocessing 

step was performed to balance the datasets and select the most important features. 

The selected features are used as input for training the classifiers; this step includes 

hyperparameter optimization and the training of each classifier. The final step 

evaluates the coding efficiency and encoding timesaving using a modified VTM 

encoder, which incorporates the LGBM classifiers for deciding the QTMT partitioning 

instead of the full RDO. In this step are evaluated different video sequences from those 

used in the training phase. 

 

Figure 27 – Framework for training CU partitioning decision with LGBM models and evaluating the 
performance in the VTM encoder. 
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Table 7 presents the eight video sequences used in the training process with 

resolutions ranging from 416×240 up to 3840×2160 pixels (SHARMAN; SUEHRING, 

2017; DAEDE; NORKIN; BRAILOVSKIY, 2019; XIPH, 2021). 

Table 7 – Video sequences used for training. 

Training Sequence Resolution Bit depth FPS 

TrafficFlow 3840×2160 10 30 

BuildingHall2 3840×2160 10 50 

Kimono1 1920×1080 8 24 

ParkScene 1920×1080 8 24 

Vidyo1 1280×720 8 60 

Netflix_DrivingPOV 1280×720 8 60 

pedetrian_area 832×480 (downsampled) 8 25 

Flowervase 416×240 8 30 

The video sequences used in the training process encompass a wide range of 

video characteristics (e.g., 8- to 10-bit depth and 24 to 60 frames per second – fps) for 

rendering several examples of block partitioning decisions in the training process. 

The video sequences were encoded following the encoder configurations 

specified in JVET CTC for all-intra configuration, using QP values 22, 27, 32, and 37. 

We extracted the datasets based on 120 frames to reduce the training process 

complexity; these datasets were balanced according to the number of instances for 

each frame, block size, QP value, and output class. 

7.3. Features Analysis and Selection 

We collected a large amount of data from the video sequences and internal 

encoding variables to find features that could lead to effective decisions of CU split 

type. All these features were extracted directly during the encoding, where additional 

functions were implemented in the VTM encoder. These features encompass four 

information categories: CU samples, local samples, context, and coding information. 

CU samples information considers features related to the current CU samples. 

All these features are computed based on luminance samples inside the whole CU, 

including width and height of the current CU, area, block ratio, variance (var), horizontal 

(Gx) and vertical (Gy) gradients based on Sobel operator, Gx divided by Gy 

(ratioGxGy), and the sum of Gx and Gy divided by the block area (normGradient). 

The information of local samples refers to features obtained in smaller regions 
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of the current CU, such as the absolute difference of variances on four sub-quarters 

(diffVarQT), maximum variance on four sub-quarters (maxVarQT), the absolute 

difference between variances of upper and lower regions of the CU (diffVarHor), and 

the absolute difference between left and right regions of the CU (diffVarVer). 

Context information includes features of left, above, above-left, and above-

right neighboring CUs, such as average QT (neighAvgQT) and MTT (neighAvgMTT) 

depth levels in neighboring CUs and number of neighboring CUs with QT 

(neighHigherQT) and MTT (neighHigherMTT) depth levels higher than the current CU. 

Since not split is evaluated first than QT, BT, and TT splits, we can consider 

several coding attributes obtained with the current CU size for deciding the split types. 

Coding information comprises coding attributes related to the current CU evaluated 

with not split type, such as QP, RD cost (currCost), distortion (currDistortion), current 

QT (QTD), BT (BTD), MTT (MTTD), and QTMT (QTMTD) depth levels, best intra 

prediction mode (currIntraMode), MRL index (mrlIdx), LFNST index (lfnstIdx), ISP 

mode (ispMode), and MTS flag (mtsFlag). Besides, since the split types are performed 

in order, the next split can take advantage of information obtained in the split evaluated 

previously, then the coding information also considers BTH RD cost (costBTH), BTV 

RD cost (costBTV), costBTH divided by costBTV (ratioCostBTHBTV), and TTH RD 

cost (costTTH). It is also important to mention that the corresponding RD-cost is 

unavailable when a previous split evaluation type is skipped, and, in this case, the 

feature is assigned with the maximum finite double-precision value. 

Table 8 shows the features used in the QT, BTH, BTV, TTH, and TTV 

classifiers (19, 28, 29, 28, and 29, respectively), selected using the Feature Selector 

tool (KOEHRSEN, 2018). We removed collinear and low-importance features to 

reduce the dataset dimensionality and the computational cost of the training process. 

Figure 28 presents the feature importance of the top 10 features for each 

classifier. The feature importance was measured using the split metric, which 

calculates the number of times the feature is used in the model. One can notice that 

features related to RD cost (currCost and currDistortion) followed by texture 

information have great importance for all classifiers. Besides, RD cost of previous split 

types also provides valuable information for the next split evaluations. Features 

indicating a horizontal texture direction such as Gx and diffVarHor are most important 

for horizontal splits (BTH (Figure 28(b)) and TTH (Figure 28(d)). While features 

indicating a vertical texture direction such as Gy and diffVarVer are most important for 
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vertical splits (BTV (Figure 28(c)) and TTV (Figure 28(e)). 

Table 8 – Features used for each classifier. 

Feature Description QT BTH BTV TTH TTV 

QP The current QP value × × × × × 

currCost The current RD-cost × × × × × 

currDistortion The current distortion × × × × × 

width The current block width × × × × × 

height The current block height  × × × × 

area The current block area  × × × × 

blockRatio Block width divided by block height  × × × × 

QTD The current QT depth level   ×   

BTD The current BT depth level  × × × × 

MTTD The current MTT depth level  × × × × 

QTMTD The current QTMT depth level  × ×   

currIntraMode The current intra prediction mode × × × × × 

mrlIdx Reference line index of MRL  ×    

ispMode Identify the ISP mode × × × × × 

mtsFlag Identify the use of MTS  × × × × 

lfnstIdx Identify the index of LFNST  × ×   

var Block variance × × × × × 

diffVarQT Absolute difference of variances on four sub-quarters × × × × × 

maxVarQT Maximum variance on four sub-quarters × × × × × 

diffVarHor 
Absolute difference between variances of upper and lower 
regions of the CU 

× × × × × 

diffVarVer 
Absolute difference between variances of left and right 
regions of the CU 

× × × × 
× 

Gx Horizontal Sobel gradient × × × × × 

Gy Vertical Sobel gradient × × × × × 

ratioGxGy Gx divided by Gy × × × × × 

normGradient Sum of Gx and Gy divided by block the area × × × × × 

neighAvgQT Average QT depth level in neighboring CUs × × × × × 

neighHigherQT Higher QT depth level in neighboring CUs × × × × × 

neighAvgMTT Average MTT depth level in neighboring CUs × × × × × 

neighHigherMTT Higher MTT depth level in neighboring CUs × × × × × 

costBTH RD-cost of BTH split type   × × × 

costBTV RD-cost of BTV split type    × × 

ratioCostBTHBTV RD-cost of BTH divided by RD-cost of BTV    × × 

costTTH RD-cost of TTH split type     × 

Number of Features 19 28 29 28 29 
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(a) QT (b) BTH 

  
(c) BTV (d) TTH 

 
(e) TTV 

Figure 28 – Feature importance ranking of top 10 features for (a) QT, (b) BTH, (c) BTV, (d) TTH, and 
(e) TTV classifiers. 

Figure 29 exemplifies the probability density of four selected features for QT, 

BTH, and BTV classifiers. The attributes currCost and currDistortion demonstrate a 

clear correlation with the QT split, where low values of these attributes indicate a high 

probability of not splitting with QT. Also, low values of diffVarHor and diffVarVer 

indicate a high probability of not splitting with BTH and BTV, respectively. 
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(a) QT (b) QT 

  

(c) BTH (d) BTV 

Figure 29 – Probability density functions for (a) and (b) QT, (c) BTH, and (d) BTV classifiers regarding 
four analyzed attributes. 

7.4. Classifiers Training and Performance 

In the training process of classifiers, a crucial step to maximize the model 

performance is the hyperparameter optimization. The LGBM brings several 

hyperparameters to provide higher accuracy and deal with overfitting and underfitting 

that need to be properly optimized. For this purpose, the hyperparameters of each 

classifier were optimized using the efficient Optuna framework (AKIBA et al., 2019) 

and applying the Tree-structured Parzen Estimator (TPE) (BERGSTRA et al., 2011) 

approach. 

The main optimized hyperparameters and the best values obtained for each 

classifier are presented in Table 9. Learning_rate corresponds to how quickly the error 

is corrected from each iteration (or tree) to the next. Feature_fraction specifies the 

percentage of features used for each iteration. Bagging_fraction specifies the fraction 

of data (training examples) used for each iteration, whereas bagging_freq indicates the 

frequency k for performing bagging. Num_leaves denotes the maximum number of 

leaves in one tree, and Max_depth limits the maximum depth for each tree. Finally, 

Num_iterations specifies the number of boosting iterations (or the number of trees). 
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Table 9 – Optimized hyperparameters for each classifier. 

Hyperparameter QT BTH BTV TTH TTV 

learning_rate 0.10 0.13 0.12 0.12 0.14 

feature_fraction 0.84 0.70 0.81 0.84 0.92 

bagging_fraction 0.73 0.71 0.97 0.86 0.98 

bagging_freq 3 5 7 7 1 

num_leaves 254 250 231 251 253 

max_depth 24 60 13 39 34 

num_iterations 176 176 256 268 298 

After the hyperparameter optimization process, the classifiers were evaluated 

using the 10-fold cross-validation, considering accuracy and F1-score metrics 

(APPENDIX B). The accuracy measures the ratio of correct predictions over the total 

number of instances evaluated and F1-score is the harmonic mean between precision 

and recall values (HOSSIN; SULAIMAN, 2015). Table 10 presents the accuracy, and 

F1-score results for each classifier, demonstrating that the classifiers obtain stable 

results for both metrics and can provide high performance to predict the CU split type. 

Table 10 – Accuracy and F1-score results for each classifier. 

Metric QT BTH BTV TTH TTV 

Accuracy 83.50% 74.69% 74.77% 76.52% 76.52% 

F1-score 83.18% 74.64% 74.72% 76.59% 76.58% 

The proposed solution follows the hierarchical process of VTM, and it uses the 

LGBM classifiers to avoid the evaluation of split types that have a low probability of 

being chosen as optimal partitioning. Since our solution encompasses five classifiers, 

each classifier indicates a probability value to skip the evaluation of a determined split 

type. By default, the decision threshold used by the LGBM model is 0.5, and the 

confidence of prediction is given by how close to 0 or 1 is the decision function output. 

If the output is higher than 0.5, the classifier decides to skip the split type evaluation; 

otherwise, the classifier remains the split type evaluation. However, the decision 

threshold can be configured, and different tradeoff results between encoding time 

reduction and encoding efficiency can be achieved. 

Figure 30 displays the performance of each individual classifier implemented 

in VTM, regarding encoding time reduction and BDBR impact for the following 

thresholds: 0.3, 0.4, 0.5, 0.55, 0.6, 0.65, and 0.7. This evaluation allows the analysis 

of the individual results of each classifier for different operation points to validate their 
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performance in terms of timesaving and BDBR. Note that the lower the threshold value, 

the higher the encoding time reduction and BDBR impact since more splits are skipped. 

In contrast, the higher the threshold value, the lower the encoding time reduction and 

BDBR impact since more splits are evaluated. Therefore, threshold values 0.3 and 0.7 

provide the highest and the lowest time savings for all classifiers, respectively. 

 

Figure 30 – Encoding time reduction and coding efficiency of each classifier for seven threshold values. 

At this point, it is necessary to highlight that even though this first evaluation 

showed a low impact on the coding efficiency for each classifier regarding different 

threshold values, the integration of all classifiers is not a trivial task, and some 

adaptations were needed, as presented in the next section. 

7.5. Classifiers Integration 

Figure 31 presents the flowchart of the proposed solution composed of the five 

LGBM classifiers integrated with the QTMT splitting process. The white and light gray 

colors refer to native steps of the VTM encoding flow, and the green, blue, and orange 

colors represent the new steps of our solution introduced in the encoder, including 

feature extraction, classifier evaluation, and split evaluation decision, respectively. 

After evaluating the intra-frame prediction with the not split type, our solution 

extracts the features to feed the LGBM classifiers. Subsequently, the VTM encoder 

verifies the split type that could be evaluated and according to this split type, an LGBM 

classifier is applied. Each LGBM classifier gives a probability to skip the evaluation of 

the corresponding split type. The probabilities obtained with the classifiers for QT, BTH, 

BTV, TTH, and TTV are P(QT), P(BTH), P(BTV), P(TTH), and P(TTV), respectively. 
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These probabilities are compared with decision thresholds to skip the evaluation of 

split types with a low probability of choosing as the best one. Then, the evaluation of a 

determined split type is skipped if the probability is higher than the decision threshold; 

otherwise, the encoding flow remains without modifications. The VTM split type 

evaluation is performed sequentially; thus, the proposed solution also performs a 

sequential decision, as shown in the flowchart. This approach takes advantage of the 

information of previously evaluated split types with specialized classifiers for each split 

type, intending to increase the accuracy of the decisions. 

 

Figure 31 – Flowchart of the proposed solution integrated with the QTMT splitting process. 

In the proposed solution, we established two decision thresholds to provide 

more flexibility: one for QT, called THQT, and another one for MTT (including horizontal 

and vertical BT/TT partitions), called THMTT. Our experimental analysis shows that 

using these two thresholds provides more flexibility for the proposed solution than 
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using only one. In contrast, employing different decision thresholds for horizontal and 

vertical BT/TT partitions did not significantly modify the results. 

Additionally, we have noticed that when our solution decides to skip all MTT 

splits in a given direction and the best partitioning would be in that direction, significant 

coding efficiency loss is caused. Therefore, the proposed solution skips all splits in a 

given direction (e.g., BTH and TTH) only if all splits have a high probability of being 

skipped (empirically defined as 0.7); otherwise, the split type with the lowest probability 

is evaluated. Considering these integration decisions, the QTMT split process defined 

in Figure 31 was implemented inside VTM to substitute the original VVC intra-frame 

prediction QTMT split process and the evaluations are presented in the next section. 

The use of decision thresholds makes our solution highly configurable, 

providing multi-operation points and allowing the adaptation for different application 

requirements. Our solution defines the thresholds before encoding a video sequence 

according to the desired operating point. The change of the operation point can be 

done at multiple levels, according to the user’s need, including CTU level, frame level, 

GOP level, or video level. The experiments presented in the next section consider the 

last option. Considering the flowchart presented in Figure 31, the change of operation 

point is done by changing the THQT and THMTT values. 

Our solution accepts different combinations of thresholds to maximize the 

encoding timesaving or minimize the coding efficiency loss. On the one hand, 

increasing the threshold values reduces the number of split types skipped, allowing the 

encoder to evaluate more split types, and resulting in higher coding efficiency. On the 

other hand, decreasing the threshold values increases the number of split types 

skipped, resulting in a higher encoding time reduction. 

In the next section, we present the evaluation of the proposed method using a 

configuration level with five operation points. These operation points were defined 

through an extensive experimental evaluation, showing good results to support 

different application requirements. However, the high flexibility of our solution enables 

even more combinations of threshold values to find the best operation point according 

to the application requirements. These five operation points are presented in Table V, 

considering the THQT and THMTT. 

Figure 32 exemplifies the proposed solution in the QTMT split decision for a 

32×32 CU, considering the C3 operation point. Each classifier provides an output 

indicating the probability of skipping the associated split type. In the example of Figure 
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32, as the classifiers of QT, BTV, and TTH decided by skipping the evaluations, only 

BTH and TTV split types are evaluated for the current CU since only these splits have 

a lower probability than the decision threshold values. 

Table 11 – Values of THQT and THMTT for the five operation points. 

Configuration THQT THMTT 

C1 0.7 0.7 

C2 0.7 0.6 

C3 0.6 0.55 

C4 0.5 0.5 

C5 0.4 0.4 

 

Figure 32 – QTMT split decision using the proposed solution for a 32×32 CU. 

7.6. Results and Discussion 

This section presents the results of the configurable fast-block partitioning 

decision solution for VVC intra coding using LGBM classifiers. Table 12 presents the 

encoding timesaving (ETS) and the coding efficiency, measured in BDBR, of our 

solution. 

It is important to highlight that the training process did not use JVET CTC video 

sequences; thus, this evaluation considered different video sequences from the ones 

used in the training step, allowing a robust evaluation of the proposed solution. 

These experiments considered the five operation points presented in the 

previous section and a configuration at the video level, meaning that the operation 

point does not change during the video sequence encoding. The results are presented 

for each video sequence, but the average and standard deviation are also presented 

to demonstrate the robustness of our solution considering different video 

characteristics and resolutions. 
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Table 12 – Encoding time saving and coding efficiency results of the proposed solution for five operation 
points. 

Class Video sequence 

Configuration Level 

C1 C2 C3 C4 C5 

BDBR 
(%) 

ETS 
(%) 

BDBR 
(%) 

ETS 
(%) 

BDBR 
(%) 

ETS 
(%) 

BDBR 
(%) 

ETS 
(%) 

BDBR 
(%) 

ETS 
(%) 

A1 

Tango2 0.39 42.53 0.49 48.54 0.71 53.15 1.01 57.19 1.62 61.97 

FoodMarket4 0.35 36.12 0.50 41.28 0.69 46.55 0.96 51.18 1.51 56.82 

Campfire 0.39 29.40 0.59 38.85 0.83 43.76 1.18 51.82 2.02 59.57 

A2 

CatRobot 0.41 30.39 0.64 38.68 0.90 44.12 1.23 50.81 2.11 57.28 

DaylightRoad2 0.50 38.87 0.84 47.75 1.10 53.67 1.48 59.48 2.45 66.82 

ParkRunning3 0.21 28.70 0.31 35.58 0.45 41.36 0.61 47.60 0.98 52.12 

B 

MarketPlace 0.23 35.65 0.40 46.98 0.60 54.47 0.84 60.62 1.41 67.65 

RitualDance 0.52 40.04 0.79 46.23 1.09 53.46 1.53 58.88 2.54 65.40 

Cactus 0.45 34.70 0.73 44.42 1.04 49.99 1.47 57.24 2.58 64.76 

BasketballDrive 0.63 44.99 0.94 50.59 1.26 57.12 1.67 60.13 2.61 66.88 

BQTerrace 0.55 32.36 0.84 41.75 1.11 48.35 1.48 54.42 2.36 62.92 

C 

BasketballDrill 0.51 23.82 0.97 33.72 1.52 40.31 2.40 45.40 4.44 56.30 

BQMall 0.66 39.34 1.03 46.44 1.40 51.05 1.96 56.37 3.27 63.12 

PartyScene 0.27 35.90 0.52 41.74 0.77 48.33 1.15 53.66 2.11 61.16 

RaceHorsesC 0.34 32.63 0.53 41.36 0.75 46.95 1.07 52.53 1.97 61.01 

D 

BasketballPass 0.57 38.47 0.86 44.32 1.32 49.27 1.86 53.74 3.19 59.90 

BQSquare 0.21 26.51 0.39 35.61 0.57 40.66 0.85 47.05 1.58 56.36 

BlowingBubbles 0.27 29.87 0.52 38.14 0.82 43.71 1.19 48.98 2.27 57.15 

RaceHorses 0.28 28.52 0.45 37.35 0.72 45.04 1.06 49.90 2.08 56.86 

E 

FourPeople 0.83 40.33 1.24 47.99 1.71 54.11 2.38 59.09 4.04 66.54 

Johnny 0.97 43.92 1.27 49.98 1.65 55.30 2.13 59.37 3.45 65.65 

KristenAndSara 0.64 41.89 0.97 48.32 1.26 52.96 1.69 56.88 2.86 63.13 

Average 0.46 35.22 0.72 42.98 1.01 48.80 1.42 54.20 2.43 61.34 

Standard deviation (σ) 0.20 6.00 0.28 5.12 0.36 5.12 0.50 4.65 0.85 4.36 

Table 12 displays that the five operation points (C1, C2,… ,C5) provide an 

extensive range of ETS and BDBR values: from an ETS of 35.22% with a BDBR 

increase of 0.46% to an ETS of 61.34% with a BDBR increase of 2.43%. 

The results showed that the proposed method can be efficiently applied to 

support various application requirements, with expressive ETS gains and minor impact 

in the BDBR results. These experiments also showed that our solution presented 

stable results for the evaluated video sequences, presenting low standard deviation for 

BDBR and ETS results, even considering different video characteristics and 

resolutions. Besides, the results outperform the state-of-the-art solutions in terms of 
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combined rate-distortion and timesaving. 

Figure 33 summarizes the comparisons with the related works. This figure 

presents a relation between ETS and BDBR for the related works and the five operation 

points previously defined in our solution. Nine related works were compared with our 

results, including the works (FU et al., 2019a; CHEN et al., 2020a; LEI et al., 2019; 

FAN et al., 2020; YANG et al., 2020; TISSIER et al., 2020; LI et al., 2021a; ZHAO et 

al., 2020; LI et al., 2021b). 

 

 

Figure 33 – ETS and BDBR increase for the five operation points of the proposed configurable solution 
and comparison with the related works. 

The five operation points of our configurable solution are identified in Figure 

33 as C1 to C5. This figure also presents a dotted line showing an extrapolation of our 

results if using other operation points with different threshold values. 

Figure 33 clearly shows that our solution surpasses all related works since the 

results of the proposed solution achieved a better tradeoff between ETS and BDBR. 

This figure also clarifies the high level of flexibility provided by our configurable method 

compared to the related works since different relations between ETS and BDBR can 

be explored according to the application requirements. 

Table 13 presents a more detailed comparison with some of these related 

works, where average BDBR and ETS results for each video class are presented, 

considering only C3 and C4 operation points for simplicity. These operation points were 

selected because they are the most comparable with the related works. The related 
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works (FU et al., 2019a; CHEN et al., 2020a; YANG et al., 2020; LI et al., 2021a) were 

used in this comparison since they provide detailed results and used almost the same 

experimental setup considered in our work, making fairer this comparison. 

Table 13 – Comparison with related works. 

Class 

(FU, 2019a)  (YANG, 2020) 
(CHEN, 
2020a) 

(LI, 2021a) 
This work 

C3 C4 

BDBR 
(%) 

ETS  
(%) 

BDBR 
(%) 

ETS  
(%) 

BDBR 
(%) 

ETS  
(%) 

BDBR 
(%) 

ETS  
(%) 

BDBR 
(%) 

ETS  
(%) 

BDBR 
(%) 

ETS  
(%) 

A1 1.31 51.00 0.85 51.39 1.17 42.71 1.60 43.90 0.74 47.82 1.05 53.39 

A2 1.19 47.67 0.77 53.08 1.60 48.36 1.49 45.48 0.82 46.38 1.11 52.63 

B 0.92 47.60 2.09 58.91 1.56 51.96 1.15 49.09 1.02 52.68 1.40 58.26 

C 0.98 42.25 1.48 49.39 1.63 53.79 1.09 45.18 1.11 46.66 1.65 51.99 

D 0.62 40.75 1.19 44.16 1.30 53.86 1.07 43.03 0.86 44.67 1.24 49.92 

E 1.31 40.00 2.85 58.60 2.55 54.96 1.81 49.50 1.54 54.12 2.07 58.44 

Avg 1.02 45.00 1.52 52.01 1.62 51.23 1.32 46.13 1.01 48.80 1.42 54.20 

σ 0.41 4.94 0.85 6.47 0.58 6.27 0.45 3.87 0.36 5.12 0.50 4.65 

When comparing our work with the solution of Fu et al. (2019a), one can 

observe that our operation point C3 reached the highest ETS (48.80% compared to 

45%) and a little bit smaller BDBR (1.01% against 1.02%). Our work reached similar 

standard deviation results for BDBR and ETS when compared with this solution. 

Our operation point C4, when compared with the work of Yang et al. (2020), 

reached a better ETS (54.20% against 52.01%) with a lower BDBR (1.42% against 

1.52%). Our work also reached smaller standard deviation results for both ETS and 

BDBR when compared with this solution. 

When compared with the work of Chen et al. (2020a), our solution at C4 

reached a better ETS (54.20% against 51.23%) with a lower BDBR (1.42% against 

1.62%). Once more, our work reached a better standard deviation for both ETS and 

BDBR when compared with this solution. 

Finally, when comparing our operation point C3 with the solution of Li et al. 

(2021a), our work reached a better ETS (48.80% against 46.13%) with a lower BDBR 

(1.01% against 1.32%). When considering the standard deviation, our work reached a 

better result in BDBR, and a worst result in ETS when compared with this solution. 
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8. LEARNING-BASED FAST DECISION SCHEME FOR INTRA-FRAME 

PREDICTION MODE SELECTION OF LUMINANCE BLOCKS 

The inclusion of new tools in the VVC intra-frame prediction significantly 

increased the number of candidate modes from the RD-list to be evaluated in the time-

consuming RDO process, requiring solutions that expressively reduce time while 

maintaining coding efficiency. This chapter presents the learning-based fast decision 

scheme, which can discard intra prediction modes from the RD-list before the RDO 

process. This scheme is composed of three solutions: (i) a fast Planar/DC decision 

based on decision tree classifiers, (ii) a fast MIP decision based on decision tree 

classifiers, and (iii) a fast ISP decision based on the block variance. This solution was 

published in (SALDANHA et al., 2021c). 

The analysis presented in Chapter 5 showed that the mode selection 

distribution between the conventional intra-frame prediction approach (AIP+MRL) and 

the new intra coding tools (MIP and ISP) can be explored. On average, AIP+MRL is 

selected 68% of the times, followed by MIP and ISP selected 24% and 8% of the times, 

respectively. Besides, Figure 34 demonstrates that Planar and DC modes are the most 

selected prediction modes in the conventional intra-frame prediction approach, 

occurring about 43% of the times. Among the angular modes, the most selected one 

(mode 50) occurs less than 5% of the times. 

 

Figure 34 – Mode selection distribution for conventional intra-frame prediction approach. 

These results allow us to conclude that, for most cases, the encoding selects 

the conventional intra-frame prediction approach. Besides, when the conventional 
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intra-frame prediction is selected, Planar and DC modes are frequently used in the 

encoding process. Therefore, an intelligent encoding time reduction scheme to decide 

when to avoid the evaluation of angular, MIP, and/or ISP modes in the RDO process 

can provide high encoding timesaving with negligible impact on the coding efficiency. 

In this solution, we also employed data mining to discover strong correlations 

between the encoding context and its attributes, but for defining decision tree 

classifiers that determine when discarding some prediction modes from the RD-list. 

For this purpose, we further implemented VTM functions and collected statistical 

information from the encoding process to offline train the decision tree classifiers using 

the REPTree algorithm in the Waikato Environment for Knowledge Analysis (WEKA) 

(HALL et al., 2009). The datasets were balanced according to the number of instances 

for each frame, block size, QP value, and output class. The training process employed 

the same video sequences, QP values and software configurations detailed in Chapter 

7. We also evaluated more complex classifiers for this solution (e.g., LGBM); however, 

since these classifiers have a higher inference time than single decision trees and our 

space for coding time reduction in this encoding module (mode selection of intra-frame 

prediction) is lower than in the block partitioning module, the obtained encoding time 

reduction with these complex classifiers was not interesting. 

8.1. Fast Planar/DC Decision based on Decision Tree Classifier 

Since the conventional intra-frame prediction selects Planar and DC for many 

cases, which are frequently used to encode smooth texture regions, our first solution 

identifies when the smooth modes (Planar and DC) tend to be selected as the best 

prediction modes. In this case, our solution removes the angular modes from the RD-

list, avoiding their evaluations in the RDO. For this purpose, we collected a large 

amount of data from the encoding process and defined a decision tree classifier to 

decide when the RDO evaluation of the angular modes can be avoided since these 

modes are unlikely to be chosen as the best ones. Table 14 displays the features used 

in the decision tree classifier, the corresponding descriptions, and the Information Gain 

(IG) (COVER; THOMAS, 1991). 
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Table 14 – Features used in the Planar/DC classifier. 

Feature Description IG 

QP The current QP value 0.094 

area The current block area 0.040 

dcInRdList Notify if DC is on RD-list 0.147 

posPlanar The position of the Planar in the RD-list 0.309 

posDC The position of the DC in the RD-list 0.270 

dcIsMPM Notify if DC is an MPM 0.130 

smoothIsFirst Notify if Planar or DC is on the first RD-list position 0.214 

mipIsFirst Notify if MIP mode is on the first RD-list position 0.031 

numAngModes Number of angular modes in the RD-list 0.350 

numMipModes Number of MIP modes in the RD-list 0.174 

numModesList Total number of modes in the RD-list 0.130 

dcSATDCost SATD-cost of DC 0.281 

planarSATDCost SATD-cost of Planar 0.192 

firstSATDNoSmooth SATD-cost of the first angular or MIP in the RD-list 0.005 

ratioSATDSmooth SATD-cost of Planar divided by SATD-cost of DC 0.094 

ratioSATD Minimum SATD-cost between Planar and DC divided by firstSATDNoSmooth 0.201 

 

  

(a) (b) 

Figure 35 – Correlation between smoothIsFirst and numAngModes features with the smooth mode 
decision. 

As examples, Figure 35(a) and (b) show the correlation of smoothIsFirst and 

numAngModes features with the smooth mode decision, respectively. Not Smooth 

indicates when an angular mode is selected as the best mode, and Smooth specifies 

when Planar or DC is selected as the best mode. When smoothIsFirst is equal to 1, a 

smooth mode is selected about 91% of the times. Also, the smaller the value of 

numAngModes, the higher is the probability of a smooth mode be selected, 

demonstrating a high correlation of these features with the smooth mode decision. 

Planar/DC decision tree was designed with tree depth eight and evaluated 
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using 10-fold cross-validation, attaining an accuracy result of 85.37% (F1-score 

85.4%). The size of this decision tree is 85. 

8.2. Fast MIP Decision based on Decision Tree Classifier 

As demonstrated in Chapter 5, MIP modes are selected only about 24% of the 

times. Therefore, our second solution identifies when MIP modes can be discarded 

from the RD-list since they are unlikely to be selected in the RDO. This solution also 

collects a large amount of data from the encoding process to define a decision tree 

classifier for deciding when MIP modes can be removed from the RD-list, avoiding the 

RDO evaluation. Table 15 displays the features used in this decision tree classifier, the 

corresponding descriptions and IG. 

Table 15 – Features used in the MIP decision tree classifier. 

Feature Description IG 

QP The current QP value 0.093 

width The current block width 0.081 

height The current block height 0.080 

area The current block area 0.038 

blockRatio Block width divided by block height 0.055 

QTMTD The current QTMT depth level 0.109 

posPlanar The position of the Planar in the RD-list 0.138 

posFirstMip The position of the first MIP in the RD-list 0.295 

numMipModes Number of MIP modes in the RD-list 0.135 

numModesList Total number of modes in the RD-list 0.129 

planarSATDCost SATD-cost of Planar 0.005 

firstSATDMip SATD-cost of the first MIP in the RD-list 0.005 

ratioConvMip SATD-cost of the first conventional mode divided by the first MIP in the RD-list 0.230 

numNeighMip Number of neighboring blocks encoded with MIP 0.057 

Figure 36(a) and (b) exemplify the correlation between numMipModes and 

ratioConvMip with the MIP decision, respectively. Not MIP and MIP indicate when a 

non-MIP or MIP mode is selected, respectively. The lower the value of numMipModes, 

the higher the probability of a non-MIP to be selected. Considering ratioConvMip, low 

values or values close to one tend to select a non-MIP mode, while values higher than 

one tend to choose a MIP mode. Both features demonstrate a high correlation with the 

MIP mode decision. MIP decision tree also was designed with tree depth eight and 

evaluated using 10-fold cross-validation, achieving accuracy results of 78.83% (F1-

score 78.8%). The size of this decision tree is 97. 
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(a) (b) 

Figure 36 – Correlation between two features and the MIP decision. 

8.3. Fast ISP Decision based on the Block Variance 

ISP is frequently used to encode more complex texture regions where the 

conventional intra-frame prediction approach cannot provide high coding efficiency. 

However, the conventional prediction can provide better rate-distortion results for 

simpler texture regions, allowing to avoid ISP evaluation. Based on this fact, our third 

solution analyzes the block texture complexity to decide when to remove ISP modes 

from the RD-list. Figure 37 shows the probability density functions for the block 

variance when the current block is predicted with ISP or not, considering Vidyo1 and 

Kimono1 video sequences encoded with QP 32. 

 

 

(a) Vidyo1 (b) Kimono1 

Figure 37 – Probability density function for ISP mode selection considering the block variance of different 
video sequences. 

One can notice that the block variance can provide a good indication of when 

applying the ISP prediction and a threshold decision can be defined to remove ISP 

modes from the RD-list. These figures also demonstrate that a static threshold 

definition may deal with inaccurate decisions for some cases since it tends to vary 

according to the video content and QP value. Therefore, our solution uses the block 
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variance to decide when removing the ISP modes, but the threshold value is computed 

online during the encoding of the first frame of the video sequence. Our solution stores 

the variance values of all blocks of the first frame that did not select ISP as the best 

mode and computes the average variance value. This variance value is used in the 

subsequent frames as a threshold to remove the ISP evaluations in the RDO. Besides, 

this threshold value can be periodically adjusted according to the application 

requirements, considering the number of frames, change of video content or, target 

timesaving. 

8.4. Designed Scheme 

Figure 38 presents the flowchart of the designed scheme to reduce the 

encoding time of intra-frame prediction mode selection.  

 

Figure 38 – Flowchart of the proposed scheme for VVC intra-frame prediction. 

After inserting AIP, MRL, and MIP modes, the decision of the Planar/DC 

classifier is computed to verify if angular modes should be removed from RD-list. 

Similarly, the decision of the MIP classifier is computed to verify if MIP modes should 

be removed from RD-list, and RDO evaluates the resulting RD-list. 
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Subsequently, in the first frame of the video sequence, the ISP modes are 

evaluated by RDO and our technique performs the threshold calculation. For the 

remaining frames, our technique compares the block variance with the threshold value 

to verify if the ISP evaluation can be skipped. 

8.5. Results and Discussion 

This section presents the results of the proposed scheme for VVC intra coding. 

It is important to mention that VTM implements some native speedup heuristics for the 

intra-frame prediction process, such as a fast RMD search of the 65 angular modes, 

the evaluation of the MRL only for MPMs, and fast decisions for ISP based on the 

previous prediction mode evaluations as described in (DE-LUXÁN-HERNÁNDEZ et 

al., 2020). In our experiments, all these speedup techniques are enabled, allowing a 

fairer comparison with the current implementation of the VTM encoder.  

Table 16 presents the ETS and BDBR results of Planar/DC and MIP DTs, fast 

ISP, and the overall proposed scheme. Planar/DC and MIP DTs reach 10.47% of ETS 

with a small increase of 0.29% in BDBR. Fast ISP reduces the coding complexity by 

8.32%, increasing the BDBR by 0.31%. Combining all solutions, the proposed scheme 

can provide an ETS of 18.32% with a negligible BDBR increase of 0.60%. Besides, the 

proposed scheme presents a small standard deviation, demonstrating stable results 

for different video content and resolutions. 

To the best of our knowledge, this is the first complexity reduction solution for 

VVC intra coding considering all the standardized intra-frame prediction tools; 

consequently, it is difficult to perform a fair comparison with related works. The works 

(YANG et al., 2020) and (CHEN et al., 2020b) used an old version of VTM (2.0) and 

reached 25.51% of ETS with a 0.54% BDBR increase and 30.59% of ETS with a 0.86% 

BDBR increase, respectively. Since our scheme targeted VTM with all standardized 

tools (e.g., MIP and ISP), having a more complex process to build the RD-list, one can 

conclude that our solution can provide high coding time savings with a minimum impact 

on the coding efficiency. 
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Table 16 – Proposed scheme results for CTC under all-intra configuration. 

Class Video Sequence 

Planar/DC and 
MIP Decision 

Trees 
Fast ISP Overall 

BDBR 
(%) 

ETS 
(%) 

BDBR 
(%) 

ETS 
(%) 

BDBR 
(%) 

ETS 
(%) 

A1 

Tango2 0.50 11.90 0.08 7.92 0.56 18.89 

FoodMarket4 0.29 8.60 0.07 6.58 0.36 15.29 

Campfire 0.26 11.82 0.03 9.26 0.29 19.63 

A2 

CatRobot 0.33 9.94 0.24 7.01 0.58 17.62 

DaylightRoad2 0.39 12.80 0.24 9.23 0.64 19.71 

ParkRunning3 0.13 8.15 0.07 5.24 0.18 12.63 

B 

MarketPlace 0.11 12.47 0.08 10.67 0.22 20.84 

RitualDance 0.19 9.92 0.24 6.84 0.44 19.79 

Cactus 0.26 12.05 0.29 5.94 0.55 19.36 

BasketballDrive 0.42 10.20 0.43 7.95 0.84 19.36 

BQTerrace 0.36 10.29 0.37 10.22 0.72 20.07 

C 

BasketballDrill 0.41 6.25 0.69 7.99 1.11 16.05 

BQMall 0.33 10.31 0.66 9.43 0.94 19.40 

PartyScene 0.19 11.26 0.34 11.18 0.54 20.28 

RaceHorsesC 0.15 11.47 0.26 11.90 0.41 18.17 

D 

BasketballPass 0.36 9.98 0.41 7.46 0.72 16.08 

BQSquare 0.32 10.52 0.39 8.25 0.69 19.24 

BlowingBubbles 0.23 9.96 0.34 7.09 0.57 16.55 

RaceHorses 0.15 11.02 0.28 11.38 0.43 19.86 

E 

FourPeople 0.28 11.48 0.46 6.65 0.79 18.21 

Johnny 0.45 9.61 0.48 6.92 0.85 17.30 

KristenAndSara 0.38 10.32 0.43 7.83 0.83 18.75 

Average 0.29 10.47 0.31 8.32 0.60 18.32 

Standard Deviation (σ) 0.11 1.50 0.18 1.85 0.24 1.98 
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9. FAST DECISION SCHEME FOR INTRA-FRAME PREDICTION TRANSFORM 

SELECTION OF LUMINANCE BLOCKS 

The insertion of new tools in the VVC transform coding significantly increased 

the number of encoding possibilities to be evaluated in the time-consuming RDO 

process, requiring solutions to reduce the computational effort while maintaining the 

coding efficiency. This chapter presents the fast transform decision scheme based on 

decision tree classifiers, which can avoid some evaluations of MTS and LFNST coding 

tools. 

As demonstrated in Chapter 5, MTS transform matrices are less used than 

DCT-II. On average, MTS is selected 35% of the times, indicating that DCT-II or TSM 

are selected for most cases. The distribution changes a little bit according to the block 

sizes but with the small standard deviation. Moreover, on average, LFNST is used in 

49% of the blocks, demonstrating that more than 50% of the cases are encoded without 

secondary transform. Besides, different block sizes show a higher variation in the 

results. From our experiments, the lowest and the highest percentage of LFNST use 

happen with 64×64 (33%) and 16×16 (66%) blocks sizes, respectively. 

These results allow us to conclude that, in most cases, the blocks are encoded 

without the use of MTS or LFNST coding tools. Consequently, the evaluations of MTS 

and LFNST in the costly RDO process can be avoided for several cases. Therefore, 

an efficient encoding time reduction scheme able to decide when to avoid the 

evaluation of MTS and/or LFNST in the RDO can provide interesting timesaving with 

negligible impact on the coding efficiency. 

For the development of this scheme, we employed the same methodology 

used in Chapter 8, but here the decision tree classifiers are responsible for determining 

when removing the evaluation of MTS and/or LFNST coding tools. In this case, single 

decision trees also presented better performance than more complex classifiers, as 

discussed in Chapter 8. 

9.1. Fast MTS Decision based on Decision Tree Classifier 

Since MTS is selected only about 35% of the times, and it is evaluated later 

than DCT-II and TSM in the VTM implementation, the coding information obtained prior 

to MTS evaluation can be used to detect when MTS evaluation is unnecessary. Based 

on the encoding context and the current coding information, our first solution identifies 
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when the MTS evaluation can be skipped from the RDO process. We collected a large 

amount of data from the encoding process and defined a decision tree classifier for 

deciding when the MTS evaluation can be skipped. Table I demonstrates the features 

used in the decision tree classifier, the corresponding descriptions and IG. 

Table 17 – Features used in the MTS decision tree classifier. 

Feature Description IG 

QP The current QP value 0.016 

area The current block area 0.086 

width The current block width 0.116 

BTD The current binary tree depth 0.111 

mipFlag Notify if MIP was selected 0.009 

ispMode Identify the ISP mode 0.017 

currCost RD-cost 0.054 

currDistortion Total distortion 0.073 

currFracBits Number of encoded bits 0.090 

currIntraMode Intra prediction mode 0.068 

noIspCost RD-cost of the best non-ISP mode 0.117 

numNonZeroCoeffs Number of non-zero coefficients 0.026 

absSumCoeffs Absolute sum of the coefficients 0.094 

numNeighMTS Number of neighboring blocks encoded with MTS 0.030 

Figure 39(a) and (b) exemplify the correlation between numNeighMTS and 

ispMode with the MTS decision, respectively. “Others” refers to the selection of DCT-

II or TSM and “MTS” refers to the MTS selection. When the numNeighMTS value is 

zero, about 61% of the blocks are encoded without MTS. In contrast, the higher the 

value of numNeighMTS, the higher the probability of encoding a block with MTS. 

Considering ispMode, when this attribute has the value one or two, more than 62% of 

the blocks are encoded without MTS, whereas if the value is zero, 51% of the blocks 

are encoded with MTS. Both features demonstrate a correlation with the MTS decision. 

MTS decision tree was designed with depth eight and size 125. This decision 

tree was evaluated using 10-fold cross-validation, achieving an accuracy result of 

73.87% (F1-score 73.8%). 
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(a) (b) 

Figure 39 – Correlation between numNeighMTS and ispMode features with the MTS decision. 

9.2. Fast LFNST Decision based on Decision Tree Classifier 

Since from the blocks encoded with DCT-II, more than 50% are encoded 

without LFNST, our second solution identifies when the LFNST evaluation can be 

skipped. For this purpose, we collected a large amount of data from the encoding 

process when the DCT-II is evaluated without LFNST. Based on the collected data, we 

trained a decision tree classifier to decide when the LFNST evaluation can be avoided 

from the RDO process. Table 18 displays the features used in this decision tree 

classifier, the corresponding descriptions and IG. 

Table 18 – Features used in the LFNST decision tree classifier. 

Feature Description IG 

width The current block width 0.019 

height The current block height 0.170 

area The current block area 0.055 

blockRatio Block width divided by block height 0.021 

MTTD The current multi-type tree depth 0.176 

mipFlag Notify if MIP was selected 0.106 

ispMode Identify the ISP mode 0.015 

currCost RD-cost 0.086 

currDistortion Total distortion 0.136 

currFracBits Number of encoded bits 0.087 

currIntraMode Intra prediction mode 0.013 

numNonZeroCoeffs Number of non-zero coefficients 0.189 

absSumCoeffs Absolute sum of the coefficients 0.046 

Figure 40(a) and (b) show the correlation between MTTD and ispMode 

attributes with the LFNST decision, respectively. When the MTTD value is zero, about 

69% of the blocks are encoded without LFNST. In contrast, for higher values of MTTD, 
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the percentage of blocks encoded with LFNST is about 52% (value 4). Regarding 

ispMode, this attribute presents a similar behavior when compared to the MTS decision 

tree classifier. When ispMode is one or two, more than 67% of the blocks are encoded 

without LFNST, and when this feature has the value zero, 50% of the blocks are 

encoded with LFNST, demonstrating a correlation with the LFNST decision. 

  
(a) (b) 

Figure 40 – Correlation between MTTD and ispMode features with LFNST decision. 

LFNST decision tree was designed with depth eight and size 123. This 

decision tree was evaluated using 10-fold cross-validation, attaining an accuracy result 

of 76.75% (F1-score 76.7%). 

9.3. Designed Scheme 

Figure 41 presents the flowchart of the fast transform decision scheme using 

decision tree classifiers. After creating the RD-list, the encoder evaluates DCT-II 

(without LFNST) and TSM mode. Subsequently, based on the result of the transform 

coding with the lowest RD-cost, we compute the features for the MTS and LFNST 

decision tree classifiers and also compute the decision of the MTS and LFNST decision 

trees. When the MTS decision tree classifier decides to skip the MTS evaluation, the 

RDO computational effort is reduced; otherwise, no simplification is performed, and 

the MTS is evaluated. Analogously, when the LFNST decision tree classifier decides 

to skip the LFNST evaluation, the RDO process is simplified; otherwise, the LFNST 

coding evaluation remains without modifications. 
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Figure 41 - Flowchart of the transform decision scheme. 

9.4. Results and Discussion 

This section presents the results obtained with the proposed fast transform 

decision scheme. Again, the training process did not use JVET CTC video sequences; 

consequently, this evaluation considered different video sequences from those used 

in the training step, allowing an unbiased evaluation of the proposed scheme. Besides, 

VTM implements some native speedup heuristics for the transform coding process, 

such as deciding to skip MTS and LFNST evaluations according to the ISP results and 

terminate the MTS evaluation according to the results of a certain MTS mode, as 

described in (ZHAO et al., 2021). In our experiments, all these speedup techniques 

are enabled, allowing a fairer comparison with the current implementation of the VTM 

encoder. 

Table 19 presents the ETS and BDBR results of the MTS decision tree, LFNST 

decision tree, and the overall proposed scheme. MTS decision tree reaches 5% of ETS 

with a small increase of 0.21% in BDBR. The LFNST decision tree reduces the coding 

time by 6.40%, increasing the BDBR by 0.23%. The proposed scheme can provide an 

ETS of 10.99% with a negligible BDBR increase of 0.43% when combining both 
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solutions. Besides, the proposed scheme presents a small standard deviation, 

demonstrating stable results for different video content and resolutions. The ETS and 

BDBR results range from 7.81% to 13.30% and from 0.15% to 0.70%, respectively. 

Table 19 – Proposed scheme results for CTC under all-intra configuration. 

Class Video Sequence 

MTS  
Decision Tree 

LFNST 
Decision Tree  

Overall 

BDBR 
(%) 

ETS 
(%) 

BDBR 
(%) 

ETS 
(%) 

BDBR 
(%) 

ETS 
(%) 

A1 

Tango2 0.22 6.04 0.47 6.29 0.70 11.83 

FoodMarket4 0.27 2.72 0.41 5.26 0.68 8.91 

Campfire 0.17 3.25 0.16 4.21 0.32 8.24 

A2 

CatRobot 0.24 5.65 0.18 6.75 0.40 9.94 

DaylightRoad2 0.20 6.21 0.19 3.88 0.40 11.92 

ParkRunning3 0.21 2.76 0.12 6.67 0.30 7.81 

B 

MarketPlace 0.24 5.29 0.14 5.54 0.38 13.17 

RitualDance 0.27 5.37 0.32 7.62 0.60 7.96 

Cactus 0.23 3.89 0.19 3.90 0.40 11.52 

BasketballDrive 0.27 5.45 0.27 6.85 0.49 11.40 

BQTerrace 0.11 4.45 0.16 5.61 0.25 11.75 

C 

BasketballDrill 0.25 6.03 0.47 4.64 0.64 9.98 

BQMall 0.25 7.13 0.17 8.45 0.41 10.44 

PartyScene 0.10 5.93 0.08 9.58 0.20 12.70 

RaceHorsesC 0.17 4.81 0.18 7.10 0.32 13.14 

D 

BasketballPass 0.27 5.50 0.20 6.72 0.45 9.51 

BQSquare 0.09 4.39 0.07 6.68 0.15 13.30 

BlowingBubbles 0.14 5.20 0.12 7.81 0.26 12.20 

RaceHorses 0.17 4.91 0.17 8.64 0.34 11.74 

E 

FourPeople 0.33 4.29 0.36 7.51 0.66 11.23 

Johnny 0.28 4.67 0.33 4.60 0.58 10.49 

KristenAndSara 0.21 6.13 0.35 6.53 0.59 12.55 

Average 0.21 5.00 0.23 6.40 0.43 10.99 

Standard Deviation (σ) 0.06 1.14 0.12 1.57 0.16 1.70 

To the best of our knowledge, this is the first encoding time reduction solution 

for VVC transform coding considering all the novel transform coding tools for VVC intra-

frame prediction; consequently, it is difficult to perform a fair comparison with related 

works. The work of Fu et al. (2019b) used an old version of VTM (3.0) and reached 

23% of ETS with a 0.16% BDBR increase; however, this solution also reduces the 

number of intra prediction modes in the RD-list and does not consider the LFNST 
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coding tool. Since our scheme targeted VTM with all standardized tools (e.g., LFNST, 

MIP, and ISP), having a more complex process to decide the best encoding possibility, 

one can conclude that our solution can provide high coding time savings with a 

minimum impact on the coding efficiency. Besides, our scheme can also be combined 

with solutions to reduce the number of intra prediction modes in the RD-list or fast CU 

decisions to reach even more impressive timesaving results. 
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10. FAST BLOCK PARTITIONING SCHEME FOR CHROMINANCE BLOCKS 

Although most of the coding effort is related to the luminance blocks, the 

encoding time of chrominance blocks cannot be neglected, especially targeting real-

time video coding. For this purpose, we designed a fast block partitioning scheme for 

chrominance intra prediction, which explores the correlation between the chrominance 

and luminance coding tree structures and the statistical information of the chrominance 

samples in the current block. This solution was published in (SALDANHA et al., 2021d). 

Figure 42(a), (b), and (c) present the block size distributions for luminance, 

chrominance (U), and chrominance (V), respectively, regarding the first frame of the 

BasketballPass video sequence, encoded with all-intra configuration and QP 37. Since 

VVC encodes chrominance channels U and V together, the same block size 

distribution is obtained for both components. One can notice that for most cases, 

chrominance is encoded with larger blocks than luminance since chrominance has 

more homogeneous regions. However, the chrominance QTMT structure evaluates all 

splitting possibilities to find the best one, demanding a high computational effort. 

 

Figure 42 – Block size distributions for (a) luminance; (b) chrominance (U); and (c) chrominance (V). 

For I-slices, luminance and chrominance QTMT structures are obtained 

separately for each CTU; however, the chrominance CTU encoding is performed after 

encoding the associated luminance CTU. As these channels represent the same 

scenario, one can explore some correlations between the luminance and chrominance 

QTMT structures. Furthermore, the characteristics of the chrominance CU samples 

can also be explored to identify the behavior of the texture and predict the best 

chrominance block partitioning type. 

10.1. Chrominance CU Splitting Early Termination Based on Luminance QTMT 

We propose the following idea to explore the correlation of the chrominance 

and luminance QTMT structures. For a given chrominance CU being evaluated in the 

(a) Y (b) U (c) V
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QTMT depth d, it is possible to verify the split type selected in the associated luminance 

CU for the same QTMT depth d.  

Considering this fact, if the selected split type for the luminance CU in this 

depth is no split, there is a high probability that the best chrominance CU has been 

found at a depth lower or equal to d. Then, the process of dividing the chrominance 

CU ends; otherwise, the execution flow remains unchanged. 

Figure 43 shows the success rate for five test video sequences (Flowervase, 

BasketballDrill, Netflix_DrivingPOV, ParkScene, and TrafficFlow) with resolutions 

ranging from 416×240 to 3840×2160, considering the four QP values defined in CTC. 

The success rate refers to the number of cases for which the proposed predictor had 

success divided by the total number of cases and it is calculated as follows: 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑅𝑎𝑡𝑒 =  
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 ℎ𝑎𝑣𝑒 𝑠𝑢𝑐𝑐𝑒𝑠𝑠

𝑇𝑜𝑡𝑎𝑙 𝑐𝑎𝑠𝑒𝑠
 (%) (5) 

 

Figure 43 – Success rate of the best chrominance block size found in the QTMT depth lower or equal 
to luminance QTMT. 

In this case, the total number of cases is the number of evaluated chrominance 

blocks. The predictor has success when the chrominance block is encoded with a 

QTMT depth lower or equal to the QTMT depth of the associated luminance block. On 

average, this predictor has a success rate higher than 70% for all QPs evaluated. 

Besides, the success rate also increases as QP increases, reaching up to 81% for QP 

37. On average, a success rate of 75% was obtained, indicating that the luminance 

QTMT structure can be a good predictor for the chrominance QTMT coding. 

Along with this analysis, Figure 44 presents the probability density functions 

for “not split” and “split” curves according to the RD-cost divided by the block area since 
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larger blocks tend to have larger RD-costs. The block area refers to the number of 

samples inside the block, and it is calculated by multiplying block width by block height. 

The chrominance RD-cost was collected for both curves when the collocated 

luminance CU was defined as not split. The “not split” indicates that the chrominance 

CU was not split when the collocated luminance CU also was defined as not split. The 

“split” indicates that the chrominance CU was split when the collocated luminance CU 

was defined as not split. 

 

Figure 44 – Probability density function of splitting or not the chrominance CU using RD-cost based on 
the luminance QTMT. 

These functions, which follow a gaussian distribution, were achieved by 

encoding the same video sequences of the previous analysis. These results 

demonstrate a high probability of the luminance QTMT predictor in having success for 

low RD-costs while having almost no chance to have success for larger values. Thus, 

this approach can be explored to perform an early termination decision according to a 

threshold criterion, increasing the success rate and decreasing the encoding efficiency 

loss. 

10.2. Fast Chrominance Split Decision Based on Variance of Sub-blocks 

Typically, the best BT/TT partition direction is highly linked to the texture 

direction (FU et al., 2019a). This link happens because the best block partitioning is 

achieved with the partition type that results in a more homogeneous region or a region 

with similar behavior since it increases the accuracy of the prediction tools and reduces 

the residual error, incurring a smaller RD-cost. 
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Thus, we propose to evaluate the variance of sub-blocks in the current 

encoding chrominance CU as a predictor to decide the BT/TT partition directions. 

Figure 45 demonstrates the calculation of horizontal and vertical variances for an 8×8 

chrominance CU in Figure 45(a) and Figure 45(b), respectively.  

To calculate the horizontal variance, we consider that the current CU is 

horizontally subdivided into two equal-sized sub-blocks (similar to the BTH 

partitioning), resulting in two 8×4 sub-blocks (in the case of the example of Figure 45). 

The varupper and varlower are obtained by calculating the variances of the highlighted 

regions in red and blue, respectively. Then, varhor refers to the sum of the variances of 

the upper (varupper) and lower (varlower) partitions. Similarly, varver considers that the 

current CU is vertically subdivided (similar to the BTV partitioning), where varleft and 

varright are added to obtain the varver. 

Considering that the lowest sum of variances indicates that the partition type 

provides more homogeneous regions, in this example of Figure 45, the vertical 

partitioning could be skipped since the horizontal partitioning is the most promising to 

achieve a better coding efficiency. 

 

Figure 45 – Illustration of the calculation of (a) horizontal and (b) vertical variances for an 8×8 
chrominance block. 

The VVC encoder minimizes the RD-cost considering both chrominance 

components (U and V) to define the best block size and prediction mode combination. 

Consequently, the proposed predictor should also consider the features of both 

chrominance components to provide more accurate decisions. In this case, we 

calculate the varhor and varver for the block samples of each chrominance component 

and only skip a given BT/TT direction if both components agree to skip that direction. 

For instance, the horizontal splitting is skipped only if varhor (U) is lower than varver (U) 
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and varhor (V) is lower than varver (V). For simplifying, we use only varhor and varver to 

represent the condition of chrominance U and V. 

Figure 46 presents the success rate of skipping the horizontal partitioning (BTH 

and TTH) when varver is lower than varhor and skipping the vertical partitioning (BTV 

and TTV) when varhor is lower than varver. 

 

Figure 46 – Success rate of skipping the horizontal or vertical splitting of BT/TT partitions using the 
variance of sub-blocks. 

Considering Equation (5), the predictor has success when it decides to skip 

the horizontal direction and the best split type selected is neither BTH nor TTH, or if 

the predictor decides to skip the vertical direction and the best split type selected is 

neither BTV nor TTV. The total number of cases is the total number of chrominance 

blocks that evaluated at least one horizontal split and one vertical split. This analysis 

also uses the same video sequences presented in Section 10.1 This evaluation shows 

that this predictor provides more than 85% of success rate for all evaluated cases. On 

average, this predictor presents a success rate of 90%, demonstrating that this solution 

can provide interesting results regarding encoding efficiency and timesavings. 

10.3. Designed Scheme 

Figure 47 presents the flowchart of the proposed fast block partitioning 

scheme, encompassing the Chrominance CU Splitting Early Termination based on 

Luminance QTMT (CSETL) and the Fast Chrominance Split Decision based on 

Variance of Sub-blocks (FCSDV). 
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Figure 47 – Flowchart of the proposed fast block partitioning scheme for chrominance coding. 

CSETL aims to terminate the chrominance QTMT evaluation early based on 

the luminance CU split type and the current chrominance RD-cost. When the 

luminance CU is “not split” and the chrominance RD-cost is lower than TH1, the 

chrominance CU is not divided and the QTMT evaluation is finished; otherwise, the 

execution proceeds to evaluate other splitting possibilities. 

FCSDV works to decide the direction of BT/TT partitions. On the one hand, 

when varver is lower than varhor the horizontal partitions are skipped; on the other hand, 

when varhor is lower than varver the vertical partitions are skipped. However, we decided 

to introduce another threshold criterion TH2, because very close variance values have 

no obvious texture direction, hampering the definition of the best split direction. 

Therefore, TH2 is a value that defines how many percent a variance value of a given 
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direction should be less than the variance value of the other direction to avoid the 

evaluation. 

We employed a detailed threshold analysis (using the video sequences 

presented in Section 10.1) that evaluates five scenarios for each solution of the 

proposed scheme, considering chrominance encoding time saving (C-ETS) and BDBR 

since the threshold values impact the encoding timesaving meaningfully. 

BDBR can be calculated individually for each channel (Y, U, and V) or 

combined for the three components. For all cases, the overall bit rate is used to 

compute BDBR (i.e., the bits considering the three components). In contrast, different 

values of Peak Signal to Noise Ratio (PSNR) are used to compute the luminance (Y), 

chrominance (U), and chrominance (V) BDBR results, according to the corresponding 

component. YUV-BDBR also uses the overall bit rate, but it computes PSNR 

considering the three components through a weighted PSNR average (ITU-T, 2020), 

providing the coding efficiency result considering all components together. Since the 

proposed solution focuses on the chrominance coding and most of the bits are used 

to encode the luminance component, the individual chrominance BDBR can become 

difficult to interpret (ITU-T, 2020). Consequently, in addition to the chrominance BDBR 

results (U-BDBR and V-BDBR), we used YUV-BDBR to evaluate the quality impact in 

all video sequence channels and the total bit rate. It is important to highlight that all 

BDBR results of the previous sections considered only the BDBR (Y) since it is widely 

adopted in the literature for solutions focusing only on the luminance channel. 

Figure 48 displays the C-ETS and YUV-BDBR results collected for different 

threshold values TH1 used in CSETL. The average and the standard deviation of the 

RD-cost per area have been saved to define the evaluation scenarios. The evaluation 

scenarios for each threshold TH1 use Equation (6), where k is empirically selected, 

ranging from 0 to 4, and μ and σ indicate the average and the standard deviation values 

for the TH computation, respectively. 

𝑇𝐻1 =  𝜇 + 𝑘 × 𝜎  (6) 

CSETL allows various operation points for providing better coding efficiency or 

higher timesaving. We have separated two interesting limits to evaluate as a case 

study (Section 10.4). The TH1b in the solid red line provides a good tradeoff between 

YUV-BDBR and C-ETS, while the TH1d in the dotted blue line denotes the highest C-

ETS. 
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Figure 48 – Chrominance encoding timesaving and BDBR impact for CSETL solution according to some 
threshold values. 

Figure 49 exhibits the C-ETS and YUV-BDBR results according to TH2 for the 

FCSDV solution. Since the analysis in Section 10.2 presented a high success rate for 

this solution, we decided to verify the impact of using some threshold values and also 

without using a threshold (“noTH” in Figure 49). This threshold defines how many 

percent one variance must be less than the other for skipping BT/TT direction. For 

instance, TH2=110% indicates that a given direction variance must be less than 10% 

of the other for skipping a direction. 

 

Figure 49 - Chrominance encoding timesaving and BDBR impact for FCSDV solution according to some 
threshold values. 

In this case, the higher the threshold, the lower the C-EST and YUV-BDBR 

TH1a

TH1b

TH1c

TH1d

TH1e

5

7

9

11

13

15

17

19

21

23

0.06 0.12 0.16 0.17 0.20

C
-E

TS
 (

%
)

YUV-BDBR (%)

TH1a → avg

TH1b → avg + std
TH1c → avg + 2 × std
TH1d → avg + 3 × std
TH1e → avg + 4 × stdU-BDBR: 0.45%

V-BDBR: 0.42%

U-BDBR: 0.81%
V-BDBR: 0.76%

U-BDBR: 0.88%
V-BDBR: 1.00%

U-BDBR: 0.98%
V-BDBR: 0.91%

U-BDBR: 1.14%
V-BDBR: 1.14%

TH2d

TH2c

TH2b

TH2a

noTH

5

15

25

35

45

55

65

0.12 0.16 0.22 0.35 0.42

C
-E

TS
 (

%
)

YUV-BDBR (%)

TH2a → 101%
TH2b → 105%
TH2c → 110%
TH2d → 115%

U-BDBR: 0.52%
V-BDBR: 0.54%

U-BDBR: 0.77%
V-BDBR: 0.58%

U-BDBR: 1.06%
V-BDBR: 0.83%

U-BDBR: 2.08%
V-BDBR: 1.89%

U-BDBR: 2.66%
V-BDBR: 2.11%



117 

 

impact. Following the same idea as the previous experiment, we selected two case 

studies. We choose the highlighted threshold with a solid red line (TH2a) since it can 

avoid the cases where the variance values are very close, reducing the YUV-BDBR 

loss while maintaining a high C-ETS. The “noTH” evaluation provides the highest C-

ETS reduction; this evaluation associated with TH1d of the CSETL solution can 

achieve the highest ETS of the proposed scheme. 

Therefore, we selected two case studies considering two combinations of 

thresholds to be evaluated in the next section. Case 1 refers to the combination of 

TH1b (CSETL) and TH2a (FCSDV), which provides the best tradeoff between coding 

efficiency and ETS. Case 2 indicates the combination of TH1d (CSETL) and “noTH” 

(FCSDV), which allows the highest ETS of the proposed scheme. 

10.4. Results and Discussion 

This section presents the results of the fast block partitioning scheme for 

chrominance intra prediction, which encompasses CSETL and FCSDV solutions. 

Table 20 shows the results acquired with the proposed solution for Case 1 and 

Case 2. “Average (without TS *)” indicates the average of all video sequences 

excluding BasketballDrill that was used in the data collection step. C-ETS presents the 

time savings for chrominance only, and T-ETS presents the total time savings. 

Case 1 is the configuration of thresholds that provides a good tradeoff between 

compression performance and C-ETS. In this case, the proposed scheme can save 

the chrominance and total encoding time by about 60.03% and 8.18%, with a negligible 

impact of 0.66% in YUV-BDBR, on average (without considering BasketballDrill). 

Negligible variation in the average results is obtained when the training sequence is 

considered, demonstrating that the proposed scheme can achieve excellent results 

regardless of the characteristics of the video sequence. On the one hand, the Campfire 

and ParkRunning3 video sequences produce the highest (72.97%) and the lowest 

(42.90%) C-ETS, respectively. On the other hand, Campfire and BQSquare result in 

the highest (1.79%) and lowest (0.20%) YUV-BDBR increase, respectively. These 

results demonstrated that the scheme could reduce more than 60% of the chrominance 

encoding time, on average, with minor impacts on the coding efficiency. 

Furthermore, it is important to highlight that the highest C-ETS will not always 

result in the highest T-ETS since the luminance and chrominance encoding time 

distribution varies according to the video sequence and QP encoded. For instance, 
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ParkRunning3 obtained 42.90% of C-ETS and 14.04% of T-ETS, whereas 

MarketPlace attained 60.49% of C-ETS and 6.97% of T-ETS. 

Table 20 – Experimental results obtained with the proposed fast block partitioning scheme for 
chrominance coding under all-intra configuration. 

Class 
Video  

Sequence 

Case 1 Case 2 

YUV 
BDBR 

(%) 

U 
BDBR 

(%) 

V 
BDBR 

(%) 

C-ETS 
(%) 

T-ETS 
(%) 

YUV 
BDBR 

(%) 

U 

BDBR 
(%) 

V 

BDBR 
(%) 

C-ETS 
(%) 

T-ETS 
(%) 

A1 

Tango2 1.07 7.91 8.40 64.29 4.87 1.11 8.26 8.69 65.75 5.72 

FoodMarket4 0.76 3.37 3.71 62.84 6.85 0.82 3.69 3.99 66.23 6.93 

Campfire 1.79 5.96 8.35 72.97 14.73 2.33 8.54 9.30 81.18 17.15 

A2 

CatRobot 1.54 7.70 7.32 68.73 11.76 1.93 9.51 9.12 74.77 13.16 

DaylightRoad2 0.39 4.98 3.74 58.52 4.77 0.46 6.07 4.32 64.08 6.56 

ParkRunning3 0.45 0.90 0.85 42.90 14.04 0.90 1.94 1.75 66.73 21.59 

B 

MarketPlace 0.55 3.90 2.95 60.49 6.97 0.72 5.15 3.56 68.86 8.95 

RitualDance 0.62 3.53 3.91 59.37 5.79 0.70 3.98 4.50 64.29 5.88 

Cactus 0.55 2.97 3.67 58.03 5.59 0.70 3.76 4.67 65.02 5.07 

BasketballDrive 0.64 3.17 3.70 58.42 4.11 0.75 3.78 4.35 63.71 6.23 

BQTerrace 0.21 3.12 2.92 53.95 6.24 0.28 3.72 3.54 61.61 7.09 

C 

BasketballDrill * 1.06 3.91 4.18 59.76 9.63 1.29 4.70 5.01 66.07 10.83 

BQMall 0.62 3.34 3.46 63.08 9.64 0.71 3.68 4.11 67.11 9.78 

PartyScene 0.39 2.35 2.53 57.50 10.02 0.50 2.95 3.26 63.94 11.59 

RaceHorsesC 0.52 1.61 2.43 64.20 10.78 0.67 1.81 2.97 70.57 12.28 

D 

BasketballPass 0.88 3.47 3.08 59.75 8.05 1.08 4.02 3.76 65.91 9.60 

BQSquare 0.20 1.67 2.42 53.18 5.16 0.22 1.76 2.69 58.80 5.77 

BlowingBubbles 0.42 1.80 2.33 57.61 9.74 0.49 2.48 2.61 62.86 9.18 

RaceHorses 0.71 2.18 3.04 62.47 10.28 0.85 2.56 3.82 69.80 11.82 

E 

FourPeople 0.36 1.74 1.91 57.23 6.22 0.41 1.90 2.33 60.96 6.25 

Johnny 0.72 3.73 2.26 62.51 6.51 0.76 3.92 2.74 65.99 8.07 

KristenAndSara 0.52 2.46 2.21 62.65 9.64 0.58 2.70 2.59 65.82 8.79 

Average (without TS *) 0.66 3.42 3.58 60.03 8.18 0.81 4.10 4.22 66.38 9.40 

σ (without TS *) 0.39 1.83 1.96 5.86 2.99 0.50 2.19 2.12 4.75 4.04 

Considering Case 2 that allows our scheme to achieve a higher C-ETS than 

other threshold combinations, the obtained average C-ETS and T-ETS were 66.38% 

and 9.40%, respectively, with a minor impact of 0.81% in YUV-BDBR. In this case, a 

higher time saving was obtained at the cost of a YUV-BDBR increase, if compared to 

Case 1. Regarding only the chrominance channels, Case 1 increases the U-BDBR 

and V-BDBR by 3.42% and 3.58%, whereas Case 2 impacts 4.10% and 4.22% in U-

BDBR and V-BDBR, respectively. 

To the best of our knowledge, this is the first solution to reduce the encoding 

time of chrominance block partitioning in the VVC encoder, presenting the results of 

chrominance timesaving and coding efficiency.  
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11. CONCLUSIONS AND FUTURE WORK 

This Thesis proposed several algorithms using different approaches for 

different encoding modules to reduce the computational effort of the VVC intra-frame 

prediction. This Thesis was motivated by the high computational cost of the VVC 

standard due to the insertion of new coding tools to improve the coding efficiency. The 

VVC standardization adopted and proposed several new tools to efficiently encode 

high video resolution, increasing the encoding effort significantly compared to previous 

coding standards. Hence, VVC introduced new challenges concerning efficient real-

time video processing, requiring efficient solutions to reduce computational cost. 

As the first contribution of this Thesis, we can mention the extensive 

performance analysis of VVC intra-frame prediction presented in Chapter 5. The 

results proved that VVC provides substantial coding efficiency gain over HEVC, mainly 

for higher resolutions. Moreover, the encoding time and usage distribution analysis 

allowed us to identify the most time-consuming steps of VVC intra-frame prediction, 

which was crucial in developing our encoding time reduction solutions. 

The contributions of this Thesis regarding time savings algorithms are: (i) 

encoding time reduction of the block partitioning for luminance samples; (ii) encoding 

time reduction of intra-frame prediction mode selection for luminance samples; and (iii) 

encoding time reduction of intra-frame prediction transform selection for luminance 

samples; (iv) encoding time reduction of the block partitioning for chrominance 

samples. 

The topic described in (i) encompasses a statistical-based solution and a 

configurable solution based on machine learning to reduce the computational effort of 

the block partitioning structure. The statistical-based solution used the variance of 

block samples and the current prediction mode to decide when skipping horizontal or 

vertical split types of MTT structure, providing 29% encoding time reduction with a 

0.8% BDBR increase. The configurable solution based on machine learning uses an 

LGBM classifier for each split type, which can decide when a determined split type can 

be skipped or not. This solution provides high flexibility with different operation points, 

reducing the encoding time from 35.22% to 61.34% and impacting from 0.46% to 

2.43%. 

The intra-frame prediction mode and transform selection using decision tree 

classifiers were presented in the topic (ii) and topic (iii), respectively. The mode 
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selection encompasses two solutions using decision trees and one solution using an 

online statistical decision. The first and second decision trees decide when removing 

angular modes and MIP modes from the RDO evaluation, respectively. The online 

decision computes the variance of block samples and decides when skipping the ISP 

in the RDO evaluation. This solution provides 18.32% encoding time saving with a 

0.60% BDBR increase. The transform selection encompasses two solutions using 

decision trees, where the first one decides when skipping the MTS evaluation and the 

second one decides when skipping the LFNST evaluation. This solution reaches 11% 

of encoding timesaving at the cost of 0.43% in BDBR.  

Topic (iv) refers to the fast block partitioning scheme for chrominance block 

samples, where the solution uses the luminance block partitioning information and the 

variance of chrominance block samples to skip some split evaluations. This is the first 

solution in the literature focusing on the block partitioning of chrominance, providing 

results of coding efficiency and timesaving in the chrominance channel. This solution 

reaches more than 60% of chrominance encoding timesaving and 8% of total encoding 

timesaving, increasing about 0.7% of YUV-BDBR. 

The proposed solutions in this Thesis presented competitive results compared 

to the related works. It is important to highlight that combining all these solutions in a 

VVC encoder can furnish good timesaving results but without providing the full potential 

of each method since they were designed individually. In developing each solution, we 

have considered the baseline VTM reference software (i.e., without modifications) to 

extract the features for the machine learning methods and compute the data for 

statistical analysis and threshold evaluations. Based on this fact, if we directly combine 

these solutions in the encoder, the solutions should consider another coding context; 

otherwise, more wrong decisions can be made than expected, decreasing the coding 

efficiency. The ideal scenario for this case is to incrementally introduce the proposed 

solutions into the reference software and specialize them accordingly with the new 

encoder context to maintain the high performance of the proposed solutions with a 

good tradeoff between timesaving and coding efficiency. 

Summarizing this Thesis, it was designed several encoding time reduction 

solutions applying heuristic and machine learning approaches. Our evaluations 

demonstrated that significant timesaving was obtained applying these approaches with 

minor impact on the video quality, proving its claim. However, there is a vast space 

that still can be explored for achieving higher timesaving in the VVC encoder. 
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11.1. Future Work 

We can note several open research possibilities not covered by the literature 

yet in the VVC encoder. The first possibility is to combine the proposed solutions in a 

VVC encoder by specializing the solutions to a context where they work together. 

Moreover, although each solution proposed in this work provides significant timesaving 

results for intra-frame prediction, there are many points that can be considered for 

future research. For instance, the improvement of the methods that apply machine 

learning by investigating novel features that are more meaningful to the transform or 

mode selection and the development of new solutions to speed up the mode selection 

of chrominance coding. 

Besides, there are a few works in the literature focusing on the VVC inter-frame 

prediction, which is a module with high computational complexity in modern video 

coders. Solutions for the block partitioning structure in the inter-frame prediction were 

not explored enough. VVC also introduces novel coding tools for inter-frame prediction, 

such as affine motion compensation, geometric partitioning mode beyond the 

conventional motion estimation process that still do not have solutions in the literature 

for encoding effort reduction. 

On hardware design, one can find only a few works in the literature designing 

small solutions for VVC coding tools, mainly for transform coding. However, there is 

still space for design fast and low-power systems for both intra- and inter-frame 

prediction tools. 

Additionally, since there is a lot of video content encoded with previous video 

coding standards such as H.264/AVC and HEVC the transcoding to VVC is necessary 

to enable gradual migration to the most recent video coding standard. Hence, there is 

a vast space to explore encoding effort reduction solutions for transcoding of 

H.264/AVC or HEVC to VVC format. 
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APPENDIX A – COMMON TEST CONDITIONS 

The Common Test Conditions (CTC) for VVC were developed by the experts 

of JVET to conduct the experiments in a well-defined environment and to facilitate the 

comparison of results between the different techniques and tools developed. The video 

sequences specified by the CTC contain several distinct characteristics to provide a 

robust evaluation. Thus, the CTC is regularly updated with the goal of providing an 

evaluation that approximates the real environment of a video encoder. 

The CTC defines four main test configurations to be used in the evaluations: 

(i) All-Intra (AI); (ii) Low-Delay (LD); (iii) Low-Delay P (LDP); and (iv) Random-Access 

(RA). The all-intra configuration defines that all frames of a video sequence are I-

frames, where only the intra-frame prediction is available in the encoding process. In 

the low-delay, only the first frame of the encoded video sequence is I-frame and the 

remaining frames are B-frames, allowing inter-frame prediction with one or two 

references, whereas low-delay P allows only P-frames (one reference). The random-

access configuration uses a hierarchical temporal structure of B-frames, where I- and 

B-frames are employed and the coding process is performed through GOPs. 

For all configurations of this CTC, the encoder works with 10 bit-depth to 

represent each sample in the YUV format. This set of configuration allows the 

evaluation of encoding and decoding process for different scenarios. For instance, 

when a specific experiment is performed for a given intra coding tool, the all-intra 

configuration can be employed. 

The video sequences defined for the experiments are divided into six classes, 

including video resolutions from 416×240 to 3840×2160 pixels, totalizing 22 video 

sequences. Classes A1 and A2 refer to six UHD 4K (3840×2160 resolution) video 

sequences. Class B has five video sequences with 1920×1080 resolutions. Class C 

and D represent videos with 832×480 and 416×240 resolutions, respectively, each one 

with four video sequences. Finally, Class E indicates three video sequences with 

1280×720 resolution. Moreover, each video sequence should be encoded with 22, 27, 

32, and 37 QP values. 

The specifications of these video sequences are listed below: 
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Class Video Sequence Frames Frame Rate Bit Depth 

A1 

Tango2 294 60 10 

FoodMarket4 300 60 10 

Campfire 300 30 10 

A2 

CatRobot 300 60 10 

DaylightRoad2 300 60 10 

ParkRunning3 300 50 10 

B 

MarketPlace 600 60 10 

RitualDance 600 60 10 

Cactus 500 50 8 

BasketballDrive 500 50 8 

BQTerrace 600 60 8 

C 

BasketballDrill 500 50 8 

BQMall 600 60 8 

PartyScene 500 50 8 

RaceHorsesC 300 30 8 

D 

BasketballPass 500 50 8 

BQSquare 600 60 8 

BlowingBubbles 500 50 8 

RaceHorses 300 30 8 

E 

FourPeople 600 60 8 

Johnny 600 60 8 

KristenAndSara 600 60 8 
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APPENDIX B – BACKGROUND ON MACHINE LEARNING 

 

Machine learning is a subfield of artificial intelligence concerned with designing 

algorithms capable of obtaining knowledge from data analysis. Algorithms based on 

machine learning are used to determine the value of dependent variables by looking 

at the value of some features in the dataset, identifying regularities, and building 

generalization rules that can be expressed as models (RUSSEL; NORVIG, 2002). 

Supervised learning is an approach to building machine learning algorithms 

based on a training dataset containing the inputs and the desired outputs. This 

approach can be further categorized into regression and classification algorithms. The 

classification algorithms classify the input samples into discrete values (categories or 

classes). In machine learning, there are binary and multiclass classification algorithms; 

the first classifies the data into two classes, and the last classifies the data without 

restricting the number of classes. Binary classification algorithms are the most studied 

case since binary problems are easier to interpret and train. Besides, a multiclass 

problem can be reduced to an ensemble of several binary problems. This work uses 

supervised learning applying binary classification algorithms. 

In most cases, the training process is performed offline using the entire training 

dataset. If the model provides a good generalization, a high performance is expected 

when tested with a dataset different from the training one. The performance of binary 

classification models can be evaluated using different metrics and most of them are 

based on known concepts in machine learning, such as True Positive (TP), True 

Negative (TN), False Positive (FP), and False Negative (FP). TP refers to the number 

of correctly classified positive values, whereas TN indicates the number of correctly 

classified negative values. In addition, FP and FN are interpreted as the additive 

inverse of TP and TN, respectively. 

The metrics used in this work are accuracy and F1-score. Accuracy measures 

the ratio of correct predictions over the total number of instances evaluated (i.e., the 

sum of TP and TN divided by the sum of TP, TN, FP, and FN). F1-score is the harmonic 

mean between precision and recall values. Precision measures how many positive 

predictions are correct (i.e., TP divided by the sum of TP and FP), and recall measures 

how many positive cases the model correctly predicted over all the positive cases in 

the dataset (i.e., TP divided by the sum of TP and FN) (HOSSIN; SULAIMAN, 2015). 



132 

 

APPENDIX C – LIST OF PUBLICATIONS DURING THIS PHD 

Papers Published in Journals Directly Related with this Thesis  

1. Mário Saldanha, Gustavo Sanchez, César Marcon, Luciano Agostini. Configurable 

Fast Block Partitioning for VVC Intra Coding Using Light Gradient Boosting 

Machine. IEEE Transactions on Circuits and Systems for Video Technology, v. pp, 

p. 1-1, 2021. 

2. Mário Saldanha, Gustavo Sanchez, César Marcon, Luciano Agostini. Performance 

Analysis of VVC Intra Coding. Journal of Visual Communication and Image 

Representation, v. 79, p. 103202, 2021. 

3. Mário Saldanha, Gustavo Sanchez, César Marcon, Luciano Agostini. Fast Block 

Partitioning Scheme for Chrominance Intra Prediction of Versatile Video Coding 

Standard. Journal of Electronic Imaging, v. 30, p. 1, 2021. 

4. Marcel Corrêa, Mário Saldanha, Alex Borges, Guilherme Corrêa, Daniel Palomino, 

Marcelo Porto, Bruno Zatt, Luciano Agostini. AV1 and VVC Video Codecs: 

Overview on Complexity Reduction and Hardware Design. IEEE Open Journal of 

Circuits and Systems, v. 2, p. 564-576, 2021. 

Papers Published in Conferences Directly Related with this Thesis 

1. Mário Saldanha, Gustavo Sanchez, César Marcon, Luciano Agostini. Fast 

Transform Decision Scheme for VVC Intra-Frame Prediction Using Decision Trees. 

IEEE International Symposium on Circuits and Systems, 2022. (Submitted) 

2. Mário Saldanha, Gustavo Sanchez, César Marcon, Luciano Agostini. Analysis of 

VVC Intra Prediction Block Partitioning Structure. Visual Communications and 

Image Processing, 2021. (Accepted) 

3. Mário Saldanha, Gustavo Sanchez, César Marcon, Luciano Agostini. Learning-

based Complexity Reduction Scheme for VVC Intra-Frame Prediction. Visual 

Communications and Image Processing, 2021. (Accepted) 

4. Mário Saldanha, Gustavo Sanchez, César Marcon, Luciano Agostini. Complexity 

Analysis of VVC Intra Coding. IEEE International Conference on Image Processing, 

2020. 



133 

 

5. Mário Saldanha, Gustavo Sanchez, César Marcon, Luciano Agostini. Fast 

Partitioning Decision Scheme for Versatile Video Coding Intra-Frame Prediction. 

IEEE International Symposium on Circuits and Systems, 2020. 

6. Mário Saldanha, Marcel Corrêa, Guilherme Corrêa, Daniel Palomino, Marcelo 

Porto, Bruno Zatt, Luciano Agostini. An Overview of Dedicated Hardware Designs 

for State-of-the-Art AV1 and H.266/VVC Video Codecs. IEEE International 

Conference on Electronics, Circuits and Systems, 2020. 

Book Chapter 

1. Vladimir Afonso, Mário Saldanha, Ruhan Conceição, Murilo Perleberg, Marcelo 

Porto, Bruno Zatt, Altamiro Susin, Luciano Agostini. Real-time architectures for 3D 

video coding. VLSI Architectures for Future Video Coding. 1ed.: Institution of 

Engineering and Technology, v. 1, p. 191-226, 2019. 

Other Papers Published in Journals 

1. Mário Saldanha, Gustavo Sanchez, César Marcon, Luciano Agostini. Fast 3D-

HEVC Depth Map Encoding Using Machine Learning. IEEE Transactions on 

Circuits and Systems for Video Technology, v. 30, p. 850-861, 2020. 

2. Mário Saldanha, Gustavo Sanchez, César Marcon, Luciano Agostini. Tile 

Adaptation for Workload Balancing of 3D-HEVC Encoder in Homogeneous 

Multicore Systems. IEEE Transactions on Circuits and Systems I-Regular Papers, 

v. 67, pp. 1704-1714, 2020. 

3. Mário Saldanha, Ruhan Conceição, Vladimir Afonso, Giovani Ávila, Altamiro Susin, 

Marcelo Porto, Bruno Zatt, Guilherme Corrêa, Luciano Agostini. Complexity and 

compression efficiency assessment of 3D-HEVC encoder. Multimedia Tools and 

Applications, v. 79, pp. 25723-25746, 2020. 

4. Gustavo Sanchez, Mário Saldanha, Ramon Fernandes, Rodrigo Cataldo, Luciano 

Agostini, César Marcon. 3D-HEVC Bipartition Modes Encoder and Decoder Design 

Targeting High-Resolution Videos. IEEE Transactions on Circuits and Systems I-

Regular Papers, v. 67, p. 415-427, 2020. 

5. Vladimir Afonso, Ruhan Conceição, Mário Saldanha, Luciano Braatz, Murilo 

Perleberg, Guilherme Correa, Marcelo Porto, Luciano Agostini, Bruno Zatt, Altamiro 



134 

 

Susin. Energy-Aware Motion and Disparity Estimation System for 3D-HEVC With 

Run-Time Adaptive Memory Hierarchy. IEEE Transactions on Circuits and Systems 

for Video Technology, v. 29, pp. 1878-1892, 2019. 

6. Gustavo Sanchez, Mário Saldanha, Luciano Agostini, César Marcon. Analysis of 

parallel encoding using tiles in 3D High Efficiency Video Coding. Signal Image and 

Video Processing, v. 13, pp. 1079-1086, 2019. 

7. Mariana Ucker, Vladimir Afonso, Mário Saldanha, Luan Audibert, Ruhan 

Conceição, Altamiro Susin, Marcelo Porto, Bruno Zatt, Luciano Agostini. High-

Throughput Hardware for 3D-HEVC Depth-Map Intra Prediction. IEEE Design & 

Test, v. 37, pp. 7-14, 2020. 

Other Papers Published in Conferences  

1. Mário Saldanha, Gustavo Sanchez, César Marcon, Luciano Agostini. TITAN: Tile 

Timing-Aware Balancing Algorithm for Speeding Up the 3D-HEVC Intra Coding. 

IEEE International Symposium on Circuits and Systems, 2019. 

2. Mário Saldanha, Gustavo Sanchez, César Marcon, Luciano Agostini. Time 

Reduction on 3D-HEVC Depth Maps Coding using Static Decision Trees Built 

Through Data Mining. XXV Simpósio Brasileiro de Sistemas Multimídia e Web, 

2019. 

3. Christopher Moura, Mário Saldanha, Gustavo Sanchez, César Marcon, Luciano 

Agostini. Fast Intra Mode Decision for 3D-HEVC Depth Map Coding using Decision 

Trees. IEEE International Conference on Electronics, Circuits and Systems, 2020. 


