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Abstract 

 

 
 

The conventional insurance was not effective on promoting massive insurance 
uptake in developing countries like Brazil. Its well-known operational problems and 
the lack of information on covariant risk prevent the insurers to remove risk from the 
system and so operate with risk independent portfolios. Since farmers do not find 
the expected utility in the conventional insurance, less than 15% of the crop area is 
currently insured in the country. We evaluated the synergism between actuary and 
remote sensing tools to outline an alternative insurance product based on area-yield 
concept. Empirical analyses were performed over 10 years of soybean growth inside 
a continuous region encompassing 54 counties at the North of Rio Grande do Sul 
state in Brazil. We evaluate the feasibility of insurance companies to offer a soybean 
crop area-yield insurance as the actuarial/operational flow is supported by yield 
correlation assessment from remote sensing data analysis. Results suggest the 
area-yield based insurance find a new attractive operational applying context as 
remote sensing provides yield inputs in high spatial and temporal resolutions. It was 
showed the systemic risk can be successfully managed through the space-time 
clustering of the estimated yields from soybean areas and it is a better strategy than 
the structural correlation from the less meaningful political county limits. The 
actuarial simulations of producer utility and premium loading showed that using per 
cluster correlation structure to set insurance parameters outperforms both using per 
county correlations structure and using no insurance. In contrast to county political 
limits, the extracted utility rose 39% with clusters correlation structure.    

 
Keywords: Cluster analysis. Yield prediction. Soybean. Spacetime yield correlation. 
Insurance utility optimization. 
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Resumo 

 
 
 

 
 
 
O seguro convencional não foi eficaz em promover a adoção massiva de seguros 
em países em desenvolvimento como o Brasil. Seus conhecidos problemas 
operacionais e a falta de informações sobre o risco covariante impedem as 
seguradoras de retirarem o risco do sistema e operarem com carteiras 
independentes de risco. Como os agricultores não encontram a utilidade esperada 
no seguro convencional, menos de 15% da área de cultivo está segurada 
atualmente no país. Avaliamos o sinergismo entre as ferramentas atuarias e de 
sensoriamento remoto para delinear um produto de seguro alternativo com base no 
conceito de rendimento por área. As análises empíricas foram realizadas ao longo 
de 10 anos de cultivo de soja em uma região contínua abrangendo 54 municípios 
no norte do estado do Rio Grande do Sul. Avaliamos a viabilidade das seguradoras 
em oferecer um seguro de produtividade da área de cultivo de soja, uma vez que o 
fluxo atuarial / operacional é apoiado pela avaliação da correlação de produtividade 
a partir da análise de dados de sensoriamento remoto. Os resultados sugerem que 
o seguro baseado em rendimento de área encontra um novo contexto de aplicação 
operacional atraente, pois o sensoriamento remoto fornece dados de rendimento 
em altas resoluções espaciais e temporais. Foi demonstrado que o risco sistêmico 
pode ser gerenciado com sucesso por meio do agrupamento espaço-temporal dos 
rendimentos estimados das áreas de soja e é uma estratégia melhor do que usar a 
correlação estrutural dos limites políticos de municípios, menos significativos. As 
simulações atuariais da utilidade do produtor e carregamento de prêmio mostraram 
que o uso da estrutura de correlação por cluster para definir parâmetros de seguro 
supera o desempenho tanto usando a estrutura de correlações por município quanto 
sem seguro. Em contraste com os limites políticos municipais, a utilidade extraída 
aumentou 39% com a estrutura de agrupamentos por correlação. 

 
Palavras-chave: Análise de agrupamentos. Estimação produtividade. Soja. 
Correlação de rendimento espaço-temporal. Otimização da utilidade do seguro. 
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1 Introduction 

 

Agricultural insurance demand accurate risk evaluation along the process by 

which economic sectors will take the risk from producers. However, the lack of 

effective tools to classify risk level increases operational costs, prevents the long-

term investments by the private sector and consequently turns products unsuitable 

for farmers. Conventional rural insurance products set the pricing of individual 

contracts on historical regional yields and indemnities are paid after a field 

verification of losses. It increases operational costs of the insurance and favors 

information asymmetries, moral hazard (where farmers have incentive to let their 

crops fail in order to receive a payout), and adverse selection (where those farmers 

less skilled at farming purchase the insurance, resulting in higher premium levels 

and more frequent payouts) (Miranda, 1991; Glauber, 2004; Ozaki, 2008). They also 

offer coverage against adverse weather effects in a generic way but weather 

information is not explicitly included at the rating or indemnity steps. Coverage is 

also limited to the availability of public subsidies, whose amount is variable from year 

to year (Glauber, 2004). 

Traditional subsidized farm yield insurance suffers to achieve equity of 

premium and indemnities. When the subsidy is not high enough, only the more risk-

exposed farmers tend to join the insurance programs. In this situation, equity of 

premiums and indemnities cannot be achieved with reasonable premium price. 

When the cost of insurance is diminished with an increase of subsidies, the farmers 

less prone to receive indemnities join the policies. This grants a possibility of equity 

but also makes the government subsidy marginal cost per hectare increase 

exponentially. This may have relation to the ignored systemic risk incorporated in 

these policies and can transfer the premium costs from the more to the less risk-

exposed farmers as observed in USA (Glauber, 2004). 

Risk assessment is the point at issue when economically sustainable crop 

insurance contracts are designed. Specifically, in crop insurance, due to correlated 

crop yield loss, companies are exposed to undiversifiable systemic risk over their 
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region of actuation. Because crop default is a systemic risk, crop insurance market 

has not been actuarially efficient to deal with the risk exposure of their portfolios and 

the government ends up absorbing it (Miranda, 1997). Alternative methods to deal 

with systemic or undiversifiable risk have being investigated, but to be offered they 

all demand a reliable risk assessment tools (Miranda and Glauber, 1997; Carter, 

2007). 

Well-designed risk assessment products rely on data availability and quality 

to be used as a proxy to fluctuations in production (Miquelluti, 2019).  It will be all 

accomplished if accurate risk scores can be delivered for the workflow and can be 

used as structured and pragmatic way of measuring risk exposure. In the last 

instance, risk classifying should be on dashboards to be used along with information 

that is readily available from individual contract at the farming level.  

The interest for index-based weather insurance schemes is growing recently 

as they are pointed out as a promising risk transfer tool against weather related risks 

(e.g. Hellmuth et al., 2009; Afriyie-Kraft et al., 2020; Fonta et al., 2018). These 

programs differ from traditional insurance in that payouts are directly tied to weather 

events rather than crop failure, which minimizes problems arising from asymmetric 

information (basis risk) and reduces the overhead cost of insurance as there is no 

need for in-field assessment of damage. Index-based weather insurance exploits the 

fact that weather observations can be used as proxies for crop losses. Weather 

observations obtained from meteorological services are used to determine payouts. 

Once a predefined threshold (trigger) of the underlying weather index has been 

reached during a specified time period, the contract starts to pay out.  

Weather-based index insurance protects against specific events or risks, such 

as rainfall deficits and damage temperatures. Thus, it removes one or more 

production risks, but does not account for the crop loss itself which results from the 

whole local field (soil, plant, atmosphere, and technology) production system.  

Since the index insurance only covers specific risks, it only provides partial 

protection and is therefore only one part of a complete risk management/adaptation 

package (Osgood et al., 2007). The popularity of this kind of insurance has led to 

the advent of a number of pilot projects, especially in lower income countries (Skees, 
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2008). However, its success strongly depends on a careful design under local 

conditions that takes into consideration aspects related to potential demand, 

identification and proper modeling of the best sources of weather information, 

suitable pricing, and risk assessment methodologies among other factors.  

Although weather-based index insurance became attractive due to the 

lowering of operational costs, area-yield based insurance is more effective on 

minimizing the basis risk and making the farmers willing to pay by insurance product. 

In area-yield insurance, indemnities and premiums are based on a spatially localized 

yield within a previously defined area in which the yield is aggregated, instead on 

producer’s individual yield. Indemnities paid to the individual producers equals the 

difference in aggregate yield and some agreed critical trigger value relative to the 

area (aggregated group) historical average yield. All producers in the defined area 

receive the same indemnity per insured acre regardless his actual crop yield and 

pay the same premium rate (Miranda, 1991). 

Conversely to traditional crop insurance, in area-yield based contracts the 

insurer and farmer have the same amount of information about the aggregate yield, 

which goes in favor of the reduction of basis risk and adverse selection. It is also 

attractive by the fact of that a single farm cannot influence average area-yield 

effectively and its specific risk is not transferred to the system. Under area-yield 

based contracts, the farmer will aim his potential productivity and consequently the 

moral hazard is mitigated (Miranda and Glauber, 1997). 

The presence of alternative methods (e.g. future and option markets) to 

compensate for yield/price fluctuation between sowing and harvest increase the 

area--yield insurance effectiveness in comparison to the traditional farm level 

insurance (Wang et al., 1998). This effect may be observed because crop insurance 

incorporates, in the lack of alternative methods to secure farm products price, a 

mechanism to ensure a higher payment based on expected price. When this 

mechanism is substituted by other means, conventional farm level insurance loses 

some competitiveness in comparison to area-yield insurance. 
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Area-yield insurance contracts stems from the idea that the productivity 

observed in a farm is related to the aggregated yields according to the Equation 1 

(Miranda, 1991). 

 

                                                           𝑦𝑖  =  μ𝑖
𝑦

 + β𝑖
𝑦

 (𝑦̅  − μ𝑦) + 𝜀𝑖
𝑦

                                                          (1) 

 

 𝑦𝑖  is the observed farm yield; 𝑦̅ is the aggregate productivity observed in the area; 

μ𝑖
𝑦
 is farmer expected (or average) yield; μ𝑦 is the expected area-yield; β𝑖

𝑦
 is a 

farmer-specific parameter giving the average or systematic relationship between the 

individual farmer’s yield and the overall yield variation. 𝜀𝑖
𝑦

  represents idiosyncratic 

yield variation related to farmer-specific agrotechniques; β𝑖
𝑦
 and 𝜀𝑖

𝑦
 have an inverse 

interpretation in the applicability of area-yield insurance for a target farmer. 

 Farmers with grater β𝑖
𝑦
 access more benefits when contracting area-yield 

insurance. The reverse applies to 𝜀𝑖
𝑦
. By definition, the majority of producers will 

have a positive β𝑖
𝑦
 in the aggregate yield, but negative values are present and 

insurable as well (Miranda, 1991). 

With the basis risk calculated for farmers it is possible to know what loading 

a farm level insurance premium must have to perform worse than the area-yield 

option. The loading refers to additional delivery, adverse selection, and moral hazard 

costs (Wang et al., 1998). 

The implementation of area-yield based insurance in developing and 

emerging economy countries is constrained by the limited availability of detailed 

historical yield records longer than 10 years. In developing countries, historic data 

for crop productivity and weather are not easily available, if available at all (Ozaki, 

2008). To mitigate the lack of data for risk prospection, remote sensing can be 

utilized as an alternative data source, partially supplementing the missing 

information. From the advent of satellite data, several variables became available to 

depict the crop status with high spatial and temporal frequency and coverage. By 

integrating satellite surface data and crop models one can feed crop-yield models in 

a per field/farming spatial scale and so regulate several insurance operational 
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processes (eg., premium rating, subscription, fraud analysis, payouts) from the 

perspective of spatially disaggregated (area-based) yield realization.  

Remote sensing can be used in several ways to aid insurance policies and 

companies. De Leeuw (2014) point out four of them: (i) making insurance affordable 

to low income households; (ii) reducing fraud, moral hazard, and adverse selection; 

(iii) eliminating the burden of costly verification of claims on-the-ground, and (iv) 

enabling faster and cheaper payouts to the insured. 

It is usual to take arbitrary political limits to set contract yield aggregation 

groups and coverage level, however political limits are not necessarily compromised 

with yield spatial variation. Remote sensing allows to survey yield closed-related 

biophysical variables at high spatial resolution and so can support area-yield 

insurance by classifying farmers in more realistic spatially correlated groups than 

political limits do. 

In this regard, remote sensing has a great potential to aid the start and 

expansion of area-yield insurance policies. One of the main aspects of 

competitiveness of area-yield crop insurance in contrast individual yield crop 

insurance is determined by the correlation of groups of farmers selected to measure 

aggregated yield (Wang et al., 1998). On the area-yield Insurance approach the 

number of sufficiently correlated farms (β𝑖
𝑦

~1) (and so suitable for taking area-yield 

Insurance) can be maximized through yield prediction from remote sensing. 

Previous works focus in compare area-yield insurance with farm level 

insurance (Barnett et al.,2005; Wang et al. 1998; Glauber, 2004; Schinithkey et al., 

2002; Dismukes et al., 2013). In this paper we, instead, used remote sensing to try 

an innovative methodology to organize and classify farm groups of aggregation in 

order to improve the benefits of area-yield insurance. 

 

1.1 Objectives 

The overall objective is to evaluate through yield time series estimation the 

feasibility of remote sensing modeling to support area-yield insurance as a risk 

reduction tool for soybean when looking at capability of disaggregating spatial risk 
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of yield loss at field scale.  It was accomplished by checking for (i) data availability 

and model suitability when exploiting orbital remote sensing data to produce per field 

soybean yield estimates over a period of 10 years and (ii) actuarially compare area-

yield insurance performance when correlations are taken from clustered yield 

against county limits criterion of yield aggregation. 

 

2 Methodology 

2.1 Study area 

 It is proposed to verify the feasibility of Area-Yield Based Insurance over a 

continuous region that encompass 54 municipalities in Rio Grande do Sul state 

(Figure 1). The region accounts for about 18% (~one million of hectares) of the total 

soybean cultivated area in the state. Soybean fields were mapped with 30 m of 

spatial resolution from Landsat 7 and 8 images acquired along the crop cycle from 

October - 2016 to March -2017. The mapping method took images time series as 

input in an automatic supervised classifier based on multinomial logistic function 

fitting. At final step the soybean map was validated by an independent procedure 

executed by experts on visual interpretation of spectral crop patterns. Table 1 

presents the confusion matrix originated from the validation procedure. 

 

  

Figure 1 - Study area and soybean map. 
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Table 1 - Confusion matrix results from validation procedure. 

  Predicted 

  Soybean Other 

Real Soybean 144 4 

Other 5 145 

 

 

2.2 Database modeling and satellite integration 

 Several variables became available from remote sensing and can be used to 

feed crop yield models (Sun et al., 2019; Wang et al., 2018). There are different 

levels of integration between them and ground level weather data. For instance, 

empirical yield prediction models use linear regression directly to output yield 

estimations from vegetation indices (VI) (Bolton et al., 2013; Esquerdo et al., 2011). 

Models that are more sophisticated simulate the plant growth physiology response 

to environment variables (Letort et al., 2007; Boote et al., 2021.; Eze et al., 2020). 

Many of the crop growth model variables are acquired or can be estimated with 

remote sensing tools (Setiono et al., 2018). 

Here we are going to use surface reflectance products from MODIS sensor 

on Aqua and Terra platform acquired over the period from 2006-01-01 to 2017-12-

31. Surface reflectance derived from 8-day composite MODIS products outline 

vegetation index time series to be linked to soybean phenology. Vegetation index 

calculated from different platforms were gathered to increase data availability as VI 

maximum values are preserved. The time series was denoised in an iterative mode 

under the rules of Whittaker filter (Vuolo et al., 2011). 

Lastly, a stepwise logistic function was fit to the filtered VI time series and 

applied to estimate the soybean phenology step. Local maximum and minimum from 

the third derivative of fitted function located in the time series points were associated 
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with crop emergence, reproductive, maturity, and harvest phenology (Zhang et al., 

2003, 2006). Figure 2 present an example of time series from the study area and its 

phenology determined with this methodology. 

 

 

Figure 2 – Graphic example of vegetation index time series from study area. Points 

are the original vegetation index data from MODIS Terra platform. Solid line is the 

filtered time series. Vertical lines are the phenology extracted by the logistic fitting. 

Solid and dashed lines represent crop cycle start and end respectively 

 

2.3 Analysis 

 Soybean yield estimation was performed by fitting an empirical model at the 

MODIS pixel (250m) level. The model was adjusted and crossvalidated with 150 

yield datapoints from 30 farms in Paraná state over 5 years in the period from 2015 

to 2019. The model explanatory variables were taken from the VI time series values 

from 24 to 96 days after the soybean growth start detection. The area under the VI 
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curve was integrated to predict yield (Esquerdo et al., 2011). We adapted the 

proposed model from county level productivity data to the field scale due to 

calibration data availability and the MODIS spatial resolution being adequate in 

comparison with most of soybean field sizes.  A full dataset crossvalidation showed 

the model performed with root mean squared error of 9 Sc/ha.  

The fitted yield model was then used to construct 10 years series of estimate 

yields for the soybean mapped area in the Rio Grande do Sul state.  The series of 

estimated yield was still subjected to a spatial process by which we could integrate 

the soybean map (30 meters of resolution) with the estimated yield (250 meters of 

resolution). The final dataset corresponded to 10 years of yields at farm field level 

(30m spatial resolution) and was used to evaluate correlated risk reduction and 

idiosyncratic risk. It was   evaluated under different hypothetical situations regarding 

the value at risk and the stochastic dominance. The analysis ends up with an 

economic assessment of advantages/disadvantages of adopting area-yield 

insurance strategies by varying the criterion to perform the portfolio spatial 

aggregation.   

We measured the willing to pay with a loading multiplying the premium price 

in order get the equity of utility extracted from soybean yield with and without the 

insurance strategies evaluated in the study. This was similar to what previous studies 

have approached to compare farm yield insurance to area-yield insurance (Wang et 

al., 1998). 

A recursive and obvious criterion to set insurance parameters (average yield, 

coverage level, etc,.) in the crop space is given by spatial aggregation according to 

county political limits. It is convenient once crop statistics are disclosed in per county 

(IBGE – Instituto Brasileiro de Geografia e Estatística) database. However, the 

spatial yield autocorrelation may not be well represented according this simple 

criterion.  

  Roel and Plant (2004a and 2004b) developed an exploratory method for 

organizing spatiotemporal data by organizing the data into clusters in space and 

time. In this study, we utilized this method for generating and analyzing 

spatiotemporal yield clusters. We apply this approach to our ten years of estimated 
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yield data. The spatiotemporal method works by first forming clusters of the response 

variable in the data spacetime (each year) of the yield data. The analysis uses the 

k-means clustering algorithm. This cluster analysis with spatiotemporal data allows 

to identify factors underlying the observed pattern in space and time of the response 

variable. It means, the clusters must be “biophysically meaningful.” One criterion for 

being biophysically meaningful is that the clusters will form groups of similar farm 

productivity and will bring potential benefits to the insurance application if it can 

improve the level of correlated producers participating of the same portfolio with 

specific set of parameters. Our analysis relies on the spatiotemporal cluster 

aggregation method to contrast with simple county political division.  

The risk aversion for farmers is defined by the Constant Relative Risk 

Aversion (CRRA) utility function: 

 

                                                𝑈(𝑐𝑖𝑡) =
𝑐𝑖𝑡

1−𝑔

1−𝑔
, for 𝑔 > 0, 𝑔 ≠ 1                           (2) 

 

 

Where c is farmer income; g indicates the level of risk aversion with values increasing 

with higher aversion; i varies among the farmers and t indicates the crop year. The 

parameter g used will be 2, which represent intermediate levels of risk aversion as 

observed in US (Wang et al., 1998). 

 To maximize the utility function for each class of risk aversion, a monetary 

value that represents the willing to pay for premium (in order to reach a steady 

income from crop yields) will be calculated. The monetary value the farmer pays in 

order to maximize its utility function (given its class of risk aversion) is the willing to 

pay. The optimization was performed by setting 20% of payment frequency along 

the 10 years of the analysis. Consequently, every cluster (and county) was assigned 

to have the trigger (yield coverage level) that makes indemnities payments occur two 

out of ten years. It generates farmer groups with different levels of insurance trigger 

yields. For contract optimizations, we used fair premium, i.e. total payments from 

farmers is equal to the sum of indemnity delivered.  



22 

 

Following, we compared the area-yield insurance performance when the 

aggregate yields are taken from the counties political division against to the clustered 

farms dictated by the correlation of estimated yield. We measured the difference in 

total willing to pay as sum of monetary value, converted to soybean yield, directed 

to the acquisition of area-yield insurance with both methods of aggregation. 

Willing to pay, in addition, was given as the premium load that equalizes the 

utility extracted from the yield with and without insurance when a payment frequency 

set to 20%. After the optimization is ready and premiums and indemnities are 

defined, we calculated both utilities, with and without insurance. After that, we verify 

if the utility with insurance is greater or smaller than without insurance and if it is 

greater, we multiply the premium with a coefficient > 1 until we equalize it with the 

utility without insurance. This coefficient represents the likely margin for the insurer 

cover its operational costs, makes profit, and not be paid back as indemnities. If the 

utility with insurance is smaller than without it, we will multiply it by a coefficient < 1 

as to equalize it with the utility without insurance. This will be in order to measure 

how worse the insurance contract is in both yield aggregation methodologies than 

with no insurance coverage. Total sum of indemnities paid in the 10 years will be 

measured and compared between both methodologies. Figure 3 presents the main 

steps in the analysis. 
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Figure 3 – Flowchart with the main analysis steps. 

3 Results 

 The fitted yield model incorporates the detected phenology and indices 

derived from VI time series and estimates the yield with an acceptable and useful 

accuracy (RMSE = 588 Kg/ha). Figure 4 shows the mean estimated yield over the 

10 years within the geographic space of the analysis. Figure 5 shows the standard 

deviation of yields for the same area and period. The mean is from the soybean 

summer season harvests that were estimated from 2007 to 2016. 
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Figure 4 - Map of the mean yield in the 10 years series (Kg/ha). 

 

  

  

 
Figure 5 - Map of the standard deviation of yield in the 10 years of the series 
(Kg/ha). 
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We took the total yield variability within cluster to determine the number of 

clusters used in the analysis. We applied criteria of 50% of total squared sums to be 

due to cluster depicting. This criteria is chosen because of the nature of the 

exploratory analysis and lack of previous works on this issue. By analyzing the 

proportion of total variability within clusters (Figure 6) we observe that internal cluster 

variability clearly diminishes beyond eleven clusters. 

 

 

Figure 6 - Proportion of total variability within clusters and number of clusters used. 
In our analysis we use 11 clusters, which leaves about 50% of variability remaining 
inside them. 

  

The resulting clusters have a pulverized spatial distribution over the study 

area. In figure 7 we can observe some predominant clusters forming in some areas 

but they surpass the counties political division. Figure 8 presents the clusters in 
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context of the CAR (Cadastro Ambiental Rural) consolidated agriculture spatial 

database. It is possible to figure the CAR geocoded farming as belonging to its 

cluster and so having specific set of insurance parameters. It is an example to show 

that the methodology is readily to operate with the CAR database. 

 

 

 

Figure 7 - Spatial disposition of the 11 clusters. Each color represents a different 
cluster. 
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Figure 8 - Clusters spatially depicted according to CAR consolidated agriculture 
spatial database showed in 6 counties near Passo Fundo county. From left to right 
are the counties Carazinho, Passo Fundo, Mato Castelhano, Água Santa, Santa 
Cecília do Sul, and Caseiros. Crop fields delimited by CAR information. 

 

By verifying the historic average productivity along the years on the 

aggregation groups (counties and cluster) we can see that two different counties 

clearly have a much more similar mean productivity than any two different clusters. 

Figure 9 and 10 show some of the more distinctive counties and cluster yield average 

time series. Although we are using only 11 clusters in comparison to 54 counties, 

the spectrum of different yields accounted by the clusters averages originates more 

opportunities for area-yield insurance than county aggregation does. 

 The change, from counties to cluster aggregation, in the distribution 𝛽 

coefficients (Equation 1) for all farms in the area is in agreement with what is 

punctuated above. The distribution of 𝛽 depicts an evident mean shrinkage around 

1 under clusters aggregation of yields in comparison to county aggregation (Figures 

11 and 12). It goes in favor of the major requirement to apply area-yield based 

insurance by which the effectiveness of participants benefits increases as the 

individual yield became more correlated to the aggregated yield, 𝛽𝑖 ~ 1.  Table 2 

presents some metrics to measure the effect of cluster aggregation in the beta 

distribution. The first quartile and third quartile, representing points that delimits 50% 

of the data, have increased by 0,11 and diminished by 0,10 respectively with the use 

of clusters. 
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Figure 9 - Time series of mean county soybean productivity for Água Santa, 
Colorado, Estação, Ibirapuitã, and Esmeralda in black, red, purple, green, and blue 
respectively. 

 

To probe the effects of the beta distribution modification with clusters we 

choose to optimize the area-yield insurance contracts with 20% frequency of 

payment. Consequently, for every aggregation group (11 clusters or 54 counties) 

there will be two years that indemnities are paid.  As every group has a different 

series of average soybean yield, groups have a different trigger yield to pay the 

indemnities. Table 3 shows statistics of those trigger yields as a proportion of the 

group average yield. We found the cluster aggregation does not change the mean 

trigger, but concentrates the trigger yields around the mean trigger value. 
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Figure 10 - Time series of mean soybean productivity for 5 of the 11 clusters. 

 

  

The temporal distribution of indemnities paid by both methodologies of 

aggregation is shown in table 4. In the year 2012 a drought happened in the study 

region and productivities were overall lower. This caused 48,1% and 50% of the 

events of indemnities payment respectively for county and cluster aggregation. The 

remaining events of indemnities payments are somewhat more concentrated for 

county aggregation with 45.4% in 2009, 2.8% in 2010, and 0,9% in 2002, 2011 and 

2014. For cluster aggregation indemnities payments were made 36.4% in 2009, and 

4.5% in 2007, 2008, and 2013. 
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Figure 11 - Distribution of 𝛽 resulting from county aggregation of yield. 

 
Figure 12 - Distribution of 𝛽 resulting from the cluster yield aggregation method. 
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Table 2 - Statistics from beta distribution by county and cluster aggregation of 
productivity. 

  Minimum 1º Quartile Median Mean 3º Quartile Maximum 

County -3,30 0,60 0,97 1,00 1,37 9,30 

Cluster -2,50 0,71 0,97 1,00 1,27 4,17 

 

 

  

Table 3 - Statistics of trigger yields by county political division and clusters as a 
proportion of mean productivity. 

  Minimum 1º Quartile Median Mean 3º Quartile Maximum 
County 0,920 0,944 0,961 0,959 0,972 0,992 

Cluster 0,930 0,937 0,955 0,952 0,959 0,986 
 

 

 

Table 4 - Relative frequency of indemnities paid by year. 

 Harvest year 

 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

County 0,000 0,009 0,454 0,028 0,009 0,481 0,009 0,009 0,000 0,000 

Cluster 0,045 0,045 0,364 0,000 0,000 0,500 0,045 0,000 0,000 0,000 

 

 

The effect of the area-yield insurance on farm income can be observed in 

Figures 13, 14 and 15. There was a reduction in the probability of income below 

3000 Kg/ha when the producer contracts the area-yield insurance, it happens 

regardless the aggregation method utilized to produce the correlation structure. In 

relation to non-insured income, the reduction is more pronounced when contracts 

are parameterized using cluster aggregation of yields. Area-yield insurance 

increased the probability of incomes falling between 3000 – 4000 Kg/ha. As 

expected, the probabilities of high incomes above 4000 Kg/ha were reduced and the 

extreme yield incomes were shrunk towards the average yield. Cluster aggregation 
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of yield was more efficient than the county aggregation in reducing probabilities of 

extreme incomes 

 
Figure 13 - Probability distribution of income. Black, red, and blue lines refer to no 
insurance, yield aggregation by county, and yield aggregation by cluster 
respectively. 

 

Overall, cluster aggregation of yields increased the total indemnities paid to 

farmers in the period of analysis. Every single group created (11 clusters or 54 

counties) has its series of average yields along the 10 years of analysis. This allow 

the total sum of indemnities paid along the 10 years period for each aggregation 

method to be calculated. Table 5 displays the differences of the indemnities paid in 

the two aggregation methods. The cluster aggregation increased the minimum paid 

by almost seven times. At the mean values the difference is +20,9%. Premium loads 

had minor improvement it increased 0,03 on average (table 6). 

 The combined factors promoted by cluster aggregation such as, gathering 

similar productivity farms, concentration of betas around 1, increasing of indemnities 
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payment, and slightly increasing in premium loads has the effect of significantly 

improve the performance of area-yield insurance. With the county aggregation of 

yield, the excess in premium loading per year is a monetary value equal to 21,5 

thousand tons of soybean. With cluster aggregation it becomes a value of 29,9 

thousand tons of soybean, an increase of 39% in value. 

 
Figure 14 - Probability distribution of income. Lines are no insurance, yield 
aggregation by county, and yield aggregation by cluster in black, red, and blue 
respectively. 

 This rising value is due to k-mean clustering creating groups of correlated 

farmers. The constructed groups better capture the structure of yield variability than 

the arbitrary political county limits. K-mean clustering improves models predictions 

by classifying the desired variable in more coherent groups that are more 

homogeneous (Lu et al. 2017). 
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Figure 15 - Probability distribution of income. Black, red, and blue lines refer to no 
insurance, yield aggregation by county, and yield aggregation by cluster 
respectively. 

  

Table 5 - Statistics of total indemnities paid in 10 years by county and cluster 
aggregation in Kg/ha. 

  Minimum 1º Quartile Median Mean 3º Quartile Maximum 

County 32,4 294 442,2 464,4 575,4 1274,4 

Cluster 222,6 306 401,4 561,6 763,8 1362 

 

 

 

Table 6 - Statistics of premium load by county and cluster aggregation of 
productivity. 

  Minimum 1º Quartile Median Mean 3º Quartile Maximum 

County 0,34 1,05 1,15 1,23 1,31 5,01 

Cluster 0,36 1,08 1,19 1,26 1,34 4,68 
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Another benefit that originates from the use of k-means is the improvement 

on identification and compartmentalization of systemic risk. The resulting clusters 

are much less correlated to each other as we can see when comparing the time 

series between clusters and counties (Figures 11 and 12). Consequently, the 

likelihood that several clusters of productivity originated by k-means will receive 

indemnities at the same time decreases in relation to aggregation by county. Studies 

such as those carried out by Stigler and Lobel (2020) comparing the choice of 

producers between conventional and area-yield insurance, should be applied to the 

reorganization of producers by k-mean to verify the real appeal of the proposed 

technique. 

Area-yield insurance appears to have more appeal for farmers with low 

productivity realizations. In the left tail of the yield distribution, even low indemnity 

payment from the area-yield insurance corresponds to a larger proportion of farm 

productivity. 

The proposed methodology helps to mitigate the issue of subsidy equity, it 

increases the insurer's margin, lowering the premium and thereby the cost of 

producers, making area-yield insurance more attractive for farmers less exposed to 

production risks. This lowers the government investment needed in insurance 

subsidy. The lower price of the premium obtained by the aggregation methodology 

increases the accessibility of insurance to producers, which may cause greater 

market penetration and a larger portion of farmers acquiring insurance. This will 

provide protection against impoverishment increasing financial stability and 

preventing negative income cycles (Benami et al., 2021). 

Our results highlight the benefits from detaching from currently available 

productivity reports at the county level and integrate statistical models and remote 

sensing data to predict productivity. Productivity estimation based on models and 

remote sensing data is much less costly to achieve than reliable productivity reports 

at the field level. This applies to area-yield insurance that does not incorporate 

remote sensing data in addition to conventional farm level insurance that in every 

indemnity payment requires a field verification of losses. 
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Predicting productivity by remote sensing when applying area-yield insurance 

covers several risks at the same time compared to insurance based on a weather 

index that usually covers a single risk. For this to occur, models that predict 

productivity must include as many variables that interfere with productivity as 

possible (Benami et al. 2021). In this work we focus on an empirical model that 

related productivity to a remote sensing time series index that indirectly captures the 

biomass of the soybean crop in the field and, in our tests, we obtained a reasonable 

result. This model would not be adequate in specific situations of loss of productivity 

(for example, a pest attack directly on the grain in the soybean pod, without indirect 

effects on biomass). Future studies could better explore the adequacy of empirical 

models at the field level for the application of insurance with different types of yield 

loss that would originate indemnities. 

As the proposed area-yield insurance pays groups from hundreds to 

thousands of farmers, punctual model yield prediction errors do not compromise its 

utilization, because prediction of the average productivity of the group is what guides 

the indemnities payments. Isolated yield estimation errors end up canceling out in 

all observations used to compute the group's average productivity (on unbiased 

statistical models with normal error distribution around the average). The punctual 

errors in estimating productivity may not be crucial in calculating the average 

productivity of the aggregation group, however, the impact on classification of 

producers by k-mean in their most correlated groups has yet to be known. 

With the use of remote sensing data to predict yield, we were able to 

overcome the lack of productivity data at the farm level and reconstruct the 

productivity for a period of 10 years. We reconstructed the yield series for a static 

soybean culture map that represents the area in the 2016/2017 harvest. 

The calibration data used was from a period and region that does not fully 

represent the place and period of model application, however, as it is an exploratory-

empirical analysis and these interferences are equally represented in the two forms 

of aggregation tested, the limitations do not make the results obtained in the study 

inconclusive. Future studies can use more appropriate calibration data to gain higher 

representativeness of the area of interest. For instance, to classify the soybean 
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culture to produce maps for each time harvest the model is applied. 

On the lack of extensive farm level data, the reconstruction of the productivity 

series from remote sensing models is very useful. For the application of area-yield 

insurance, the only requirements are punctual reliable farm level yield data for 

calibration and a computational structure for acquisition of remote sensing data and 

model application. 

 For the comparison between the two productivity aggregation techniques we 

use 20% payment frequency criterion. This does not necessarily optimize contracts 

offered in the region in the best way. Other parameters can be used in replacement, 

for example, a specific average productivity or an indemnity sum over 10 years. 

Insurers must adjust their contracts to make them as attractive as possible to 

potential customers. Another parameter that should be explored and better adjusted 

is the g of the constant relative risk aversion function (CRRA, Equation 2) that we 

assume as 2. 

 

4 Conclusions  

It was shown that remote sensing could provide the data required to 

parameterize area-yield insurance over 54 counties in northern region of Rio Grande 

do Sul, Brazil.  We applied the yield estimation model to a previously mapped 

soybean fields to show that data and model are available to produce results in high 

spatial and temporal resolutions. It makes possible to use many other strategies to 

set parameter of crop insurance. For instance, once the yield time series became 

available at field scale, we can operate crop insurance under an analytics steps to 

maximize the portfolio returns for both insurance companies and farmers. 

We compared two methodologies to perform yield aggregation and could 

conclude that spatiotemporal clustering outperforms the county limits due to the 

more effective 𝛽 shrinkage towards the mean value equals to 1.  

The perception of insurance value was measured with the CRRA utility 

function to suggest that spatiotemporal clustering technique greatly improves the 
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performance of area-yield insurance in comparison to using county political limits. 

Clusters improved the correlation between farmers and their respective groups of 

aggregation, decreased the probabilities of low income, increased the total 

indemnities paid to makes farmer more will to pay by crop insurance and better 

distributed indemnities along the crop harvest years. Adding, the maximum potential 

margin of insurance companies rose 39%. 
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