
UNIVERSIDADE FEDERAL DE PELOTAS
Centro de Desenvolvimento Tecnológico

Programa de Pós-Graduação em Computação

Tese

Cell Implementation Through Boolean Satisfiability for Conventional and
Emerging Technologies

Maicon Schneider Cardoso

Pelotas, 2022



Maicon Schneider Cardoso

Cell Implementation Through Boolean Satisfiability for Conventional and
Emerging Technologies

Tese apresentada ao Programa de Pós-Gradua-
ção em Computação do Centro de Desenvolvi-
mento Tecnológico da Universidade Federal de
Pelotas, como requisito parcial à obtenção do tí-
tulo de Doutor em Ciência da Computação.

Advisor: Prof. Dr. Felipe de Souza Marques
Coadvisor: Prof. Dr. Leomar Soares da Rosa Jr.

Pelotas, 2022



Universidade Federal de Pelotas / Sistema de Bibliotecas
Catalogação na Publicação

C268c Cardoso, Maicon Schneider
CarCell implementation through boolean satisfiability for
conventional and emerging technologies / Maicon
Schneider Cardoso ; Felipe de Souza Marques, orientador ;
Leomar Soares da Rosa Júnior, coorientador. — Pelotas,
2022.
Car141 f. : il.

CarTese (Doutorado) — Programa de Pós-Graduação em
Computação, Centro de Desenvolvimento Tecnológico,
Universidade Federal de Pelotas, 2022.

Car1. Projeto físico de células lógicas. 2. Satisfatibilidade
booleana. 3. Static CMOS Complex Gate. 4. Quantum-dot
cellular automata. 5. Nanomagnetic logic. I. Marques,
Felipe de Souza, orient. II. Rosa Júnior, Leomar Soares da,
coorient. III. Título.

CDD : 005

Elaborada por Aline Herbstrith Batista CRB: 10/1737



Maicon Schneider Cardoso

Cell Implementation Through Boolean Satisfiability for Conventional and
Emerging Technologies

Tese aprovada, como requisito parcial, para obtenção do grau de Doutor em
Ciência da Computação, Programa de Pós-Graduação em Computação, Centro de
Desenvolvimento Tecnológico, Universidade Federal de Pelotas.

Data da Defesa: 23 de fevereiro de 2022

Banca Examinadora:
Prof. Dr. Felipe de Souza Marques (orientador)
Doutor em Computação pela Universidade Federal do Rio Grande do Sul.

Prof. Dr. Leomar Soares da Rosa Jr. (coorientador)
Doutor em Microeletrônica pela Universidade Federal do Rio Grande do Sul.

Prof. Dr. Bruno Zatt
Doutor em Microeletrônica pela Universidade Federal do Rio Grande do Sul.

Prof. Dr. Paulo Francisco Butzen
Doutor em Microeletrônica pela Universidade Federal do Rio Grande do Sul.

Prof. Dr. José Augusto Miranda Nacif
Doutor em Ciência da Computação pela Universidade Federal de Minas Gerais.



Para Pam e meus pais.



ACKNOWLEDGEMENTS

I took the liberty of writing this section in Portuguese and English to address the
people here cited.

Começo essa seção de agradecimentos com uma pequena história: certa feita,
lá por meados de 2002, o desejo de seguir a carreira científica surgiu em mim após
entender que o que eu mais desejava para o restante da minha vida profissional era
algo relativamente simples: seguir aprendendo e descobrindo. No entanto, tornar-me
um cientista, seja da área que fosse, era algo quase que impensável: não haviam
exemplos próximos a mim e nem perspectivas concretas. As chances eram mínimas,
segundo o que eu compreendia na época. Se eu pudesse retornar a esse momento,
diria para esse jovem Maicon que, ainda que seja muito (muito mesmo!) difícil, com
as pessoas e as oportunidades certas, nada é impossível e todos os objetivos são
alcançáveis. É para essas pessoas fundamentais no meu caminho - em especial
nesses últimos anos de doutorado - que endereço boa parte desses agradecimentos.

Inicialmente, agradeço às agências brasileiras de fomento à pesquisa (Capes,
CNPq e Fapergs) pelo suporte financeiro durante o período de doutorado, além do
fundamental apoio para a realização do doutorado sanduíche no exterior, crucial para
o desenvolvimento dessa tese. Aproveito para agradecer à Universidade Federal de
Pelotas (UFPel) e à Universitat Politècnica de Catalunya (UPC) pela infraestrutura dis-
ponibilizada para a realização de parte dos experimentos dessa pesquisa.

Agradeço aos amigos de laboratório pelos momentos ótimos (e também pelos não
tão ótimos assim) que dividimos em meio a muito café e chimarrão. Cito aqui os
amigos Renato de Souza e Plínio Finkenauer, os quais estiveram comigo durante boa
parte dessa jornada. Vocês transformaram a rotina diária em algo leve e descontraído.

Agradeço aos meus professores, que pavimentaram o caminho até aqui. Em espe-
cial, agradeço aos meus orientadores Felipe Marques e Leomar da Rosa Jr. pelo apoio
não somente em questões técnicas e de pesquisa, mas também pela parceria e ami-
zade firmada nesses últimos anos. Espero que possamos seguir trabalhando juntos
mesmo após o fim do doutorado (e que possamos lembrar dos bons e maus momen-
tos vividos em cada churrasco realizado daqui pra frente). Furthermore, I would like to
thank professor Jordi Cortadella for their incredible and crucial support during my time
in Barcelona. Jordi was not only the mentor of most of the models here presented but
also a special human being. Thanks for your patience, advice, and for kindly welcoming
me and my wife as long-time friends, even without knowing us. Moltes gràcies!

Gostaria de agradecer aos meus pais, Darli Schneider, Algeu Cardoso e Dalva
Schneider (tia e mãe de coração). A dedicação de vocês fez com que eu e meu irmão
pudéssemos buscar os nossos objetivos e sonhos, e serei sempre grato por isso.



Obrigado por me inspirarem e por toda a confiança depositada em mim. Amo vocês.
Finalmente, agradeço a minha esposa, Pamela Acosta, pelo amor, companhei-

rismo, carinho e dedicação. Serei eternamente grato pelo apoio incondicional para
que eu pudesse seguir o doutorado. Obrigado por não ter desistido de mim mesmo
nos momentos difíceis dessa caminhada. Obrigado por ter me inspirado a buscar a
experiência internacional e por encarar esse desafio comigo mesmo tendo que abrir
mão de muita coisa pra isso. Obrigado pelos momentos - dos muitos bons aos poucos
ruins -, por dividir o chimarrão em terras distantes, pelas viagens e passeios. Obrigado
pelas memórias. Agradeço pela leveza que só tu tens, mesmo em tempos sombrios
e difíceis de pandemia. Por fim, agradeço por te ter ao meu lado todos os dias. Eu te
amo.

Por último, presto meu respeito e solidariedade às famílias que perderam seus
entes queridos nessa pandemia.



Happiness only real when shared.
— CHRISTOPHER J. MCCANDLESS



ABSTRACT

CARDOSO, Maicon Schneider. Cell Implementation Through Boolean Satisfia-
bility for Conventional and Emerging Technologies. Advisor: Felipe de Souza
Marques. 2022. 141 f. Thesis (Doctorate in Computer Science) – Technology
Development Center, Federal University of Pelotas, Pelotas, 2022.

The electronic design automation (EDA) tools take a crucial role in the modern
digital circuits and systems synthesis, where the design challenges are not only
numerous but also complex. In this scenario, the Boolean satisfiability (SAT) solvers
have been employed lately as a useful engine for computing the solutions on these
EDA tools, producing circuits with good quality in a reasonable computing time. On a
similar note, the versatility provided by the satisfiability paradigm can be explored for
different design purposes ranging from conventional to emerging technologies. Thus,
in this thesis, we employ this approach to generate area-optimized circuits in three
different technologies: static CMOS complex gates (SCCG), quantum-dot cellular
automata (QCA), and nanomagnetic logic (NML). Considering this, the proposed
methods were able to encode all the design constraints into a discrete constraint
model, using satisfiability solvers as the core of the optimization task. Regarding the
SCCG synthesis, the experiments have shown that, besides providing improvements
on layout area, the solutions produced using the proposed method also presented
optimization in other geometrical parameters such as in wirelength and number of
contacts when compared to a traditional meta-heuristic approach. Furthermore,
following the experiments on the emerging technologies, the QCA and NML synthesis
methodologies were able to provide solutions with less area when compared to other
graph-based techniques available in the literature for most of the assessed cases.
Moreover, the latency of these solutions also presented an optimization, thus providing
a wide design exploration scenario where it is possible to choose whether to use
smaller or faster circuits depending on the specifications.

Keywords: Electronic Design Automation. Cell Implementation. Boolean Satisfiability.
Static CMOS Complex Gate. Quantum-dot Cellular Automata. Nanomagnetic Logic.



RESUMO

CARDOSO, Maicon Schneider. Projeto Digital de Células via Satisfatibilidade
Booleana em Tecnologias Convencionais e Emergentes. Advisor: Felipe de
Souza Marques. 2022. 141 f. Thesis (Doctorate in Computer Science) – Technology
Development Center, Federal University of Pelotas, Pelotas, 2022.

As ferramentas de apoio ao projeto eletrônico (EDA) desempenham um papel
fundamental na síntese de circuitos e sistemas digitais modernos, em que os desafios
de projeto envolvidos são numerosos e complexos. Nesse cenário, os resolvedores
de satisfatibilidade Booleana (SAT) vêm sendo amplamente empregados nos núcleos
de ferramentas de EDA, gerando soluções com boa qualidade em um tempo de
computação viável. Dada a versatilidade dessa abordagem, o projeto de circuitos via
modelagem SAT pode ser explorado para atender a diferentes propósitos, incluindo o
uso tecnologias convencionais e emergentes. Nessa tese utilizamos a modelagem e
os resolvedores SAT para o propósito de gerar soluções com otimização em área em
três diferentes tecnologias: static CMOS complex gates (SCCG), quantum-dot cellular
automata (QCA) e nanomagnetic logic (NML). Para tanto, os métodos propostos
apoiam-se na descrição formal das regras de projeto de cada tecnologia, utilizando-se
dos resolvedores SAT como protagonistas no processo de síntese. Em relação ao
projeto para SCCGs, os experimentos apontam que a abordagem proposta, além de
apresentar ganhos em área, também demonstrou-se eficiente considerando outros
aspectos geométricos do leiaute como o comprimento de fio utilizado para roteamento
(wirelength) e o número de contatos necessários para conectar as partes da célula.
Ademais, considerando os experimentos conduzidos para as tecnologias emergentes,
tanto a síntese voltada QCA quanto para NML também apresentaram bons resultados
quanto à diminuição de área do circuito para boa parte do benchmark utilizado.
Por fim, a latência dessas soluções também apresentou otimizações, propiciando
um cenário onde o projetista pode escolher qual circuito atende melhor as suas
necessidades de acordo com o perfil de área e latência especificados.

Palavras-chave: Ferramenta de Apoio ao Projeto Eletrônico. Projeto Físico de Célu-
las Lógicas. Satisfatibilidade Booleana. Static CMOS Complex Gate. Quantum-dot
Cellular Automata. Nanomagnetic Logic.
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1 INTRODUCTION

Digital circuits and systems take a leading role in the modern world. They are crucial
components of different areas such as medicine, agriculture, engineering, communi-
cation, education, among many others. In this scenario, the constant development of
methodologies and tools to accelerate the digital design task are necessary to follow
the pace at which the technology evolves over the years.

Considering this, the electronic design automation (EDA) tools play an important
role as they enable the modern digital design processes in all its stages. Since the first
pioneer researches and developments of EDA solutions back in the 1960s (WANG;
CHANG; CHENG, 2009), these tools have been evolving following the growth of the
circuits that they give support. Nowadays, EDA tools can deal with instances containing
billions of components - an important feature considering actual commercial FPGAs
(INTEL, 2019) and processors (AMD, 2020). Thus, the core of these tools needs to
be powerful and versatile to be able to work on different design problems that emerge
depending on the conditions and technologies involved.

Related to that, Boolean satisfiability (SAT) modeling recently become a valuable
tool for designing EDA solutions. SAT is an old problem in computer science known
to be NP-complete which consists in finding if there is a satisfiable assignment for a
Boolean variable set such that a function built over this set evaluates to true. The re-
cent advances in this topic were driven by the fact that the SAT solvers, the engines
capable of solving this fundamental computing problem, have evolved tremendously
in the last years, such as Figure 1 illustrates. Nowadays, these tools can handle ins-
tances containing over a million variables and several million clauses (GOMES et al.,
2008), being suitable for real-world applications. Indeed, SAT is a useful tool for de-
aling with different problems in various fields such as in artificial intelligence (KAUTZ;
SELMAN, 1992; RINTANEN; HELJANKO; NIEMELÄ, 2006), bioinformatics (LYNCE;
MARQUES-SILVA, 2006; NEIGENFIND et al., 2008), software model checking and
testing (CLARKE; KROENING; LERDA, 2004; JACKSON; SCHECHTER; SHLYAKH-
TER, 2000; KHURSHID; MARINOV, 2004), automated theorem proving (BROWN,
2011), electronic design automation (MARQUES-SILVA; SAKALLAH, 2000), among
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Figure 1 – Evolution of the Boolean satisfiability solvers assessed from the results of the SAT
competition winners from 2002 until 2020.
Source: (BIERE; HEULE, 2020).

many others.
Considering the SAT for EDA paradigm, different approaches have been proposed

in the past years. From the first FPGA routing methods based on SAT (WOOD; RU-
TENBAR, 1998), numerous applications were described aiming at different topics such
as timing analysis (SILVA et al., 1998), fault diagnosis and logic debugging (CHEN;
GUPTA, 1996; SMITH et al., 2005), among others. Driven by the success in formal
verification (GANAI; GUPTA, 2007), SAT is intensively applied in different fields of lo-
gic synthesis, such as in the areas of automatic test pattern generation (FUJITA et al.,
2015), equivalence checking (MISHCHENKO et al., 2006), functional dependency (JI-
ANG et al., 2010), functional decomposition (LEE; JIANG; HUNG, 2008), Boolean mat-
ching (SOEKEN et al., 2016), technology mapping (LING; SINGH; BROWN, 2005), etc.

Specifically, in the cell synthesis scenario, SAT-based methods are becoming an
important ally to deal with different aspects of this design task. From the first SAT-
based method on this topic, which deals with the channel routing problem (DEVADAS,
1989), other applications emerge, such as for the technology-dependent place-and-
route (P&R) (IIZUKA; IKEDA; ASADA, 2004, 2005), for FinFET placement (SORO-
KIN; RYZHENKO, 2019), for technology-independent cell routing (CORTADELLA et al.,
2014), for regular logic bricks design (TAYLOR; PILEGGI, 2007), among others.

In this scenario, we identify that SAT can be exploited even more for solving pro-
blems in the cell implementation domain. The next chapters of this thesis will explore
this valuable tool for solving problems in different topics of cell synthesis in conventional
and emerging technologies.
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1.1 Research Questions and Hypotheses

Considering the scenario illustrated in the previous section, where the capabilities
of SAT solvers increases dramatically in the past years, the following research question
arises: how to employ the discrete constraint modeling and the Boolean satis-
fiability solvers to deal with various challenges in the cell synthesis? Indeed,
this question can be divided into three minor research questions (mRQ) to simplify and
clarify the discussion. This way, we can define the minor research questions as follows:

• mRQ1: how to make use of the capabilities of modern SAT solvers for dealing
with cell synthesis problems in conventional (transistor-based) technologies?

• mRQ2: how to employ SAT solvers to deal with cell synthesis challenges for
field-coupled nanotechnologies?

• mRQ3: what is the quality of the solutions provided by the SAT-based approaches
in comparison with other traditional methodologies?

To answer these questions, we raise some research hypotheses (RH) listed as
follows:

• RH1: the transistor placement task plays an important role in the cell synthesis
since it is a procedure taken in the first stage of the physical design flow, i.e., it
is employed previous to the routing and compaction tasks. Thus, a good solution
for placement can lead to optimizations in the cell area even though maintaining
the same routing and compaction routines. In this sense, we hypothesize that it
is possible to encode the placement restrictions of a particular technology node
into an SAT problem and, afterward, use SAT solvers to compute the minimal
solutions that fulfill the requirements of the designed SAT model. This way, it
can serve as a good alternative to other placement approaches since the cells
produced through the SAT-based method potentially use fewer columns for the
layout.

• RH2: the physical synthesis on field-coupled nanotechnologies such as QCA and
NML is a complex process where the placement and routing should be computed
taking into account the synchronization restrictions inherent to these technolo-
gies. Thus, we hypothesize that encoding all the design restrictions - i.e., the pla-
cement, routing, and synchronization constraints - of QCA and NML into an SAT
problem and, then, solving it through an SAT solver can lead to area-optimized
solutions that fulfill all the design requirements.

• RH3: to draw this research hypothesis, first it is necessary to define the assess-
ment scenarios:
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i. Considering the transistor-based design, all the assessments consist of a
comparison with a threshold accepting method implemented in an EDA tool
for automatic cell design known as ASTRAN. In this sense, to assess the
quality of the solutions produced through the SAT-based proposed approach,
we draw two testing scenarios: the first consists in assessing the number of
columns used only for the placement, while the second aims to evaluate the
layout (in terms of area, wirelength and number of contacts) produced using
the proposed method integrated with the ASTRAN infrastructure;

ii. Considering the synthesis for QCA and NML, the assessments consist of a
comparison with well-known graph-based approaches under the same con-
ditions (clocking schemes and synchronization profiles). Besides area, other
cell parameters are evaluated such as latency and cell density.

Thus, based on these proposed assessments, we hypothesize that the cons-
traints designed for each technology lead to optimized circuits in comparison with
different approaches available in the literature. We also hypothesize that, even
though the focus of the method is area optimization, the other cell parameters
also are optimized since they are related to the area of the circuit.

1.2 Goal and Thesis Contributions

Based on the research questions and hypotheses raised in the previous section of
this chapter, we are now able to define the main goal of this thesis. Thus, this thesis
proposes a new Boolean satisfiability approach for cell synthesis in transistor-
based and field-coupled technologies that leads to solutions with optimizations
in the layout area.

The main contributions of this thesis can be summarized as follow:

• SAT-based model for SCCG placement: we propose a new approach for enco-
ding the transistor placement task as a decision problem, where transistors and
their positions are represented as Boolean variables, and the constraints are built
based on the design rules of the 65nm technology over this set of variables. Thus,
a new algorithm is proposed - where a satisfiability solver is used as the core of
implementation -, enabling to find area-optimized solutions that fulfill the design
rules.

• Improvements on ASTRAN: as a byproduct of the previous item, we integrate
our new placement approach into ASTRAN, an academic open-source solution
widely used for cell synthesis. Thus, a new automatic placement approach ai-
ming to obtain area-optimized cells through ASTRAN is available for covering the
scenarios where this cell profile is desirable.
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• SAT-based model for QCA: we propose a new methodology for modeling the
synthesis problem in QCA, where the QCA cells and the grid configurations are
encoded as Boolean variables, and the placement, routing, and synchronization
constraints are defined based on the design rules described by a clocking scheme
called USE. From that, we describe a new algorithm - which also uses a satisfia-
bility solver as its core - to compute area-optimized solutions in QCA. Along with
that, an idea of the tradeoff between area and throughput is introduced based on
the proposed formulation.

• SAT-based model for NML: we propose a new methodology for modeling circuit
design challenges in NML, where the NML cells and the grid configurations are
encoded as Boolean variables, and the placement, routing, and synchronization
restrictions are built based on the design rules defined by a clocking scheme
called BANCS. Moreover, we describe a new synthesis algorithm - which also
adopts a satisfiability solver in its core - to obtain solutions with optimizations in
the layout area. Furthermore, a tradeoff profile between area and throughput is
introduced based on the proposed formulation.

1.3 Thesis Outline

This thesis is organized as follows:

• Chapter 2 reviews some basic concepts to enable a more complete understan-
ding of the thesis. Fundamentals of Boolean algebra, such as Boolean functions,
variables, and operators, are presented. Besides that, a brief introduction about
Boolean satisfiability is conducted, including the presentation of the Boolean sa-
tisfiability solver adopted. Finally, the cardinality constraints broadly used in the
proposed models are formally defined.

• Chapter 3 presents the first method proposed in this thesis, which is focused on
the design of static CMOS complex gates (SCCGs). The placements constraints
of SCCGs are modeled in terms of an SAT problem so it can be solved through
an SAT solver.

• Chapter 4 introduces the second method proposed in this monograph, which
is focused on the QCA design. Based on a well-known clocking scheme called
USE, the placement, routing, and synchronization constraints are encoded in a
SAT problem to be computed through a SAT solver.

• Chapter 5 provides the third method proposed in this thesis, which is focused
on the NML design. Similar to the chapter 4, the NML synthesis constraints are
based on a well-known clocking scheme called BANCS, where all placement,
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routing, and synchronization restrictions are modeled in terms of a SAT problem
to be handled by a SAT solver.

• Chapter 6 concludes this thesis, where the advances proposed are summarized
and compared with the objectives and goals. Furthermore, ideas for future work
are provided so it can drive the next researches and extend the presented work.



2 BACKGROUND

In this chapter, we provide background information on the basic concepts necessary
for a complete understanding of this thesis. First, we introduce some fundamentals of
Boolean algebra (Boolean variables, functions, operators, etc.). Afterward, we define
Boolean satisfiability and satisfiability solvers. Finally, we present the cardinality cons-
traints which are used along this monograph.

2.1 Boolean Algebra

Firstly, consider B = {0, 1} as the Boolean set whose elements are logic values
typically interpreted as 0 for false and 1 for true. In this sense, a Boolean function is
a function f : Bn → B, such that n ≥ 1. In other words, a Boolean function describes
how to compute a Boolean value output based on logic calculations from the Boolean
input vector of size n.

Boolean variables are variables defined in the Boolean domain B and are ge-
nerally assigned using alphanumeric characters (such as a, b, x0, x1, etc.) Boolean
variables can assume arbitrary values in the Boolean domain, i.e., they can assume
the values 0 or 1. A literal is an occurrence of a variable or its complement in a Boolean
function.

The basic Boolean operators are the conjunction (and), disjunction (or) and ne-
gation (not). The symbols used for this operators are ∧, ∨, and ¬, respectively. Thus,
considering the set of n Boolean variables X = {x0, x1, ..., xn−1}, we have

x0 ∧ x1 ∧ ... ∧ xn−1 ≡ true iff x0, x1, ..., and xn−1 are all true, (1)

x0 ∧ x1 ∨ ... ∨ xn−1 ≡ true iff x0, x1, ..., or xn−1 are, at least one, true, (2)

¬xi ≡ true iff xi is false and ¬xi ≡ false iff xi is true. (3)

2.2 Boolean Satisfiability

A disjunction of n literals forms a clause, i.e., c = l0 ∨ l1 ∨ ... ∨ ln−1. To solve
a Boolean satisfiability problem, a Boolean formula is converted into its conjunctive
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normal form (CNF) as a conjunction of m clauses, F = c0 ∧ c1 ∧ ... ∧ cm−1. Algorithms
such as the Tseitin transformation (TSEITIN, 1983) convert a Boolean function into a
set of CNF clauses.

A Boolean satisfiability (SAT) problem is a decision problem that takes a propo-
sitional formula in CNF form and returns that the formula is satisfiable if there is an
assignment of the variables from the formula for which the CNF evaluates to true.
Otherwise, the propositional formula is unsatisfiable (UNSAT). A program that solves
SAT problems is called a SAT solver. SAT solvers provide a satisfying assignment
when the problem is satisfiable (PETKOVSKA, 2017).

Throughout this thesis we adopted the CryptoMiniSat (SOOS; NOHL; CASTEL-
LUCCIA, 2009) as our SAT solver. CryptoMiniSat is a version of the well-known Mini-
Sat solver (EÉN; SÖRENSSON, 2003). We decided to use CryptoMiniSat for its com-
patibility with C++ and Python (both languages used for implementing the algorithms
proposed). Together with CryptoMiniSat we used PyEDA (AQAJARI et al., 2021) for
dealing with the Tseitin transformations.

2.3 Cardinality Constraint

A cardinality constraint is a constraint on the number of literals set to true in a
given Boolean formula (BIERE et al., 2009). Hence, considering a set of n Boolean
variables X = {x0, x1, ..., xn−1}, a cardinality constraint can be represented in the form
of a pseudo-Boolean formula as

n−1∑
i=0

xi R k, (4)

where k is an integer bound such that 0 ≤ k ≤ n− 1 and R is any relation of the set
{≤,≥,=}. Considering this, three cardinality constraints are defined:

• atmost(k,X) is true iff at most k variables of X are true;

• atleast(k,X) is true iff at least k variables of X are true;

• exactly(k,X) is true iff exactly k variables of X are true.

There are several strategies proposed in the literature for encoding these cons-
traints as presented in (WYNN, 2018).



3 STATIC CMOS COMPLEX GATES

Digital circuits and systems are fundamental to our modern world. They are ap-
plied in different areas of society such as in health, education, agriculture, economy,
sports, transportation, among many others. In this scenario, most of these solutions
are designed into integrated circuits (IC), devices that comprises multiple components
into a single piece of silicon. Nowadays, it is possible to build chips containing billions
of transistors, the basic computing unit.

In this scenario, the classic problems in digital circuit design are related to the op-
timizations of circuit parameters, such as area, power, and delay. In the past decade,
Static CMOS Complex Gates (SCCGs) have been pointed as a promising alternative to
supplant the traditional standard cell design (REIS, 2011). Producing solutions where
Boolean functions with several inputs are implemented using a single gate, through
this paradigm it is possible to provide on-demand circuits that meet restrictive project
specifications.

Typically, the design flow of a complex gate is composed of three major steps: the
first consists of generating and sizing a specialized transistor network that implements
a given Boolean logic function; the second procedure is the layout generation, in which
the transistor network is designed at physical level considering a specific technology;
finally, the last task is the validation, verification and models generation, where the so-
lution produced by the previous steps is evaluated regarding its geometric and electric
aspects in order to analyze if it meets the expected behavior and the specified cons-
traints.

Regarding the transistor network generation, there are several methodologies to
perform this task (MARTINS et al., 2010; GOLUMBIC; MINTZ; ROTICS, 2008; ROSA
et al., 2009; KAGARIS; HANIOTAKIS, 2007; POSSANI et al., 2016). The well-known
Boolean factoring paradigm is the main way to handle this problem. It consists of fin-
ding an equivalent factored form solution (therefore, with fewer literals) from a given
Boolean function. Hence, a complex gate can be obtained through series-parallel as-
sociations according to the and/or operations between the literals. On the other hand,
recent papers have shown that graph-based methodologies can deliver cells with fewer
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Figure 2 – Transistor networks implementing the Boolean function presented in equation 5. (a)
Transistor network obtained through Boolean factoring. (b) Transistor arrangement provided by
a graph-based approach.

transistors compared to the solutions obtained through the classical Boolean factoring
paradigm. This approach is based on the path sharing technique performed in order to
optimize the transistor count. Due to the adoption of graphs as its data structure, some
manipulations in the transistor arrangements potentially lead to non-regular topologies,
i.e., graph-based methodologies can produce non-planar and non-dual cells.

To illustrate the potential of the SCCG-based design, consider the circuits presented
in Figure 2 which implements the Boolean equation 5 below. Each solution is associa-
ted with the number of transistors necessary for its implementation, a parameter used
for a estimate of the quality of the solution in terms of area, delay, and power (REIS,
2011; POSSANI et al., 2016). Therefore, the on-demand design of logic cells can be
exploited as a good alternative for designing optimized digital circuits since it presents
fewer transistors in general in comparison with traditional approaches.

f = a · b+ a · c · e+ d · e+ b · c · d (5)

Considering the gate layout generation, usually a full-custom approach is taken
for the design of cell libraries. Since the number of gates available in a standard cell
library is limited and most of the gates are composed of few transistors, the design task
is feasible by hand. However, if we consider an on-demand project, where complex
Boolean functions can be extracted from any node of the digital system and with gates
containing a larger number of transistors, the handcraft design cannot be satisfactory
since it is a process directly related to the complexity of the internal placement, routing,
and compaction procedures. In this scenario, an automated approach may lead to
optimized solutions quicker (ZIESEMER JR, 2014).

Nowadays, automatic layout generation tools present results comparable to hand-
made designs (ZIESEMER; REIS, 2015; KARMAZIN; OTERO; MANOHAR, 2013). AS-
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Figure 3 – Layouts of the complex gates presented in Figure 2 generated through ASTRAN. (a)
Layout of the Figure 2 (a). (b) Layout of the Figure 2 (b).

TRAN (ZIESEMER; REIS, 2015), considered the state of the art tool for this purpose,
is an academic open-source solution that handle circuits without any topological cons-
traints (an important feature for gates produced by graph-based methodologies, as
mentioned before). The tool is composed of four main stages: folding, placement, rou-
ting, and compaction. Improvements in each stage lead to better solutions and quicker
processes to achieve them. In order to illustrate the quality of the solutions produced
through ASTRAN, Figure 3 (a) and (b) presents the circuits generated for the transistor
networks shown in Figure 2 (a) and (b), respectively.

Therefore, this chapter presents a SAT-based algorithm for the transistor placement
task in the automatic cell implementation flow. The proposed method was integrated
with ASTRAN for assessing its quality in comparison with the original placement pro-
cedure of this tool and for validation purposes.

3.1 Chapter Organization

The sections in this chapter are organized as follows: Section 3.2 reviews some
important concepts for the fully understanding of the synthesis process around the
SCCG-based design; Section 3.3 introduces the related work; Section 3.4 presents a
brief overview of the proposed approach; Section 3.5 formalizes the proposed metho-
dology; Section 3.6 presents the experiments conducted and the obtained results; fi-
nally, Section 3.7 concludes this chapter.

3.2 Preliminaries

The design of SCCGs relies on automatic methodologies not only because of the
large number of gates in a digital system, such as what occurs in the standard cell ap-
proach, but also because of the fact that each circuit need to be produced on-demand.
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Figure 4 – Design of SCCGs through the Libra methodology.

In this scenario, the Libra methodology (CARDOSO et al., 2018) is the state of the
art methodology for producing SCCGs. It can be divided in four main stages: logic
network generation, responsible for producing the transistor network that implements
the Boolean function desired, gate sizing, which computes the size of each transistor
of the network, layout generation, the module that produces the layout of the cell, and,
finally, the characterization, responsible for the verification and validation of the solution
produced. Figure 4 illustrates the Libra methodology along with the tools and outputs
associated with each part of the design flow.

The next subsections will detail the Libra methodology in order to illustrate the
SCCG-based cell design. This way, we can understand more accurately the contri-
bution of the placement method proposed in this thesis as well as its function in the
SCCG design flow.

3.2.1 Logic Network Generation

Receiving as input a Boolean function, this procedure is responsible for delivering
an optimized transistor arrangement obtained through Kernel Finder (KF) (POSSANI
et al., 2016), the state of the art methodology for network design.

Since it is possible to obtain different solutions from divergent strategies of logic
optimization in KF, Libra proposes an approach for transistor network generation which
not only takes into account the number of transistors in the solution, but also the topo-
logy of the cell. This is due to the fact that non-planar structures may lead to vertical
mismatches, increasing the number of columns necessary to implement the cell (CAR-
DOSO et al., 2017).

Considering this, a method based on the KF tool was proposed in the Libra metho-
dology. This method is presented in Algorithm 1 and it starts receiving an input Boolean
function F in its irredundant sum-of-products (ISOP) form. From the input function in
its direct and complementary polarity (F and !F , respectively) the pull-up PU and pull-
down PD plans are generated via Kernel Finder. Right after that, PU and PD are tested
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Algorithm 1: Pseudocode for logic network generation proposed by Libra
input : Boolean function F
output: pull-up circuit PU, pull-down circuit PD
PU ← KernelFinder(¬F)
PD ← KernelFinder(F)
if isPlanar (PU) and isPlanar (PD) then

if PD.size < PU.size then
PD ← Dual (PU)

else
PU ← Dual (PD)

if isPlanar (PU) xor isPlanar (PD) then
if isPlanar (PU) then

PD ← Dual (PU)

else
PU ← Dual (PD)

return PU ∪ PD

concerning its topological aspects. If both plans are planar, then the dual network of
the plan with fewer transistors is generated. In the case of a singular non-planar plan,
the algorithm generates the dual network from that dual arrangement, regardless of
the number of transistors on each plan. Finally, the method returns the arrangement
composed by the logic plans PU and PD.

3.2.2 Gate Sizing

For the gate sizing, Libra implements the Logical Effort method (LE) due to its fle-
xibility to handle different transistor topologies, such as non-series-parallel, including
networks with a lack of duality and planarity1. Logical Effort is a well-known methodo-
logy that can be used to estimates the cell delay, as well as to define the transistors
width. The procedure consists in computing the sizing of the devices of a complex gate
in order to achieve the same current drive strength of a reference inverter. To perform
this, the algorithm considers the transistor stacks for every path, where the size of the
transistors is obtained taking into account its critical path, i.e., the largest transistor
chain connecting the power lines to the output. Algorithm 2 illustrates the LE applied

1For computing the method we considered an output load of four minimal inverters (FO4)

Algorithm 2: Pseudocode for complex gate sizing through Libra
input : pull-up circuit PD, pull-down circuit PD, λ
output: sized pull-up circuit PUs, sized pull-down circuit PDs
for transistor t ∈ PU do

t.width← ComputeCriticalPath (t, PU) * λ
PUs ← PUs + t

for transistor t ∈ PD do
t.width← ComputeCriticalPath (t, PD)
PDs ← PDs + t

return PUs ∪ PDs
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Figure 5 – ASTRAN cell generation.
Source: adapted from (ZIESEMER JR, 2014).

to the complex gate sizing problem. The algorithm receives as input the logic plans
PU and PD, both computed through Algorithm 1, and λ, the ratio between the widths
of the PMOS and NMOS transistors of the reference inverter. Then, the critical path of
each transistor is calculated. Relative to the switches of the PU plan, the critical path
is multiplied by λ. Finally, the plans are returned with all transistors properly sized.

3.2.3 Layout Design

The layout generation procedure of the Libra methodology is based on ASTRAN
(which is an acronym for Automatic Synthesis of Transistor Networks) (ZIESEMER;
REIS, 2015), a tool for automatic cell layout design. As already mentioned, ASTRAN
is the state of the art academic open-source solution for physical synthesis of complex
gates without topological constraints, i.e., it is possible to produce layouts from non-
planar and non-dual arrangements, an important feature considering the SCCG-based
design proposed in Libra.

The ASTRAN tool can be divided into four modules: folding, placement, routing,
and compaction. The first module, folding, is responsible to break the transistors that
surpass a specified row height, thus avoiding blank spaces which costs some layout
area (SMANIOTTO et al., 2016). The placement procedure is responsible for defining
the position of each transistor into the cell as detailed in Section 3.3.3. The routing
task is done in order to find the paths that connect all the components of the layout
through a modified version of the PathFinder routing tool (MCMURCHIE; EBELING,
1995). Finally, the last task is the compaction, where the blank spaces of the cells
are minimized for the purpose of area optimization through an ILP approach. Figure 5
presents the automatic cell generation flow performed by ASTRAN where we can see
all these modules.
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Figure 6 – Transistor placement from an Euler path. (a) Transistor network. (b) Corresponding
graph. (c) Pseudo-layout with no diffusion gaps.

3.2.4 Characterization

The last module of the Libra methodology for complex gate design consists of per-
forming the cell characterization, gathering results concerning geometrical and elec-
trical parameters of the generated layout. As the execution flow illustrated in Figure
4 shows, if the specifications are not met, then the gate sizing is repeated assuming
relaxed parameters (changing the ratio λ or the weight associated with the critical path,
for instance).

3.3 Related Work

This section presents some of the methodologies available in the literature for the
placement of complex gate cells in transistor-based technologies.

3.3.1 Uehara et al. (UEHARA; VANCLEEMPUT, 1981)

Uehara et al. (UEHARA; VANCLEEMPUT, 1981) was the first method for transistor
placement and it is still the base for some placement techniques used nowadays (for
standard cell design, for instance). It is a graph-based methodology that relies on
finding the Euler paths for producing single-row layouts.

The method receives as input a netlist with the transistors of the circuit. From that,
a graph is created where each vertex represents a node of the netlist and each edge
denotes a transistor of the netlist. With this graph created, the algorithm tries to find an
Euler path, i.e., a path that traverses the whole graph visiting each edge exactly once.
If an Euler path is found, then it is possible to create a layout in which all neighbors
transistors share its diffusion areas. To accomplish that, the transistors must be placed
in the same order they are visited in the graph.

To exemplify the algorithm, consider the transistor arrangement illustrated in Figure
6 (a), where an Euler path E = (e, f, g, c, b, a, d, i, j, h) is present in (b), leading to the
solution (c). Notice that, since an Euler path was found, then the layout does not
present any diffusion break, minimizing the number of colums for placement.

In the case where there is no Euler path, then the algorithm splits the graph into
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Figure 7 – Placement instance and layout style of (IIZUKA; IKEDA; ASADA, 2004).
Source: adapted from (IIZUKA; IKEDA; ASADA, 2004).

two subgraphs and the search is performed in each subgraph independently. This
procedure is adopted until Euler paths are found in every subgraph. The circuits of
each subgraph is then connected in the routing step of the layout design.

3.3.2 Iizuka et al. (IIZUKA; IKEDA; ASADA, 2004, 2005)

Iizuka et al. proposes two SAT-based methods for placement. The first method
(IIZUKA; IKEDA; ASADA, 2004) focuses on dual topologies, while the second one
(IIZUKA; IKEDA; ASADA, 2005) does not have any topological constraint but is im-
plemented aiming at multi-row layouts. It is important to notice that the SAT-based
method proposed in this thesis is able to deal with irregular topologies while imple-
menting single-row layouts (an important feature for matching with ASTRAN). The next
paragraphs will discuss each method.

In (IIZUKA; IKEDA; ASADA, 2004) it is introduced the idea of transforming the pla-
cement problem into a SAT formulation. The layout style employed is the single-row
with fixed height, so the method only needs to deal with minimizing the width of the
cell (i.e., the number of columns of the pseudo-layout). Figure 7 shows an instance of
the Iizuka’s placement. The method receives a spice netlist as input and generates its
constraints based on the components of the circuit. Along with that, an intra-cell rou-
ting algorithm is defined so the layout placed can be tested if it is routable or not. Both
the placement and the routing procedures are not focused on a particular technology
node.

In (IIZUKA; IKEDA; ASADA, 2005) the first method is adapted to deal with non-
regular topologies as the ones possibly obtained after folding, for instance. As descri-
bed before, the resulting cell follows the multi-row layout style as presented in Figure
8. As in the previous method, the algorithm starts receiving an input netlist and the
Boolean formulas are generated from this file based on the constraints designed. The
algorithm also focuses on minimizing the width of the cells. The constraints are des-
cribed in the form of pseudo-Boolean formulas so the authors can employ ILP solvers
instead of SAT solvers (commercial solutions of ILP solvers are powerful enough to
deal with the complex ILP instances generated through the method).
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Figure 8 – Placement instance and layout style of (IIZUKA; IKEDA; ASADA, 2005).
Source: adapted from (IIZUKA; IKEDA; ASADA, 2005).

3.3.3 ASTRAN Placement (ZIESEMER; REIS, 2015)

Since the placement method presented in this thesis focuses on implementing SC-
CGs using ASTRAN’s infrastructure for dealing with the other design tasks, it is useful
to have a deeper understanding of the transistor placement method implemented into
the ASTRAN tool. Along with that, the assessments presented in the results section
(Section 4.6) are done by comparing the solutions provided by ASTRAN’s original tool
(i.e., with its original placement method) and the solutions generated using the SAT-
based methodology proposed.

ASTRAN implements a transistor placement through threshold accepting (TA) (DU-
ECK; SCHEUER, 1990), a meta-heuristic similar to the well-known simulated annea-
ling. Figure 10 illustrates the TA algorithm implemented. This way, local minimums can
be achieved especially for larger cell instances.

The initial placement is generated randomly where a valid solution for the circuit is
computed. Along with that, the perturbation function moves a set of connected transis-
tors. There are two types of movements with the same chance of being executed: the
first one consists of shifting a subset of transistors, while the second inverts the tran-
sistor ordering and orientation inside this subset (i.e., the subset is mirrored). Notice
that the size of the subset is also randomly selected (ZIESEMER; REIS, 2015). Figure
9 illustrates the perturbation function.

Figure 9 – Illustration of the perturbation function implemented into ASTRAN placement.
Source: adapted from (ZIESEMER JR, 2014).
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Figure 10 – Threshold accepting-based placement implemented into ASTRAN.
Source: adapted from (ZIESEMER JR, 2014).

Finally, the cost function f shown in equation 6 is defined

f = 100 ∗ (4Wgm + 4Wmd + 3Wc + 2Wg +Wwl) +Wld, (6)

where the following geometrical parameters are taken into account:

• Wgm: weight related to the misalignment of polysilicon gates in different plans;

• Wmd: weight related to the density of the connections of the cell;

• Wc: weight related to the cell width;

• Wg: weight related to the number of diffusion gaps;

• Wwl: weight related to the total length of the connections;

• Wld: weight related to the local routing density.

3.4 Method Overview

This section presents an overview of the proposed placement approach for SCCG
design. As the Section 3.5 details, there are four constraints which must be satisfied
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Figure 11 – Example of a transistor placement from a netlist. (a) Transistor netlist. (b) Pseudo-
layout with transistors placed through the proposed method. (c) Final layout generated by
ASTRAN.

for a placement to be valid. The constraints are:

• Transistor allocation constraint (A): each transistor must be allocated at exactly
one column;

• Transistor overlapping constraint (O): each position of the layout must contain at
most one transistor;

• Diffusion sharing constraint (S): two transistors positioned laterally next to each
other must share a node in the netlist;

• Gate alignment constraint (G): two transistors positioned vertically next to each
other must share the gate signal in the netlist.

In other words, a valid placement P is possible if and only if P is satisfiable such
that

P ≡ A ∧O ∧ S ∧ G. (7)

To illustrate the synthesis method, consider the example presented in Figure 11.
In (a) we have the netlist which implements a Boolean function F . This netlist was
obtained following the logic network generation step on Libra methodology. After sizing
the transistors of this SCCG, the ASTRAN deals with the layout generation step: in
(b) we have the solution for the placement - which was computed through our method,
i.e., which fulfills all the constraints presented above -, whereas in (c) we illustrate the
resulting cell (after routing and compaction).

The integration with ASTRAN can be summarized as illustrated in Figure 12, where
we can see that we use the whole ASTRAN infrastructure but adopting our method as
the core of the placement task.
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Figure 12 – Proposed modification (highlighted in red) on the ASTRAN cell generation flow.
Source: adapted from (ZIESEMER JR, 2014).

3.5 SAT-based Modeling for SCCG Placement

This section is responsible for formalizing the proposed SAT-based placement
method for SCCGs and it is organized as follows: Section 3.5.1 presents the input
of the method; Section 3.5.2 defines the Boolean variables that represent the place-
ment of each transistor in the circuit layout; Section 3.5.3 presents the formulas that
model the design constraints; finally, Section 3.5.4 describes the proposed algorithm.

3.5.1 Input

Let N be the netlist illustrated in Figure 13 (a) represented as a hypergraph N =

(V,E), such that V is the set of vertices, representing the nodes of the netlist, and E

is the set of hyperedges, representing the transistors of the netlist, as shown in Figure
13 (b). Thus, we define two disjoint subsets, one for each logic plain: the pull-up
transistors P = {p0, p1, p2, ..., pa} and the pull-down transistors N = {n0, n1, n2, ..., nb},
such that E = P ∪N .

Figure 13 – Example of an input netlist (a) and its equivalent graphs (b).
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Figure 14 – Layout style adopted in our methodology highlighting some cell characteristics.

3.5.2 Boolean Variables

Before defining the variables of our formulation it is necessary to present the struc-
ture where the transistors will be placed. As described before, we adopt the single-row
layout style to match with the cell created through ASTRAN. Thus, the pseudo-layout
structure is a matrix-like grid with two rows, one for each logic plan (i.e., P-type row
and N-type row), and several columns. Figure 14 illustrates this structure.

In this scenario, we can define the variables of our formulation as follows: the Boo-
lean variable pi(c) denotes a PMOS transistor pi located at the column c in its respective
row. Similarly to that, the variable ni(c) denotes that the NMOS transistor ni is located
at the column c in its row2.

Another important variable used throughout this chapter refers to the orientation of
the transistor in the cell. There are two possible orientations considering the layout
design purposes: drain-gate-source (a) and source-gate-drain (b). This way, for a
PMOS transistor pi located at the column c we have pi(c, d) to represent the case (a) -
drain on the left of gate and source - and pi(c, s) to represent the case (b) - source on
the left of gate and drain.

Thus, we can derive that

pi(c) ⇐⇒ exactly(1, {pi(c, d), pi(c, s)}). (8)

3.5.2.1 Table of Variables

Table 1 summarizes the set of variables used in our method.

3.5.2.2 Number of Variables

The number of variables #V created through our method is given by

#V = 3 ∗#cols ∗ (#P +#N), (9)

2From now on, all the definitions will be presented in regard to the PMOS row since it is similar to the
NMOS area.
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Table 1 – Table of variables used on the SAT-based method for the placement of SCCGs.

Variables Description
pi(c) PMOS transistor pi is placed in column c.
pi(c, d) PMOS transistor pi is placed in column c with the drain located on the left.
pi(c, s) PMOS transistor pi is placed in column c with the source located on the left.
ni(c) NMOS transistor ni is placed in column c.
ni(c, d) NMOS transistor ni is placed in column c with the drain located on the left.
ni(c, s) NMOS transistor ni is placed in column c with the source located on the left.

where #cols denotes the number of columns in the current iteration of the algorithm,
#P is the number of PMOS transistors on the netlist, and #N is the number of NMOS
transistors on the input.

3.5.3 Design Constraints

This section presents the constraints3 for the placement of SCCGs cells through
the proposed approach. All the constraints were meant to work with the 65nm and
45nm technology nodes, so it comprises all the design rules of these technologies
considering the placement of the transistors. Along with that, we take into account
the placement strategy described in (CARDOSO et al., 2017) that disallows the gate
vertical mismatching. Finally, we present the restrictions in terms of a single transistor
and a single column for simplicity reasons.

a. Transistor allocation constraint: each transistor must be allocated exclusively in one
location into the cell. The formula that implements this constraint is

pi(c) =⇒
∧
c 6=c′

¬pi(c′). (10)

b. Transistor overlapping constraint: each cell grid must contain at most one transistor,
i.e., it should have exactly one transistor or a gap. Thus, we can derive∧

c=1,...,C

atmost(1, {p0(c), p1(c), p2(c), ...}), (11)

such that C is the number of columns in the current iteration.

c. Diffusion sharing constraint: all transistors must have their right neighbor with equi-
valent terminal value (except for those placed in the right boundary of the layout) or
must be followed by a gap. In other words, if a transistor is followed by another, then

3Appendix A presents an example of how the following constraints are applied.
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they must share a common node in the netlist. This is implemented through

pi(c, d) =⇒ ¬pj(c+ 1, d), if s(pi) 6= d(pj),

pi(c, d) =⇒ ¬pj(c+ 1, s), if s(pi) 6= s(pj),

pi(c, s) =⇒ ¬pj(c+ 1, d), if d(pi) 6= d(pj),

pi(c, s) =⇒ ¬pj(c+ 1, s), if d(pi) 6= s(pj),

(12)

where c ∈ {1, 2, ..., C − 1}, such that C is the number of columns in the current
iteration, s(px) is a function that returns the node connected to the source terminal
of px accordingly with the input netlist and d(px) is a function that returns the node
connected to the drain terminal of px also accordingly with the input netlist.

d. Gate alignment constraint: all P and N-type transistors placed in the same column
(in their respective rows) must share their gate signals. To implement this constraint
we can define

pi(c) =⇒ ¬nj(c), if g(pi) 6= g(nj), (13)

such that g(px) is a function that returns the node connected to the source terminal
of px accordingly with the input netlist (and similarly to g(nx) and nx).

3.5.4 Algorithm

This section presents the proposed method (Algorithm 3) for the placement of SC-
CGs cells. Notice that the algorithm is based on the variables and constraints defined
in the previous section of this chapter4.

Algorithm 3: SAT-based pseudo-code for the placement of SCCGs
input : input netlist N
output: pseudo-layout of the SCCG layout
C ← GetColumnsLowerBound(N)
while True do

V ← CreateBooleanVariables(N, C)
placement ← CreateClauses(N, C, V)
SAT ← Solver(placement)
if SAT 6= False then

layout ← Translate (SAT)
return layout

C← C+1

The algorithm receives as its input the netlist N in SPICE format and com-
putes the minimal number of columns C (lower bound) as described in (CORTA-
DELLA, 2013) through the function GetColumnsLowerBound(N). Following this, the

4It is important to notice that the formulas presented in the previous section are not in CNF format
adopted for the SAT solvers. Thus, the Tseitin tranformation procedure (TSEITIN, 1983) is taken in order
to convert all the formulas to the CNF format.
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Boolean variables V and the clauses placement are created through the methods
CreateBooleanVariables(N,C) and CreateClauses(N,C, V ), respectively, where the
last returns the conjunction of the formulas proposed (as presented in Section 3.4) in
conjunctive normal form (CNF). In case of satisfiability - identified by the SAT solver
through function Solver(placement) -, the satisfiable assignment of the Boolean vari-
ables is translated to its pseudo-layout form. However, if the formula is not satisfiable,
then one column is added to each logic plan and the process of creating the variables,
the clauses, and testing its satisfiability is repeated.

3.6 Experiments

The experiments presented in this section aim to assess the proposed method
in comparison with the original ASTRAN placement procedure (reviewed in Section
3.3.3). It is reasonable to make this comparison since both rely on the same design
rules (45nm and 65nm), layout style, and environment of the ASTRAN cell generator
flow (i.e., other tasks - like routing and compaction - which directly impact the design of
the cells are the same for both placement procedures). Considering this, two experi-
ments were conducted: the first with the goal of assessing the placement methodology
regarding the number of columns in the pseudo-layout and the second to assess the
quality of the full design (in 65nm) in terms of cell area, wirelength, and number of
contacts.

3.6.1 Assessment of the Number of Columns

The first experiment consists of measuring the number of columns in the pseudo-
layouts produced through the SAT-based placement method proposed and the th-
reshold accepting-based method from ASTRAN. In this scenario, the benchmarks used
in this assessment are the following: the 53 NSP handmade networks (53NSP) (LO-
GICS, 2012) and a subset of the 4-input P-class (P4) (CORREIA et al., 2001). While
the former is composed of 53 handcrafted non-series-parallel gates containing from 10
to 14 transistors, the latter is a subset of 150 cells that implements the functions defined
in P4. To select the networks to be part of the P4 subset, we follow the methodology
below:

• Firstly, we generate the transistor network for each instance of the P4 bench-
mark (comprising a total of 3982 functions) following the logic generation step of
(CARDOSO et al., 2018) (detailed in Section 4);

• After this, we classified the networks based on the number of transistors on the
complex gate. Twelve classes were created with cells ranging from 2 to 24 tran-
sistors;
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Figure 15 – Optimizations in the number of columns of the pseudo-layout.

• Finally, from each one of the twelve catalogs, we randomly selected 15 cells5 to
be implemented by both placement approaches, this way we achieved a homo-
geneous distribution regarding the size of the netlists. A total of 150 cells of the
P4 benchmark were assessed.

The result concerning number of columns for the gates of the the 53NSP bench-
mark is the following:

• The cells F5, F10, F17, F19, F25, F26, F31, F32, F33, F39, F40, F41, and
F43 generated through the proposed method has presented one less column in
comparison with the ASTRAN solution;

• The cell F44 has presented two less columns in comparison with the ASTRAN
solution;

• The other 39 cells has the same number of columns for both design approach.

The second result is presented in Figure 15. This chart illustrates the optimizations
(on average) of the SAT-based solutions over the ASTRAN instances for each class of
arrangements in respect to the number of columns of the pseudo-layout. As presented
by the graph, the proposed method was able to deliver optimizations up to 7.27%
for the SCCGs with 20 transistors regarding this parameter. For smaller instances
(up to 8 transistors), the TA approach is able to find global minimal solutions, so no
optimizations were obtained through the proposed approach.

Finally, Table 2 summarizes the results of this first assessment, where a frequency
table illustrates the differences in the number of columns of the layouts assuming AS-
TRAN original solution as the reference (i.e., negative values means that the propo-
sed method was able to find solutions with fewer columns). We can notice that, for
the 53NSP catalog, 73.6% of the cells presented the same number of columns, while

5Except for the SCCGs with 2 and 4 transistors, where all 8 cells were tested, and the class of gates
with 22 transistors, where all 13 cells were implemented.
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Table 2 – Frequency table of the difference on the number of columns of the layout considering
the ASTRAN placement as reference.

Difference Benchmarks
53NSP. P4

0 39 (73.6%) 116 (77.3%)
-1 13 (24.5%) 25 (16.7%)
-2 1 (1.9%) 7 (4.7%)
-3 0 (0.0%) 2 (1.3%)

26.4% of the pseudo-layouts reported optimizations in this aspect. Regarding the P4
benchmark, 77.3% of the solutions presented the same number of columns, while
22.7% reported reductions on this attribute.

3.6.2 Assessment of the Layout Geometries

The second experiment was conducted under the 53NSP catalog by generating the
layouts through the complete flow provided by the ASTRAN tool. In this scenario, we
employ the original routing and compaction procedures of ASTRAN for both versions
of the layouts generated in order to have a fair comparison. Moreover, the STMicroe-
lectronics 65nm node was adopted for the synthesis with all the ASTRAN’s options in
default.

The following parameters were extracted from the layouts: area, routing wirelength
(considering polysilicon and metal 1), and number of contacts. Besides that, the exe-
cution times of the placement procedures were also collected. The chart illustrated in
Figure 16 summarizes the optimizations (blue bars) and overheads (red bars) obtai-
ned, where we take as reference the original ASTRAN approach. As we can notice,
an optimization of 2.1% was obtained considering layout area; regarding wirelength,
an overhead of 0.1% was observed; finally, related to the number of contacts, the SAT-
based solution presented a 6.0% optimization.

Along with that, the proposed approach took 0.49s on average to compute the pla-
cement, while the original ASTRAN procedure spent 11.42s on average for the same
scenarios, thus corresponding to a 23.3x speedup. Furthermore, standard deviations
of the optimizations in area, wirelength, number of contacts, and runtime are 3.8%,
8.3%, 6.1%, and 4.5%, respectively. Through the analysis of the charts presented in
Figure 16 along with the corresponding standard deviation of each parameter, we can
notice a small dispersion of the data, i.e, the results are uniform for most of the cases.
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Finally, even optimizing the number of columns for placement (as previously shown
in Table 2), the layout area of two cells (F16 and F20) presented an overhead compared
to the original ASTRAN version. This is due to the routing step, which uses extra
columns to perform the internal connections of the gate. A routing algorithm integrated
with the placement procedure must overcome this problem. This can also provide
better results in terms of wirelength.

3.7 Chapter Conclusions

In this chapter, we presented a new SAT-based placement method for SCCGs. A set
of Boolean variables and formulas were defined in order to model the design rules of
the 65nm and 45nm technology nodes. An integration with ASTRAN was done so the
tool was the responsible for dealing with routing and compaction processes, validating
the proposed method in a real design environment.

The results of the experiments have shown that the SAT-based methodology was
able to optimize the cells in comparison with a threshold accepting method implemen-
ted into ASTRAN (i.e., we also provide a valuable optimization for this open-source
tool). Two assessments were done: the first comparing the number of columns in a
pseudo-layout, where we can notice that the proposed approach delivers cells with a
less or equal number of columns; the second assessment compares some cell geome-
trical parameters, where the proposed method also shows good results on average.

Therefore, the results showed the potential to use a similar approach for designing
placement methods for SCCG cells in different technologies since the SAT solvers pro-
vide good results (not relying on local minimum or greedy algorithms) in a reasonable
computing time.



4 QUANTUM-DOT CELLULAR AUTOMATA

Transistor shrinking, the fundamental process that enabled the well-known Moore’s
law to be valid for such a long time, may be coming to a halt. While devices reach their
limits, the manufacturing problems in advanced lithographies make the design of new
technology nodes a highly cost process. At the same time, reliability and power issues
become important challenges in the design of modern digital circuits and systems.
To overcome these obstacles, various emerging technologies have been studied in the
last decades, such as single-electron transistors, molecular electronics, optical compu-
ting, carbon nanotube transistors, quantum-dot cellular automata, nanomagnetic logic,
among others.

In this scenario, the class of the field-coupled nanocomputing (ANDERSON;
BHANJA, 2014) technologies turns up to be a promising alternative to the conventi-
onal paradigm based on electron-charged devices such as the CMOS and FinFET.
The FCN family handles the computation through a fundamentally different approach:
the binary information is represented in terms of the polarity or magnetization of cells
and can be propagated to adjacent devices using repelling forces of local fields (LENT;
TOUGAW, 1997). This way, without the data transport relying on electrical current
flows, the energy levels involved in data processing are orders of magnitude lower
compared to the traditional transistor-based paradigm (LENT; SNIDER, 2014).

The first proposed device architecture of the FCN family was the quantum-dot cel-
lular automata (QCA) originally presented in (LENT; TOUGAW, 1997). The QCA tech-
nology consists of bistable cells locally connected through field-effect forces which can
be organized to perform logic operations (CAMPOS et al., 2016). It is expected that
QCA circuits composed of nanodevices of length in the range of 2-18nm (LIU; O’NEILL;
SWARTZLANDER, 2013) could ensure high clock frequencies (in the THz range) (KIM;
WU; KARRI, 2006) and ultra-low power consumption (ANDERSON; BHANJA, 2014;
LENT; SNIDER, 2014; TIMLER; LENT, 2002).

Another important aspect of the QCA technology is the clock. The clocking sys-
tem is responsible for controlling the flow of information across the design and en-
suring the correct functioning of the circuit. In this scenario, clocking schemes such
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as USE (CAMPOS et al., 2016), RES (GOSWAMI et al., 2019) and 2DDWave (VAN-
KAMAMIDI; OTTAVI; LOMBARDI, 2008), among others, were proposed to enable the
development of placement and routing algorithms that satisfy the design constraints of
the technology. Besides that, clocking schemes are important tools for providing sca-
lability for the QCA systems, a crucial feature for adopting this emerging technology in
the future.

This chapter presents an automated method for placement and routing of synchro-
nized QCA circuits relying on the USE clocking scheme, the state of the art scheme
for QCA design. Such as in the previous chapter, the method is posed as a Boolean
satisfiability problem aiming to obtain area-optimized solutions. As a byproduct, the
proposed method also presents good results in terms of latency due to the correlation
between this parameter and the area of the QCA circuit. The methodology presen-
ted along this chapter can be applied for several purposes: for the design of QCA
cell libraries, for the on-the-fly synthesis of QCA circuits, for the integration with scala-
ble divide-and-conquer strategies, for the validation and comparison with new design
automation methods, among others.

4.1 Chapter Organization

The sections in this chapter are organized as follows: Section 4.2 reviews some
important concepts for the fully understanding of the QCA technology; Section 4.3
introduces some related work; Section 4.4 presents a basic overview of the proposed
approach; Section 4.5 formalizes the proposed methodology; Section 4.6 presents the
experiments conducted and the obtained results; finally, Section 4.7 concludes this
chapter.

4.2 Preliminaries

Quantum-dot cellular automata (QCA) is an emerging technology from the family of
the field-coupled nanocomputing (FCN) (ANDERSON; BHANJA, 2014). Differing from
the traditional transistor-based approach, the FCN paradigm relies on store, transfer,
and compute information through Coulomb interactions, i.e., attractive and repulsive
electrostatic forces, that occur intra and inter devices. In this way, there is no electric
current directly involved in the processes, which potentially leads to ultra-low power
consumption (ANDERSON; BHANJA, 2014; LENT; SNIDER, 2014; TIMLER; LENT,
2002), an important feature considering the challenges of modern digital systems and
applications. IoT, biomedicine, and wearables are some examples in which a low power
consumption profile is desirable due to the limited energy supply. In this section, we
review some basic concepts for a fully understanding of the QCA technology.
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Figure 17 – QCA fundamentals. (a) QCA cells and polarization states. (b) A typical QCA wire
highlighting the Coulomb effect between devices.

4.2.1 QCA Basics

The fundamental unit of QCA is a cell composed of four quantum dots that can
confine an electric charge (LENT; TOUGAW, 1997; TIMLER; LENT, 2002). These
dots are located in the corners of a square, as shown in Figure 17 (a). Along with that,
two mobile electric charges are confined in this square such that they are able to tunnel
between adjacent dots but unable to tunnel outside the cell due to the potential barrier
of the frontier of the square. In this scenario, the Coulomb forces lead the system to a
minimal energy state where the mobile charges are located in one of the diagonals of
the QCA cell. Thus, binary information is encoded according to the polarization of the
cell as shown in Figure 17 (a), where P = −1 and P = +1 represent the logic 0 and
1, respectively. The Coulomb effect which acts upon the QCA cells can be observed in
Figure 17 (b), which shows a typical QCA wire highlighting the attraction between dots
containing a mobile charge and a hole.

4.2.2 QCA Clocking System

The transition between these two polarized states should occur adiabatically since
sudden changes could induce the system to a metastable configuration (LANDAUER,
1995). In this scenario, an external clock signal must be employed. The clock is also
responsible for controlling the potential barriers of the cell. In this way, neighboring
devices could interact, via the Coulomb phenomena, enabling the flow of information
and the logic processing. Figure 18 shows the data transfer in a QCA wire.

The clock signal in QCA is composed of four phases:

1. Switch: this phase is responsible for slowly increasing the potential barrier of the
cell (which avoids metastable states, as mentioned before), allowing the correct
change in the polarization of the device accordingly to its neighbors;

2. Hold: this phase is responsible for keeping the potential barrier of the cell in a
high state, thus avoiding the influence of neighboring devices and keeping its
polarization. The release phase is responsible for slowly decreasing the potential
barriers of the cell, leading to its depolarization;

3. Release: this phase is responsible for slowly decreasing the potential barriers of
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Figure 18 – Data transfer in a QCA wire.
Source: (CAMPOS, 2015)

the cell, leading to its depolarization;

4. Relax: this phase is responsible for keeping the potential barriers in a low state,
maintaining the cell depolarized.

After the completion of the relax phase, the cell starts a new cycle, i.e., a clock
cycle is composed of four clock phases. Regarding the clock signal generation, one of
the main challenges for the adoption of the QCA technology, (ANDERSON; BHANJA,
2014) made a broad discussion on this topic.

4.2.3 QCA Clocking Schemes

There are several ways of designing QCA circuits, each one presenting its own
advantages and drawbacks. One of the most adopted is the design based on clocking
schemes. Although they produce solutions with overheads in area compared to the free
(manual) approach, clocking schemes provide modularity and scalability. Additionally,
it can be used as a regular structure amenable for design automation solutions of QCA
layouts, which is a crucial aspect to potentially enable this technology in the future.

One of the most popular clocking schemes available in the literature is USE (CAM-
POS et al., 2016). As other alternatives, such as (GOSWAMI et al., 2019) and (VANKA-
MAMIDI; OTTAVI; LOMBARDI, 2008), USE proposes a design grid in which each cell
located on a clock zone receives data from the neighbors located on a preceding zone
and sends data to the neighbors located on a succeeding zone, thus guaranteeing a
correct flow of information within the circuit. It is important to notice that USE differs
from other approaches on how the clock zones are organized and the number of QCA
devices located in each clock zone. Figure 19 illustrates the USE clocking scheme.
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Figure 19 – The USE grid and a USE cell composed of a 5x5 QCA matrix.
Source: adapted from (CAMPOS et al., 2016).

4.2.4 QCA Cells

In order to be functional complete, it is necessary to define the set of gates which
implements the Boolean operations 3-input majority (MAJ3) and negation (NOT). Along
with that, all the logic structures produced through the proposed method, i.e., the gates
and the wires, are built over the structure of a 5x5 USE cell as proposed in (CAMPOS
et al., 2016) - detailed in Figure 19 and in the Section 4.2.3.

In this scenario, we adopt the cell library used in (FONTES et al., 2018), as well
as two parallel routing tracks in the horizontal and vertical axis of each USE cell. The
multiple routing tracks is useful for providing more flexibility for connecting different
parts of the circuit. Notice that it is possible to have crossing wires as used in (CAMPOS
et al., 2016). Figure 20 presents some examples of the 3-input majority gate (a), the
inverter gate (b) and the routing wires (c) proposed in (FONTES et al., 2018) which
serves as basis for composing the design constraints in our method.

4.3 Related Work

This section discusses some of the methodologies available in the literature for the
automatic physical synthesis of QCA circuits.

Figure 20 – Examples of QCA cells adopted in our model. (a) Majority-based gate implementing
an and function. (b) Inverter gate. (c) Two wires in a USE cell.
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4.3.1 Fiction Framework (WALTER et al., 2019)

Fiction is a framework for the physical design of field-coupled nanocomputing cir-
cuits with a focus on the QCA technology (WALTER et al., 2019). This tool supports
different clocking schemes (including USE) and it is composed of two main modules:
the first (WALTER et al., 2018) is based on Satisfiability Modulo Theories (SMT) and it
is capable of handling small instances of the circuit, while the second (WALTER et al.,
2019) relies on Orthogonal Graph Drawing (OGD) and provides scalability at the cost
of some area. This section will focus on the SMT-based method.

As detailed in (WALTER et al., 2018), the method receives an input netlist and
the design constraints (e.g., available area). Based on that, a symbolic formulation
is defined to represent the problem and the design restrictions. This formulation is
passed to an SMT solver responsible for checking the feasibility of the circuit.

The main difference between the aforementioned SMT-based method and the ap-
proach proposed in this thesis is that the design constraints defined in (WALTER et al.,
2018) potentially lead to non-synchronized solutions where the frequency of data input
on the circuit is dependent on the latency of each input. As discussed in (TORRES
et al., 2018), this produces area-optimized circuits at the price of a smaller throughput
and the need for controlling the frequency of data input, which is not convenient for
creating cell libraries, for example. Along with that, (WALTER et al., 2018) supports
single-wire cells, a design style that limits the routing paths available when compared
to the multi-wire cell style adopted in the proposed approach.

4.3.2 Trindade et al. (TRINDADE et al., 2016)

This method consists of a greedy breadth-first approach and is one of the first auto-
mated solutions proposed for the physical design of QCA circuits with the USE clocking
scheme.

As detailed in (TRINDADE et al., 2016), the algorithm receives a Directed Acyclic
Graph (DAG) representing the input netlist. For each level of the DAG (defined a priori),
all the nodes are simultaneously placed and routed. The placement is feasible if there
is a free cell in the USE grid that can allocate all the nodes of a given level in a way
that all of them have the same latency for the connections to the upper level. If there
is no available USE grid cell for placement, then the latency is increased in one unit
and the procedure restarts. The routing task is done similarly: if no routing paths
are available for a given latency between levels, then the latency is increased and the
process restarts.

The main aspects that differentiate (TRINDADE et al., 2016) and the proposed ap-
proach are: (1) the levels of the input graph are defined a priori, which already limits
the search space; (2) the latency between levels is the same for each node located in
these levels, thus having an impact in the area of the circuit, as it will be shown in the
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experiments of this thesis; (3) it is a greedy approach, so local minima are often achie-
ved; (4) only single-wire cells are allowed, limiting the routing paths on the circuit. On
the other hand, it is important to notice that all the solutions produced by (TRINDADE
et al., 2016) are synchronized, as the ones obtained with the proposed methodology.
Because of this, a fair comparison is possible as later shown in the experiments of this
thesis (Section 5.4.2).

4.3.3 Fontes et al. (FONTES et al., 2018)

This method consists of two steps: the first is responsible for the placement and
routing of netlists containing a small number of gates, whereas the second connects
the subcircuits generated in the first step to create the final circuit (providing scalability).
The discussion will focus on the first step.

As described in (FONTES et al., 2018), the method is based on the approach pre-
sented in (TRINDADE et al., 2016). The algorithm receives an input netlist organized
on different levels (defined a priori as well). The placement and routing procedures are
responsible for assigning the locations of each element by traversing the input netlist
in breadth-first order. After assigning an initial latency to each level, the gates are pla-
ced and routed in such a way that, if there are no available positions in the USE grid
for all the cells in a given level, the latency is increased by one unit. The maximum
latency between levels lmax is defined by lmax = max(4, d), where d is the input depth. If
the maximum latency of a given level is exceeded without finding any feasible solution,
then the algorithm backtracks and the latency of the upper level is increased. The main
difference between (FONTES et al., 2018) and (TRINDADE et al., 2016) relies on the
fact that the first explores simultaneously multiple placement and routing solutions for
a given level in the search-space tree in order to assess the impact in later decisions
of the algorithm, thus choosing the path that results in a minimum-area circuit.

The aspects of (FONTES et al., 2018) that differ from the proposed methodology
are: (1) the levels of the input netlist are defined a priori; (2) the latency between
levels is the same for each node located in these levels; (3) it is a greedy algorithm, so
local minima are frequently achieved; (4) the maximum latency between two connected
nodes is limited by the depth of the input graph. However, as in (TRINDADE et al.,
2016), the solutions obtained by (FONTES et al., 2018) are synchronized, hence being
suitable for the comparisons with the proposed methodology (Section 5.4.2).

4.3.4 Formigoni et al. (FORMIGONI et al., 2021)

The method proposed in (FORMIGONI et al., 2021) is based on a multilevel graph
partitioning algorithm.

"Firstly, several hypergraphs are generated, indexed from 0 to n, where n is the
number of the input nodes. Then, a graph maximal matching algorithm is applied as
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Figure 21 – Implementation of a 2:1 MUX in QCA. (a) Logic gates implementing the 2:1 MUX.
(b) Gate-level solution obtained by the proposed methodology. (c) QCA circuit.

the criteria to collapse adjacent graph vertices. The algorithm repeats this process
until it creates a hypergraph composed of a single vertex. For the second phase of the
strategy, it is performed the placement of the hypergraph indexed by n, followed by on-
grid uncoarsening for layout expansion. The algorithm generates the final layout when
the process expands the original base graph. Area overhead translates to the number
of generated hypergraphs, which the algorithm should minimize" (FORMIGONI et al.,
2021).

Finally, the aspects of (FORMIGONI et al., 2021) that are divergent of the proposed
methodology are: (1) the latency between levels is the same for each node located in
these levels; (2) it is a greedy algorithm, so local minima can be obtained; As in (TRIN-
DADE et al., 2016) and (FONTES et al., 2018), the solutions obtained by (FORMIGONI
et al., 2021) are synchronized, so comparitons with the proposed methodology can be
conducted (Section 5.4.2).

4.4 Method Overview

This section illustrates how our approach works. As we will see in Section 4.5.3,
there are several constraints that must be satisfied for a QCA circuit to be valid (i.e.,
functional). These constraints are classified into three categories:

• Placement constraints (Section 4.5.3.1), responsible for defining valid positions
for each gate;

• Synchronicity constraints (Section 4.5.3.2), responsible for ensuring the global
synchronicity of the circuit and the local synchronicity of each individual gate;

• Routing constraints (Section 4.5.3.3), necessary for designing the connections
between each gate.

We next describe the synthesis of the 2:1 multiplexer (2:1 MUX) circuit shown in
Figure 21 (a), which results in the solution presented in (b) and (c).
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4.4.1 Placement

The placement task is responsible for guaranteeing the following two conditions: (1)
each gate, input, and output must be located in only one position (avoiding multiples
instances of these components); (2) each grid cell should not exceeds the limit of
one gate, two wires, or (exclusively) two inputs. Considering the solution previously
presented in Figure 21 (b), we can notice that these two constraints are met.

4.4.2 Synchronization

The synchronization task is responsible for guaranteeing the following conditions:
(1) each signal must traverse the circuit according to the directions imposed by the
arrows located on the border of the grid; (2) all inputs must be assigned to the same
clock phase (similarly for the outputs); (3) the signals arriving at a gate should have the
same latency. Again, all these constraints are honored in Figure 21 (b).

4.4.3 Routing

The routing task guarantees the following conditions: (1) each input is followed by
a wire or by the gates connected to this input; (2) each gate is preceded by its inputs
(primary inputs of the circuit or other gates) or by a wire coming from these inputs; (3)
each gate is followed by its outputs (primary outputs of the circuit or other gates) or by
its own wire.

4.4.4 SAT-based Procedure

After defining the placement (P), synchronization (S), and routing (R) constraints
for a given USE grid, a Boolean formula

F ≡ P ∧ S ∧R (14)

is created such that, if F is satisfiable, then a valid solution is obtained. If unsatisfiable,
then the search space is expanded (e.g., by rotating or flipping the USE grid, changing
the USE grid configurations, or increasing the area) and F is redefined. The details of
the algorithm are discussed in Section 4.5.4.

4.5 SAT-based Method for QCA Design

This section is responsible for the formalization of the QCA synthesis method and it
is organized as follows: Section 4.5.1 presents the input of the method; Section 4.5.2
defines the Boolean variables that represent the devices and wires placed in the circuit
layout; Section 4.5.3 presents the formulas that model the design constraints; finally,
Section 4.5.4 describes the proposed algorithm.
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Figure 22 – A 2-input XOR gate (XOR2). (a) Gate-level netlist. (b) Corresponding graph.

4.5.1 Input

Let N be the netlist circuit represented as a hypergraph N = (V,E), such that V is
the set of vertices, representing the gates, and E is the set of hyperedges, representing
the wires. Figure 22 depicts the hypergraph of a 2-input XOR gate (XOR2). Further-
more, the set of vertices of N can be partitioned into three disjoint subsets: input nodes
I = {i0, i1, ..., in}, gate nodes G = {g0, g1, ..., gm}, and output nodes O = {o0, o1, ..., op},
such that V = I ∪G ∪O.

4.5.2 Boolean Variables

There are two types of variables in our model: device variables and interface varia-
bles. These sets of variables are detailed below.

4.5.2.1 Device Variables

Device variables represent the devices on the circuit, i.e., the gates (majority-gates
and inverters) and wires of the QCA design, as illustrated in Figure 20. These devices
can be inputs, gates, or outputs.

To define the device variables used in our formulation, consider (x, y) as a pair of
coordinates of the USE grid. Thus, the gate variable gi(x, y) denotes that the logic gate
or wire represented by node gi is in the location (x, y) of the grid. The same applies to
the input variable ii(x, y) and the output variable oi(x, y)1.

Considering that device variables represent gates or wires, it is necessary to define
driver cells and wire cells. Formally,

gi(x, y) ⇐⇒ gi(d)(x, y) ∨ gi(w)(x, y), (15)

where gi(d) and gi(w) represent a driver (i.e., an input, a majority gate, or an inverter)
and a wire of gi, respectively. Proposition (15) indicates that the presence of gi in (x, y)

1For the sake of simplicity, the formulas in this thesis are defined in terms of the gate variables.
However, it is important to notice that similar expressions are also defined for the input and output
variables. All the exceptions for the previous statement are explicit in the text.
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implies the presence of a driver or wire of gi in the same location (and vice versa).
Since the phase of the cell at (x, y) in the USE grid is determined by the grid confi-

guration, a new variable is necessary to represent the cycle each gate operates. Con-
sidering C = {0, 1, ..., cycles − 1}, where c ∈ C, we can represent driver and wire cells
with their associated cycles c as gci(d)(x, y) and gci(w)(x, y), respectively. Formally, we
have

gi(d)(x, y) ⇐⇒
∨
c∈C

gci(d)(x, y), (16)

gi(w)(x, y) ⇐⇒
∨
c∈C

gci(w)(x, y), (17)

gci (x, y) ⇐⇒ gci(d)(x, y) ∨ gci(w)(x, y). (18)

4.5.2.2 Interface Variables

Interface variables are responsible for representing the connections between the
cells of the USE grid, i.e., the interface ports of each USE cell.

Let us consider the USE cell of the coordinates (x, y) represented in Figure 23. This
cell contains two interfaces on each one of its frontiers (west, north, east, and south)
as shown in the respective figure. Let us define R = {ws,wn, ne, nw} as the set of port
locations on the west and north side of the cell, where r ∈ R. Thus, we can represent
an interface variable as r(x, y). Notice that the interface variables of the eastern and
southern frontiers are shared with the neighbors USE cells placed in the right and the
bottom of the given (x, y) cell, respectively.

Since it is possible to have two different signals traversing a USE cell formed by a
5x5 structure of QCA devices (as Figure 20 (c) illustrates) it is necessary to identify
which signal is linked to each port. This way, we can define a set of two signals S =

{0, 1}, such that s ∈ S and

r(x, y) ⇐⇒
∨

s=0..1

r(s)(x, y). (19)

4.5.2.3 Variables Relationships

After defining the Boolean variables of our method, it is crucial to create the logical
relationships between the device and interface variables in order to be able to define
the design constraints.

a. Driver variables and interface variables: a driver cell gi(d)(x, y) containing n interfa-
ces (considering n = degree(gi), i.e., the degree of the node gi) should have at least
n interface ports connected if n = 1 (inputs) and exactly n interface ports connected
if n = 2 (inverters), n = 3 (and or or gates), or n = 4 (3-input majority gates).
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Figure 23 – Interfaces of a USE cell.

In order to formulate this relationship, let us assume B(x, y) = {ws(x, y), wn(x, y),
nw(x, y), ne(x, y), ws(x + 1, y), wn(x + 1, y), nw(x, y + 1), ne(x, y + 1)} as the set of
interface variables containing the ports placed on the borders of the cell (x, y). This
way, we can derive

ii(d)(x, y) =⇒ atleast(1, B(x, y)), (20)

for the case of inputs, and

gi(d)(x, y) =⇒ exactly(n,B(x, y)), (21)

for the case of gates and outputs.

b. Wire variables and interface variables: if a wire is placed in a USE cell, then at
least two interface ports should be connected, i.e., two ports should share the same
signal.

To formalize this, considerB(s)(x, y) = {ws(s)(x, y), wn(s)(x, y), nw(s)(x, y), ne(s)(x, y),

ws(s)(x+1, y), wn(s)(x+1, y), nw(s)(x, y+1), ne(s)(x, y+1)} as a set similar to B(x, y)

previous defined but adding the signal information to each element.

Formally,

gi(w)(x, y) =⇒
∨

s=0..1

atleast(2, B(s)(x, y)). (22)

4.5.2.4 Table of Variables

Table 3 summarizes the set of variables defined in our method2.

2The input and output variables are omitted in Table 3 for simplicity reasons.
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Table 3 – Table of variables used in the SAT-based method for QCA.

Type Variables Description

Device

gi(x, y) Gate i is placed in the coordinates (x, y).
gi(d)(x, y) Driver of the gate i is placed in (x, y).
gi(w)(x, y) Wire of the gate i is placed in (x, y).
gci (x, y) Gate i is placed in (x, y) and it operates in cycle c.
gci(d)(x, y) Driver of the gate i is in (x, y) and it operates in cycle c.
gci(w)(x, y) Wire of the gate i is in (x, y) and it operates in cycle c.

Interface r(x, y) Port r of the (x, y) cell is connected.
r(s)(x, y) Port r of (x, y) is connected and it contains the signal s.

4.5.2.5 Number of Variables

The set of Boolean variables created through our modeling is composed of the
device variables and the interface variables. We enumerate these sets as follow:

a. The number of device variables is given by

#D = #cols ∗#rows ∗#nodes ∗ (3 + 3 ∗#cycles), (23)

where #cols and #rows are the number of columns and rows of the USE grid,
respectively, #nodes is the number of nodes on the input hypergraphN , and #cycles

corresponds to the number of cycles available for each cell.

b. The number of interface variables is given by

#I = 12 ∗#cols ∗#rows, (24)

where #cols and #rows are the number of columns and rows of the USE grid,
respectively.

4.5.3 Design Constraints

This section presents the design constraints3 for the synthesis of QCA circuits th-
rough the proposed approach. The constraints were derived from empirical observa-
tions (mostly from QCA circuits available in the literature such as in (FONTES et al.,
2018; TRINDADE et al., 2016; FORMIGONI et al., 2021) presented in the related work
section), so there is no formal guarantee that the following constraints lead to an op-
timal solution in terms of area. However, as supported by the results (Section 4.6),
the area of the circuits generated via the proposed methodology is optimized when
compared to other well-known approaches.

3Appendix B presents an example of how the following constraints are applied.
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The constraints are divided into three categories: the placement constraints (Sec-
tion 4.5.3.1), the synchronization constraints (Section 4.5.3.2), and the routing cons-
traints (Section 4.5.3.3). This subsection will describe more deeply these restrictions
presenting the general rules to be satisfied and the modeling equations associated with
each one of the constraints.

4.5.3.1 Placement Constraints

The placement constraints are responsible to avoid invalid placement configurations
of the cells in the circuit. Notice that only device variables are used for generating the
placement restrictions ahead.

a. Single driver constraint: each driver should be placed at exactly one location of the
grid, i.e., multiples drivers are not allowed. Formally, we can define

exactly(1, {gi(d)(x0, y0), gi(d)(x1, y1), ..., gi(d)(xmax, ymax)}), (25)

such that xmax and ymax are the maximum values for the coordinates x and y of the
USE grid, respectively.

b. Overlapping constraint: each location contains at most one gate or (exclusively) at
most two wires containing at most two input drivers. To define these constraints,
consider the following equations:

ii(d)(x, y) =⇒

atmost(2, {i0(d)(x, y), i1(d)(x, y), ...}) ∧

exactly(0, {g0(d)(x, y), g1(d)(x, y), ..., o0(d)(x, y), o1(d)(x, y), ...}) ∧

atmost(2, {i0(w)(x, y), i1(w)(x, y), ..., g0(w)(x, y), g1(w)(x, y), ..., o0(w)(x, y), o1(w)(x, y), ...}),
(26)

for the case of the input cells,

gi(d)(x, y) =⇒

exactly(1, {g0(d)(x, y), g1(d)(x, y), ..., o0(d)(x, y), o1(d)(x, y), ...}) ∧

exactly(0, {i0(w)(x, y), i1(w)(x, y), ..., g0(w)(x, y), g1(w)(x, y), ..., o0(w)(x, y), o1(w)(x, y), ...}),
(27)
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Figure 24 – An instance of a gate with two inputs.

for the case of gate and output cells, and

gi(w)(x, y) =⇒

exactly(0, {i0(d)(x, y), i1(d)(x, y), ..., g0(d)(x, y), g1(d)(x, y), ..., o0(d)(x, y), o1(d)(x, y), ...}) ∧

atmost(2, {i0(w)(x, y), i1(w)(x, y), ..., g0(w)(x, y), g1(w)(x, y), ..., o0(w)(x, y), o1(w)(x, y), ...}),
(28)

for the case of any wire.

4.5.3.2 Synchronization Constraints

The synchronization constraints are responsible to ensure that all the inputs of a
given cell arrive at the same time, as well as to synchronize the input and output of
the data in the circuit. It is important to notice that only device variables are used for
generating the following set of synchronization restrictions.

a. Driver synchronization constraint: for each gate or output driver, its inputs should
be submitted to the same clock cycle if the cell is placed on locations upon phases
1, 2, or 3, and to the previous clock cycle if the cell is placed upon phase 0.

To define the equations that implement this constraint, some auxiliary definitions are
necessary:

i. Consider a given gate g(x) such that its inputs are g(y) and g(z) as Figure 24
shows;

ii. Consider the different USE cell configurations presented in Figure 25 in which
we can notice the different cell orientations (denoted by the arrows) and the
neighborhood of (x, y);

iii. Finally, consider phase(x, y) as a function that returns the phase of the cell loca-
ted in the coordinates (x, y) of the USE grid.
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This way, we have

gcx(d)(x, y) =⇒ (gcy(x, y − 1) ∨ gcy(x− 1, y)) ∧ (gcz(x, y − 1) ∨ gcz(x− 1, y)),

gcx(d)(x, y) =⇒ (gcy(x, y − 1) ∨ gcy(x+ 1, y)) ∧ (gcz(x, y − 1) ∨ gcz(x+ 1, y)),

gcx(d)(x, y) =⇒ (gcy(x, y + 1) ∨ gcy(x− 1, y)) ∧ (gcz(x, y + 1) ∨ gcz(x− 1, y)),

gcx(d)(x, y) =⇒ (gcy(x, y + 1) ∨ gcy(x+ 1, y)) ∧ (gcz(x, y + 1) ∨ gcz(x+ 1, y)),

(29)

for the cases presented in Figure25 (a), (b), (c), and (d), respectively, and for
phase(x, y) ≥ 1. Similarly, we have

gcx(d)(x, y) =⇒ (gc−1y (x, y − 1) ∨ gc−1y (x− 1, y)) ∧ (gc−1z (x, y − 1) ∨ gc−1z (x− 1, y)),

gcx(d)(x, y) =⇒ (gc−1y (x, y − 1) ∨ gc−1y (x+ 1, y)) ∧ (gc−1z (x, y − 1) ∨ gc−1z (x+ 1, y)),

gcx(d)(x, y) =⇒ (gc−1y (x, y + 1) ∨ gc−1y (x− 1, y)) ∧ (gc−1z (x, y + 1) ∨ gc−1z (x− 1, y)),

gcx(d)(x, y) =⇒ (gc−1y (x, y + 1) ∨ gc−1y (x+ 1, y)) ∧ (gc−1z (x, y + 1) ∨ gc−1z (x+ 1, y)),

(30)

for the cases presented in Figure25 (a), (b), (c), and (d), respectively, but now con-

Figure 25 – Neighbors of the (x, y) USE cell.
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sidering phase(x, y) = 0.

b. Wire synchronization constraint: for each wire cell, its input (the driver that originates
this wire or another instance of this wire) should be submitted to the same clock if
the cell is submitted to the phase 1, 2, or 3, and to the previous clock cycle if the cell
is submitted to the phase 0.

Similarly to the driver synchronization constraint, we make use of the auxiliary defi-
nitions previously presented. This way, we have

gcx(w)(x, y) =⇒ gcx(x, y − 1) ∨ gcx(x− 1, y)),

gcx(w)(x, y) =⇒ gcx(x, y − 1) ∨ gcx(x+ 1, y)),

gcx(w)(x, y) =⇒ gcx(x, y + 1) ∨ gcx(x− 1, y)),

gcx(w)(x, y) =⇒ gcx(x, y + 1) ∨ gcx(x+ 1, y)),

(31)

for the cases presented in Figure25 (a), (b), (c), and (d), respectively, and for
phase(x, y) ≥ 1. Similarly, we have

gcx(w)(x, y) =⇒ gc−1x (x, y − 1) ∨ gc−1x (x− 1, y)),

gcx(w)(x, y) =⇒ gc−1x (x, y − 1) ∨ gc−1x (x+ 1, y)),

gcx(w)(x, y) =⇒ gc−1x (x, y + 1) ∨ gc−1x (x− 1, y)),

gcx(w)(x, y) =⇒ gc−1x (x, y + 1) ∨ gc−1x (x+ 1, y)),

(32)

for the cases presented in Figure25 (a), (b), (c), and (d), respectively, such that
phase(x, y) = 0.

c. Single-cycle constraint: each cell should operate under exactly one cycle, i.e., mul-
tiples cycles for a single cell are not allowed. Formally,

gi(x, y) =⇒ exactly(1, {g0i (x, y), g1i (x, y), ..., g
#cycles−1
i (x, y)}). (33)

d. Input/output phase synchronization constraint: each input should be submitted to
the same phase. The same is valid for each output.

To define this constraint, let us consider the following:

i. A vector [(x00, y00), (x01, y01), ..., (x0k, y
0
k)] containing all the k coordinates submitted

to phase 0;

ii. A vector [(x10, y
1
0), (x

1
1, y

1
1), ..., (x

1
l , y

1
l )] containing all the l coordinates submitted

to phase 1;
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iii. A vector [(x20, y20), (x21, y21), ..., (x2m, y2m)] containing all the m coordinates submitted
to phase 2;

iv. A vector [(x30, y30), (x31, y31), ..., (x3n, y3n)] containing all the n coordinates submitted
to phase 3.

Then, we have

ia(d)(x, y) =⇒
∧

b=0..#i
ia 6=ib

∨
j=0..k

ib(d)(x
0
j , y

0
j ), if phase(x, y) = 0,

(34)

ia(d)(x, y) =⇒
∧

b=0..#i
ia 6=ib

∨
j=0..l

ib(d)(x
1
j , y

1
j ), if phase(x, y) = 1,

(35)

ia(d)(x, y) =⇒
∧

b=0..#i
ia 6=ib

∨
j=0..m

ib(d)(x
2
j , y

2
j ), if phase(x, y) = 2,

(36)

ia(d)(x, y) =⇒
∧

b=0..#i
ia 6=ib

∨
j=0..n

ib(d)(x
3
j , y

3
j ), if phase(x, y) = 3,

(37)

such that #i denotes the number of input nodes in the netlist. Furthermore, similar
formulas are also defined for the case of the outputs.

e. Input/output cycle synchronization constraint: each input should be submitted to the
same clock cycle. The same is valid for each output. Formally, we have

ica(d)(x, y) =⇒
∧

b=0..#i
ia 6=ib

∨
x=0..xmax
y=0..ymax

icb(d)(x, y), (38)

where #i denotes the number of input nodes in the netlist. A similar formula is also
defined for the outputs.

4.5.3.3 Routing Constraints

The routing constraints are responsible for connecting the elements in the USE
grid. Differing from the other placement and synchronization constraints, the routing
restrictions mostly make use of the interface variables previously defined in Section
4.5.2.2.
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Figure 26 – Invalid paths of information in a cell accordingly with its orientation (denoted by the
arrows in the USE grid).

a. No return constraint: each signal should not enter and exit the cell by the same side.
Formally,∧

x=0..xmax
y=0..ymax
s=0..1

¬(ws(s)(x, y) ∧ wn(s)(x, y)) ∧
∧

x=0..xmax
y=0..ymax
s=0..1

¬(nw(s)(x, y) ∧ ne(s)(x, y)).
(39)

b. Border constraint: ports located on the border of the routing area should not be
connected. Formally,∧

x=0..xmax

¬nw(x, 0) ∧ ¬ne(x, 0) ∧
∧

y=0..ymax

¬ws(0, y) ∧ ¬wn(0, y). (40)

c. Invalid corners constraint: since each grid cell has some specific signal flow direc-
tion assigned to it (accordingly with the arrows located on the borders of the USE
scheme), then all the routing paths presented in Figure 26 are forbidden, i.e., the
information could not propagate through the red paths shown in the figure.

Following what is defined in Figure 26, we can formulate this restriction as follows:∧
s=0..1

¬((nw(s)(x, y + 1) ∨ ne(s)(x, y + 1)) ∧ (ws(s)(x+ 1, y) ∨ wn(s)(x+ 1, y))) (41)

prevents the situation presented in (a) and (h),∧
s=0..1

¬((nw(s)(x, y) ∨ ne(s)(x, y)) ∧ (ws(s)(x+ 1, y) ∨ wn(s)(x+ 1, y))) (42)
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Figure 27 – (a) Pairs of ports that should not be simultaneously connected. (b) Example of an
invalid majority gate configuration.

avoids the cases (b) and (g),∧
s=0..1

¬((nw(s)(x, y + 1) ∨ ne(s)(x, y + 1)) ∧ (ws(s)(x, y) ∨ wn(s)(x, y))) (43)

deals with the cases (c) and (f), while∧
s=0..1

¬((nw(s)(x, y) ∨ ne(s)(x, y)) ∧ (ws(s)(x, y) ∨ wn(s)(x, y))) (44)

implements the constraints for preventing (d) and (e) to happen.

d. Majority access constraint: in a cell containing a majority gate (or any and or or
gate based on the majority topology), two neighbor ports should not be connected if
they are located in the corners of the USE cell. Figure 27 (a) presents the forbidden
pairs of ports simultaneously connected, while Figure 27 (b) shows an instance of
an invalid majority gate configuration.

Considering a given node gi of the input netlist, if degree(gi) ≥ 2 then gi is imple-
menting a majority-gate. This way, we can define

gi(d)(x, y) =⇒ ¬(wn(x, y) ∧ nw(x, y)) ∧ ¬(ne(x, y) ∧ wn(x+ 1, y)) ∧

¬(ws(x, y) ∧ nw(x, y + 1)) ∧ ¬(ws(x+ 1, y) ∧ ne(x, y + 1)).
(45)

e. Gate driver adjacency constraint: each gate (i.e., a majority or an inverter) should
be followed (accordingly with the orientation of the USE cell containing this device)
by the cells connected to its output or by its wires and should be preceded by the
cells connected to its inputs.

For this constraint, consider a given gate gx such that its inputs are connected to gy
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and gz and its output is the gate ga as presented in Figure 28. This way, we have

gx(d)(x, y) =⇒ exactly(1, {gy(x, y − 1), gy(x− 1, y)}) ∧

exactly(1, {gz(x, y − 1), gz(x− 1, y)}),

gx(d)(x, y) =⇒ exactly(1, {gy(x, y − 1), gy(x+ 1, y)}) ∧

exactly(1, {gz(x, y − 1), gz(x+ 1, y)}),

gx(d)(x, y) =⇒ exactly(1, {gy(x, y + 1), gy(x− 1, y)}) ∧

exactly(1, {gz(x, y + 1), gz(x− 1, y)}),

gx(d)(x, y) =⇒ exactly(1, {gy(x, y + 1), gy(x+ 1, y)}) ∧

exactly(1, {gz(x, y + 1), gz(x+ 1, y)}),

(46)

for the grid configurations presented in Figure 25 (a), (b), (c), and (d), respectively.
Along with that, we have

gx(d)(x, y) =⇒ exactly(1, {gx(w)(x, y + 1), gx(w)(x+ 1, y)}) ∧

exactly(1, {ga(x, y + 1), ga(x+ 1, y)}),

gx(d)(x, y) =⇒ exactly(1, {gx(w)(x, y + 1), gx(w)(x− 1, y)}) ∧

exactly(1, {ga(x, y + 1), ga(x− 1, y)}),

gx(d)(x, y) =⇒ exactly(1, {gx(w)(x, y − 1), gx(w)(x+ 1, y)}) ∧

exactly(1, {ga(x, y − 1), ga(x+ 1, y)}),

gx(d)(x, y) =⇒ exactly(1, {gx(w)(x, y − 1), gx(w)(x− 1, y)}) ∧

exactly(1, {ga(x, y − 1), ga(x− 1, y)}),

(47)

also for the cases presented in Figure 25 (a), (b), (c), and (d), respectively.

f. Input driver adjacency constraint: an input driver connected to a given gate should
be followed (accordingly with the orientation of the USE grid) by one of its own wires
or by this gate. Furthermore, if the input is connected to more than one gate, then it
should be followed by one of its own wires or by at least one of these gates.

Figure 28 – An instance of a gate with two inputs and one output.
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Figure 29 – Instances of gates with one (a) and two (b) inputs.

To define this constraint, let us consider an input ia connected to gx and an input ib
connected to gy and gz as shown in Figure 29. This way, considering Figure 29 (a),
i.e., degree(ia) = 1, we have

ia(d)(x, y) =⇒ exactly(1, {ia(w)(x, y + 1), ia(w)(x+ 1, y), gx(d)(x, y + 1), gx(d)(x+ 1, y)}),

ia(d)(x, y) =⇒ exactly(1, {ia(w)(x, y + 1), ia(w)(x− 1, y), gx(d)(x, y + 1), gx(d)(x− 1, y)}),

ia(d)(x, y) =⇒ exactly(1, {ia(w)(x, y − 1), ia(w)(x+ 1, y), gx(d)(x, y − 1), gx(d)(x+ 1, y)}),

ia(d)(x, y) =⇒ exactly(1, {ia(w)(x, y − 1), ia(w)(x− 1, y), gx(d)(x, y − 1), gx(d)(x− 1, y)}),
(48)

for USE grid configurations presented in Figure 25 (a), (b), (c), and (d), respectively.
Along with that, considering Figure 29 (b), i.e., degree(ia) ≥ 2, we have

ia(d)(x, y) =⇒ ia(w)(x, y + 1) ∨ ia(w)(x+ 1, y) ∨ gy(d)(x, y + 1) ∨ gy(d)(x+ 1, y) ∨

gz(d)(x, y + 1) ∨ gz(d)(x+ 1, y),

ia(d)(x, y) =⇒ ia(w)(x, y + 1) ∨ ia(w)(x− 1, y) ∨ gy(d)(x, y + 1) ∨ gy(d)(x− 1, y) ∨

gz(d)(x, y + 1) ∨ gz(d)(x− 1, y),

ia(d)(x, y) =⇒ ia(w)(x, y − 1) ∨ ia(w)(x+ 1, y) ∨ gy(d)(x, y − 1) ∨ gy(d)(x+ 1, y) ∨

gz(d)(x, y − 1) ∨ gz(d)(x+ 1, y),

ia(d)(x, y) =⇒ ia(w)(x, y − 1) ∨ ia(w)(x− 1, y) ∨ gy(d)(x, y − 1) ∨ gy(d)(x− 1, y) ∨

gz(d)(x, y − 1) ∨ gx(d)(x− 1, y),

(49)

also for the cases shown in Figure 25 (a), (b), (c), and (d), respectively.

g. Wire adjacency constraint: a wire should be followed (accordingly with the orienta-
tion of the USE cell containing this device) by another instance of the same wire or
by the gates connected to its output. Along with that, the wire should be preceded
by another instance of the same wire or by the gate that originates this wire.

To define this constraint, consider what was proposed previously in Figure 29 (a),
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where the input ia is connected to the gate gx. This way, we have

ia(w)(x, y) =⇒ exactly(1, {ia(w)(x, y + 1), ia(w)(x+ 1, y), gx(d)(x, y + 1), gx(d)(x+ 1, y)}),

ia(w)(x, y) =⇒ exactly(1, {ia(w)(x, y + 1), ia(w)(x− 1, y), gx(d)(x, y + 1), gx(d)(x− 1, y)}),

ia(w)(x, y) =⇒ exactly(1, {ia(w)(x, y − 1), ia(w)(x+ 1, y), gx(d)(x, y − 1), gx(d)(x+ 1, y)}),

ia(w)(x, y) =⇒ exactly(1, {ia(w)(x, y − 1), ia(w)(x− 1, y), gx(d)(x, y − 1), gx(d)(x− 1, y)}),
(50)

for the cases shown in Figure 25 (a), (b), (c), and (d), respectively. Along with that,
we have

ia(w)(x, y) =⇒ atleast(1, {ia(w)(x, y − 1), ia(w)(x− 1, y), ia(d)(x, y − 1), ia(d)(x− 1, y)}),

ia(w)(x, y) =⇒ atleast(1, {ia(w)(x, y − 1), ia(w)(x+ 1, y), ia(d)(x, y − 1), ia(d)(x+ 1, y)}),

ia(w)(x, y) =⇒ atleast(1, {ia(w)(x, y + 1), ia(w)(x− 1, y), ia(d)(x, y + 1), ia(d)(x− 1, y)}),

ia(w)(x, y) =⇒ atleast(1, {ia(w)(x, y + 1), ia(w)(x+ 1, y), ia(d)(x, y + 1), ia(d)(x+ 1, y)}),
(51)

also considering the cases defined in Figure 25 (a), (b), (c), and (d), respectively.

4.5.3.4 Table of Design Constraints

Table 4 summarizes the constraints defined in our formulation for the cell synthesis
in QCA.

4.5.4 Algorithm

This section presents the proposed method (Algorithm 4) for generating synchroni-
zed QCA circuits with optimizations in area. The algorithm is based on the variables
and constraints defined in the previous section of this chapter4.

In this algorithm, consider orientation as a vector containing the possible ori-
entations for the origin (coordinate (0, 0) of the USE grid) and phases as a vector
containing the phases of the origin. Along with that, let us consider Factor(area)

as a function that returns a vector [(r0, c0), (r1, c1), ..., (rn, cn)] which contains all the
n combinations of r and c (rows and columns) such that ri ∗ ci = area (e.g., if
area = 7, then combinations = [(7, 1), (1, 7)]; if area = 12, then combinations =

[(1, 12), (2, 6), (3, 4), (4, 3), (6, 2), (12, 1)]). Moreover, the functions Placement(...),
Synchronization(...), and Routing(...) are responsible for creating the clauses
described in Sections 4.5.3.1, 4.5.3.2, and 4.5.3.3, respectively. Finally, the function

4As in the previous chapter, the set of formulas presented are not necessarily in the CNF format
widely adopted for most of the SAT solvers available. Thus, we employ the Tseitin transformation (TSEI-
TIN, 1983) to convert to the CNF format each one of the elements created by the equations.
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Table 4 – Table of design constraints: QCA synthesis.

Type Constraint Description

Plac.

Single driver Each driver should be placed at exactly one grid location.
Overlapping Each grid location contains at most one gate or (exclusi-

vely) at most two wire cells containing at most two input
drivers.

Sync.

Driver sync. For each gate or output driver, its inputs should be sub-
mitted to the same clock cycle if the cell is placed on lo-
cations upon phases 1, 2, or 3, and to the previous clock
cycle if the cell is placed upon phase 0.

Wire sync. For each wire cell, its input should be submitted to the
same clock if the cell is submitted to the phase 1, 2, or 3,
and to the previous clock cycle if the cell is submitted to
the phase 0.

Single-cycle Each cell should operate under exactly one cycle.
I/O phase sync. Each input should be submitted to the same phase. The

same is valid for each output.
I/O cycle sync. Each input should start operating on the same clock cycle.

The same is valid for each output.

Rout.

No return Each signal should not enter and exit the cell on the same
side.

Border Ports located on the border of the routing area should not
be connected.

Invalid corners Some routing paths are not allowed (see Figure 26).
Majority access In a cell containing a majority gate, two neighbor ports

should not be connected if they are located in the corners
of this USE cell.

Gate driver adj. Each gate should be followed by the cells connected to its
output or by its wires and should be preceded by the cells
connected to its inputs.

Input driver adj. Each input driver connected to one gate should be fol-
lowed by one of its own wires or by the gate. Further-
more, if the input is connected to more than one gate,
then it should be followed by one of its own wires or by at
least one of the gates connected to its output.

Wire adj. Each wire should be followed by the cells connected to its
output or by other wire of the same signal and should be
preceded by a wire or by a driver of the same signal.
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Algorithm 4: SAT-based pseudo-code for the synthesis of QCA circuits
input : input hypergraph N, number of cycles c
output: QCA-USE design circuit
orientation← ( ↓→, ↓←, ↑→, ↑←)
phases ← (0, 1, 2, 3)
area← Nodes(N)
while True do

combinations ← Factor(area)
for i← 0 to combinations.size do

rows, cols ← combinations(i)
for o← 0 to orientation.size do

for p← 0 to phases.size do
V ← CreateBooleanVariables(N, c, rows, cols)
placement ← Placement(N, V, c, rows, cols, orientation(o), phases(p))
sync ← Synchronization(N, V, c, rows, cols, orientation(o), phases(p))
routing ← Routing(N, c, V, rows, cols, orientation(o), phases(p))
SAT ← Solver(placement, sync, routing)
if SAT 6= False then

circuit ← Translate (SAT)
return circuit

area← area + 1

Translate(...) is in charge of transforming the result obtained by the SAT solver (the
set of variables assigned to True on the solution) into the QCA circuit.

In order to exemplify the solutions obtained through the presented method, consider
the QCA circuit illustrated in Figure 30 which implements the XOR2 function described
by the input netlist shown in Figure 22.

4.6 Experiments

The experiments presented in this section were conducted under a benchmark of
well-known digital circuits and are divided into two parts: the first consists of an asses-
sment of the solutions produced through the proposed method considering different
synchronization profiles, while the second is a comparison with solutions generated th-
rough different methodologies. It is important to notice that the QCADesigner (WALUS
et al., 2004) was adopted to validate and test the circuits here presented.

4.6.1 Assessment of Synchronization Profiles

The first experiment defines two synchronization profiles for testing (where we en-
sure the global synchronicity of the circuit based on the design principles described in
(TORRES et al., 2018)): (i) synchronization at clock phase level and (ii) synchronization
at clock cycle level. These different profiles are detailed below:

i. Synchronization at clock phase level: in this scenario, all the inputs of the circuit
are submitted to the same phase and to the same cycle (the same is valid for the
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Figure 30 – QCA circuit obtained through the proposed SAT-based approach implementing the
XOR2 function.

outputs). This enables to the circuit receives a new data on each clock phase (i.e.,
achieving the maximum throughput). For generating synchronized circuits at clock
phase level we include in our formulation all the synchronization restrictions defined
in Section 4.5.3.2;

ii. Synchronization at clock cycle level: in this case, each input of the circuit is submit-
ted to the same cycle on the USE grid (the same is valid for the outputs), i.e. there
are no restrictions regarding the phase of each input and output. This scenario en-
sures that new data can be computed on each clock cycle (composed of four clock
phases as shown in Section 4.2.3). For generating synchronized circuits at clock
cycle level we did not include in our formulation the restriction defined in Section
4.5.3.2d.

The results of the first experiment are summarized in Table 5, where #G, #I, and #O
refers to the number of gates, inputs, and outputs of the netlists, respectively, Area is
the area of the resulting layout in terms of USE cells (i.e., each unit of area comprises
a 5x5 QCA structure as shown in Figure 19), Lat. is the latency of the critical path of
the circuit (relative to the number of clock phases), and Occ. (%) is the occupancy rate
of the QCA design.

Considering the data presented in Table 5, we can notice that the solutions with
synchronization at clock cycle level present optimizations in area for most of the cases.
However, as pointed before, these circuits present a smaller throughput compared to
the circuits with clock phase synchronization since the data input is limited by the clock
cycle in the former, while by the clock phase in the latter (this tradeoff is expected as
discussed in (TORRES et al., 2018)). In this scenario, the circuit designer can choose
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Table 5 – Comparison between different synchronicity profiles: QCA synthesis.

Circuit #G #I #O Phase synchronicity Cycle synchronicity
Area Lat. Occ. (%) Area Lat. Occ. (%)

2:1 MUX 3 3 1 4×3 4 91.7 4×3 5 75.0
XOR2 4 2 1 4×4 7 100.0 5×3 6 93.3
XNOR2 5 2 1 4×4 7 100.0 4×4 7 87.5
Full adder 7 3 2 7×7 12 79.6 8×5 14 90.0
C17 5 5 2 6×4 7 87.5 7×3 8 95.2
t 13 5 2 7×5 6 80.0 7×4 7 82.1
newtag 14 8 1 8×5 9 85.0 7×5 9 94.3
Par. gen. 9 3 1 7×5 10 88.6 7×5 14 97.1
Par. ch. 14 4 1 7×7 12 87.8 7×7 14 91.8

which version fits well accordingly with the design specifications. Besides that, we
can notice that the occupancy rate of both synchronization profiles assessed are high,
meaning that our method was able to achieve solutions that minimize the number of
blank spaces in the layout.

In order to illustrate the difference between the two approaches, consider the 2-
input XOR (XOR2) circuit presented in Figure 31, where (a) presents the solution with
clock phase synchronicity and (b) shows the QCA circuit with clock cycle synchronicity.
Notice that (b) presents an optimization in area compared to (a). However, (a) possess
a higher throughput given that new inputs can be applied in each clock phase.

4.6.2 Comparison with other Methodologies

The second experiment consists of a comparison between the solutions produced
through the proposed methodology and other methods available in the literature. In
this scenario, (FONTES et al., 2018), (TRINDADE et al., 2016), and (FORMIGONI
et al., 2021) were employed for this assessment since all the approaches generate

Figure 31 – XOR2 circuits. (a) Solution with clock phase synchronicity. (b) Solution with clock
cycle synchronicity.
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Table 6 – Comparison with other methodologies: QCA synthesis.

Circuit Proposed method Fontes et al. Trindade et al. Formigoni et al.
Area L. Occ. Area L. Occ. Area L. Occ. Area L. Occ.

2:1 MUX 4×3 4 91.7 5×3 4 80.0 5×4 5 75.0 6×5 6 56.6
XOR2 4×4 7 100.0 4×4 4 81.2 7×4 7 71.4 9×7 12 46.0
XNOR2 4×4 7 100.0 4×6 8 75.0 5×6 8 73.3 - - -
F. adder 7×7 12 79.6 7×8 12 64.3 - - - - - -
C17 6×4 7 87.5 8×6 8 66.7 - - - - - -
t 7×5 6 80.0 60 10 - - - - - - -
newtag 8×5 9 85.0 80 12 - - - - - - -
P. gen. 7×5 10 88.6 7×6 12 88.1 10×9 14 50.0 16×6 14 55.2
P. ch. 7×7 12 87.8 6×10 13 73.3 16×6 14 58.3 16×11 22 39.2

synchronized solutions at clock phase level (as detailed in Sections 4.3.3, 4.3.2, and
4.3.4, respectively). Thus, in this experiment, we also ensure the same synchronicity
profile for the circuits obtained through our method in order to provide a fair comparison.
The results of the second experiment are summarized in Table 6.

Considering the data presented in Table 6, we can notice that the proposed ap-
proach was able to generate circuits with optimizations in area for all the cases in
comparison with (FONTES et al., 2018), (TRINDADE et al., 2016), and (FORMIGONI
et al., 2021) methods (with the exception of the XOR2 layout which has presented the
same area of the (FONTES et al., 2018) solution). Along with that, the occupancy
rate achieved was considerably higher for the entire benchmark, meaning that the SAT-
based approach was able to minimize the blank spaces in the layout in comparison
with the solutions produced by (FONTES et al., 2018), (TRINDADE et al., 2016), and
(FORMIGONI et al., 2021). Finally, as a side effect of the area minimization, most of
the solutions also presented a smaller latency since this parameter is usually related
to the size of the circuit.

Finally, Figure 32 illustrates the 2:1 multiplexer (2:1 MUX) circuits generated through
the proposed methodology (a), via the (FONTES et al., 2018) methodology (b), by the
(TRINDADE et al., 2016) methodology (c), and through the (FORMIGONI et al., 2021)
methodology.

4.6.2.1 Case Study: Full Adder

In order to highlight the differences between the proposed approach and the method
presented in (FONTES et al., 2018), let us consider the full adder presented in Figure
33 designed through these two different methodologies5.

As presented in (FONTES et al., 2018) and in Section 4.3.3 of this chapter, the
5In this case, the (TRINDADE et al., 2016; FORMIGONI et al., 2021) methods were not considered

for this analysis because it present worst results for every circuit compared to (FONTES et al., 2018) as
Table 6 shown.
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Figure 32 – Different versions of the 2:1 MUX. (a) Proposed solution. (b) Solution obtained
through (FONTES et al., 2018) methodology. (c) Solution generated through (TRINDADE et al.,
2016). (d) Solution obtained through (FORMIGONI et al., 2021).

circuit design algorithm starts defining how the levels of the input graph are organized.
Right after that, a fixed latency value of each level is defined. Finally, the search for
the solution begins in breadth-first order. If the placement and routing of all the nodes
of a given level are not feasible, then the latency of this level is increased in one unity
(where the maximum latency lmax is given by lmax = max(4, d), where d is the depth of
the input graph). If the maximum latency of a given level is exceeded without finding
any feasible solution, then the algorithm backtracks, the latency of the upper level is
increased, and the algorithm proceeds from that. Figure 33 (a) presents the input netlist
with its respective level latencies computed from the (FONTES et al., 2018) algorithm
in order to find the solution (b).

Our method acts in a dramatically different way. Firstly, we do not define levels for
the input netlist since the synchronization constraints are modeled in the formulation
and it is only based on the connections of the cells (as presented in Section 4.5.3.2 of
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Figure 33 – Full adder synthesis performed through (FONTES et al., 2018). (a) Netlist with
latencies proposed in (FONTES et al., 2018). (b) QCA circuit generated from the netlist pre-
sented in (a).

Figure 34 – Full adder synthesis performed through the SAT-based method. (a) Circuit genera-
ted via the proposed method. (b) Netlist with latencies obtained from the solution (a).

this chapter). This way, each connection (wire) of the circuit contains its own latency.
Notice that, even with this characteristic, the local synchronicity of all the gates on
the circuit is ensured. In order to illustrate this, from the circuit presented in Figure
34 (a) generated through the proposed method, we derive the netlist with latencies
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shown in (b). It can be seen that, for any gate of the circuit, each path connecting the
inputs of this given gate to the inputs of the circuit contains the same latency (i.e., the
synchronicity at clock phase level is ensured).

4.7 Chapter Conclusions

In this chapter we presented a new SAT-based placement and routing algorithm
for generating synchronized QCA circuits. A set of Boolean variables to represent the
problem and formulas to describe the restrictions imposed by the designing rules were
created. The method relies on the USE clocking scheme, a structure responsible for
encoding the several design restrictions intrinsic to the QCA design.

The results of the experiments have shown that the proposed methodology was
able to deliver area optimized cells when compared to well-known methods available
in the literature. Besides that, an exploration of different synchronization profiles was
made, where a tradeoff between area and throughput was observed on the generated
circuits.

Finally, the proposed methodology can be applied for several purposes such as on
the design of QCA standard cell libraries, for the on-the-fly design of QCA circuits, for
the integration with divide-and-conquer strategies to provide scalability, for validation
and comparison with other new methodologies, among others.



5 NANOMAGNETIC LOGIC

Besides all the advances proposed by the quantum-dot cellular automata techno-
logy (QCA), the process of encoding information through a specific local position of
charged particles in a confined area introduces new technological barriers in manu-
facturing and design tasks. In this scenario, the nanomagnetic logic (NML) (previously
known as magnetic QCA, or MQCA) was proposed, in which some of these obstacles
around controlling quantum particles are avoided by using nanomagnets as its core
device.

As the QCA, the NML is a field-coupled nanotechnology where the binary infor-
mation is represented through the polarity of nanomagnetic cells and it propagates
to adjacent devices through magnetic coupling (CSABA et al., 2002; SOARES et al.,
2018). Thus, the idea is to use the magnetic phenomena - widely adopted for data sto-
rage - to perform logic as well. In this scenario, its nonvolatile nature enables solutions
where no energy is consumed in the standby operation, differently of charge-based
technologies (such as the CMOS), where the static and dynamic power have similar
levels nowadays (ANDERSON; BHANJA, 2014). This is the basis for the prototypes
presented in (IMRE et al., 2006; VARGA et al., 2010, 2011), where proofs-of-concept
were presented and drive years of research and development in the area.

Another similarity between QCA and NML is the clocking system, responsible for
controlling the flow of information in the circuit and ensuring its expected behavior.
Although it is possible to use the same four-phase clocking schemes as in QCA - i.e.,
USE (CAMPOS et al., 2016), RES (GOSWAMI et al., 2019), and 2DDWave (VANKA-
MAMIDI; OTTAVI; LOMBARDI, 2008), as cited in the previous chapter -, recently a new
clocking scheme focused in the NML technology were proposed: the BANCS (FORMI-
GONI; VILELA NETO; NACIF, 2018). BANCS is a three-phase scheme that takes into
account the design restrictions of NML, providing an environment for the implementa-
tion of placement and routing algorithms. Besides that, the use of clocking schemes
enables scalability, among others advantages as discussed in the last chapter.

In this scenario, we present a new SAT-based method for placement and routing
of NML circuits using BANCS as our clocking scheme. As in the previous chapter,
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besides focusing on area optimization, our solution also provided good results in terms
of latency and can be used for many purposes such as in the design of NML cell
libraries, in the on-the-fly synthesis of NML circuits, among others.

5.1 Chapter Organization

The sections in this chapter are organized as follows: Section 5.2 presents con-
cepts regarding the NML technology; Section 5.3 introduces the proposed methodo-
logy; Section 5.4 presents the results of our experiments; finally, Section 5.5 concludes
this chapter1.

5.2 Preliminaries

Nanomagnetic logic (NML) is a field-coupled nanocomputing (FCN) technology
(ANDERSON; BHANJA, 2014). As in QCA, NML is capable of storing, transferring,
and performing logic through local field interactions that occur between devices loca-
ted close to each other. Since the phenomena of magnetic coupling applied in the
NML functioning do not directly involve electric current flowing, this approach poten-
tially leads to ultra-low power consumption (ANDERSON; BHANJA, 2014). Ahead in
this section, some basic concepts related to NML are presented in order to provide a
useful background for the remainder of this chapter.

5.2.1 NML Basics

The fundamental unit of an NML circuit is a rectangular-shaped nanomagnet -
although other geometries are also possible (NIEMIER et al., 2012). The nanomag-
net must be sufficiently small to present only one natural magnetic domain, where this
magnetization is likely to lie along its longer axis - known as the easy axis - so it mi-
nimizes the shape energy. Therefore, there are two stable configurations, where the
magnetization vector points in one of the two possible directions along the length of
the rectangle. Based on this, we arbitrarily defined the logic values 0 and 1 when the
magnetization vector points down and up, respectively. Figure 35 (a) illustrates these
states, where the blue part of the magnet is its south pole, where the red area is its
north pole. Additionally, an external magnetic field can be applied to bring the targe-
ted nanomagnets into a metastable configuration called null state (GRAZIANO et al.,
2011) which is useful for the clocking system. Along with that, the magnetic coupling
between neighbors devices can occur in two different ways: antiferromagnetic and fer-
romagnetic. As shown in Figure 35 (b), the former configuration, antiferromagnetic,
presents an antiparallel direction of the magnetization vectors, while the latter, ferro-

1It is important to point out that the related work and method overview sections are not presented
since both are similar to what is shown in the QCA chapter of this thesis.
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Figure 35 – NML cells. (a) NML cells encoding the logic 0, 1, and the null states. (b) Coupling
patterns.
Source: adapted from (SOARES et al., 2018).

magnetic, presents a parallel orientation. This way, by positioning the nanomagnets
in one of these two patterns, it is possible to implement NML wires and perform logic
operations (as detailed next in Section 5.2.4).

5.2.2 NML Clocking System

As in the QCA paradigm, the clocking system of the NML technology is responsible
for inducing smooth changes in the magnetization profiles of the devices. This way,
sudden changes on the devices do not lead the system to an invalid configuration.
Along with that, the clocking is responsible for controlling the flow of information through
the circuit, this way avoiding signals errors in long arrays of magnets. Figure 36 shows
the data transfer in an NML array of cells with antiferromagnetic coupling.

The implementation of the clocking system is based on an external magnetic field
that forces the cell to the null state. By removing this external field, each cell assu-
mes a configuration of a minimum state of energy accordingly with its neighbors. This

Figure 36 – Data transfer in an array of NML devices.
Source: adapted from (SOARES et al., 2018).



82

process, different from the one employed in QCA, is composed of three phases:

1. Reset: this phase is responsible for inducing the null state in the cells. This is
performed by applying an external magnetic field strong enough to force the cells
into its metastable configuration (where its magnetization vector is perpendicular
to the device longer axis);

2. Switch: this phase is characterized by gradual removal of the external magnetic
field applied in the reset phase. This way, each device assume a minimum energy
state based on the interaction with its neighbors;

3. Hold: this phase is responsible for keeping the cells in their current states, i.e.,
there is no external magnetic field applied.

The engineering of the clocking system in NML represents one of the main chal-
lenges for the adoption of this emerging technology. A broad discussion about this
topic, along with potential candidates to solve this issue, is presented in (ANDERSON;
BHANJA, 2014).

5.2.3 NML Clocking Schemes

As in the QCA circuit design, clocking schemes are also adopted for the NML circuit
design since it ensures that all the clocking constraints are satisfied during the project
phase. Thus, besides providing scalability for the system, the regular structures of
the clocking schemes are a useful tool for enabling the implementation of automated
synthesis methods for the placement and routing of NML circuits such as the one pro-
posed in this chapter.

Since the NML clocking contains three-phase, any four-phased clocking scheme
can be adopted as long as we avoid the placement of devices in the positions corres-
ponding to the last (i.e., the fourth) clocking zone (FORMIGONI et al., 2021). Recently,
a three-phased clocking scheme called BANCS (FORMIGONI; VILELA NETO; NACIF,
2018) was introduced with a focus on the design of NML circuits. Besides managing the
correct synchronization of the circuit, BANCS also deals with the signal errors that can
happen in long arrays of nanomagnets. As shown in (CSABA; POROD, 2010), wires
with more than five nanomagnets present a high error rate due to thermal noise (FOR-
MIGONI; VILELA NETO; NACIF, 2018). To avoid that, BANCS imposes that structures
submitted to the same clocking zone must be smaller or equal to five magnets arranged
in the ferromagnetic or antiferromagnetic coupling configurations. The BANCS design
grid is illustrated in Figure 37, where cells located on a clock zone receive data from
the neighbors located on a preceding zone and send data to the neighbors located on
a succeeding zone, thus guaranteeing a correct flow of information within the circuit.
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Figure 37 – BANCS grid and a BANCS cell containing a 3-input majority gate implementing an
or logic gate.

5.2.4 NML Cells

Following what was done in the QCA chapter, in this section, some basic gate imple-
mentations are presented so they can be used as the basis for the solutions designed
through our proposed approach. All the implementations were previously defined in
(FORMIGONI; VILELA NETO; NACIF, 2018) and some of them were also physically
implemented in the prototypes presented in (IMRE et al., 2006; VARGA et al., 2010,
2011).

Considering this, in Figure 38 we present instances of some NML cells: the 3-input
majority gate (which is the basis for implementing the or and and gates) (a) and wires
(b). Notice that the inverter gate is trivially implemented by positioning two devices with
antiferromagnetic coupling.

5.3 SAT-based Method for NML Design

This section presents the formal method responsible for the NML circuit synthesis
and it is organized as follows: Section 5.3.1 presents the input of the method; Sec-
tion 5.3.2 defines the Boolean variables that represent the devices and wires placed
in the layout; Section 5.3.3 presents the formulas for modeling the design constraints;

Figure 38 – Examples of NML gates adopted in our model. (a) 3-input majority gate implemen-
ting an and function. (b) Instances of wires in NML.
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Figure 39 – A 2:1 multiplexer (2:1 MUX).

finally, Section 5.3.4 describes the proposed algorithm2.

5.3.1 Input

Let N be the netlist circuit represented as a hypergraph N = (V,E), such that V is
the set of vertices, representing the gates, and E is the set of hyperedges, represen-
ting the wires. Figure 39 shows the hypergraph of a 2:1 multiplexer (2:1 MUX). Further-
more, the set of vertices of N can be partitioned into three disjoint subsets: input nodes
I = {i0, i1, ..., in}, gate nodes G = {g0, g1, ..., gm}, and output nodes O = {o0, o1, ..., op},
such that V = I ∪G ∪O.

Additionally to these definitions, the gate and output nodes are composed by
majorty-based cells and inverter cells. Considering this, let us define the the set of
majority gates as M = {m0,m1, ...,mq}, such that M ⊆ (G ∪ O). Similarly to that,
consider the set of inverter gates as B = {b0, b1, ..., br}, such that B ⊆ (G ∪ O). Notice
that M ∪ B = G ∪ O. Some formulas presented in this section will make use of these
definitions.

5.3.2 Boolean Variables

Two categories of Boolean variables are defined in our method: device variables
and interface variables. In the next subsections we described these two types of varia-
bles.

5.3.2.1 Device Variables

Device variables represent the gates and wires positioned in the BANCS grid.
These devices are part of the input, gate, or output sets.

In order to define the device variables, let us first consider (x, y) as a pair of coor-
dinates of the BANCS grid. Thus, a gate variable gi(x, y) is responsible to represent
a logic gate or wire of the node gi and positioned in the coordinates (x, y) of the grid,

2Since there are some resemblances between the circuit modeling for NML and QCA, part of this
section are similar to the Section 4.5 of this thesis. We decided to keep it as it is for a better and com-
plete understanding of the proposed NML circuit modeling independently of the previous QCA synthesis
chapter.
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such that g ∈ G. Similar to that, we have the device variables ii(x, y) and oi(x, y) for
representing the nodes of the input and output sets, such that i ∈ I and o ∈ O3.

Since device variables represent gates and wires in the circuit, then we have

gi(x, y) ⇐⇒ gi(d)(x, y) ∨ gi(w)(x, y), (52)

where gi(d) and gi(w) represent a driver (i.e., an input, a majority gate, or an inverter)
and a wire of the circuit, respectively.

Additionally, a driver is either a majority or an inverter. This way, we have

gi(d)(x, y) ⇐⇒ mi(d)(x, y) ∨ bi(w)(x, y), (53)

such that
mi(d)(x, y) =⇒ ¬bi(w)(x, y) (54)

and
bi(d)(x, y) =⇒ ¬mi(w)(x, y), (55)

where m ∈M and b ∈ B.
Along with that, it is also important to mention that a gate gi(d) or a wire gi(w) operate

under an specific clock cycle c. Thus, we have

gi(d)(x, y) ⇐⇒
∨
c∈C

gci(d)(x, y), (56)

gi(w)(x, y) ⇐⇒
∨
c∈C

gci(w)(x, y), (57)

gci (x, y) ⇐⇒ gci(d)(x, y) ∨ gci(w)(x, y), (58)

where c ∈ C and C = {0, 1, ..., cycles− 1}.

5.3.2.2 Interface Variables

Interface variables are responsible to represent the connections between the cells
of the BANCS grid, i.e., the interface ports of each USE cell.

Let us consider the BANCS cell of the coordinates (x, y) represented in Figure 40.
This cell contains two interfaces on each one of its frontiers (west, north, east, and
south) as shown in the figure. Let us define R = {ws,wn, ne, nw} as the set of port
locations on the west and north side of the cell, where r ∈ R. Thus, we can represent
an interface variable as r(x, y). Notice that the interface variables of the eastern and

3All the formulas presented in this chapter will be defined in terms of the gate variables in order to
keep the modeling as simple as possible. However, it is important to notice that similar expressions are
also defined for the input and output variables. All the exceptions for the previous statement are explicit
in the text.
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southern frontiers are shared with the neighbors BANCS cells placed in the right and
the bottom of the given (x, y) cell, respectively.

Along with that, it is possible to have two different signals in a single BANCS cell,
so we define a set of two signals S = {0, 1}, such that s ∈ S and

r(x, y) ⇐⇒
∨

s=0..1

r(s)(x, y). (59)

5.3.2.3 Variables Relationships

After defining the Boolean variables of our method, it is necessary to create the
logical relationships between the device and interface variables.

a. Driver variables and interface variables: a driver cell gi(d)(x, y) containing n interfa-
ces (considering n = degree(gi), i.e., the degree of the node gi) should have at least
n interface ports connected if n = 1 (inputs) and exactly n interface ports connected
if n = 2 (inverters), n = 3 (and or or gates), or n = 4 (3-input majority gates).

In order to formulate this relationship, let us assume Z(x, y) = {ws(x, y), wn(x, y),
nw(x, y), ne(x, y), ws(x + 1, y), wn(x + 1, y), nw(x, y + 1), ne(x, y + 1)} as the set of
interface variables containing the ports placed on the borders of the cell (x, y). This
way, we can derive

ii(d)(x, y) =⇒ atleast(1, Z(x, y)), (60)

for the case of inputs,

mi(d)(x, y) =⇒ exactly(n, Z(x, y)), (61)

Figure 40 – Interfaces of a BANCS cell.
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for the case of majority-based nodes, and

bi(d)(x, y) =⇒ atleast(2, Z(x, y)), (62)

for the case of the inverter nodes.

b. Wire variables and interface variables: if a wire is placed in a BANCS cell, then at
least two interface ports should be connected, i.e., two ports should share the same
signal.

To formalize this, consider Z(s)(x, y) = {ws(s)(x, y), wn(s)(x, y), nw(s)(x, y), ne(s)(x, y),

ws(s)(x+1, y), wn(s)(x+1, y), nw(s)(x, y+1), ne(s)(x, y+1)} as a set similar to Z(x, y)
previous defined but adding the signal information to each element.

Formally,

gi(w)(x, y) =⇒
∨

s=0..1

atleast(2, B(s)(x, y)). (63)

5.3.2.4 Table of Variables

Table 7 summarizes the variables defined in our model4.

5.3.2.5 Number of Variables

The set of Boolean variables defined in our model is composed of device and inter-
face variables. We enumerate these sets as follow:

a. The number of device variables is given by

#D = #cols ∗#rows ∗#nodes ∗ (5 + 3 ∗#cycles), (64)

where #cols and #rows are the number of columns and rows of the BANCS grid,
respectively, #nodes is the number of nodes on the input hypergraphN , and #cycles

corresponds to the number of cycles of the solution attempt.

b. The number of interface variables is given by

#I = 12 ∗#cols ∗#rows, (65)

where #cols and #rows are the number of columns and rows of the BANCS grid,
respectively.

4The input and output variables are omitted in Table 7 for simplicity reasons.
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Table 7 – Table of variables used in the SAT-based method for NML.

Type Variables Description

Device

gi(x, y) Gate i is placed in the coordinates (x, y).
gi(d)(x, y) Driver of the gate i is placed in (x, y).
gi(w)(x, y) Wire of the gate i is placed in (x, y).
gci (x, y) Gate i is placed in (x, y) and it operates in cycle c.
gci(d)(x, y) Driver of the gate i is in (x, y) and it operates in cycle c.
gci(w)(x, y) Wire of the gate i is in (x, y) and it operates in cycle c.
mi(d)(x, y) Majority gate i is placed in (x, y).
bi(d)(x, y) Inverter gate i is placed in (x, y).

Interface r(x, y) Port r of the (x, y) cell is connected.
r(s)(x, y) Port r of (x, y) is connected and it contains the signal s.

5.3.3 Design Constraints

In this section we present the design constraints5 for the synthesis of NML circuits
through the SAT-based approach proposed. The constraints were derived from em-
pirical observations based on what was presented in (FORMIGONI; VILELA NETO;
NACIF, 2018), so there is no formal guarantee that the following model leads to an
optimal solution in terms of area. These constraints are divided into three categories:
placement (Section 5.3.3.1), synchronization (Section 5.3.3.2), and the routing cons-
traints (Section 5.3.3.3). This subsection will detail these restrictions presenting the
formulas that must be satisfied in order to have a valid functional circuit.

5.3.3.1 Placement Constraints

The placement constraints are responsible to define the restrictions for placing the
cells (gates and wires) in the layout, not allowing invalid configurations regarding the
placement.

a. Single driver constraint: each driver should be placed at exactly one location of the
grid. Formally, we can define

exactly(1, {gi(d)(x0, y0), gi(d)(x1, y1), ..., gi(d)(xmax, ymax)}), (66)

such that xmax and ymax are the maximum values for the coordinates x and y of the
BANCS grid, respectively.

b. Overlapping constraint: if a majority-based gate is placed in a given BANCS cell,
then no inverters or wires are allowed in this cell. Besides that, if an inverter-based
gate is located in a given BANCS cell, then this cell can also allocate another inver-
ter or wire. Finally, if a wire is in a given BANCS cell, then this cell can have another

5Appendix C presents an example of how the following constraints are applied.



89

Figure 41 – Invalid coordinates for majority gate placement (red areas).

wire or inverter-based gate.

To define these constraints, we have

mi(d)(x, y) =⇒

exactly(1, {g0(d)(x, y), g1(d)(x, y), ..., o0(d)(x, y), o1(d)(x, y), ...}) ∧

exactly(0, {i0(w)(x, y), i1(w)(x, y), ..., g0(w)(x, y), g1(w)(x, y), ..., o0(w)(x, y), o1(w)(x, y), ...}),
(67)

for the cases of the majority-based cells,

bi(d)(x, y) =⇒ atmost(2, {i0(d)(x, y), i1(d)(x, y), ..., b0(d)(x, y), b1(d)(x, y), ..., i0(w)(x, y),

i1(w)(x, y), ..., g0(w)(x, y), g1(w)(x, y), ...}),
(68)

for the cases of the inverter cells, and, finally,

ii(d)(x, y) =⇒ atmost(2, {i0(d)(x, y), i1(d)(x, y), ...}), (69)

for the case of input cells.

c. Bottom majority constraint: in order to define this constraint, let us first consider
phase(x, y) as a function that returns the phase of the cell located in the coordinates
(x, y) of the BANCS grid. Based on this, a majority gate should not be placed
in locations containing the same phase of the cell above. Fig 41 illustrates this
restriction. The formula below creates this constraint:

if phase(x, y) = phase(x, y − 1) =⇒ exactly(0, {m0(d)(x, y),m1(d)(x, y), ...}, (70)

such that this is valid only for majority-based nodes (i.e., inverters are not included
in this definition).
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Figure 42 – Invalid positions (red coordinates) for majority gate placement around a majority-
based gate located in (x, y).

d. Majority near majority constraint: if a majority gate is located in the BANCS coordi-
nates (x, y), then all its neighbors should not contain another majority gate. Fig 42
shows the invalid positions nearby a majority-based gate placed in (x, y).

To define this, we have

mi(d)(x, y) =⇒
∧

j=0..#m, mi 6=mj

exactly(0, {mj(d)(x− 1, y − 1),mj(d)(x, y − 1),

mj(d)(x+ 1, y − 1),mj(d)(x− 1, y),

mj(d)(x+ 1, y),mj(d)(x− 1, y + 1),

mj(d)(x, y + 1),mj(d)(x+ 1, y + 1)})

(71)

e. Wire near majority constraint: if a majority gate is located in (x, y), then the wires
illustrated in Figure 43 are not allowed.

Figure 43 – Invalid wires around a majority gate placed in (x, y).
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To define this, we have

mi(d)(x, y) =⇒
∧

s=0..1

¬(ws(s)(x, y − 1) ∧ ws(s)(x+ 1, y − 1)),

mi(d)(x, y) =⇒
∧

s=0..1

¬(ws(s)(x+ 1, y − 1) ∧ nw(s)(x+ 1, y)),

mi(d)(x, y) =⇒
∧

s=0..1

¬(nw(s)(x+ 1, y) ∧ nw(s)(x+ 1, y + 1)),

mi(d)(x, y) =⇒
∧

s=0..1

¬(nw(s)(x+ 1, y + 1) ∧ wn(s)(x+ 1, y + 1)),

mi(d)(x, y) =⇒
∧

s=0..1

¬(wn(s)(x+ 1, y + 1) ∧ wn(s)(x, y + 1)),

mi(d)(x, y) =⇒
∧

s=0..1

¬(wn(s)(x, y + 1) ∧ ne(s)(x− 1, y + 1)),

mi(d)(x, y) =⇒
∧

s=0..1

¬(ne(s)(x− 1, y + 1) ∧ ne(s)(x− 1, y)),

mi(d)(x, y) =⇒
∧

s=0..1

¬(ne(s)(x− 1, y) ∧ ws(s)(x, y − 1)).

(72)

f. Wire near wire constraint: a pair of wires should not be placed in the positions
presented in Figure 44.

In order to formalize this constraint, consider the following equation for modelling
the restriction presented in Figure 44 (a)

¬(
∧

s=0..1

(ne(s)(x, y) ∧ ne(s)(x, y + 1)) ∧ (nw(s′)(x+ 1, y) ∧ nw(s′)(x+ 1, y + 1))), (73)

such that s′ = 1 if s = 0 and s′ = 0 if s = 1, and

¬(
∧

s=0..1

(ws(s)(x, y − 1) ∧ ws(s)(x+ 1, y − 1)) ∧ (wn(s′)(x, y) ∧ wn(s′)(x+ 1, y))), (74)

for modeling the case presented in Figure 44 (b).

Figure 44 – Invalid pair of wires.
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5.3.3.2 Synchronization Constraints

The synchronization constraints are responsible to ensure that all the inputs of a
given cell arrive at the same time, as well as to synchronize the input and output of the
data in the circuit.

a. Driver synchronization constraint: there are two scenarios to be defined: the first
consists of drivers located in cells with the same phase of its southern neighbor;
the second consists of drivers located in cells with a different phase of its southern
neighbor. In other words, we have the following constraints:

i. In the first scenario, where phase(x, y) = phase(x, y+1), the inputs of the drivers
should be submitted to the same clock cycle if the cell is placed on locations
upon phases 1 or 2 and to the previous clock cycle if the cell is placed upon
phase 0.

ii. In the second scenario, where phase(x, y) 6= phase(x, y + 1), the inputs of the
drivers should be submitted to the same clock cycle if the cell is placed on
locations upon phases 1 or 2 and to the previous or the same clock cycle if the
cell is placed upon phase 0.

To define the equations that implement the driver synchronization constraint, some
auxiliary definitions are necessary:

i. Consider a given gate g(x) such that its inputs are g(y) and g(z) (as shown in
Figure 24 of the previous chapter);

ii. Consider the different BANCS cell configurations presented in Figure 45 in
which we can notice the different cell orientations (denoted by the arrows) and
the neighborhood of the (x, y) location.

Thus, considering phase(x, y) ≥ 1, we have

gcx(d)(x, y) =⇒ (gcy(x, y − 1) ∨ gcy(x− 1, y)) ∧ (gcz(x, y − 1) ∨ gcz(x− 1, y)),

gcx(d)(x, y) =⇒ (gcy(x, y − 1) ∨ gcy(x+ 1, y)) ∧ (gcz(x, y − 1) ∨ gcz(x+ 1, y)),

gcx(d)(x, y) =⇒ (gcy(x, y + 1) ∨ gcy(x− 1, y)) ∧ (gcz(x, y + 1) ∨ gcz(x− 1, y)),

gcx(d)(x, y) =⇒ (gcy(x, y + 1) ∨ gcy(x+ 1, y)) ∧ (gcz(x, y + 1) ∨ gcz(x+ 1, y)),

(75)

for the cases presented in Figure 45 (a), (b), (c), and (d), respectively. Similarly,
considering phase(x, y) = 0, we have

gcx(d)(x, y) =⇒ (gc−1y (x, y − 1) ∨ gc−1y (x− 1, y)) ∧ (gc−1z (x, y − 1) ∨ gc−1z (x− 1, y)),

gcx(d)(x, y) =⇒ (gc−1y (x, y − 1) ∨ gc−1y (x+ 1, y)) ∧ (gc−1z (x, y − 1) ∨ gc−1z (x+ 1, y)),

(76)
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for the cases presented in Figure 45 (a) and (b), respectively. Along with that, we
have

gcx(d)(x, y) =⇒ (gc−1y (x, y + 1) ∨ gc−1y (x− 1, y)) ∧ (gcz(x, y + 1) ∨ gc−1z (x− 1, y)),

gcx(d)(x, y) =⇒ (gc−1y (x, y + 1) ∨ gc−1y (x+ 1, y)) ∧ (gcz(x, y + 1) ∨ gc−1z (x+ 1, y)),

(77)

for the cases shown in Figure 45 (c) and (d), such that phase(x, y) 6= phase(x, y + 1)

(scenario i presented above). Finally, we define

gcx(d)(x, y) =⇒ (gcy(x, y + 1) ∨ gc−1y (x− 1, y)) ∧ (gcz(x, y + 1) ∨ gc−1z (x− 1, y)),

gcx(d)(x, y) =⇒ (gcy(x, y + 1) ∨ gc−1y (x+ 1, y)) ∧ (gcz(x, y + 1) ∨ gc−1z (x+ 1, y)),
(78)

for the cases shown in Figure 45 (c) and (d), such that phase(x, y) = phase(x, y + 1)

(scenario ii presented before).

b. Wire synchronization constraint: for the wire synchronization constraint, we make
use of the same idea presented above. Thus, two scenarios should be considered

Figure 45 – Neighbors of the (x, y) BANCS cell, where the red areas can be submitted to the
same or to different clock phases.
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for the modeling:

i. In the first scenario, where phase(x, y) = phase(x, y + 1), the inputs of a given
wire (i.e., the driver that originates the wire or another instance of the same wire)
should be submitted to the same clock cycle if the cell is placed on locations
upon phases 1 or 2 and to the previous clock cycle if the cell is placed upon
phase 0.

ii. In the second scenario, where phase(x, y) 6= phase(x, y + 1), the inputs of a
given wire should be submitted to the same clock cycle if the cell is placed on
locations upon phases 1 or 2 and to the previous or the same clock cycle if the
cell is placed upon phase 0.

To formalize this constraint, considering phase(x, y) ≥ 1, we have

gcx(w)(x, y) =⇒ gcx(x, y − 1) ∨ gcx(x− 1, y)),

gcx(w)(x, y) =⇒ gcx(x, y − 1) ∨ gcx(x+ 1, y)),

gcx(w)(x, y) =⇒ gcx(x, y + 1) ∨ gcx(x− 1, y)),

gcx(w)(x, y) =⇒ gcx(x, y + 1) ∨ gcx(x+ 1, y)),

(79)

for the cases presented in Figure 25 (a), (b), (c), and (d), respectively. Similarly,
considering phase(x, y) = 0, we have

gcx(w)(x, y) =⇒ gc−1x (x, y − 1) ∨ gc−1x (x− 1, y)),

gcx(w)(x, y) =⇒ gc−1x (x, y − 1) ∨ gc−1x (x+ 1, y)),
(80)

for the cases presented in Figure 25 (a), (b), respectively. Along with that, we have

gcx(w)(x, y) =⇒ gc−1x (x, y + 1) ∨ gc−1x (x− 1, y)),

gcx(w)(x, y) =⇒ gc−1x (x, y + 1) ∨ gc−1x (x+ 1, y)),
(81)

for the cases shown in Figure 45 (c) and (d), such that phase(x, y) 6= phase(x, y + 1)

(scenario i presented above). Finally, we define

gcx(w)(x, y) =⇒ gcx(x, y + 1) ∨ gc−1x (x− 1, y)),

gcx(w)(x, y) =⇒ gcx(x, y + 1) ∨ gc−1x (x+ 1, y)),
(82)

for the cases shown in Figure 45 (c) and (d), such that phase(x, y) = phase(x, y + 1)

(scenario ii presented before).

c. Single-cycle constraint: each cell (driver or wire) should operate under exactly one
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cycle. Thus, we have

gi(x, y) =⇒ exactly(1, {g0i (x, y), g1i (x, y), ..., g
#cycles−1
i (x, y)}). (83)

d. Input/output phase synchronization constraint: each input should be submitted to
the same phase. The same is valid for each output.

To define this constraint, first let us consider the following:

i. A vector [(x00, y00), (x01, y01), ..., (x0k, y
0
k)] containing all the k coordinates submitted

to phase 0;

ii. A vector [(x10, y
1
0), (x

1
1, y

1
1), ..., (x

1
l , y

1
l )] containing all the l coordinates submitted

to phase 1;

iii. A vector [(x20, y20), (x21, y21), ..., (x2m, y2m)] containing all the m coordinates submitted
to phase 2.

Then, we have

ia(d)(x, y) =⇒
∧

b=0..#i
ia 6=ib

∨
j=0..k

ib(d)(x
0
j , y

0
j ), if phase(x, y) = 0,

(84)

ia(d)(x, y) =⇒
∧

b=0..#i
ia 6=ib

∨
j=0..l

ib(d)(x
1
j , y

1
j ), if phase(x, y) = 1,

(85)

ia(d)(x, y) =⇒
∧

b=0..#i
ia 6=ib

∨
j=0..m

ib(d)(x
2
j , y

2
j ), if phase(x, y) = 2,

(86)

such that #i denotes the number of input nodes in the netlist. Furthermore, similar
formulas are also defined for the case of the output nodes.

e. Input/output cycle synchronization constraint: each input should be submitted to the
same clock cycle. The same is valid for each output. Formally, we have

ica(d)(x, y) =⇒
∧

b=0..#i
ia 6=ib

∨
x=0..xmax
y=0..ymax

icb(d)(x, y), (87)

where #i denotes the number of input nodes in the netlist. A similar formula is also
defined for the outputs.
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5.3.3.3 Routing Constraints

The routing constraints are responsible for connecting all the elements placed in
the BANCS grid. The following constraints describe the routing model designed.

a. No return constraint: a signal should not enter and exit the cell by the same side.
Formally, we have∧

x=0..xmax
y=0..ymax
s=0..1

¬(ws(s)(x, y) ∧ wn(s)(x, y)) ∧
∧

x=0..xmax
y=0..ymax
s=0..1

¬(nw(s)(x, y) ∧ ne(s)(x, y)).
(88)

b. Border constraint: ports located on the border of the routing area should not be
connected. Formally,∧

x=0..xmax

¬nw(x, 0) ∧ ¬ne(x, 0) ∧
∧

y=0..ymax

¬ws(0, y) ∧ ¬wn(0, y). (89)

c. Invalid corners constraint: since each cell has a specific signal flow direction assig-
ned to it (accordingly with the arrows located on the borders of the BANCS grid),
then all the routing paths presented in the last chapter in Figure 26 are forbidden,
i.e., the information could not propagate through the red paths shown in the figure.

Following what is defined in Figure 26, we can formulate this restriction as follows:∧
s=0..1

¬((nw(s)(x, y + 1) ∨ ne(s)(x, y + 1)) ∧ (ws(s)(x+ 1, y) ∨ wn(s)(x+ 1, y))) (90)

prevents the situation presented in (a) and (h),∧
s=0..1

¬((nw(s)(x, y) ∨ ne(s)(x, y)) ∧ (ws(s)(x+ 1, y) ∨ wn(s)(x+ 1, y))) (91)

avoids the cases (b) and (g),∧
s=0..1

¬((nw(s)(x, y + 1) ∨ ne(s)(x, y + 1)) ∧ (ws(s)(x, y) ∨ wn(s)(x, y))) (92)

deals with the cases (c) and (f), while∧
s=0..1

¬((nw(s)(x, y) ∨ ne(s)(x, y)) ∧ (ws(s)(x, y) ∨ wn(s)(x, y))) (93)

implements the constraints for preventing (d) and (e) to happen.
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d. Majority access constraint: in a cell containing a majority-based gate, two neighbor
ports should not be connected if they are located in the corners of the BANCS cell.
We presented the cases where this occurs in Figure 27 (a).

To implement this constraint, we have

mi(d)(x, y) =⇒ ¬(wn(x, y) ∧ nw(x, y)) ∧ ¬(ne(x, y) ∧ wn(x+ 1, y)) ∧

¬(ws(x, y) ∧ nw(x, y + 1)) ∧ ¬(ws(x+ 1, y) ∧ ne(x, y + 1)).
(94)

e. Gate driver adjacency constraint: each gate (majority or an inverter) should be fol-
lowed (accordingly with the orientation of the BANCS grid) by the cells connected to
its output or by its wires and should be preceded by the cells connected to its inputs.

For this constraint, consider what was presented in Figure 28, where gy and gz are
the inputs of gx and ga is the output of gx. This way, we have

gx(d)(x, y) =⇒ exactly(1, {gy(x, y − 1), gy(x− 1, y)}) ∧

exactly(1, {gz(x, y − 1), gz(x− 1, y)}),

gx(d)(x, y) =⇒ exactly(1, {gy(x, y − 1), gy(x+ 1, y)}) ∧

exactly(1, {gz(x, y − 1), gz(x+ 1, y)}),

gx(d)(x, y) =⇒ exactly(1, {gy(x, y + 1), gy(x− 1, y)}) ∧

exactly(1, {gz(x, y + 1), gz(x− 1, y)}),

gx(d)(x, y) =⇒ exactly(1, {gy(x, y + 1), gy(x+ 1, y)}) ∧

exactly(1, {gz(x, y + 1), gz(x+ 1, y)}),

(95)

for the grid configurations presented in Figure 45 (a), (b), (c), and (d), respectively.
Along with that, we have

gx(d)(x, y) =⇒ exactly(1, {gx(w)(x, y + 1), gx(w)(x+ 1, y)}) ∧

exactly(1, {ga(x, y + 1), ga(x+ 1, y)}),

gx(d)(x, y) =⇒ exactly(1, {gx(w)(x, y + 1), gx(w)(x− 1, y)}) ∧

exactly(1, {ga(x, y + 1), ga(x− 1, y)}),

gx(d)(x, y) =⇒ exactly(1, {gx(w)(x, y − 1), gx(w)(x+ 1, y)}) ∧

exactly(1, {ga(x, y − 1), ga(x+ 1, y)}),

gx(d)(x, y) =⇒ exactly(1, {gx(w)(x, y − 1), gx(w)(x− 1, y)}) ∧

exactly(1, {ga(x, y − 1), ga(x− 1, y)}),

(96)

also for the cases presented in Figure 45 (a), (b), (c), and (d), respectively.
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f. Input driver adjacency constraint: an input driver connected to a given gate should
be followed (accordingly with the orientation of the BANCS grid) by one of its own
wires or by this gate. Furthermore, if the input is connected to more than one gate,
then it should be followed by one of its own wires or by at least one of these gates.

To define this constraint, consider an input ia connected to gx and an input ib con-
nected to gy and gz as previously presented in Figure 29. This way, considering
degree(ia) = 1, we have

ia(d)(x, y) =⇒ exactly(1, {ia(w)(x, y + 1), ia(w)(x+ 1, y), gx(d)(x, y + 1), gx(d)(x+ 1, y)}),

ia(d)(x, y) =⇒ exactly(1, {ia(w)(x, y + 1), ia(w)(x− 1, y), gx(d)(x, y + 1), gx(d)(x− 1, y)}),

ia(d)(x, y) =⇒ exactly(1, {ia(w)(x, y − 1), ia(w)(x+ 1, y), gx(d)(x, y − 1), gx(d)(x+ 1, y)}),

ia(d)(x, y) =⇒ exactly(1, {ia(w)(x, y − 1), ia(w)(x− 1, y), gx(d)(x, y − 1), gx(d)(x− 1, y)}),
(97)

for the BANCS grid configurations presented in Figure 45 (a), (b), (c), and (d), res-
pectively. Along with that, considering degree(ia) ≥ 2, we have

ia(d)(x, y) =⇒ ia(w)(x, y + 1) ∨ ia(w)(x+ 1, y) ∨ gy(d)(x, y + 1) ∨ gy(d)(x+ 1, y) ∨

gz(d)(x, y + 1) ∨ gz(d)(x+ 1, y),

ia(d)(x, y) =⇒ ia(w)(x, y + 1) ∨ ia(w)(x− 1, y) ∨ gy(d)(x, y + 1) ∨ gy(d)(x− 1, y) ∨

gz(d)(x, y + 1) ∨ gz(d)(x− 1, y),

ia(d)(x, y) =⇒ ia(w)(x, y − 1) ∨ ia(w)(x+ 1, y) ∨ gy(d)(x, y − 1) ∨ gy(d)(x+ 1, y) ∨

gz(d)(x, y − 1) ∨ gz(d)(x+ 1, y),

ia(d)(x, y) =⇒ ia(w)(x, y − 1) ∨ ia(w)(x− 1, y) ∨ gy(d)(x, y − 1) ∨ gy(d)(x− 1, y) ∨

gz(d)(x, y − 1) ∨ gx(d)(x− 1, y),

(98)

also for the cases shown in Figure 45 (a), (b), (c), and (d), respectively.

g. Wire adjacency constraint: a wire should be followed (accordingly with the orien-
tation of the BANCS grid) by another instance of the same wire or by the gates
connected to its output. Along with that, the wire should be preceded by another
instance of the same wire or by the gate that originates this wire.

To define this constraint, consider an input ia connected to the gate gx. This way,
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Figure 46 – Invalid routing scenarios: long wires (more then five magnets) submitted to the
same clock phase.

we have

ia(w)(x, y) =⇒ exactly(1, {ia(w)(x, y + 1), ia(w)(x+ 1, y), gx(d)(x, y + 1), gx(d)(x+ 1, y)}),

ia(w)(x, y) =⇒ exactly(1, {ia(w)(x, y + 1), ia(w)(x− 1, y), gx(d)(x, y + 1), gx(d)(x− 1, y)}),

ia(w)(x, y) =⇒ exactly(1, {ia(w)(x, y − 1), ia(w)(x+ 1, y), gx(d)(x, y − 1), gx(d)(x+ 1, y)}),

ia(w)(x, y) =⇒ exactly(1, {ia(w)(x, y − 1), ia(w)(x− 1, y), gx(d)(x, y − 1), gx(d)(x− 1, y)}),
(99)

for the cases shown in Figure 45 (a), (b), (c), and (d), respectively. Along with that,
we have

ia(w)(x, y) =⇒ atleast(1, {ia(w)(x, y − 1), ia(w)(x− 1, y), ia(d)(x, y − 1), ia(d)(x− 1, y)}),

ia(w)(x, y) =⇒ atleast(1, {ia(w)(x, y − 1), ia(w)(x+ 1, y), ia(d)(x, y − 1), ia(d)(x+ 1, y)}),

ia(w)(x, y) =⇒ atleast(1, {ia(w)(x, y + 1), ia(w)(x− 1, y), ia(d)(x, y + 1), ia(d)(x− 1, y)}),

ia(w)(x, y) =⇒ atleast(1, {ia(w)(x, y + 1), ia(w)(x+ 1, y), ia(d)(x, y + 1), ia(d)(x+ 1, y)}),
(100)

also considering the cases defined in Figure 45 (a), (b), (c), and (d), respectively.

h. Long wire constraint: wires should not be composed of more than five magnets
submitted to the same phase in order to prevent errors caused by thermal noise.
Figure 46 presents the problematic scenarios.

To implement this constraint, we first consider the vertical neighbor cells with same
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phase, i.e., phase(x, y) = phase(x, y + 1). Thus, we have

gi(w)(x, y) ∧ gi(w)(x, y + 1) =⇒
∧

s=0..1

¬((nw(s)(x, y) ∨ ne(s)(x, y)) ∧

(nw(s)(x, y + 2) ∨ ne(s)(x, y + 2)))

(101)

for modeling the restriction presented in Figure 46 (a),

gi(w)(x, y) ∧ gi(w)(x, y + 1) =⇒
∧

s=0..1

¬((wn(s)(x, y) ∨ wn(s)(x+ 1, y)) ∧

(nw(s)(x, y + 2) ∨ ne(s)(x, y + 2)))

(102)

for modeling the restriction (b), and

gi(w)(x, y) ∧ gi(w)(x, y + 1) =⇒
∧

s=0..1

¬((nw(s)(x, y) ∨ ne(s)(x, y)) ∧

(ws(s)(x, y + 1) ∨ ws(s)(x+ 1, y + 1)))

(103)

for modeling the restriction (c).

5.3.3.4 Table of Design Constraints

Table 8 summarizes the set of constraints for NML synthesis.

5.3.4 Algorithm

This section presents the proposed method (Algorithm 5) for generating area-
optimized synchronized NML circuits. The algorithm is based on the variables and
constraints defined in the previous section of this chapter6.

In this algorithm, consider orientation as a vector containing the possible orienta-
tions for the grid origin (coordinate (0, 0)) and phases as a vector containing the pha-
ses of the origin. Along with that, consider Factor(area) as a function that returns
a vector [(r0, c0), (r1, c1), ..., (rn, cn)] which contains all the n combinations of r and c

(rows and columns) such that ri ∗ ci = area. Moreover, the functions Placement(...),
Synchronization(...), and Routing(...) are responsible for creating the clauses
described in Sections 5.3.3.1, 5.3.3.2, and 5.3.3.3, respectively. Finally, the function
Translate(...) transforms the result obtained by the SAT solver (the set of variables
assigned to True on the solution) into the NML circuit.

6As in the previous chapters, the set of formulas presented are not necessarily in the CNF format, so
it is necessary to apply the Tseitin transformation (TSEITIN, 1983) in order to convert the formulas to
CNF.
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Table 8 – Table of design constraints: NML synthesis.

Type Constraint Description

Plac.

Single driver Each driver should be placed at exactly one location.
Overlapping Each grid cell contain at most one majority or (exclusively)

at most two inverters/wires.
Bottom majority Majority gates should not be placed in locations contai-

ning the same phase of the cell above.
Maj. near maj. Majority gates should not be placed alongside other ma-

jorities.
Wire near maj. Wires should not be placed in some tracks alongside a

majority gate (see Figure 43).
Wire near wire Wires should not be placed in some tracks alongside

other wires (see Figure 44).

Sync.

Driver sync. For each gate or output driver, its inputs should be sub-
mitted to the same clock cycle if the cell is on phases 1 or
2 and to the previous or the same clock cycle if the cell is
on phase 0 (depending on the position of the driver).

Wire sync. For each wire cell, its input should be submitted to the
same clock if the cell is submitted to phase 1 or 2 and to
the previous or the same clock cycle if the cell is submitted
to phase 0 (depending on the position of the driver).

Single-cycle Each cell should operate under exactly one cycle.
I/O phase sync. Each input should be submitted to the same phase. The

same is valid for each output.
I/O cycle sync. Each input should operate on the same clock cycle. The

same is valid for each output.

Rout.

No return A signal should not enter and exit a cell by the same side.
Border Ports located on the border of the routing area should not

be connected.
Invalid corners Some routing paths are not allowed (see Figure 26).
Majority access In a cell containing a majority gate, two neighbor ports

should not be connected if they are located in the corners
of this BANCS cell.

Gate driver adj. Each gate should be followed by the cells connected to its
output or by its wires and should be preceded by the cells
connected to its inputs.

Input driver adj. Each input driver connected to one gate should be fol-
lowed by one of its own wires or by the gate. Further-
more, if the input is connected to more than one gate,
then it should be followed by one of its own wires or by at
least one of the gates connected to its output.

Wire adj. Each wire should be followed by the cells connected to its
output or by other wire of the same signal and should be
preceded by a wire or by a driver of the same signal.

Long wire Wires should not be composed of more than five magnets
on the same phase.
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Algorithm 5: SAT-based pseudo-code for the synthesis of NML circuits
input : input hypergraph N, number of cycles c
output: NML-BANCS design circuit
orientation← ( ↓→, ↓←, ↑→, ↑←)
phases ← (0, 1, 2)
area← Nodes(N)
while True do

combinations ← Factor(area)
for i← 0 to combinations.size do

rows, cols ← combinations(i)
for o← 0 to orientation.size do

for p← 0 to phases.size do
V ← CreateBooleanVariables(N, c, rows, cols)
placement ← Placement(N, V, c, rows, cols, orientation(o), phases(p))
sync ← Synchronization(N, V, c, rows, cols, orientation(o), phases(p))
routing ← Routing(N, V, c, rows, cols, orientation(o), phases(p))
SAT ← Solver(placement, sync, routing)
if SAT 6= False then

circuit ← Translate (SAT)
return circuit

area← area + 1

5.4 Experiments

The experiments presented in this section follow the same idea of the previous
chapter (Section 4.6): two assessments were conducted over a well-known benchmark
of digital circuits, where the first consists of exploring different synchronization profiles,
while the second aims to compare the solutions obtained with (FORMIGONI et al.,
2021). It is important to point out that the NMLSim (SOARES et al., 2018) tool was
used to validate all the circuits designed.

5.4.1 Assessment of Synchronization Profiles

The first experiment explores two synchronization profiles (such that both ensure
the global synchronicity of the circuit based on the design principles described in (TOR-
RES et al., 2018)): (i) synchronization at clock phase level and (ii) synchronization at
clock cycle level. These different profiles are detailed below:

i. Synchronization at clock phase level: in this scenario, all the inputs are submitted
to the same phase and to the same cycle (the same is valid for the outputs). This
allows receiving new data on each clock phase (i.e., achieving the maximum th-
roughput). For generating synchronized circuits at the clock phase level we include
in our formulation all the synchronization restrictions defined in Section 5.3.3.2;

ii. Synchronization at clock cycle level: in this scenario, all the inputs and outputs
of the circuit are submitted to the same cycle (the same is valid for the outputs),
i.e. there are no restrictions regarding the phase in which the inputs and outputs
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Table 9 – Comparison between different synchronicity profiles: NML synthesis.

Circuit #G #I #O Phase synchronicity Cycle synchronicity
Area Lat. Occ. (%) Area Lat. Occ. (%)

2:1 MUX 3 3 1 3×3 4 100.0 3×3 3 88.9
XOR2 4 2 1 3×3 3 100.0 3×3 3 100.0
Full adder 7 3 2 10×6 12 76.7 11×5 13 74.5
C17 5 5 2 9×5 8 87.5 7×5 10 88.6
Par. gen. 9 3 1 11×9 20 64.6 11×9 20 64.6
Par. ch. 14 4 1 8×7 12 78.6 8×7 12 78.6
Decoder 5 2 1 7×5 5 54.3 10×3 7 73.3

are submitted. This scenario ensures that new data can be computed on each
clock cycle. For generating synchronized circuits at the clock cycle level we did not
include in our formulation the restriction defined in Section 5.3.3.2d.

The results of the first experiment are summarized in Table 9, where #G, #I, and
#O refers to the number of gates, inputs, and outputs of the netlists, respectively, Area
is the area of the resulting layout in terms of BANCS cells, Lat. is the latency of the
critical path of the circuit (in terms of the number of clock phases), and Occ. (%) is the
occupancy rate of the BANCS grid.

As we can see in Table 9, the results corroborate with the ones presented in the
previous chapter: the cells with synchronization at clock cycle level are (on average)
optimized in terms of area in comparison with the cells with synchronization at clock
phase level. However, it is important to notice that there is a tradeoff between area
and throughput since the latter operates under the maximum throughput (as broadly
discussed in (TORRES et al., 2018)). This way is up to the designer to decide which
version of the cell is suitable for a given specification.

Figure 47 – 2:1 MUX circuits. (a) Solution with clock phase synchronicity. (b) Solution with
clock cycle synchronicity
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Table 10 – Comparison with (FORMIGONI et al., 2021) methodology.

Circuit #G #I #O Proposed method Formigoni et al.
Area Lat. Occ. (%) Area Lat. Occ. (%)

2:1 MUX 3 3 1 3×3 4 100.0 5×6 7 60.0
XOR2 4 2 1 3×3 3 100.0 6×7 9 56.7
Full adder 7 3 2 10×6 12 76.7 - - -
C17 5 5 2 9×5 8 87.5 - - -
P. gen. 9 3 1 11×9 20 64.6 15×12 24 60.0
P. ch. 14 4 1 8×7 12 78.6 12×15 21 51.6
Decoder 5 2 1 7×5 5 54.3 5×6 5 83.3

To illustrate these two approaches, consider the 2:1 MUX presented in Figure 47
where (a) is the solution with clock phase synchronization and (b) is the circuit with
clock cycle synchronization. Notice that, besides achieving the same circuit area for
both cases, (b) has 12.1% fewer magnets in comparison with (a). On the other hand,
(a) achieves greater throughput than (b).

5.4.2 Comparison with another Methodology

The second experiment is a comparison between the solutions produced through
the proposed methodology and the solutions produced in (FORMIGONI et al., 2021).
It is important to notice that (FORMIGONI et al., 2021) presented only solutions with
clock phase synchronicity, so we made the comparison of this profile in order to provide
a fair assessment. The results of the second experiment are summarized in Table 10.

Considering the data presented in Table 10, the proposed approach can produce
cells with less area in comparison with (FORMIGONI et al., 2021) for all cases except
for the Decoder circuit. A side effect of this area optimization is the gain in latency and
occupancy rate, producing faster and denser solutions in general.

To illustrate the differences between the solutions produced through the proposed
methodology and the (FORMIGONI et al., 2021) approach, Figure 48 shows the diffe-
rent versions of the XOR2 gate. Furthermore, it is important to notice that our solution
does not have any crossing wire, while (FORMIGONI et al., 2021) make use of one
crossing segment.

5.5 Chapter Conclusions

In this chapter we present a new SAT-based methodology for generating NML cir-
cuits. A set of Boolean variables were defined to represent the states of the problem,
while formulas were described to model the restrictions intrinsic to the NML design. All
the design rules were derived from empirical observations of circuits designed in the
BANCS clocking scheme, the structure responsible to encode the restrictions regar-
ding the synchronization of the solution.
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Figure 48 – Versions of the XOR2 gate in NML. (a) Input netlist. (b) Proposed solution. (c)
Solution obtained through (FORMIGONI et al., 2021).
Source: (a) and (b) are both original, while (c) is adapted from (FORMIGONI et al., 2021).

The results of the experiments show that the proposed methodology can achieve
better results in terms of circuit area when compared to a graph-based algorithm. Along
with that, the latency of the solutions was also optimized, producing faster circuits in
general. Another important result is related to the different synchronization profiles,
where we described approaches with a tradeoff between area and throughput. Thus,
is up to the designer which approach to take to meet their specifications.

Finally, the proposed methodology can be applied for several purposes such as the
design of NML standard cell libraries, for the on-the-fly design of NML circuits, for the
integration with divide-and-conquer strategies to provide scalability, for validation and
comparison with other new methodologies, among others.



6 CONCLUSIONS

This thesis explores the capabilities of satisfiability solvers to manage the challen-
ges inherent to the cell design task in different technologies. Nowadays, these to-
ols can compute complex instances containing millions of variables and clauses, thus
being an important asset to modern EDA solutions. In this scenario, we propose new
satisfiability-based models to encode the design constraints of conventional and emer-
ging technologies focusing on obtaining area-optimized solutions.

The first proposed method is focused on the transistor placement for static CMOS
complex gates. The placement task plays a crucial role in cell synthesis since it is a
process executed before the routing and compaction routines. Thus, obtaining a good
placement potentially enables to have better layouts (in terms of area) at the end of
the design flow. In this sense, the restrictions of the 65 nm technology node were for-
mally defined and the satisfiability solver was able to find solutions with fewer columns
in comparison with the placement routine implemented into ASTRAN, the automatic
design tool used as the baseline for the experiments. The results also show that the
layouts produced by the proposed design method not only presented optimization in
area but also in the number of contacts, in general.

The second proposed method focus on the design for quantum-dot cellular auto-
mata, an emerging technology of the field-coupled nanotechnology family. The design
in QCA must fulfill constraints in three domains: placement, routing, and synchroniza-
tion. Thus, based on the clocking scheme called USE, we identified the design restric-
tions in QCA in order to formalize the discrete constraint model. Through a satisfiability
solver, we were able to find solutions with optimization in area in comparison with other
graph-based approaches. Furthermore, as a byproduct, the method also optimizes
the latency of the cells. Finally, we proposed two design scenarios to cover different
specification profiles, where a tradeoff between area and throughput is presented.

The third and last proposed approach performs cell synthesis for nanomagnetic
logic, another field-coupled nanotechnology. As in the QCA design, placement, routing,
and synchronization constraints must be taken into account for defining the restriction
model. Thus, we employ the clocking scheme BANCS to formalize the design rules by
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this clock template. Through a satisfiability solver, we find solutions that fulfill all the
design restrictions in which, in general, the cells generated presented an optimization in
area when compared to another design graph-based methodology. We also achieved
faster solutions, i.e., the latency aspect was also optimized as a side effect of the area
minimization. The tradeoff between area and delay was also introduced as in the QCA
approach.

We can notice that the research questions raised in Section 1.1 of this thesis were
successfully answered based on the hypotheses presented in the same section. We
were able to model the design restrictions of each technology and make use of the
satisfiability solvers capabilities to find good quality solutions in comparison with other
traditional and well-established approaches. Moreover, the proposed methodologies
can be used as a baseline in new researches in the area of the SCCG design as well
as in the QCA and NML synthesis.

6.1 Future Work

Several new directions can be explored using the propositions, tools, and methods
proposed in this thesis. We list them as follows:

• Adoption of newest technology nodes: even though the 65 nm technology is still
adopted in the industry, new technologies present several design rules which are
suitable to be formalized in a restriction model similar to what was done in this
thesis.

• Improvements on ASTRAN: the design tool employed in this thesis presented
several limitations, especially in its routing module. A satisfiability-based model
which integrates the placement and routing procedures must improve the soluti-
ons found by ASTRAN in comparison with the proposed methodology.

• Assessment of clocking schemes: the proposed methods for QCA and NML can
be adapted for different clocking schemes, thus being suitable for comparing
these clocking schemes under a similar platform.

• Proposition of new clocking schemes: following the same principle of simplifica-
tion on the design constraints, new clocking schemes may be a good alternative
to provide relaxed restrictions, improving the capacities of the proposed appro-
ach.

• Design for fast QCA and NML cells: even though we were able to find solutions
with optimizations in latency, a proper SAT-based method with a focus on this
parameter may be useful when this circuit profile is desirable.
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• Design of QCA and NML cell libraries: the design of cell libraries can be optimized
using the proposed methods so they can be employed as core pieces of complex
digital systems.

• Exploration of SAT in other emerging technologies: there are several emerging
technologies - photonics and synthetic biological circuit, for instance - that can be
explored using SAT to optimize its solutions in different aspects.
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APPENDIX A – Example: SCCG design

A.1 Input netlist and design conditions

Let us consider the netlist illustrated in Figure 49 as the input of the proposed
method. Along with that, consider that the number of columns available for place-
ment is C = 6 in the current iteration of the proposed Algorithm 3, i.e., it is the second
try after an unsatisfiable first iteration.

Figure 49 – Input netlist (a) with its equivalent graphs (b).

In this scenario, we have the placement constraints defined as follows.

A.2 Placement constraints

• Transistor allocation constraint: each transistor must be allocated at exactly one
column. Thus, we have

p0(1) =⇒ ¬p0(2) ∧ ¬p0(3) ∧ ... ∧ ¬p0(6),

p0(2) =⇒ ¬p0(1) ∧ ¬p0(3) ∧ ... ∧ ¬p0(6),

...

p0(6) =⇒ ¬p0(1) ∧ ¬p0(2) ∧ ... ∧ ¬p0(5)

for the transistor p0. The same is applied for every pi and ni.

• Transistor overlapping constraint: each position of the layout must contain at most
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one transistor. Thus, we have

atmost(1, {p0(1), p1(1), ...p5(1)}),

atmost(1, {p0(2), p1(2), ...p5(2)}),

...

atmost(1, {p0(6), p1(6), ...p5(6)}),

such that the same is applied for the n set of variables.

• Diffusion sharing constraint: two transistors positioned laterally next to each other
must share a node in the netlist. Thus, considering that in Figure 49 the drain of
p0 is shared with the drain of p1 and the source of p0 is shared with the sources of
p2 and p3, we have

p0(1, d) =⇒ ¬p1(2, s),

p0(1, s) =⇒ ¬p1(2, d),

p0(1, s) =⇒ ¬p1(2, s),

p0(1, d) =⇒ ¬p2(2, d),

p0(1, d) =⇒ ¬p2(2, s),

p0(1, s) =⇒ ¬p2(2, d),

p0(1, d) =⇒ ¬p3(2, d),

p0(1, d) =⇒ ¬p3(2, s),

p0(1, s) =⇒ ¬p3(2, d),

p0(1, d) =⇒ ¬p4(2, d),

p0(1, d) =⇒ ¬p4(2, s),

p0(1, s) =⇒ ¬p4(2, d),

p0(1, s) =⇒ ¬p4(2, s),

...

p0(5, d) =⇒ ¬p4(6, d),

p0(5, d) =⇒ ¬p4(6, s),

p0(5, s) =⇒ ¬p4(6, d),

p0(5, s) =⇒ ¬p4(6, s)

for p0. The same is applied for every pi and ni.

• Gate alignment constraint : two transistors positioned vertically next to each other
must share the gate signal in the netlist. Thus, considering that p0 has the same
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gate signal of only n0, we have

p0(1) =⇒ ¬n1(1),

p0(1) =⇒ ¬n2(1),

p0(1) =⇒ ¬n3(1),

p0(1) =⇒ ¬n4(1),

p0(2) =⇒ ¬n1(2),

...

p0(6) =⇒ ¬n4(6),

for p0. The same is applied for every pi and ni.

A.3 Satisfiable solution

Following the Algorithm 3, the conjunction of all formulas is computed through an
SAT solver. In this case, this instance is satisfiable, i.e., there is a valid solution for the
transistor placement using six layout columns (C = 6). Figure 50 shows the pseudo-
layout of this solution.

Figure 50 – Transistor placement solution for the circuit presented in Figure 49.
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APPENDIX B – Example: QCA design

B.1 Input netlist and design conditions

Let us consider the 2:1 MUX circuit illustrated in Figure 51 (a) as the input of the
proposed method. Along with that, consider the design space presented in Figure 51
(b) as the current state following the Algorithm 4. Furthermore, let us consider three
cycles available for design.

Figure 51 – 2:1 MUX (a) and design space available in the current algorithm iteration (b).

In this scenario, let us define the placement, routing, and synchronization cons-
traints as follows.

B.2 Placement constraints

• Single driver constraint : each driver should be placed at exactly one grid location.
Thus, we have

exactly(1, {i0(d)(0, 0), i0(d)(0, 1), ..., i0(d)(3, 2)}),

exactly(1, {i1(d)(0, 0), i1(d)(0, 1), ..., i1(d)(3, 2)}),

exactly(1, {i2(d)(0, 0), i2(d)(0, 1), ..., i2(d)(3, 2)}),

exactly(1, {g0(d)(0, 0), g0(d)(0, 1), ..., g0(d)(3, 2)}),

exactly(1, {g1(d)(0, 0), g1(d)(0, 1), ..., g1(d)(3, 2)}),

exactly(1, {g2(d)(0, 0), g2(d)(0, 1), ..., g2(d)(3, 2)}),

exactly(1, {o0(d)(0, 0), o0(d)(0, 1), ..., o0(d)(3, 2)}).
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• Overlapping constraint : each grid location contains at most one gate or (exclusi-
vely) at most two wire cells containing at most two input drivers. Thus, we have

i0(d)(0, 0) =⇒

atmost(2, {i0(d)(0, 0), i1(d)(0, 0)}) ∧

exactly(0, {g0(d)(0, 0), g1(d)(0, 0), ..., o0(d)(0, 0)}) ∧

atmost(2, {i0(w)(0, 0), i1(w)(0, 0), g0(w)(0, 0), g1(w)(0, 0), ..., o0(w)(0, 0)}),

i1(d)(0, 0) =⇒

atmost(2, {i0(d)(0, 0), i1(d)(0, 0)}) ∧

exactly(0, {g0(d)(0, 0), g1(d)(0, 0), ..., o0(d)(0, 0)}) ∧

atmost(2, {i0(w)(0, 0), i1(w)(0, 0), g0(w)(0, 0), g1(w)(0, 0), ..., o0(w)(0, 0)}),

for the inputs,

g0(d)(0, 0) =⇒

exactly(1, {g0(d)(0, 0), g1(d)(0, 0), ..., o0(d)(0, 0)}) ∧

exactly(0, {i0(w)(0, 0), i1(w)(0, 0), g0(w)(0, 0), g1(w)(0, 0), ..., o0(w)(0, 0)}),

...

g3(d)(0, 0) =⇒

exactly(1, {g0(d)(0, 0), g1(d)(0, 0), ..., o0(d)(0, 0)}) ∧

exactly(0, {i0(w)(0, 0), i1(w)(0, 0), g0(w)(0, 0), g1(w)(0, 0), ..., o0(w)(0, 0)}),

o0(d)(0, 0) =⇒

exactly(1, {g0(d)(0, 0), g1(d)(0, 0), ..., o0(d)(0, 0)}) ∧

exactly(0, {i0(w)(0, 0), i1(w)(0, 0), g0(w)(0, 0), g1(w)(0, 0), ..., o0(w)(0, 0)}),

for the gates and output, and,

g0(w)(0, 0) =⇒

exactly(0, {i0(d)(0, 0), i1(d)(0, 0), g0(d)(0, 0), g1(d)(0, 0), ..., o0(d)(0, 0)}) ∧

atmost(2, {i0(w)(0, 0), i1(w)(0, 0), g0(w)(0, 0), g1(w)(0, 0), ..., o0(w)(0, 0)}),

for the wires. The same is valid for every coordinate of the USE grid.

B.3 Synchronization constraints

• Driver synchronization constraint: for each gate or output driver, its inputs should
be submitted to the same clock cycle if the cell is placed on locations upon phases
1, 2, or 3, and to the previous clock cycle if the cell is placed upon phase 0. Thus,
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expanding the equations for c = 1 (second cycle), we have

g11(d)(0, 0) =⇒ i00(0, 1) ∧ i01(0, 1),

g11(d)(1, 0) =⇒ i10(0, 0) ∧ i11(0, 0),

g11(d)(2, 0) =⇒ (i10(1, 0) ∨ i10(2, 1)) ∧ (i11(1, 0) ∨ i11(2, 1)),

g11(d)(3, 0) =⇒ i10(2, 0) ∧ i11(2, 0),

g11(d)(0, 1) =⇒ (i10(1, 1) ∨ i10(0, 2)) ∧ (i11(1, 1) ∨ i11(0, 2)),

g11(d)(1, 1) =⇒ (i10(1, 0) ∨ i10(0, 1)) ∧ (i11(1, 0) ∨ i11(0, 1)),

g11(d)(2, 1) =⇒ (i10(3, 1) ∨ i10(2, 2)) ∧ (i11(3, 1) ∨ i11(2, 2)),

g11(d)(3, 1) =⇒ i00(3, 0) ∧ i01(3, 0),

g11(d)(1, 2) =⇒ (i10(1, 1) ∨ i10(0, 2)) ∧ (i11(1, 1) ∨ i11(0, 2)),

g11(d)(2, 2) =⇒ i10(1, 2) ∧ i11(1, 2),

g11(d)(3, 2) =⇒ (i10(3, 1) ∨ i10(2, 2)) ∧ (i11(3, 1) ∨ i11(2, 2)),

such that the same is valid for all gates and outputs, as well as for all cycles.

• Wire synchronization constraint: for each wire cell, its input should be submitted
to the same clock if the cell is submitted to the phase 1, 2, or 3, and to the
previous clock cycle if the cell is submitted to the phase 0. Thus, expanding the
equations for c = 1 (second cycle), we have

g11(w)(0, 0) =⇒ g01(0, 1),

g11(w)(1, 0) =⇒ g11(0, 0),

g11(w)(2, 0) =⇒ g11(1, 0) ∨ g11(2, 1),

g11(w)(3, 0) =⇒ g11(2, 0),

g11(w)(0, 1) =⇒ g11(1, 1) ∨ g11(0, 2),

g11(w)(1, 1) =⇒ g11(1, 0) ∨ g11(0, 1),

g11(w)(2, 1) =⇒ g11(3, 1) ∨ g11(2, 2),

g11(w)(3, 1) =⇒ g01(3, 0),

g11(w)(1, 2) =⇒ g11(1, 1) ∨ g11(0, 2),

g11(w)(2, 2) =⇒ g11(1, 2),

g11(w)(3, 2) =⇒ g11(3, 1) ∨ g11(2, 2),

such that the same is valid for all inputs, gates, and outputs, as well as for all
cycles.

• Single-cycle constraint: each cell should operate under exactly one cycle. Thus,
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we have

g0(0, 0) =⇒ exactly(1, {g00(0, 0), g10(0, 0), g20(0, 0)}),

g0(1, 0) =⇒ exactly(1, {g00(1, 0), g10(1, 0), g20(1, 0)}),

...

g0(3, 2) =⇒ exactly(1, {g00(3, 2), g10(3, 2), g20(3, 2)}),

such that the same is valid for all inputs, gates, and outputs.

• Input/output phase synchronization constraint: each input should be submitted to
the same phase. The same is valid for each output. Thus,

i0(d)(0, 0) =⇒ (i1(d)(0, 0) ∨ i1(d)(3, 1) ∨ i1(d)(2, 2)) ∧ (i1(d)(0, 0) ∨ i2(d)(3, 1) ∨ i2(d)(2, 2)),

i0(d)(1, 0) =⇒ (i1(d)(1, 0) ∨ i1(d)(2, 1) ∨ i1(d)(3, 2)) ∧ (i1(d)(1, 0) ∨ i2(d)(2, 1) ∨ i2(d)(3, 2)),

i0(d)(2, 0) =⇒ (i1(d)(2, 0) ∨ i1(d)(1, 1) ∨ i1(d)(0, 2)) ∧ (i1(d)(2, 0) ∨ i2(d)(1, 1) ∨ i2(d)(0, 2)),

i0(d)(3, 0) =⇒ (i1(d)(3, 0) ∨ i1(d)(0, 1) ∨ i1(d)(1, 2)) ∧ (i1(d)(3, 0) ∨ i2(d)(0, 1) ∨ i2(d)(1, 2)),

i0(d)(0, 1) =⇒ (i1(d)(3, 0) ∨ i1(d)(0, 1) ∨ i1(d)(1, 2)) ∧ (i1(d)(3, 0) ∨ i2(d)(0, 1) ∨ i2(d)(1, 2)),

i0(d)(1, 1) =⇒ (i1(d)(2, 0) ∨ i1(d)(1, 1) ∨ i1(d)(0, 2)) ∧ (i1(d)(2, 0) ∨ i2(d)(1, 1) ∨ i2(d)(0, 2)),

i0(d)(2, 1) =⇒ (i1(d)(1, 0) ∨ i1(d)(2, 1) ∨ i1(d)(3, 2)) ∧ (i1(d)(1, 0) ∨ i2(d)(2, 1) ∨ i2(d)(3, 2)),

i0(d)(3, 1) =⇒ (i1(d)(0, 0) ∨ i1(d)(3, 1) ∨ i1(d)(2, 2)) ∧ (i1(d)(0, 0) ∨ i2(d)(3, 1) ∨ i2(d)(2, 2)),

i0(d)(0, 2) =⇒ (i1(d)(2, 0) ∨ i1(d)(1, 1) ∨ i1(d)(0, 2)) ∧ (i1(d)(2, 0) ∨ i2(d)(1, 1) ∨ i2(d)(0, 2)),

i0(d)(1, 2) =⇒ (i1(d)(3, 0) ∨ i1(d)(0, 1) ∨ i1(d)(1, 2)) ∧ (i1(d)(3, 0) ∨ i2(d)(0, 1) ∨ i2(d)(1, 2)),

i0(d)(2, 2) =⇒ (i1(d)(0, 0) ∨ i1(d)(3, 1) ∨ i1(d)(2, 2)) ∧ (i1(d)(0, 0) ∨ i2(d)(3, 1) ∨ i2(d)(2, 2)),

i0(d)(3, 2) =⇒ (i1(d)(1, 0) ∨ i1(d)(2, 1) ∨ i1(d)(3, 2)) ∧ (i1(d)(1, 0) ∨ i2(d)(2, 1) ∨ i2(d)(3, 2)),

such that the same is valid for all other inputs and for the output.

• Input/output cycle synchronization constraint: each input should start operating
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on the same clock cycle. The same is valid for each output. Thus, we have

i00(d)(0, 0) =⇒ (i01(d)(0, 0) ∨ i01(d)(1, 0) ∨ ... ∨ i01(d)(3, 2)) ∧

(i02(d)(0, 0) ∨ i02(d)(1, 0) ∨ ... ∨ i02(d)(3, 2)),

i00(d)(1, 0) =⇒ (i01(d)(0, 0) ∨ i01(d)(1, 0) ∨ ... ∨ i01(d)(3, 2)) ∧

(i02(d)(0, 0) ∨ i02(d)(1, 0) ∨ ... ∨ i02(d)(3, 2)),

...

i00(d)(3, 2) =⇒ (i01(d)(0, 0) ∨ i01(d)(1, 0) ∨ ... ∨ i01(d)(3, 2)) ∧

(i02(d)(0, 0) ∨ i02(d)(1, 0) ∨ ... ∨ i02(d)(3, 2)),

i10(d)(0, 0) =⇒ (i11(d)(0, 0) ∨ i11(d)(1, 0) ∨ ... ∨ i11(d)(3, 2)) ∧

(i12(d)(0, 0) ∨ i12(d)(1, 0) ∨ ... ∨ i12(d)(3, 2)),

...

i20(d)(3, 2) =⇒ (i21(d)(0, 0) ∨ i21(d)(1, 0) ∨ ... ∨ i21(d)(3, 2)) ∧

(i22(d)(0, 0) ∨ i22(d)(1, 0) ∨ ... ∨ i22(d)(3, 2)).

B.4 Routing constraints

• No return constraint: each signal should not enter and exit the cell on the same
side. Thus,

¬(ws(0)(0, 0) ∧ wn(0)(0, 0)) ∧ ¬(nw(0)(0, 0) ∧ ne(0)(0, 0)) ∧

¬(ws(1)(0, 0) ∧ wn(1)(0, 0)) ∧ ¬(nw(1)(0, 0) ∧ ne(1)(0, 0)) ∧

¬(ws(0)(1, 0) ∧ wn(0)(1, 0)) ∧ ¬(nw(0)(1, 0) ∧ ne(0)(1, 0)) ∧

¬(ws(1)(1, 0) ∧ wn(1)(1, 0)) ∧ ¬(nw(1)(1, 0) ∧ ne(1)(1, 0)) ∧

...

¬(ws(0)(3, 2) ∧ wn(0)(3, 2)) ∧ ¬(nw(0)(3, 2) ∧ ne(0)(3, 2)) ∧

¬(ws(1)(3, 2) ∧ wn(1)(3, 2)) ∧ ¬(nw(1)(3, 2) ∧ ne(1)(3, 2)).

• Border constraint: ports located on the border of the routing area should not be
connected. Thus, we have

¬nw(0, 0) ∧ ¬ne(0, 0) ∧ ¬ws(0, 0) ∧ ¬wn(0, 0) ∧

¬nw(1, 0) ∧ ¬ne(1, 0) ∧ ¬ws(0, 1) ∧ ¬wn(0, 1) ∧

¬nw(2, 0) ∧ ¬ne(2, 0) ∧ ¬ws(0, 2) ∧ ¬wn(0, 2) ∧

¬nw(3, 0) ∧ ¬ne(3, 0).
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• Invalid corners constraint: the routing paths presented in Figure 26 are not al-
lowed. Thus, we have

¬((nw(0)(0, 1) ∨ ne(0)(0, 1)) ∧ (ws(0)(0, 0) ∨ wn(0)(0, 0))),

¬((nw(0)(2, 1) ∨ ne(0)(2, 1)) ∧ (ws(0)(2, 0) ∨ wn(0)(2, 0))),

¬((nw(0)(0, 2) ∨ ne(0)(0, 2)) ∧ (ws(0)(1, 1) ∨ wn(0)(1, 1))),

¬((nw(0)(1, 1) ∨ ne(0)(1, 1)) ∧ (ws(0)(2, 1) ∨ wn(0)(2, 1))),

¬((nw(0)(2, 2) ∨ ne(0)(2, 2)) ∧ (ws(0)(3, 1) ∨ wn(0)(3, 1))),

¬((nw(0)(1, 2) ∨ ne(0)(1, 2)) ∧ (ws(0)(1, 2) ∨ wn(0)(1, 2))),

¬((nw(0)(3, 2) ∨ ne(0)(3, 2)) ∧ (ws(0)(3, 2) ∨ wn(0)(3, 2))),

¬((nw(1)(0, 1) ∨ ne(1)(0, 1)) ∧ (ws(1)(0, 0) ∨ wn(1)(0, 0))),

¬((nw(1)(2, 1) ∨ ne(1)(2, 1)) ∧ (ws(1)(2, 0) ∨ wn(1)(2, 0))),

¬((nw(1)(0, 2) ∨ ne(1)(0, 2)) ∧ (ws(1)(1, 1) ∨ wn(1)(1, 1))),

¬((nw(1)(1, 1) ∨ ne(1)(1, 1)) ∧ (ws(1)(2, 1) ∨ wn(1)(2, 1))),

¬((nw(1)(2, 2) ∨ ne(1)(2, 2)) ∧ (ws(1)(3, 1) ∨ wn(1)(3, 1))),

¬((nw(1)(1, 2) ∨ ne(1)(1, 2)) ∧ (ws(1)(1, 2) ∨ wn(1)(1, 2))),

¬((nw(1)(3, 2) ∨ ne(1)(3, 2)) ∧ (ws(1)(3, 2) ∨ wn(1)(3, 2))).

• Majority access constraint: in a cell containing a majority gate, two neighbor ports
should not be connected if they are located in the corners of this USE cell. Thus,
we have

g1(d)(0, 0) =⇒ ¬(wn(0, 0) ∧ nw(0, 0)) ∧ ¬(ne(0, 0) ∧ wn(1, 0)) ∧

¬(ws(0, 0) ∧ nw(0, 1)) ∧ ¬(ws(1, 0) ∧ ne(0, 1)),

g1(d)(1, 0) =⇒ ¬(wn(1, 0) ∧ nw(1, 0)) ∧ ¬(ne(1, 0) ∧ wn(2, 0)) ∧

¬(ws(1, 0) ∧ nw(1, 1)) ∧ ¬(ws(2, 0) ∧ ne(1, 1)),

...

g2(d)(3, 2) =⇒ ¬(wn(3, 2) ∧ nw(3, 2)),

such that the same is applied for the output node.

• Gate driver adjacency constraint: each gate should be followed by the cells con-
nected to its output or by its wires and should be preceded by the cells connected
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to its inputs. Thus, we have

g0(d)(0, 0) =⇒ exactly(1, {i1(0, 1)}),

g0(d)(1, 0) =⇒ exactly(1, {i1(0, 0)}),

g0(d)(2, 0) =⇒ exactly(1, {i1(1, 0), i1(2, 1)}),

g0(d)(3, 0) =⇒ exactly(1, {i1(2, 0)}),

g0(d)(0, 1) =⇒ exactly(1, {i1(0, 2), i1(1, 1)}),

g0(d)(1, 1) =⇒ exactly(1, {i1(1, 0), i1(2, 1)}),

g0(d)(2, 1) =⇒ exactly(1, {i1(2, 2), i1(3, 1)}),

g0(d)(3, 1) =⇒ exactly(1, {i1(3, 0)}),

g0(d)(1, 2) =⇒ exactly(1, {i1(1, 1), i1(0, 2)}),

g0(d)(2, 2) =⇒ exactly(1, {i1(1, 2)}),

g0(d)(3, 2) =⇒ exactly(1, {i1(3, 1), i1(2, 2)}),

such that the same is applied for the other gates and output node, and

g0(d)(0, 0) =⇒ exactly(1, {g2(1, 0)}),

g0(d)(1, 0) =⇒ exactly(1, {g2(2, 0), g2(1, 1)}),

g0(d)(2, 0) =⇒ exactly(1, {g2(3, 0)}),

g0(d)(3, 0) =⇒ exactly(1, {g2(3, 1)}),

g0(d)(0, 1) =⇒ exactly(1, {g2(0, 0)}),

g0(d)(1, 1) =⇒ exactly(1, {g2(0, 1), g2(1, 2)}),

g0(d)(2, 1) =⇒ exactly(1, {g2(2, 0), g2(1, 1)}),

g0(d)(3, 1) =⇒ exactly(1, {g2(3, 2), g2(2, 1)}),

g0(d)(0, 2) =⇒ exactly(1, {g2(1, 2), g2(0, 1)}),

g0(d)(1, 2) =⇒ exactly(1, {g2(2, 2)}),

g0(d)(2, 2) =⇒ exactly(1, {g2(2, 1), g2(3, 2)}),

such that the same is also applied for the other gates and output node.

• Input driver adjacency constraint: each input driver connected to one gate should
be followed by one of its own wires or by the gate. Furthermore, if the input is
connected to more than one gate, then it should be followed by one of its own
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wires or by at least one of the gates connected to its output. Thus, we have

i0(d)(0, 0) =⇒ exactly(1, {i0(w)(1, 0), g1(d)(1, 0)}),

i0(d)(1, 0) =⇒ exactly(1, {i0(w)(2, 0), i0(w)(1, 1), g1(d)(2, 0), g1(d)(1, 1)}),

...

i0(d)(2, 2) =⇒ exactly(1, {i0(w)(3, 2), i0(w)(2, 1), g1(d)(3, 2), g1(d)(2, 1)}),

i2(d)(0, 0) =⇒ exactly(1, {i2(w)(1, 0), g1(d)(1, 0)}),

i2(d)(1, 0) =⇒ exactly(1, {i2(w)(2, 0), i2(w)(1, 1), g2(d)(2, 0), g2(d)(1, 1)}),

...

i2(d)(2, 2) =⇒ exactly(1, {i2(w)(3, 2), i2(w)(2, 1), g2(d)(3, 2), g2(d)(2, 1)})

for i0 and i2 (degree(i0) = degree(i2) = 1), and

i1(d)(0, 0) =⇒ i1(w)(1, 0) ∨ g0(d)(1, 0) ∨ g1(d)(1, 0),

i1(d)(1, 0) =⇒ i1(w)(1, 1) ∨ i1(w)(2, 0) ∨ g0(d)(1, 1)

∨g0(d)(2, 0) ∨ g1(d)(1, 1) ∨ g1(d)(2, 0),

...

i1(d)(2, 2) =⇒ i1(w)(3, 2) ∨ g0(d)(3, 2) ∨ g1(d)(3, 2)

for i1 (degree(i1) ≥ 2).

• Wire adjacency constraint: each wire should be followed by the cells connected
to its output or by other wire of the same signal and should be preceded by a wire
or by a driver of the same signal. Thus, we have

i0(w)(0, 0) =⇒ exactly(1, {i0(w)(1, 0), g1(d)(1, 0)}),

i0(w)(1, 0) =⇒ exactly(1, {i0(w)(1, 1), i0(w)(2, 0), g1(d)(1, 1), g1(d)(2, 0)}),

...

i2(w)(2, 2) =⇒ exactly(1, {i0(w)(3, 2), i0(w)(2, 1), g1(d)(3, 2), g1(d)(2, 1)})

and

i0(w)(0, 0) =⇒ atleast(1, {i0(w)(0, 1), i0(d)(0, 1)}),

i0(w)(1, 0) =⇒ atleast(1, {i0(w)(0, 0), i0(d)(0, 0)}),

...

i2(w)(3, 2) =⇒ atleast(1, {i2(w)(3, 1), i2(w)(2, 2), i2(d)(3, 1), i2(d)(2, 2)}).
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B.5 Satisfiable solution

Following the Algorithm 4, the conjunction of all formulas is computed through an
SAT solver. In this case, the instance shown in this chapter is satisfiable, i.e., there is
a valid solution for the QCA design which fulfills all the design restrictions. Figure 52
presents the resulting circuit.

Figure 52 – Resulting QCA circuit implementing the 2:1 MUX circuit.
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APPENDIX C – Example: NML design

C.1 Input netlist and design conditions

Let us consider the XOR2 netlist illustrated in Figure 53 (a) as the input of the
proposed method. Along with that, consider the design space presented in Figure 53
(b) as the current state following the Algorithm 5.3.4. Furthermore, let us consider
three two available for design.

Figure 53 – XOR2 (a) and design space available in the current algorithm iteration (b).

In this scenario, let us define the placement, routing, and synchronization cons-
traints as follows.

C.2 Placement constraints

• Single driver constraint: each driver should be placed at exactly one location.
Thus, we have

exactly(1, {i0(d)(0, 0), i0(d)(0, 1), ..., i0(d)(3, 2)}),

exactly(1, {i1(d)(0, 0), i1(d)(0, 1), ..., i1(d)(3, 2)}),

exactly(1, {g0(d)(0, 0), g0(d)(0, 1), ..., g0(d)(3, 2)}),

...

exactly(1, {g3(d)(0, 0), g3(d)(0, 1), ..., g3(d)(3, 2)}).

exactly(1, {o0(d)(0, 0), o0(d)(0, 1), ..., o0(d)(3, 2)}),
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• Overlapping constraint: each grid cell contain at most one majority or (exclusi-
vely) at most two inverters/wires. Thus, we have

g0(d)(0, 0) =⇒

exactly(1, {g0(d)(0, 0), ..., g3(d)(0, 0), o0(d)(0, 0)}) ∧

exactly(0, {i0(w)(0, 0), i1(w)(0, 0), g0(w)(0, 0), ..., g3(w)(0, 0), o0(w)(0, 0)}),

...

o0(d)(2, 2) =⇒

exactly(1, {g0(d)(2, 2), ..., g3(d)(2, 2), o0(d)(2, 2)}) ∧

exactly(0, {i0(w)(2, 2), i1(w)(2, 2), g0(w)(2, 2), ..., g3(w)(2, 2), o0(w)(2, 2)})

for the majority-based gates,

g2(d)(0, 0) =⇒ atmost(2, {i0(d)(0, 0), i1(d)(0, 0), g2(d)(0, 0), g3(d)(0, 0), i0(w)(0, 0),

i1(w)(0, 0), g0(w)(0, 0), g1(w)(0, 0)}),

...

g3(d)(2, 2) =⇒ atmost(2, {i0(d)(2, 2), i1(d)(2, 2), g2(d)(2, 2), g3(d)(2, 2), i0(w)(2, 2),

i1(w)(2, 2), g0(w)(2, 2), g1(w)(2, 2)}),

for the inverter-based gates, and

i0(d)(0, 0) =⇒ atmost(2, {i0(d)(0, 0), i1(d)(0, 0)}),

...

i1(d)(2, 2) =⇒ atmost(2, {i0(d)(2, 2), i1(d)(2, 2)}),

for the inputs.

• Bottom majority constraint: majority gates should not be placed in locations con-
taining the same phase of the cell above. Thus, we have

exactly(0, {g0(d)(0, 1), g1(d)(0, 1), o0(d)(0, 1)},

exactly(0, {g0(d)(2, 2), g1(d)(2, 2), o0(d)(2, 2)}.

• Majority near majority constraint: majority gates should not be placed alongside
other majorities. Thus, we have

g0(d)(0, 0) =⇒ exactly(0, {g1(d)(1, 0), g1(d)(0, 1), g1(d)(1, 1), o0(d)(1, 0), ..., o0(d)(1, 1)}),

...

o0(d)(2, 2) =⇒ exactly(0, {g1(d)(1, 2), g1(d)(2, 1), g1(d)(1, 1), g2(d)(1, 2), ..., g2(d)(1, 1)}).
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• Wire near majority constraint: wires should not be placed alongside a majority
gate in the tracks presented in Figure 43.

g0(d)(0, 0) =⇒ ¬(nw(0)(1, 0) ∧ nw(0)(1, 1))∧

¬(wn(0)(0, 1) ∧ wn(0)(1, 1))∧

¬(nw(0)(1, 1) ∧ wn(0)(1, 1))∧

¬(nw(1)(1, 0) ∧ nw(1)(1, 1))∧

¬(wn(1)(0, 1) ∧ wn(1)(1, 1))∧

¬(nw(1)(1, 1) ∧ wn(1)(1, 1)),

...

o0(d)(2, 2) =⇒ ¬(ne(0)(1, 2) ∧ ws(0)(2, 1))∧

¬(ne(1)(1, 2) ∧ ws(1)(2, 1)).

• Wire near wire constraint: a pair of wires should not be placed in the positions
presented in Figure 44.

¬((ne(0)(0, 0) ∧ ne(0)(0, 1)) ∧ (nw(1)(1, 0) ∧ nw(1)(1, 1))),

¬((ne(1)(0, 0) ∧ ne(1)(0, 1)) ∧ (nw(0)(1, 0) ∧ nw(0)(1, 1))),

...

for dealing with the vertical wires and

¬((ws(0)(0, 0) ∧ ws(0)(1, 0)) ∧ (wn(1)(0, 1) ∧ wn(1)(1, 1))),

¬((ws(1)(0, 0) ∧ ws(1)(1, 0)) ∧ (wn(0)(0, 1) ∧ wn(0)(1, 1))),

...

for dealing with the horizontal wires.

C.3 Synchronization constraints

• Driver synchronization constraint: for each gate or output driver, its inputs should
be submitted to the same clock cycle if the cell is on phases 1 or 2 and to the pre-
vious or the same clock cycle if the cell is on phase 0 (depending on the position
of the driver). Thus, expanding the equations for the output node considering the
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case where c = 1 (second cycle), we have

o10(d)(0, 0) =⇒ g10(0, 1) ∧ g11(0, 1),

o10(d)(1, 0) =⇒ g10(0, 0) ∧ g11(0, 0),

o10(d)(2, 0) =⇒ (g00(1, 0) ∨ g00(2, 1)) ∧ (g01(1, 0) ∨ g01(2, 1)),

...

o10(d)(2, 2) =⇒ =⇒ g10(1, 2) ∧ g11(1, 2),

such that the same is valid for all the gate nodes, as well as for all cycles (which
ranges from 0 to 1 since there are two cycles available for design as defined
previously in this example).

• Wire synchronization constraint: for each wire cell, its input should be submitted
to the same clock if the cell is submitted to phase 1 or 2 and to the previous or the
same clock cycle if the cell is submitted to phase 0 (depending on the position of
the driver). Thus, expanding the equations for c = 1 (second cycle), we have

o10(w)(0, 0) =⇒ o10(0, 1),

o10(w)(1, 0) =⇒ o10(0, 0),

o10(w)(2, 0) =⇒ o00(1, 0) ∨ o00(2, 1),

...

o10(w)(2, 2) =⇒ =⇒ o10(1, 2),

such that the same is valid for all inputs, gates, and outputs, as well as for all
cycles.

• Single-cycle constraint: each cell should operate under exactly one cycle. Thus,
we have

g0(0, 0) =⇒ exactly(1, {g00(0, 0), g10(0, 0)}),

g0(1, 0) =⇒ exactly(1, {g00(1, 0), g10(1, 0)}),

...

g0(2, 2) =⇒ exactly(1, {g00(2, 2), g10(2, 2)}),

such that the same is valid for all inputs, gates, and outputs.

• Input/output phase synchronization constraint: each input should be submitted to



134

the same phase. The same is valid for each output. Thus,

i0(d)(0, 0) =⇒ i1(d)(0, 0) ∨ i1(d)(0, 1) ∨ i1(d)(1, 2),

i0(d)(1, 0) =⇒ i1(d)(1, 0) ∨ i1(d)(2, 1) ∨ i1(d)(2, 2),

i0(d)(2, 0) =⇒ i1(d)(2, 0) ∨ i1(d)(1, 1) ∨ i1(d)(0, 2),

...

i0(d)(2, 2) =⇒ i1(d)(2, 2) ∨ i1(d)(1, 0) ∨ i1(d)(2, 1),

such that the same is applied for the other input and for the output.

• Input/output cycle synchronization constraint: each input should start operating
on the same clock cycle. The same is valid for each output. Thus, we have

i00(d)(0, 0) =⇒ i01(d)(0, 0) ∨ i01(d)(1, 0) ∨ ... ∨ i01(d)(2, 2),

...

i00(d)(2, 2) =⇒ i01(d)(0, 0) ∨ i01(d)(1, 0) ∨ ... ∨ i01(d)(2, 2),

i10(d)(0, 0) =⇒ i11(d)(0, 0) ∨ i11(d)(1, 0) ∨ ... ∨ i11(d)(2, 2),

...

i10(d)(2, 2) =⇒ i11(d)(0, 0) ∨ i11(d)(1, 0) ∨ ... ∨ i11(d)(2, 2).

C.4 Routing constraints

• No return constraint: a signal should not enter and exit a cell by the same side.
Thus, we have

¬(ws(0)(0, 0) ∧ wn(0)(0, 0)) ∧ ¬(nw(0)(0, 0) ∧ ne(0)(0, 0)) ∧

¬(ws(1)(0, 0) ∧ wn(1)(0, 0)) ∧ ¬(nw(1)(0, 0) ∧ ne(1)(0, 0)) ∧

¬(ws(0)(1, 0) ∧ wn(0)(1, 0)) ∧ ¬(nw(0)(1, 0) ∧ ne(0)(1, 0)) ∧

¬(ws(1)(1, 0) ∧ wn(1)(1, 0)) ∧ ¬(nw(1)(1, 0) ∧ ne(1)(1, 0)) ∧

...

¬(ws(0)(2, 2) ∧ wn(0)(2, 2)) ∧ ¬(nw(0)(2, 2) ∧ ne(0)(2, 2)) ∧

¬(ws(1)(2, 2) ∧ wn(1)(2, 2)) ∧ ¬(nw(1)(2, 2) ∧ ne(1)(2, 2)).

• Border constraint: ports located on the border of the routing area should not be
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connected.

¬nw(0, 0) ∧ ¬ne(0, 0) ∧ ¬ws(0, 0) ∧ ¬wn(0, 0) ∧

¬nw(1, 0) ∧ ¬ne(1, 0) ∧ ¬ws(0, 1) ∧ ¬wn(0, 1) ∧

¬nw(2, 0) ∧ ¬ne(2, 0) ∧ ¬ws(0, 2) ∧ ¬wn(0, 2) ∧

¬nw(2, 0) ∧ ¬ne(2, 0).

• Invalid corners constraint: the routing paths presented in Figure 26 are not al-
lowed. Thus, we have

¬((nw(0)(0, 1) ∨ ne(0)(0, 1)) ∧ (ws(0)(0, 0) ∨ wn(0)(0, 0))),

¬((nw(0)(2, 1) ∨ ne(0)(2, 1)) ∧ (ws(0)(2, 0) ∨ wn(0)(2, 0))),

¬((nw(0)(0, 2) ∨ ne(0)(0, 2)) ∧ (ws(0)(1, 1) ∨ wn(0)(1, 1))),

¬((nw(0)(1, 1) ∨ ne(0)(1, 1)) ∧ (ws(0)(2, 1) ∨ wn(0)(2, 1))),

¬((nw(0)(1, 2) ∨ ne(0)(1, 2)) ∧ (ws(0)(1, 2) ∨ wn(0)(1, 2))),

¬((nw(1)(0, 1) ∨ ne(1)(0, 1)) ∧ (ws(1)(0, 0) ∨ wn(1)(0, 0))),

¬((nw(1)(2, 1) ∨ ne(1)(2, 1)) ∧ (ws(1)(2, 0) ∨ wn(1)(2, 0))),

¬((nw(1)(0, 2) ∨ ne(1)(0, 2)) ∧ (ws(1)(1, 1) ∨ wn(1)(1, 1))),

¬((nw(1)(1, 1) ∨ ne(1)(1, 1)) ∧ (ws(1)(2, 1) ∨ wn(1)(2, 1))),

¬((nw(1)(1, 2) ∨ ne(1)(1, 2)) ∧ (ws(1)(1, 2) ∨ wn(1)(1, 2))).

• Majority access constraint: in a cell containing a majority gate, two neighbor
ports should not be connected if they are located in the corners of this BANCS
cell. Thus, we have

g0(d)(0, 0) =⇒ ¬(wn(0, 0) ∧ nw(0, 0)) ∧ ¬(ne(0, 0) ∧ wn(1, 0)) ∧

¬(ws(0, 0) ∧ nw(0, 1)) ∧ ¬(ws(1, 0) ∧ ne(0, 1)),

g0(d)(1, 0) =⇒ ¬(wn(1, 0) ∧ nw(1, 0)) ∧ ¬(ne(1, 0) ∧ wn(2, 0)) ∧

¬(ws(1, 0) ∧ nw(1, 1)) ∧ ¬(ws(2, 0) ∧ ne(1, 1)),

...

g1(d)(2, 2) =⇒ ¬(wn(2, 2) ∧ nw(2, 2)),

such that the same is applied for the output node.

• Gate driver adjacency constraint: each gate should be followed by the cells con-
nected to its output or by its wires and should be preceded by the cells connected
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to its inputs.

g0(d)(0, 0) =⇒ exactly(1, {i0(0, 1)}) ∧ exactly(1, {g3(0, 1)}),

g0(d)(1, 0) =⇒ exactly(1, {i0(0, 0)}) ∧ exactly(1, {g3(0, 1)}),

g0(d)(2, 0) =⇒ exactly(1, {i0(1, 0), i0(2, 1)}) ∧ exactly(1, {g3(1, 0), g3(2, 1)}),

...

g0(d)(2, 2) =⇒ exactly(1, {i0(2, 1)}) ∧ exactly(1, {g3(2, 1)}),

such that the same is applied for the other gates and output node, and

g0(d)(0, 0) =⇒ exactly(1, {o0(1, 0)}),

g0(d)(1, 0) =⇒ exactly(1, {o0(2, 0), o0(1, 1)}),

g0(d)(0, 1) =⇒ exactly(1, {o0(0, 0)}),

...

g0(d)(2, 2) =⇒ exactly(1, {o0(2, 1)}),

such that the same is also applied for the other gates and output node.

• Input driver adjacency constraint: each input driver connected to one gate should
be followed by one of its own wires or by the gate. Furthermore, if the input is
connected to more than one gate, then it should be followed by one of its own
wires or by at least one of the gates connected to its output. Thus, we have

i0(d)(0, 0) =⇒ i0(w)(1, 0) ∨ g0(d)(1, 0) ∨ g2(d)(1, 0),

i0(d)(1, 0) =⇒ i0(w)(1, 1) ∨ i0(w)(2, 0) ∨ g0(d)(1, 1)

∨g0(d)(2, 0) ∨ g2(d)(1, 1) ∨ g2(d)(2, 0),

...

i1(d)(2, 2) =⇒ i1(w)(2, 1) ∨ g1(d)(2, 1) ∨ g3(d)(2, 1).

• Wire adjacency constraint: each wire should be followed by the cells connected
to its output or by other wire of the same signal and should be preceded by a wire
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or by a driver of the same signal. Thus,

i0(w)(0, 0) =⇒ exactly(1, {i0(w)(1, 0), g0(d)(1, 0), g2(d)(1, 0)}),

i0(w)(1, 0) =⇒ exactly(1, {i0(w)(1, 1), i0(w)(2, 0), g0(d)(1, 1),

g0(d)(2, 0), g2(d)(1, 1), g2(d)(2, 0)}),

...

i1(w)(2, 2) =⇒ exactly(1, {i1(w)(2, 1), g0(d)(3, 2), g2(d)(2, 1)})

and

i0(w)(0, 0) =⇒ atleast(1, {i0(w)(0, 1), i0(d)(0, 1)}),

i0(w)(1, 0) =⇒ atleast(1, {i0(w)(0, 0), i0(d)(0, 0)}),

...

i1(w)(2, 2) =⇒ atleast(1, {i1(w)(1, 2), i1(d)(1, 2)}).

• Long wire constraint: wires should not be composed of more than five magnets
on the same phase. Thus, we have

i0(w)(0, 0) ∧ i0(w)(0, 1) =⇒ ¬((nw(0)(0, 0) ∨ ne(0)(0, 0)) ∧ (nw(0)(0, 2) ∨ ne(0)(0, 2))) ∧

¬((nw(1)(0, 0) ∨ ne(1)(0, 0)) ∧ (nw(1)(0, 2) ∨ ne(1)(0, 2))),

i0(w)(0, 0) ∧ i0(w)(0, 1) =⇒ ¬((wn(0)(0, 0) ∨ wn(0)(1, 0)) ∧ (nw(0)(0, 2) ∨ ne(0)(0, 2))) ∧

¬((wn(1)(0, 0) ∨ wn(1)(1, 0)) ∧ (nw(1)(0, 2) ∨ ne(1)(0, 2))),

i0(w)(0, 0) ∧ i0(w)(0, 1) =⇒ ¬((nw(0)(0, 0) ∨ ne(0)(0, 0)) ∧ (ws(0)(0, 1) ∨ ws(0)(1, 1))) ∧

¬((nw(1)(0, 0) ∨ ne(1)(0, 0)) ∧ (ws(1)(0, 1) ∨ ws(1)(1, 1))),

i0(w)(2, 1) ∧ i0(w)(2, 2) =⇒ ¬((nw(0)(2, 1) ∨ ne(0)(2, 1)) ∧ (ws(0)(2, 2) ∨ ws(0)(2, 2))) ∧

¬((nw(1)(2, 1) ∨ ne(1)(2, 1)) ∧ (ws(1)(2, 2) ∨ ws(1)(2, 2))).

C.5 Satisfiable solution

Following the Algorithm 5.3.4, the conjunction of all formulas is computed through
an SAT solver. In this case, the instance shown in this chapter is satisfiable, i.e., there
is a valid solution for the NML design which fulfills all the design restrictions. Figure 54
presents the resulting circuit.
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Figure 54 – Resulting NML circuit implementing the XOR2 circuit.
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