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RESUMO

POVALA, Guilherme. Método para diagndstico e identificacao de pacientes em
risco de desenvolver Alzheimer utilizando técnicas de Inteligéncia Artificial.
2018. 97 f. Dissertacao (Mestrado em Computagédo) — Programa de Pés-Graduacao
em Computagéo, Centro de Desenvolvimento Tecnoldgico, Universidade Federal de
Pelotas, Pelotas, 2018.

Ao longo dos anos, 0os avangcos em pesquisas relacionadas a saude permitiram
descobrir curas e tratamentos para inimeras doencas. No entanto, ainda existem va-
rias doencas para as quais a cura € desconhecida e os tratamentos existentes séo
ineficazes. Dentre elas, esta a Doenca de Alzheimer (DA), que € uma doenca neuro-
degenerativa crbénica e atinge principalmente pessoas com mais de 65 anos de idade.
A DA nao tem cura e o diagndstico precoce é essencial para novas estratégias tera-
péuticas. Com isso, a busca por tratamentos que possam retardar a progressao da
patologia se tornam essenciais, principalmente se a doenca for descoberta precoce-
mente. Desta forma, faz-se necessario identificar pacientes que estdo em risco de
desenvolver a doencga, de preferéncia de uma forma nao invasiva, com um baixo custo
para implementagédo e aplicacdo e acessivel para grande parte da populagédo. Por-
tanto, este trabalho se propde a estudar a DA, suas caracteristicas e a base de dados
da Alzheimer’s Disease Neuroimaging Initiative (ADNI), que contém biomarcadores
clinicos, de imagem, genéticos e de bioespécime, obtendo assim o conhecimento ne-
cessario para desenvolver um método para classificacdo de pacientes que tendem a
progredir de um estagio pré-clinico ou de pré-deméncia para DA, a fim de identificar
individuos em risco de desenvolver a doenca. Desta forma, é proposto o Two-Step
Classifier (TSC), um método de classificacao de pacientes em risco. O TSC foi mode-
lado na ferramenta RapidMiner Studio e € arquitetado em duas etapas. O first-step é
responsavel pela classificagéo de pacientes em risco, enquanto o second-step realiza
a predicédo do estado cognitivo dos pacientes. O TSC atinge uma precisédo de 89,3%
na identificacao de pacientes em risco de desenvolver Alzheimer.

Palavras-Chave: doenca de alzheimer; diagnéstico; inteligéncia artificial; alzheimer
pré-clinico



ABSTRACT

POVALA, Guilherme. Method for diagnosis and identification of patients at risk
of developing Alzheimer’s disease using Artificial Intelligence techniques. 2018.
97 f. Dissertacdo (Mestrado em Computagdo) — Programa de Po6s-Graduagdo em
Computagédo, Centro de Desenvolvimento Tecnoldgico, Universidade Federal de
Pelotas, Pelotas, 2018.

Over the years, advances in health research have led to discovering cures and treat-
ments for numerous diseases. However, there are still several diseases in which the
cure is unknown and the existing treatments are ineffective. Among them is Alzheimer’s
Disease (AD), which is a chronic neurodegenerative disease and affects mainly peo-
ple over 65 years old. The AD has no cure and early diagnosis is essential for new
therapeutic strategies. Thus, the search for treatments that may delay the progres-
sion of the disease becomes essential, especially if the disease is discovered early.
This way, it is necessary to identify patients who are at risk of developing the disease,
preferably in a non-invasive manner, with a low cost for implementation and application
and accessible to a large part of the population. Therefore, this work aims to study
Alzheimer’s disease, its characteristics and the database of the Alzheimer’s Disease
Neuroimaging Initiative (ADNI), which contains clinical, imaging, genetic and biospec-
imen biomarkers, thus obtaining the necessary knowledge to develop a method for
classifying patients who tend to progress from a preclinical stage or from pre-dementia
to AD, in order to identify individuals at risk of developing the disease. In this way, the
Two-Step Classifier (TSC), a method of classifying patients at risk, is proposed. The
TSC was modeled in the RapidMiner Studio tool and is architected in two steps. The
first-step is responsible for the classification of patients at risk, while the second-step
performs the prediction of patients’ cognitive status. TSC reaches a precision of 89.3%
in identifying patients at risk of developing Alzheimer.

Key-words: alzheimer disease; diagnosis; artificial intelligence; preclinical alzheimer
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1 INTRODUCAO

Nas ultimas décadas, as pesquisas médicas, as descobertas cientificas e as me-
lhorias na educacao e nas condi¢des de vida no cenario mundial causaram uma redu-
cao significativa nas chances de desenvolvimento de pandemias causadas por agen-
tes patogénicos infecciosos (G7, 2017). Desta forma, o crescimento populacional nas
ultimas décadas veio também acompanhado de um aumento progressivo do numero
de idosos. Em paises desenvolvidos, a expectativa de vida ja atinge valores acima
dos 80 anos. No Japao, por exemplo, a expectativa de vida era de 83,7 anos em 2015
(WHO, 2015).

Hoje, as principais causas de morte de pessoas idosas nos Estados Unidos e na
Europa ainda sao as doencas cardiovasculares e o cancer (CDC, 2017; EUROSTAT,
2017). No entanto, as causas de morte por essas doencas tem decrescido anual-
mente (ASSOCIATION, 2017). O avango na diminuigdo da mortalidade relacionada
com estas duas doencas contribuiu ainda mais para o crescimento no numero de ci-
dadaos idosos, 0 que provocou um aumento sem precedentes no nimero de pessoas
afetadas por doencas neurodegenerativas (GOOCH; PRACHT; BORENSTEIN, 2017).

Doencas neurodegenerativas sao classificadas como uma série de condi¢des que
afetam principalmente os neurénios, encontrados no sistema nervoso central e perifé-
rico. Além disso, essas doencgas sdo condi¢des incuraveis e debilitantes que resultam
em degeneragéo progressiva, o que reflete em disfungdo motora ou cognitiva progres-
siva (JPND, 2017).

Dentre elas, temos a Doenga de Alzheimer (DA), que se apresenta fortemente re-
lacionada com a idade avangada de seus portadores e esta entre as dez principais
doencas sem cura conhecida que resultam em morte (WHO, 2017). Além disso, a DA
€ uma doencga neurodegenerativa crénica que geralmente tem um inicio lento e pro-
gride com o passar do tempo (BURNS; ILIFFE, 2009; WHO, 2015). Ela se caracteriza
pela deposicao de placas de beta-amiloide (AP, do inglés Amyloid-beta) e emaranha-
dos neurofibrilares (NFT, do inglés Neurofibrillary Tangles) compostos de proteina tau
hiperfosforilada no cérebro, acompanhados por disfungdo sinaptica e neurodegenera-
cao — morte neural progressiva no cérebro — em regioes cerebrais relacionadas com



15

aprendizado e memoéria, como o cértex e o hipocampo (BURNS; ILIFFE, 2009; WHO,
2015; SEVIGNY et al., 2016). Com o avango gradual da doenga, aparecem sintomas
como confusdo mental, desorientacao, irritabilidade, agressividade, alteragdes de hu-
mor, falhas na linguagem e perda de memodria, até o aparecimento das manifestagdes
de deméncia (BURNS; ILIFFE, 2009; WHO, 2015).

A deméncia € uma maneira de descrever um conjunto de sintomas como deterio-
racdo da memodria e incapacidade de absorver novas informacdes e faz com que seja
muito dificil viver de uma forma independente (WHO, 2015). Normalmente causada
por algum tipo de disfuncao cerebral, ela pode se originar de uma série de doengas. A
DA é a forma mais comum de deméncia, correspondendo a cerca de 60% a 70% dos
casos (BURNS; ILIFFE, 2009; WHO, 2015). S6 no ano de 2010, a deméncia resultou
em cerca de 486 mil mortes (LOZANO et al., 2012).

Apesar de ser dificil identificar o inicio da DA, existem sintomas comuns que po-
dem ajudar no diagnéstico. O sintoma inicial mais frequente é a dificuldade em re-
cordar acontecimentos recentes (perda de memaria de curto prazo) (BURNS; ILIFFE,
2009). Néo raro, os primeiros sintomas da doenga sdo confundidos com 0s processos
normais de envelhecimento ou estresse (WALDEMAR et al., 2007), como (REPORTS,
2012):

e esqguecer-se ocasionalmente das coisas;
e perder ocasionalmente objetos;
e pequenas perdas de memoria a curto prazo;

e esquecer-se que ocorreram lapsos de memodria.

Em 2015, havia cerca de 46 milhdes de pessoas em todo o mundo com Alzhei-
mer (WHO, 2015), com previsao de que 1 em cada 85 habitantes seja afetado com a
doenca no ano de 2050 (BROOKMEYER et al., 2007). Geralmente, a DA comeca se
manifestar em pessoas com mais de 65 anos de idade, apesar de 4% a 5% dos casos
serem de inicio precoce (MENDEZ, 2012). A doenca afeta 1% dos idosos entre os
65 e 70 anos, mas a prevaléncia aumenta exponencialmente com a idade, sendo de
6% aos 70, 30% aos 80 anos e mais de 60% apo6s os 90 anos (BERMEJO-PAREJA
et al., 2008). Como podemos visualizar no gréafico da Figura 1, a proje¢cdo do numero
de idosos com 65 anos ou mais, nos Estados Unidos, que desenvolverdo Alzheimer e
chegarao ao estagio de deméncia tende a crescer de forma acelerada nos proximos
trinta anos.

N&o obstante, como pode ser visto na Figura 2, a DA é a doenca que teve o maior
aumento em causas de morte entre os anos de 2000 e 2014 nos Estados Unidos.
Inclusive, outras doengas, como cancer de mama e de préstata, doencas do cora-
cao, acidente vascular encefalico e HIV tiveram uma diminuicdo no numero de mortes
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Figura 1: Namero projetado de pessoas com 65 anos ou mais (total e por faixa etéaria)
na populacao dos EUA com deméncia de Alzheimer (ASSOCIATION, 2017)

Percentage

90
80
70
60
50
40
30
20

10

0

-10

-20

-30

-40

-50

-60
[ I T I I

Cause Breast Prostate Heart Stroke HIvV Alzheimer’s
of Death cancer cancer disease disease

Figura 2: Causas de morte por doenca entre os anos de 2000 e 2014 (ASSOCIATION,
2017)

nesse periodo, devido ao avango e sucesso de estratégias de diagndstico precoce e
tratamento.

Embora a velocidade de progressdo da doencga possa variar, a esperanca média
de vida apds o diagnostico € de trés a nove anos (QUERFURTH; LAFERLA, 2010;
TODD et al., 2013). Mesmo que a DA reduza a expectativa de vida do paciente, é
outra comorbidade ou doenca que pode realmente levar o paciente a 6bito. Esta outra
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condi¢ao ou doenga provavelmente listada como a causa no certificado de morte da
pessoa €, comumente, a pneumonia, sendo ela a responsavel por até dois tercos das
causas de morte das pessoas com deméncia (SOCIETY, 2012).

Apesar do grande esforco e pesquisas sobre a doenca, ndo existe um tratamento
efetivo para a DA. Todavia, acredita-se amplamente que a patogénese causadora da
DA seja a disfuncao do metabolismo da proteina precursora de amiloide (APP, do
inglés Amyloid Precursor Protein), que leva a hiperproducao e deposicao do peptideo
AP no cérebro em forma de placas de A (MURPHY; LEVINE, 2010).

Em um artigo publicado recentemente por SEVIGNY et al. (2016), foi relatado que a
imunoterapia com um anticorpo monoclonal, denominado aducanumab, remove agre-
gados de AP seletivamente. Dependendo da dose utilizada, com um ano de trata-
mento as placas de A foram drasticamente reduzidas. A Figura 3 mostra a redugéo
de placas AP — medidas por exame de imagem por tomografia por emissao de posi-
trons (PET, do inglés Positron Emission Tomography) — ap6s um ano de tratamento
com aducanumab em diferentes doses.

Baseline One year

\ Placebo
- | ]
Aa.'
. 3 mg kg™
6 mg kg™!

-

Figura 3: Reducao de placas de A com a aplicagao do anticorpo: exemplos de ima-
gens no inicio e ap6s um ano (SEVIGNY et al., 2016)

Como pode ser visto na Figura 3, apés um ano de tratamento, houve uma dimi-
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nuicdo significativa nos grupos em que foram aplicadas doses de 3, 6 e 10 mg kg~ !,
enquanto que a alteragao para o grupo placebo foi minima (SEVIGNY et al., 2016).

Além do mais, essa reducéao de placas de Ap foi acompanhada pela diminuicdo do
declinio clinico do paciente. Com estes resultados, o desenvolvimento de imunotera-
pias para o tratamento da DA fica cada vez mais justificado (SEVIGNY et al., 2016).

Dessa maneira, mesmo sabendo que ainda ndo ha cura para a doencga, estamos
cada vez mais perto de um tratamento que diminua ou até possa impedir o declinio
cognitivo do paciente. Portanto, busca-se, principalmente, retardar a progressao da
doencga, melhorar os sintomas, resolver os problemas comportamentais e melhorar a
qualidade de vida. Assim, se a doenca for diagnosticada em uma fase precoce, exis-
tem tratamentos que podem desacelerar temporariamente o desenvolvimento de sin-
tomas de deméncia (WHO, 2015) ou até mesmo levar a cura, caso o trabalho de SE-
VIGNY et al. (2016) se confirme em pacientes portadores de Alzheimer.

Porém, para diagnosticar e definir em que estagio da DA se encontra determinado
individuo, geralmente é necessaria uma avaliagdo clinica composta por varios tipos
de testes, como exames de imagem e exames clinicos, uma vez que ainda ndo existe
um exame Unico que permita identificar a doenca em qualquer paciente. Dentre os
exames realizados, os principais sao os testes neuropsicologicos, testes de imagem
cerebral, como ressonancia magnética (MRI, do inglés Magnetic Resonance Imaging)
e PET, testes genéticos, testes de fluido espinal e outros.

Neste cenario, o custo econémico para o tratamento dos pacientes portadores da
DA ¢é altissimo (BONIN-GUILLAUME et al., 2005; MEEK; MCKEITHAN; SCHUMOCK,
1998). Considerando apenas os testes de imagem nos EUA, o custo de um exame
de MRI fica entre US$1500 e US$3000. Ja o exame de PET custa entre US$3000 e
US$6000 (SCOTT, 2016). Portanto, realizar todos os exames que normalmente sdo
requisitados pelos médicos para o diagnostico da DA torna-se caro — ndo escalando
para numero elevado de pessoas — e, ainda assim, ndo detecta a doenca antes dela
comecar a causar danos cognitivos.

1.1 Objetivos

Levando em consideracdo a importancia da saude mental das pessoas e que 0
diagnostico precoce da DA é de extrema importancia para que haja tempo suficiente
para que agcdes sejam tomadas para retardar, atenuar, ou até mesmo evitar o avango
da doenca, este trabalho tem como obijetivo principal propor um método de diagnostico
da DA que permita classificar pacientes em estado de risco, ou seja, que ja possuem
a DA ou estdo em fase inicial de perda cognitiva.

Além disso, considerando os altos custos envolvidos nos exames médicos, foi defi-
nido um sub-conjunto de exames a serem utilizados que apresentam a melhor relagao
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entre precisao do diagnéstico da doenca e acessibilidade para grande parte da popu-
lacao.
Desta forma, temos como objetivos especificos do trabalho:

e Estudar a doenca de Alzheimer: patofisiologia, neuropatologia, biomarcadores,
sintomas e estagios da doenca e fatores de risco;

e Estudar a iniciativa ADNI e sua base de dados, possibilitando o entendimento
dos biomarcadores ali presentes;

e Estudar técnicas de Inteligéncia Artificial que possam ser aplicadas para a solu-
¢céo do problema;

e Avaliar os exames que mais contribuem para uma melhor precisdo de classifica-
¢ao e que sejam acessiveis a grande parte da populagéo;

e Propor um método de diagnéstico da DA que permita classificar pacientes em
estado de risco.

1.2 Organizacao do Trabalho

Este trabalho esta dividido em seis capitulos. No capitulo 2 € apresentada a do-
enca de alzheimer, suas principais caracteristicas, a iniciativa ADNI e trabalhos cor-
relatos. No capitulo 3 sédo discutidas as diferentes técnicas de Inteligéncia Artificial e
métrias de avaliagdo utilizadas neste trabalho. No capitulo 4, a metodologia e o tra-
balho proposto s&o apresentados. No capitulo 5, séo discutidos os resultados obtidos
pelo trabalho. Por fim, o capitulo 6, conclui o trabalho e apresenta possibilidades de
trabalhos futuros.



2 A DOENCA DE ALZHEIMER

Os antigos filosofos e médicos gregos e romanos associavam a velhice com o
aumento da deméncia (BERCHTOLD; COTMAN, 1998). Porém, em 1906/1907 o
psiquiatra aleméao Alois Alzheimer identificou o primeiro caso da patologia que ficou
conhecida, posteriormente, como Doenca de Alzheimer. Nesse caso, uma mulher
de cinquenta anos de idade, chamada Auguste Deter, exibia declinio cognitivo pro-
gressivo, alucinacdes e incompeténcia psicossocial (STRASSNIG; GANGULI, 2005;
ALZHEIMER, 1987; MAURER; MAURER, 2003). Ao realizar a autépsia do cérebro
de Auguste Deter, foram encontradas deposi¢des de algumas substancias peculiares
espalhadas pelo cortex cerebral (JUCKER, 2006).

Apds a morte de Auguste, em 1906, onze casos semelhantes foram relatados na
literatura médica nos cinco anos seguintes, sendo que alguns deles ja usavam o termo
DA (BERCHTOLD; COTMAN, 1998). Até o ano de 1977, a DA era caracterizada como
uma doenca pré-senil e seu diagndstico era reservado para individuos com idades en-
tre 0s 45 e 0s 65 anos que desenvolveram sintomas de deméncia. Nesse ano, em uma
conferéncia sobre a DA, que concluiu-se que as manifestagdes clinicas e patologicas
de deméncia pré-senil e senil eram quase idénticas, sem excluir, no entanto, a pos-
sibilidade de que elas tenham causas diferentes (KATZMAN; TERRY; BICK, 1978).
Sendo assim, a idade deixou de ser um fator determinante para o diagnéstico da
doenga (BOLLER; FORBES, 1998). Desta forma, o termo Alzheimer comegou a ser
usado, eventualmente, para descrever individuos com qualquer idade que apresentem
caracteristicas padrées comuns da doenga (AMADUCCI; ROCCA; SCHOENBERG,
1986).

Como mencionado anteriormente, ao ser feita a autépsia do cérebro de Auguste
Deter, algumas substancias foram encontradas no cértex cerebral. Hoje, sabe-se que
essas substancias sdo as principais caracteristicas neuropatologicas que indicam a
DA: a deposicao de placas de Ap e a formagao de emaranhados neurofibrilares (NIS-
BET et al., 2015; THAL et al., 2015). Essas caracteristicas serdo detalhadas na proé-
xima sec¢ao.
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2.1 Patofisiologia

A DA afeta os trés processos que mantém as células cerebrais saudaveis: a co-
municacao, o metabolismo e a reparacdo. Consequentemente, certas células neurais
param de funcionar, perdem suas conexdes com células adjacentes e finalmente mor-
rem. A destruicdo e morte dessas células pode provocar a sintomatologia classica
da DA: falha de meméria, mudancas de personalidade, problemas na realizacdo de
atividades diarias e outras caracteristicas da doenga (LAKHAN, 2016).

Embora os mecanismos que causam a DA nao sejam completamente compreen-
didos, exceto para os casos em que diferencas genéticas sao identificadas (ASSOCI-
ATION, 2010a; REITZ; MAYEUX, 2014), ha duas fortes hip6teses que séo frequente-
mente citadas: (i) a deposicdo de placas de Ap (HARDY; HIGGINS, 1992; HARDY;
SELKOE, 2002; THAL et al., 2015) e o (ii) acumulo de emaranhados neurofibrila-
res (NISBET et al., 2015).

2.1.1 A deposicao de placas de Aj3

A DA é uma doenca caracterizada por anomalias no enovelamento de proteinas’,
causada pelo acumulo de proteinas A e tau no cérebro (HASHIMOTO et al., 2003). A
hipétese de amiloide postula que a deposicao de placas de proteinas de Ap é a prin-
cipal causa da disfuncao sinaptica e subsequente neurodegeneracao que esta subja-
cente a progressao caracteristica da DA (HARDY; HIGGINS, 1992; HARDY; SELKOE,
2002).

As placas sao depdsitos densos, principalmente insolUveis, de material proteico
e celular que se encontram fora e ao redor dos neurénios. As placas sao feitas de
AR, um fragmento de proteina cortado a partir de uma proteina maior chamada APP.
Estes fragmentos agrupam-se e sdo misturados com outras moléculas, neurénios e
células ndo neuronais (LAKHAN, 2016). A Figura 4 mostra a localizacdo da APP na
membrana celular.

Como visto na Figura 4, temos a membrana celular de um neurénio no cérebro.
Na membrana, esta localizada a APP, uma proteina transmembrana encrustada na
membrana celular. Uma das extremidades da APP esta dentro da célula, e a outra
extremidade esta fora da célula. A APP auxilia o neurbnio a crescer e a reparar-se
apds uma lesdo. Uma vez que a APP é uma proteina, ela sofre protedlise? (OSMOSIS,
2016).

Normalmente, neste processo de clivagem proteolitica, duas enzimas - «-
secretase e y-secretase - que funcionam como uma tesoura molecular fazem com

DILL, K. A.; OZKAN, S. B.; SHELL, M. S.; WEIKL, T. R. The Protein Folding Problem. Annual
Review of Biophysics, [S.l.], v.37, n.1, p.289-316, June 2008

2WIKIPEDIA.  Protedlise, 2014. Page \Version ID: 40134280. Disponivel em:
<https://pt.wikipedia.org/w/index.php?0ldid=40134280>. Acesso em: 2016-11-21
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Figura 4: Proteina amil6ide precursora (OSMOSIS, 2016)

que a APP seja dividida em fragmentos menores (HOOPER, 2005), que séo soluveis
e absorvidos. Esse processo pode ser visto na Figura 5.
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Figura 5: Processo de protedlise através das enzimas «-secretase e y-secretase (OS-
MOSIS, 2016)

Porém, se outra enzima, a (3-secretase, se aliar com a y-secretase, como visto na
Figura 6, é criado o monémero chamado Ap. Esses monémeros tendem a ser mais
quimicamente "pegajosos", e entdo, formam aglomerados insoluveis que se depositam
no meio extracelular em formagdes densas conhecidas como placas de A (OHNISHI;
TAKANO, 2004; TIRABOSCHI et al., 2004; OSMOSIS, 2016).

Na DA, as placas se desenvolvem em areas corticais e subcorticais do cortex ce-
rebral que sdo usadas para codificar memoarias, pensar e tomar decisées (LAKHAN,
2016). Estas placas, acabam interferindo nas sinapses que ocorrem entre os neur6-
nios. Portanto, se as células cerebrais ndo puderem realizar sinapses e retransmitir
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Figura 6: Processo de protedlise através das enzimas 3-secretase e y-secretase (OS-
MOSIS, 2016)

informacgdes, as fungdes cerebrais como a memdéria podem ser gravemente prejudica-
das (OSMOSIS, 2016). A Figura 7(a) mostra um exemplo das placas de Ap interfe-
rindo nas sinapses.
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Figura 7: Placas de Ap no cérebro (OSMOSIS, 2016)

Além do mais, essas placas podem iniciar uma resposta imune e causar inflama-
cao que pode danificar os neurdnios que se encontram ao redor. As placas de A
também podem se depositar em torno de vasos sanguineos no cérebro, causando a
chamada angiopatia amiloide, que enfraquece as paredes dos vasos sanguineos e
aumenta o risco de hemorragia ou ruptura e perda de sangue, como pode ser visto na
Figura 7(b) (OSMOSIS, 2016).

2.1.2 O acumulo de emaranhados neurofibrilares e a proteina tau

Como resultado direto da deposicdo de placas de AP, postula-se que é gerado
o acumulo de NFTs, seguido de morte celular, dano vascular e deméncia (HARDY;
HIGGINS, 1992; HARDY; SELKOE, 2002).

Os NFTs, que séo responsaveis por outra importante parte da DA, ao contrario das
placas de A{3, se encontram dentro da célula. Assim como outras células, os neuré-
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nios sdo mantidos unidos por uma estrutura de suporte interna que é parcialmente
feita de microtubulos. Estes microtubulos agem como trilhas, guiando nutrientes e
moléculas do corpo da célula até as extremidades do axénio e de volta. Um tipo es-
pecial de proteina chamada tau que garante que essas trilhas ndo se separem. Essa
proteina, ao ligar-se ao microtubulos, estabiliza-os, funcionando como um lago ferro-
viario (LAKHAN, 2016). A Figura 8 mostra os microtubulos estabilizados pela proteina
tau dentro do neurénio.

Stabilizing

v ~ Microtubules

Figura 8: Microtubulos estabilizados pela proteina tau (ADEAR, 2008)

Embora nao completamente compreendido, supde-se que as placas de A levam a
ativacao de quinases, enzimas que transferem grupos fosfato para a proteina tau (OS-
MOSIS, 2016), como pode ser visto na Figura 9(a). Com isso, a proteina tau € qui-
micamente alterada, mudando de forma e parando de dar suporte aos microtubulos,
como na Figura 9(b). Quando isso acontece, os microtibulos se desintegram, desmo-
ronando o sistema de transporte do neurénio (IQBAL et al., 2005). Assim, as proteinas
tau hiperfosforiladas passam a se aglomerar dentro do corpo das células nervosas, fi-
cando enredadas, levando ao outro achado caracteristico da DA, os NFTs (GOEDERT;
SPILLANTINI; CROWTHER, 1991), como pode ser visto na Figura 10. A formacao
destes NFTs resultam inicialmente em problemas na comunicagao entre neurdnios,
que mais tarde, acabam sofrendo morte celular (CHUN; JOHNSON, 2007; LAKHAN,
2016).

2.2 Neuropatologia

A perda de neurbnios e sinapses geradas pela DA leva a diferengas claramente
visiveis no tecido cerebral. Os NFTs sao, no inicio, mais densamente distribuidos na
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Figura 9: Ativacao de quinases e a alteracao da proteina tau (OSMOSIS, 2016)
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Figura 10: Diagrama de como os microtubulos se desintegram com a doenca de
Alzheimer (ADEAR, 2008)

face medial e no polo do lobo temporal. Eles afetam o cértex entorrinal e o hipocampo
de uma forma mais severa. A medida que a DA progride, os NFTs acumulam-se em
outras regides corticais, atingindo areas de associagao de alta ordem e com menor
frequéncia, regides motoras e sensoriais primarias (LAKHAN, 2016).

Assim como os NFTs, as placas de A também se acumulam primariamente nas
areas de associagao do cérebro. Embora as placas de A3 e os NFTs sejam caracte-
risticas da DA, eles ndo sdo patognoménicos. Os NFTs sdo encontrados em varios
outros disturbios neurodegenerativos. Ja as placas de A3 podem ocorrer no processo
normal de envelhecimento (LAKHAN, 2016).

Portanto, a mera presencga dessas caracteristicas nao € suficiente para apoiar o
diagnéstico de DA. As placas de AR e os NFTs devem estar presentes em numero
suficiente e em uma distribuicdo topografica caracteristica para preencher os critérios
histopatoldgicos atuais para a DA. Porém, ha consenso de que a presenga de numeros
ainda baixos de NFTs no neocértex cerebral com placas de A concomitantes é uma
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caracteristica da DA (LAKHAN, 2016).

A medida que os neurdnios morrem, grandes mudangas comegam a ocorrer no
cérebro. O cérebro atrofia, e os giros - saliéncias do cortex cerebral - se tornam mais
estreitos. A medida que estes ficam mais estreitos, os sulcos se tornam mais largos.
Com a atrofia, os ventriculos - cavidades cheias de liquido no cérebro - ficam maiores.
Essas mudancas s&o exemplificadas na Figura 11.
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Figura 11: Mudancas que ocorrem no cérebro com o avanc¢o da doenca de Alzhei-
mer (OSMOSIS, 2016)

Porém, alteragdes microscopicas no cérebro comegcam muito antes dos primeiros
sinais de perda de memoria, sendo que a presenca de lesdes médio-temporais co-
mecam a aparecer cerca de 5 a 6 anos antes do diagnéstico clinico de Alzheimer.
Além disso, estudos mostram que a atrofia nos lobos frontais sé ocorre mais perto do
momento em que o diagnéstico da doenca é feito (ARVESEN, 2015 apud BERNARD
et al., 2014).

Para analisar essas mudancgas no cérebro de uma forma nao invasiva, € utilizada
a MRI. No entanto, para mostrar claramente os locais e forma em que as placas de
A estdo depositadas, € necessario utilizar a técnica chamada PET com um radiofar-
maco marcado com carbono-11 que tem afinidade pelas placas de AB, o Pittsburgh
Compound B (PiB). Esta técnica, mais invasiva, requer que um agente de contraste
radioativo seja absorvido pelo cérebro do paciente. Além disso, essa é uma técnica
mais recente, cara e néo tao disponivel como a MRI (ARVESEN, 2015 apud BER-
NARD et al., 2014).
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2.3 Biomarcadores

Pesquisadores esperam descobrir uma maneira facil e precisa de detectar a DA
antes que esses sintomas comecem. Para tanto, acredita-se que biomarcadores -
marcadores biologicos - oferecem um dos caminhos mais promissores. Um biomar-
cador € uma substancia, medida ou indicador de um estado biolégico. Os biomarca-
dores podem existir antes da ocorréncia dos sintomas clinicos. Um exemplo de um
biomarcador é o nivel de glicose no sangue em jejum, que indica a presenga ou nao
de diabetes, dependendo do valor encontrado para esse marcador (ASSOCIATION,
2010b).

Na DA, para indicar os estagios iniciais, varios biomarcadores estdo sendo estuda-
dos, como niveis de A e tau no fluido cefalorraquidiano (CSF, do inglés Cerebrospinal
Fluid) e alteracdes cerebrais detectaveis por imagem (ASSOCIATION, 2010b).

Conforme a DA vai progredindo com o tempo, se hipotetiza que as magnitudes de
alguns biomarcadores atingem niveis anormais em uma ordem previsivel (ARVESEN,
2015). A Figura 12 mostra cinco biomarcadores como indicadores de deméncia. As
curvas indicam mudancgas causadas por esses biomarcadores.
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Figura 12: Biomarcadores de Alzheimer ao longo da doenca (ADNI, 2016a)

Na Figura 12, sdo mostrados os seguintes biomarcadores:
1. Imagem de placas de AB detectadas por CSF e PET;

2. Neurodegeneracao detectada pelo aumento do CSF tau e disfuncao sinaptica,
medida através de PET tendo como marcador radiofarmaco fludesoxiglicose
(FDG);
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3. Atrofia do cérebro medida com ressonancia magnética;
4. Perda de memoria medida por avaliacao cognitiva;

5. Declinio cognitivo geral medido pela avaliagao cognitiva.

As alteracdes de 1 a 3 estéo indicadas por biomarcadores que podem ser observa-
dos antes do diagnéstico de deméncia. Ja os itens 4 e 5 sdo os indicadores classicos
do diagnostico de deméncia (ADNI, 2016a).

Além disso, como pode ser visto na Figura 12, conforme a doenga vai avanc¢ando,
a magnitude dos marcadores é alterada. Com isso, é importante identificar quais mar-
cadores em potencial podem auxiliar no diagnéstico da DA anos antes dela comecar
apresentar seus sintomas caracteristicos.

2.4 Sintomas e estagios da doenca de Alzheimer

Os sintomas da DA pioram conforme as placas de A e os NFTs vao se acu-
mulando, e os danos neuronais aumentam. No inicio, os sintomas podem nao ser
detectaveis, mas a medida que a doenca progride, ha a perda da meméria de curto
prazo, a perda de habilidades motoras, a linguagem e comunicacado sao prejudica-
das. Eventualmente, a memdria de longo prazo é perdida e progressivamente, ha a
desorientacdo. Por fim, os pacientes ficam acamados, e acabam morrendo, sendo
que a causa mais comum de morte € por uma infeccdo, como pneumonia (OSMO-
SIS, 2016). A Figura 13 mostra um gréfico da evolugao dos sintomas conforme a DA
avanca.

Porém, os primeiros sintomas da doenca sao frequentemente confundidos com
0s processos normais de envelhecimento ou estresse (WALDEMAR et al., 2007). Por
isso, uma série de testes devem ser feitos a fim de confirmar o diagnéstico, que é apoi-
ado pela presenca de caracteristicas neuroldgicas e neuropsicolégicas e pela exclusdo
de outras hipéteses (MENDEZ, 2006; KLAFKI et al., 2006). Para a exclusdo de outras
hipéteses sao utilizadas técnicas de imagiologia médica, como tomografia computa-
dorizada (CT, do inglés Computerized Tomografy), MRI, tomografia computadorizada
por emissao de féton unico (SPECT, do inglés Single-Photon Emission Computed To-
mography) ou PET (NCCMH, 2007). Além disso, essas técnicas também auxiliam
a prever a evolugcado dos estagios que possam indicar o inicio da DA (SCHROETER
et al., 2009).

Esses estagios da DA, que podem ser divididos em quatro, apresentam um padrao
progressivo de deficiéncia cognitiva e funcional.
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Figura 13: Evolucao dos sintomas conforme a DA avanca (OSMOSIS, 2016)

2.4.1 Comprometimento cognitivo leve

O primeiro estagio da doenca é o comprometimento cognitivo leve (MCI, do inglés
Mild Cognitive Impairment), que pode afetar algumas das mais complexas ativida-
des do cotidiano, e apresenta a perda de memoria a curto prazo como sintoma mais
comum, dificultando a recordacéao de fatos recentes ou a memorizacao de novas in-
formacdes (BACKMAN et al., 2004; ARNAIZ; ALMKVIST, 2003).

Além da perda de memoria, problemas com atencao, planejamento, flexibilidade,
pensamento abstrato, memaoria semantica, sintomas depressivos, irritabilidade, e di-
minuicdo da percepc¢ao das proprias dificuldades de memdria também podem ser sin-
tomas nos estagios iniciais da doenca (BACKMAN et al., 2004; MURRAY; BUTTNER;
PRICE, 2012). Também nesta fase, € comum a observacao de apatia, um sintoma
neuropsiquiatrico que persiste durante todas as fases da doenga (LANDES et al.,
2001).

2.4.2 Estagio inicial

O estagio inicial da doenga, devido ao prejuizo crescente tanto em memoria quanto
em aprendizagem, permite, eventualmente, dar um diagnéstico provavel de Alzhei-
mer. O que acontece é que as capacidades de memodria ndo sdo afetadas igual-
mente. Enquanto memorias mais antigas, fatos ja aprendidos e a meméria impli-
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cita (memoéria que guarda como lidar com as atividades do cotidiano, como andar,
escovar os dentes, ...) sdo afetadas em menor grau, novos fatos e memérias tem
um impacto maior (CARLESIMO; OSCAR-BERMAN, 1992; JELICIC; BONEBAKKER;
BONKE, 1995).

Também, em alguns poucos casos, os problemas de memdéria ndo séao os sinto-
mas mais comuns, sendo mais proeminente as dificuldades de linguagem, funcées
executivas, percepgao ou execucao de movimentos (FORSTL; KURZ, 1999).

Nesta fase, € comum que a pessoa com a doencga seja capaz de comunicar ideias
basicas (FORSTL; KURZ, 1999; TALER; PHILLIPS, 2008; FRANK, 1994). Porém,
com os problemas de linguagem, o vocabulario fica encolhido e ha a diminuicdo na
fluéncia das palavras, fazendo com que haja um empobrecimento na linguagem oral e
escrita (FORSTL; KURZ, 1999; TALER; PHILLIPS, 2008).

Além disso, dificuldades na execucao de tarefas motoras finas (escrever, dese-
nhar, vestir, ...), na coordenagcdo de movimento e de planejamento podem ocorrer,
geralmente, de forma despercebida (FORSTL; KURZ, 1999). Com a progressio da
DA, muitas vezes é possivel continuar a desempenhar muitas tarefas de forma inde-
pendente, porém, pode ser necessaria assisténcia ou supervisdo com as atividades
cognitivamente mais exigentes (FORSTL; KURZ, 1999).

2.4.3 Estagio intermediario

Com o avanco da DA para o estagio intermediario, a independéncia fica comprome-
tida, impossibilitando a realizacdo de atividades mais comuns da vida diaria (FORSTL;
KURZ, 1999). O declinio na habilidade de fala, leitura e escrita também ocorre, difi-
cultando a recordacédo do vocabulario, levando a frequentes substituicées incorretas
de palavras (FORSTL; KURZ, 1999; FRANK, 1994). A memoéria piora, levando ao
esquecimento, inclusive, de parentes proximos. A memoéria de longo prazo, que até
entdo estava intacta, comeca ser prejudicada (FORSTL; KURZ, 1999). As capacida-
des motoras mais complexas se tornam menos coordenadas, podendo levar a que-
das (FORSTL; KURZ, 1999).

Nao obstante, alteragées comportamentais e neuropsiquiatricas comegam a ser
mais predominantes. As manifestagcbes comuns s&o: vagar pela casa, irritabilidade
e incontinéncia emocional, levando o paciente a chorar, ter explosdes de agressao
nao premeditadas, ou resisténcia a cuidados especiais (FORSTL; KURZ, 1999). Tam-
bém pode ocorrer casos de sindrome do pér-do-sol (VOLICER et al., 2001), que € um
fendmeno clinico manifestado pela emergéncia ou incremento de sintomas neuropsi-
quiatricos noturnos (KHACHIYANTS et al., 2011).

Ademais, nesse estagio, os pacientes podem apresentar incontinéncia urinaria,
perda da percepg¢ao do processo e das limitagdes que a doenga causa e sintomas
delirantes (FORSTL; KURZ, 1999). Com a manifestacédo desses sintomas, um am-
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biente de estresse é criado para parentes e cuidadores, o que pode ser reduzido,
movendo a pessoa de cuidados domicilidrios para clinicas de cuidados de longa dura-
¢do (FORSTL; KURZ, 1999; GOLD et al., 1995).

2.4.4 Estagio avancado

Durante o estagio final da doencga, o paciente fica completamente dependente de
cuidadores (FORSTL; KURZ, 1999). Ocorre também a perda de habilidades de lingua-
gem verbal - que é reduzida a frases simples ou apenas palavras isoladas - podendo
levar & completa perda da fala (FORSTL; KURZ, 1999; FRANK, 1994). Porém, muitas
vezes, as pessoas podem entender e retornar sinais emocionais, embora a agressivi-
dade ainda possa estar presente.

Outros sintomas comuns séo a extrema apatia e a exaustdo, sendo que em ultima
analise, nem as tarefas mais simples podem ser feitas de forma independente. Tam-
bém, a massa muscular e a mobilidade deterioram-se até o ponto em que o paciente
€ acamado e fica incapaz de se alimentar. Por fim, a causa da morte é geralmente um
fator externo, como infecgdes ou pneumonia, e ndo a propria doenca em si (FORSTL;
KURZ, 1999).

2.5 Fatores de risco

A DA envolve a falha progressiva das células cerebrais, no entanto, a razéo pela
qual as células falham ainda néo é clara. Como outras condicdes crénicas, 0s especi-
alistas acreditam que a DA se desenvolve como um resultado complexo de multiplos
fatores ao invés de qualquer causa primordial. Os maiores fatores de risco para a DA
séo idade avangada, histérico familiar de Alzheimer e/ou portar o gene APOE-e4 (AS-
SOCIATION, 2010a).

2.5.1 Idade

Embora a DA nao seja uma parte normal do envelhecimento, o maior fator de risco
para a doenca é o aumento da idade. Apos a idade de 65 anos, o risco de desenvolver
a doenca dobra a cada cinco anos, e esta em quase 50% ao atingir a idade de 85
anos (ASSOCIATION, 2010a).

2.5.2 Genética

Existem duas categorias de genes que influenciam se uma pessoa pode desen-
volver uma doenca: (i) genes de risco e (ii) genes deterministicos. Os genes de risco
aumentam a probabilidade de desenvolver uma doenga, mas nao garantem que isso
va acontecer. Para a DA, foram descobertos varios genes que aumentam o risco desta
acontecer, sendo o APOE-e4 o primeiro gene de risco identificado, e que continua a
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ser 0 gene com maior impacto sobre o risco. APOE-e4 é uma das trés formas comuns
do gene APOE; Os outros sdo APOE-e2 e APOE-e3 (ASSOCIATION, 2010a).

Aqueles que herdam uma copia de APOE-e4 tém um risco aumentado de desen-
volver a DA. Aqueles que herdam duas cépias tém um risco ainda maior, mas néo €
uma certeza. Além de aumentar o risco, APOE-e4 fazer os sintomas aparecerem em
uma idade mais jovem do que o habitual. Os cientistas estimam que APOE-e4 esta
implicado em cerca de 20% a 25% dos casos de Alzheimer (ASSOCIATION, 2010a).

Os genes deterministicos, por sua vez, causam uma doencga diretamente, garan-
tindo que quem herda um desses genes ira desenvolver um distarbio. Na DA, foram
descobertas variagdes que causam diretamente a DA nos genes que codificam trés
proteinas: APP, presenilina-1 (PS-1) e presenilina-2 (PS-2) (ASSOCIATION, 2007).
Quando a DA é causada por estas variagcoes deterministicas, é chamada de "DA Au-
tossémica Dominante (DAAD)" ou "DA familiar", e muitos membros da familia em va-
rias geragcdes sao afetados. Quando esses genes estdo presentes, ocorre a manifes-
tacao precoce da DA, com o aparecimento dos sintomas entre os 40 e 50 anos de
idade. Porém, esses genes estao presentes em menos de 5% dos casos de Alzhei-
mer (ASSOCIATION, 2010a).

Embora os genes que causam a "DA familiar" sejam raros, a sua descoberta tem
fornecido pistas importantes que ajudam a compreensdo da DA como um todo. To-
dos estes genes afetam o processamento ou a producado de AR, que € um suspeito
principal do declinio e da morte de células de cérebro (ASSOCIATION, 2010a). Atual-
mente, varias drogas em desenvolvimento visam dissolver os fragmentos de A3 como
uma estratégia para parar ou retardar significativamente a DA, como apresentado no
trabalho (SEVIGNY et al., 2016).

Hoje, estdo disponiveis testes genéticos tanto para APOE-e4 como para os genes
raros que causam diretamente a DA. Porém, os profissionais de saude atualmente néo
recomendam testes genéticos de rotina para a DA. Testes para APOE-e4 é por vezes
incluido como parte de estudos de pesquisa (ASSOCIATION, 2010a).

2.6 Alzheimer’s Disease Neuroimaging Initiative

A iniciativa de neuroimagem da DA (ADNI, do inglés Alzheimer’s Disease Neuroi-
maging Initiative) € um esforco de pesquisa global que apoia a investigacao e o desen-
volvimento de tratamentos que retardem ou parem a progressao da DA. Este estudo
avalia biomarcadores clinicos, de imagem, genéticos e de bioespécime, através do
processo de envelhecimento normal até o comprometimento cognitivo leve precoce
(EMCI, do inglés Early Mild Cognitive Impairment), o comprometimento cognitivo leve
tardio (LMCI, do inglés Late Mild Cognitive Impairment), a deméncia ou DA. Com mé-
todos padronizados para criagdo de imagens e coleta e andlise de biomarcadores, o
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ADNI facilita o caminho para quem deseja conduzir pesquisas e compartilhar dados
compativeis com pesquisadores de todo o mundo (ADNI, 2016a).

O estudo ADNI é dividido em trés fases: ADNI 1, ADNI GO e ADNI 2. Novos
participantes foram recrutados em toda a América do Norte durante cada fase do
estudo e concordaram em realizar uma série de avaliagdes de imagem e clinicas. Os
participantes sdo acompanhados e fazem reavaliagbes ao longo do tempo para que
a patologia da doenca seja acompanhada a medida que ela avanga. Os resultados
sao entao compartilhados pelo ADNI através do Laboratory of Neuro Imaging’s Image
Data Archive da Universidade da Carolina do Sul (USC), EUA, pelo site: http://adni.
loni.usc.edu/ (ADNI, 2016a).

A Tabela 1 resume o numero de participantes alvo do estudo ADNI norte-
americano, informado, para cada fase do ADNI, a quantidade de novos pacientes que
foram inseridos no estudo em cada estagio da doencga. O simbolo | significa que os
pacientes da fase anterior foram mantidos nesta fase.

Tabela 1: Numero de participantes nas diferentes fases do ADNI

Fase NL SMC EMCI MCI LMCI DA

ADNI1 200 - - 400 - 200
ADNIGO | - 200 !
ADNI2 150 100 150 ! 150 200

O objetivo do estudo ADNI é acompanhar a progressao da doenca longitudinal-
mente usando biomarcadores para avaliar a estrutura e a fungéo do cérebro ao longo
de seis estagios de doenga: cognitivamente normal (NL), preocupacao significativa
de meméria (SMC, do inglés Significant Memory Concern), EMCI, MCI, LMCI e DA.
A Tabela 2 resume os estagios da doenca citados e em que fases do ADNI eles séo
avaliados.

Tabela 2: Estagios acompanhadas em cada fase do ADNI (ADNI, 2016a)

Sigla Estagio Fases
NL Cognitivamente normal ADNI 1/GO/2
SMC  Preocupacao significativa de memoria ADNI 2

EMCI Comprometimento cognitivo leve precoce  ADNI GO/2

MCI Comprometimento cognitivo leve ADNI 1

LMCI  Comprometimento cognitivo leve tardio ADNI GO/2
DA Doenca de Alzheimer ADNI 1/GO/2

Na fase ADNI 2, foi adicionado um novo estagio, o SMC. As preocupagdes com
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a memoéria subjetiva mostraram-se correlacionadas com uma maior probabilidade de
progressao da DA, minimizando assim a estratificagdo do risco entre os controles nor-
mais, além de abordar a diferenca entre controles idosos saudaveis com quem esta
no estagio MCI. O principal critério de inclusdao que distingue quem esta no estagio
SMC é o auto-relato de preocupacao significativa com a meméria (ADNI, 2016a).

No estagio NL, estdo os individuos de controle no estudo ADNI. Eles ndo mostram
sinais de depressdo, nem comprometimento cognitivo leve ou deméncia. No estagio
SMC, estao classificados os participantes que apresentam uma pontuacao dentro da
faixa normal de cognigcdo, mas indicam que eles tém uma preocupacao, e apresentam
leve esquecimento. O informante ndo considera isso como comprometimento pro-
gressivo da memaria nem considera isso como um esquecimento consistente. Ja, nos
estagios EMCI, MCI e LMCI estao os participantes que relataram uma preocupacao
de memoria subjetiva de forma autbnoma, através de um informante ou de um clinico.
No entanto, ndo ha niveis significativos de comprometimento em outros dominios cog-
nitivos, nem em atividades essencialmente preservadas da vida diaria, além de nao
apresentar sinais de deméncia. Por fim, no estagio DA, est&do os individuos que foram
avaliados e satisfazem critérios para provavel DA (ADNI, 2016a).

Além dos estagios descritos anteriormente, temos o Alzheimer pré-clinico, que é
um estagio recém-definido e reflete a evidéncia atual de que o processo fisiopatolo-
gico da DA e mudancas mensuraveis em biomarcadores no cérebro podem ocorrer
anos, sendo décadas, antes da ocorréncia dos primeiros sintomas clinicos. Avangos
recentes em neuroimagem, testes do liquido cefalorraquidiano e outros biomarcadores
agora fornecem a capacidade de detectar evidéncias de alteracdes patoldgicas da DA
in vivo. Este estagio pré-clinico da DA tornou-se um foco de pesquisa importante, pois
o campo postula que a intervencao precoce pode oferecer a melhor chance de su-
cesso terapéutico. Até o momento, muito poucas evidéncias sdo estabelecidas nesta
fase "silenciosa" da doenca (SPERLING et al., 2011; DUBOIS et al., 2016). Os paci-
entes que estdo no estagio pré-clinico da doencga, no entanto, nao sao explicitamente
descritos na base de dados ADNI.

Na Tabela 3, sdo apresentados os tipos de dados coletados nas diferentes fases
do ADNI.

Tabela 3: Tipos de dados coletados nas diferentes fases do ADNI

Fase MRI fMRI DTI FDG AvV45 PiB Bioamostras

ADNI | 4 4 v 4
ADNIGO v v 4 4 v v
ADNI 2 4 v 4 4 4 v
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No contexto de diagndstico por imagem, o MRI € um exame de neuroimagem tra-
dicional que permite a medicao precisa do volume tridimensional das estruturas cere-
brais, especialmente o tamanho do hipocampo e regides relacionadas (RAMACHAN-
DRAN, 2016).

A ressonancia magnética funcional (fMRI, do inglés functional Magnetic Resonance
Imaging) tem uma resolucao temporal e espacial relativamente elevada e pode ser ad-
quirida na mesma sessao que a imagem de ressonancia magnética. Mais importante
ainda, a fMRI pode fornecer informacgdes Uteis sobre a integridade funcional de redes
cerebrais que suportam a memoria e outros dominios cognitivos (SPERLING, 2011).

A imagem de tensor de difusédo (DTI, do inglés Diffusion Tensor Imaging) é uma das
ferramentas mais eficazes de ressonancia magnética para a investigacao da anatomia
do cérebro. Além da substancia cinzenta, estudos histopatoldgicos indicam que a
substancia branca é também um bom alvo tanto para o diagndstico precoce da DA
quanto para monitorar a progressao da doenga, o que motiva a usar DTI para estudar
pacientes com DA in vivo (KENICHI et al., 2011).

O FDG é um marcador radiofarmaco utilizado nos exames de imagem PET, e serve
para medir as taxas metabolicas cerebrais de glicose (MOSCONI et al., 2010).

Assim como o FDG, o florbetapir (AV45) e o PiB sdo compostos radiofarmacos de
varredura de PET utilizados para dar contraste nas placas de A3 presentes no tecido
neuronal (KLUNK et al., 2004; CAMUS et al., 2012). Ja as bioamostras, sdo amostras
biol6gicas derivadas de seres humanos, tais como tecido, liquor e sangue.

Além disso, os dados de estudo disponibilizados pelo ADNI podem ser divididos em
diversas categorias. A Tabela 4 mostra essas principais categorias, bem como suas
subcategorias. Dentre todos os dados de estudo, temos avaliagées neuropsicoldgicas,
dados genéticos, exames de imagiologia (MR e PET), histérico médico, caracteristicas
do paciente e outros. Para mais informacdes sobre os itens disponiveis no arquivo de
dados ADNI, ver Anexo A.

2.7 Trabalhos Correlatos

Na literatura, sdo encontrados diversos trabalhos que abordam o diagnostico da
DA, que podemos separar em dois grandes grupos: estudo cross-sectional (WIKI-
PEDIA, 2018a) e estudo follow-up (POWELL; JANSSEN, 2013). O estudo cross-
sectional, € um tipo de estudo observacional que analisa os dados coletados de uma
populacdo ou um subconjunto representativo em um ponto especifico no tempo, isto
€, dados transversais. Ou seja, no escopo da DA, é a classificacao do estagio da do-
enca em que o paciente se encontra. J& no estudo follow-up, um grupo de individuos
€ acompanhado ao longo do tempo para determinar o desenvolvimento do critério que
esta sendo observado. Na DA, este estudo é feito na tentativa de prever e classificar
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Tabela 4: Dados de estudo disponibilizados pelo ADNI

Categoria Principal Subcategoria

o Diagnéstico
Avaliagbes .
Neuropsicolégica

Procedimentos de coleta de laboratério

Bioespécime
Resultados de laboratério
L Informacdes sobre dados genéticos
Genético .
Resultados do gendtipo
MRI
Imagem
PET

Eventos adversos
o L Medicamentos
Histérico médico o o
Histérico médico
Fisico / Neurolégico

Dados e banco de dados
Estudo

Protocolos de estudo

- . Histérico familiar
Caracteristicas do paciente

Demografia

a progressao de um estado cognitivo para outro.
Nas préximas sub-secoes, serdo apresentados os principais trabalhos encontrados
na literatura para estudos cross-sectional e follow-up.

2.7.1 Estudos cross-sectional

No artigo de ZHANG et al. (2011), foram combinadas trés modalidades de biomar-
cadores (MRI, FDG-PET e biomarcadores CSF) para discriminar entre DA (ou MCI) e
controles saudaveis. Para que a combinacao dos trés biomarcadores diferentes fosse
eficaz, foram gerados trés diferentes kernels que posteriormente foram combinados
para uso em uma SVM com validagdo cruzada com 10-fold. Os dados dos pacientes
foram extraidos do ADNI, sendo 52 pacientes NL, 99 MCI e 51 DA. Na comparacao
entre NL e DA, foi obtida uma precisao de 93,2% com uma sensitividade de 93% e es-
pecificidade de 93,3%. Ja para a classificacao de MCI e DA, foi atingida uma precisao
de 76,4% com uma sensitividade de 81,8% e especificidade de 66%

Em (ORTIZ et al., 2016), é explorada a construgdo de um método de classifica-
céo baseado em arquiteturas de deep learning aplicadas em regides cerebrais. As
imagens da matéria cinzenta de cada éarea do cérebro foram divididas em patches 3D
que sao entdo usados para treinar diferentes deep belief networks. Um conjunto de
deep belief networks é entdo composto, onde a previsao final € determinada por um
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esquema de votacao. No trabalho, sdo implementadas e comparadas duas estruturas
baseadas em aprendizagem profunda e quatro esquemas de votagao diferentes. O
método resultante foi avaliado usando cross-validatoin com 10-fold aplicado sobre a
base de dados ADNI, sendo 68 pacientes NL, 111 com MCI, 26 com LMCI e 70 com
DA. A arquitetura de classificacao atinge uma precisao de até 90% e AUC de 0,95 para
classificagdo de NL e DA. Ja na comparacao entre sMCI (MCI estavel) e DA, a preci-
séo é de 84% e AUC de 0,91. Para a classificacao de NL e pMCI (MCI que progrediu
para DA), a precisédo € de 83% com AUC de 0,95.

No artigo proposto por LONG et al. (2017), é proposto um método de aprendiza-
gem de maquina que utiliza uma SVM para distinguir pacientes com DA ou MCI de
idosos saudaveis. A classificacao é feita a partir do célculo e analise das diferencas
morfolégicas regionais do cérebro entre os diferentes grupos através do uso de ima-
gens de ressonancia magnética de alta resolucdo. O estudo foi feito sobre a base de
dados ADNI, sendo 135 individuos NL, 132 sMCI, 96 pMCI e 64 DA. A validacao cru-
zada com 10-fold foi adotada para estimar o desempenho da classificacao, que atingiu
uma acuracia de 96,5% e AUC de 0,995 na diferenciagcao de NL e DA.

No trabalho de BEHESHTI; DEMIREL; MATSUDA (2017), foi desenvolvido um sis-
tema de diagnéstico que utiliza um ranking de atributos e um algoritmo genético para
analisar dados de imagem de MRI. O trabalho investiga a atrofia da matéria cinzenta
global entre pacientes normais e com DA, gerando assim, regides de interesse que
sao utilizados para todas as outras classes de diagnéstico. Esses valores entram em
um vetor de atributos, onde é extraido um subconjunto 6timo através de um algoritmo
genético. Finalmente, a classificacao é feita utilizando uma SVM com validagao cru-
zada de 10-fold. O conjunto de dados foi extraido da base de dados ADNI, sendo 162
NL, 65 sMCI, 71 pMCI e 160 DA. A classificacao de NL e DA tem uma precisao de
93% e AUC de 0,935.

Por fim, o trabalho de RODRIGUES et al. (2017) compara a capacidade de trés
métodos de selecdo de atributos para obter combinagdes de biomarcadores que ma-
ximizem as taxas de classificacdo. Além disso, é utilizado o classificador KNN com
pré-processamento de balango de dados, subamostragem aleatéria e sobreamostra-
gem (SMOTE). Os dados utilizados no trabalho foram extraidos do ADNI, sendo 152
individuos NL, 414 MCI e 100 DA. Os resultados mostram que a abordagem proposta
atinge 94,34% de precisao para reproduzir a definicdo das classes NL, MCI e DA.

Dentre os trabalhos na categoria cross-sectional, podemos observar a classifica-
céo de pacientes nos conjuntos {NL e MCI}, {NL e DA}, {MCI e DA} e {NL, MCI e DA}.
Além disso, vemos também que diferentes técnicas sao utilizadas para a classifica-
cao, tanto em termos de algoritmo utilizado para o classificador, quanto na questao de
pré-processamento dos dados.
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2.7.2 Estudos follow-up

O trabalho de MATHOTAARACHCHI et al. (2017) propée um método probabilis-
tico baseado em aprendizado de maquina chamado RUSREF, e que foi projetado para
avaliar a progresséo para deméncia em um periodo de 24 meses, com base apenas
no biomarcador ['®F]Florbetapir PET. No trabalho, foram avaliados pacientes retirados
da base de dados ADNI, sendo 230 com sMCI e 43 com pMCI. O método utiliza o
algoritmo RF com uma otimizacao que permite que as classes sejam balanceadas ao
fazer o treinamento. O algoritmo utiliza um conjunto de teste independente e obteve
uma precisao de 84% e AUC de 0,906.

No trabalho de LONG et al. (2017), além do estudo cross-sectional, um estudo
follow-up de 36 meses também foi realizado. Os resultados mostram que, na diferen-
ciacao de sMCI e pMCI, uma acuracia de 89% ¢€ atingida com AUC de 0,932. Ja ao
classificar NL e pMCI, uma acuréacia de 91,74% foi atigida com AUC de 0,971.

O sistema apresentado por BEHESHTI; DEMIREL; MATSUDA (2017), também é
capaz de mostrar a previsdo de conversado de MCI para AD entre 12 e 36 meses antes
do diagndstico clinico. Os resultados mostram uma precisdo de 75% com AUC de
0,751.

Ja no cenério dos trabalhos follow-up, os principais focos sdo a classificacao da
conversao de MCI para DA, a diferenciacao entre pacientes MCI estaveis e MCI que
converteram para DA e entre pacientes NL e com MCI progressivo. No entanto, ne-
nhum dos trabalhos correlatos encontrados na literatura realiza a predi¢cao de pacien-
tes em risco de desenvolver a DA, que é o foco deste trabalho.

A Tabela 5 mostra um resumo dos trabalhos apresentados nesta secao.

2.8 Consideracoes finais do capitulo

Neste capitulo, foi apresentada uma revisao sobre a DA juntamente com suas ca-
racteristicas, a iniciativa ADNI e trabalhos correlatos. Os principais topicos abordados
da doenca foram: patofisiologia, neuropatologia, biomarcadores, sintomas e estagios
da doenca, além dos fatores de risco.

No escopo da patofisiologia, foram explanadas as duas mais forte hipéteses da
causa da DA. Sao elas: (i) a deposicao de placas de Ap e (ii) o acumulo de emaranha-
dos neurofibrilares. Com a perda de sinapses geradas pela DA, diversas mudancas
comegam a acontecer no cérebro e na vida do paciente. Essas mudancas foram vistas
nas subsecdes neuropatologia e sintomas e estagios da DA.

Também, os principais fatores de risco da doenga foram abordados, mostrando
gue ndo apenas a idade, mas a genética e o historico familiar também podem con-
tribuir para o aparecimento da DA. Além disso, foi feita uma breve explicagédo sobre
biomarcadores, para que ele servem e como sao Uteis para detectar a doenca antes
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dos sintomas comegarem.

Sabendo da importancia dos biomarcadores para a detecgéo e rastreamento pre-
coce da doenca, um esforco global ADNI foi criado, com o propdsito de desenvolver
novos biomarcadores clinicos, de imagem, genéticos e bioquimicos.

Por fim, foram apresentados os principais trabalhos encontrados na literatura que
abordam a classificagdo da DA por meio do uso de técnicas de IA. Os trabalhos foram
divididos entre estudos cross-sectional, que se preocupam em classificar a doenga
em um ponto especifico no tempo, e estudos follow-up, onde a variavel tempo ja entra
como critério para a predigdo da doengca em um periodo de tempo estabelecido.
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3 INTELIGENCIA ARTIFICIAL E A AREA MEDICA

Quando consideramos 0s avangos obtidos na medicina nas ultimas décadas, é
inegavel que a computacao foi uma grande contribuinte para que esses pudessem
ser atingidos. Ademais, a computacdo se mostra uma grande aliada para ajudar no
diagnostico de doencas, uma vez que a Inteligéncia Artificial (IA) tem sido cada vez
mais aplicada na drea médica (HAMET; TREMBLAY, 2017).

Além disso, é crescente a preocupacao na medicina para obter a maior quantidade
possivel de dados sobre a saude ou doenca dos pacientes e tomar decisdes com
base nisso. Antes, os médicos tinham que confiar em sua experiéncia, capacidade
de julgamento e habilidade de resolugcédo de problemas enquanto usavam ferramentas
rudimentares e recursos limitados. No entanto, nos dias de hoje, as tecnologias dis-
ruptivas comegaram a disponibilizar métodos avangados ndo sé para profissionais da
medicina, mas também para seus pacientes. Dentre estas tecnologias, esta a genoé-
mica, biotecnologia, sensores portateis e IA (MESKO, 2017).

Ao invés de desenvolver tratamentos para populacdées e tomar as mesmas de-
cisbes médicas com base em algumas caracteristicas fisicas semelhantes entre os
pacientes, a medicina tem avancado para a prevencao, personalizacao e precisao, o
que fara com que solu¢des médicas tradicionais one-fits-all migrem para tratamentos
direcionados, terapias personalizadas e drogas exclusivas. Em outras palavras: me-
dicina de precisdao. Nesta mudanca e transformacéao cultural, a IA € uma tecnologia
chave que pode trazer esta oportunidade a pratica diaria (MESKO, 2017).

Neste aspecto, a aplicacdo de |A na medicina se divide em dois ramos princi-
pais: virtual e fisico. O ramo fisico envolve o uso de robbs. Este ramo nado sera
explorado neste trabalho, uma vez que o escopo deste trabalho é o ramo virtual, re-
presentado pela Aprendizagem de Maquina (ML, do inglés Machine Learning), a qual
utiliza algoritmos matematicos que melhoram a aprendizagem através da experién-
cia. Existem trés tipos de algoritmos de ML: (i) ndo supervisionados (capacidade de
encontrar padrées), (ii) supervisionados (algoritmos de classificagdo e predigéo base-
ados em exemplos anteriores) e (iii) aprendizagem de reforgo (uso de sequéncias de
recompensas e punigées para formar uma estratégia para operagdo em um problema



42

especifico) (HAMET; TREMBLAY, 2017).

Dentre as principais abordagens de ML podemos citar o aprendizado baseado em
arvores de decisao, regressao logistica, rede neural artificial, maquina de vetores de
suporte, clustering e outros. Além disso, é importante salientar que dentro de cada
uma dessas abordagens, sao propostos na literatura uma gama de algoritmos diferen-
tes que utilizam uma mesma abordagem conceitual. As proximas sec¢oes detalhardo
as principais abordagens descritas anteriormente juntamente com os algoritmos espe-
cificos de cada categoria que foram utilizados para o desenvolvimento deste trabalho.

3.1 Arvores de decisdo

Arvores de decisdo (DT, do inglés Decision Trees) sdo um método de aprendiza-
gem supervisionado nao paramétrico usado para classificacao e regressao. O objetivo
€ criar um modelo que preveja o valor de uma variavel destino aprendendo regras de
decisao simples inferidas a partir de dados recebidos como entrada. Apd6s a geracéo
de uma arvore de decisao, € possivel extrair um conjunto de regras de decisdo do tipo
if-then-else. Quanto mais profunda a arvore, mais complexas sao as regras de deci-
s&o e menos genérico € o modelo gerado. Dentre os algoritmos de arvore de deciséo
mais conhecidos estdo o ID3 (QUINLAN, 1986) e o C4.5 (QUINLAN, 1993) (evolucdo
do algoritmo ID3), que s&o amplamente utilizados nas mais diversas aplicagoes.

Tempo

Ensolarado Chuvoso Nublado

— ™~

Humidade Vento

>77.500 < 77.500 Sim Nao

Figura 14: Exemplo de uma arvore de decisao

A Figura 14 mostra um exemplo de uma arvore de decisdo que classifica se o dia
€ bom ou nao para jogar golfe. As folhas representam o resultado da classificacao,
enquanto os nodos séo os atributos as arestas sdo os possiveis valores dos atributos.
Para saber o resultado da classificacao, basta percorrer os nodos e arestas até en-
contrar uma folha. Por exemplo, caso tempo = chuvoso e vento = ndo, € um bom dia
para jogar golfe. No entanto, caso tempo = chuvoso e vento = sim, ndo é um bom dia
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para jogar golfe.

Quando tentamos prever a variavel alvo usando qualquer técnica de aprendizado
de maquina, temos trés principais causas que geram a diferenga entre o valor espe-
rado e o valor predito. Essas causas sao o ruido, a variancia e a polarizacao. Para
a ajudar a reduzir esses fatores, pode ser utilizada a técnica de ensemble (GROVER,
2017).

Ensemble é definido como uma colegao de preditores que sao utilizados em con-
junto para gerar uma previsao final. A eficiéncia desta técnica se baseia na premissa
de que utilizar diversos preditores diferentes para prever a mesma variavel alvo é me-
lhor do que utilizar um Unico preditor sozinho. As técnicas de Ensembling sdo ainda
classificadas em Bagging e Boosting (GROVER, 2017).

Na técnica de Bagging, cada preditor é construido de forma independente. Um
exemplo de Bagging sdo as Random Forests. No caso do Boosting, os preditores ndo
sao gerados independentemente, mas sim sequencialmente. Esta técnica emprega
a légica de que os preditores subsequentes aprendem com os erros dos preditores
anteriores. Como 0s novos preditores aprendem com erros cometidos por preditores
anteriores, menos iteragcées sdo necessarias para finalizar a execugao do algoritmo.
Um exemplo de Boosting séo as Gradient Boosted Trees (GROVER, 2017).

A Figura 15 ilustra graficamente a diferenga entre um classificador simples, um
classificador gerado pela técnica de Bagging e um classificador gerado pela técnica
de Boosting. Note que enquanto o classificador simples possui apenas um modelo, o
Bagging gera varios modelos diferentes, criados independentemente. Por fim, pode-
mos perceber a dependéncia dos modelos anteriores para a geracdao de um classifi-
cador Boosting.

Simples Boosting

1 Iteracado

Figura 15: Comparacgéao entre um classificador simples, e classificadores gerados pela
técnica de Bagging e de Boosting (XRISTICA, 2016)
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3.1.1 Random Forest

As Random Forests (RF) sédo definidas como uma combinacao de preditores gera-
dos por arvores de decisdo, de modo que cada arvore é construida a partir de valores
de um vetor aleat6rio amostrado independentemente e com a mesma distribuicao para
todas as arvores na floresta (BREIMAN, 2001). Desta forma, para gerar a classifica-
cao de um novo exemplo, o algoritmo escolhe a classificacdo de acordo com a maioria
dos votos, que é calculado sobre todas as arvores na floresta.

3.1.2 Gradient Boosted Trees

As Gradient Boosted Trees (GBTs) sao uma das técnicas para classificagao e re-
gressao. As GBTs produzem um modelo de predigdo robusto sob a forma de um
conjunto de modelos de predigéao fracos, tipicamente arvores de decisdo. Aqui, um
modelo de predicao fraco pode ser qualquer modelo que funcione um pouco melhor
do que o acaso.

Como qualquer algoritmo de aprendizagem supervisionado, o objetivo das GBTs &
definir uma funcéo de perda e minimiza-la. Para isso, o algoritmo vai repetidamente
encontrando um padrao nos erros do classificador gerado em cada iteracao e utiliza
esses erros para gerar um classificador ainda melhor. Estes erros significam entradas
de dados que séao dificeis de serem ajustadas por um modelo simples. Desta forma,
o algoritmo se concentra nos dados que sao dificeis de serem ajustados. Uma vez
gue chegamos a um estagio que os erros nao possuem nenhum padrao que possa
ser modelado, o algoritmo pode parar sua execu¢ao (GROVER, 2017).

3.2 Rede neural artificial

As redes neurais tem como principal objetivo simular células cerebrais interconec-
tadas dentro de um computador, com o propésito de aprender novos conceitos, re-
conhecer padrdes ou tomar decisbes da forma mais parecida possivel com que um
humano faria. A maior vantagem de uma rede neural é que ela aprende sozinha, sem
a necessidade de ser programada novamente a cada novo problema.

Uma rede neural tipica tem de algumas dezenas a centenas, milhares ou até
mesmo milhdes de neurbnios artificiais que sao dispostos em uma série de camadas,
cada uma das quais se conecta as camadas ao seu lado.

3.2.1  Multilayer perceptron

Uma das principais arquiteturas de redes neurais é a Multilayer Perceptron (MLP).
As MLPs possuem uma camada de entrada, uma ou mais camadas ocultas e uma
camada de saida. A camada de entrada € projetada para receber varias formas de
informacao do mundo exterior que a rede tentara aprender, reconhecer ou processar.
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No lado oposto da rede, a camada de saida responde as informacdes que aprendeu.
Entre essas duas camadas, as camadas ocultas formam a maioria do cérebro artifi-
cial. Além disso, os neurdnios das MLPs estdo totalmente conectados, o que significa
qgue cada neurbnio se conecta com todos os outros neurbnios da camada anterior e
da proxima (caso essas camadas existam). As conexdes entre um neurbnio e outro
séo representadas por um numero chamado de peso, que pode ser positivo ou nega-
tivo. Quanto maior o peso, maior a influéncia que um neurénio tem sobre os outros.
Além disso, para atualizar os pesos da rede, sao propostos diferentes algortimos na
literatura. Esses algoritmos sao chamados de solvers, sendo que o mais conhecido
deles é a descida de gradiente. A Figura 16 mostra um exemplo de uma MLP com
trés neurdnios na camada de entrada, trés camadas ocultas com quatro, trés e dois
neurdnios em cada camada, respectivamente, e uma camada de saida com apenas
um neurdnio.

Camada de
entrada Camadas ocultas Camada de saida

Figura 16: Exemplo de uma rede neural Multilayer Perceptron

3.3 Regressao linear

A regressao linear pode ser definida como o estudo de uma variavel dependente
em funcado de outras variaveis que podem auxiliar a entender o problema. Ou seja,
estudar o que esta disponivel no momento para poder entender como reagir no futuro.
Na regresséo linear, o resultado (varidvel dependente) € continuo, podendo assumir
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qualquer valor de um numero infinito de valores possiveis. Além disso, a regressao
linear gera uma equagéo que € da forma Y = mX + C.

Matematicamente, podemos quantificar em nimeros o quanto uma variavel esta
relacionada a outra e como ela impacta em seu comportamento. Assim, com o0 uso da
regressao, podemos obter qual a reta ou curva a ser tragada que melhor se ajusta nos
dados disponibilizados. Na Figura 17, podemos observar um exemplo de uma reta
gerada pela regresséao linear para um conjunto de dados.

_'||:._

e
LA =
[
]
(5]
[V

X

Figura 17: Exemplo de regresséo linear

3.4 Regressao logistica

Diferentemente da regressao linear, onde o resultado do classificador € definido por
uma variavel continua, na Regressao Logistica (RLog), o resultado pode assumir ape-
nas um numero limitado de valores possiveis. Desta forma, a RLog € usada quando
a variavel de resposta € de natureza categérica. Na RLog, uma equacao da forma
Y = X/ 4 ¢=X & gerada. Na Figura 18 temos um exemplo de RLog, e a comparagéo
com o resultado de uma regressao linear.

3.5 Modelo Linear Generalizado

O Modelo Linear Generalizado (MLG), proposto por (NELDER; WEDDERBURN,
1972), € uma generalizacao flexivel da regressao linear comum. Com ele, é possivel
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Figura 18: Exemplo de regressao logistica

utilizar variaveis de saida que possuem modelos de distribuicdo de erros diferentes da
distribuicdo normal. O MLG generaliza a regressao linear, permitindo que o modelo
linear seja relacionado a variavel de saida através de uma funcéo de ligacao e permite
gue a magnitude da variancia de cada medida seja uma funcao do seu valor previsto.
O MLG foi formulado como uma forma de unificar varios outros modelos estatisticos,
incluindo regressao linear, regressao logistica e regressao de Poisson.

3.6 Maquina de vetor de suporte

As maquinas de vetor de suporte (SVMs, do inglés support vector machine) séo
modelos de aprendizagem supervisionados que analisam os dados e reconhecem pa-
drées. As SVMs séo utilizadas para classificagdo e analise de regressdo. Dado um
conjunto de exemplos de treinamento, para cada entrada, o algoritmo define qual de
duas possiveis classes a entrada faz parte. Isso faz com que as SVMs sejam um clas-
sificador linear binario nao probabilistico. Além disso, um modelo SVM é representado
por pontos distribuidos no espaco, mapeados para que os exemplos das categorias
separadas sejam divididos por um espago livre 0 mais amplo possivel. Quando no-
vos exemplos sao recebidos, o algoritmo os mapeia para 0 mesmo espaco e define
qual categoria ele pertencera com base em qual lado da divisao ele esta. A Figura 19
exemplifica uma SVM, onde podemos perceber que os exemplos foram divididos por
uma reta em duas regides distintas através de dois vetores de suporte.

3.7 k-vizinhos mais préximos

No reconhecimento de padrdes, o algoritmo de k-vizinhos mais préximos (kNN) é
um método ndo paramétrico usado para classificacdo e regressao, ou seja, o clas-
sificador ndo aprende nenhum parametro, pois ndo ha processo de treinamento. Ao
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Figura 19: Exemplo de uma SVM

invés disso, a ideia € que sejam mantidas todas as amostras de treinamento, para que
qguando um novo exemplo seja recebido, o classificador possa medir a distancia entre
0 novo ponto e todos os outros pontos que ja foram processados.

Primeiramente, deve ser fornecido ao algoritmo os rétulos de cada exemplo de trei-
namento. Na sequéncia, para classificar um novo exemplo, o algoritmo encontrara os
k pontos mais préximos nas amostras de treinamento e atribuira ao exemplo o rétulo
da classe mais comum entre esses vizinhos. A Figura 20 exemplifica o funcionamento
do kNN.

Na Figura 20, para classificar o novo exemplo (representado por um circulo no
centro da imagem), no caso de k = 3, a nova instancia serd classificada como sendo
pertencente a Classe B, pois dos trés pontos mais proximos, dois deles sao da Classe
B. No entanto, no caso de k = 6, a classificacao sera da Classe A, uma vez que dentre
0s 6 vizinhos mais préximos, quatro deles sdo da Classe A.

3.8 Stacked Generalization

O Stacked Generalization (WOLPERT, 1992) é um esquema proposto por Wolpert
para minimizar a taxa de erro de classificadores. Para isso, ao contrario do bagging
e do ensemble, ele combina modelos de diferentes tipos (i.e. arvores de decisao,
redes neurais, regresséao logistica, ...), introduzindo o conceito de meta-aprendizagem.
Inicialmente, todos os modelos séo treinados da forma convencional, gerando seus
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Figura 20: Exemplo do funcionamento do algoritmo kNN

modelos de predicdo. Usando as predi¢coes geradas na primeira etapa como entrada
e as respostas corretas como saida esperada, um classificador de nivel superior é
treinado. Desta forma, este classificador utilizara as predicées geradas nas saidas
dos classificadores do nivel inferior para gerar um modelo mais robusto. A Figura 21

exemplifica o Stacked Generalization.

Classificador 0

Classificador 1

Entradas =< > Classificador

Stacked Generalization

Saida

Figura 21: Modelo genérico do Stacked Generalization
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3.9 Meétricas de avaliacao

Nas sub-secdes seguintes serdao apresentadas as principais métricas de avaliacao
dos algoritmos de aprendizado de maquina.

3.9.1 Matriz de confusao

Uma matriz de confusdo é uma ferramenta de visualizacao tipicamente utilizada
na aprendizagem supervisionada. Cada coluna da matriz representa as instancias em
uma classe predita, enquanto cada linha representa as instancias em uma classe real.
Na matriz de confusado, a diagonal principal mostra as instancias corretamente clas-
sificadas (WIKIPEDIA, 2018b). Portanto, a matriz de confusdo € usada para avaliar
o desempenho de um classificador, e conta como um classificador € exato em fazer
previsdes sobre classificacdo. A Tabela 6 mostra um exemplo de matriz de confuséo.
Nesta tabela, percebe-se que cinco gatos, trés cachorros e onze coelhos foram cor-
retamente classificados. No entanto, dois gatos foram erroneamente preditos como
cachorros, trés cachorros foram preditos como gatos, dois cachorros como coelhos e
um coelho foi predito como cachorro.

Tabela 6: Exemplo de matriz de confuséo

Classe predita

Gato Cachorro Coelho

Gato 5 2 0
Classe real Cachorro 3 3 2
Coelho 0 1 11

3.9.2 Meétricas derivadas da matriz de confusao

A partir de matriz de confusao, é possivel extrair um conjunto de métricas que
permite uma analise mais detalhada do que uma mera proporcao de classificacdes
corretas (WIKIPEDIA, 2018b). A Tabela 7 resume as métricas derivadas da matriz de
confuséo.

Tabela 7: Métricas derivadas da matriz de confuséo

Classe predita
Positivo Negativo

Positivo Verdadeiro Positivo (TP) Falso Negativo (FN)

Classe real
Negativo Falso Positivo (FP) Verdadeiro Negativo (TN)

A proporcao de instancias positivas que foram classificadas como positivas é cha-
mada de Verdadeiro Positivo (TP, do inglés True Positive). Os exemplos negativos
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classificados como positivos sdo chamados de Falso Positivo (FP, do inglés False Po-
sitive). As instancias positivas classificadas como negativas dao origem ao Falso Ne-
gativo (FN, do inglés False Negative). Por fim, as instdncias negativas classificadas
como negativas sdo chamadas de Verdadeiro Negativo (TN, do inglés True Negative).

3.9.3 Acuracia

A acuracia é uma métrica que responde, no geral, o quao frequente o classificador
esta correto. A acuracia é definida como:
, . TP+TN
Acuracia = “Total (1)
A acuracia ndo é uma métrica confiavel para o desempenho real de um classifica-
dor, porque produzira resultados enganadores se o conjunto de dados estiver dese-
quilibrado (ou seja, quando o niumero de observacdes em diferentes classes variam
muito). Portanto, para que esta métrica possa ser utilizada, o conjunto de dados deve
ser balanceado.

3.9.4 Precisao

A precisdo é a fracao de instancias recuperadas que sao relevantes, ou seja, mos-
tra quanto os resultados da pesquisa sao Uteis. A precisao é definida como:
TP

Precisao = ———— 2
recisio = om0 (2)

3.9.5 Sensibilidade
A sensibilidade nos informa a frequéncia em que o classificador encontra os exem-

plos de uma classe. Ou seja, é a fragado de instancias relevantes que séo recuperadas.
Traduzindo para férmula:

o TP
Sensibilidade = TP FN (3)

3.9.6 F1 Score

O F1 Score combina preciséo e sensibilidade de modo a trazer um numero Unico
gue indique a qualidade geral do seu modelo. A férmula que define o F1 é a seguinte:

Fl =9 x precisao x sensibilidade

(4)

precisao + sensibilidade

3.9.7 Area sob a curva ROC

A éarea sob a curva ROC (AUC, do inglés Area Under the Curve) nos diz a proba-
bilidade de um classificador ranquear uma instancia positiva escolhida aleatoriamente
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melhor do que uma instancia negativa, também escolhida aleatoriamente. Quando o
valor da area esta abaixo da diagonal 0,5 ou 50%, o modelo nao tem validade, pois, 0s
acertos e erros entram na mesma proporcao e sao devidos ao acaso. Analogamente,
um valor igual a 1,0 ou 100% nao chega a ser alcancado, pois, sempre ha superpo-
sicao na distribuicao das propor¢des dos grupos. A Figura 22 mostra um exemplo de

curva ROC.

Taxa de Verdadeiro Positivo

Receiver Operating Characteristic (ROC)

L e Aleatério
— AUC=10,9338

0 0.2 0.4 0.6 0.8 1
Taxa de Falso Positivo

Figura 22: Exemplo de curva ROC

Quanto mais os resultados estdo préximos do canto superior esquerdo do grafico
(valores proximos de 1), maior a sensibilidade e menor proporgao de falsos positivos,
tornando o modelo mais preciso.



4 METODOLOGIA E TRABALHO PROPOSTO

Inicialmente, foi realizado um estudo aprofundado da DA e suas caracteristicas. Os
principais tépicos estudados da DA foram sua patofisiologia, neuropatologia, biomar-
cadores, sintomas e estagios da doenca e fatores de risco. Este estudo foi de extrema
importancia, uma vez que o assunto abordado nao faz parte do conhecimento geral
da area de computacédo e proporcionou um melhor entendimento da area.

Juntamente com o aprendizado da DA, foi feita uma exploracdo do ADNI, que é
um esforco de pesquisa global que apoia a investigacdo e o desenvolvimento de tra-
tamentos que retardem ou parem a progressdao da DA. Como mencionado anterior-
mente, este estudo disponibiliza uma base de dados com biomarcadores clinicos, de
imagem, genéticos e de bioespécime.

Desta forma, o problema foi estudado com foco nos biomarcadores disponiveis,
uma vez que eles trazem resultados de diferentes tipos de exame para cada paci-
ente. Sao eles: informacdes demogréficas, exames neuropsicolégicos, de imagem,
de bioespécime, genéticos, histérico médico e outros. Além disso, os pacientes sdo
monitorados ao longo do tempo, permitindo que a evolucdo da doenga em cada um
deles possa ser observada.

Ao se obter um entendimento mais profundo dos dados disponiveis na base de da-
dos ADNI, pode-se definir o problema como sendo uma tarefa de classificagao, uma
vez que é desejado, a partir dos biomarcadores, determinar qual € o estado cognitivo
do paciente. Portanto, propomos modelar o problema com o uso de técnicas de IA.
Técnicas como SVM (CORTES; VAPNIK, 1995), arvores de decisao (e.g. RF (HO,
1995)), MLP e RLog (BISHOP, 2006) foram aplicadas em contextos semelhantes (e.g.
BHATTACHARYA; BHATIA (2010), ZHANG et al. (2008), GIL; JOHNSSON (2009) e
MUSLIMOVIC et al. (2005)) e foram avaliadas neste trabalho. Além das técnicas de
classificacédo, foram aplicadas algumas técnicas de clusterizacdo, como o kNN (ALT-
MAN, 1992). Essas técnicas foram comparadas utilizando as métricas de desempenho
classicas, como acuracia, precisao, sensibilidade, AUC e F1. Com essas métricas, foi
possivel escolher as melhores técnicas para serem aplicadas na solugao do problema.

Além disso, foi realizada uma analise com os biomarcadores da base de dados
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ADNI, a fim de selecionar os atributos mais relevantes para serem utilizados na cons-
trucdo dos modelos. Para isso, foi utilizada a taxa de ganho de informagcdo. N&o
obstante, além do ganho de informacéo, tivemos a preocupacéo de reduzir ao ma-
ximo a quantidade de exames, e consequentemente, de biomarcadores, necessarios
para o desenvolvimento do trabalho. Isso foi feito pois, como dito anteriormente, dese-
jamos que o método possa ser utilizado pela grande maioria da populacao, inclusive
em zonas mais distantes dos grandes centros urbanos.

O estudo feito neste trabalho foi dividido em duas partes. A primeira, € um estudo
em abrangéncia das técnicas de |A aplicadas para a classificagdo do estado cognitivo
dos pacientes da base de dados ADNI. A segunda, é a proposta de um método para
classificacdo de pacientes em estado de risco, ou seja, esse método se preocupa, prin-
cipalmente, em informar se o paciente é definido como estavel (baixa probabilidade de
desenvolver a doenca) ou em risco (alta probabilidade de desenvolver a doencga).

Para o estudo em abrangéncia e a geracao da taxa de ganho de informacao dos
biomarcadores, foi utilizada a ferramenta Orange3 (DEMSAR et al., 2013). A Orange3
€ uma ferramenta open-source que permite a modelagem rapida de técnicas de |A de
uma forma interativa e visual.

No entanto, como a Orange3 é uma ferramenta direcionada para propdésitos educa-
cionais, ela carece de uma maior liberdade para ajustes finos nos algoritmos. Portanto,
para a modelagem do método para classificacéo de pacientes em estado de risco, que
€ o0 objetivo principal deste trabalho, foi utilizada a ferramenta RapidMiner Studio (RA-
PIDMINER, 2017). O RapidMiner Studio € um ambiente de modelagem visual que
possibilita a criagdo de fluxos de trabalho analiticos preditivos. Além disso, esta ferra-
menta possui centenas de algoritmos pré-definidos para pré-processamento de dados
e aprendizagem de maquina.

Apds a modelagem do método proposto, foram realizados testes com o intuito de
validar o método implementado. Para isso, foi utilizado o método de cross-validation
com 10-fold, aplicado sobre um conjunto de dados balanceado obtidos da base de
dados ADNI. Por fim, os resultados obtidos pelos diferentes algoritmos avaliados foram
comparados para que pudesse ser escolhido aquele que entrega uma melhor precisao
de predicgao.

Com a definigcdo do algoritmo a ser utilizado para a resolu¢cao do problema, uma
analise dos resultados de classificacdo foi realizada. Além de se observar as taxas
de verdadeiro positivo e verdadeiro negativo (exemplos corretamente classificados),
foram analisados os falsos negativos (individuos cognitivamente normais que foram
classificados como pacientes em risco), a fim de observar se essas pessoas estdo na
fase pré-clinica da DA.
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4.1 Biomarcadores utilizados

Os experimentos realizados neste trabalho utilizaram conjuntos com diferentes ar-
ranjos de biomarcadores para treinamento dos algoritmos de aprendizagem de ma-
quina. Para uma melhor organizagéo, estes biomarcadores serdo descritos a seguir,
separados por categoria.

e Dados Demograficos (D)

— AGE: idade em anos
— PTGENDER: género (male / female)
— PTEDUCAT: educacao em anos

e PET

— FDG: metabolismo de glicose no cérebro

— AV45: placas de A no cérebro
e CSF - mede o fluido cerebrospinal (pg/mL)

— ABETA: quantidade de proteina de Ap no liquor
— TAU: quantidade de tau no liquor
— PTAU: quantidade de fosfo-tau no liquor

e Testes Neuropsicolégicos (N)
— ADAS11: teste que avalia a cognicao e diferencia o funcionamento cognitivo

normal da deterioracdo do funcionamento cognitivo

— CDRSB: teste que avalia a memodria, orientagéo, julgamento e resolucao de
problemas, assuntos da comunidade, lar e hobbies e cuidados pessoais

— MMSE: teste que avalia a orientagdo, recuperacao de palavras, atencao,
célculo, habilidades de linguagem e capacidade visuoespacial

— RAVLT: teste que avalia a memodria recente, aprendizagem, interferéncia,
retencdo e memoéria de reconhecimento

¢ MRI - mede o volume de diferentes regides do cérebro (mm?)

ICV: volume intracerebral

Entorhinal: cértex entorrinal

Fusiform: giro fusiforme, parte do lobo temporal e occipital

Hippocampus: hipocampo, estrutura localizada nos lobos temporais, consi-
derada a principal sede da meméria
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— MidTemp: lobo médio temporal, regido vital para a memoria declarativa e de
longo prazo

— Ventricles: ventriculos, uma rede comunicante de cavidades preenchidas
com liquido cefalorraquidiano e localizadas no parénquima cerebral

— WholeBrain: volume de todo cérebro
e Genético (G)

— APOE-e4: presenca da apolipoproteina E4.

4.2 Classificacao da Doenca de Alzheimer

Com o proposito de diagnosticar o estagio da DA dos pacientes em sua primeira
visita, foi realizado um estudo em abrangéncia com diferentes algoritmos de aprendi-
zado de maquina com a ferramenta Orange3.

4.2.1 Conjunto de Dados

O atributo da base de dados a ser predito pelos classificadores € o DX, que indica
o diagnostico do paciente em uma determinada visita. Ele pode assumir os seguintes
valores: NL, MC1I ou Dementia.

Para este estudo, foram utilizados 900 instancias de exames de pacientes em sua
primeira visita (atributo VISCODEFE com valor bl) extraidas da base de dados ADNI,
formando um conjunto de trés classes balanceadas, sendo 300 N L, 300 MC1 e 300
Dementia.

Para a predi¢do do diagndstico da DA, quatro conjuntos de biomarcadores foram
avaliados. A Tabela 8 resume os conjuntos de biomarcadores que foram utilizados
para a classificacdo da DA. O simbolo v significa que todos os biomarcadores da
categoria em questao foram utilizados.

Tabela 8: Conjuntos de biomarcadores avaliados para a predicao do diagnéstico da
DA

Categoria D-PET-CSF-N D-PET-CSF-N* D-PET-CSF D-PET-CSF-MRI-G
Dados Demograficos v v v v
PET v v v v
CSF v v v v
Testes Neuropsicologicos v MMSE e RAVLT

MRI

Genéticos v

\
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Nos quatro conjuntos, tanto os Dados Demograficos quanto os biomarcadores PET
e CSF foram utilizados. O que diferencia os experimentos € a utilizacdo de testes
neuropsicologicos e o uso de MRI e biomarcadores genéticos. Enquanto no expe-
rimento D-PET-CSF-N todos os testes neuropsicoldgicos sao utilizados, no D-PET-
CSF-N* apenas os testes MMSE e RAVLT foram incluidos. O motivo pelo qual os
testes ADAS11 e CDRSB foram removidos do experimento € que sao determinantes
clinicos para definir o diagnéstico. Ou seja, o diagnéstico do paciente é definido pelo
valor obtido por estes dois exames.

Resumidamente, os testes neuropsicologicos avaliam o estado cognitivo do pa-
ciente. No entanto, a utilizagdo destes testesN para o diagnéstico da DA tem trés
grandes problemas: (i) alto custo, (ii) a impossibilidade de escalar para uma grande
guantidade de pessoas, uma vez que, para realizar o exame, sdo necessarios profissi-
onais treinados e (iii) estes exames s6 identificardo pacientes que ja estdo em estagios
mais avancados de perda cognitiva. Portanto, o experimento D-PET-CSF nao utiliza
nem um teste neuropsicoldgico, mas somente dados demograficos e os biomarcado-
res PET e CSF.

No experimento D-PET-CSF-MRI-G, sdo adicionados ao teste anterior (D-PET-
CSF) os biomarcadores extraidos de imagem de MRI e genéticos.

4.2.2 Classificadores

Os seguintes classificadores foram avaliados neste estudo: Tree, RF, MLP, kNN,
RLog e SVM. Aqui, o algoritmo chamado Tree € uma implementacdo de arvore de
decisao que foi desenvolvida pela propria Orange3.

4.2.3 Avaliacao dos Resultados

Para treinamento e teste dos experimentos, foi utilizado o método de cross-
validation com 10-fold. No entando, uma limitacao do trabalho neste ponto € que nao
foi separada uma porgéao do conjunto de 900 exemplos para validag&do dos resultados.

Na tentativa de melhorar a taxa de predigdo do experimento D-PET-CSF-MRI-G,
foi utilizado o método Stacked Generalization. Para o experimento D-PET-CSF-MRI-
G, sao utilizados no primeiro nivel os algoritmos RLog, RF, MLP, SVM e Tree. Além
disso, os biomarcadores que entram no sistema sao repassados para todos os classifi-
cadores do primeiro nivel. Para o classificador do segundo nivel, as predi¢oes geradas
pelos modelos da camada inferior sdo utilizadas como entrada. A saida gerada por
este classificador é a resposta final do sistema.
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4.3 Two-step classifier

Apoés a definicao dos experimentos realizados para o diagnéstico da DA, este es-
tudo foi expandido para a identificacao de pacientes em risco. Neste sentido, é pro-
posto o Two-Step Classifier (TSC). Esse método tem como objetivo informar se o
paciente é definido como um paciente estavel (que provavelmente ndao desenvolvera
déficit cognitivo) ou um paciente de risco (alta probabilidade de desenvolver a DA).

O TSC realiza a classificacao em dois passos. No first-step, ocorre a identificagéo
de pacientes em risco. Ja no second-step, é realizado o diagndstico do estado cog-
nitivo dos individuos que foram classificados como em estado de risco pelo first-step.
Mesmo que apenas pacientes em risco passem para o second-step, o classificador faz
a classificagao considerando os trés valores possiveis: NL, MC1 e Dementia. COmo
os classificadores sempre possuem um erro de predicéo, pacientes da classe N L po-
dem ter sido incorretamente classificados como em risco. Com isso, no second-step,
ha a possibilidade destas classificacées incorretas serem ajustadas, aumentando a
taxa de acerto do sistema como um todo.

A Figura 23 apresenta uma arquitetura genérica para o TSC, assinalando as entra-
das e saidas do sistema e de cada etapa do classificador.

Identificagdo de pacientes
em risco

Predigéo do estado cognitivo

Pacientes

Biomarcadores :
em risco

Second-step

Two-step classifier

e ean——,

Pacientes estaveis

Figura 23: Arquitetura genérica do two-step classifier

4.3.1 Conjunto de Dados

No first-step, a classe N L é separada das classes M CI e Dementia. Ou seja, 0S
pacientes em risco sao aqueles pertencentes as classes MCI ou Dementia. Para
isso, foi criado um novo atributo chamado IS N L. O atributo I.S_N L representa se o
paciente € normal (IVL), ou se ele possui algum déficit cognitivo (NOT_N L, pacientes
das classes M C'I ou Dementia).

Os dados utilizados para o first-step foram extraidos da base de dados ADNI, sendo
300 NL, 150 MCT e 150 Dementia, totalizando 600 exemplos. Desta forma, temos
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300 pacientes com IS_NL = NL e 300 pacientes com IS_NL = NOT_NL. Ja
para o second-step, foram utilizados 900 exemplos da base de dados ADNI, com 300
instancias para cada uma das classes (NL, MCI e Dementia). Além disso, os dados
foram normalizados utilizando o método Z-transformation.

Assim como na predi¢éo do diagnéstico da DA, diferentes conjuntos de biomarca-
dores foram avaliados para o first-step do TSC. Estes conjuntos podem ser vistos na
Tabela 9.

Tabela 9: Conjuntos de biomarcadores explorados para o first-step do two-step classi-
fier

Categoria TSC-D-PET-CSF-MRI TSC-D-PET-CSF TSC-D-CSF-MRI TSC-D-MRI
Dados Demograficos v v v v
PET v v
CSF v v v
MRI v v v

No experimento TSC-D-PET-CSF-MRI, sdo avaliados os biomarcadores demogra-
ficos, PET, CSF e MRI. Ja no TSC-D-PET-CSF, em relagdo ao experimento anterior,
sé&o removidos os biomarcadores de MRI. A terceira analise (TSC-D-CSF-MRI) man-
tém dados demograficos, CSF e MRI. Finalmente, o TSC-D-MRI utiliza apenas dados
demograficos e MRI.

Dentre as categorias de biomarcadores, os dados demograficos sdo os mais faceis
de serem obtidos, uma vez que todos podem ser extraidos apenas das informacdes
dos pacientes. Por outro lado, nos exames de PET e CSF sao utilizados radiofarmacos
para obtencdo dos biomarcadores, tornando estes exames invasivos. Ja o MRI, um
dos exames mais simples de serem feitos, necessita apenas de um equipamento de
ressonancia magnética, que pode ser encontrado préximo de praticamente todas as
cidades do mundo. Assim quanto menos exames forem necessarios e quanto mais
simples estes forem, mais acessivel se torna o método proposto.

No entanto, para o second-step, em busca de um melhor acerto na predicao, e
considerando que pacientes em risco passam para esta etapa, todos os biomarcado-
res de dados demograficos, PET, CSF e MRI foram utilizados. Além disso, regides
mais especificas dos biomarcadores AV45, FDG e MRI foram inseridas no sistema.
Neste ponto, cabe lembrar que nenhum exame neuropsicologico esta sendo utilizado
no TSC.

4.3.2 Classificadores

O TSC foi modelado na ferramenta RapidMiner Studio e foi avaliado para os al-
goritmos GBT, RLog, MLG, kNN, RF, e MLP. Aqui € utilizado o mdédulo AutoMLP do
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RapidMiner Studio, que € um algoritmo simples que ajusta a taxa de aprendizado e o
tamanho das redes neurais durante o treinamento de forma automatizada. Para isso,
o AutoMLP combina ideias de algoritmos genéticos e otimizagao estocastica.

4.3.3 Avaliacao dos Resultados

Para treinamento e teste dos modelos, foi utilizado o método de cross-validation
com 10-fold sobre 80% do conjunto de exemplos. Para teste, foram utilizados os 20%
restantes do conjunto de dados.



5 RESULTADOS

Nesta secdo serdao apresentados os resultados obtidos para os dois estudos reali-
zados neste trabalho, a classificacado da DA e a identificacdo de pacientes em estado
de risco. Os resultados serao separados por experimento realizado e discutidos indi-
vidualmente.

Além disso, tanto na ferramenta Orange3 quanto no RapidMiner Studio, para cada
algoritmo testado, os parametros foram ajustados para que uma melhor predicao pu-
desse ser atingida. Para cada algoritmo de cada solucéo, o ajuste dos parametros
(e.g. a profundidade das arvores de decisd@o, o valor de k para o algoritmo kNN e
outros) foi realizado de forma manual, buscando encontrar o valor que entregasse
melhores resultados. Portanto, ao descrever os resultados dos experimentos, serao
informados os valores dos parametros que levaram as melhores taxas de acerto.

5.1 Classificacao da Doenca de Alzheimer

Para a classificacdo da DA (ADC - Alzheimer’s Disease Classification), lembra-
mos que a ferramenta Orange3 foi utilizada para modelagem dos experimentos. Além
disso, foi utilizado o método de cross-validation de 10-fold para teste e validagdo. Os
dados de entrada foram extraido da base de dados ADNI, sendo 300 pacientes N L,
300 com MC1T e 300 com Dementia, num total de 900 instancias. Para cada experi-
mento, sdo apresentadas as métricas AUC, acurécia, F1, precisao e sensibilidade.

Para os resultados do experimento D-PET-CSF-N, o algoritmo RF foi modelado
com 15 arvores, com profundidade maxima de cinco niveis em cada uma delas e cinco
atributos considerados para cada split. A SVM foi modelada com kernel linear, C' = 0,7
e ¢ = 0,6. A RLog utilizou a regularizacédo Lasso (L1) com C = 3. A Tree foi definida
para ter no minimo cinco instdncias em cada folha e profundidade maxima de seis
niveis. A MLP foi modelada com 25 neurénios na camada oculta, fungéo de ativacéo
identidade — fungcao que da como imagem de cada elemento o proprio elemento — e
solver Adam. Por fim, o kNN utilizou a métrica Manhattan com k = 21.

A Tabela 10 apresenta os resultados para o experimento D-PET-CSF-N. Anali-
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sando estes resultados, percebe-se que a acuracia atinge valores elevados, chegando
a 92,4% para o método RF e AUC de 0,964. Com excecao do kNN, que teve uma acu-
racia de 0,666 e AUC de 0,705, todos os outros algoritmos apresentaram resultados
satisfatérios, sendo que, além do RF, a SVM, RLog e Tree atingiram uma acuracia
superior a 90% e AUC acima de 0,940.

No entanto, estes resultados sado esperados, uma vez que os testes neuropsico-
l6gicos foram utilizados como atributos para classificagdo. Nao obstante, os biomar-
cadores CDRSB e ADAS11 sao determinantes clinicos. Ou seja, os valores destes
dois biomarcadores séo utilizados pelos profissionais da area para dar o diagndstico
da DA. Portanto, a precisao deste experimento sé nao chega a 100% devido a possi-
veis erros existentes na base de dados. Este fato pode ser constatado ao observar o
ganho de informacéo de cada biomarcador, presente na Tabela 11.

Tabela 10: Resultados para o experimento D-PET-CSF-N

Método AUC Acuracia F1 Precisao Sensibilidade

RF 0,964 0,924 0,891 0,858 0,927
SVM 0,970 0,913 0,875 0,876 0,873
RLog 0,949 0,911 0,861 0,899 0,827
Tree 0,940 0,906 0,860 0,848 0,873
MLP 0,955 0,892 0,829 0,88 0,783
kNN 0,705 0,666 0,428 0,535 0,357

Como podemos ver na Tabela 11, os quatro biomarcadores que tem o maior ganho
de informacao sao testes neuropsicolégicos, sendo o CDRSB o primeiro e o ADAS
11 o terceiro. No entanto, ndo ha nenhuma outra categoria de biomarcadores que se
destaque entre as demais.

Neste ponto, foram eliminados os determinantes clinicos (CDRSB e ADAS11) para
verificar qual o impacto na precisdo do modelo quando estes ndo séo utilizados. O
experimento D-PET-CSF-N* faz esta avaliagéao.

Os parametros dos algoritmos para o experimento D-PET-CSF-N* sao descritos a
seguir. O algoritmo RF foi modelado com 14 arvores, com profundidade maxima de
guatro niveis em cada uma delas e trés atributos considerados para cada split. A SVM
foi modelada com kernel linear, C' = 0,7 e ¢ = 0,6. A RLog utilizou a regularizacéao
Lasso (L1) com C' = 0,9. A Tree foi definida para ter no minimo trés instancias em cada
folha e profundidade méaxima de 10 niveis. A MLP foi modelada com 20 neurénios na
camada oculta, fungéo de ativacao identidade e solver Adam. O kNN utilizou a métrica
Manhattan com £ = 10.

A Tabela 12 apresenta os resultados do experimento D-PET-CSF-N*. Como pode-
mos observar, a acuracia do experimento teve uma diminuigéo significativa ao serem
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Tabela 11: Ganho de Informacao para os biomarcadores utilizados neste trabalho

Categoria Biomarcador Ganho de Informacao

N CDRSB 1,1587
N MMSE 0,6567
N ADAS11 0,5319
N RAVLT 0,3450
MRI Hippocampus 0,2003
PET FDG 0,1930
MRI Entorhinal 0,1811
CSF ABETA 0,1185
CSF TAU 0,1100
MRI MidTemp 0,1072
PET Av45 0,0934
G APOE-e4 0,0795
MRI Fusiform 0,0779
CSF PTAU 0,0659
MRI Ventricles 0,0588
MRI WholeBrain 0,0489
D PTEDUCAT 0,0222
D AGE 0,0182
MRI ICV 0,0098
D PTGENDER 0,0078

removidos os determinantes clinicos, atingindo um valor maximo de 72,7% para o RF
e AUC de 0,767. O kNN foi novamente o ultimo colocado neste experimento. Os algo-
ritmos SVN, MLP e RLog tiveram uma acuracia superior a 70% com AUC maior que
0,726.

Tabela 12: Resultados para o experimento D-PET-CSF-N*

Método AUC Acuracia F1 Precisdo Sensibilidade

RF 0,767 0,727 0,500 0,658 0,403
SVM 0,773 0,712 0,542 0,588 0,503
MLP 0,764 0,707 0,512 0,589 0,453
RLog 0,726 0,704 0,463 0,601 0,377
Tree 0,666 0,673 0,480 0,524 0,443
kNN 0,625 0,62 0,307 0,463 0,23

Como ja mencionado anteriormente, testes neuropsicolégicos tém um énus de se-
rem utilizados. Portanto, o experimento D-PET-CSF avalia a n&o utilizagdo destes
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testes para a modelagem dos preditores.

Para o experimento D-PET-CSF, os seguintes parametros foram definidos. O algo-
ritmo RF foi modelado com seis arvores, com profundidade maxima de cinco niveis
em cada uma delas e cinco atributos considerados para cada split. A SVM foi mode-
lada com kernel linear, C = 0,7 e ¢ = 0,6. A RLog utilizou a regularizagao Lasso (L1)
com C = 0,9. A Tree foi definida para ter no minimo trés instancias em cada folha
e profundidade maxima de 10 niveis. A MLP foi modelada com 20 neurbnios na ca-
mada oculta, funcédo de ativacao identidade e solver Adam. O kNN utilizou a métrica
Manhattan com & = 23.

Na Tabela 13, temos os resultados para o experimento D-PET-CSF. Como espe-
rado, a acuracia atingida foi menor do que quando utilizados testes neuropsicoldgicos.
Tanto a RLog quanto a SVM e RF tiveram uma acuracia de 54,7%. No entanto, a RLog
e a SVM tiveram um AUC muito préximo (0,607 e 0,607, respectivamente). Ja o RF,
teve um AUC de 0,587.

Tabela 13: Resultados para o experimento D-PET-CSF

Método AUC Acuracia F1 Precisdo Sensibilidade

RLog 0,607 0,547 0,355 0,429 0,303
SVM 0,606 0,547 0,383 0,423 0,350
RF 0,587 0,547 0,360 0,429 0,310
MLP 0,598 0,541 0,370 0,406 0,340
kNN 0,499 0,486 0,260 0,341 0,210
Tree 0,540 0,474 0,298 0,391 0,240

Para o experimento seguinte, biomarcadores de imagens MRI e genéticos foram
adicionados aos dados demogréficos, PET e CSF. A Tabela 14 apresenta os resulta-
dos para o experimento D-PET-CSF-MRI-G. Aqui, o algoritmo RF foi modelado com 12
arvores, com profundidade maxima de cinco niveis em cada uma delas e quatro atri-
butos considerados para cada split. A SVM foi modelada com kernel linear, C = 0,7 e
e = 0,6. A RLog utilizou a regularizagdo Lasso (L1) com C = 5. A Tree foi definida para
ter no minimo trés instancias em cada folha e profundidade maxima de 10 niveis. A
MLP foi modelada com 20 neurdnios na camada oculta, funcao de ativagao identidade
e solver Adam. O kNN utilizou a métrica Manhattan com k = 22.

Ao adicionar estes dois conjuntos de biomarcadores, percebemos uma melhora na
predicdo ao comparar com o experimento D-PET-CSF. De todos os métodos avaliados,
a RLog, RF e MLP atingiram uma acurécia superior a 60%, com AUC acima de 0,623.

Para melhor analisar os resultados de classificacdo do experimento D-PET-CSF-
MRI-G, foi extraida a matriz de confusao para o algoritmo RLog, uma vez que ele
presentou uma melhor combinacao de Acuracia e AUC. A Tabela 15 mostra esta ma-
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Tabela 14: Resultados para o experimento D-PET-CSF-MRI-G

Método AUC Acuracia F1 Precisdo Sensibilidade

RLog 0,630 0,608 0,385 0,49 0,317

RF 0,626 0,601 0,375 0,474 0,310
MLP 0,641 0,600 0,418 0,465 0,380
SVM 0,644 0,597 0,386 0,459 0,333
Tree 0,541 0,519 0,316 0,438 0,247
kNN 0,584 0,468 0,369 0,407 0,337

triz.

Tabela 15: Matriz de confusdo da Regressao Logistica para o experimento D-PET-
CSF-MRI-G

Classe predita
NL MCI Dementia Sensibilidade
106 30 0,621
41 0,490

MCI 58
Dementia 19 99
Precisao 0,743 0,317 0,763

Classe atual

Ao observar a matriz de confusdo, vemos que a classe NL teve 223 instancias
preditas corretamente, o que equivale a 74,3% de acerto. Ja para a classe Dementia,
essa quantia foi de 229, correspondendo a 76,3%. No entanto, a classe MCI teve
apenas 95 exemplos corretamente classificados, representando um acerto de apenas
31,67%. Este resultado, no entanto, ndo é surpreendente, uma vez que pacientes
da classe M C1 estdo em uma zona nebulosa (ndo sdo nem cognitivamente normais,
nem apresentam grandes perdas de fungdes cognitivas), e € exatamente neste ponto
gue ha uma grande dificuldade para classificacao.

Levando isto em consideracgao, foi realizada uma anélise dos resultados de clas-
sificacdo dos preditores do experimento D-PET-CSF-MRI-G a fim de entender melhor
os erros de classificacdo. Para tanto, foram selecionadas as instancias incorretamente
classificadas de cada preditor e estas foram dispostas em diagrama de Venn, que é
apresentado na Figura 24. Como podemos observar no diagrama, de todas as ins-
tancias, apenas 176 delas (19,5% de todo conjunto de dados) foram classificadas
incorretamente por todos os algoritmos.

Utilizando desta constatacéo, foi aplicado o Stacked Generalization sobre os pre-
ditores gerados para o experimento D-PET-CSF-MRI-G, com excecao do kNN, que
apresentou o pior desempenho de predi¢do. Este experimento se chama D-PET-CSF-
MRI-G-SG. Na camada inferior do D-PET-CSF-MRI-G-SG foram usados os algoritmos
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Figura 24: Diagrama de Venn das instancias classificadas incorretamente para o ex-
perimento D-PET-CSF-MRI-G

RLog, RF, MLP, SVM e Tree. Para a camada superior, foram avaliados estes mesmos
cinco algoritmos.

Os parametros dos algoritmos analisados na camada superior do D-PET-CSF-MRI-
G-SG sao descritos a seguir. O algoritmo RF foi modelado com 23 arvores, com pro-
fundidade maxima de cinco niveis em cada uma delas e quatro atributos considerados
para cada split. A SVM foi modelada com kernel linear, C = 0,7 e ¢ = 0,6. A RLog
utilizou a regularizacao Lasso (L1) com C' = 5. A Tree foi definida para ter no minimo
duas instancias em cada folha e profundidade maxima de 10 niveis. A MLP foi mo-
delada com 20 neurbnios na camada oculta, funcdo de ativagcao identidade e solver
Adam.

Os resultados obtidos pelo D-PET-CSF-MRI-G-SG sao mostrados na Tabela 16.

E notavel, ao observar os resultados obtidos, que houve uma melhora na predi-
cao, ao comparar com o experimento D-PET-CSF-MRI-G. Enquanto no experimento
D-PET-CSF-MRI-G, o melhor preditor atingia uma acuracia de 60,8% com AUC de
0,63, com o D-PET-CSF-MRI-G-SG foi possivel atingir uma acuracia de 76,2% com
AUC de 0,79 para a MLP. Além disso, todos os métodos avaliados tiveram resultados
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Tabela 16: Resultados do para o experimento D-PET-CSF-MRI-G-SG

Método AUC Acuracia F1 Precisdo Sensibilidade

MLP 0,790 0,762 0,683 0,742 0,633
RLog 0,776 0,759 0,679 0,735 0,63
RF 0,785 0,757 0,670 0,725 0,623
Tree 0,770 0,751 0,663 0,717 0,617
SVM 0,755 0,744 0,665 0,705 0,630

semelhantes, com acuracia entre 74,4% e 76,2% e AUC entre 0,755 e 0,79.

Desta forma, com o uso do Stacked Generalization, foi possivel atingir resultados
superiores do que o experimento D-PET-CSF-N*, onde os testes neuropsicolégicos
MMSE e RAVLT eram utilizados. Portanto, o uso do Stacked Generalization no con-
junto de dados do experimento D-PET-CSF-MRI-G se mostra eficiente, uma vez que
melhora significativamente a taxa de acerto da classe MCI, como podemos observar
na matriz de confusdo apresentada na Tabela 17.

Tabela 17: Matriz de confusdo da MLP para o experimento D-PET-CSF-MRI-G com
Stacked Generalization

Classe predita
NL MCI Dementia Sensibilidade
45 16 0,796
33 0,724

MCI
Dementia 23 66
Precisado 0,793 0,630 0,837

Classe atual

Além de mais instancias serem classificadas corretamente para as classes NL e
Dementia, a classe M C'I teve um aumento de quase o dobro na taxa de acerto quando
comparado ao nao uso do Stacked Generalization. Neste caso, a taxa de acerto foi
de 63%, comparados aos 31,7% do experimento D-PET-CSF-MRI-G. J4 a classe N,
subiu de 74,3% para 79,3%. A classe Dementia, de 76,3%, foi para 83,7%.

Por fim, a Tabela 18 apresenta um resumo dos resultados dos experimentos D-PET-
CSF-N (1), D-PET-CSF-N* (2), D-PET-CSF (3), D-PET-CSF-MRI-G (4) e D-PET-CSF-
MRI-G-SG (5), mostrando os biomarcadores utilizados em cada estudo, bem como o
algoritmo que gerou as melhores predi¢des, juntamente com a acuracia e AUC.

5.2 Two-step classifier

Nesta secao, serdao apresentados os resultados obtidos pelo TSC. Para geracao
destes resultados, foi utilizada a ferramenta RapidMiner Studio. Além disso, foi utili-
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Tabela 18: Resumo dos resultados obtidos para a classificacdo da DA

Biomarcadores (1) (2) (3) (4) (5)

D v v v v v

PET v v v v v

CSF v v v v v

N v MMSE e RAVLT

MRI v v

G v v
Método RF RF RLog RLog MLP
Acuracia 0,924 0,727 0,547 0,608 0,762
AUC 0,964 0,767 0,607 0,630 0,790

zado o método de cross-validation com 10-fold para treinamento e validagdo. A base
de dados ADNI foi utilizada para extracdo dos dados para treinamento e teste dos al-
goritmos avaliados. Dentre estes dados, temos 300 pacientes NL, 150 com MCI e
150 com Dementia, num total de 600 individuos. Lembramos, que para o first-step,
deseja-se prever a classe IS_N L, portanto, os pacientes NL recebem IS NL = NL
e pacientes MC1I ou Dementia sao classificados como IS NL = NOT_NL. Para
cada experimento do first-step, sdo apresentadas as métricas AUC, acuracia, F1, pre-
cisdo e sensibilidade. Para as analises do second-step, é apresentada a matriz de
confuséo para cada experimento.

Neste ponto, € importante ressaltar que a nova implementacao do RapidMiner Stu-
dio para os algoritmos GBT e RLog tiveram uma melhora significativa de desempenho.
Este aumento no desempenho pode, em parte, ser atribuido ao fato de que esses algo-
ritmos se ajustam automaticamente. Eles sao projetados para encontrar as melhores
configuracdes de parametros para otimizar a acuracia da predi¢do. Isso nao sé pro-
porciona uma melhor precisdo; mas também reduz o esforco necessario realizar os
ajustes desses algoritmos.

Além disso, o algoritmo aqui descrito como MLP é o operador chamado AutoMLP
do RapidMiner Studio. O AutoMLP € uma implementacao algoritmica simples para
ajuste automatico da taxa de aprendizagem e tamanho das redes neurais na fase de
treinamento. O algoritmo combina ideias de algoritmos genéticos e otimizacao esto-
castica. Ele mantém um pequeno conjunto de redes que séo treinadas em paralelo
com diferentes taxas de aprendizado e diferentes configuragcdes de camadas ocultas.
Ap6s um numero pequeno e fixo de épocas, a taxa de erro é determinada em um
conjunto de validagéo e as redes que tiveram as piores performances sao substituidas
por copias das melhores redes, modificadas para ter diferentes taxas de aprendizado
e configuragdo as camadas ocultas. As configuracdes das camadas ocultas e as ta-



69

xas de aprendizagem sao definidas de acordo com as distribuicées de probabilidade
derivadas de taxas e configuracdes bem-sucedidas (BREUEL; SHAFAIT, 2010).

Para melhor organizacao e discussao dos resultados, esta secéo sera dividida em
trés sub-secbes: First-step, Second-step e ldentificacdo de Pacientes em Fase Pré-
Clinica. Nessa ultima, sera abordada a fase pré-clinica da DA.

5.2.1 First-step

Como mencionado anteriormente, para o first-step do método TSC, foram avalia-
dos os algoritmos GBT, MLP, RLog e kNN. Os parametros destes algoritmos, para o
experimento TSC-D-PET-CSF-MRI, sao descritos a seguir. O GBT foi modelado com
50 arvores e profundidade maxima de cinco niveis. A RLog utilizou o solver IRLSM e
o kNN foi configurado com k = 25.

A Tabela 19 apresenta os resultados para o experimento TSC-D-PET-CSF-MRI.
Nesse experimento, sdo utilizados todos os exames descritos na secao 4.1, com
excecao dos testes neuropsicoldgicos. Como comentado na secao anterior, testes
neuropsicolégicos ndo sao desejados neste trabalho. Portanto, para o TSC, nenhum
experimento utilizou-se desses exames.

Tabela 19: Resultados do para o experimento TSC-D-PET-CSF-MRI

Método AUC CA F1 Precisdo Sensibilidade

GBT 0,868 0,800 0,797 0,808 0,788
MLP 0,862 0,794 0,783 0,825 0,746
RLog 0,845 0,779 0,772 0,799 0,746
kNN 0,632 0,602 0,575 0,617 0,538

A partir da Tabela 19, observamos que o algoritmo GBT atingiu a melhor acuracia
(80%) dentre os algoritmos avaliados, com AUC de 0,868. No entanto, a MLP obteve
resultados proximos, com uma acuracia de 79,4% e AUC 0,862. O kNN apresentou
0s piores resultados, para todas as métricas avaliadas.

O TSC-D-PET-CSF analisa a qualidade na predicao quando sao removidos 0s exa-
mes de MRI do experimento TSC-D-PET-CSF-MRI. Os resultados obtidos pelo expe-
rimento TSC-D-PET-CSF sao mostrados na Tabela 20.

Para a geracao desses resultados, o GBT foi modelado com 40 arvores e profundi-
dade maxima de quatro niveis. A RLog utilizou o solver IRLSM e o kNN foi configurado
com k = 15.

Ao comparar com os resultados anteriores, percebemos que os resultados de pre-
dicao tiveram uma queda de desempenho. No entanto, ao relembrar a Tabela 11, que
apresenta o ganho de informacao para cada biomarcador, se excluirmos a catego-
ria de testes neuropsicoldgicos, dois dos trés biomarcadores que trazem um melhor
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Tabela 20: Resultados do para o first-step do experimento TSC-D-PET-CSF

Método AUC CA F1 Precisao Sensibilidade

GBT 0,816 0,731 0,731 0,732 0,729
RLog 0,781 0,710 0,702 0,722 0,683
MLP 0,791 0,704 0,674 0,750 0,613
kNN 0,708 0,671 0,650 0,693 0,613

ganho de informacéao sdo da categoria MRI (Hippocampus e Entorhinal).

No experimento TSC-D-PET-CSF, o GBT e o RLog apresentaram os melhores re-
sultados, com acuracia de 73,1% e 71,0% e AUC de 0,816 e 0,781, respectivamente.
O kNN, novamente, apresentou o pior desempenho, com acuracia de 67,1%.

O proximo experimento, TSC-D-CSF-MRI, pudemos avaliar a ndo utilizagdo dos
biomarcadores PET (FDG e AV45). Neste experimento, no entanto, sao utilizados os
biomarcadores extraidos de MRI. Os resultados obtidos sdo mostrados na Tabela 21.

Os parametros dos algoritmo para o experimento TSC-D-CSF-MRI séo os seguin-
tes. O GBT foi modelado com 30 arvores e profundidade maxima de seis niveis. A
RLog utilizou o solver IRLSM e o kNN foi configurado com k& = 21.

Tabela 21: Resultados do para first-step do experimento TSC-D-CSF-MRI

Método AUC CA F1 Precisao Sensibilidade

GBT 0,854 0,790 0,796 0,773 0,821
MLP 0,842 0,785 0,773 0,822 0,729
RLog 0,827 0,748 0,741 0,762 0,721
kNN 0,626 0,583 0,559 0,593 0,529

Como podemos notar, os resultados, apesar de mais baixos, quando compara-
dos ao experimento TSC-D-PET-CSF-MRI, sdo similares. O algoritmo GBT teve uma
acuracia de 79% com AUC de 0,854, contra os 80% do TSC-D-PET-CSF-MRI. Con-
tudo, neste experimento, ndo séo utilizados exames PET. O MLP teve uma acuracia
de 78,5% com AUC de 0,842. Por ultimo, temos o kNN, com acuracia de 58,3% e AUC
0,626.

Todavia, para os trés experimentos anteriores, sao utilizados os biomarcadores
PET e/ou CSV. Para que esses biomarcadores possam ser obtidos, sdo utilizados
radiofarmacos (agentes radioativos injetados na corrente sanguinea do paciente), tor-
nando estes exames invasivos. Além disso, poucas clinicas radiolégicas realizam es-
ses exames. Portanto, o experimento TSC-D-MRI remove essas duas classes de
biomarcadores, deixando apenas dados demograficos e MRI. A Tabela 22 apresenta
os resultados obtidos pelo TSC-D-MRI.
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O GBT do TSC-D-MRI foi modelado com 30 arvores e profundidade maxima de
cinco niveis. A RLog utilizou o solver IRLSM e o kNN foi configurado com k£ = 25.

Tabela 22: Resultados do para first-step do experimento TSC-D-MRI

Método AUC CA F1 Precisdao Sensibilidade

GBT 0,847 0,781 0,780 0,785 0,775
MLP 0,813 0,748 0,731 0,785 0,683
RLog 0,816 0,731 0,723 0,747 0,700
kNN 0,633 0,602 0,575 0,617 0,538

Como podemos notar, a acuracia do TSC-D-MRI atingiu 78,1% para o algoritmo
GBT, com AUC de 0,847. Para o algoritmo MLP, temos uma acuracia de 74,8% e AUC
0,813. O ultimo classificado foi o0 kNN, com acuréacia de 60,2% e AUC 0,633.

Dentre os experimentos realizados para o first-step do TSC, o TSC-D-MRI é o0 mais
desejado, uma vez que utiliza apenas dados demogréficos e biomarcadores extraidos
de imagem MRI. Além disso, atinge resultados préximos do experimento que utiliza
todas as classe de biomarcadores, o TSC-D-PET-CSF-MRI. Ao comparar, o TSC-D-
MRI tem uma acuracia de 78,1%, comparada com os 80% do TSC-D-PET-CSF-MRI.

Para melhor entender a classificagcdo do TSC-D-MRI para o first-step do TSC, foi
gerada a matriz de confuséo para o algoritmo GBT.

Tabela 23: Matriz de confusao do GBT para o experimento TSC-D-MRI

Classe predita
NL NOT_NL Sensibilidade
NL 189 51 0,788
Classe atual NOT NL 54 186 0,775
Precisdo 0,778 0,785

Ao analisar a matriz de confuséo, percebemos que 51 de 240 pacientes foram clas-
sificados como NOT N L, mas deveriam ter sido classificados como N L. Ou seja, es-
ses pacientes foram sinalizados como em risco. Por outro lado, 54 individuos de 240
foram incorretamente classificados como N L. Neste ponto, os pacientes classificados
como NOT_NL passam para o second-step, a fim de dar o diagnéstico final da pro-
gressao da DA. Fora isso, foi realizado um estudo sobre os falsos negativos (preditos
como NOT_NL mas que sao NL), com a finalidade de verificar se esses individuos
estdo na fase pré-clinica da DA. Essa analise é apresentada na secao 5.2.3.

Neste ponto, aplicamos a validacdo dos resultados sobre os 20% dos dados que
foram separados do conjunto de treinamento. A Tabela 24 apresenta a matriz de
confusao para o experimento TSC-D-MRI utilizando o algoritmo GBT.
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Tabela 24: Matriz de confusdo do conjunto de validacao para o experimento TSC-D-
MRI utilizando GBT

Classe predita
NL NOT_NL Sensibilidade
NL 11 0,817
Classe atual NOT NL 21 0,650
Precisdo 0,700 0,780

Para o conjunto de validacao, foi possivel alcangar uma acuracia de 73,3% para
o modelo como um todo, com um AUC de 0,777, mostrando que o modelo avaliado
atinge resultados significativos, mesmo utilizando apenas dados demograficos e ima-
gem de MRI.

Por fim, a Tabela 25 resume os resultados obtidos para os experimentos TSC-D-
PET-CSF-MRI (1), TSC-D-PET-CSF (2), TSC-D-CSF-MRI (3) e TSC-D-MRI (4), mos-
trando as classes de biomarcadores utilizadas em cada estudo, juntamente com o
algoritmo que gerou as melhores predigées. E interessante notar, que em todos os
experimentos, o GBT foi 0 que apresentou os melhores resultados de classificacao.

Tabela 25: Resumo dos resultados obtidos para o first-step do TSC

Biomarcadores (1) (2) (3) (4)

D 4 v 4 4
PET v v/
CSF 4 v v
MRI v v v
Método GBT GBT GBT GBT
Acurécia 0,800 0,731 0,790 0,781
AUC 0,868 0,816 0,854 0,847

5.2.2 Second-step

Nesta secao, serdo apresentados os resultados para o second-step do TSC. Como
o objetivo do second-step é dar o diagndstico do estagio da DA, a saida esperada
aqui é o atributo DX, que pode assumir os valores NL, MCI ou Dementia. Para
isso, 0 second-step foi treinado com uma porcédo de 80% de um conjunto de dados
balanceado de 900 exemplos (300 para cada classe). O treinamento e validacao foi
realizado com o método de cross-validation com 10-fold. Para teste, foram utilizados
0s 20% restantes do conjunto de dados.

Para o second-step, como 0s pacientes que passam para essa etapa estdo em
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risco de desenvolver DA. Com a finalidade de dar o melhor diagnéstico possivel, sédo
utilizados todas as classes de biomarcadores descritas na secao 2.3, com excegao
dos testes neuropsicolégicos.

Além disso, um conjunto estendido de biomarcadores, com varias regides de in-
teresse (ROI, do inglés Region of Interest) extraidas de imagem PET utilizando os
radiofarmacos FDG e AV45 também sao utilizados.

No contexto do radiofarmaco FDG, temos os ROIs Left Angular Gyrus, Right An-
gular Gyrus, Bilateral Posterior Cingular, Left Inferior Temporal Gyrus e Right Inferior
Temporal Gyrus. Para cada ROI, é disponibilizado valor minimo, maximo, média, medi-
ana, moda e desvio padrao para o metabolismo da glicose no cérebro. Também, temos
0 numero total de voxels e de voxels zero ou NaN para cada ROI (ADNI, 2018a).

Ja para o radiofdrmaco AV45, sdo extraidas ROls a partir de quatro grandes re-
gides: Frontal, Anterior/Posterior Cingulate, Lateral Parietal e Lateral Temporal. Para
cada uma dessas regides, sdo extraidos biomarcadores para diversas sub-regides.
Além disso, é disponibilizada a média para cinco outras regides de referéncia: Ce-
rebellar Grey Matter, Whole Cerebellum, Brainstem/pons, Eroded Subcortical White
Matter e Composite Reference Region (ADNI, 2018b).

Deste ponto em diante, serao discutidos os resultados obtidos para o second-step,
considerando o uso de todo esse conjunto de biomarcadores. Os algoritmos avaliados
para o second-step foram MLG, RF, GBT e kNN. Para os algoritmos MLG, RF, GBT,
foi utilizado o novo moédulo do RapidMiner Studio chamado Auto Model, que faz a
modelagem e otimizagcdo automatica de parametros para diferentes modelos.

A Figura 25 mostra um gréafico com a acuracia para os modelos testados para o
second-step. Aqui, 0 KNN foi configurado com £ = 100, com a flag weighted vote ativa.
A DT foi modelada com profundidade méxima de 25 niveis. A RF tem 100 &rvores com
profundidade maxima de sete niveis cada uma delas. Por fim, a GBT foi configurada
com 40 arvores com profundidade maxima de 10 niveis. Os demais parametros dos
algoritmos foram deixados com seu valor default no RapidMiner Studio.

Dentre os algoritmos testados, o kNN, DT e RF tiveram uma acuracia abaixo ou
préxima de 50%. No entanto, o algoritmo MLG atingiu uma acuracia préxima a 58%. O
melhor colocado neste experimento foi a GBT, com acuracia de 60,14%. Para melhor
entender esses resultados, serdo apresentadas as matrizes de confusao para o MLG
e a GBT. A Tabela 26 apresenta a matriz de confuséo para o algoritmo GBT.

Como podemos perceber na Tabela 26, a precisdo de acerto da classe MCI é
de 45,4%, com uma sensibilidade de 38,8%. Para a classe N L, dos 240 pacientes,
164 foram corretamente classificados. O complemento desse valor € a taxa de falsos
negativos. Ou seja, 76 de 240 foram incorretamente classificados como NL, o que
corresponde a 31,67% desta classe.

Sob outra perspectiva, juntando as classes M CI e Dementia, 83 individuos de
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Figura 25: Acurdcia obtida para os modelos avaliados no second-step

Tabela 26: Matriz de confuséo para o second-step utilizando GBT

Classe predita
NL MCI Dementia Sensibilidade
61 15 0,683
77 0,388

MCI
Dementia 13 41
Precisao 0,664 0,454 0,657

Classe atual

480 foram classificados como N L com o uso da GBT, representando 17,29% deste
conjunto. Ou seja, dos pacientes com déficit cognitivo, no second-step, 17,29% foram
classificados como normais.

Aqui, queremos que esses dois parametros sejam os mais baixos possiveis, evi-
tando que pacientes com déficit cognitivo sejam classificados como normais, e que
pacientes normais sejam marcados como pertencentes as classe M CI ou Dementia.

A Tabela 27 apresenta a matriz de confuséo para o algoritmo MLG.

Os resultados atingidos com o uso do MLG sao préximos aos resultados da GBT.
Com o uso do MLG, a sensibilidade da classe NL é de 70%. Ou seja, dos pacientes
normais, 70% foram corretamente classificados como normais.

Essa classificagdo da classe NL no second-step faz com que o erro de predi¢ao
da classe NL gerado no first-step seja diminuido. A taxa de falsos negativos para a
classe NL com o MLG é de 30%. Ao unir as classes M C1I e Dementia, 107 individuos
de 480 foram classificados como N L, representando 22,29% de falsos negativos para
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Tabela 27: Matriz de confus&o para o second-step utilizando MLG

Classe predita
NL MCI Dementia Sensibilidade
50 22 0,700
74 0,313

MCI 91
Dementia 16 50
Precisago 0,612 0,429 0,644

Classe atual

essas classes.

Portanto, entre a GBT e o MLG, ao analisar por essas duas 6ticas, o que traz um
melhor trade-off entre essas duas caracteristicas € a GBT.

No entanto, o second-step sofre do mesmo problema de classificacao discutido na
secao 5.1. Além disso, o0 maior problema esta em individuos que séo da classe MC1
ou Dementia mas sao classificados como N L. Desta forma, é altamente desejavel
diminuir os falsos positivos da classe N L. Por outro lado, deve-se levar em conside-
racao que no first-step, todos esses individuos foram apontados pacientes em risco.
Assim, o diagnostico final do individuo, apds o second-step, deve ser suportado por
testes neuropsicoldgicos.

A Tabela 28 apresenta a matriz de confusdo gerada para o algoritmo GBT sobre
0s 20% dos dados que foram separados para validagao.

Tabela 28: Matriz de confus&o do conjunto de validagao aplicado no second-step utili-
zando GBT

Classe predita
NL MCI Dementia Sensibilidade
15 1 0,733
14 0,450

MCI 19
Dementia 3 16
Precisao 0,667 0,466 0,732

Classe atual

Como podemos ver, a precisédo e sensibilidade de cada classe ficaram muito pré-
ximas a atingida pelo conjunto de teste. Ademais, a taxa de falsos negativos para a
classe NL é de 26,67%. E a taxa de falsos negativos para as classes M CI e Dementia
em conjunto é de 18,33%.

Em adicdo a esses resultados, foi testado o conjunto de exemplos classificados
como NOT _NL no first-step para o experimento TSC-D-MRI. Para tanto, esses 310
exemplos foram aplicados no modelo de GBT gerado para o second-step. A Tabela 29
mostra a matriz de confusdo para esse conjunto de dados.

Aqui, notamos uma alta taxa de acerto do second-step utilizando GBT sobre o
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Tabela 29: Matriz de confusédo do second-step utilizando GBT sobre para as instancias
classificadas como NOT_NL no first-step do experimento TSC-D-MRI

Classe predita
NL MCI Dementia Sensibilidade
26 1 0,658
1 0,969

NL
MCI 2
Dementia 3 20
Precisdo 0,912 0,674 0,982

Classe atual

conjunto de dados de pacientes classificados como em risco pelo first-step. Para o
modelo como um todo, temos uma acuracia de 82,9%. Quando olhamos apenas para
aclasse NL, precisao é de 91,2%. Para a classe M C1I esse valor é de 67,4% e para
a classe Dementia, a precisao € de 98,2%.

Desta forma, a arquitetura final do modelo proposto para o TSC é composta pelo
conjunto de dados TSC-D-MRI e o algoritmo GBT para o first-step. No second-step,
temos um conjunto de biomarcadores estendido, com outra modelagem do algoritmo
GBT. A Figura 26 mostra a modelagem final da arquitetura do TSC.
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|
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Figura 26: Arquitetura do two-step classifier

Apo6s os dados passarem por todo o fluxo do TSC, podemos atualizar a matriz de
confusdo da Tabela 23, para que ela reflita a classificagao final de pacientes em risco.
A Tabela 30 apresenta a matriz de confuséo atualizada.

Ao comparar a matriz de confusédo da Tabela 23 com a apresentada na Tabela 30,
percebemos um aumento na precisdo tanto da classe N L quanto da classe NOT N L.
Ja a sensibilidade da classe N L, teve um aumento consideravel, passando de 73,7%
para 91%. Contudo, a sensibilidade da classe NOT_N L teve uma pequena diminui-
cao, uma vez que a taxa de falsos positivos aumentou de 69 para 74. Desta forma,
o sistema como um todo atingiu uma precisao de 83,3%, ao classificar corretamente
499 pacientes de um total de 600.
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Tabela 30: Matriz de confusdo da classificacdo de pacientes em risco ap6s o proces-
samento do TSC

Classe predita
NL NOT_NL Sensibilidade
NL 27 0,910
Classe atual NOT_NL 74 0,753
Precisdo 0,787 0,893

Ao comparar com trabalhos relacionados, lembramos que nenhum dos trabalhos
encontrados na literatura fazem a classificacdo de pacientes em risco de desenvolver
a DA da forma como foi explorada neste trabalho. Portanto, qualquer comparacéao
seria injusta. De qualquer forma, na Tabela 31, acrescentamos os resultados dos
dois métodos propostos por este trabalho (classificacdo da DA - ADC e o Two-Step
Classifier - TSC).

5.2.3 Identificacao de Pacientes em Fase Pré-Clinica

Esta secao tem como objetivo analisar os resultados obtidos pelo first-step do TSC,
com o objetivo de identificar pacientes que estao na fase pré-clinica da DA. Para tanto,
foram separados os pacientes classificados como NOT_N L mas que sao, atualmente,
da classe NL. Ou seja, os falsos negativos. Esse estudo foi realizado para os algo-
ritmos que atingiram melhores resultados para experimentos TSC-D-CSF-PET-MRI,
TSC-D-CSF-PET, TSC-D-CSF-MRI e TSC-D-MRI.

Como todos as instancias de exames utilizadas neste trabalho sao referentes a
primeira visita (VISCODE = bl) dos pacientes, para cada um desses, foi selecionado
o diagnostico referente ao ultimo conjunto de exames realizado. Desta forma, foi pos-
sivel observar aqueles pacientes que converteram de NL para MCI ou Dementia.
Esse valor contabilizado na variavel chamada Converters. Ou seja, sao classificados
como Converters, aqueles pacientes que apds certo tempo converteram de N L para
MCT oude NL para Dementia.

A Tabela 32 mostra a taxa de identificacao de pacientes Converters para 0s expe-
rimentos mencionados acima.

Na coluna Pred. NOT_N L temos a quantidade de pacientes classificados como
NOT _NL pelo método correspondente. A coluna True NL contabiliza a quan-
tidade de individuos que sao verdadeiros NI, isto é, que nao converteram para
MCT ou Dementia até 0 momento atual do estudo ADNI. A coluna Converters exibe
a quantidade de pacientes que converteram para MCI ou Dementia € a coluna
Tazxa de Converters exibe a taxa de identificagdo dos individuos que converteram.

Como podemos observar, para o conjunto de dados TSC-D-CSF-PET-MRI e al-
goritmos GBT e RLog, a taxa de Converters foi de 33,33%. Ou seja, dos pacien-
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tes classificados como NOT _N L, 33,33% converteram para os estagios de M CT ou
Dementia com o passar do tempo. Ja para o conjunto de dados TSC-D-MRI, a taxa
de Converters foi de 24,66%. Para os outros conjuntos de dados e algoritmos, essa
taxa ficou entre 25% e 30%.

Assim, o TSC se mostra eficiente em dois eixos: identificacdo de pacientes em
risco e na fase pré-clinica da DA. Desta forma, o método proposto neste trabalho
pode ser utilizado para auxiliar profissionais da area da saude, colaborando com o
diagndéstico e a identificacdo de pacientes em risco de desenvolverem a DA.
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Tabela 32: Taxa de identificagéo dos converters para os experimentos realizados
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Conjunto de Dados

Método Pred. NOT_NL True NL Converters Taxa de Converters

TSC-D-CSF-PET-MRI GBT 72 48 24 33,33%
RLog 54 36 18 33,33%
TSC-D-PET-CSF GBT 77 54 23 29,87%

o,
TSC-D-CSF-MRI GBT 77 57 20 25,97%
RLog 59 42 17 28,81%
TSC-D-MRI GBT 79 60 19 24,05%




6 CONCLUSAO

Este trabalho apresentou um estudo sobre os principais conceitos e caracteristicas
da DA. O estudo realizado abordou o histérico da doenca, o entendimento de como a
doenca se comporta, juntamente com seus sintomas e estagios. As duas principais
hipdteses que explicam os mecanismos que causam a doenca foram explanadas. S&o
elas: a deposicao de placas de A3 e o acumulo de emaranhados neurofibrilares.

Ainda, foi feito um estudo acerca do esfor¢co de pesquisa global ADNI, que apoia
a investigagao e desenvolvimento de tratamentos para a DA. Este estudo avalia bio-
marcadores clinicos, de imagem, genéticos e de bioespécime, através do processo de
envelhecimento normal até o comprometimento cognitivo leve precoce, o comprome-
timento cognitivo leve tardio, a deméncia ou DA.

Com esse estudo, foi proposto um método para diagndéstico da DA, onde foram
avaliados diferentes conjuntos de biomarcadores e algoritmos. Os algoritmos avali-
ados foram as Random Forests, Multilayer Perceptron, Regressao Logistica, Arvores
de Decisao e Maquina de Vetores de Suporte. Além disso, foi aplicado o método de
Stacked Generalization (SG), que utiliza a saida de diversos preditores para melhorar
o erro de predicdo. Com o uso do SG, foi possivel obter uma acuracia de 76,2% com
AUC de 0,790 para a classificacdo do estagio da DA sem a necessidade de utilizar
testes neuropsicolégicos.

Também, é proposto neste trabalho o Two-Step Classifier (TSC), método para di-
agnostico da DA realizado em duas etapas. No first-step, é feita a identificacdo de
pacientes em risco de desenvolver a doenga. No second-step, é realizado o diag-
néstico do estagio da DA. Além disso, com o TSC, foi feito um estudo sobre a fase
pré-clinica da DA, em busca de identificar pacientes que ainda nao apresentam défi-
cit cognitivo, mas ja sdo biomarcadores-positivos para a DA. Ou seja, ja apresentam
sinais que irdo desenvolver a doenga mesmo sem expor 0s sintomas iniciais. Com o
TSC, foi possivel identificar 33,33% de pacientes que estdo na fase pré-clinica da DA.
Ademais, foi possivel identificar, utilizando apenas dados demograficos e imagem de
MRI, com uma acurécia de 78,1% e AUC de 0,847, individuos que estdo em risco de
desenvolver a DA.
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Como trabalhos futuros, o estudo sera expandido para outras doencas neurodege-
nerativas, como a Doenca de Parkinson e a Doenca de Huntington. Também, serédo
estudados os diversos tipos de imagens de exames médicos, como MRI, PET e ou-
tros, para aplicacao de técnicas de Deep Learning com o propésito de extrair padroes
gue auxiliem no diagndéstico atual e futuro de individuos com essas doencas.
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ANEXO A ITENS NO ARQUIVO DE DADOS ADNI

Tabela 33: Itens no Arquivo de Dados ADNI - Categoria Assessments (ADNI, 2016b)

Subcategory ltem

Diagnosis Conversions Confirmed by Conversion Committee [ADNI1]
Diagnosis Diagnosis and Symptoms Checklist [ADNI1,GO,2]

Diagnosis Diagnostic Summary — Baseline Changes [ADNI1,GO,2]
Diagnosis Diagnostic Summary [ADNI1,GO,2]

Neuropsychological ADAS Sub-Scores and Total Scores [ADNI1]
Neuropsychological Alzheimer’s Disease Assessment Scale (ADAS) [ADNI1]
Neuropsychological Alzheimer’s Disease Assessment Scale (ADAS) [ADNIGO,2]
Neuropsychological Clinical Dementia Rating Scale (CDR) [ADNI1,GO,2]
Neuropsychological Everyday Cognition — Participant Self Report [ADNIGO,2]
Neuropsychological Functional Activities Questionnaire (FAQ) [ADNI1,GO,2]
Neuropsychological Geriatric Depression Scale (GDS) [ADNI1,GO,2]
Neuropsychological Mini-Mental State Examination (MMSE) [ADNI1,GO,2]
Neuropsychological Modified Hachinski Ischemia Scale [ADNI1,GO,2]
Neuropsychological Montreal Cognitive Assessment (MoCA) [ADNIGO, 2]
Neuropsychological Neuropsychiatric Inventory (NPI) [ADNIZ2]
Neuropsychological Neuropsychiatric Inventory Questionnaire (NPI-Q) [ADNI1,GO,2]

Neuropsychological Neuropsychological Battery [ADNI1,GO,2]
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Tabela 34: ltens no Arquivo de Dados ADNI - Categoria Biospecimen (ADNI, 2016b)

Subcategory

Item

Lab Collection Procedures
Lab Collection Procedures
Lab Collection Procedures

Lab Results

Lab Results
Lab Results
Lab Results
Lab Results
Lab Results
Lab Results
Lab Results
Lab Results
Lab Results
Lab Results
Lab Results
Lab Results
Lab Results
Lab Results
Lab Results
Lab Results
Lab Results

ApoE Genotyping — Draw Data [ADNI1,GO]

Clinical Laboratory Tests [ADNI1,GO,2]

Laboratory Data [ADNI1,GO]

ADNI Biomarker Core Laboratory. Baseline Isoprostanes Data Dictio-
nary [ADNI1]

ADNI Biomarker Core Laboratory. Baseline Isoprostanes Data [ADNI1]
ApoE — Results [ADNI1,GO]

Biomarker Samples [ADNI1,GO,2]

CSF — Local Lab Results [ADNI1,GO,2]

CSF Multiplex Proteomics

Homocysteine — Results [ADNI1,GO]

Rules Based Medicine Plasma Multiplex QC Data Dictionary [ADNI1]
Rules Based Medicine Plasma Multiplex QC Data Dictionary [ADNI1]
Rules Based Medicine Plasma Multiplex QC Data [ADNI1]

Rules Based Medicine Plasma Multiplex Raw Data [ADNI1]

UPENN — Biomarker Data [ADNI1]

UPENN — Longitudinal Biomarker Data (3 yr) Dictionary [ADNI1]
UPENN - Longitudinal Biomarker Data (3 yr) [ADNI1]

UPENN - Longitudinal Biomarker Data Dictionary [ADNI1]

UPENN — Longitudinal Biomarker Data [ADNI1]

UPENN Plasma Biomarker Data Dictionary [ADNI1]

UPENN Plasma Biomarker Data [ADNI1]

Tabela 35: Itens no Arquivo de Dados ADNI - Categoria Enroliment (ADNI, 2016b)

Subcategory ltem

Enroliment Additional Comments [ADNI1,GO,2]

Enrollment Arm [ADNI1,GO,2]

Enrollment Early Discontinuation and Withdrawal [ADNI1,GO,2]
Enroliment Exclusion Criteria [ADNI1]

Enroliment Inclusion Criteria [ADNI1]

Enrollment Registry [ADNI1,GO,2]

Enrollment Roster [ADNI1,GO,2]

Enrollment Visits [ADNI1,GO,2]




Tabela 36: Itens no Arquivo de Dados ADNI - Categoria Genetic (ADNI, 2016b)
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Subcategory

Item

Genetic Data Info
Genetic Data Info
Genetic Data Info
Genotype Results
Genotype Results
Genotype Results
Genotype Results
Genotype Results
Genotype Results
Genotype Results
Genotype Results
Genotype Results
Genotype Results
Genotype Results
Genotype Results
Genotype Results
Genotype Results

About the Genetic Data
About the TOMM40 PolyT Variant Data
DNA Source Reference

Deprecated-SNP genotype data — set 12 of 11 (CSV Format)
Deprecated-SNP genotype data — set 12 of 11 (CSV Format)

SNP genotype data — set 01 of 11 (CSV Format)
SNP genotype data — set 02 of 11 (CSV Format)
SNP genotype data — set 03 of 11 (CSV Format)
SNP genotype data — set 04 of 11 (CSV Format)
SNP genotype data — set 05 of 11 (CSV Format)
SNP genotype data — set 06 of 11 (CSV Format)
SNP genotype data — set 07 of 11 (CSV Format)
SNP genotype data — set 08 of 11 (CSV Format)
SNP genotype data — set 09 of 11 (CSV Format)
SNP genotype data — set 10 of 11 (CSV Format)
SNP genotype data —set 11 of 11 (CSV Format)
TOMMA40 PolyT Variant Data (CSV Format)
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Tabela 37: ltens no Arquivo de Dados ADNI - Categoria Imaging (ADNI, 2016b)

Subcategory

Item

MR Image Acquisition
MR Image Acquisition
MR Image Acquisition
MR Image Acquisition
MR Image Acquisition
MR Image Acquisition
MR Image Acquisition
MR Image Acquisition
MR Image Quality

MR Image Quality

MR Image Quality

MR Imaging Analysis
MR Imaging Analysis
MR Imaging Analysis
MR Imaging Analysis
MR Imaging Analysis

MR Imaging Analysis
MR Imaging Analysis
MR Imaging Analysis
MR Imaging Analysis
MR Imaging Analysis
MR Imaging Analysis
MR Imaging Analysis
MR Imaging Analysis
MR Imaging Analysis
MR Imaging Analysis

MR Imaging Analysis
MR Imaging Analysis
MR Imaging Analysis
MR Imaging Analysis
MR Imaging Analysis
MR Imaging Analysis
MR Imaging Analysis
MR Imaging Analysis
MR Imaging Analysis
MR Imaging Analysis
PET Image Acquisition
PET Image Acquisition
PET Image Acquisition
PET Image Acquisition
PET Image Acquisition
PET Image Quality
PET Image Quality
PET Image Quality
PET Imaging Analysis
PET Imaging Analysis
PET Imaging Analysis
PET Imaging Analysis
PET Imaging Analysis
PET Imaging Analysis
PET Imaging Analysis
PET Imaging Analysis

1.5T MRI Scan Information [ADNI1,GO,2]

3T MRI Scan Information [ADNI1,GO,2]

MRI B1 Calibration [ADNI1,GO,2]

MRI Clinical Read [ADNI1]

MRI Phantom [ADNI1,GO,2]

MRI Protocol [ADNI1,GO,2]

MRI Serial [ADNI1,GO,2]

MRI Subject Inclusion [ADNI1,GO,2]

MRI MPRAGE Process [ADNI1,GO,2]

MRI MPRAGE Ranking [ADNI1,GO,2]

MRI Quality [ADNI1,GO,2]

Deprecated-Stroke Summary Dictionary [ADNI1]
Deprecated-Stroke Summary [ADNI1]

Stroke Summary Dictionary Version 2 [ADNI1]

Stroke Summary Version 2 [ADNI1]

UA — MRI SPM Voxel Based Morphometry (VBM) Analysis Dictionary
[ADNI1]

UA — MRI SPM Voxel Based Morphometry (VBM) Analysis [ADNI1]
UCL — Boundary Shift Integral Summaries Dictionary [ADNI1]
UCL - Boundary Shift Integral Summaries [ADNI1]

UCLA — Average Jacobian Dictionary [ADNI1]

UCLA — Average Jacobian [ADNI1]

UCSD — Derived Volumes Dictionary [ADNI1]

UCSD — Derived Volumes [ADNI1]

UCSF - Cross-Sectional FreeSurfer Dictionary [ADNI1]
UCSF — Cross-Sectional FreeSurfer [ADNI1]

UCSF - Longitudinal FreeSurfer (FreeSurfer Version 4.4) Dictionary
[ADNI1]

UCSF - Longitudinal FreeSurfer (FreeSurfer Version 4.4) [ADNI1]
UCSF — Longitudinal FreeSurfer Dictionary [ADNI1]

UCSF - Longitudinal FreeSurfer [ADNI1]

UCSF — Regional Atrophy Rates Dictionary [ADNI1]

UCSF — Regional Atrophy Rates [ADNI1]

UCSF — SNT Hippocampal Volumes Dictionary [ADNI1]
UCSF — SNT Hippocampal Volumes [ADNI1]

UPENN — SPARE-AD Dictionary [ADNI1]

UPENN — SPARE-AD [ADNI1]

UWO — Ventricular Volumes [ADNI1]

AV-45 PET Scan Information [ADNIGO,2]

FDG PET Scan Information [ADNI1]

FDG PET Scan Information [ADNIGO/ADNI2]

FDG/AV45 PET Scan Information

PIB Scan Information [ADNI1]

AV-45 PET QC Tracking [ADNIGO,2]

PET QC Tracking [ADNI1,GO,2]

PIB QC Tracking [ADNI1]

Banner Alzheimer’s Institute NMRC Summaries Dictionary [ADNI1]
Banner Alzheimer’s Institute NMRC Summaries [ADNI1]

UCB — PET ROI Analysis Dictionary [ADNI1]

UCB — PET ROI Analysis [ADNI1]

UPitt — PIB PET Analysis Dictionary [ADNI1]

UPitt — PIB PET Analysis [ADNI1]

UU — PET Analysis Dictionary [ADNI1]

UU — PET Analysis [ADNI1]
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Tabela 38: ltens no Arquivo de Dados ADNI - Categorias Medical History, Study Info e
Subject Characteristics (ADNI, 2016b)

Subcategory

Item

Adverse Events
Adverse Events

Drugs

Drugs

Medical History
Medical History
Medical History
Physical/Neurological
Physical/Neurological
Physical/Neurological
Physical/Neurological
Physical/Neurological
Physical/Neurological
Physical/Neurological
Data & Database
Study Protocols & CRFs
Family History

Family History

Subject Demographics

Adverse Events/ Hospitalizations [ADNI1,GO,2]
AV-45 24-48 Hour Follow-Up [ADNIGO,2]
Concurrent Medications Log [ADNI1,GO,2]

Key Background Medications [ADNIGO,2]
Documentation of Baseline Symptoms Log [ADNI1,GO,2]
Medical History [ADNI1,GO,2]

Recent Medical History Details Log [ADNI1,GO,2]
AV-45 Pre and Post Injection Vitals [ADNIGO,2]
Baseline Symptoms Checklist [ADNI1,GO,2]

NACC Autopsy Information Dictionary [ADNI1]
NACC Autopsy Information [ADNI1]

Neurological Exam [ADNI1,GO,2]

Physical Exam [ADNI1,GO,2]

Vital Signs [ADNI1,GO,2]

Data dictionary [ADNI1,GO,2]

ADNI Neuropsychological Assessment Matrix (PDF)
Family History Questionnaire Subtable [ADNI1,GO,2]
Family History Questionnaire [ADNI1,GO,2]

Subject Demographics [ADNI1,GO,2]




	Introdução
	Objetivos
	Organização do Trabalho

	A Doença de Alzheimer
	Patofisiologia
	A deposição de placas de Abeta
	O acúmulo de emaranhados neurofibrilares e a proteína tau

	Neuropatologia
	Biomarcadores
	Sintomas e estágios da doença de Alzheimer
	Comprometimento cognitivo leve
	Estágio inicial
	Estágio intermediário
	Estágio avançado

	Fatores de risco
	Idade
	Genética

	Alzheimer’s Disease Neuroimaging Initiative
	Trabalhos Correlatos
	Estudos cross-sectional
	Estudos follow-up

	Considerações finais do capítulo

	Inteligência Artificial e a Área Médica
	Árvores de decisão
	Random Forest
	Gradient Boosted Trees

	Rede neural artificial
	Multilayer perceptron

	Regressão linear
	Regressão logística
	Modelo Linear Generalizado
	Máquina de vetor de suporte
	k-vizinhos mais próximos
	Stacked Generalization
	Métricas de avaliação
	Matriz de confusão
	Métricas derivadas da matriz de confusão
	Acurácia
	Precisão
	Sensibilidade
	F1 Score
	Área sob a curva ROC


	Metodologia e trabalho proposto
	Biomarcadores utilizados
	Classificação da Doença de Alzheimer
	Conjunto de Dados
	Classificadores
	Avaliação dos Resultados

	Two-step classifier
	Conjunto de Dados
	Classificadores
	Avaliação dos Resultados


	Resultados
	Classificação da Doença de Alzheimer
	Two-step classifier
	First-step
	Second-step
	Identificação de Pacientes em Fase Pré-Clínica


	Conclusão
	Referências
	Itens no Arquivo de Dados ADNI

