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RESUMO

POVALA, Guilherme. Método para diagnóstico e identificação de pacientes em
risco de desenvolver Alzheimer utilizando técnicas de Inteligência Artificial.
2018. 97 f. Dissertação (Mestrado em Computação) – Programa de Pós-Graduação
em Computação, Centro de Desenvolvimento Tecnológico, Universidade Federal de
Pelotas, Pelotas, 2018.

Ao longo dos anos, os avanços em pesquisas relacionadas a saúde permitiram
descobrir curas e tratamentos para inúmeras doenças. No entanto, ainda existem vá-
rias doenças para as quais a cura é desconhecida e os tratamentos existentes são
ineficazes. Dentre elas, está a Doença de Alzheimer (DA), que é uma doença neuro-
degenerativa crônica e atinge principalmente pessoas com mais de 65 anos de idade.
A DA não tem cura e o diagnóstico precoce é essencial para novas estratégias tera-
pêuticas. Com isso, a busca por tratamentos que possam retardar a progressão da
patologia se tornam essenciais, principalmente se a doença for descoberta precoce-
mente. Desta forma, faz-se necessário identificar pacientes que estão em risco de
desenvolver a doença, de preferência de uma forma não invasiva, com um baixo custo
para implementação e aplicação e acessível para grande parte da população. Por-
tanto, este trabalho se propõe a estudar a DA, suas características e a base de dados
da Alzheimer’s Disease Neuroimaging Initiative (ADNI), que contém biomarcadores
clínicos, de imagem, genéticos e de bioespécime, obtendo assim o conhecimento ne-
cessário para desenvolver um método para classificação de pacientes que tendem a
progredir de um estágio pré-clinico ou de pré-demência para DA, a fim de identificar
indivíduos em risco de desenvolver a doença. Desta forma, é proposto o Two-Step
Classifier (TSC), um método de classificação de pacientes em risco. O TSC foi mode-
lado na ferramenta RapidMiner Studio e é arquitetado em duas etapas. O first-step é
responsável pela classificação de pacientes em risco, enquanto o second-step realiza
a predição do estado cognitivo dos pacientes. O TSC atinge uma precisão de 89,3%
na identificação de pacientes em risco de desenvolver Alzheimer.

Palavras-Chave: doença de alzheimer; diagnóstico; inteligência artificial; alzheimer
pré-clínico



ABSTRACT

POVALA, Guilherme. Method for diagnosis and identification of patients at risk
of developing Alzheimer’s disease using Artificial Intelligence techniques. 2018.
97 f. Dissertação (Mestrado em Computação) – Programa de Pós-Graduação em
Computação, Centro de Desenvolvimento Tecnológico, Universidade Federal de
Pelotas, Pelotas, 2018.

Over the years, advances in health research have led to discovering cures and treat-
ments for numerous diseases. However, there are still several diseases in which the
cure is unknown and the existing treatments are ineffective. Among them is Alzheimer’s
Disease (AD), which is a chronic neurodegenerative disease and affects mainly peo-
ple over 65 years old. The AD has no cure and early diagnosis is essential for new
therapeutic strategies. Thus, the search for treatments that may delay the progres-
sion of the disease becomes essential, especially if the disease is discovered early.
This way, it is necessary to identify patients who are at risk of developing the disease,
preferably in a non-invasive manner, with a low cost for implementation and application
and accessible to a large part of the population. Therefore, this work aims to study
Alzheimer’s disease, its characteristics and the database of the Alzheimer’s Disease
Neuroimaging Initiative (ADNI), which contains clinical, imaging, genetic and biospec-
imen biomarkers, thus obtaining the necessary knowledge to develop a method for
classifying patients who tend to progress from a preclinical stage or from pre-dementia
to AD, in order to identify individuals at risk of developing the disease. In this way, the
Two-Step Classifier (TSC), a method of classifying patients at risk, is proposed. The
TSC was modeled in the RapidMiner Studio tool and is architected in two steps. The
first-step is responsible for the classification of patients at risk, while the second-step
performs the prediction of patients’ cognitive status. TSC reaches a precision of 89.3%
in identifying patients at risk of developing Alzheimer.

Key-words: alzheimer disease; diagnosis; artificial intelligence; preclinical alzheimer
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1 INTRODUÇÃO

Nas últimas décadas, as pesquisas médicas, as descobertas científicas e as me-
lhorias na educação e nas condições de vida no cenário mundial causaram uma redu-
ção significativa nas chances de desenvolvimento de pandemias causadas por agen-
tes patogênicos infecciosos (G7, 2017). Desta forma, o crescimento populacional nas
últimas décadas veio também acompanhado de um aumento progressivo do número
de idosos. Em países desenvolvidos, a expectativa de vida já atinge valores acima
dos 80 anos. No Japão, por exemplo, a expectativa de vida era de 83,7 anos em 2015
(WHO, 2015).

Hoje, as principais causas de morte de pessoas idosas nos Estados Unidos e na
Europa ainda são as doenças cardiovasculares e o câncer (CDC, 2017; EUROSTAT,
2017). No entanto, as causas de morte por essas doenças tem decrescido anual-
mente (ASSOCIATION, 2017). O avanço na diminuição da mortalidade relacionada
com estas duas doenças contribuiu ainda mais para o crescimento no número de ci-
dadãos idosos, o que provocou um aumento sem precedentes no número de pessoas
afetadas por doenças neurodegenerativas (GOOCH; PRACHT; BORENSTEIN, 2017).

Doenças neurodegenerativas são classificadas como uma série de condições que
afetam principalmente os neurônios, encontrados no sistema nervoso central e perifé-
rico. Além disso, essas doenças são condições incuráveis e debilitantes que resultam
em degeneração progressiva, o que reflete em disfunção motora ou cognitiva progres-
siva (JPND, 2017).

Dentre elas, temos a Doença de Alzheimer (DA), que se apresenta fortemente re-
lacionada com a idade avançada de seus portadores e está entre as dez principais
doenças sem cura conhecida que resultam em morte (WHO, 2017). Além disso, a DA
é uma doença neurodegenerativa crônica que geralmente tem um início lento e pro-
gride com o passar do tempo (BURNS; ILIFFE, 2009; WHO, 2015). Ela se caracteriza
pela deposição de placas de beta-amiloide (A�, do inglês Amyloid-beta) e emaranha-
dos neurofibrilares (NFT, do inglês Neurofibrillary Tangles) compostos de proteína tau
hiperfosforilada no cérebro, acompanhados por disfunção sináptica e neurodegenera-
ção – morte neural progressiva no cérebro – em regiões cerebrais relacionadas com
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aprendizado e memória, como o córtex e o hipocampo (BURNS; ILIFFE, 2009; WHO,
2015; SEVIGNY et al., 2016). Com o avanço gradual da doença, aparecem sintomas
como confusão mental, desorientação, irritabilidade, agressividade, alterações de hu-
mor, falhas na linguagem e perda de memória, até o aparecimento das manifestações
de demência (BURNS; ILIFFE, 2009; WHO, 2015).

A demência é uma maneira de descrever um conjunto de sintomas como deterio-
ração da memória e incapacidade de absorver novas informações e faz com que seja
muito difícil viver de uma forma independente (WHO, 2015). Normalmente causada
por algum tipo de disfunção cerebral, ela pode se originar de uma série de doenças. A
DA é a forma mais comum de demência, correspondendo a cerca de 60% a 70% dos
casos (BURNS; ILIFFE, 2009; WHO, 2015). Só no ano de 2010, a demência resultou
em cerca de 486 mil mortes (LOZANO et al., 2012).

Apesar de ser difícil identificar o início da DA, existem sintomas comuns que po-
dem ajudar no diagnóstico. O sintoma inicial mais frequente é a dificuldade em re-
cordar acontecimentos recentes (perda de memória de curto prazo) (BURNS; ILIFFE,
2009). Não raro, os primeiros sintomas da doença são confundidos com os processos
normais de envelhecimento ou estresse (WALDEMAR et al., 2007), como (REPORTS,
2012):

• esquecer-se ocasionalmente das coisas;

• perder ocasionalmente objetos;

• pequenas perdas de memória a curto prazo;

• esquecer-se que ocorreram lapsos de memória.

Em 2015, havia cerca de 46 milhões de pessoas em todo o mundo com Alzhei-
mer (WHO, 2015), com previsão de que 1 em cada 85 habitantes seja afetado com a
doença no ano de 2050 (BROOKMEYER et al., 2007). Geralmente, a DA começa se
manifestar em pessoas com mais de 65 anos de idade, apesar de 4% a 5% dos casos
serem de início precoce (MENDEZ, 2012). A doença afeta 1% dos idosos entre os
65 e 70 anos, mas a prevalência aumenta exponencialmente com a idade, sendo de
6% aos 70, 30% aos 80 anos e mais de 60% após os 90 anos (BERMEJO-PAREJA
et al., 2008). Como podemos visualizar no gráfico da Figura 1, a projeção do número
de idosos com 65 anos ou mais, nos Estados Unidos, que desenvolverão Alzheimer e
chegarão ao estágio de demência tende a crescer de forma acelerada nos próximos
trinta anos.

Não obstante, como pode ser visto na Figura 2, a DA é a doença que teve o maior
aumento em causas de morte entre os anos de 2000 e 2014 nos Estados Unidos.
Inclusive, outras doenças, como câncer de mama e de próstata, doenças do cora-
ção, acidente vascular encefálico e HIV tiveram uma diminuição no número de mortes
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Figura 1: Número projetado de pessoas com 65 anos ou mais (total e por faixa etária)
na população dos EUA com demência de Alzheimer (ASSOCIATION, 2017)

Figura 2: Causas de morte por doença entre os anos de 2000 e 2014 (ASSOCIATION,
2017)

nesse período, devido ao avanço e sucesso de estratégias de diagnóstico precoce e
tratamento.

Embora a velocidade de progressão da doença possa variar, a esperança média
de vida após o diagnóstico é de três a nove anos (QUERFURTH; LAFERLA, 2010;
TODD et al., 2013). Mesmo que a DA reduza a expectativa de vida do paciente, é
outra comorbidade ou doença que pode realmente levar o paciente a óbito. Esta outra
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condição ou doença provavelmente listada como a causa no certificado de morte da
pessoa é, comumente, a pneumonia, sendo ela a responsável por até dois terços das
causas de morte das pessoas com demência (SOCIETY, 2012).

Apesar do grande esforço e pesquisas sobre a doença, não existe um tratamento
efetivo para a DA. Todavia, acredita-se amplamente que a patogênese causadora da
DA seja a disfunção do metabolismo da proteína precursora de amiloide (APP, do
inglês Amyloid Precursor Protein), que leva a hiperprodução e deposição do peptídeo
A� no cérebro em forma de placas de A� (MURPHY; LEVINE, 2010).

Em um artigo publicado recentemente por SEVIGNY et al. (2016), foi relatado que a
imunoterapia com um anticorpo monoclonal, denominado aducanumab, remove agre-
gados de A� seletivamente. Dependendo da dose utilizada, com um ano de trata-
mento as placas de A� foram drasticamente reduzidas. A Figura 3 mostra a redução
de placas A� – medidas por exame de imagem por tomografia por emissão de pósi-
trons (PET, do inglês Positron Emission Tomography ) – após um ano de tratamento
com aducanumab em diferentes doses.

Figura 3: Redução de placas de A� com a aplicação do anticorpo: exemplos de ima-
gens no início e após um ano (SEVIGNY et al., 2016)

Como pode ser visto na Figura 3, após um ano de tratamento, houve uma dimi-
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nuição significativa nos grupos em que foram aplicadas doses de 3, 6 e 10 mg kg´1,
enquanto que a alteração para o grupo placebo foi mínima (SEVIGNY et al., 2016).

Além do mais, essa redução de placas de A� foi acompanhada pela diminuição do
declínio clínico do paciente. Com estes resultados, o desenvolvimento de imunotera-
pias para o tratamento da DA fica cada vez mais justificado (SEVIGNY et al., 2016).

Dessa maneira, mesmo sabendo que ainda não há cura para a doença, estamos
cada vez mais perto de um tratamento que diminua ou até possa impedir o declínio
cognitivo do paciente. Portanto, busca-se, principalmente, retardar a progressão da
doença, melhorar os sintomas, resolver os problemas comportamentais e melhorar a
qualidade de vida. Assim, se a doença for diagnosticada em uma fase precoce, exis-
tem tratamentos que podem desacelerar temporariamente o desenvolvimento de sin-
tomas de demência (WHO, 2015) ou até mesmo levar a cura, caso o trabalho de SE-
VIGNY et al. (2016) se confirme em pacientes portadores de Alzheimer.

Porém, para diagnosticar e definir em que estágio da DA se encontra determinado
indivíduo, geralmente é necessária uma avaliação clínica composta por vários tipos
de testes, como exames de imagem e exames clínicos, uma vez que ainda não existe
um exame único que permita identificar a doença em qualquer paciente. Dentre os
exames realizados, os principais são os testes neuropsicológicos, testes de imagem
cerebral, como ressonância magnética (MRI, do inglês Magnetic Resonance Imaging)
e PET, testes genéticos, testes de fluido espinal e outros.

Neste cenário, o custo econômico para o tratamento dos pacientes portadores da
DA é altíssimo (BONIN-GUILLAUME et al., 2005; MEEK; MCKEITHAN; SCHUMOCK,
1998). Considerando apenas os testes de imagem nos EUA, o custo de um exame
de MRI fica entre US$1500 e US$3000. Já o exame de PET custa entre US$3000 e
US$6000 (SCOTT, 2016). Portanto, realizar todos os exames que normalmente são
requisitados pelos médicos para o diagnóstico da DA torna-se caro – não escalando
para número elevado de pessoas – e, ainda assim, não detecta a doença antes dela
começar a causar danos cognitivos.

1.1 Objetivos

Levando em consideração a importância da saúde mental das pessoas e que o
diagnóstico precoce da DA é de extrema importância para que haja tempo suficiente
para que ações sejam tomadas para retardar, atenuar, ou até mesmo evitar o avanço
da doença, este trabalho tem como objetivo principal propor um método de diagnóstico
da DA que permita classificar pacientes em estado de risco, ou seja, que já possuem
a DA ou estão em fase inicial de perda cognitiva.

Além disso, considerando os altos custos envolvidos nos exames médicos, foi defi-
nido um sub-conjunto de exames a serem utilizados que apresentam a melhor relação
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entre precisão do diagnóstico da doença e acessibilidade para grande parte da popu-
lação.

Desta forma, temos como objetivos específicos do trabalho:

• Estudar a doença de Alzheimer: patofisiologia, neuropatologia, biomarcadores,
sintomas e estágios da doença e fatores de risco;

• Estudar a iniciativa ADNI e sua base de dados, possibilitando o entendimento
dos biomarcadores ali presentes;

• Estudar técnicas de Inteligência Artificial que possam ser aplicadas para a solu-
ção do problema;

• Avaliar os exames que mais contribuem para uma melhor precisão de classifica-
ção e que sejam acessíveis a grande parte da população;

• Propor um método de diagnóstico da DA que permita classificar pacientes em
estado de risco.

1.2 Organização do Trabalho

Este trabalho está dividido em seis capítulos. No capítulo 2 é apresentada a do-
ença de alzheimer, suas principais características, a iniciativa ADNI e trabalhos cor-
relatos. No capítulo 3 são discutidas as diferentes técnicas de Inteligência Artificial e
métrias de avaliação utilizadas neste trabalho. No capítulo 4, a metodologia e o tra-
balho proposto são apresentados. No capítulo 5, são discutidos os resultados obtidos
pelo trabalho. Por fim, o capítulo 6, conclui o trabalho e apresenta possibilidades de
trabalhos futuros.



2 A DOENÇA DE ALZHEIMER

Os antigos filósofos e médicos gregos e romanos associavam a velhice com o
aumento da demência (BERCHTOLD; COTMAN, 1998). Porém, em 1906/1907 o
psiquiatra alemão Alois Alzheimer identificou o primeiro caso da patologia que ficou
conhecida, posteriormente, como Doença de Alzheimer. Nesse caso, uma mulher
de cinquenta anos de idade, chamada Auguste Deter, exibia declínio cognitivo pro-
gressivo, alucinações e incompetência psicossocial (STRASSNIG; GANGULI, 2005;
ALZHEIMER, 1987; MAURER; MAURER, 2003). Ao realizar a autópsia do cérebro
de Auguste Deter, foram encontradas deposições de algumas substâncias peculiares
espalhadas pelo córtex cerebral (JUCKER, 2006).

Após a morte de Auguste, em 1906, onze casos semelhantes foram relatados na
literatura médica nos cinco anos seguintes, sendo que alguns deles já usavam o termo
DA (BERCHTOLD; COTMAN, 1998). Até o ano de 1977, a DA era caracterizada como
uma doença pré-senil e seu diagnóstico era reservado para indivíduos com idades en-
tre os 45 e os 65 anos que desenvolveram sintomas de demência. Nesse ano, em uma
conferência sobre a DA, que concluiu-se que as manifestações clínicas e patológicas
de demência pré-senil e senil eram quase idênticas, sem excluir, no entanto, a pos-
sibilidade de que elas tenham causas diferentes (KATZMAN; TERRY; BICK, 1978).
Sendo assim, a idade deixou de ser um fator determinante para o diagnóstico da
doença (BOLLER; FORBES, 1998). Desta forma, o termo Alzheimer começou a ser
usado, eventualmente, para descrever indivíduos com qualquer idade que apresentem
características padrões comuns da doença (AMADUCCI; ROCCA; SCHOENBERG,
1986).

Como mencionado anteriormente, ao ser feita a autópsia do cérebro de Auguste
Deter, algumas substâncias foram encontradas no córtex cerebral. Hoje, sabe-se que
essas substâncias são as principais características neuropatológicas que indicam a
DA: a deposição de placas de A� e a formação de emaranhados neurofibrilares (NIS-
BET et al., 2015; THAL et al., 2015). Essas características serão detalhadas na pró-
xima seção.
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2.1 Patofisiologia

A DA afeta os três processos que mantêm as células cerebrais saudáveis: a co-
municação, o metabolismo e a reparação. Consequentemente, certas células neurais
param de funcionar, perdem suas conexões com células adjacentes e finalmente mor-
rem. A destruição e morte dessas células pode provocar a sintomatologia clássica
da DA: falha de memória, mudanças de personalidade, problemas na realização de
atividades diárias e outras características da doença (LAKHAN, 2016).

Embora os mecanismos que causam a DA não sejam completamente compreen-
didos, exceto para os casos em que diferenças genéticas são identificadas (ASSOCI-
ATION, 2010a; REITZ; MAYEUX, 2014), há duas fortes hipóteses que são frequente-
mente citadas: (i) a deposição de placas de A� (HARDY; HIGGINS, 1992; HARDY;
SELKOE, 2002; THAL et al., 2015) e o (ii) acúmulo de emaranhados neurofibrila-
res (NISBET et al., 2015).

2.1.1 A deposição de placas de A�

A DA é uma doença caracterizada por anomalias no enovelamento de proteínas1,
causada pelo acúmulo de proteínas A� e tau no cérebro (HASHIMOTO et al., 2003). A
hipótese de amiloide postula que a deposição de placas de proteínas de A� é a prin-
cipal causa da disfunção sináptica e subsequente neurodegeneração que está subja-
cente à progressão característica da DA (HARDY; HIGGINS, 1992; HARDY; SELKOE,
2002).

As placas são depósitos densos, principalmente insolúveis, de material proteico
e celular que se encontram fora e ao redor dos neurônios. As placas são feitas de
A�, um fragmento de proteína cortado a partir de uma proteína maior chamada APP.
Estes fragmentos agrupam-se e são misturados com outras moléculas, neurônios e
células não neuronais (LAKHAN, 2016). A Figura 4 mostra a localização da APP na
membrana celular.

Como visto na Figura 4, temos a membrana celular de um neurônio no cérebro.
Na membrana, está localizada a APP, uma proteína transmembrana encrustada na
membrana celular. Uma das extremidades da APP está dentro da célula, e a outra
extremidade está fora da célula. A APP auxilia o neurônio a crescer e a reparar-se
após uma lesão. Uma vez que a APP é uma proteína, ela sofre proteólise2 (OSMOSIS,
2016).

Normalmente, neste processo de clivagem proteolítica, duas enzimas - ↵-
secretase e �-secretase - que funcionam como uma tesoura molecular fazem com

1DILL, K. A.; OZKAN, S. B.; SHELL, M. S.; WEIKL, T. R. The Protein Folding Problem. Annual
Review of Biophysics, [S.l.], v.37, n.1, p.289–316, June 2008

2WIKIPEDIA. Proteólise, 2014. Page Version ID: 40134280. Disponível em:
<https://pt.wikipedia.org/w/index.php?oldid=40134280>. Acesso em: 2016-11-21
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Figura 4: Proteína amilóide precursora (OSMOSIS, 2016)

que a APP seja dividida em fragmentos menores (HOOPER, 2005), que são solúveis
e absorvidos. Esse processo pode ser visto na Figura 5.

(a) Enzimas ↵-secretase e �-secretase (b) Fragmento solúvel

Figura 5: Processo de proteólise através das enzimas ↵-secretase e �-secretase (OS-
MOSIS, 2016)

Porém, se outra enzima, a �-secretase, se aliar com a �-secretase, como visto na
Figura 6, é criado o monômero chamado A�. Esses monômeros tendem a ser mais
quimicamente "pegajosos", e então, formam aglomerados insolúveis que se depositam
no meio extracelular em formações densas conhecidas como placas de A� (OHNISHI;
TAKANO, 2004; TIRABOSCHI et al., 2004; OSMOSIS, 2016).

Na DA, as placas se desenvolvem em áreas corticais e subcorticais do córtex ce-
rebral que são usadas para codificar memórias, pensar e tomar decisões (LAKHAN,
2016). Estas placas, acabam interferindo nas sinapses que ocorrem entre os neurô-
nios. Portanto, se as células cerebrais não puderem realizar sinapses e retransmitir
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(a) Enzimas �-secretase e �-secretase (b) Fragmento peptídico insolúvel

Figura 6: Processo de proteólise através das enzimas �-secretase e �-secretase (OS-
MOSIS, 2016)

informações, as funções cerebrais como a memória podem ser gravemente prejudica-
das (OSMOSIS, 2016). A Figura 7(a) mostra um exemplo das placas de A� interfe-
rindo nas sinapses.

(a) Placas de A� interferindo nas sinap-
ses dos neurônios

(b) Placas de A� depositadas em torno de vasos sanguí-
neos no cérebro

Figura 7: Placas de A� no cérebro (OSMOSIS, 2016)

Além do mais, essas placas podem iniciar uma resposta imune e causar inflama-
ção que pode danificar os neurônios que se encontram ao redor. As placas de A�
também podem se depositar em torno de vasos sanguíneos no cérebro, causando a
chamada angiopatia amiloide, que enfraquece as paredes dos vasos sanguíneos e
aumenta o risco de hemorragia ou ruptura e perda de sangue, como pode ser visto na
Figura 7(b) (OSMOSIS, 2016).

2.1.2 O acúmulo de emaranhados neurofibrilares e a proteína tau

Como resultado direto da deposição de placas de A�, postula-se que é gerado
o acúmulo de NFTs, seguido de morte celular, dano vascular e demência (HARDY;
HIGGINS, 1992; HARDY; SELKOE, 2002).

Os NFTs, que são responsáveis por outra importante parte da DA, ao contrário das
placas de A�, se encontram dentro da célula. Assim como outras células, os neurô-
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nios são mantidos unidos por uma estrutura de suporte interna que é parcialmente
feita de microtúbulos. Estes microtúbulos agem como trilhas, guiando nutrientes e
moléculas do corpo da célula até as extremidades do axônio e de volta. Um tipo es-
pecial de proteína chamada tau que garante que essas trilhas não se separem. Essa
proteína, ao ligar-se ao microtúbulos, estabiliza-os, funcionando como um laço ferro-
viário (LAKHAN, 2016). A Figura 8 mostra os microtúbulos estabilizados pela proteína
tau dentro do neurônio.

Figura 8: Microtúbulos estabilizados pela proteína tau (ADEAR, 2008)

Embora não completamente compreendido, supõe-se que as placas de A� levam à
ativação de quinases, enzimas que transferem grupos fosfato para a proteína tau (OS-
MOSIS, 2016), como pode ser visto na Figura 9(a). Com isso, a proteína tau é qui-
micamente alterada, mudando de forma e parando de dar suporte aos microtúbulos,
como na Figura 9(b). Quando isso acontece, os microtúbulos se desintegram, desmo-
ronando o sistema de transporte do neurônio (IQBAL et al., 2005). Assim, as proteínas
tau hiperfosforiladas passam a se aglomerar dentro do corpo das células nervosas, fi-
cando enredadas, levando ao outro achado característico da DA, os NFTs (GOEDERT;
SPILLANTINI; CROWTHER, 1991), como pode ser visto na Figura 10. A formação
destes NFTs resultam inicialmente em problemas na comunicação entre neurônios,
que mais tarde, acabam sofrendo morte celular (CHUN; JOHNSON, 2007; LAKHAN,
2016).

2.2 Neuropatologia

A perda de neurônios e sinapses geradas pela DA leva a diferenças claramente
visíveis no tecido cerebral. Os NFTs são, no início, mais densamente distribuídos na
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(a) Enzima quinase transferindo grupos de fosfato
para a proteína tau

(b) Proteína tau hiperfosforilada

Figura 9: Ativação de quinases e a alteração da proteína tau (OSMOSIS, 2016)

Figura 10: Diagrama de como os microtúbulos se desintegram com a doença de
Alzheimer (ADEAR, 2008)

face medial e no polo do lobo temporal. Eles afetam o córtex entorrinal e o hipocampo
de uma forma mais severa. À medida que a DA progride, os NFTs acumulam-se em
outras regiões corticais, atingindo áreas de associação de alta ordem e com menor
frequência, regiões motoras e sensoriais primárias (LAKHAN, 2016).

Assim como os NFTs, as placas de A� também se acumulam primariamente nas
áreas de associação do cérebro. Embora as placas de A� e os NFTs sejam caracte-
rísticas da DA, eles não são patognomônicos. Os NFTs são encontrados em vários
outros distúrbios neurodegenerativos. Já as placas de A� podem ocorrer no processo
normal de envelhecimento (LAKHAN, 2016).

Portanto, a mera presença dessas características não é suficiente para apoiar o
diagnóstico de DA. As placas de A� e os NFTs devem estar presentes em número
suficiente e em uma distribuição topográfica característica para preencher os critérios
histopatológicos atuais para a DA. Porém, há consenso de que a presença de números
ainda baixos de NFTs no neocórtex cerebral com placas de A� concomitantes é uma
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característica da DA (LAKHAN, 2016).
À medida que os neurônios morrem, grandes mudanças começam a ocorrer no

cérebro. O cérebro atrofia, e os giros - saliências do córtex cerebral - se tornam mais
estreitos. À medida que estes ficam mais estreitos, os sulcos se tornam mais largos.
Com a atrofia, os ventrículos - cavidades cheias de líquido no cérebro - ficam maiores.
Essas mudanças são exemplificadas na Figura 11.

Figura 11: Mudanças que ocorrem no cérebro com o avanço da doença de Alzhei-
mer (OSMOSIS, 2016)

Porém, alterações microscópicas no cérebro começam muito antes dos primeiros
sinais de perda de memória, sendo que a presença de lesões médio-temporais co-
meçam a aparecer cerca de 5 a 6 anos antes do diagnóstico clínico de Alzheimer.
Além disso, estudos mostram que a atrofia nos lobos frontais só ocorre mais perto do
momento em que o diagnóstico da doença é feito (ARVESEN, 2015 apud BERNARD
et al., 2014).

Para analisar essas mudanças no cérebro de uma forma não invasiva, é utilizada
a MRI. No entanto, para mostrar claramente os locais e forma em que as placas de
A� estão depositadas, é necessário utilizar a técnica chamada PET com um radiofár-
maco marcado com carbono-11 que tem afinidade pelas placas de A�, o Pittsburgh
Compound B (PiB). Esta técnica, mais invasiva, requer que um agente de contraste
radioativo seja absorvido pelo cérebro do paciente. Além disso, essa é uma técnica
mais recente, cara e não tão disponível como a MRI (ARVESEN, 2015 apud BER-
NARD et al., 2014).
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2.3 Biomarcadores

Pesquisadores esperam descobrir uma maneira fácil e precisa de detectar a DA
antes que esses sintomas comecem. Para tanto, acredita-se que biomarcadores -
marcadores biológicos - oferecem um dos caminhos mais promissores. Um biomar-
cador é uma substância, medida ou indicador de um estado biológico. Os biomarca-
dores podem existir antes da ocorrência dos sintomas clínicos. Um exemplo de um
biomarcador é o nível de glicose no sangue em jejum, que indica a presença ou não
de diabetes, dependendo do valor encontrado para esse marcador (ASSOCIATION,
2010b).

Na DA, para indicar os estágios iniciais, vários biomarcadores estão sendo estuda-
dos, como níveis de A� e tau no fluido cefalorraquidiano (CSF, do inglês Cerebrospinal
Fluid) e alterações cerebrais detectáveis por imagem (ASSOCIATION, 2010b).

Conforme a DA vai progredindo com o tempo, se hipotetiza que as magnitudes de
alguns biomarcadores atingem níveis anormais em uma ordem previsível (ARVESEN,
2015). A Figura 12 mostra cinco biomarcadores como indicadores de demência. As
curvas indicam mudanças causadas por esses biomarcadores.

Figura 12: Biomarcadores de Alzheimer ao longo da doença (ADNI, 2016a)

Na Figura 12, são mostrados os seguintes biomarcadores:

1. Imagem de placas de A� detectadas por CSF e PET;

2. Neurodegeneração detectada pelo aumento do CSF tau e disfunção sináptica,
medida através de PET tendo como marcador radiofármaco fludesoxiglicose
(FDG);
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3. Atrofia do cérebro medida com ressonância magnética;

4. Perda de memória medida por avaliação cognitiva;

5. Declínio cognitivo geral medido pela avaliação cognitiva.

As alterações de 1 a 3 estão indicadas por biomarcadores que podem ser observa-
dos antes do diagnóstico de demência. Já os itens 4 e 5 são os indicadores clássicos
do diagnóstico de demência (ADNI, 2016a).

Além disso, como pode ser visto na Figura 12, conforme a doença vai avançando,
a magnitude dos marcadores é alterada. Com isso, é importante identificar quais mar-
cadores em potencial podem auxiliar no diagnóstico da DA anos antes dela começar
apresentar seus sintomas característicos.

2.4 Sintomas e estágios da doença de Alzheimer

Os sintomas da DA pioram conforme as placas de A� e os NFTs vão se acu-
mulando, e os danos neuronais aumentam. No início, os sintomas podem não ser
detectáveis, mas à medida que a doença progride, há a perda da memória de curto
prazo, a perda de habilidades motoras, a linguagem e comunicação são prejudica-
das. Eventualmente, a memória de longo prazo é perdida e progressivamente, há a
desorientação. Por fim, os pacientes ficam acamados, e acabam morrendo, sendo
que a causa mais comum de morte é por uma infecção, como pneumonia (OSMO-
SIS, 2016). A Figura 13 mostra um gráfico da evolução dos sintomas conforme a DA
avança.

Porém, os primeiros sintomas da doença são frequentemente confundidos com
os processos normais de envelhecimento ou estresse (WALDEMAR et al., 2007). Por
isso, uma série de testes devem ser feitos a fim de confirmar o diagnóstico, que é apoi-
ado pela presença de características neurológicas e neuropsicológicas e pela exclusão
de outras hipóteses (MENDEZ, 2006; KLAFKI et al., 2006). Para a exclusão de outras
hipóteses são utilizadas técnicas de imagiologia médica, como tomografia computa-
dorizada (CT, do inglês Computerized Tomografy ), MRI, tomografia computadorizada
por emissão de fóton único (SPECT, do inglês Single-Photon Emission Computed To-
mography ) ou PET (NCCMH, 2007). Além disso, essas técnicas também auxiliam
a prever a evolução dos estágios que possam indicar o início da DA (SCHROETER
et al., 2009).

Esses estágios da DA, que podem ser divididos em quatro, apresentam um padrão
progressivo de deficiência cognitiva e funcional.
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Figura 13: Evolução dos sintomas conforme a DA avança (OSMOSIS, 2016)

2.4.1 Comprometimento cognitivo leve

O primeiro estágio da doença é o comprometimento cognitivo leve (MCI, do inglês
Mild Cognitive Impairment), que pode afetar algumas das mais complexas ativida-
des do cotidiano, e apresenta a perda de memória a curto prazo como sintoma mais
comum, dificultando a recordação de fatos recentes ou a memorização de novas in-
formações (BÄCKMAN et al., 2004; ARNÁIZ; ALMKVIST, 2003).

Além da perda de memória, problemas com atenção, planejamento, flexibilidade,
pensamento abstrato, memória semântica, sintomas depressivos, irritabilidade, e di-
minuição da percepção das próprias dificuldades de memória também podem ser sin-
tomas nos estágios iniciais da doença (BÄCKMAN et al., 2004; MURRAY; BUTTNER;
PRICE, 2012). Também nesta fase, é comum a observação de apatia, um sintoma
neuropsiquiátrico que persiste durante todas as fases da doença (LANDES et al.,
2001).

2.4.2 Estágio inicial

O estágio inicial da doença, devido ao prejuízo crescente tanto em memória quanto
em aprendizagem, permite, eventualmente, dar um diagnóstico provável de Alzhei-
mer. O que acontece é que as capacidades de memória não são afetadas igual-
mente. Enquanto memórias mais antigas, fatos já aprendidos e a memória implí-
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cita (memória que guarda como lidar com as atividades do cotidiano, como andar,
escovar os dentes, . . . ) são afetadas em menor grau, novos fatos e memórias tem
um impacto maior (CARLESIMO; OSCAR-BERMAN, 1992; JELICIC; BONEBAKKER;
BONKE, 1995).

Também, em alguns poucos casos, os problemas de memória não são os sinto-
mas mais comuns, sendo mais proeminente as dificuldades de linguagem, funções
executivas, percepção ou execução de movimentos (FÖRSTL; KURZ, 1999).

Nesta fase, é comum que a pessoa com a doença seja capaz de comunicar ideias
básicas (FÖRSTL; KURZ, 1999; TALER; PHILLIPS, 2008; FRANK, 1994). Porém,
com os problemas de linguagem, o vocabulário fica encolhido e há a diminuição na
fluência das palavras, fazendo com que haja um empobrecimento na linguagem oral e
escrita (FÖRSTL; KURZ, 1999; TALER; PHILLIPS, 2008).

Além disso, dificuldades na execução de tarefas motoras finas (escrever, dese-
nhar, vestir, . . . ), na coordenação de movimento e de planejamento podem ocorrer,
geralmente, de forma despercebida (FÖRSTL; KURZ, 1999). Com a progressão da
DA, muitas vezes é possível continuar a desempenhar muitas tarefas de forma inde-
pendente, porém, pode ser necessária assistência ou supervisão com as atividades
cognitivamente mais exigentes (FÖRSTL; KURZ, 1999).

2.4.3 Estágio intermediário

Com o avanço da DA para o estágio intermediário, a independência fica comprome-
tida, impossibilitando a realização de atividades mais comuns da vida diária (FÖRSTL;
KURZ, 1999). O declínio na habilidade de fala, leitura e escrita também ocorre, difi-
cultando a recordação do vocabulário, levando a frequentes substituições incorretas
de palavras (FÖRSTL; KURZ, 1999; FRANK, 1994). A memória piora, levando ao
esquecimento, inclusive, de parentes próximos. A memória de longo prazo, que até
então estava intacta, começa ser prejudicada (FÖRSTL; KURZ, 1999). As capacida-
des motoras mais complexas se tornam menos coordenadas, podendo levar a que-
das (FÖRSTL; KURZ, 1999).

Não obstante, alterações comportamentais e neuropsiquiátricas começam a ser
mais predominantes. As manifestações comuns são: vagar pela casa, irritabilidade
e incontinência emocional, levando o paciente a chorar, ter explosões de agressão
não premeditadas, ou resistência a cuidados especiais (FÖRSTL; KURZ, 1999). Tam-
bém pode ocorrer casos de síndrome do pôr-do-sol (VOLICER et al., 2001), que é um
fenômeno clínico manifestado pela emergência ou incremento de sintomas neuropsi-
quiátricos noturnos (KHACHIYANTS et al., 2011).

Ademais, nesse estágio, os pacientes podem apresentar incontinência urinária,
perda da percepção do processo e das limitações que a doença causa e sintomas
delirantes (FÖRSTL; KURZ, 1999). Com a manifestação desses sintomas, um am-
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biente de estresse é criado para parentes e cuidadores, o que pode ser reduzido,
movendo a pessoa de cuidados domiciliários para clínicas de cuidados de longa dura-
ção (FÖRSTL; KURZ, 1999; GOLD et al., 1995).

2.4.4 Estágio avançado

Durante o estágio final da doença, o paciente fica completamente dependente de
cuidadores (FÖRSTL; KURZ, 1999). Ocorre também a perda de habilidades de lingua-
gem verbal - que é reduzida a frases simples ou apenas palavras isoladas - podendo
levar à completa perda da fala (FÖRSTL; KURZ, 1999; FRANK, 1994). Porém, muitas
vezes, as pessoas podem entender e retornar sinais emocionais, embora a agressivi-
dade ainda possa estar presente.

Outros sintomas comuns são a extrema apatia e a exaustão, sendo que em última
análise, nem as tarefas mais simples podem ser feitas de forma independente. Tam-
bém, a massa muscular e a mobilidade deterioram-se até o ponto em que o paciente
é acamado e fica incapaz de se alimentar. Por fim, a causa da morte é geralmente um
fator externo, como infecções ou pneumonia, e não a própria doença em si (FÖRSTL;
KURZ, 1999).

2.5 Fatores de risco

A DA envolve a falha progressiva das células cerebrais, no entanto, a razão pela
qual as células falham ainda não é clara. Como outras condições crônicas, os especi-
alistas acreditam que a DA se desenvolve como um resultado complexo de múltiplos
fatores ao invés de qualquer causa primordial. Os maiores fatores de risco para a DA
são idade avançada, histórico familiar de Alzheimer e/ou portar o gene APOE-e4 (AS-
SOCIATION, 2010a).

2.5.1 Idade

Embora a DA não seja uma parte normal do envelhecimento, o maior fator de risco
para a doença é o aumento da idade. Após a idade de 65 anos, o risco de desenvolver
a doença dobra a cada cinco anos, e está em quase 50% ao atingir a idade de 85
anos (ASSOCIATION, 2010a).

2.5.2 Genética

Existem duas categorias de genes que influenciam se uma pessoa pode desen-
volver uma doença: (i) genes de risco e (ii) genes determinísticos. Os genes de risco
aumentam a probabilidade de desenvolver uma doença, mas não garantem que isso
vá acontecer. Para a DA, foram descobertos vários genes que aumentam o risco desta
acontecer, sendo o APOE-e4 o primeiro gene de risco identificado, e que continua a
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ser o gene com maior impacto sobre o risco. APOE-e4 é uma das três formas comuns
do gene APOE; Os outros são APOE-e2 e APOE-e3 (ASSOCIATION, 2010a).

Aqueles que herdam uma cópia de APOE-e4 têm um risco aumentado de desen-
volver a DA. Aqueles que herdam duas cópias têm um risco ainda maior, mas não é
uma certeza. Além de aumentar o risco, APOE-e4 fazer os sintomas aparecerem em
uma idade mais jovem do que o habitual. Os cientistas estimam que APOE-e4 está
implicado em cerca de 20% a 25% dos casos de Alzheimer (ASSOCIATION, 2010a).

Os genes determinísticos, por sua vez, causam uma doença diretamente, garan-
tindo que quem herda um desses genes irá desenvolver um distúrbio. Na DA, foram
descobertas variações que causam diretamente a DA nos genes que codificam três
proteínas: APP, presenilina-1 (PS-1) e presenilina-2 (PS-2) (ASSOCIATION, 2007).
Quando a DA é causada por estas variações determinísticas, é chamada de "DA Au-
tossômica Dominante (DAAD)" ou "DA familiar", e muitos membros da família em vá-
rias gerações são afetados. Quando esses genes estão presentes, ocorre a manifes-
tação precoce da DA, com o aparecimento dos sintomas entre os 40 e 50 anos de
idade. Porém, esses genes estão presentes em menos de 5% dos casos de Alzhei-
mer (ASSOCIATION, 2010a).

Embora os genes que causam a "DA familiar" sejam raros, a sua descoberta tem
fornecido pistas importantes que ajudam a compreensão da DA como um todo. To-
dos estes genes afetam o processamento ou a produção de A�, que é um suspeito
principal do declínio e da morte de células de cérebro (ASSOCIATION, 2010a). Atual-
mente, várias drogas em desenvolvimento visam dissolver os fragmentos de A� como
uma estratégia para parar ou retardar significativamente a DA, como apresentado no
trabalho (SEVIGNY et al., 2016).

Hoje, estão disponíveis testes genéticos tanto para APOE-e4 como para os genes
raros que causam diretamente a DA. Porém, os profissionais de saúde atualmente não
recomendam testes genéticos de rotina para a DA. Testes para APOE-e4 é por vezes
incluído como parte de estudos de pesquisa (ASSOCIATION, 2010a).

2.6 Alzheimer’s Disease Neuroimaging Initiative

A iniciativa de neuroimagem da DA (ADNI, do inglês Alzheimer’s Disease Neuroi-
maging Initiative) é um esforço de pesquisa global que apoia a investigação e o desen-
volvimento de tratamentos que retardem ou parem a progressão da DA. Este estudo
avalia biomarcadores clínicos, de imagem, genéticos e de bioespécime, através do
processo de envelhecimento normal até o comprometimento cognitivo leve precoce
(EMCI, do inglês Early Mild Cognitive Impairment), o comprometimento cognitivo leve
tardio (LMCI, do inglês Late Mild Cognitive Impairment), a demência ou DA. Com mé-
todos padronizados para criação de imagens e coleta e análise de biomarcadores, o
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ADNI facilita o caminho para quem deseja conduzir pesquisas e compartilhar dados
compatíveis com pesquisadores de todo o mundo (ADNI, 2016a).

O estudo ADNI é dividido em três fases: ADNI 1, ADNI GO e ADNI 2. Novos
participantes foram recrutados em toda a América do Norte durante cada fase do
estudo e concordaram em realizar uma série de avaliações de imagem e clínicas. Os
participantes são acompanhados e fazem reavaliações ao longo do tempo para que
a patologia da doença seja acompanhada à medida que ela avança. Os resultados
são então compartilhados pelo ADNI através do Laboratory of Neuro Imaging’s Image
Data Archive da Universidade da Carolina do Sul (USC), EUA, pelo site: http://adni.
loni.usc.edu/ (ADNI, 2016a).

A Tabela 1 resume o número de participantes alvo do estudo ADNI norte-
americano, informado, para cada fase do ADNI, a quantidade de novos pacientes que
foram inseridos no estudo em cada estágio da doença. O símbolo Ó significa que os
pacientes da fase anterior foram mantidos nesta fase.

Tabela 1: Número de participantes nas diferentes fases do ADNI

Fase NL SMC EMCI MCI LMCI DA

ADNI 1 200 - - 400 - 200

ADNI GO Ó - 200 Ó - -

ADNI 2 150 100 150 Ó 150 200

O objetivo do estudo ADNI é acompanhar a progressão da doença longitudinal-
mente usando biomarcadores para avaliar a estrutura e a função do cérebro ao longo
de seis estágios de doença: cognitivamente normal (NL), preocupação significativa
de memória (SMC, do inglês Significant Memory Concern), EMCI, MCI, LMCI e DA.
A Tabela 2 resume os estágios da doença citados e em que fases do ADNI eles são
avaliados.

Tabela 2: Estágios acompanhadas em cada fase do ADNI (ADNI, 2016a)

Sigla Estágio Fases

NL Cognitivamente normal ADNI 1/GO/2

SMC Preocupação significativa de memória ADNI 2

EMCI Comprometimento cognitivo leve precoce ADNI GO/2

MCI Comprometimento cognitivo leve ADNI 1

LMCI Comprometimento cognitivo leve tardio ADNI GO/2

DA Doença de Alzheimer ADNI 1/GO/2

Na fase ADNI 2, foi adicionado um novo estágio, o SMC. As preocupações com

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
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a memória subjetiva mostraram-se correlacionadas com uma maior probabilidade de
progressão da DA, minimizando assim a estratificação do risco entre os controles nor-
mais, além de abordar a diferença entre controles idosos saudáveis com quem está
no estágio MCI. O principal critério de inclusão que distingue quem está no estágio
SMC é o auto-relato de preocupação significativa com a memória (ADNI, 2016a).

No estágio NL, estão os indivíduos de controle no estudo ADNI. Eles não mostram
sinais de depressão, nem comprometimento cognitivo leve ou demência. No estágio
SMC, estão classificados os participantes que apresentam uma pontuação dentro da
faixa normal de cognição, mas indicam que eles têm uma preocupação, e apresentam
leve esquecimento. O informante não considera isso como comprometimento pro-
gressivo da memória nem considera isso como um esquecimento consistente. Já, nos
estágios EMCI, MCI e LMCI estão os participantes que relataram uma preocupação
de memória subjetiva de forma autônoma, através de um informante ou de um clínico.
No entanto, não há níveis significativos de comprometimento em outros domínios cog-
nitivos, nem em atividades essencialmente preservadas da vida diária, além de não
apresentar sinais de demência. Por fim, no estágio DA, estão os indivíduos que foram
avaliados e satisfazem critérios para provável DA (ADNI, 2016a).

Além dos estágios descritos anteriormente, temos o Alzheimer pré-clínico, que é
um estágio recém-definido e reflete a evidência atual de que o processo fisiopatoló-
gico da DA e mudanças mensuráveis em biomarcadores no cérebro podem ocorrer
anos, senão décadas, antes da ocorrência dos primeiros sintomas clínicos. Avanços
recentes em neuroimagem, testes do líquido cefalorraquidiano e outros biomarcadores
agora fornecem a capacidade de detectar evidências de alterações patológicas da DA
in vivo. Este estágio pré-clínico da DA tornou-se um foco de pesquisa importante, pois
o campo postula que a intervenção precoce pode oferecer a melhor chance de su-
cesso terapêutico. Até o momento, muito poucas evidências são estabelecidas nesta
fase "silenciosa" da doença (SPERLING et al., 2011; DUBOIS et al., 2016). Os paci-
entes que estão no estágio pré-clínico da doença, no entanto, não são explicitamente
descritos na base de dados ADNI.

Na Tabela 3, são apresentados os tipos de dados coletados nas diferentes fases
do ADNI.

Tabela 3: Tipos de dados coletados nas diferentes fases do ADNI

Fase MRI fMRI DTI FDG AV45 PiB Bioamostras

ADNI I 3 3 3 3

ADNI GO 3 3 3 3 3 3

ADNI 2 3 3 3 3 3 3
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No contexto de diagnóstico por imagem, o MRI é um exame de neuroimagem tra-
dicional que permite a medição precisa do volume tridimensional das estruturas cere-
brais, especialmente o tamanho do hipocampo e regiões relacionadas (RAMACHAN-
DRAN, 2016).

A ressonância magnética funcional (fMRI, do inglês functional Magnetic Resonance
Imaging) tem uma resolução temporal e espacial relativamente elevada e pode ser ad-
quirida na mesma sessão que a imagem de ressonância magnética. Mais importante
ainda, a fMRI pode fornecer informações úteis sobre a integridade funcional de redes
cerebrais que suportam a memória e outros domínios cognitivos (SPERLING, 2011).

A imagem de tensor de difusão (DTI, do inglês Diffusion Tensor Imaging) é uma das
ferramentas mais eficazes de ressonância magnética para a investigação da anatomia
do cérebro. Além da substância cinzenta, estudos histopatológicos indicam que a
substância branca é também um bom alvo tanto para o diagnóstico precoce da DA
quanto para monitorar a progressão da doença, o que motiva a usar DTI para estudar
pacientes com DA in vivo (KENICHI et al., 2011).

O FDG é um marcador radiofármaco utilizado nos exames de imagem PET, e serve
para medir as taxas metabólicas cerebrais de glicose (MOSCONI et al., 2010).

Assim como o FDG, o florbetapir (AV45) e o PiB são compostos radiofármacos de
varredura de PET utilizados para dar contraste nas placas de A� presentes no tecido
neuronal (KLUNK et al., 2004; CAMUS et al., 2012). Já as bioamostras, são amostras
biológicas derivadas de seres humanos, tais como tecido, liquor e sangue.

Além disso, os dados de estudo disponibilizados pelo ADNI podem ser divididos em
diversas categorias. A Tabela 4 mostra essas principais categorias, bem como suas
subcategorias. Dentre todos os dados de estudo, temos avaliações neuropsicológicas,
dados genéticos, exames de imagiologia (MR e PET), histórico médico, características
do paciente e outros. Para mais informações sobre os itens disponíveis no arquivo de
dados ADNI, ver Anexo A.

2.7 Trabalhos Correlatos

Na literatura, são encontrados diversos trabalhos que abordam o diagnóstico da
DA, que podemos separar em dois grandes grupos: estudo cross-sectional (WIKI-
PEDIA, 2018a) e estudo follow-up (POWELL; JANSSEN, 2013). O estudo cross-
sectional, é um tipo de estudo observacional que analisa os dados coletados de uma
população ou um subconjunto representativo em um ponto específico no tempo, isto
é, dados transversais. Ou seja, no escopo da DA, é a classificação do estágio da do-
ença em que o paciente se encontra. Já no estudo follow-up, um grupo de indivíduos
é acompanhado ao longo do tempo para determinar o desenvolvimento do critério que
está sendo observado. Na DA, este estudo é feito na tentativa de prever e classificar
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Tabela 4: Dados de estudo disponibilizados pelo ADNI

Categoria Principal Subcategoria

Avaliações
Diagnóstico

Neuropsicológica

Bioespécime
Procedimentos de coleta de laboratório

Resultados de laboratório

Genético
Informações sobre dados genéticos

Resultados do genótipo

Imagem
MRI

PET

Histórico médico

Eventos adversos

Medicamentos

Histórico médico

Físico / Neurológico

Estudo
Dados e banco de dados

Protocolos de estudo

Características do paciente
Histórico familiar

Demografia

a progressão de um estado cognitivo para outro.
Nas próximas sub-seções, serão apresentados os principais trabalhos encontrados

na literatura para estudos cross-sectional e follow-up.

2.7.1 Estudos cross-sectional

No artigo de ZHANG et al. (2011), foram combinadas três modalidades de biomar-
cadores (MRI, FDG-PET e biomarcadores CSF) para discriminar entre DA (ou MCI) e
controles saudáveis. Para que a combinação dos três biomarcadores diferentes fosse
eficaz, foram gerados três diferentes kernels que posteriormente foram combinados
para uso em uma SVM com validação cruzada com 10-fold. Os dados dos pacientes
foram extraídos do ADNI, sendo 52 pacientes NL, 99 MCI e 51 DA. Na comparação
entre NL e DA, foi obtida uma precisão de 93,2% com uma sensitividade de 93% e es-
pecificidade de 93,3%. Já para a classificação de MCI e DA, foi atingida uma precisão
de 76,4% com uma sensitividade de 81,8% e especificidade de 66%

Em (ORTIZ et al., 2016), é explorada a construção de um método de classifica-
ção baseado em arquiteturas de deep learning aplicadas em regiões cerebrais. As
imagens da matéria cinzenta de cada área do cérebro foram divididas em patches 3D
que são então usados para treinar diferentes deep belief networks. Um conjunto de
deep belief networks é então composto, onde a previsão final é determinada por um
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esquema de votação. No trabalho, são implementadas e comparadas duas estruturas
baseadas em aprendizagem profunda e quatro esquemas de votação diferentes. O
método resultante foi avaliado usando cross-validatoin com 10-fold aplicado sobre a
base de dados ADNI, sendo 68 pacientes NL, 111 com MCI, 26 com LMCI e 70 com
DA. A arquitetura de classificação atinge uma precisão de até 90% e AUC de 0,95 para
classificação de NL e DA. Já na comparação entre sMCI (MCI estável) e DA, a preci-
são é de 84% e AUC de 0,91. Para a classificação de NL e pMCI (MCI que progrediu
para DA), a precisão é de 83% com AUC de 0,95.

No artigo proposto por LONG et al. (2017), é proposto um método de aprendiza-
gem de máquina que utiliza uma SVM para distinguir pacientes com DA ou MCI de
idosos saudáveis. A classificação é feita a partir do cálculo e análise das diferenças
morfológicas regionais do cérebro entre os diferentes grupos através do uso de ima-
gens de ressonância magnética de alta resolução. O estudo foi feito sobre a base de
dados ADNI, sendo 135 indivíduos NL, 132 sMCI, 96 pMCI e 64 DA. A validação cru-
zada com 10-fold foi adotada para estimar o desempenho da classificação, que atingiu
uma acurácia de 96,5% e AUC de 0,995 na diferenciação de NL e DA.

No trabalho de BEHESHTI; DEMIREL; MATSUDA (2017), foi desenvolvido um sis-
tema de diagnóstico que utiliza um ranking de atributos e um algoritmo genético para
analisar dados de imagem de MRI. O trabalho investiga a atrofia da matéria cinzenta
global entre pacientes normais e com DA, gerando assim, regiões de interesse que
são utilizados para todas as outras classes de diagnóstico. Esses valores entram em
um vetor de atributos, onde é extraído um subconjunto ótimo através de um algoritmo
genético. Finalmente, a classificação é feita utilizando uma SVM com validação cru-
zada de 10-fold. O conjunto de dados foi extraído da base de dados ADNI, sendo 162
NL, 65 sMCI, 71 pMCI e 160 DA. A classificação de NL e DA tem uma precisão de
93% e AUC de 0,935.

Por fim, o trabalho de RODRIGUES et al. (2017) compara a capacidade de três
métodos de seleção de atributos para obter combinações de biomarcadores que ma-
ximizem as taxas de classificação. Além disso, é utilizado o classificador kNN com
pré-processamento de balanço de dados, subamostragem aleatória e sobreamostra-
gem (SMOTE). Os dados utilizados no trabalho foram extraídos do ADNI, sendo 152
indivíduos NL, 414 MCI e 100 DA. Os resultados mostram que a abordagem proposta
atinge 94,34% de precisão para reproduzir a definição das classes NL, MCI e DA.

Dentre os trabalhos na categoria cross-sectional, podemos observar a classifica-
ção de pacientes nos conjuntos {NL e MCI}, {NL e DA}, {MCI e DA} e {NL, MCI e DA}.
Além disso, vemos também que diferentes técnicas são utilizadas para a classifica-
ção, tanto em termos de algoritmo utilizado para o classificador, quanto na questão de
pré-processamento dos dados.
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2.7.2 Estudos follow-up

O trabalho de MATHOTAARACHCHI et al. (2017) propõe um método probabilís-
tico baseado em aprendizado de máquina chamado RUSRF, e que foi projetado para
avaliar a progressão para demência em um período de 24 meses, com base apenas
no biomarcador [18F]Florbetapir PET. No trabalho, foram avaliados pacientes retirados
da base de dados ADNI, sendo 230 com sMCI e 43 com pMCI. O método utiliza o
algoritmo RF com uma otimização que permite que as classes sejam balanceadas ao
fazer o treinamento. O algoritmo utiliza um conjunto de teste independente e obteve
uma precisão de 84% e AUC de 0,906.

No trabalho de LONG et al. (2017), além do estudo cross-sectional, um estudo
follow-up de 36 meses também foi realizado. Os resultados mostram que, na diferen-
ciação de sMCI e pMCI, uma acurácia de 89% é atingida com AUC de 0,932. Já ao
classificar NL e pMCI, uma acurácia de 91,74% foi atigida com AUC de 0,971.

O sistema apresentado por BEHESHTI; DEMIREL; MATSUDA (2017), também é
capaz de mostrar a previsão de conversão de MCI para AD entre 12 e 36 meses antes
do diagnóstico clínico. Os resultados mostram uma precisão de 75% com AUC de
0,751.

Já no cenário dos trabalhos follow-up, os principais focos são a classificação da
conversão de MCI para DA, a diferenciação entre pacientes MCI estáveis e MCI que
converteram para DA e entre pacientes NL e com MCI progressivo. No entanto, ne-
nhum dos trabalhos correlatos encontrados na literatura realiza a predição de pacien-
tes em risco de desenvolver a DA, que é o foco deste trabalho.

A Tabela 5 mostra um resumo dos trabalhos apresentados nesta seção.

2.8 Considerações finais do capítulo

Neste capítulo, foi apresentada uma revisão sobre a DA juntamente com suas ca-
racterísticas, a iniciativa ADNI e trabalhos correlatos. Os principais tópicos abordados
da doença foram: patofisiologia, neuropatologia, biomarcadores, sintomas e estágios
da doença, além dos fatores de risco.

No escopo da patofisiologia, foram explanadas as duas mais forte hipóteses da
causa da DA. São elas: (i) a deposição de placas de A� e (ii) o acúmulo de emaranha-
dos neurofibrilares. Com a perda de sinapses geradas pela DA, diversas mudanças
começam a acontecer no cérebro e na vida do paciente. Essas mudanças foram vistas
nas subseções neuropatologia e sintomas e estágios da DA.

Também, os principais fatores de risco da doença foram abordados, mostrando
que não apenas a idade, mas a genética e o histórico familiar também podem con-
tribuir para o aparecimento da DA. Além disso, foi feita uma breve explicação sobre
biomarcadores, para que ele servem e como são úteis para detectar a doença antes
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dos sintomas começarem.
Sabendo da importância dos biomarcadores para a detecção e rastreamento pre-

coce da doença, um esforço global ADNI foi criado, com o propósito de desenvolver
novos biomarcadores clínicos, de imagem, genéticos e bioquímicos.

Por fim, foram apresentados os principais trabalhos encontrados na literatura que
abordam a classificação da DA por meio do uso de técnicas de IA. Os trabalhos foram
divididos entre estudos cross-sectional, que se preocupam em classificar a doença
em um ponto específico no tempo, e estudos follow-up, onde a variável tempo já entra
como critério para a predição da doença em um período de tempo estabelecido.
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3 INTELIGÊNCIA ARTIFICIAL E A ÁREA MÉDICA

Quando consideramos os avanços obtidos na medicina nas últimas décadas, é
inegável que a computação foi uma grande contribuinte para que esses pudessem
ser atingidos. Ademais, a computação se mostra uma grande aliada para ajudar no
diagnóstico de doenças, uma vez que a Inteligência Artificial (IA) tem sido cada vez
mais aplicada na área médica (HAMET; TREMBLAY, 2017).

Além disso, é crescente a preocupação na medicina para obter a maior quantidade
possível de dados sobre a saúde ou doença dos pacientes e tomar decisões com
base nisso. Antes, os médicos tinham que confiar em sua experiência, capacidade
de julgamento e habilidade de resolução de problemas enquanto usavam ferramentas
rudimentares e recursos limitados. No entanto, nos dias de hoje, as tecnologias dis-
ruptivas começaram a disponibilizar métodos avançados não só para profissionais da
medicina, mas também para seus pacientes. Dentre estas tecnologias, está a genô-
mica, biotecnologia, sensores portáteis e IA (MESKO, 2017).

Ao invés de desenvolver tratamentos para populações e tomar as mesmas de-
cisões médicas com base em algumas características físicas semelhantes entre os
pacientes, a medicina tem avançado para a prevenção, personalização e precisão, o
que fará com que soluções médicas tradicionais one-fits-all migrem para tratamentos
direcionados, terapias personalizadas e drogas exclusivas. Em outras palavras: me-
dicina de precisão. Nesta mudança e transformação cultural, a IA é uma tecnologia
chave que pode trazer esta oportunidade à prática diária (MESKO, 2017).

Neste aspecto, a aplicação de IA na medicina se divide em dois ramos princi-
pais: virtual e físico. O ramo físico envolve o uso de robôs. Este ramo não será
explorado neste trabalho, uma vez que o escopo deste trabalho é o ramo virtual, re-
presentado pela Aprendizagem de Máquina (ML, do inglês Machine Learning), a qual
utiliza algoritmos matemáticos que melhoram a aprendizagem através da experiên-
cia. Existem três tipos de algoritmos de ML: (i) não supervisionados (capacidade de
encontrar padrões), (ii) supervisionados (algoritmos de classificação e predição base-
ados em exemplos anteriores) e (iii) aprendizagem de reforço (uso de sequências de
recompensas e punições para formar uma estratégia para operação em um problema
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específico) (HAMET; TREMBLAY, 2017).
Dentre as principais abordagens de ML podemos citar o aprendizado baseado em

árvores de decisão, regressão logística, rede neural artificial, máquina de vetores de
suporte, clustering e outros. Além disso, é importante salientar que dentro de cada
uma dessas abordagens, são propostos na literatura uma gama de algoritmos diferen-
tes que utilizam uma mesma abordagem conceitual. As próximas seções detalharão
as principais abordagens descritas anteriormente juntamente com os algoritmos espe-
cíficos de cada categoria que foram utilizados para o desenvolvimento deste trabalho.

3.1 Árvores de decisão

Árvores de decisão (DT, do inglês Decision Trees) são um método de aprendiza-
gem supervisionado não paramétrico usado para classificação e regressão. O objetivo
é criar um modelo que preveja o valor de uma variável destino aprendendo regras de
decisão simples inferidas a partir de dados recebidos como entrada. Após a geração
de uma árvore de decisão, é possível extrair um conjunto de regras de decisão do tipo
if-then-else. Quanto mais profunda a árvore, mais complexas são as regras de deci-
são e menos genérico é o modelo gerado. Dentre os algoritmos de árvore de decisão
mais conhecidos estão o ID3 (QUINLAN, 1986) e o C4.5 (QUINLAN, 1993) (evolução
do algoritmo ID3), que são amplamente utilizados nas mais diversas aplicações.

Figura 14: Exemplo de uma árvore de decisão

A Figura 14 mostra um exemplo de uma árvore de decisão que classifica se o dia
é bom ou não para jogar golfe. As folhas representam o resultado da classificação,
enquanto os nodos são os atributos as arestas são os possíveis valores dos atributos.
Para saber o resultado da classificação, basta percorrer os nodos e arestas até en-
contrar uma folha. Por exemplo, caso tempo = chuvoso e vento = não, é um bom dia
para jogar golfe. No entanto, caso tempo = chuvoso e vento = sim, não é um bom dia



43

para jogar golfe.
Quando tentamos prever a variável alvo usando qualquer técnica de aprendizado

de máquina, temos três principais causas que geram a diferença entre o valor espe-
rado e o valor predito. Essas causas são o ruído, a variância e a polarização. Para
a ajudar a reduzir esses fatores, pode ser utilizada a técnica de ensemble (GROVER,
2017).

Ensemble é definido como uma coleção de preditores que são utilizados em con-
junto para gerar uma previsão final. A eficiência desta técnica se baseia na premissa
de que utilizar diversos preditores diferentes para prever a mesma variável alvo é me-
lhor do que utilizar um único preditor sozinho. As técnicas de Ensembling são ainda
classificadas em Bagging e Boosting (GROVER, 2017).

Na técnica de Bagging, cada preditor é construído de forma independente. Um
exemplo de Bagging são as Random Forests. No caso do Boosting, os preditores não
são gerados independentemente, mas sim sequencialmente. Esta técnica emprega
a lógica de que os preditores subsequentes aprendem com os erros dos preditores
anteriores. Como os novos preditores aprendem com erros cometidos por preditores
anteriores, menos iterações são necessárias para finalizar a execução do algoritmo.
Um exemplo de Boosting são as Gradient Boosted Trees (GROVER, 2017).

A Figura 15 ilustra graficamente a diferença entre um classificador simples, um
classificador gerado pela técnica de Bagging e um classificador gerado pela técnica
de Boosting. Note que enquanto o classificador simples possui apenas um modelo, o
Bagging gera vários modelos diferentes, criados independentemente. Por fim, pode-
mos perceber a dependência dos modelos anteriores para a geração de um classifi-
cador Boosting.

Figura 15: Comparação entre um classificador simples, e classificadores gerados pela
técnica de Bagging e de Boosting (XRISTICA, 2016)
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3.1.1 Random Forest

As Random Forests (RF) são definidas como uma combinação de preditores gera-
dos por árvores de decisão, de modo que cada árvore é construída a partir de valores
de um vetor aleatório amostrado independentemente e com a mesma distribuição para
todas as árvores na floresta (BREIMAN, 2001). Desta forma, para gerar a classifica-
ção de um novo exemplo, o algoritmo escolhe a classificação de acordo com a maioria
dos votos, que é calculado sobre todas as árvores na floresta.

3.1.2 Gradient Boosted Trees

As Gradient Boosted Trees (GBTs) são uma das técnicas para classificação e re-
gressão. As GBTs produzem um modelo de predição robusto sob a forma de um
conjunto de modelos de predição fracos, tipicamente árvores de decisão. Aqui, um
modelo de predição fraco pode ser qualquer modelo que funcione um pouco melhor
do que o acaso.

Como qualquer algoritmo de aprendizagem supervisionado, o objetivo das GBTs é
definir uma função de perda e minimizá-la. Para isso, o algoritmo vai repetidamente
encontrando um padrão nos erros do classificador gerado em cada iteração e utiliza
esses erros para gerar um classificador ainda melhor. Estes erros significam entradas
de dados que são difíceis de serem ajustadas por um modelo simples. Desta forma,
o algoritmo se concentra nos dados que são difíceis de serem ajustados. Uma vez
que chegamos a um estágio que os erros não possuem nenhum padrão que possa
ser modelado, o algoritmo pode parar sua execução (GROVER, 2017).

3.2 Rede neural artificial

As redes neurais tem como principal objetivo simular células cerebrais interconec-
tadas dentro de um computador, com o propósito de aprender novos conceitos, re-
conhecer padrões ou tomar decisões da forma mais parecida possível com que um
humano faria. A maior vantagem de uma rede neural é que ela aprende sozinha, sem
a necessidade de ser programada novamente a cada novo problema.

Uma rede neural típica tem de algumas dezenas a centenas, milhares ou até
mesmo milhões de neurônios artificiais que são dispostos em uma série de camadas,
cada uma das quais se conecta às camadas ao seu lado.

3.2.1 Multilayer perceptron

Uma das principais arquiteturas de redes neurais é a Multilayer Perceptron (MLP).
As MLPs possuem uma camada de entrada, uma ou mais camadas ocultas e uma
camada de saída. A camada de entrada é projetada para receber várias formas de
informação do mundo exterior que a rede tentará aprender, reconhecer ou processar.
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No lado oposto da rede, a camada de saída responde às informações que aprendeu.
Entre essas duas camadas, as camadas ocultas formam a maioria do cérebro artifi-
cial. Além disso, os neurônios das MLPs estão totalmente conectados, o que significa
que cada neurônio se conecta com todos os outros neurônios da camada anterior e
da próxima (caso essas camadas existam). As conexões entre um neurônio e outro
são representadas por um número chamado de peso, que pode ser positivo ou nega-
tivo. Quanto maior o peso, maior a influência que um neurônio tem sobre os outros.
Além disso, para atualizar os pesos da rede, são propostos diferentes algortimos na
literatura. Esses algoritmos são chamados de solvers, sendo que o mais conhecido
deles é a descida de gradiente. A Figura 16 mostra um exemplo de uma MLP com
três neurônios na camada de entrada, três camadas ocultas com quatro, três e dois
neurônios em cada camada, respectivamente, e uma camada de saída com apenas
um neurônio.

Figura 16: Exemplo de uma rede neural Multilayer Perceptron

3.3 Regressão linear

A regressão linear pode ser definida como o estudo de uma variável dependente
em função de outras variáveis que podem auxiliar a entender o problema. Ou seja,
estudar o que está disponível no momento para poder entender como reagir no futuro.
Na regressão linear, o resultado (variável dependente) é contínuo, podendo assumir
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qualquer valor de um número infinito de valores possíveis. Além disso, a regressão
linear gera uma equação que é da forma Y “ mX ` C.

Matematicamente, podemos quantificar em números o quanto uma variável está
relacionada a outra e como ela impacta em seu comportamento. Assim, com o uso da
regressão, podemos obter qual a reta ou curva a ser traçada que melhor se ajusta nos
dados disponibilizados. Na Figura 17, podemos observar um exemplo de uma reta
gerada pela regressão linear para um conjunto de dados.

Figura 17: Exemplo de regressão linear

3.4 Regressão logística

Diferentemente da regressão linear, onde o resultado do classificador é definido por
uma variável contínua, na Regressão Logística (RLog), o resultado pode assumir ape-
nas um número limitado de valores possíveis. Desta forma, a RLog é usada quando
a variável de resposta é de natureza categórica. Na RLog, uma equação da forma
Y “ eX{1 ` e´X é gerada. Na Figura 18 temos um exemplo de RLog, e a comparação
com o resultado de uma regressão linear.

3.5 Modelo Linear Generalizado

O Modelo Linear Generalizado (MLG), proposto por (NELDER; WEDDERBURN,
1972), é uma generalização flexível da regressão linear comum. Com ele, é possível
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Figura 18: Exemplo de regressão logística

utilizar variáveis de saída que possuem modelos de distribuição de erros diferentes da
distribuição normal. O MLG generaliza a regressão linear, permitindo que o modelo
linear seja relacionado à variável de saída através de uma função de ligação e permite
que a magnitude da variância de cada medida seja uma função do seu valor previsto.
O MLG foi formulado como uma forma de unificar vários outros modelos estatísticos,
incluindo regressão linear, regressão logística e regressão de Poisson.

3.6 Máquina de vetor de suporte

As máquinas de vetor de suporte (SVMs, do inglês support vector machine) são
modelos de aprendizagem supervisionados que analisam os dados e reconhecem pa-
drões. As SVMs são utilizadas para classificação e análise de regressão. Dado um
conjunto de exemplos de treinamento, para cada entrada, o algoritmo define qual de
duas possíveis classes a entrada faz parte. Isso faz com que as SVMs sejam um clas-
sificador linear binário não probabilístico. Além disso, um modelo SVM é representado
por pontos distribuídos no espaço, mapeados para que os exemplos das categorias
separadas sejam divididos por um espaço livre o mais amplo possível. Quando no-
vos exemplos são recebidos, o algoritmo os mapeia para o mesmo espaço e define
qual categoria ele pertencerá com base em qual lado da divisão ele está. A Figura 19
exemplifica uma SVM, onde podemos perceber que os exemplos foram divididos por
uma reta em duas regiões distintas através de dois vetores de suporte.

3.7 k -vizinhos mais próximos

No reconhecimento de padrões, o algoritmo de k -vizinhos mais próximos (kNN) é
um método não paramétrico usado para classificação e regressão, ou seja, o clas-
sificador não aprende nenhum parâmetro, pois não há processo de treinamento. Ao
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Figura 19: Exemplo de uma SVM

invés disso, a ideia é que sejam mantidas todas as amostras de treinamento, para que
quando um novo exemplo seja recebido, o classificador possa medir a distância entre
o novo ponto e todos os outros pontos que já foram processados.

Primeiramente, deve ser fornecido ao algoritmo os rótulos de cada exemplo de trei-
namento. Na sequência, para classificar um novo exemplo, o algoritmo encontrará os
k pontos mais próximos nas amostras de treinamento e atribuirá ao exemplo o rótulo
da classe mais comum entre esses vizinhos. A Figura 20 exemplifica o funcionamento
do kNN.

Na Figura 20, para classificar o novo exemplo (representado por um círculo no
centro da imagem), no caso de k = 3, a nova instância será classificada como sendo
pertencente à Classe B, pois dos três pontos mais próximos, dois deles são da Classe
B. No entanto, no caso de k = 6, a classificação será da Classe A, uma vez que dentre
os 6 vizinhos mais próximos, quatro deles são da Classe A.

3.8 Stacked Generalization

O Stacked Generalization (WOLPERT, 1992) é um esquema proposto por Wolpert
para minimizar a taxa de erro de classificadores. Para isso, ao contrário do bagging
e do ensemble, ele combina modelos de diferentes tipos (i.e. árvores de decisão,
redes neurais, regressão logística, ...), introduzindo o conceito de meta-aprendizagem.
Inicialmente, todos os modelos são treinados da forma convencional, gerando seus
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Figura 20: Exemplo do funcionamento do algoritmo kNN

modelos de predição. Usando as predições geradas na primeira etapa como entrada
e as respostas corretas como saída esperada, um classificador de nível superior é
treinado. Desta forma, este classificador utilizará as predições geradas nas saídas
dos classificadores do nível inferior para gerar um modelo mais robusto. A Figura 21
exemplifica o Stacked Generalization.

Figura 21: Modelo genérico do Stacked Generalization
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3.9 Métricas de avaliação

Nas sub-seções seguintes serão apresentadas as principais métricas de avaliação
dos algoritmos de aprendizado de máquina.

3.9.1 Matriz de confusão

Uma matriz de confusão é uma ferramenta de visualização tipicamente utilizada
na aprendizagem supervisionada. Cada coluna da matriz representa as instâncias em
uma classe predita, enquanto cada linha representa as instâncias em uma classe real.
Na matriz de confusão, a diagonal principal mostra as instâncias corretamente clas-
sificadas (WIKIPEDIA, 2018b). Portanto, a matriz de confusão é usada para avaliar
o desempenho de um classificador, e conta como um classificador é exato em fazer
previsões sobre classificação. A Tabela 6 mostra um exemplo de matriz de confusão.
Nesta tabela, percebe-se que cinco gatos, três cachorros e onze coelhos foram cor-
retamente classificados. No entanto, dois gatos foram erroneamente preditos como
cachorros, três cachorros foram preditos como gatos, dois cachorros como coelhos e
um coelho foi predito como cachorro.

Tabela 6: Exemplo de matriz de confusão

Classe predita

Gato Cachorro Coelho

Classe real
Gato 5 2 0

Cachorro 3 3 2

Coelho 0 1 11

3.9.2 Métricas derivadas da matriz de confusão

A partir de matriz de confusão, é possível extrair um conjunto de métricas que
permite uma análise mais detalhada do que uma mera proporção de classificações
corretas (WIKIPEDIA, 2018b). A Tabela 7 resume as métricas derivadas da matriz de
confusão.

Tabela 7: Métricas derivadas da matriz de confusão

Classe predita

Positivo Negativo

Classe real
Positivo Verdadeiro Positivo (TP) Falso Negativo (FN)

Negativo Falso Positivo (FP) Verdadeiro Negativo (TN)

A proporção de instâncias positivas que foram classificadas como positivas é cha-
mada de Verdadeiro Positivo (TP, do inglês True Positive). Os exemplos negativos
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classificados como positivos são chamados de Falso Positivo (FP, do inglês False Po-
sitive). As instâncias positivas classificadas como negativas dão origem ao Falso Ne-
gativo (FN, do inglês False Negative). Por fim, as instâncias negativas classificadas
como negativas são chamadas de Verdadeiro Negativo (TN, do inglês True Negative).

3.9.3 Acurácia

A acurácia é uma métrica que responde, no geral, o quão frequente o classificador
está correto. A acurácia é definida como:

Acurácia “ TP ` TN

Total
(1)

A acurácia não é uma métrica confiável para o desempenho real de um classifica-
dor, porque produzirá resultados enganadores se o conjunto de dados estiver dese-
quilibrado (ou seja, quando o número de observações em diferentes classes variam
muito). Portanto, para que esta métrica possa ser utilizada, o conjunto de dados deve
ser balanceado.

3.9.4 Precisão

A precisão é a fração de instâncias recuperadas que são relevantes, ou seja, mos-
tra quanto os resultados da pesquisa são úteis. A precisão é definida como:

Precisão “ TP

TP ` FP
(2)

3.9.5 Sensibilidade

A sensibilidade nos informa a frequência em que o classificador encontra os exem-
plos de uma classe. Ou seja, é a fração de instâncias relevantes que são recuperadas.
Traduzindo para fórmula:

Sensibilidade “ TP

TP ` FN
(3)

3.9.6 F1 Score

O F1 Score combina precisão e sensibilidade de modo a trazer um número único
que indique a qualidade geral do seu modelo. A fórmula que define o F1 é a seguinte:

F1 “ 2 ˆ precisão ˆ sensibilidade

precisão ` sensibilidade
(4)

3.9.7 Área sob a curva ROC

A área sob a curva ROC (AUC, do inglês Area Under the Curve) nos diz a proba-
bilidade de um classificador ranquear uma instância positiva escolhida aleatoriamente
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melhor do que uma instância negativa, também escolhida aleatoriamente. Quando o
valor da área está abaixo da diagonal 0,5 ou 50%, o modelo não tem validade, pois, os
acertos e erros entram na mesma proporção e são devidos ao acaso. Analogamente,
um valor igual a 1,0 ou 100% não chega a ser alcançado, pois, sempre há superpo-
sição na distribuição das proporções dos grupos. A Figura 22 mostra um exemplo de
curva ROC.

Figura 22: Exemplo de curva ROC

Quanto mais os resultados estão próximos do canto superior esquerdo do gráfico
(valores próximos de 1), maior a sensibilidade e menor proporção de falsos positivos,
tornando o modelo mais preciso.



4 METODOLOGIA E TRABALHO PROPOSTO

Inicialmente, foi realizado um estudo aprofundado da DA e suas características. Os
principais tópicos estudados da DA foram sua patofisiologia, neuropatologia, biomar-
cadores, sintomas e estágios da doença e fatores de risco. Este estudo foi de extrema
importância, uma vez que o assunto abordado não faz parte do conhecimento geral
da área de computação e proporcionou um melhor entendimento da área.

Juntamente com o aprendizado da DA, foi feita uma exploração do ADNI, que é
um esforço de pesquisa global que apoia a investigação e o desenvolvimento de tra-
tamentos que retardem ou parem a progressão da DA. Como mencionado anterior-
mente, este estudo disponibiliza uma base de dados com biomarcadores clínicos, de
imagem, genéticos e de bioespécime.

Desta forma, o problema foi estudado com foco nos biomarcadores disponíveis,
uma vez que eles trazem resultados de diferentes tipos de exame para cada paci-
ente. São eles: informações demográficas, exames neuropsicológicos, de imagem,
de bioespécime, genéticos, histórico médico e outros. Além disso, os pacientes são
monitorados ao longo do tempo, permitindo que a evolução da doença em cada um
deles possa ser observada.

Ao se obter um entendimento mais profundo dos dados disponíveis na base de da-
dos ADNI, pode-se definir o problema como sendo uma tarefa de classificação, uma
vez que é desejado, a partir dos biomarcadores, determinar qual é o estado cognitivo
do paciente. Portanto, propomos modelar o problema com o uso de técnicas de IA.
Técnicas como SVM (CORTES; VAPNIK, 1995), árvores de decisão (e.g. RF (HO,
1995)), MLP e RLog (BISHOP, 2006) foram aplicadas em contextos semelhantes (e.g.
BHATTACHARYA; BHATIA (2010), ZHANG et al. (2008), GIL; JOHNSSON (2009) e
MUSLIMOVIĆ et al. (2005)) e foram avaliadas neste trabalho. Além das técnicas de
classificação, foram aplicadas algumas técnicas de clusterização, como o kNN (ALT-
MAN, 1992). Essas técnicas foram comparadas utilizando as métricas de desempenho
clássicas, como acurácia, precisão, sensibilidade, AUC e F1. Com essas métricas, foi
possível escolher as melhores técnicas para serem aplicadas na solução do problema.

Além disso, foi realizada uma análise com os biomarcadores da base de dados



54

ADNI, a fim de selecionar os atributos mais relevantes para serem utilizados na cons-
trução dos modelos. Para isso, foi utilizada a taxa de ganho de informação. Não
obstante, além do ganho de informação, tivemos a preocupação de reduzir ao má-
ximo a quantidade de exames, e consequentemente, de biomarcadores, necessários
para o desenvolvimento do trabalho. Isso foi feito pois, como dito anteriormente, dese-
jamos que o método possa ser utilizado pela grande maioria da população, inclusive
em zonas mais distantes dos grandes centros urbanos.

O estudo feito neste trabalho foi dividido em duas partes. A primeira, é um estudo
em abrangência das técnicas de IA aplicadas para a classificação do estado cognitivo
dos pacientes da base de dados ADNI. A segunda, é a proposta de um método para
classificação de pacientes em estado de risco, ou seja, esse método se preocupa, prin-
cipalmente, em informar se o paciente é definido como estável (baixa probabilidade de
desenvolver a doença) ou em risco (alta probabilidade de desenvolver a doença).

Para o estudo em abrangência e a geração da taxa de ganho de informação dos
biomarcadores, foi utilizada a ferramenta Orange3 (DEMŠAR et al., 2013). A Orange3
é uma ferramenta open-source que permite a modelagem rápida de técnicas de IA de
uma forma interativa e visual.

No entanto, como a Orange3 é uma ferramenta direcionada para propósitos educa-
cionais, ela carece de uma maior liberdade para ajustes finos nos algoritmos. Portanto,
para a modelagem do método para classificação de pacientes em estado de risco, que
é o objetivo principal deste trabalho, foi utilizada a ferramenta RapidMiner Studio (RA-
PIDMINER, 2017). O RapidMiner Studio é um ambiente de modelagem visual que
possibilita a criação de fluxos de trabalho analíticos preditivos. Além disso, esta ferra-
menta possui centenas de algoritmos pré-definidos para pré-processamento de dados
e aprendizagem de máquina.

Após a modelagem do método proposto, foram realizados testes com o intuito de
validar o método implementado. Para isso, foi utilizado o método de cross-validation
com 10-fold, aplicado sobre um conjunto de dados balanceado obtidos da base de
dados ADNI. Por fim, os resultados obtidos pelos diferentes algoritmos avaliados foram
comparados para que pudesse ser escolhido aquele que entrega uma melhor precisão
de predição.

Com a definição do algoritmo a ser utilizado para a resolução do problema, uma
análise dos resultados de classificação foi realizada. Além de se observar as taxas
de verdadeiro positivo e verdadeiro negativo (exemplos corretamente classificados),
foram analisados os falsos negativos (indivíduos cognitivamente normais que foram
classificados como pacientes em risco), a fim de observar se essas pessoas estão na
fase pré-clínica da DA.
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4.1 Biomarcadores utilizados

Os experimentos realizados neste trabalho utilizaram conjuntos com diferentes ar-
ranjos de biomarcadores para treinamento dos algoritmos de aprendizagem de má-
quina. Para uma melhor organização, estes biomarcadores serão descritos a seguir,
separados por categoria.

• Dados Demográficos (D)

– AGE: idade em anos

– PTGENDER: gênero (male / female)

– PTEDUCAT: educação em anos

• PET

– FDG: metabolismo de glicose no cérebro

– AV45: placas de A� no cérebro

• CSF - mede o fluido cerebrospinal (pg{mL)

– ABETA: quantidade de proteína de A� no liquor

– TAU: quantidade de tau no liquor

– PTAU: quantidade de fosfo-tau no liquor

• Testes Neuropsicológicos (N)

– ADAS11: teste que avalia a cognição e diferencia o funcionamento cognitivo
normal da deterioração do funcionamento cognitivo

– CDRSB: teste que avalia a memória, orientação, julgamento e resolução de
problemas, assuntos da comunidade, lar e hobbies e cuidados pessoais

– MMSE: teste que avalia a orientação, recuperação de palavras, atenção,
cálculo, habilidades de linguagem e capacidade visuoespacial

– RAVLT: teste que avalia a memória recente, aprendizagem, interferência,
retenção e memória de reconhecimento

• MRI - mede o volume de diferentes regiões do cérebro (mm3)

– ICV: volume intracerebral

– Entorhinal: córtex entorrinal

– Fusiform: giro fusiforme, parte do lobo temporal e occipital

– Hippocampus: hipocampo, estrutura localizada nos lobos temporais, consi-
derada a principal sede da memória
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– MidTemp: lobo médio temporal, região vital para a memória declarativa e de
longo prazo

– Ventricles: ventrículos, uma rede comunicante de cavidades preenchidas
com líquido cefalorraquidiano e localizadas no parênquima cerebral

– WholeBrain: volume de todo cérebro

• Genético (G)

– APOE-e4: presença da apolipoproteína E4.

4.2 Classificação da Doença de Alzheimer

Com o propósito de diagnosticar o estágio da DA dos pacientes em sua primeira
visita, foi realizado um estudo em abrangência com diferentes algoritmos de aprendi-
zado de máquina com a ferramenta Orange3.

4.2.1 Conjunto de Dados

O atributo da base de dados a ser predito pelos classificadores é o DX, que indica
o diagnóstico do paciente em uma determinada visita. Ele pode assumir os seguintes
valores: NL, MCI ou Dementia.

Para este estudo, foram utilizados 900 instâncias de exames de pacientes em sua
primeira visita (atributo V ISCODE com valor bl) extraídas da base de dados ADNI,
formando um conjunto de três classes balanceadas, sendo 300 NL, 300 MCI e 300
Dementia.

Para a predição do diagnóstico da DA, quatro conjuntos de biomarcadores foram
avaliados. A Tabela 8 resume os conjuntos de biomarcadores que foram utilizados
para a classificação da DA. O símbolo 3 significa que todos os biomarcadores da
categoria em questão foram utilizados.

Tabela 8: Conjuntos de biomarcadores avaliados para a predição do diagnóstico da
DA

Categoria D-PET-CSF-N D-PET-CSF-N* D-PET-CSF D-PET-CSF-MRI-G

Dados Demográficos 3 3 3 3

PET 3 3 3 3

CSF 3 3 3 3

Testes Neuropsicológicos 3 MMSE e RAVLT

MRI 3

Genéticos 3
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Nos quatro conjuntos, tanto os Dados Demográficos quanto os biomarcadores PET
e CSF foram utilizados. O que diferencia os experimentos é a utilização de testes
neuropsicológicos e o uso de MRI e biomarcadores genéticos. Enquanto no expe-
rimento D-PET-CSF-N todos os testes neuropsicológicos são utilizados, no D-PET-
CSF-N* apenas os testes MMSE e RAVLT foram incluídos. O motivo pelo qual os
testes ADAS11 e CDRSB foram removidos do experimento é que são determinantes
clínicos para definir o diagnóstico. Ou seja, o diagnóstico do paciente é definido pelo
valor obtido por estes dois exames.

Resumidamente, os testes neuropsicológicos avaliam o estado cognitivo do pa-
ciente. No entanto, a utilização destes testesN para o diagnóstico da DA tem três
grandes problemas: (i) alto custo, (ii) a impossibilidade de escalar para uma grande
quantidade de pessoas, uma vez que, para realizar o exame, são necessários profissi-
onais treinados e (iii) estes exames só identificarão pacientes que já estão em estágios
mais avançados de perda cognitiva. Portanto, o experimento D-PET-CSF não utiliza
nem um teste neuropsicológico, mas somente dados demográficos e os biomarcado-
res PET e CSF.

No experimento D-PET-CSF-MRI-G, são adicionados ao teste anterior (D-PET-
CSF) os biomarcadores extraídos de imagem de MRI e genéticos.

4.2.2 Classificadores

Os seguintes classificadores foram avaliados neste estudo: Tree, RF, MLP, kNN,
RLog e SVM. Aqui, o algoritmo chamado Tree é uma implementação de árvore de
decisão que foi desenvolvida pela própria Orange3.

4.2.3 Avaliação dos Resultados

Para treinamento e teste dos experimentos, foi utilizado o método de cross-
validation com 10-fold. No entando, uma limitação do trabalho neste ponto é que não
foi separada uma porção do conjunto de 900 exemplos para validação dos resultados.

Na tentativa de melhorar a taxa de predição do experimento D-PET-CSF-MRI-G,
foi utilizado o método Stacked Generalization. Para o experimento D-PET-CSF-MRI-
G, são utilizados no primeiro nível os algoritmos RLog, RF, MLP, SVM e Tree. Além
disso, os biomarcadores que entram no sistema são repassados para todos os classifi-
cadores do primeiro nível. Para o classificador do segundo nível, as predições geradas
pelos modelos da camada inferior são utilizadas como entrada. A saída gerada por
este classificador é a resposta final do sistema.



58

4.3 Two-step classifier

Após a definição dos experimentos realizados para o diagnóstico da DA, este es-
tudo foi expandido para a identificação de pacientes em risco. Neste sentido, é pro-
posto o Two-Step Classifier (TSC). Esse método tem como objetivo informar se o
paciente é definido como um paciente estável (que provavelmente não desenvolverá
déficit cognitivo) ou um paciente de risco (alta probabilidade de desenvolver a DA).

O TSC realiza a classificação em dois passos. No first-step, ocorre a identificação
de pacientes em risco. Já no second-step, é realizado o diagnóstico do estado cog-
nitivo dos indíviduos que foram classificados como em estado de risco pelo first-step.
Mesmo que apenas pacientes em risco passem para o second-step, o classificador faz
a classificação considerando os três valores possíveis: NL, MCI e Dementia. Como
os classificadores sempre possuem um erro de predição, pacientes da classe NL po-
dem ter sido incorretamente classificados como em risco. Com isso, no second-step,
há a possibilidade destas classificações incorretas serem ajustadas, aumentando a
taxa de acerto do sistema como um todo.

A Figura 23 apresenta uma arquitetura genérica para o TSC, assinalando as entra-
das e saídas do sistema e de cada etapa do classificador.

Two-step classifier

Predição do estado cognitivoIdentificação de pacientes
em risco

Pacientes
em risco

First-step Second-step
Biomarcadores DX

Pacientes estáveis

Figura 23: Arquitetura genérica do two-step classifier

4.3.1 Conjunto de Dados

No first-step, a classe NL é separada das classes MCI e Dementia. Ou seja, os
pacientes em risco são aqueles pertencentes as classes MCI ou Dementia. Para
isso, foi criado um novo atributo chamado IS_NL. O atributo IS_NL representa se o
paciente é normal (NL), ou se ele possui algum déficit cognitivo (NOT_NL, pacientes
das classes MCI ou Dementia).

Os dados utilizados para o first-step foram extraídos da base de dados ADNI, sendo
300 NL, 150 MCI e 150 Dementia, totalizando 600 exemplos. Desta forma, temos



59

300 pacientes com IS_NL “ NL e 300 pacientes com IS_NL “ NOT_NL. Já
para o second-step, foram utilizados 900 exemplos da base de dados ADNI, com 300
instâncias para cada uma das classes (NL, MCI e Dementia). Além disso, os dados
foram normalizados utilizando o método Z-transformation.

Assim como na predição do diagnóstico da DA, diferentes conjuntos de biomarca-
dores foram avaliados para o first-step do TSC. Estes conjuntos podem ser vistos na
Tabela 9.

Tabela 9: Conjuntos de biomarcadores explorados para o first-step do two-step classi-
fier

Categoria TSC-D-PET-CSF-MRI TSC-D-PET-CSF TSC-D-CSF-MRI TSC-D-MRI

Dados Demográficos 3 3 3 3

PET 3 3

CSF 3 3 3

MRI 3 3 3

No experimento TSC-D-PET-CSF-MRI, são avaliados os biomarcadores demográ-
ficos, PET, CSF e MRI. Já no TSC-D-PET-CSF, em relação ao experimento anterior,
são removidos os biomarcadores de MRI. A terceira análise (TSC-D-CSF-MRI) man-
tém dados demográficos, CSF e MRI. Finalmente, o TSC-D-MRI utiliza apenas dados
demográficos e MRI.

Dentre as categorias de biomarcadores, os dados demográficos são os mais fáceis
de serem obtidos, uma vez que todos podem ser extraídos apenas das informações
dos pacientes. Por outro lado, nos exames de PET e CSF são utilizados radiofármacos
para obtenção dos biomarcadores, tornando estes exames invasivos. Já o MRI, um
dos exames mais simples de serem feitos, necessita apenas de um equipamento de
ressonância magnética, que pode ser encontrado próximo de praticamente todas as
cidades do mundo. Assim quanto menos exames forem necessários e quanto mais
simples estes forem, mais acessível se torna o método proposto.

No entanto, para o second-step, em busca de um melhor acerto na predição, e
considerando que pacientes em risco passam para esta etapa, todos os biomarcado-
res de dados demográficos, PET, CSF e MRI foram utilizados. Além disso, regiões
mais específicas dos biomarcadores AV45, FDG e MRI foram inseridas no sistema.
Neste ponto, cabe lembrar que nenhum exame neuropsicológico está sendo utilizado
no TSC.

4.3.2 Classificadores

O TSC foi modelado na ferramenta RapidMiner Studio e foi avaliado para os al-
goritmos GBT, RLog, MLG, kNN, RF, e MLP. Aqui é utilizado o módulo AutoMLP do
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RapidMiner Studio, que é um algoritmo simples que ajusta a taxa de aprendizado e o
tamanho das redes neurais durante o treinamento de forma automatizada. Para isso,
o AutoMLP combina ideias de algoritmos genéticos e otimização estocástica.

4.3.3 Avaliação dos Resultados

Para treinamento e teste dos modelos, foi utilizado o método de cross-validation
com 10-fold sobre 80% do conjunto de exemplos. Para teste, foram utilizados os 20%
restantes do conjunto de dados.



5 RESULTADOS

Nesta seção serão apresentados os resultados obtidos para os dois estudos reali-
zados neste trabalho, a classificação da DA e a identificação de pacientes em estado
de risco. Os resultados serão separados por experimento realizado e discutidos indi-
vidualmente.

Além disso, tanto na ferramenta Orange3 quanto no RapidMiner Studio, para cada
algoritmo testado, os parâmetros foram ajustados para que uma melhor predição pu-
desse ser atingida. Para cada algoritmo de cada solução, o ajuste dos parâmetros
(e.g. a profundidade das árvores de decisão, o valor de k para o algoritmo kNN e
outros) foi realizado de forma manual, buscando encontrar o valor que entregasse
melhores resultados. Portanto, ao descrever os resultados dos experimentos, serão
informados os valores dos parâmetros que levaram às melhores taxas de acerto.

5.1 Classificação da Doença de Alzheimer

Para a classificação da DA (ADC - Alzheimer’s Disease Classification), lembra-
mos que a ferramenta Orange3 foi utilizada para modelagem dos experimentos. Além
disso, foi utilizado o método de cross-validation de 10-fold para teste e validação. Os
dados de entrada foram extraído da base de dados ADNI, sendo 300 pacientes NL,
300 com MCI e 300 com Dementia, num total de 900 instâncias. Para cada experi-
mento, são apresentadas as métricas AUC, acurácia, F1, precisão e sensibilidade.

Para os resultados do experimento D-PET-CSF-N, o algoritmo RF foi modelado
com 15 árvores, com profundidade máxima de cinco níveis em cada uma delas e cinco
atributos considerados para cada split. A SVM foi modelada com kernel linear, C “ 0, 7

e ✏ “ 0, 6. A RLog utilizou a regularização Lasso (L1) com C “ 3. A Tree foi definida
para ter no mínimo cinco instâncias em cada folha e profundidade máxima de seis
níveis. A MLP foi modelada com 25 neurônios na camada oculta, função de ativação
identidade – função que dá como imagem de cada elemento o próprio elemento – e
solver Adam. Por fim, o kNN utilizou a métrica Manhattan com k “ 21.

A Tabela 10 apresenta os resultados para o experimento D-PET-CSF-N. Anali-



62

sando estes resultados, percebe-se que a acurácia atinge valores elevados, chegando
a 92,4% para o método RF e AUC de 0,964. Com exceção do kNN, que teve uma acu-
rácia de 0,666 e AUC de 0,705, todos os outros algoritmos apresentaram resultados
satisfatórios, sendo que, além do RF, a SVM, RLog e Tree atingiram uma acurácia
superior a 90% e AUC acima de 0,940.

No entanto, estes resultados são esperados, uma vez que os testes neuropsico-
lógicos foram utilizados como atributos para classificação. Não obstante, os biomar-
cadores CDRSB e ADAS11 são determinantes clínicos. Ou seja, os valores destes
dois biomarcadores são utilizados pelos profissionais da área para dar o diagnóstico
da DA. Portanto, a precisão deste experimento só não chega a 100% devido a possí-
veis erros existentes na base de dados. Este fato pode ser constatado ao observar o
ganho de informação de cada biomarcador, presente na Tabela 11.

Tabela 10: Resultados para o experimento D-PET-CSF-N

Método AUC Acurácia F1 Precisão Sensibilidade

RF 0,964 0,924 0,891 0,858 0,927

SVM 0,970 0,913 0,875 0,876 0,873

RLog 0,949 0,911 0,861 0,899 0,827

Tree 0,940 0,906 0,860 0,848 0,873

MLP 0,955 0,892 0,829 0,88 0,783

kNN 0,705 0,666 0,428 0,535 0,357

Como podemos ver na Tabela 11, os quatro biomarcadores que tem o maior ganho
de informação são testes neuropsicológicos, sendo o CDRSB o primeiro e o ADAS
11 o terceiro. No entanto, não há nenhuma outra categoria de biomarcadores que se
destaque entre as demais.

Neste ponto, foram eliminados os determinantes clínicos (CDRSB e ADAS11) para
verificar qual o impacto na precisão do modelo quando estes não são utilizados. O
experimento D-PET-CSF-N* faz esta avaliação.

Os parâmetros dos algoritmos para o experimento D-PET-CSF-N* são descritos a
seguir. O algoritmo RF foi modelado com 14 árvores, com profundidade máxima de
quatro níveis em cada uma delas e três atributos considerados para cada split. A SVM
foi modelada com kernel linear, C “ 0, 7 e ✏ “ 0, 6. A RLog utilizou a regularização
Lasso (L1) com C “ 0, 9. A Tree foi definida para ter no mínimo três instâncias em cada
folha e profundidade máxima de 10 níveis. A MLP foi modelada com 20 neurônios na
camada oculta, função de ativação identidade e solver Adam. O kNN utilizou a métrica
Manhattan com k “ 10.

A Tabela 12 apresenta os resultados do experimento D-PET-CSF-N*. Como pode-
mos observar, a acurácia do experimento teve uma diminuição significativa ao serem
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Tabela 11: Ganho de Informação para os biomarcadores utilizados neste trabalho

Categoria Biomarcador Ganho de Informação

N CDRSB 1,1587

N MMSE 0,6567

N ADAS11 0,5319

N RAVLT 0,3450

MRI Hippocampus 0,2003

PET FDG 0,1930

MRI Entorhinal 0,1811

CSF ABETA 0,1185

CSF TAU 0,1100

MRI MidTemp 0,1072

PET AV45 0,0934

G APOE-e4 0,0795

MRI Fusiform 0,0779

CSF PTAU 0,0659

MRI Ventricles 0,0588

MRI WholeBrain 0,0489

D PTEDUCAT 0,0222

D AGE 0,0182

MRI ICV 0,0098

D PTGENDER 0,0078

removidos os determinantes clínicos, atingindo um valor máximo de 72,7% para o RF
e AUC de 0,767. O kNN foi novamente o último colocado neste experimento. Os algo-
ritmos SVN, MLP e RLog tiveram uma acurácia superior a 70% com AUC maior que
0,726.

Tabela 12: Resultados para o experimento D-PET-CSF-N*

Método AUC Acurácia F1 Precisão Sensibilidade

RF 0,767 0,727 0,500 0,658 0,403

SVM 0,773 0,712 0,542 0,588 0,503

MLP 0,764 0,707 0,512 0,589 0,453

RLog 0,726 0,704 0,463 0,601 0,377

Tree 0,666 0,673 0,480 0,524 0,443

kNN 0,625 0,62 0,307 0,463 0,23

Como já mencionado anteriormente, testes neuropsicológicos têm um ônus de se-
rem utilizados. Portanto, o experimento D-PET-CSF avalia a não utilização destes
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testes para a modelagem dos preditores.
Para o experimento D-PET-CSF, os seguintes parâmetros foram definidos. O algo-

ritmo RF foi modelado com seis árvores, com profundidade máxima de cinco níveis
em cada uma delas e cinco atributos considerados para cada split. A SVM foi mode-
lada com kernel linear, C “ 0, 7 e ✏ “ 0, 6. A RLog utilizou a regularização Lasso (L1)
com C “ 0, 9. A Tree foi definida para ter no mínimo três instâncias em cada folha
e profundidade máxima de 10 níveis. A MLP foi modelada com 20 neurônios na ca-
mada oculta, função de ativação identidade e solver Adam. O kNN utilizou a métrica
Manhattan com k “ 23.

Na Tabela 13, temos os resultados para o experimento D-PET-CSF. Como espe-
rado, a acurácia atingida foi menor do que quando utilizados testes neuropsicológicos.
Tanto a RLog quanto a SVM e RF tiveram uma acurácia de 54,7%. No entanto, a RLog
e a SVM tiveram um AUC muito próximo (0,607 e 0,607, respectivamente). Já o RF,
teve um AUC de 0,587.

Tabela 13: Resultados para o experimento D-PET-CSF

Método AUC Acurácia F1 Precisão Sensibilidade

RLog 0,607 0,547 0,355 0,429 0,303

SVM 0,606 0,547 0,383 0,423 0,350

RF 0,587 0,547 0,360 0,429 0,310

MLP 0,598 0,541 0,370 0,406 0,340

kNN 0,499 0,486 0,260 0,341 0,210

Tree 0,540 0,474 0,298 0,391 0,240

Para o experimento seguinte, biomarcadores de imagens MRI e genéticos foram
adicionados aos dados demográficos, PET e CSF. A Tabela 14 apresenta os resulta-
dos para o experimento D-PET-CSF-MRI-G. Aqui, o algoritmo RF foi modelado com 12
árvores, com profundidade máxima de cinco níveis em cada uma delas e quatro atri-
butos considerados para cada split. A SVM foi modelada com kernel linear, C “ 0, 7 e
✏ “ 0, 6. A RLog utilizou a regularização Lasso (L1) com C “ 5. A Tree foi definida para
ter no mínimo três instâncias em cada folha e profundidade máxima de 10 níveis. A
MLP foi modelada com 20 neurônios na camada oculta, função de ativação identidade
e solver Adam. O kNN utilizou a métrica Manhattan com k “ 22.

Ao adicionar estes dois conjuntos de biomarcadores, percebemos uma melhora na
predição ao comparar com o experimento D-PET-CSF. De todos os métodos avaliados,
a RLog, RF e MLP atingiram uma acurácia superior a 60%, com AUC acima de 0,623.

Para melhor analisar os resultados de classificação do experimento D-PET-CSF-
MRI-G, foi extraída a matriz de confusão para o algoritmo RLog, uma vez que ele
presentou uma melhor combinação de Acurácia e AUC. A Tabela 15 mostra esta ma-
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Tabela 14: Resultados para o experimento D-PET-CSF-MRI-G

Método AUC Acurácia F1 Precisão Sensibilidade

RLog 0,630 0,608 0,385 0,49 0,317

RF 0,626 0,601 0,375 0,474 0,310

MLP 0,641 0,600 0,418 0,465 0,380

SVM 0,644 0,597 0,386 0,459 0,333

Tree 0,541 0,519 0,316 0,438 0,247

kNN 0,584 0,468 0,369 0,407 0,337

triz.

Tabela 15: Matriz de confusão da Regressão Logística para o experimento D-PET-
CSF-MRI-G

Classe predita

NL MCI Dementia Sensibilidade

Classe atual

NL 223 106 30 0,621

MCI 58 95 41 0,490

Dementia 19 99 229 0,660

Precisão 0,743 0,317 0,763

Ao observar a matriz de confusão, vemos que a classe NL teve 223 instâncias
preditas corretamente, o que equivale a 74,3% de acerto. Já para a classe Dementia,
essa quantia foi de 229, correspondendo a 76,3%. No entanto, a classe MCI teve
apenas 95 exemplos corretamente classificados, representando um acerto de apenas
31,67%. Este resultado, no entanto, não é surpreendente, uma vez que pacientes
da classe MCI estão em uma zona nebulosa (não são nem cognitivamente normais,
nem apresentam grandes perdas de funções cognitivas), e é exatamente neste ponto
que há uma grande dificuldade para classificação.

Levando isto em consideração, foi realizada uma análise dos resultados de clas-
sificação dos preditores do experimento D-PET-CSF-MRI-G a fim de entender melhor
os erros de classificação. Para tanto, foram selecionadas as instâncias incorretamente
classificadas de cada preditor e estas foram dispostas em diagrama de Venn, que é
apresentado na Figura 24. Como podemos observar no diagrama, de todas as ins-
tâncias, apenas 176 delas (19,5% de todo conjunto de dados) foram classificadas
incorretamente por todos os algoritmos.

Utilizando desta constatação, foi aplicado o Stacked Generalization sobre os pre-
ditores gerados para o experimento D-PET-CSF-MRI-G, com exceção do kNN, que
apresentou o pior desempenho de predição. Este experimento se chama D-PET-CSF-
MRI-G-SG. Na camada inferior do D-PET-CSF-MRI-G-SG foram usados os algoritmos
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Figura 24: Diagrama de Venn das instâncias classificadas incorretamente para o ex-
perimento D-PET-CSF-MRI-G

RLog, RF, MLP, SVM e Tree. Para a camada superior, foram avaliados estes mesmos
cinco algoritmos.

Os parâmetros dos algoritmos analisados na camada superior do D-PET-CSF-MRI-
G-SG são descritos a seguir. O algoritmo RF foi modelado com 23 árvores, com pro-
fundidade máxima de cinco níveis em cada uma delas e quatro atributos considerados
para cada split. A SVM foi modelada com kernel linear, C “ 0, 7 e ✏ “ 0, 6. A RLog
utilizou a regularização Lasso (L1) com C “ 5. A Tree foi definida para ter no mínimo
duas instâncias em cada folha e profundidade máxima de 10 níveis. A MLP foi mo-
delada com 20 neurônios na camada oculta, função de ativação identidade e solver
Adam.

Os resultados obtidos pelo D-PET-CSF-MRI-G-SG são mostrados na Tabela 16.
É notável, ao observar os resultados obtidos, que houve uma melhora na predi-

ção, ao comparar com o experimento D-PET-CSF-MRI-G. Enquanto no experimento
D-PET-CSF-MRI-G, o melhor preditor atingia uma acurácia de 60,8% com AUC de
0,63, com o D-PET-CSF-MRI-G-SG foi possível atingir uma acurácia de 76,2% com
AUC de 0,79 para a MLP. Além disso, todos os métodos avaliados tiveram resultados
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Tabela 16: Resultados do para o experimento D-PET-CSF-MRI-G-SG

Método AUC Acurácia F1 Precisão Sensibilidade

MLP 0,790 0,762 0,683 0,742 0,633

RLog 0,776 0,759 0,679 0,735 0,63

RF 0,785 0,757 0,670 0,725 0,623

Tree 0,770 0,751 0,663 0,717 0,617

SVM 0,755 0,744 0,665 0,705 0,630

semelhantes, com acurácia entre 74,4% e 76,2% e AUC entre 0,755 e 0,79.
Desta forma, com o uso do Stacked Generalization, foi possível atingir resultados

superiores do que o experimento D-PET-CSF-N*, onde os testes neuropsicológicos
MMSE e RAVLT eram utilizados. Portanto, o uso do Stacked Generalization no con-
junto de dados do experimento D-PET-CSF-MRI-G se mostra eficiente, uma vez que
melhora significativamente a taxa de acerto da classe MCI, como podemos observar
na matriz de confusão apresentada na Tabela 17.

Tabela 17: Matriz de confusão da MLP para o experimento D-PET-CSF-MRI-G com
Stacked Generalization

Classe predita

NL MCI Dementia Sensibilidade

Classe atual

NL 238 45 16 0,796

MCI 39 189 33 0,724

Dementia 23 66 251 0,738

Precisão 0,793 0,630 0,837

Além de mais instâncias serem classificadas corretamente para as classes NL e
Dementia, a classe MCI teve um aumento de quase o dobro na taxa de acerto quando
comparado ao não uso do Stacked Generalization. Neste caso, a taxa de acerto foi
de 63%, comparados aos 31,7% do experimento D-PET-CSF-MRI-G. Já a classe NL,
subiu de 74,3% para 79,3%. A classe Dementia, de 76,3%, foi para 83,7%.

Por fim, a Tabela 18 apresenta um resumo dos resultados dos experimentos D-PET-
CSF-N (1), D-PET-CSF-N* (2), D-PET-CSF (3), D-PET-CSF-MRI-G (4) e D-PET-CSF-
MRI-G-SG (5), mostrando os biomarcadores utilizados em cada estudo, bem como o
algoritmo que gerou as melhores predições, juntamente com a acurácia e AUC.

5.2 Two-step classifier

Nesta seção, serão apresentados os resultados obtidos pelo TSC. Para geração
destes resultados, foi utilizada a ferramenta RapidMiner Studio. Além disso, foi utili-
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Tabela 18: Resumo dos resultados obtidos para a classificação da DA

Biomarcadores (1) (2) (3) (4) (5)

D 3 3 3 3 3

PET 3 3 3 3 3

CSF 3 3 3 3 3

N 3 MMSE e RAVLT

MRI 3 3

G 3 3

Método RF RF RLog RLog MLP

Acurácia 0,924 0,727 0,547 0,608 0,762

AUC 0,964 0,767 0,607 0,630 0,790

zado o método de cross-validation com 10-fold para treinamento e validação. A base
de dados ADNI foi utilizada para extração dos dados para treinamento e teste dos al-
goritmos avaliados. Dentre estes dados, temos 300 pacientes NL, 150 com MCI e
150 com Dementia, num total de 600 indivíduos. Lembramos, que para o first-step,
deseja-se prever a classe IS_NL, portanto, os pacientes NL recebem IS_NL “ NL

e pacientes MCI ou Dementia são classificados como IS_NL “ NOT_NL. Para
cada experimento do first-step, são apresentadas as métricas AUC, acurácia, F1, pre-
cisão e sensibilidade. Para as análises do second-step, é apresentada a matriz de
confusão para cada experimento.

Neste ponto, é importante ressaltar que a nova implementação do RapidMiner Stu-
dio para os algoritmos GBT e RLog tiveram uma melhora significativa de desempenho.
Este aumento no desempenho pode, em parte, ser atribuído ao fato de que esses algo-
ritmos se ajustam automaticamente. Eles são projetados para encontrar as melhores
configurações de parâmetros para otimizar a acurácia da predição. Isso não só pro-
porciona uma melhor precisão; mas também reduz o esforço necessário realizar os
ajustes desses algoritmos.

Além disso, o algoritmo aqui descrito como MLP é o operador chamado AutoMLP
do RapidMiner Studio. O AutoMLP é uma implementação algorítmica simples para
ajuste automático da taxa de aprendizagem e tamanho das redes neurais na fase de
treinamento. O algoritmo combina ideias de algoritmos genéticos e otimização esto-
cástica. Ele mantém um pequeno conjunto de redes que são treinadas em paralelo
com diferentes taxas de aprendizado e diferentes configurações de camadas ocultas.
Após um número pequeno e fixo de épocas, a taxa de erro é determinada em um
conjunto de validação e as redes que tiveram as piores performances são substituídas
por cópias das melhores redes, modificadas para ter diferentes taxas de aprendizado
e configuração as camadas ocultas. As configurações das camadas ocultas e as ta-
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xas de aprendizagem são definidas de acordo com as distribuições de probabilidade
derivadas de taxas e configurações bem-sucedidas (BREUEL; SHAFAIT, 2010).

Para melhor organização e discussão dos resultados, esta seção será dividida em
três sub-seções: First-step, Second-step e Identificação de Pacientes em Fase Pré-
Clínica. Nessa última, será abordada a fase pré-clínica da DA.

5.2.1 First-step

Como mencionado anteriormente, para o first-step do método TSC, foram avalia-
dos os algoritmos GBT, MLP, RLog e kNN. Os parâmetros destes algoritmos, para o
experimento TSC-D-PET-CSF-MRI, são descritos a seguir. O GBT foi modelado com
50 árvores e profundidade máxima de cinco níveis. A RLog utilizou o solver IRLSM e
o kNN foi configurado com k “ 25.

A Tabela 19 apresenta os resultados para o experimento TSC-D-PET-CSF-MRI.
Nesse experimento, são utilizados todos os exames descritos na seção 4.1, com
exceção dos testes neuropsicológicos. Como comentado na seção anterior, testes
neuropsicológicos não são desejados neste trabalho. Portanto, para o TSC, nenhum
experimento utilizou-se desses exames.

Tabela 19: Resultados do para o experimento TSC-D-PET-CSF-MRI

Método AUC CA F1 Precisão Sensibilidade

GBT 0,868 0,800 0,797 0,808 0,788

MLP 0,862 0,794 0,783 0,825 0,746

RLog 0,845 0,779 0,772 0,799 0,746

kNN 0,632 0,602 0,575 0,617 0,538

A partir da Tabela 19, observamos que o algoritmo GBT atingiu a melhor acurácia
(80%) dentre os algoritmos avaliados, com AUC de 0,868. No entanto, a MLP obteve
resultados próximos, com uma acurácia de 79,4% e AUC 0,862. O kNN apresentou
os piores resultados, para todas as métricas avaliadas.

O TSC-D-PET-CSF analisa a qualidade na predição quando são removidos os exa-
mes de MRI do experimento TSC-D-PET-CSF-MRI. Os resultados obtidos pelo expe-
rimento TSC-D-PET-CSF são mostrados na Tabela 20.

Para a geração desses resultados, o GBT foi modelado com 40 árvores e profundi-
dade máxima de quatro níveis. A RLog utilizou o solver IRLSM e o kNN foi configurado
com k “ 15.

Ao comparar com os resultados anteriores, percebemos que os resultados de pre-
dição tiveram uma queda de desempenho. No entanto, ao relembrar a Tabela 11, que
apresenta o ganho de informação para cada biomarcador, se excluirmos a catego-
ria de testes neuropsicológicos, dois dos três biomarcadores que trazem um melhor



70

Tabela 20: Resultados do para o first-step do experimento TSC-D-PET-CSF

Método AUC CA F1 Precisão Sensibilidade

GBT 0,816 0,731 0,731 0,732 0,729

RLog 0,781 0,710 0,702 0,722 0,683

MLP 0,791 0,704 0,674 0,750 0,613

kNN 0,708 0,671 0,650 0,693 0,613

ganho de informação são da categoria MRI (Hippocampus e Entorhinal).
No experimento TSC-D-PET-CSF, o GBT e o RLog apresentaram os melhores re-

sultados, com acurácia de 73,1% e 71,0% e AUC de 0,816 e 0,781, respectivamente.
O kNN, novamente, apresentou o pior desempenho, com acurácia de 67,1%.

O próximo experimento, TSC-D-CSF-MRI, pudemos avaliar a não utilização dos
biomarcadores PET (FDG e AV45). Neste experimento, no entanto, são utilizados os
biomarcadores extraídos de MRI. Os resultados obtidos são mostrados na Tabela 21.

Os parâmetros dos algoritmo para o experimento TSC-D-CSF-MRI são os seguin-
tes. O GBT foi modelado com 30 árvores e profundidade máxima de seis níveis. A
RLog utilizou o solver IRLSM e o kNN foi configurado com k “ 21.

Tabela 21: Resultados do para first-step do experimento TSC-D-CSF-MRI

Método AUC CA F1 Precisão Sensibilidade

GBT 0,854 0,790 0,796 0,773 0,821

MLP 0,842 0,785 0,773 0,822 0,729

RLog 0,827 0,748 0,741 0,762 0,721

kNN 0,626 0,583 0,559 0,593 0,529

Como podemos notar, os resultados, apesar de mais baixos, quando compara-
dos ao experimento TSC-D-PET-CSF-MRI, são similares. O algoritmo GBT teve uma
acurácia de 79% com AUC de 0,854, contra os 80% do TSC-D-PET-CSF-MRI. Con-
tudo, neste experimento, não são utilizados exames PET. O MLP teve uma acurácia
de 78,5% com AUC de 0,842. Por último, temos o kNN, com acurácia de 58,3% e AUC
0,626.

Todavia, para os três experimentos anteriores, são utilizados os biomarcadores
PET e/ou CSV. Para que esses biomarcadores possam ser obtidos, são utilizados
radiofármacos (agentes radioativos injetados na corrente sanguínea do paciente), tor-
nando estes exames invasivos. Além disso, poucas clínicas radiológicas realizam es-
ses exames. Portanto, o experimento TSC-D-MRI remove essas duas classes de
biomarcadores, deixando apenas dados demográficos e MRI. A Tabela 22 apresenta
os resultados obtidos pelo TSC-D-MRI.
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O GBT do TSC-D-MRI foi modelado com 30 árvores e profundidade máxima de
cinco níveis. A RLog utilizou o solver IRLSM e o kNN foi configurado com k “ 25.

Tabela 22: Resultados do para first-step do experimento TSC-D-MRI

Método AUC CA F1 Precisão Sensibilidade

GBT 0,847 0,781 0,780 0,785 0,775

MLP 0,813 0,748 0,731 0,785 0,683

RLog 0,816 0,731 0,723 0,747 0,700

kNN 0,633 0,602 0,575 0,617 0,538

Como podemos notar, a acurácia do TSC-D-MRI atingiu 78,1% para o algoritmo
GBT, com AUC de 0,847. Para o algoritmo MLP, temos uma acurácia de 74,8% e AUC
0,813. O último classificado foi o kNN, com acurácia de 60,2% e AUC 0,633.

Dentre os experimentos realizados para o first-step do TSC, o TSC-D-MRI é o mais
desejado, uma vez que utiliza apenas dados demográficos e biomarcadores extraídos
de imagem MRI. Além disso, atinge resultados próximos do experimento que utiliza
todas as classe de biomarcadores, o TSC-D-PET-CSF-MRI. Ao comparar, o TSC-D-
MRI tem uma acurácia de 78,1%, comparada com os 80% do TSC-D-PET-CSF-MRI.

Para melhor entender a classificação do TSC-D-MRI para o first-step do TSC, foi
gerada a matriz de confusão para o algoritmo GBT.

Tabela 23: Matriz de confusão do GBT para o experimento TSC-D-MRI

Classe predita

NL NOT_NL Sensibilidade

Classe atual
NL 189 51 0,788

NOT_NL 54 186 0,775

Precisão 0,778 0,785

Ao analisar a matriz de confusão, percebemos que 51 de 240 pacientes foram clas-
sificados como NOT_NL, mas deveriam ter sido classificados como NL. Ou seja, es-
ses pacientes foram sinalizados como em risco. Por outro lado, 54 indivíduos de 240
foram incorretamente classificados como NL. Neste ponto, os pacientes classificados
como NOT_NL passam para o second-step, a fim de dar o diagnóstico final da pro-
gressão da DA. Fora isso, foi realizado um estudo sobre os falsos negativos (preditos
como NOT_NL mas que são NL), com a finalidade de verificar se esses indivíduos
estão na fase pré-clínica da DA. Essa análise é apresentada na seção 5.2.3.

Neste ponto, aplicamos a validação dos resultados sobre os 20% dos dados que
foram separados do conjunto de treinamento. A Tabela 24 apresenta a matriz de
confusão para o experimento TSC-D-MRI utilizando o algoritmo GBT.
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Tabela 24: Matriz de confusão do conjunto de validação para o experimento TSC-D-
MRI utilizando GBT

Classe predita

NL NOT_NL Sensibilidade

Classe atual
NL 49 11 0,817

NOT_NL 21 39 0,650

Precisão 0,700 0,780

Para o conjunto de validação, foi possível alcançar uma acurácia de 73,3% para
o modelo como um todo, com um AUC de 0,777, mostrando que o modelo avaliado
atinge resultados significativos, mesmo utilizando apenas dados demográficos e ima-
gem de MRI.

Por fim, a Tabela 25 resume os resultados obtidos para os experimentos TSC-D-
PET-CSF-MRI (1), TSC-D-PET-CSF (2), TSC-D-CSF-MRI (3) e TSC-D-MRI (4), mos-
trando as classes de biomarcadores utilizadas em cada estudo, juntamente com o
algoritmo que gerou as melhores predições. É interessante notar, que em todos os
experimentos, o GBT foi o que apresentou os melhores resultados de classificação.

Tabela 25: Resumo dos resultados obtidos para o first-step do TSC

Biomarcadores (1) (2) (3) (4)

D 3 3 3 3

PET 3 3

CSF 3 3 3

MRI 3 3 3

Método GBT GBT GBT GBT

Acurácia 0,800 0,731 0,790 0,781

AUC 0,868 0,816 0,854 0,847

5.2.2 Second-step

Nesta seção, serão apresentados os resultados para o second-step do TSC. Como
o objetivo do second-step é dar o diagnóstico do estágio da DA, a saída esperada
aqui é o atributo DX, que pode assumir os valores NL, MCI ou Dementia. Para
isso, o second-step foi treinado com uma porção de 80% de um conjunto de dados
balanceado de 900 exemplos (300 para cada classe). O treinamento e validação foi
realizado com o método de cross-validation com 10-fold. Para teste, foram utilizados
os 20% restantes do conjunto de dados.

Para o second-step, como os pacientes que passam para essa etapa estão em
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risco de desenvolver DA. Com a finalidade de dar o melhor diagnóstico possível, são
utilizados todas as classes de biomarcadores descritas na seção 2.3, com exceção
dos testes neuropsicológicos.

Além disso, um conjunto estendido de biomarcadores, com várias regiões de in-
teresse (ROI, do inglês Region of Interest) extraídas de imagem PET utilizando os
radiofármacos FDG e AV45 também são utilizados.

No contexto do radiofármaco FDG, temos os ROIs Left Angular Gyrus, Right An-
gular Gyrus, Bilateral Posterior Cingular, Left Inferior Temporal Gyrus e Right Inferior
Temporal Gyrus. Para cada ROI, é disponibilizado valor mínimo, máximo, média, medi-
ana, moda e desvio padrão para o metabolismo da glicose no cérebro. Também, temos
o número total de voxels e de voxels zero ou NaN para cada ROI (ADNI, 2018a).

Já para o radiofármaco AV45, são extraídas ROIs a partir de quatro grandes re-
giões: Frontal, Anterior/Posterior Cingulate, Lateral Parietal e Lateral Temporal. Para
cada uma dessas regiões, são extraídos biomarcadores para diversas sub-regiões.
Além disso, é disponibilizada a média para cinco outras regiões de referência: Ce-
rebellar Grey Matter, Whole Cerebellum, Brainstem/pons, Eroded Subcortical White
Matter e Composite Reference Region (ADNI, 2018b).

Deste ponto em diante, serão discutidos os resultados obtidos para o second-step,
considerando o uso de todo esse conjunto de biomarcadores. Os algoritmos avaliados
para o second-step foram MLG, RF, GBT e kNN. Para os algoritmos MLG, RF, GBT,
foi utilizado o novo módulo do RapidMiner Studio chamado Auto Model, que faz a
modelagem e otimização automática de parâmetros para diferentes modelos.

A Figura 25 mostra um gráfico com a acurácia para os modelos testados para o
second-step. Aqui, o kNN foi configurado com k “ 100, com a flag weighted vote ativa.
A DT foi modelada com profundidade máxima de 25 níveis. A RF tem 100 árvores com
profundidade máxima de sete níveis cada uma delas. Por fim, a GBT foi configurada
com 40 árvores com profundidade máxima de 10 níveis. Os demais parâmetros dos
algoritmos foram deixados com seu valor default no RapidMiner Studio.

Dentre os algoritmos testados, o kNN, DT e RF tiveram uma acurácia abaixo ou
próxima de 50%. No entanto, o algoritmo MLG atingiu uma acurácia próxima a 58%. O
melhor colocado neste experimento foi a GBT, com acurácia de 60,14%. Para melhor
entender esses resultados, serão apresentadas as matrizes de confusão para o MLG
e a GBT. A Tabela 26 apresenta a matriz de confusão para o algoritmo GBT.

Como podemos perceber na Tabela 26, a precisão de acerto da classe MCI é
de 45,4%, com uma sensibilidade de 38,8%. Para a classe NL, dos 240 pacientes,
164 foram corretamente classificados. O complemento desse valor é a taxa de falsos
negativos. Ou seja, 76 de 240 foram incorretamente classificados como NL, o que
corresponde a 31,67% desta classe.

Sob outra perspectiva, juntando as classes MCI e Dementia, 83 indivíduos de
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Figura 25: Acurácia obtida para os modelos avaliados no second-step

Tabela 26: Matriz de confusão para o second-step utilizando GBT

Classe predita

NL MCI Dementia Sensibilidade

Classe atual

NL 164 61 15 0,683

MCI 70 93 77 0,388

Dementia 13 41 176 0,733

Precisão 0,664 0,454 0,657

480 foram classificados como NL com o uso da GBT, representando 17,29% deste
conjunto. Ou seja, dos pacientes com déficit cognitivo, no second-step, 17,29% foram
classificados como normais.

Aqui, queremos que esses dois parâmetros sejam os mais baixos possíveis, evi-
tando que pacientes com déficit cognitivo sejam classificados como normais, e que
pacientes normais sejam marcados como pertencentes às classe MCI ou Dementia.

A Tabela 27 apresenta a matriz de confusão para o algoritmo MLG.
Os resultados atingidos com o uso do MLG são próximos aos resultados da GBT.

Com o uso do MLG, a sensibilidade da classe NL é de 70%. Ou seja, dos pacientes
normais, 70% foram corretamente classificados como normais.

Essa classificação da classe NL no second-step faz com que o erro de predição
da classe NL gerado no first-step seja diminuído. A taxa de falsos negativos para a
classe NL com o MLG é de 30%. Ao unir as classes MCI e Dementia, 107 indivíduos
de 480 foram classificados como NL, representando 22,29% de falsos negativos para
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Tabela 27: Matriz de confusão para o second-step utilizando MLG

Classe predita

NL MCI Dementia Sensibilidade

Classe atual

NL 168 50 22 0,700

MCI 91 75 74 0,313

Dementia 16 50 174 0,725

Precisão 0,612 0,429 0,644

essas classes.
Portanto, entre a GBT e o MLG, ao analisar por essas duas óticas, o que traz um

melhor trade-off entre essas duas características é a GBT.
No entanto, o second-step sofre do mesmo problema de classificação discutido na

seção 5.1. Além disso, o maior problema está em indivíduos que são da classe MCI

ou Dementia mas são classificados como NL. Desta forma, é altamente desejável
diminuir os falsos positivos da classe NL. Por outro lado, deve-se levar em conside-
ração que no first-step, todos esses indivíduos foram apontados pacientes em risco.
Assim, o diagnóstico final do indivíduo, após o second-step, deve ser suportado por
testes neuropsicológicos.

A Tabela 28 apresenta a matriz de confusão gerada para o algoritmo GBT sobre
os 20% dos dados que foram separados para validação.

Tabela 28: Matriz de confusão do conjunto de validação aplicado no second-step utili-
zando GBT

Classe predita

NL MCI Dementia Sensibilidade

Classe atual

NL 44 15 1 0,733

MCI 19 27 14 0,450

Dementia 3 16 41 0,683

Precisão 0,667 0,466 0,732

Como podemos ver, a precisão e sensibilidade de cada classe ficaram muito pró-
ximas à atingida pelo conjunto de teste. Ademais, a taxa de falsos negativos para a
classe NL é de 26,67%. E a taxa de falsos negativos para as classes MCI e Dementia

em conjunto é de 18,33%.
Em adição a esses resultados, foi testado o conjunto de exemplos classificados

como NOT_NL no first-step para o experimento TSC-D-MRI. Para tanto, esses 310
exemplos foram aplicados no modelo de GBT gerado para o second-step. A Tabela 29
mostra a matriz de confusão para esse conjunto de dados.

Aqui, notamos uma alta taxa de acerto do second-step utilizando GBT sobre o
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Tabela 29: Matriz de confusão do second-step utilizando GBT sobre para as instâncias
classificadas como NOT_NL no first-step do experimento TSC-D-MRI

Classe predita

NL MCI Dementia Sensibilidade

Classe atual

NL 52 26 1 0,658

MCI 2 95 1 0,969

Dementia 3 20 110 0,827

Precisão 0,912 0,674 0,982

conjunto de dados de pacientes classificados como em risco pelo first-step. Para o
modelo como um todo, temos uma acurácia de 82,9%. Quando olhamos apenas para
a classe NL, precisão é de 91,2%. Para a classe MCI esse valor é de 67,4% e para
a classe Dementia, a precisão é de 98,2%.

Desta forma, a arquitetura final do modelo proposto para o TSC é composta pelo
conjunto de dados TSC-D-MRI e o algoritmo GBT para o first-step. No second-step,
temos um conjunto de biomarcadores estendido, com outra modelagem do algoritmo
GBT. A Figura 26 mostra a modelagem final da arquitetura do TSC.

Two-step classifier

Predição do estado cognitivoIdentificação de pacientes
em risco

Pacientes
em risco
(IS_NL = false)

Gradient Boosted 
Trees

Gradient Boosted 
Trees

Biomarcadores
(Dados Demográficos e MRI)

DX
(NL, MCI e 
Dementia)

Pacientes estáveis
(IS_NL)

Biomarcadores
(Dados Demográficos, PET, 

CSF, MRI e Genéticos)

Figura 26: Arquitetura do two-step classifier

Após os dados passarem por todo o fluxo do TSC, podemos atualizar a matriz de
confusão da Tabela 23, para que ela reflita a classificação final de pacientes em risco.
A Tabela 30 apresenta a matriz de confusão atualizada.

Ao comparar a matriz de confusão da Tabela 23 com a apresentada na Tabela 30,
percebemos um aumento na precisão tanto da classe NL quanto da classe NOT_NL.
Já a sensibilidade da classe NL, teve um aumento considerável, passando de 73,7%
para 91%. Contudo, a sensibilidade da classe NOT_NL teve uma pequena diminui-
ção, uma vez que a taxa de falsos positivos aumentou de 69 para 74. Desta forma,
o sistema como um todo atingiu uma precisão de 83,3%, ao classificar corretamente
499 pacientes de um total de 600.
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Tabela 30: Matriz de confusão da classificação de pacientes em risco após o proces-
samento do TSC

Classe predita

NL NOT_NL Sensibilidade

Classe atual
NL 273 27 0,910

NOT_NL 74 226 0,753

Precisão 0,787 0,893

Ao comparar com trabalhos relacionados, lembramos que nenhum dos trabalhos
encontrados na literatura fazem a classificação de pacientes em risco de desenvolver
a DA da forma como foi explorada neste trabalho. Portanto, qualquer comparação
seria injusta. De qualquer forma, na Tabela 31, acrescentamos os resultados dos
dois métodos propostos por este trabalho (classificação da DA - ADC e o Two-Step
Classifier - TSC).

5.2.3 Identificação de Pacientes em Fase Pré-Clínica

Esta seção tem como objetivo analisar os resultados obtidos pelo first-step do TSC,
com o objetivo de identificar pacientes que estão na fase pré-clínica da DA. Para tanto,
foram separados os pacientes classificados como NOT_NL mas que são, atualmente,
da classe NL. Ou seja, os falsos negativos. Esse estudo foi realizado para os algo-
ritmos que atingiram melhores resultados para experimentos TSC-D-CSF-PET-MRI,
TSC-D-CSF-PET, TSC-D-CSF-MRI e TSC-D-MRI.

Como todos as instâncias de exames utilizadas neste trabalho são referentes a
primeira visita (V ISCODE “ bl) dos pacientes, para cada um desses, foi selecionado
o diagnóstico referente ao último conjunto de exames realizado. Desta forma, foi pos-
sível observar aqueles pacientes que converteram de NL para MCI ou Dementia.
Esse valor contabilizado na variável chamada Converters. Ou seja, são classificados
como Converters, aqueles pacientes que após certo tempo converteram de NL para
MCI ou de NL para Dementia.

A Tabela 32 mostra a taxa de identificação de pacientes Converters para os expe-
rimentos mencionados acima.

Na coluna Pred. NOT_NL temos a quantidade de pacientes classificados como
NOT_NL pelo método correspondente. A coluna True NL contabiliza a quan-
tidade de indivíduos que são verdadeiros NL, isto é, que não converteram para
MCI ou Dementia até o momento atual do estudo ADNI. A coluna Converters exibe
a quantidade de pacientes que converteram para MCI ou Dementia e a coluna
Taxa de Converters exibe a taxa de identificação dos indivíduos que converteram.

Como podemos observar, para o conjunto de dados TSC-D-CSF-PET-MRI e al-
goritmos GBT e RLog, a taxa de Converters foi de 33,33%. Ou seja, dos pacien-
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tes classificados como NOT_NL, 33,33% converteram para os estágios de MCI ou
Dementia com o passar do tempo. Já para o conjunto de dados TSC-D-MRI, a taxa
de Converters foi de 24,66%. Para os outros conjuntos de dados e algoritmos, essa
taxa ficou entre 25% e 30%.

Assim, o TSC se mostra eficiente em dois eixos: identificação de pacientes em
risco e na fase pré-clínica da DA. Desta forma, o método proposto neste trabalho
pode ser utilizado para auxiliar profissionais da área da saúde, colaborando com o
diagnóstico e a identificação de pacientes em risco de desenvolverem a DA.
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Tabela 32: Taxa de identificação dos converters para os experimentos realizados

Conjunto de Dados Método Pred. NOT_NL True NL Converters Taxa de Converters

TSC-D-CSF-PET-MRI
GBT 72 48 24 33,33%

RLog 54 36 18 33,33%

TSC-D-PET-CSF GBT 77 54 23 29,87%

TSC-D-CSF-MRI
GBT 77 57 20 25,97%

RLog 59 42 17 28,81%

TSC-D-MRI GBT 79 60 19 24,05%



6 CONCLUSÃO

Este trabalho apresentou um estudo sobre os principais conceitos e características
da DA. O estudo realizado abordou o histórico da doença, o entendimento de como a
doença se comporta, juntamente com seus sintomas e estágios. As duas principais
hipóteses que explicam os mecanismos que causam a doença foram explanadas. São
elas: a deposição de placas de A� e o acúmulo de emaranhados neurofibrilares.

Ainda, foi feito um estudo acerca do esforço de pesquisa global ADNI, que apoia
a investigação e desenvolvimento de tratamentos para a DA. Este estudo avalia bio-
marcadores clínicos, de imagem, genéticos e de bioespécime, através do processo de
envelhecimento normal até o comprometimento cognitivo leve precoce, o comprome-
timento cognitivo leve tardio, a demência ou DA.

Com esse estudo, foi proposto um método para diagnóstico da DA, onde foram
avaliados diferentes conjuntos de biomarcadores e algoritmos. Os algoritmos avali-
ados foram as Random Forests, Multilayer Perceptron, Regressão Logística, Árvores
de Decisão e Máquina de Vetores de Suporte. Além disso, foi aplicado o método de
Stacked Generalization (SG), que utiliza a saída de diversos preditores para melhorar
o erro de predição. Com o uso do SG, foi possível obter uma acurácia de 76,2% com
AUC de 0,790 para a classificação do estágio da DA sem a necessidade de utilizar
testes neuropsicológicos.

Também, é proposto neste trabalho o Two-Step Classifier (TSC), método para di-
agnóstico da DA realizado em duas etapas. No first-step, é feita a identificação de
pacientes em risco de desenvolver a doença. No second-step, é realizado o diag-
nóstico do estágio da DA. Além disso, com o TSC, foi feito um estudo sobre a fase
pré-clínica da DA, em busca de identificar pacientes que ainda não apresentam défi-
cit cognitivo, mas já são biomarcadores-positivos para a DA. Ou seja, já apresentam
sinais que irão desenvolver a doença mesmo sem expor os sintomas iniciais. Com o
TSC, foi possível identificar 33,33% de pacientes que estão na fase pré-clínica da DA.
Ademais, foi possível identificar, utilizando apenas dados demográficos e imagem de
MRI, com uma acurácia de 78,1% e AUC de 0,847, indivíduos que estão em risco de
desenvolver a DA.
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Como trabalhos futuros, o estudo será expandido para outras doenças neurodege-
nerativas, como a Doença de Parkinson e a Doença de Huntington. Também, serão
estudados os diversos tipos de imagens de exames médicos, como MRI, PET e ou-
tros, para aplicação de técnicas de Deep Learning com o propósito de extrair padrões
que auxiliem no diagnóstico atual e futuro de indivíduos com essas doenças.
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ANEXO A ITENS NO ARQUIVO DE DADOS ADNI

Tabela 33: Itens no Arquivo de Dados ADNI - Categoria Assessments (ADNI, 2016b)

Subcategory Item

Diagnosis Conversions Confirmed by Conversion Committee [ADNI1]
Diagnosis Diagnosis and Symptoms Checklist [ADNI1,GO,2]
Diagnosis Diagnostic Summary – Baseline Changes [ADNI1,GO,2]
Diagnosis Diagnostic Summary [ADNI1,GO,2]
Neuropsychological ADAS Sub-Scores and Total Scores [ADNI1]
Neuropsychological Alzheimer’s Disease Assessment Scale (ADAS) [ADNI1]
Neuropsychological Alzheimer’s Disease Assessment Scale (ADAS) [ADNIGO,2]
Neuropsychological Clinical Dementia Rating Scale (CDR) [ADNI1,GO,2]
Neuropsychological Everyday Cognition – Participant Self Report [ADNIGO,2]
Neuropsychological Functional Activities Questionnaire (FAQ) [ADNI1,GO,2]
Neuropsychological Geriatric Depression Scale (GDS) [ADNI1,GO,2]
Neuropsychological Mini-Mental State Examination (MMSE) [ADNI1,GO,2]
Neuropsychological Modified Hachinski Ischemia Scale [ADNI1,GO,2]
Neuropsychological Montreal Cognitive Assessment (MoCA) [ADNIGO, 2]
Neuropsychological Neuropsychiatric Inventory (NPI) [ADNI2]
Neuropsychological Neuropsychiatric Inventory Questionnaire (NPI-Q) [ADNI1,GO,2]
Neuropsychological Neuropsychological Battery [ADNI1,GO,2]



94

Tabela 34: Itens no Arquivo de Dados ADNI - Categoria Biospecimen (ADNI, 2016b)

Subcategory Item

Lab Collection Procedures ApoE Genotyping – Draw Data [ADNI1,GO]
Lab Collection Procedures Clinical Laboratory Tests [ADNI1,GO,2]
Lab Collection Procedures Laboratory Data [ADNI1,GO]
Lab Results ADNI Biomarker Core Laboratory. Baseline Isoprostanes Data Dictio-

nary [ADNI1]
Lab Results ADNI Biomarker Core Laboratory. Baseline Isoprostanes Data [ADNI1]
Lab Results ApoE – Results [ADNI1,GO]
Lab Results Biomarker Samples [ADNI1,GO,2]
Lab Results CSF – Local Lab Results [ADNI1,GO,2]
Lab Results CSF Multiplex Proteomics
Lab Results Homocysteine – Results [ADNI1,GO]
Lab Results Rules Based Medicine Plasma Multiplex QC Data Dictionary [ADNI1]
Lab Results Rules Based Medicine Plasma Multiplex QC Data Dictionary [ADNI1]
Lab Results Rules Based Medicine Plasma Multiplex QC Data [ADNI1]
Lab Results Rules Based Medicine Plasma Multiplex Raw Data [ADNI1]
Lab Results UPENN – Biomarker Data [ADNI1]
Lab Results UPENN – Longitudinal Biomarker Data (3 yr) Dictionary [ADNI1]
Lab Results UPENN – Longitudinal Biomarker Data (3 yr) [ADNI1]
Lab Results UPENN – Longitudinal Biomarker Data Dictionary [ADNI1]
Lab Results UPENN – Longitudinal Biomarker Data [ADNI1]
Lab Results UPENN Plasma Biomarker Data Dictionary [ADNI1]
Lab Results UPENN Plasma Biomarker Data [ADNI1]

Tabela 35: Itens no Arquivo de Dados ADNI - Categoria Enrollment (ADNI, 2016b)

Subcategory Item

Enrollment Additional Comments [ADNI1,GO,2]
Enrollment Arm [ADNI1,GO,2]
Enrollment Early Discontinuation and Withdrawal [ADNI1,GO,2]
Enrollment Exclusion Criteria [ADNI1]
Enrollment Inclusion Criteria [ADNI1]
Enrollment Registry [ADNI1,GO,2]
Enrollment Roster [ADNI1,GO,2]
Enrollment Visits [ADNI1,GO,2]
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Tabela 36: Itens no Arquivo de Dados ADNI - Categoria Genetic (ADNI, 2016b)

Subcategory Item

Genetic Data Info About the Genetic Data
Genetic Data Info About the TOMM40 PolyT Variant Data
Genetic Data Info DNA Source Reference
Genotype Results Deprecated-SNP genotype data – set 12 of 11 (CSV Format)
Genotype Results Deprecated-SNP genotype data – set 12 of 11 (CSV Format)
Genotype Results SNP genotype data – set 01 of 11 (CSV Format)
Genotype Results SNP genotype data – set 02 of 11 (CSV Format)
Genotype Results SNP genotype data – set 03 of 11 (CSV Format)
Genotype Results SNP genotype data – set 04 of 11 (CSV Format)
Genotype Results SNP genotype data – set 05 of 11 (CSV Format)
Genotype Results SNP genotype data – set 06 of 11 (CSV Format)
Genotype Results SNP genotype data – set 07 of 11 (CSV Format)
Genotype Results SNP genotype data – set 08 of 11 (CSV Format)
Genotype Results SNP genotype data – set 09 of 11 (CSV Format)
Genotype Results SNP genotype data – set 10 of 11 (CSV Format)
Genotype Results SNP genotype data – set 11 of 11 (CSV Format)
Genotype Results TOMM40 PolyT Variant Data (CSV Format)
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Tabela 37: Itens no Arquivo de Dados ADNI - Categoria Imaging (ADNI, 2016b)

Subcategory Item

MR Image Acquisition 1.5T MRI Scan Information [ADNI1,GO,2]
MR Image Acquisition 3T MRI Scan Information [ADNI1,GO,2]
MR Image Acquisition MRI B1 Calibration [ADNI1,GO,2]
MR Image Acquisition MRI Clinical Read [ADNI1]
MR Image Acquisition MRI Phantom [ADNI1,GO,2]
MR Image Acquisition MRI Protocol [ADNI1,GO,2]
MR Image Acquisition MRI Serial [ADNI1,GO,2]
MR Image Acquisition MRI Subject Inclusion [ADNI1,GO,2]
MR Image Quality MRI MPRAGE Process [ADNI1,GO,2]
MR Image Quality MRI MPRAGE Ranking [ADNI1,GO,2]
MR Image Quality MRI Quality [ADNI1,GO,2]
MR Imaging Analysis Deprecated-Stroke Summary Dictionary [ADNI1]
MR Imaging Analysis Deprecated-Stroke Summary [ADNI1]
MR Imaging Analysis Stroke Summary Dictionary Version 2 [ADNI1]
MR Imaging Analysis Stroke Summary Version 2 [ADNI1]
MR Imaging Analysis UA – MRI SPM Voxel Based Morphometry (VBM) Analysis Dictionary

[ADNI1]
MR Imaging Analysis UA – MRI SPM Voxel Based Morphometry (VBM) Analysis [ADNI1]
MR Imaging Analysis UCL – Boundary Shift Integral Summaries Dictionary [ADNI1]
MR Imaging Analysis UCL – Boundary Shift Integral Summaries [ADNI1]
MR Imaging Analysis UCLA – Average Jacobian Dictionary [ADNI1]
MR Imaging Analysis UCLA – Average Jacobian [ADNI1]
MR Imaging Analysis UCSD – Derived Volumes Dictionary [ADNI1]
MR Imaging Analysis UCSD – Derived Volumes [ADNI1]
MR Imaging Analysis UCSF – Cross-Sectional FreeSurfer Dictionary [ADNI1]
MR Imaging Analysis UCSF – Cross-Sectional FreeSurfer [ADNI1]
MR Imaging Analysis UCSF – Longitudinal FreeSurfer (FreeSurfer Version 4.4) Dictionary

[ADNI1]
MR Imaging Analysis UCSF – Longitudinal FreeSurfer (FreeSurfer Version 4.4) [ADNI1]
MR Imaging Analysis UCSF – Longitudinal FreeSurfer Dictionary [ADNI1]
MR Imaging Analysis UCSF – Longitudinal FreeSurfer [ADNI1]
MR Imaging Analysis UCSF – Regional Atrophy Rates Dictionary [ADNI1]
MR Imaging Analysis UCSF – Regional Atrophy Rates [ADNI1]
MR Imaging Analysis UCSF – SNT Hippocampal Volumes Dictionary [ADNI1]
MR Imaging Analysis UCSF – SNT Hippocampal Volumes [ADNI1]
MR Imaging Analysis UPENN – SPARE-AD Dictionary [ADNI1]
MR Imaging Analysis UPENN – SPARE-AD [ADNI1]
MR Imaging Analysis UWO – Ventricular Volumes [ADNI1]
PET Image Acquisition AV-45 PET Scan Information [ADNIGO,2]
PET Image Acquisition FDG PET Scan Information [ADNI1]
PET Image Acquisition FDG PET Scan Information [ADNIGO/ADNI2]
PET Image Acquisition FDG/AV45 PET Scan Information
PET Image Acquisition PIB Scan Information [ADNI1]
PET Image Quality AV-45 PET QC Tracking [ADNIGO,2]
PET Image Quality PET QC Tracking [ADNI1,GO,2]
PET Image Quality PIB QC Tracking [ADNI1]
PET Imaging Analysis Banner Alzheimer’s Institute NMRC Summaries Dictionary [ADNI1]
PET Imaging Analysis Banner Alzheimer’s Institute NMRC Summaries [ADNI1]
PET Imaging Analysis UCB – PET ROI Analysis Dictionary [ADNI1]
PET Imaging Analysis UCB – PET ROI Analysis [ADNI1]
PET Imaging Analysis UPitt – PIB PET Analysis Dictionary [ADNI1]
PET Imaging Analysis UPitt – PIB PET Analysis [ADNI1]
PET Imaging Analysis UU – PET Analysis Dictionary [ADNI1]
PET Imaging Analysis UU – PET Analysis [ADNI1]
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Tabela 38: Itens no Arquivo de Dados ADNI - Categorias Medical History, Study Info e
Subject Characteristics (ADNI, 2016b)

Subcategory Item

Adverse Events Adverse Events/ Hospitalizations [ADNI1,GO,2]
Adverse Events AV-45 24-48 Hour Follow-Up [ADNIGO,2]
Drugs Concurrent Medications Log [ADNI1,GO,2]
Drugs Key Background Medications [ADNIGO,2]
Medical History Documentation of Baseline Symptoms Log [ADNI1,GO,2]
Medical History Medical History [ADNI1,GO,2]
Medical History Recent Medical History Details Log [ADNI1,GO,2]
Physical/Neurological AV-45 Pre and Post Injection Vitals [ADNIGO,2]
Physical/Neurological Baseline Symptoms Checklist [ADNI1,GO,2]
Physical/Neurological NACC Autopsy Information Dictionary [ADNI1]
Physical/Neurological NACC Autopsy Information [ADNI1]
Physical/Neurological Neurological Exam [ADNI1,GO,2]
Physical/Neurological Physical Exam [ADNI1,GO,2]
Physical/Neurological Vital Signs [ADNI1,GO,2]
Data & Database Data dictionary [ADNI1,GO,2]
Study Protocols & CRFs ADNI Neuropsychological Assessment Matrix (PDF)
Family History Family History Questionnaire Subtable [ADNI1,GO,2]
Family History Family History Questionnaire [ADNI1,GO,2]
Subject Demographics Subject Demographics [ADNI1,GO,2]
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