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ABSTRACT

SILVA, Lidiane Costa da. Generalized Atanassov’s Interval-valued Intuitionistic
Fuzzy Index - Construction of Atanassov’s Interval-valued Fuzzy Entropy from
Interval-Valued Fuzzy Implication Operators. 2018. 83 f. Dissertation (Masters in
Computer Science ) – Post Graduate Program in Computation, Center of Tecnological
Development, Universidade Federal de Pelotas, Pelotas, 2018.

Despite its widespread research in applied areas, recognized limitations of Fuzzy
Logic (FL) justify the search for higher levels of abstraction, using extensions such
as type-2 fuzzy logic (T2FL) for the representation of information in fuzzy reasoning
systems. This proposal considers the two intersection areas of T2FL, the intuitionist
fuzzy logic (A-IFL) and the interval-valued fuzzy logic (IvFL). The interval-valued
intuitionist fuzzy logic introduced by Atanassov in 1969 (A-IvIFL) considers both the
imprecision of data in the membership function and the hesitation in determining
its complementary relation - the non-membership functions. In A-IvIFL approach,
the principles of A-IFL are preserved and the forms of data representation are
expanded, adding not only the hesitation information related to experts with respect
to non necessarily complementary relations but also the imprecision information
provided by the interval-valued intuitionistic fuzzy index. Firstly, we consider the
study of main properties verified by the axiomatic concept of hesitation index names
- the generalized Atanassov’s intuitionistic fuzzy index (A-GIFIx), and corresponding
constructive methodology based on fuzzy implications. And, just in such context, this
work introduces an extension of methodology which is able to preserve properties by
making use of dual and conjugate operators. In addition, as the main contribution,
the generalized Atanassov’s interval-valued intuitionist fuzzy index (A-GIvIFIx)
is discussed, including its axiomatic concept and related constructive methodology
characterized in terms of interval-valued fuzzy implications, preserving main properties
of an A-GIFIx. This work also presents new ways of obtaining A-GIvIFIx via dual and
conjugated constructions, by the action of negation operators and automorphisms,
respectively. Among the several applications of A-GIvIFIx as similarity, correlation and
distance measures, we introduce a methodology to obtain the entropy via A-GIvIFIx
contributing with multi-attribute systems based on T2FL. The application of the concept
of admissible linear orders makes the comparison between interval results possible.

Keywords: atanassov’s interval-valued intuitionistic fuzzy logic; intuitionistic fuzzy
index; fuzzy entropy; duality; conjugation



RESUMO

SILVA, Lidiane Costa da. Generalized Atanassov’s Interval-valued Intuitionistic
Fuzzy Index - Construction of Atanassov’s Interval-valued Fuzzy Entropy from
Interval-Valued Fuzzy Implication Operators. 2018. 83 f. Dissertation (Masters in
Computer Science ) – Post Graduate Program in Computation, Center of Tecnological
Development, Universidade Federal de Pelotas, Pelotas, 2018.

Apesar de abrangente, reconhecidas limitações da Lógica Fuzzy justificam a busca
de níveis mais elevados de abstração, utilizando extensões como a lógica fuzzy tipo-2
(T2FL) para a representação de informações em sistemas de raciocínio fuzzy. Esta
proposta considera a interseção de duas classes da T2FL, a lógica fuzzy intuicionista
e a lógica fuzzy valorada intervalarmente. A lógica fuzzy intuicionista valorada
intervalarmente introduzida por Atanassov em 1969 considera tanto a imprecisão de
dados na função de pertinência quanto a hesitação na determinação de sua relação
complementar - a função de não-pertiência. Nesta abordagem, preservam-se os
princípios da lógica fuzzy intuicionista e ampliam-se as formas de representação,
agregando à informação da imprecisão provida pelo índice fuzzy intervalar também
a informação da hesitação de especialistas quanto aos graus de pertinência em
relações não necessariamente complementares. Considera-se primeiramente o
estudo das propriedades verificadas pela axiomatização do conceito de índice
de hesitação proposto por Atanassov - o índice fuzzy intuicionista generalizado
(A-GIFIx), e a correspondente metodologia de construção baseada em implicações
fuzzy. E, já neste contexto, o trabalho introduz uma discussão de propriedades
preservadas por operadores duais e de conjugação e apresenta uma extensão
da referida metodologia. E, como principal contribuição este trabalho introduz a
generalização do índice fuzzy intuicionista valorado intervalarmente (A-GIvIFIx),
sua conceituação axiomática, uma metodologia de construção caracterizada em
termos de implicações fuzzy valorados intervalarmente e ainda estuda condições que
garantam a preservação das principais propriedades do A-GIFIx pela ação operadores
duais e de conjugação. Este trabalho apresenta ainda novas formas de obtenção do
A-GIvIFIx via construções duais e conjugadas, pela ação de operadores de negação
e de automorfismos, respectivamente. Dentre as diversas aplicações do A-GIvIFIx
como relações de medidas de similaridade, correlação e distâncias, estes trabalho
introduz novas metodologias de obtenção da entropia via A-GIvIFIx contribuindo
com sistemas multi-atributos baseados em T2FL. A aplicação do conceito de ordens
lineares admissíveis viabiliza a comparação entre resultados intervalares.

Palavras-Chave: lógica fuzzy intuicionista valorada intervalarmente; índice fuzzy
intuicionista; entropia fuzzy; dualidade; conjugação



LIST OF FIGURES

Figure 1 A-GIFIx obtained by fuzzy implications and corresponding dual
operator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 2 A-GIFIx obtained by fuzzy coimplications and corresponding dual
operator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 3 A-GIFIx obtained by fuzzy implications and conjugate operator. . . . 43
Figure 4 A-GIFIx obtained by fuzzy complications and conjugate operator. . . 43
Figure 5 Relatioship between A−GIFIx(N) and A− IFE Aut(Ũ) . . . . . 47
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1 INTRODUCTION

Despite its widespread research in applied areas, recognized limitations of Fuzzy
Logic (FL) justify the search for higher levels of abstraction, using extensions such
as type-2 fuzzy logic (T2FL) for the representation of information in fuzzy reasoning
systems.

This proposal considers the intersection of two relevant areas of T2FL, the
intuitionist fuzzy logic (A-IFL) (ATANASSOV, 1986) and the interval-valued fuzzy logic
(IvFL) (MOORE, 1962). The interval-valued intuitionist fuzzy logic introduced by
Krassimir T. Atanassov in 1969 (A-IvIFL) considers both the imprecision of data in
the membership function and the hesitation in determining its complementary relation
- the non-membership functions (ATANASSOV, 1999).

In A-IvIFL approach, the principles of A-IFL are preserved and the forms of
data representation are expanded, adding not only the hesitation information related
to experts with respect to non necessarily complementary relations but also the
imprecision information provided by the interval-valued intuitionistic fuzzy index.

Firstly, we consider the study of the main properties verified by the axiomatic
concept of hesitation intuitionistic index, named as the generalized Atanassov’s
intuitionistic fuzzy index (A-GIFIx), and corresponding constructive methodology based
on fuzzy implications and involutive negations.

In such context, this work introduces an extension of this methodology which is able
to preserve properties by making use of dual and conjugate operators.

In sequence, as the main contribution, the generalized Atanassov’s interval-valued
intuitionistic fuzzy index (A-GIvIFIx) proposed in this work, includes its axiomatic
concept and related constructive methodology characterized in terms of interval-valued
fuzzy implications and strong negations, preserving the main properties of an
A-GIFIx (BARRENECHEA et al., 2009).

This work also presents a novel way of obtaining A-GIvIFIx via dual and conjugated
constructions, by the action of negation operators and automorphisms, respectively.

Among the several applications of A-GIvIFIx such as similarity, correlation and
distance measures, we introduce a methodology to obtain the entropy via A-GIvIFIx,



12

contributing with multi-attribute systems based on A-IvIFL (LIN; XIA, 2006).
Since the new method to obtain fuzzy entropy is defined by an interval-valued,

resulting from the aggregation of all values of the A-IvIFIx, this work needs to consider
the concept of admissible linear orders, making the comparison of entropy data
resulting from distinct A-IvIFSs possible (MIGUEL et al., 2016).

1.1 Relevance of the Atanassov’s Intuitionistic Fuzzy Index

Atanassov’s intuitionistic fuzzy Index (A-IFIx) is a powerfull framework modelling the
degree of each element in a A-IFS based on the pair of the membership degree and
the non-membership degree, which is obtained by subtracting the sum of membership
and non-membership from one. In this sense, the subtraction should be positive and
less than or equal to one.

Thus, the A-IFIx provides the measurement of the effect of working with A-IFSs. It
is characterized as the main condition of intuitionism in A-ITSs, providing very valuable
information of each element and taking advantage of this potentiality in different
applications.

The treatment for the uncertainty or lack of information of an expert into assigning
correct values in the choice of the membership functions is a widely used strategy
contributing to obtain more reliable fuzzy systems.

So, by using the A-IFIx values for representing expert’s uncertainty in determining
the (non-)membership degree related to an A-IFS, we are able to model the degree
of intuitionism (or the hesitancy degree) which the expert has in giving his evaluation.
Moreover, such representation of the uncertainty of the expert in determining the value
of the (non-)membership degree, is closely related to the interval-valued fuzzy sets
theory.

Several applications of A-IFIx have been developed, with significative contribuitons
in multi-attributed decison making based on fuzzy systems. Concepts as similarity,
bissimilarity, correlation, entropy and distance measures are applied in many areas as
edge detection image processing, segmentation, decision making, fault-tree analysis
and pattern recognition (GEORGE KLIR, 1995).

The new concept of Generalized Atanassov’s Intuitionistic Fuzzy Index extends the
expression of an A-IFIx as conceived by Atanassov (BARRENECHEA et al., 2009).
From this axiomatic definition of A-GIFIx, a construction method of A-IFIx and fuzzy
entropy emerge as interesting characterizations, by using order automorphisms. This
methdology is studied and extended in this work.
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1.2 Main Proposals

The Atanassov’s intuitionistic fuzzy index (A-GIvIFIx), frequently called as the
degree of hesitancy or indeterminance of an element in an Atanassov-intuitionitic
fuzzy set (A-IFS), provides a measure of the lack of information supporting a given
incomplete/inconsistent information related to a (non)membership evaluation given by
an expert. The modelling of these fuzzy systems are based on Atanassov’s intuitionistic
fuzzy logic (A-IFL).

In addition, when the membership degree of an element cannot be precisely
defined or we can just provide bounds for it, the corresponding value is considered
as (non)membership interval. And, we can make use of Interval-valued fuzzy logic
(IvFL) in modelling of fuzzy systems.

Integrating both approches, we consider the Atanassov interval-valued intuitionistic
fuzzy logic (A-IvIFL) as an increasingly popular extension of fuzzy set theory. Allowing
both strategies, the expression related to the expert uncertainty in identifying a
particular membership function and the possibility to approximate the (unknown)
membership degrees.

Thus, these theoretical studies and formal results proposed in this work underlie
applied researches based on fuzzy system in which either the hesitation of experts
in precise knowledge or the unknown data related to membership and nonmemberhip
degrees, are considered, which are represented by pairs of intervals in U = [0, 1].

Making use of A-IvIFL, this paper integrates both approaches:

(i) a new concept of the Generalized Atanassov’s Intuitionistic Fuzzy Index
associated with a strong intuitionistic fuzzy negation is characterized in terms
of fuzzy implication operators which is described by a construction method with
automorphisms, considering the results in (BARRENECHEA et al., 2009) and
(BUSTINCE et al., 2011);

(ii) in (BUSTINCE et al., 2011), by means of special aggregation functions applied to
the A-GIFIx, the Atanassov’s intuitionistic fuzzy entropy is introduced.

Following these researches, this work studies the interval extension of an A-GIFIx,
by considering the concept of conjugate and dual fuzzy implications, mainly interested
in the representation method (CORNELIS; DESCHRIJVER; KERRE, 2004) having the
impact on many properties satisfied by the generated operations.

Additionally, A-GIvIFIx associated with the standard negation together with known
fuzzy implications are considered: Lukaziewicz, Reichenbach, Gaines-Rescher (LIN;
XIA, 2006).
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1.3 Objectives

Focusing on entropy measures and closed related studies presented by Burillo and
Bustince (BURILLO; BUSTINCE, 1996), this proposal aims to contribute with a different
way to explore the interval-valued fuzzy set model, offering application developers a
new method of construction of A-IvIFE from A-GIvIFIx.

Based on formal studies, this work can contribute for multi-criteria decision making
problem, ranking the alternatives based on another way for the interval-valued
fuzzy set model, offering application developers a new method of construction of
entropy by the intuitionistic fuzzy index, that means, obtaining A-IvIFE from A-GIvIFIx
via interval-valued fuzzy implications, interval-valued idempotent aggregation and
involutive negation operators.

More specifically, the following partial objectives are considered in this work.

(i) Characterization of the state-of-the-art on A-IvIFL and revision of the main
concepts of A-IvIFL and A-IFL, definitions of basic connectives such as fuzzy
implications, fuzzy negations and aggregations focusing on their algebraic
properties, dual and conjugate construction;

(ii) Revision of axiomatic definition of A-IFIx in the sense of A-GIFIx (BUSTINCE;
BARRENECHEA; MOHEDANO, 2004) including concepts and main properties
of representable fuzzy connectives;

(iii) Study of IvFL, main properties of interval-valued fuzzy connectives focussing on
the class of representable fuzzy (co)implications, including conjugate and dual
operators;

(iv) Introduction of the axiomatic definition of the A-GIvIFIx in terms of conjugated
function using automorphisms and also analysing properties of dual functions
associated with the class of interval fuzzy (co)implications generated by
idempotent interval aggregations;

(v) Analysis of truly intuitionist properties of interval-valued fuzzy (co)implications
connecting to A-GIvIFIx, as interval extensions of the A-GIFIx approach;

(vi) Revision of wide concepts of A-IvIFL used to study entropy measures, in terms
of aggregation operators and A-GIvIFIx;

(vii) Proposal of axiomatic definition of a constructive method to obtain entropy in
terms of A-IvIFIx obtained by interval intuitionist fuzzy implications, idempotent
aggregation and pairs of mutual dual functions;

(viii) Description of exemplification and discussion of possible applications of entropy
obtained by the constructed methodology based on aggregation of A-GIvIFIx.
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1.4 Context from Logical Approaches

In this section, we present an overview of the main contributions of the fuzzy
logic and two multi-valued fuzzy logic approaches, considered relevant to achieve the
objectives of this work. As extensions of fuzzy logic, we consider the interval valued
intuitionistic fuzzy logic and, in an more general sense, the type-2 fuzzy logic.

1.4.1 Fuzzy Logic

The Theory of Fuzzy Sets (TFS) was formalized by the mathematician Lofti Asker
Zadeh (ZADEH, 1965) by extending the concepts of Theory of Classical Logic (TCL),
characterizing the attribution of membership degrees to the elements of a fuzzy
set mainly depending on application contexts. Technological resources based on
Boolean logic were not enough to automate industrial activities or even to compute
with uncertainty of real problems (FODOR; ROUBENS, 1994).

The logical approach based on Fuzzy Logic in industrial applications happened with
greater importance in Europe and after 1980 in Japan, highlighting the application of
fuzzy systems in the Fuji Electric Company and later Hitachi Company, developing a
metro control system based on fuzzy logic. And, around 1990 that fuzzy logic arised
as a greater interest in companies from the United States (GEORGE KLIR, 1995).

The main advantage associated with the development systems based on TFS
is to obtain a powerful mathematical model which not only is able to interpret the
uncertainty of linguistic terms from natural language but also makes it possible to
produce calculations even when we deal with inaccurate information in computer
programming languages.

Due to the development of numerous practical possibilities and theoretical
foundation together with the great commercial success of its applications, FL is
considered nowadays as fundamental theory for a logical approach, modeling
uncertainty with wide acceptance in relevant research areas such as artificial
intelligence, natural language, expert systems, neural networks, control theory and
decision making for computational processes.

Technological resources whose modeling consider uncertainty in their specification
become logically specified from the use TFS, promoting credibility and reliability
since planning to optimization in the development of such systems. For instance,
by considering the development of electronic components, such as elevator control
(Hitachi, Fujitech and Mitsubishi), signal analysis applied in TV image adjustment
(Sony), camera autofocus video (Canon), video image stabilizer (Panasonic) and even
fraud detection on credit cards. (GEORGE KLIR, 1995)
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1.4.2 Interval-valued Intuitionistic Fuzzy Logic

Atanassov and Gargov (ATANASSOV; GARGOV, 1989) propose the interval-valued
intuitionistic fuzzy logic based on the notion of interval-valued intuitionistic fuzzy sets,
addressing a mathematical and more intuitive method than classical logic, which is able
to consider ambiguous or uncertainty, easily integrated with imprecise information.

A-IvIFL not only deals with the indecision inherent in natural language variables
modelling computer systems, but also collaborates with two other interpretations:

(i) Firstly, the interpretation which is achieved when intervals may be considered
as particular types of fuzzy sets, representing the imprecision of a variable
depending on the computational context; and

(ii) secondly, the indecision about the relation between membership and
non-membership degrees, not necessarily related as complementary degrees.

In this context, the former is concerned with calculations and numerical errors,
by regarding information related to various experts demanding membership and non
membership degrees. The latter is consistent to non-zero intuitionistic fuzzy index.

A-IvIFL reinforces these interpretations by using the duality principle and
aggregation operators, providing a more flexible modelling for the truth associated with
each variable. Thus, a more realistic analysis of the veracity of this variable can be
inferred as much as from its interval membership degree and, from the complement,
its relation with its interval nonmembership degree.

Applications involving systems based on A-IvIFL together with computational
tools, such as neural networks and evolutionary programming, expert systems,
approximation reasoning and digital image processing. Also noteworthy are
applications in resource management, military strategies, medical diagnosis, pattern
recognition and clustering analysis in logistics (BUSTINCE; BARRENECHEA;
MOHEDANO, 2004).

However, despite the relevant advances, there is no consensus in order to
consolidate a solution to guide theoretical basis as well as the mathematical methods
to support the area of decision making based on multiple attributes.

This convergence is still a great research challenge, justified by many factors,
among which the following stand out:

(i) insufficient knowledge of decision-makers;

(ii) the ever-increasing need to aggregate two or more possible judgments;

(iii) the challenging ability to deal with subjective characteristics of alternatives of fuzzy
preference modelling supporting multi-atributes in decision making.
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All these factors generate uncertain information that must be mapped from the
modelling of decision-making systems based on multiple attributes (DUBOIS; PRADE,
2000).

In order to compare data in this work, some results are focussed on the study of
A-GIvIFIx to obtain entropy, which is close to analyse other parameters as distance,
similarity, bissimilarity, correlation, acuracy, score, and many other ones performed
over A-IvIFSs. Some authors put forward their axiomatic definitions in constructive
methods to obtain interval-valued entropies for A-IvIFSs, including distance or similarity
measures.

1.4.3 Type-2 Fuzzy Logic

As a special class of extended fuzzy sets introduced by Zadeh (ZADEH, 1975) and
Sambuc (SAMBUC, 1975), T2FSs were mathematically defined by Mendel and Karnik
in 1998 (KARNIK; MENDEL, 1998) including the study of first operations on such sets.
Moreover, many other relevant works in IvFSs were preliminarily studied by Dubois and
Prade’s (DUBOIS; PRADE, 1991).

In this new and comprehensive approach of T2FSs, the uncertainty about the
membership function is defined by a fuzzy set of type-1, collaborating more significantly
in the modeling of fuzzy systems involving the approximation of random data in
temporal evolution (MENDEL, 2003).

Such approach contributes to the generalization of the fuzzy set theory, since if
there is no uncertainty in the membership function, then a fuzzy set of type-2 is reduced
to a fuzzy set of type-1 (DUBOIS; PRADE, 1991).

An application based on type-2 fuzzy logic (DESCHRIJVER; KERRE, 2005)
increases the contribution to identify models or prediction of behaviour from expert
information. Fuzzy systems based on T2FL are fuzzy systems in which at least one of
their antecedent or consequent fuzzy sets are fuzzy sets of type-2 (KARNIK; MENDEL,
2001).

The logical approach based on T2FSs is applied in many technological applications
and interesting examples follow from (SANCHEZ; CASTILLO; CASTRO, 2015;
MIGUEL et al., 2017) exploring the use of T2FL to control a mobile robot, create a
hybrid system using T2FL for the prediction of the survival time of myeloma patients,
formalize an expert system for the realization of Shopping via web including application
for analysis and estimation of the survival time of wireless sensor networks.

In this new and comprehensive approach of T2FSs, the uncertainty about the
membership function is defined by a type-1-fuzzy set, collaborating more significantly in
the modeling of fuzzy systems involving the approximation of random data in temporal
evolution (MENDEL, 2003).
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1.5 Work Outline

This work is organized in eight chapters, summarized below.
Chapter 1 is the introduction, where the relevance of the research theme is

presented together with the context from logical approach, main contributions and
objectives are also registered. It is followed by description of related work, in Chapter
2.

Chapter 3 describes the basics concepts of Atanassov’s intuitionistic fuzzy logic as
well as dual operators, conjugation and fuzzy connectives, aggregators, implications.
In addition, the main concepts of Atanassov’s intuitionistic fuzzy logic and order relation
are reported, including the Atanassov’s intuitionistic fuzzy index definition.

In Chapter 4 the generalized Atanassov’s intuitionistic fuzzy index is reported,
with its main axioms, obtaining dual and conjugate connectives in a special class
of implications. In this chapter we also present the concepts and properties of
Atanassov’s generalized intuitionistic fuzzy entropy, obtained through of Atanassov’s
generalized intuitionistic fuzzy index considering a case study.

In Chapter 5, are presented the main concepts of Interval-valued fuzzy logic,
describing its connectives, relations of order and in the sequence the interval
intuitionistic fuzzy logic is also described from its main connectives.

The Chapter 6 presents the relation of the interval extension of generalized
intuitionistic fuzzy index and relations with interval-valued fuzzy connectives.

The Chapter 7, presents the main relationship of intuitionistic index its conjugate,
dual operators with the interval-valued intuitionistic fuzzy entropy, preserving fuzzyness
and intuitionism.

In Chapter 8 the main contributions of this work, as well as the possibilities of
continuity of activities.



2 RELATED WORKS

In this section we reported reviewed works related to our proposal in order to
introduce the interval extension of generalized Atanassov’s intuitionistic fuzzy index,
and discussed how our extension advances the state of the art.

The literature revision is focussed on three main aspects:

(1) Study of interval-valued intuitionistic fuzzy logic, considering important aspects to
express interval extensions of generalized Atanassov’s intuitionistic fuzzy index:

1. We review formal concepts of generalized Atanassov’s intuitionistic fuzzy
index that have been developed in the literature, as well as we study
proposed notions related to interval-valued intuitionistic fuzzy logic, mainly
interested in the results presented in (BARRENECHEA et al., 2009) and
(BUSTINCE et al., 2011).

2. The previous work of Pankowska and Wygralak (PANKOWSKA;
WYGRALAK, 2006) it is proposed a generalization of the intuitionistic
index based on strong negations and triangular norms. This approach is
used to construct flexible algorithms of group decision making.

3. In (BARRENECHEA et al., 2009) the Generalized Atanassov’s Intuitionistic
Fuzzy Index is characterized in terms of fuzzy implication operators and it is
studied some special properties of the generalized Atanassov’s intuitionistic
fuzzy index. The new concept of A-GIFIx generalizes the expression given
by Atanassov and a characterization method by means of fuzzy implication
operators is constructed allowing presentation of simple expressions.

4. Different construction methods of Atanassov’s intuitionistic fuzzy
entropy (BURILLO; BUSTINCE, 1996) by means of special aggregation
functions applied on generalized Atanassov’s intuitionistic fuzzy index is
presented.

(2) Study of fuzzy entropy obtained by interval extension and generalized expression
of Atanassov’s intuitionistic fuzzy index:
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1. We survey the concept of entropy for intuitionistic fuzzy sets obtained
by application of intuitionistic fuzzy index, considering relevants concepts
presented in (BARRENECHEA et al., 2014; JING; MIN, 2013).

2. In this sense, starting with the concept of fuzzy entropy we extend this study
to deal with entropy of Atanassov’s interval-valued intuitionistic fuzzy sets
and we also investigate such concept in the field of T2FSs (MIGUEL et al.,
2017).

(3) Study of admissible linear orders and their application to compare interval-valued
Atanassov intuitionistic fuzzy sets:

1. In (MIGUEL et al., 2016), interval-valued Atanassov intuitionistic OWA
aggregations are studied using admissible linear orders and their application
to decision making. Choquet integrals for aggregating information
is represented using interval-valued Atanassov intuitionistic fuzzy sets.
Algorithms are presented to choose the best alternative in a decision making
problem.

2. This revision outlines the main problem to compare and consequently, to
choose an appropriate total order for applications making use of interval
extensions of intuitionistic fuzzy sets.

3. The study of linear orders for intervals by means of aggregation functions
is presented in (BUSTINCE et al., 2013). The concept of an admissible
order as a total order that extends the usual partial order between intervals
in the proposed method to build these admissible orders are defined in
terms of two aggregation functions, showing that some of the most used
examples of total orders appearing in the literature are specific cases of
such construction.

For that, we searched in previous works containing structured test as (i) (ZHANG,
2013), reporting theories and methods under fuzzy logic and aggregation operator
theory, and (ii) (BUSTINCE et al., 2016), providing a historical account of type-2 fuzzy
sets and their relationships. Both research revisions were carried out using systematic
literature review.

As supporting our work, the relevant research presenting results from Atanassov’s
interval-valued intuitionistic fuzzy Logic are briefly described in Table 1.

Analogously, papers helping in the consolidation of the constructive method to
obtain interval-valued fuzzy entropy from Atanasov’s interval-valued intuitionistic fuzzy
values are listed in Table 2.
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Table 1 – Related Works in Interval-valued Intuitionistic Fuzzy Logic
Authors Study Contribution
(DUGENCI, 2016) A-IvIFS Proposed the new generalized distance measure

and interval valued intuitionistic fuzzy sets for solving
problems related to group decision making.

(CHEN; TSAI, 2016) IVIFWGA Proposed a novel method based on
interval-valued intuitionistic fuzzy ordered weighted
geometric averaging and interval-valued intuitionistic fuzzy
hybrid geometric averaging operators.

(DYMOVA; SEVASTJANOV,
2016)

IVIFV Proposed interval-valued intuitionistic fuzzy values
based on Dempster–Shafer theory due to some limitations
and drawbacks of previous studies.

(WAN et al., 2015) AIVIFV Developed a novel model for solving problems by
using problems with incomplete attribute weight information
and AIVIFVs.

(BARRENECHEA et al.,
2014)

IVFRs Proposed general algorithm to solve problems by
using IVFRs.

(XU; SHEN, 2014) AIVIFN Extended the method to take account of the DMs‘
assessment information.

(CHEN, 2014) IVIF Presented a new IVIF prioritized aggregation operator
to aggregate the IVIF ratings of the alternatives.

(WAN et al., 2016) TIFN Extended some operators including TIFOWA,
TIFOWG, IFHWA, TIFGOWA, and TIFGHWA based and
multi-objective programming.

(WANG et al., 2016) Combined the unreliable evidence sources in MCDM
method in intuitionistic fuzzy environment.
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Table 2 – Related Works Interval-valued Intuitionistic Fuzzy Entropy
Authors Study Contribution
(ZENG; LI, 2006) Discussed the relationship between the similarity measure

and entropy in IVFSs and proved that similarity measure
and entropy of IVFSs can be transformed by each other.

(HUNG; YANG, 2008) Constructed their axiom definition of entropy of IFSs and
proposed two families of entropy measures.

(VLACHOS; SERGIADIS,
2007)

Introduced information-theoretic discrimination measures
and cross-entropy for IFSs and derived an extension of the
DeLuca-Termini non-probabilistic entropy for IFSs.

(QIAN-SHENG; JIANG,
2008)

Put forward a nonprobabilistic entropy of vague set by
means of the intersection and union of membership and
nonmembership degrees.

(ZHANG; ZHANG; MEI,
2009)

Proposed a new axiomatic definition of entropy of IVFSs
based on distance and investigated the relationship
between entropy and similarity measure of IVFSs.

(BURILLO; BUSTINCE,
1996)

Defined the distance measure between IFSs and gave a
definition of entropy for IFSs.

(SZMIDT; KACPRZYK, 2001) Supplied a geometric interpretation of IFSs and proposed
another entropy measure with a ratio of distances.



3 ATANASSOV’S INTUTIONISTIC FUZZY LOGIC

Atanassov’s Intutionistic Fuzzy Logic is conceived as multi-valued fuzzy logic
extending main concepts of fuzzy logic which is based on the theory of Atanassov’s
Intuitionistic Fuzzy Sets.

3.1 Basic Concepts of Fuzzy Logic

Introduced by Zadeh in 1965 (ZADEH, 1965), Fuzzy Logic is non-classical logic
capable of numerically modeling ambiguous, uncertain or vague information, described
through a natural language aiding the modeling of the human ability to make decisions
from information obtained by expert systems (ROSS, 2004).

In classical set theory, an element belongs to or does not belong to a given set,
however, there are cases where the pertinence between elements and sets is not
precise, and it is not possible to discreetly define whether an element belongs or not to
a set. Systems that model uncertainties, for example, do not always have well defined
pertinence boundaries (SILER; BUCKLEY, 2004; CARLSSON; FULLER, 2002).

In the theory of fuzzy sets, the relevance of an element to a given set is relaxed;
an element may partially belong to a particular set, rather than simply belong or not
belong to a set. Thus, the membership degree of a given element in a fuzzy set is
given by a membership function, considering a universe of discourse χ 6= ∅.

According with (ZADEH, 1965), a fuzzy set A is characterized by its membership
function µA : χ → U and µA(x) interpreting the membership degree of an element x
in fuzzy set A. In this sense, a fuzzy set A can be decribed as a set of ordered pairs,
where each generic element x is associated with its degree of relevance µA(x):

A = {(x, µA(x)) : x ∈ χ, µA(x) ∈ [0, 1]}. (1)

Regarding the form of the membership functions, it is restricted to a certain class
of functions, represented by some specific parameters. The most common forms
are: linear by parts (triangular, trapezoidal), Gaussian, sigmoid and singleton (unitary
sets) (ROSS, 2004).
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By considering the natural order ≤ on U , the lattice L(U) = (U,≤,∨,∧, 1, 0) has the
supremum and infimum operations both given as the following

x ∨ y = max(x, y) and x ∧ y = min(x, y). (2)

3.1.1 Conjugation Operators

Automorphisms are considered as a generation of new connectives, preserving as
algebraic properties the classes of these logical connectives.

According with (KLEMENT; NAVARA, 1999, Def. 4.1), an automorphism φ : U → U

is a bijective, strictly increasing function satisfying the monotonicity property:

A1: x ≤ y if and only if φ(x) ≤ φ(y), ∀x, y ∈ U .

In (BUSTINCE; BURILLO; SORIA, 2003), φ : U → U is a function satisfying the
continuity property and the boundary conditions:

A2: φ(0) = 0 and φ(1) = 1.

The set Aut(U) of all automorphisms are closed under composition:

A3: φ ◦ φ′ ∈ Aut(U), ∀φ, φ′ ∈ Aut(U).

In addition, there exists the inverse φ−1 ∈ U , such that

A4: φ ◦ φ−1 = idU , ∀φ ∈ Aut(U).

Thus, (Aut(U), ◦) is a group with the identity function being the neutral element.
The action of an automorphism φ : U → U on a function f : Un → U is called the

conjugate of f and given by the following expression:

fφ(x1, . . . , xn) = φ−1(f(φ(x1), . . . , φ(xn))). (3)

Example 1. For all k, l ∈ {1, .., n}, let φk, ψk,l be functions in Aut(U) given by:

ψk,1(x) = x
l
k ψ−1

k,l (x) =
l
√
xk (4)

φk(x) =
(kx+ 1)2 − 1

k(k + 2)
φ−1
k (x) =

√
(k2 + 2k)x+ 1− 1

k
(5)

Both results can be easily observed:

• By taking l = 1 in Eq.(4), we obtain that ψk(x) = xk and ψ−1
k (x) = k

√
x.

• And, when k = 1 in Eq.(5), φ(x) = (x+1)2−1
3

and φ−1(x) =
√

3x+ 1− 1.
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3.1.2 Dual Operators

A function N : U → U is a fuzzy negation (FN) if

N1: N(0) = 1 and N(1) = 0;

N2: If x ≥ y then N(x) ≤ N(y), ∀x, y ∈ U .

Fuzzy negations satisfying the involutive property below are called strong fuzzy
negations (BUSTINCE; BURILLO; SORIA, 2003):

N3: N(N(x)) = x, ∀x ∈ U .

Let N be a fuzzy negation and f : Un ↔ U be a real function. The N -dual function
of f is denoted by fN : Un ↔ U and defined as follows:

fN(x1, . . . , xn) = N(f(N(x1), . . . , N(xn))). (6)

Example 2. For all k, n ∈ {1, 2 . . . , n}, let N∗, Nk, Ck : U → U be strong fuzzy negations
given by the corresponding expressions:

N∗(x) =
1− x
1 + x

(7)

Ck
n(x) =

n−k+1
√

1− xn−k+1. (8)

In particular, based on (GEORGE KLIR, 1995, Theorem 3.4), every continuous fuzzy
negation has a unique equilibrium point. Thus, the following holds:

(i) when n = 1 in Eq.(8), we obtain Ck(x) = 1− xk;

(ii) when k = 1 in Eq.(8), we have the negation Cn(x) = n
√

1− xn which has e = n

√
1
2

as the equilibrium point, meaning that Cn(e) = e.

(iii) And concluding, when k = n = 1 in Eq.(8), we obtain the standard fuzzy negation
given as follows:

NS(x) = 1− x; (9)

3.1.3 Aggregation Operators

Fuzzy set theory and aggregation operators have become powerful tools to deal
with decision making theories. Methods under fuzzy aggregation operator have been
proposed and developed for effectively solving the decision making problems and
numerous theoretical results and applications have been reported in the literature.

Among several definitions, see (TORRA, 2005) and (BUSTINCE; BARRENECHEA;
MOHEDANO, 2004, Definition 2), an aggregation is a function A : Un → U demanding,
for all ~x, ~y ∈ Un, the following conditions:
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Ag1: A(~0) = A(0, 0, . . . , 0) = 0 and A(~1) = A(1, 1, . . . 1) = 1;

Ag2: If ~x = (x1, x2, . . . , xn) ≤ ~y = (y1, y2, . . . , yn) then A(~x) ≤ A(~y);

Ag3: A(−→xσ) = A(xσ1 , xσ2 , . . . , xσn) = A(x1, x2, . . . , xn) = A(~x).

Ag4: A(x, x, . . . , x) = x,∀x ∈ U ;

The process of aggregation combines several numerical values into a single
value that somehow represents all the others. Thus, an aggregation is a function
non-decreasing, commutative, and further, preserves the boundary conditions relating
to the ends of the unitary interval (DESCHRIJVER; KERRE, 2005, Definition 4.1).

3.1.3.1 Ordered Weighted Averaging Operator (OWA)

The aggregation function Ordered Weighted Averaging Operator (OWA) was
introduced by Yager (YAGER, 1988) providing a mean of aggregating values
associated with satisfying multiple criteria. Thus, an OWA operator unifies both
element behaviors into fuzzy sets, the conjunctive and the disjunctive.

An operator OWA : Un → U is defined by the expression:

OWA(x1, x2, ..., xn) =
n∑
j=1

wjxσ(j),∀x1, x2, ..., xn ∈ U, (10)

where σ : Nn → Nn, is a σ-ordering permutation with non-negatives weight-parameters
wi non-negatives verifying the following conditions:

xσ(1) ≤ xσ(2) ≤ . . . ≤ xσ(n) and
n∑
i=1

wi = 1, ∀ 0 ≤ wi ≤ 1.

According to Yager and Kacprzyk (YAGER; KACPRZYK, 2012), OWA operators are
aggregation functions which are commutative, idemponent, and have a compensatory
behavior also satisfying properties Ag1, Ag2 and Ag3.

In order to obtain distinct operators, one simply has to choose a particular
value of weight wi. Thus, parameterized families of aggregation operators can be
defined from an OWA operator, including among many others, the minimum (min),
the maximum (max), the median (Md), the weighted mean (Mw) and the arithmetic
mean (M ). See these examples expressed in accordance with Table 3.

3.1.3.2 Disjuntive and Conjuntive Operators

According with (LESKI, 2003) definition, a triangular (co)norm is a binary
aggregation T (S) : U2 → U which is symmetric, associative, monotonic and has the
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Table 3 – Aggregations obtained from the OWA operator

OWA Parameters Algebric Expression

{
w1 = 1
wi = 0 if i 6= 1

min(x1, x2, . . . , xn) = x1 ∧ x2 ∧ . . . ∧ xn

{
wn = 1
wi = 0 if i 6= n

max(x1, x2, . . . , xn) = x1 ∨ . . . ∨ xn


wn+1

2
= 1 if n is odd

wn
2

= 1
2 ;wn

2
+1 = 1

2 if n is even
wi = 0 otherwise

Md(x1, . . . , xn)=

{
xσ(n+1

2
), if n is odd;

1
2

(
xσ(n

2
) + xσ(n

2
+1)

)
, if n is even.

∑n
i=1wi = 1, ∀wi ∈ Q+

Mw1,...,wn(x1, . . . , xn) =
∑n

i=1(wi.xi)

wi = 1
n ,∀i. M(x1, . . . , xn) = 1

n

∑n
i=1 xi =

∑n
i=1

(
1
n · xi

)

neutral element 1 (0). This also means that, for all x, y, z, t ∈ U , the corresponding
algebraic properties are verified:

T1: T (x, y) = T (y, x); S1: S(x, y) = S(y, x);
T2: T (x, T (y, z)) = T (T (x, y), z); S2: S(x, S(y, z)) = S(S(x, y), z);
T3: T (x, y) ≤ T (z, t), if x ≤ z and y ≤ t S3: S(x, y) ≤ S(z, t) if x ≤ t and y ≤ z;
T4: T (x, 1) = x; S4: S(x, 0) = x

In the following, by (KLEMENT; MESIAR; PAP, 1999), the expression of an N -dual
operator of a triangular (co)norm is considered.

A function TN(SN) : U2 → U is a t-conorm (t-norm) if, and only if, there exists a
t-norm T (t-conorm S) such that for all x, y ∈ U , the following holds:

TN(x, y) = N(T (N(x), N(y))), (11)

SN(x, y) = N(S(N(x), N(y))). (12)

A t-conorm TN given by Eq. (11) is called the t-conorm derived from T by the duality
relation and, similarly a t-norm SN given by Eq. (12) is called the t-norm derived from
S by the duality relation, both defined with respect to the fuzzy negation N . When N is
a strong fuzzy negation, then (T, TN) ((S, SN)) is a pair of mutual N -dual functions.

Table 4 shows examples of pairs of mutual dual t-norms and t-conorms based on
previous results from (DUBOIS; PRADE, 2000).
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Table 4 – Examples of (co)norms fuzzy triangles
Operators Algebric Expression

Standard Intersection: TM (x, y) = min {x, y}
Standard Unity: SM (x, y) = max {x, y}

Algebraic Product: TP (x, y) = x.y

Probabilistic Sum: SP (x, y) = x+ y − xy

Drastic Intersection: TD(x, y) =

{
0, if x < 1, y < 1
min{x, y}, otherwise

Drastic Unity: SD(x, y) =

{
1, if 0 < x and 0 < y
max{x, y}, otherwise

Lukasiewicz: TL(x, y) = max{x+ y − 1, 0}
Lukasiewicz: SL(x, y) = min{x+ y, 1}

Mimum Nilpotent: TnM (x, y) =

{
0, if x+ y ≤ 1
min{x, y}, otherwise

Maximum Nilpotent: SnM (x, y) =

{
1, if x+ y ≥ 1
max{x, y}, otherwise

3.1.4 (Co)Implications Operators

Fuzzy implications play an important role in Fuzzy Logic. In a broad sense, it is
frequently applied to fuzzy control, analysis of vagueness in natural language and
techniques of soft-computing as well as in the narrow sense, contributing to a branch of
many-valued logic enabling the investigation of deep logical questions (BACZYNSKI;
JAYARAM, 2007; BUSTINCE; BURILLO; SORIA, 2003; FODOR; ROUBENS, 1994).

A fuzzy (co)implicator I(J) : U2 → U is a function verifying boundary conditions:

I0:I(0, 0) = I(0, 1) = I(1, 1) = 1; J0: J(0, 0) = J(0, 1) = J(1, 1) = 0.
Based on concepts introduced in (FODOR; ROUBENS, 1994), a fuzzy

(co)implication I(J) : U2 → U is a function verifying the following properties:
I1: If x ≤ z then I(x, y) ≥ I(z, y); J1: If x ≤ z then J(x, y) ≥ J(z, y);
I2: If y ≤ z then I(x, y) ≤ I(x, z); J2: If y ≤ z then J(x, y) ≤ J(x, z);
I3: I(0, x) = 1 ; J3: J(1, x) = 0

I4: I(x, 1) = 1 ; J4: J(x, 0) = 0

I5: I(1, 0) = 0; J5: J(1, 0) = 1.

Several reasonable properties may be required for fuzzy (co)implications:
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I6: I(1, x) = x ; J6: J(0, x) = x ;
I7: I(x, I(y, z)) = I(y, I(x, z)) ; J7: J(x, J(y, z)) = J(y, J(x, z)) ;
I8: I(x, y) = 1⇔ x ≤ y; J8: J(x, y) = 0⇔ x ≥ y;
I9: I(x, y) = I(N(y), N(x)), N is a SFN; J9: J(x, y) = J(N(y), N(x)), N is a SFN;
I10: I(x, y) = 0⇔ x = 1 and y = 0; J10: J(x, y) = 1⇔ x = 0 and y = 1.

Main results summarized in (BACZYNSKI; JAYARAM, 2007, Lemma 2.1) provide
the structure to define fuzzy negations induced by fuzzy (co)implicators:

A function I(J) : U2 → U satisfying I0(J0) and I1(J1) induces the definition of a
fuzzy negation NI(NJ) : U → U given as follows:

NI(x) = I(x, 0) and NJ(x) = J(x, 1) (13)

Moreover, main results presented in (REISER; BEDREGAL; BACZYNSKI, 2013,
Proposition 4.3) provide the N -dual approach for fuzzy (co)implications.

Let N be a FN and (J) I be a (co)implication. Then (JN) IN defined according
with Eq. (6) is a (implication) coimplication given as follows

IN(x, y) = N(I(N(x), N(y))), (14)

JN(x, y) = N(J(N(x), N(y))). (15)

Let T (S) be a t-(co)norm and N be a FN. An (S,N)−implication
((T,N)−coimplication) is a fuzzy (co)implication IS,N : U2 → U defined by

IS,N(x, y) = S(N(x), y) (16)

JT,N(x, y) = T (N(x), y). (17)

In this work, we also consider the class of S-implications which is studied
in (TRILLAS; VALVERDE, 1985, Theorem 3.2) also taking into account main concepts
from (FODOR; ROUBENS, 1994, 10, Theorem 1.13) and introduced by Baczynsky and
Jayaram in (BACZYNSKI; JAYARAM, 2007; BUSTINCE; BURILLO; SORIA, 2003).

Theorem 1. (TRILLAS; VALVERDE, 1985, Theorem 3.2) Let N be a strong fuzzy
negation. An implication I : U2 → U is a strong S-implication if, and only if, it satisfies
Properties I1, I2, I6, I7, and I9.

Theorem 2. (BACZYNSKI; JAYARAM, 2007, Theorem 1.6) Let N be a strong fuzzy
negation. An implication I : U2 → U is a strong S-implication if, and only if, it satisfies
Properties I1, I7 and NI defined in Eq.(16) is a strong fuzzy negation.

In the following, Table 5 reports the algebraic expressions of fuzzy implications
considered in this work also including their corresponding coimplications, by taking the
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maximun and minimun operators. Each line in Table 5 is associated to a pair of mutual
NS-dual operators, meaning that Eq. (14) and (15) are both verified. In these cases,
the operators are obtained considering extensions of the Lukaziewicz, Reichenbach,
Klenee-Dienes, Gaines-Richard fuzzy (co)implications in order to preserve property I8
and also including operator I30.

Table 5 – Fuzzy Implications, coimplications and duality.

Fuzzy Implications Fuzzy Coimplications

ILK(x, y)=

{
1, if x ≤ y,
1− x+ y, otherwise;

JLK(x, y)=

{
0, if x ≥ y,
y − x, otherwise;

IKD(x, y)=

{
1, if x ≤ y,
max(1− x, y), otherwise;

JKD(x, y)=

{
0, if x ≥ y,
min(1− x, y), otherwise;

IRB(x, y)=

{
1, if x ≤ y,
1− x+ xy, otherwise;

JRB(x, y)=

{
0, if x ≥ y,
y−xy, otherwise;

IGR(x, y)=

{
1, if x ≤ y,
0, otherwise;

JGR(x, y)=

{
0, if x ≥ y,
1, otherwise;

I30(x, y)=

{
max(1−x, y, 0.5), if 0<y<x<1,
max(1−x, y), otherwise;

J30(x, y)=

{
min(1−x, y, 0.5), if 0<x<y<1,
min(1−x, y), otherwise;

3.2 Main Conceps of Intuitionistic Fuzzy Logic

The theory of intuitionistic fuzzy sets (ATANASSOV; GARGOV, 1989), extends the
theory of fuzzy sets, associating to each element x in a universe X 6= ∅, membership
and non-membership degrees, both defined in the unit interval by the corresponding
expressions (µA(x)) and (νA(x)), and such that the following natural relation is satisfied:

0 ≤ µA(x) + νA(x) ≤ 1. (18)

Thus, expressions in Eq.(18) extend the fuzzy set theory, since membership and
non-membership degrees are not necessarily complementary with respect to the
unitary interval U .

Thus, an intuitionistic fuzzy set A consists into a set of pairs (µA, νA), whose
components satisfy the natural restriction (ATANASSOV, 1986) given by Eq. (18).
Therefore, it is assumed that an intuitionistic fuzzy set can be described as follows:

A = {(x, (µA(x), νA(x))) : x ∈ X e µA(x) + νA(x) ≤ 1},
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where µA, νA : X → U are the functions defining the corresponding membership and
non-membership degrees of an element x ∈ X in A.

As a consequence, fuzzy set theory can be studied as a special case of intuitionistic
fuzzy set theory, whose non-membership degree can be obtained through the equality:

µA(x) + νA(x) = 1.

In the modelling system of inference rules based on A-IFL, not only the membership
function µA : χ → U is considered, but also the non-membership function νA : χ → U .
And, each element x ∈ X 6= ∅ is associated to a membership degree µA(x) and a
non-membership degree νA(x) = NS(µA(x)), defining an intuitionistic fuzzy set (A-IFS)
A, such that 0 ≤ µA(x) + νA(x) ≤ 1.

Let Ũ = {(x1, x2) ∈ U2 : x1 ≤ NS(x2)} be the set of all intuitionistic fuzzy values
and lŨ . The projection functions on Ũ , rŨ : Ũ→U are given as follows:

lŨ(x̃) = lŨ(x1, x2) = x1; and rŨ(x̃) = rŨ(x1, x2) = x2. (19)

And, the set of all diagonal elements is given as D̃ = {x̃ ∈ Ũ : lŨ(x̃) + rŨ(x̃) = 1}.

3.2.1 Order Relations on Ũ

According with (ATANASSOV; GARGOV, 1998) and (BUSTINCE; BURILLO;
SORIA, 2003), this work considers the usual order relation ≤Ũ given as:

(x1, x2) ≤Ũ (y1, y2)⇔ x1 ≤ y1 and x2 ≥ y2, (20)

for x̃, ỹ ∈ Ũ such that 0̃ = (0, 1) ≤Ũ x̃ and 1̃ = (1, 0) ≥Ũ x̃.
This work studies the intuitionistic fuzzy index exploring related properties in

the lattice (Ũ ,≤Ũ ,maxŨ ,minŨ , 0̃, 1̃) such that, for all x̃ ∈ Ũ , the following holds:
maxŨ(x, y) = (max(x, y),min(x, y)) and minŨ(x, y) = (min(x, y),max(x, y)).

Additionally, we also consider the preceq order expressed as follows:

(x1, x2) �Ũ (y1, y2)⇔ x1 ≤ y1 and x2 ≤ y2. (21)

3.2.2 Intuitionistic Fuzzy Index

The intuitionistic fuzzy index (IFIx) of an element x ∈ X 6= ∅ related to an
intuitionistic fuzzy set A, denoted by the following expression πA(x) is named as
hesitant degree or indeterminacy degree of x in A. According with (XU; YAGER,
2009; ATANASSOV, 1999), for all x ∈ X , the intuitionistic fuzzy index of x related to A
is given by the following expression:

πA(x) = 1− µA(x)− νA(x), (22)
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for all x ∈ χ, µA(x) + νA(x) ≤ 1. If πA(x) = 0, A is a fuzzy set (SZMIDT; KACPRZYK,
2004).

Based on the above, the accuracy function hA : χ→U provides the accuracy degree
of x in A, given as:

hA(x) + πA(x) = 1. (23)

meaning that the largest πA(x) (hA(x)), the higher the hesitancy (accuracy) degree of
x in A.

Inherent properties of fuzzy implications related to IFIx are described in the
following.

Definition 1. (BUSTINCE; BARRENECHEA; MOHEDANO, 2004, Definition 3)
An intuicionistic fuzzy implication II : Ũ2 → Ũ is a function verifying, for all
(x, y), (x′, y′), (z, t), (z′, t′) ∈ Ũ , the following properties:
II0: If (x, y), (z, t) ∈ U are such that x+ y = 1 and z + t = 1 then πII((x,y),(z,t)) = 0;
II1: If (x, y) ≤ (x′, y′) then II((x, y), (z, t)) ≥ II((x

′, y′), (z, t));
II2: If (z, t) ≤ (z′, t′) then II((x, y), (z, t)) ≤ II((x, y), (z′, t′));
II3: II((0, 1), (x, y)) = (1, 0);
II4: II((x, y), (1, 0)) = (1, 0);
II5: II((1, 0), (0, 1)) = (0, 1).

Additionally, the group of properties of fuzzy implication which are truly intuitionistic
are also considered in this work and reported in the following:
II6: πII((x,y),(z,t)) ≥ maxŨ(1− x, 1− z);
II7: If (x, y) = (z, t), then πII((x,y),(z,t)) = π(x,y);
II8: If π(x,y) = π(z,t), then πII((x,y),(z,t)) = π(x,y).

In the following, aggregation operators are considered in order to define intuitinistic
fuzzy implications also demanding idempotence and symmetry from boundary
conditions and monotonicity properties.

Proposition 1. (BUSTINCE; BARRENECHEA; MOHEDANO, 2004, Proposition 3) Let
I be a fuzzy implication in J. Fodor sense and let IN be the coimplication associated to
I. Let M1,M2,M3,M4 be four idempotent aggregation operators satisfying the following
conditions:

M1(x, y) +M3(1− x, 1− y) ≤ 1; (24)

M2(x, y) +M4(1− x, 1− y) ≥ 1,∀x, y ∈ U. (25)

Then II : Ũ2 → Ũ given by

II((x, y), (z, t)) = (I(M1(x, 1− y),M2(z, 1− t)), IN(M3(y, 1− x),M4(t, 1− z))) (26)
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is an Atanassov’s intuitionistic fuzzy implication in sense of Fodor and
Roubens (FODOR; ROUBENS, 1994).

The generalized intuitionist fuzzy index extending main properties in the especial
group of fuzzy implications truly intuitionist, considered as follows:

Proposition 2. (BUSTINCE; BARRENECHEA; MOHEDANO, 2004, Corollary 1(ii))
Let II : Ũ2 → Ũ given by Eq.(26) according with conditions of Proposition 1. The
function II verifies the following property

π(II(x̃, ỹ)) ≤ π (I(NS(y), z), IN(NS(x), t)) . (27)

Proposition 3. (BUSTINCE; BARRENECHEA; MOHEDANO, 2004, Corollary 2) Let
II : Ũ2 → Ũ given by Eq.(26) according with conditions of Proposition 1. If I(x, y) ≥
min(x, y) then II verifies property II6.

Proposition 4. Let II : Ũ2 → Ũ given by Eq.(26) according with conditions of
Proposition 1. The function II verifies property II7 and II8.

Proof. II7: If x̃ = ỹ then the following holds:

π(II(x̃, ỹ)) =

NS(I(NS ◦ IN(M3(NS(x1), x2),M4(NS(x1), x2)), I(M1(x1, NS(x2)),M2(x1, NS(x2))))).

Moreover, since M1 = M3 =
∨

and M2 = M4 =
∧

then we have that

π(II(x̃, ỹ)) = NS(I(NS ◦ IN(NS(x1), x2), I(x1, NS(x2)))))by J8

= NS(I(NS(0), I(x1, NS(x2)))

= NS(I(1, I(x1, NS(x2)))by I6

= NS(I(x1, NS(x2))) = π(x̃).

II8: If π(x̃) = π(ỹ) then NS(I(NS(x2), x1)) = NS(I(NS(y2), y1)). And, we have that:

π(II(x̃, ỹ)) =

= NS(I(NS ◦ IN(M3(NS(x1), x2),M4(NS(x1), x2)), I(M1(x1, NS(x2)),M2(x1, NS(x2)))))

= NS(I(NS ◦ IN(NS(x1), x2), I(x1, NS(x2))))) by J8

= NS(I(NS(0), I(x1, NS(x2)))

= NS(I(1, I(x1, NS(x2))) by I6

= NS(I(x1, NS(x2)) = π(x̃).

Concluding, Proposition 4 is verified.
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3.2.3 Intuitionistic Conjugation Operators

The study of automorphisms is relevant since they can be used in the generation
of new connectives, preserving main algebraic properties of classes of logical
connectives (COSTA; BEDREGAL; NETO, 2011).

Definition 2. (BUSTINCE; BURILLO; SORIA, 2003) The function Φ : Ũ → Ũ is an
intuitionistic automorphism in Ũ if it is bijective and, for all x̃, ỹ, we have to x̃ ≤Ũ ỹ if
and only if Φ(x̃) ≤Ũ Φ(ỹ).

Just as Aut(U) denotes the set and all the automorphisms in U , Aut(Ũ) indicates
the set and all the intuitionistic automorphisms in Ũ .

The action of Φ ∈ Aut(Ũ) in a function fI : Ũn → Ũ is a function fΦ
I : Ũ → Ũ , called

intuitionistic conjugated of fI , defined for all x̃1, . . . , x̃n ∈ Ũ for expression:

fΦ
I (x̃1, . . . , x̃n) = Φ−1(fI(Φ(x̃1), . . . ,Φ(x̃n))). (28)

According with (COSTA; BEDREGAL; NETO, 2011, Theorem 17), let φ : U → U

be an automorphism on U . Then, for all x ∈ U , a φ-representable automorphism
Φ : Ũ → Ũ is defined by

Φ(x̃) = (φ(lŨ(x̃)), 1− φ(1− rŨ(x̃))). (29)

Example 3. Let φ : U → U ∈ Aut(U) defined by φn(x) = xn and let Φn : Ũ → Ũ be a
φ-representable automorphism given as Φn(x1, x2) = (xn1 , 1− (1− x2)n). For instance,
when n = 2 we have that Φ(x̃) = (x2

1, 2x2 + x2
2) is a φ-automorphism obtained according

with Eq.(29) in Aut(Ũ).

3.2.4 Intuitionistic Dual Operators

An intuitionistic fuzzy negation (IFN) NI : Ũ → Ũ satisfies, for all x̃, ỹ ∈ Ũ , the
following properties:

NI 1: NI(0̃) =NI(0, 1) = 1̃ and NI(1̃) =NI(1, 0) = 0̃;

NI 2: If x̃≥ ỹ then NI(x̃)≤NI(ỹ).

Moreover, NI is a strong intuitionistic fuzzy negation (SIFN) verifying the condition
NI3 : NI(NI(x̃)) = x̃, ∀x̃ ∈ Ũ . Additionally, If NI as IFN, the NI-dual intuitionistic
function f̃NI : Ũn → Ũ is given by:

f̃NI (x̃) = NI(f̃(NI(x̃1), . . . , NI(x̃n))),∀x̃ = (x̃1, . . . , x̃n) ∈ Ũn. (30)

And, by (BACZYNSKI, 2004), taking a SFN N : U → U , a IFN NI : Ũ → Ũ such that

NI(x̃) = (N(NS(x2)), NS(N(x1))), (31)
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is also SIFN called and N -representable IFN. Additionally, if N = NS, Eq. (31) can be
reduced to NI(x̃) = (x2, x1). Thus, we consider the complement of an IFS A given as

A′ = {(x,N(NS(νA(x)), NS(N(µA(x)))) : x∈χ, µA(x) + νA(x))≤ 1} ⊆ AI .



4 GENERALIZED ATANASSOV’S INTUITIONISTIC FUZZY
INDEX

In (BUSTINCE et al., 2011), the concept of the generalized Atanassov’s
intuitionistic fuzzy index (A-GIFIx) is characterized in terms of fuzzy implication
operators. In addition, a constructive method with automorphisms is also proposed
in (BARRENECHEA et al., 2009), together with some special properties of A-GIFIx.

In this chapter, we study properties of A-GIFIx, contribuiting with an incremental
study of its duality and conjugation analysis.

4.1 Main Concepts

In (COSTA et al., 2016), main concepts of A-GIFIx are studied and its dual and
conjugate constructions are also discussed.

Definition 3. (BUSTINCE et al., 2011, Definition 1) A function Π : Ũ → U is called a
generalized intuitionistic fuzzy index associated with a SIFN NI (A−GIFIx(NI)) if, for
all x1, x2, y1, y2 ∈ U , it holds that:

Π1: Π(x1, x2) = 1 if and only if x1 = x2 = 0;

Π2: Π(x1, x2) = 0 if and only if x1 + x2 = 1;

Π3: if (y1, y2) �Ũ (x1, x2) then Π(x1, x2) ≤ Π(y1, y2)

Π4: Π(x1, x2) = Π(NI(x1, x2)) when NI is a SIFN.

In particular, the following interpretations are held:

(i) Property Π1 states the lack of information should be maximum, whenever there
exists no information supporting/against a proposition;

(ii) In contrast, Property Π2 states that when the membership and non-membership
degrees are exactly complementary (related to fuzzy sets), the lack of information
is minimum.
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(iii) By Π3, when the membership and the non-membership values increase, the lack
of information decreases since the considered A-IFS is closer to being a FS.

(iv) And analyzing Property Π4, no new information or knowledge is obtained only by
negation. With respect to the use of the �Ũ in ordering instead of ≤Ũ , one can
observe that the A-IFIx is neither increasing nor decreasing with respect to ≤Ũ ,
whereas it is decreasing with respect to �Ũ .

A constructive method to obtain an A-GIFIx based on fuzzy (co)implications is
proposed in (BUSTINCE et al., 2011) and reported below:

Proposition 5. (BUSTINCE et al., 2011, Theorem 3) Let NI be an N -representable
IFN obtained by a SFN N . A function Π : Ũ → U is a A-GIFIx(NI) if and only if there
exists a function I : U2 → U verifying I1, I8, I9 and I10 such that

ΠI(x̃) = N(I(NS(x2), x1)),∀x̃ = (x1, x2) ∈ Ũ . (32)

The NS-dual construction related to Proposition6 is considered in the following:

Proposition 6. (COSTA et al., 2016, Proposition 1) Let NI be an N -representable IFN
obtained by a SFN N . A function Π : Ũ → U is a A-GIFIx(NI) if and only if there exists
a function J : U2 → U verifying J1, J8, J9 and J10 such that

ΠJ(x̃) = J(N(1− x2), N(x1)),∀x̃ = (x1, x2) ∈ Ũ . (33)
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Proof. (⇒) Let J : U2 → U be a function verifying J2, J8, J9 and J10. It holds that:

Π1 : ΠJ(x1, x2) = 1⇔ J(N(1− x2), N(x1)) = 1 (by Eq.(33))

⇔ N(1− x2) = 1 andN(x1) = 0⇔ x2 = 1 and x1 = 1(by J10)

Π2 : ΠJ(x1, x2) = 0⇔ J(N(1− x2), N(x1)) = 0 (by Eq.(33))

⇔ N(1− x2) ≥ N(x1)

⇔ x1 + x2 ≤ 1 and x1 + x2 ≥ 1⇔ x1 + x2 = 1 (by J8 and Eq.(62))

Π3 : (y1, y2) � (x1, x2)⇒ y1 ≤ x1 and y2 ≤ x2 by Eq.(21)

⇒ N(x1) ≥ N(y1) andN(1− x2) ≤ N(1− y2) by N2

⇒ J(N(1− x2), N(x1)) ≤ J(N(1− y2), N(y1)) by I1

⇒ ΠJ(x1, x2) ≤ ΠJ(y1, y2) by Eq.(33)

When NI is a SIFN,

Π4 : ΠJ(NI(x1, x2)) = ΠJ(N(NS(x2)), NS(N(x1))) by Eq.(31)

= (J(x1, 1− x2)) by Eq.(33)

= (J(N(1− x2)), N(x1)) by I9

= ΠJ(x1, x2) by Eq.(33)

(⇐) Consider the function J(x1, x2) =

{
1, if x1 > x2,

ΠJ(N(x2), 1−N(x1)), otherwise.
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The following holds:

J2 : y1 ≥ y2 ⇔ J(x, y1) =

{
1, if x > y1,

ΠJ(N(y1), 1−N(x)), otherwise; by Eq.(33)

≥

{
1, if x > y2,

Π(N(y2), 1−N(x)), otherwise; by Π3

= J(x, y2); by Eq.(33).

J8 : Straightforward.

J9 : J(N(x2), N(x1)) =

{
1, if N(x2) > N(x1),

ΠJ(x1, 1− x2), otherwise; by Eqs.(33) and (31)

=

{
1, if x1 ≥ x2,

ΠJ(NI(N(x2), 1−N(x1)))), otherwise, by Π4

=

{
1, if x1 ≥ x2,

ΠJ(N(x2), 1−N(x1))), otherwise, by Eq.(33)

= J(x1, x2),whenever N is a SFN.

J10 : J(x1, x2) = 1 ⇔ ΠJ(N(x2), 1−N(x1)) = 1by Eq.(33)

⇔ N(x2) = 1−N(x1) = 0⇔ x1 = 0 and x2 = 1by Π1.

Therefore, Proposition 6 holds.

Theorem 3. Based on conditions of Propositions 5 and 6 , when (I, J) is a pair of
mutual N -dual function, meaning that IN = J or JN = I, the following holds:

ΠI(x̃) = ΠJ(x̃), ∀x̃ = (x1, x2) ∈ Ũ . (34)

Proof. By Proposition 5, we have that:

ΠI(x̃) = N(I(NS(y), x)) = N(JN(NS(y), x)) = J(N(NS(y), N(x)) = ΠJ(x̃)

Therefore, Theorem 3 is verified.

4.1.1 Dual Operators

In this section we study the duality and conjugation properties related to A-GIFIx.

Theorem 4. Let N be a SFN and NI be its corresponding N -representable SIFN. For
an A-GIFIx(N) Π : Ũ → U the following holds:

(Π)N (x̃) = N (Π(x̃)) ,∀x̃ ∈ Ũ . (35)
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Proof. By Eq.(31) and Property Π4, (Π)N (x̃) = N (Π(NI(x̃))) = N (Π(x̃)).

Results in Proposition 7 are related to (COSTA et al., 2016, Proposition 2).

Proposition 7. Let N be a SFN and NI be its corresponding N -representable SIFN.
For a A-GIFIx(N) ΠI(ΠJ) : Ũ → U the following holds:

(ΠI)N (x̃) = I(NS(x2), x1); (36)

(ΠJ)N (x̃) = N(J(x1, NS(x2))),∀x̃ = (x1, x2) ∈ Ũ . (37)

Proof. For all x̃ ∈ Ũ , (ΠI)N (x̃) = N (ΠI(NI(x̃))) = N (Π(x̃)) = I(NS(x2), x1). Its dual
construction can be proved analogously.

In diagrams of Figures 1 and 2 the following denotation is considered:
(i) C(I) and C(J) denote the classes of fuzzy implications and coimplications verifying
the conditons in Propositions 5 and 6;
(ii) C(N) denotes the class of strong fuzzy negations on U ;
(iii) C(Π) provides denotation to the class of all A-IFIx.
These interrelations summarize the results stated in Propositions 5 and 6, Theorem 4
and Proposition7.

C(I)
Eq. (32)

- C(Π)× C(I)

C(I)× C(N)

Eq.(14)

? Eq. (33)
- C(Π)× C(I)× C(N)

Eq.(36)

?

Figure 1 – A-GIFIx obtained by fuzzy implications and corresponding dual operator.

C(J)
Eq. (33)

- C(Π)× C(J)

C(J)× C(N)

Eq.(15)

? Eq. (32)
- C(Π)× C(J)× C(N)

Eq.(37)

?

Figure 2 – A-GIFIx obtained by fuzzy coimplications and corresponding dual operator.

Consequently, one can describe hesitance and accuracy in terms of A-GIFIx. See,
in (COSTA et al., 2016, Corollary 1), it is shown that the A-IFIx π : Ũ → U , can
be defined as an (A − GIFIx(NSI)) by considering the Lukaziewicz fuzzy implication
ILK : U → U given by the following expression

ΠILK (x̃) = π(x̃) = 1− µA(x)− νA(x)),∀x ∈ χ; (38)
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and analogously, its NS-dual construction can be given as follows:

(ΠILK )NS (x̃) = h(x̃) = µA(x) + νA(x)),∀x ∈ χ. (39)

Table 6 does not only illustrate Proposition 5, but also presents additional examples
of A-GIFIx(NSI) associated with the following fuzzy implications: Lukaziewicz, I0,
Reichenbach and Gaines-Rescher.

Table 6 – Generalized intuitionistic fuzzy index associated with the standard negation.

Pairs of NS-Dual Fuzzy (Co)Implications NSI -Dual A-GIFIx

ILK(x, y)=

{
1, if x ≤ y,
1− x+ y, otherwise; ΠLK(x, y)=1− x− y

(ΠLK)NSI (x, y)=x+ y
JLK(x, y)=

{
0, if x ≥ y,
y − x, otherwise;

IKD(x, y)=

{
1, if x ≤ y,
max(1− x, y), otherwise; ΠKD(x, y)=1−max(x, y)

(ΠKD)NSI (x, y)=max(x, y)
JKD(x, y)=

{
0, if x ≥ y,
min(1− x, y), otherwise;

IRB(x, y)=

{
1, if x ≤ y,
1− x+ xy, otherwise; ΠRB(x, y) = 1−x−y+xy

(ΠRB)NSI (x, y) = y−xy
JRB(x, y)=

{
0, if x ≥ y,
1−x−y+xy, otherwise;

IGR(x, y)=

{
1, if x ≤ y,
0, otherwise; ΠGR(x, y)=1

(ΠGR)NSI (x, y)=0
JGR(x, y)=

{
0, if x ≥ y,
1, otherwise;

4.1.2 Conjugate Operators

In the following, we study the action of automorphisms on A-GIFIx obtained by fuzzy
(co)implications.

Proposition 8. (COSTA et al., 2016, Prop. 3) Let Φ ∈ Aut(Ũ) be a φ-representable
automorphism, Nφ : U → U be the φ-conjugate of a SFN N . A function ΠG

Φ : Ũ → U

is a A−GIFIx(Nφ
I ) given by

ΠΦ(x1, x2) = (φ−1(Π(φ(x1)), 1− φ(1− x2)), (40)

whenever ΠG : Ũ → Ũ is also an A-GIFIx(NI).

Proof. Let Φ : Ũ → U be a representable φ-automorphism and ΠG : Ũ → Ũ be an
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A-GIFIx(NI). It holds that:

Π1 : ΠΦ
G(x1, x2) = 1⇔ φ−1(ΠG(φ(x1), 1− φ(1− x2))) = 1 (by Eq.(40))

⇔ ΠG(φ(x1), 1− φ(1− x2)) = 1 (by Eq.(28))

⇔ φ(x1) = 0 and 1− φ(1− x2) = 0 (by Π1)

⇔ x1 = 0 and x2 = 0 (by A1)

Π2 : ΠΦ
G(x1, x2) = 0 ⇔ φ−1(ΠG(φ(x1), 1− φ(1− x2))) = 0 (by Eq.(40))

⇔ ΠG(φ(x1), 1− φ(1− x2)) = 0 (by Eq.(28))

⇔ φ(x1) + 1− φ(1− x2) = 1 (by Π2)

⇔ φ(x1) = φ(1− x2)⇔ x1 = 1− x2 ⇔ x1 + x2 = 1

Π3 : (x1, x2) � (y1, y2)⇒ x1 ≤ y1 and x2 ≤ y2 by Eq.(21)

⇒ φ(x1) ≤ φ(y1) and 1− φ(1− x2) ≤ 1− φ(1− y2) by A1

⇒ ΠG(φ(x1), 1− φ(1− x2)) ≤ ΠG(φ(y1), 1− φ(1− y2)) by Π3

⇒ φ−1 (ΠG(φ(x1), 1− φ(1− x2))) ≤ φ−1 (ΠG(φ(y1), 1− φ(1− y2)))

⇒ ΠΦ
G(x1, x2) ≤ ΠΦ

G(y1, y2) by Eq.(40)

Let NI be a SIFN obtained by a SFN N , according with Eq.(31) and NΦ
I be its

Φ−conjugate function. Therefore, it holds that:

Π4 : ΠΦ
G

(
NΦ
I (x1, x2)

)
= ΠG

Φ
(
NΦ
I (x1, x2)

)
(by Eq.(40))

= φ−1
(
ΠG(Φ ◦ Φ−1(NI(Φ(x1, x2))))

)
(by Eqs.(40) and (28))

= φ−1 (ΠG(NI(Φ(x1, x2))))) (by Π4)

= φ−1 (ΠG(Φ(x1, x2))) = Π(x1, x2)

Concluding, Proposition 8 is verified.

Proposition 9. Let φ ∈ Aut(U) be an automorphism, Nφ : U → U be a φ-conjugate
of a SFN N : U → U and Iφ : U2 → U be a φ-conjugate of I : U2 → U . A function
ΠIφ(ΠJφ) : Ũ → U given by

ΠIφ(x1, x2) = Nφ(Iφ(1− x2, x1)), (41)

ΠJφ(x1, x2) = Jφ(Nφ(1− x2), Nφ(x1)), (42)

is an A-GIFIx(N) whenever ΠI(ΠJ) : Ũ → Ũ is also an A-GIFIx(N).
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Proof. For all x̃ = (x1, x2) ∈ Ũ , from Propositions 6 and 8 the results below are verified:

ΠIφ(x1, x2) = φ−1(ΠI(φ(x1), 1− φ(1− x2)) by Eq.(29)

= φ−1(N(I(φ(1− x2), φ(x1)))) by Eq.(32)

= φ−1(N(φ ◦ φ−1)(I(φ(1− x2), φ(x1)))

= Nφ(Iφ(1− x2, x1)) by Eq.(3)

Analogously, its dual construction can be proved. Concluding, Proposition 9 holds.

The main results in Propositions 4 and 5 together with Propositions 8 and 9 are
summarized in the diagrams below (figures 3 and 4):

In diagrams of Figures 3 and 4 the following denotations are considered:
(i) C(I) and C(J) denote the classes of fuzzy implications and coimplications verifying
the conditons in Propositions 32 and 33;
(ii) Aut(U) denotes the class of automorfims on U ;
(iii) C(Π) provides denotation to the class of all A-GIFIx.
These interrelations summarize the results stated in Propositions 8 and 9.

C(I)
Eq. (32)

- C(Π)× C(I)

C(I)× Aut(U)

Eq.(3)

? Eq. (32)
- C(Π)× C(I)× Aut(Ũ)

Eqs.(29)(41)

?

Figure 3 – A-GIFIx obtained by fuzzy implications and conjugate operator.

C(J)
Eq. (33)

- C(Π)× C(J)

C(J)× Aut(U)

Eq.(3)

? Eq. (33)
- C(Π)× C(J)× Aut(Ũ)

Eqs.(29)(42)

?

Figure 4 – A-GIFIx obtained by fuzzy complications and conjugate operator.

See in Table 7, instances of A-GIFIx associated to φ-conjugate implications
described in Table 6.

4.1.3 A-GIFIx (S,N)-implications and (T,N)-coimplications

In the following, the classes of (S,N)-implications and (T,N)-coimplications are
considered in order to obtain new expressions of A-GIFIx.
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Table 7 – A-GIFIx(NSI ) associated with the automorphisms φ(x) = x2 and φ−1 =
√
x.

Fuzzy Implications A−GIFIx(NSI)

IφKD(x, y) =

{
1, if x ≤ y,√

max(1− x2, y2),otherwise; ΠIφKD
(x, y) = 1−

√
max(x2, 1− (1− y)2)

ΠJφKD
(x, y) =

√
1−max(x2, 1− (1− y)2))

JφKD(x, y) =

{
0, if x ≥ y,√

min((1− x)2, y2),otherwise;

IφLK(x, y) =

{
1, if x ≤ y,√

1− x2 + y2, otherwise;
ΠIφLK

(x, y) = 1−
√

1 + x2 − (1− y)2

ΠJφLK
(x, y) =

√
x2 − (1− y)2

JφLK(x, y) =

{
0, if x ≥ y,√

1− x2 + y2, otherwise;

IφRB(x, y) =

{
1, if x ≤ y,√

1− x2 + x2y2,otherwise;
ΠIφRB

(x, y) = 1−
√

1− (1− y)2(1− x2)

ΠJφRB
(x, y) =

√
(1− y)2(1− x2)

JφRB(x, y) =

{
0, if x ≥ y,√
y2 − x2y2,otherwise;

IφGR(x, y) =

{
1, if x ≤ y,
0,otherwise;

ΠIφGR
(x, y) = 0

ΠJφGR
(x, y) = 1

JφGR(x, y) =

{
0, if x ≥ y,
1,otherwise;

Proposition 10. (COSTA et al., 2016, Prop. 6) Let N be an SFN. A function Π : Ũ → U

is an A-GIFIx(N) if and only if there exists an S-implication (T-coimplication) IS(JT ) :

U2 → U such that the following holds:

ΠIS,N (x1, x2) = S(NS(x2), N(x1))); (43)

ΠJT,N (x1, x2) = T (NS(x2), N(x1)). (44)

Proof. Since N is a SFN, it holds that (ΠIS)N (x1, x2) = N (ΠIS(NI(x1, x2))) =

N (ΠIS(N ◦NS(x2), NS ◦N(x2))) = IS(N(x1), N ◦ NS(x2)) = IS(NS(x2), x1) =

ΠIS(x1, x2). Moreover, N(IS,N(1 − x2, x1)) = SN(NS(x2), N(x1))) . Therefore,
ΠJT,N (x1, x2) = JT,N(x2, 1− x1)) = T (NS(x2), N(x1)), for all (x1, x2) ∈ Ũ .

In the following, by considering the standard negation, it is possible to obtain an
A-GIFIx making use of t-(co)norms:

Corollary 1. When N = NS, Eq.(43) can be expressed as

ΠIS,NS
(x1, x2) = NS(S(x1, x2)); (45)

ΠJT,NS
(x1, x2) = NS(TNS(x1, x2)). (46)

The functions in Table 7 area examples of (S,N)-implications and their dual
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constructions are (T,N)-coimplications.

4.2 Generation of Atanassov’s Intuitionistic Fuzzy Entropy

In this section, the study of the Atanassov’s intuitionistic fuzzy entropy follows from
results stated in (BUSTINCE et al., 2011).

Definition 4. (BUSTINCE et al., 2011, Definition 2) A real function E : AI → U is
called an Atanassov’s intuitionistic fuzzy entropy (A-IFE) if the following properties are
verified:

E1: E(A) = 0 if and only if A ∈ A,

E2: E(A) = 1 if and only if µA(x) = νA(x) = 0, ∀x ∈ χ,

E3: E(A) = E(A′),

E4: if A � B then E(A) ≥ E(B),∀A,B ∈ AI .

According with (BUSTINCE et al., 2011), some interpretations of Definition 4:

(i) By E1, the lack of information should be the maximum whenever there is not
information supporting a proposition, and if there is not information against the
same proposition;

(ii) In opposite position, by E2, the lack of information is the minimum when we are
dealing with a fuzzy set, meaning that the membership and non-membership
degrees are exactly complementary;

(iii) As the third axim, E3 states that the lack of information decreases if the
membership and the non-membership values increase meaning that such A-IFS
is closer to being a fuzzy set;

(iv) And, by last axiom, E4 guarantees no new information can be obtained only by
negation operator.

Proposition 11. Let Φ be a φ-representable automorphism in Aut(Ũ) and E : AI → U

be an A-IFE. Then, for all A ∈ A, the Φ-conjungate function EΦ : A → U is also an
A-IFE.

Proof. Let A be an IFS. Taking Φ(A) = (φ(µA(x), 1−φ(1−νA(x))),∀x ∈ χ, the following
is verified:
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E1: If EΦ(A) = 0, φ−1(E(Φ(A))) = 0⇔ E(Φ(A)) = 0⇔ Φ(A) ∈ A ⇔ A ∈ A.
E2: If EΦ(A) = 1, ∀x ∈ Ũ the following holds

EΦ(A) = 1 ⇔ φ−1(E(φ(µA(x)), 1− φ(1− νA(x))) = 1

⇔ E(φ(µA(x)), 1− φ(1− νA(x)) = 1,

⇔ µA(x) = 0 and φ(1− νA(x)) = 1

⇔ µA(x) = 0 and 1− νA(x) = 1⇔ µA(x) = νA(x) = 0

E3: EΦ(A′) = Φ−1(E(Φ(A′))) = Φ−1(E(Φ(A′)′)) = Φ−1(E(φ(A))) = EΦ(A).
E4: If A�B, Φ(A)�Φ(B) then EΦ(A) = Φ−1(E(Φ(A))≥Φ−1(E(Φ(B)) =EΦ(B).

Properties related to A-IFE obtained by aggregation of A-GIFIx are discussed below
by considering a finite set χ = {x1, . . . , xn}.

Proposition 12. (BUSTINCE et al., 2011, Prop. 4) Let Ag be an aggregation on U , N
be a SFN, Π be an A-GIFIx(N). Then, for all A ∈ A, the mappings E : A → U defines
an Atanassov’s intuitionistic fuzzy entropy (A-IFE) respectively expressed by

E(A) = Agni=1Π(A(xi)) (47)

Proposition 13. Let Ag be an aggregation on U , N be a SFN, Π be an A-GIFIx(N) and
φ ∈ Aut(U). Then, for all A ∈ A, the mappings EΦ : A → U expressed by

EΦ(A) = Agni=1ΠΦ(A(xi)),∀xi ∈ χ, (48)

defines an Atanassov’s intuitionistic fuzzy entropy.

Proof. Straightforward from Propositions 11 and 12.

Let C(E) be the class of all A-IFEs. The diagram below summarizes the main
results related to the classes of A-GIFIx(NI) and A-IFE.

The main results in Propositions 12 and 13 together with Propositions 8 and 9 are
summarized in the diagram below (figure 5):

In diagram of Figure 5 the following denotation is considered:
(i) C(Π) provides denotation to the class of all A-IFIx;
(ii) Aut(U) denotes the class of all automorfims on U ;
(iii) C(E) provides denotation to the class of all entropy.
These interrelations summarize the results stated in Propositions 8 and 9.

In the following, an A-IFE is obtained from A-GIFIx as conceived in (BUSTINCE;
BURILLO; SORIA, 2003), with respect to its dual and conjugate constructions.

Next two propositions report the main results from (COSTA et al., 2016) and
(BUSTINCE et al., 2011).
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C(Π)
Eq.(47)

- C(E)

C(Π)× Aut(U)

Eq.(3)

? Eq.(48)
- C(E)× Aut(Ũ)

Eq.(29)

?

Figure 5 – Relatioship between A−GIFIx(N) and A− IFE Aut(Ũ)

Proposition 14. Consider φ ∈ Aut(U). Let N : U → U be a SFN, Ag : Un → U

be an aggregation function and IN : U2 → U be a N -dual operator of an implication
I : U2 → U which satisfies properties I1, I8, I9 and I10, as discussed in Proposition 5.
Then, for all A ∈ A, the mappings EI , EIΦ : A → U defined by

EI(A) = Agni=1N(I(1− νA(xi), µA(xi))), (49)

EIφ(A) = Agni=1N
φ(Iφ(1− νA(xi), µA(xi))), (50)

providing new expressions of A-IFEs obtained from an A-GIFIx(NI).

Proof. Straightforward from Propositions 6 and 4, also taking Eq.(32) and (83).

Proposition 15. Consider φ ∈ Aut(U). Let N : U → U be a SFN, Ag : Un → U

be an aggregation function and JN : U2 → U be a N -dual operator of a coimplication
J : U2 → U satisfying properties J2, J8, J9 and J10, according with Proposition 6.
Then, for all A ∈ A, the mappings EJ , EJφ : A → U defined by

EJ(A) = Agni=1J (N(1− νA(xi)), N(µA(xi))) ,∀xi ∈ χ, (51)

EJφ(A) = Agni=1J
φ
(
Nφ(1− νA(xi)), N

φ(µA(xi))
)
,∀xi ∈ χ, (52)

are also Atanassov’s intuitionistic fuzzy entropies (A-IFEs).

Proof. Straightforward from Propositions 14, 7 and 4, also taking Eq.(33).

In diagram of Figure 6 the following denotation is considered:
(i) C(I) denotes the class of all implications;
(ii) C(Π) provides denotation to the class of all A-IFIx;
(iii) Aut(U) denotes the class of all automorfims on U ;
(iv) C(E) provides denotation to the class of all entropy.
These interrelations summarize the results stated in Propositions 8 and 9.

Thus, the main results in Propositions 8 and 9 together with Propositions 12 and 13
are summarized in the diagram below (figure 6):

Proposition 16. Let EJ , EJN : A → U be A-IFEs according with Propositions 14
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C(I)
Eq. (32)

- C(Π)
Eq. (47)

- C(E)

C(I)× Aut(U)

Eq.(3)

? Eq. (41)
- C(Π)× Aut(Ũ)

Eq.(29)

?
Eq. (48)

- C(E)× Aut(Ũ)

Eq.(29)

?

Figure 6 – Constructing A-IFE from classes of implications.

and 15. Then, for all A ∈ A, the following holds:

EJN (A) = EJ(A) and EIN (A) = EI(A) (53)

Proof. Straightforward from Proposition 6 and Eqs.(36) and (37) in Proposition 12.

4.3 Case Study Expressing Fuzzy Entropy based on A-GIFIx

In order to illustrate and compare the above method ot obtain A-IFEs making use of
aggregating A-GIFIxs, this section considers six expressions of A-IFEs introduced by
M.Liu and H.Ren (LIU; REN, 2014). See algebraic expressions and related references
reported in Table 8.

In this case study, E7 is an IvFE obtained from Eq.(32) a by taking the arithmetic
mean (Ag = AM ) as the related aggregation operator. Thus the following holds:

E7 (A) =
1

n

n∑
i=1

ΠI(xi).

Let n be a positive integer and χ = {x1, x2, . . . , xn} be a finite set in order to define
the A-IFS An given by the following expression:

An = {(xi, (µA(xi)
n, 1− (1− νA(xi)

n) : xi ∈ χ}.

Thus, when χ = {6, 7, 8, 9, 10} we obtain the following A-IFSs:

A = {(6, 0.1, 0.8), (7, 0.3, 0.5), (8, 0.6, 0.2), (9, 0.9, 0.0), (10, 1.0, 0.0)}

providing a characterization of linguistic variables treated as follows:

A1/2 - “rather large” A - “quite large” A2 - “large” A3 - “very large” A4 - “extremely large”

As a remark, we should mention that from axioms of the logical approach defining
the A-GIFIx, the entropies of these IFSs follow the next pattern:

A1/2 < A < A2 < A3 < A4 ⇒ E(A1/2) > E(A) > E(A2) > E(A3) > E(A4).
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Table 8 – Interval-valued Fuzzy Entropies
Reference Algebraic Expression

(YE, 2010) E1(A) = 1
n

∑n
i=1

[
1
2
(2µA(xi) + ΠA(xi)) · log2

1
2
(2µA(xi)+

ΠA(xi))+
1
2
(2νA(xi) + ΠA(xi)) · log2

1
2
(2νA(xi) + ΠA(xi))

]
(YE, 2010) E2(A) = 1

n

∑n
i=1

[(√
2cos(µA(xi)− νA(xi))

π
4
− 1
)

1√
2−1

]
(VERMA; SHARMA, 2013) E3(A) = 1

2n(
√
e−1)

∑n
i=1

[
2µA(xi) + ΠA(xi)) · e1− 1

2
(2µA(xi)+ΠA(xi))+

1
2
(2νA(xi) + ΠA(xi))e

1− 1
2

(2νA(xi)+ΠA(xi)) − 1
]

(WEI; GAO; GUO, 2012) E4(A) = 1
n

∑n
i=1 cos

(
µA(xi)−νA(xi)

(1+ΠA(xi))
π
4

)
(YUE; JIA; YE, 2009) E5(A) = 1

n

∑n
i=1 cot

(
π
4

+ |µA(xi)−νA(xi)|
(1+ΠA(xi))

π
4

)
(LIU; REN, 2014) E6(A) = 1

n

∑n
i=1 cot

(
π
4

+ (|µA(xi)− νA(xi)| ∗ (1− ΠA(xi)))
π
4

)

The expressions from E1 to E6 are considered in the application on the above IFSs
from A

1
2 to A4.

Each one of the A-GIFIxs is obtained by action of the arithmetic mean, taking into
account the four A-GIFIxs ΠLK , ΠRB, ΠGR and ΠKD described in Table 6.

In addition, the entropy measures presented in Table 8 are compared based on
these four expressions of the A-GIFIxs. They are also preserved by the proposed
methodology related to the set of fuzzy implications {IGR, IKD, IRB, ILK} as presented
in Tables 9, 10, 11, 12, respectively.

Table 9 – A-IFE is obtained from the A-GIFIx (ΠGR) with respect to NS-dual
construcion

ΠGR E1 E2 E3 E4 E5 E6 E7

A
1
2 0,0146 0,0593 4,4133 0,9189 0,5322 0,8000 0,8000

A1 0,0474 0,1403 4,2003 0,9184 0,5203 0,8000 0,8000
A2 0,02178 0,2047 4,0138 0,9109 0,5045 0,8000 0,8000
A3 0,0019 0,3595 3,9410 0,9061 0,4511 0,8000 0,8000
A4 0,0176 0,4541 3,9004 0,9032 0,4271 0,8000 0,8000

We can see that the results of the entropy calculations follow the order of the
implications proposed by Baczynski (BACZYNSKI; JAYARAM, 2007), such that ILK ≤
IRB ≤ IKD. The IGR was considered the largest of all implications, considering that it
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Table 10 – A-IFE is obtained from the A-GIFIx (ΠKD) with respect to NS-dual
construcion

ΠKD E1 E2 E3 E4 E5 E6 E7

A
1
2 0,4690 0,4329 1,1199 0,8716 0,3954 0,4182 0,2352

A1 0,4919 0,4854 1,0072 0,8747 0,3842 0,4088 0,24
A2 0,4070 0,3942 0,8030 0,8472 0,3425 0,3552 0,224
A3 0,3687 0,3571 0,5444 0,8287 0,2616 0,2829 0,1832
A4 0,3383 0,3179 0,4138 0,8167 0,2221 0,2454 0,1635

Table 11 – A-IFE is obtained from the A-GIFIx (ΠRB) with respect to NS-dual
construcion

ΠRB E1 E2 E3 E4 E5 E6 E7

A
1
2 0,5095 0,4669 0,8474 0,8701 0,3847 0,3982 0,1757

A1 0,5231 0,5003 0,7844 0,8732 0,3749 0,3911 0,1900
A2 0,4427 0,4123 0,5697 0,8466 0,3407 0,3501 0,1733
A3 0,3821 0,3508 0,4458 0,8281 0,2577 0,2748 0,1604
A4 0,3430 0,3098 0,3697 0,8161 0,2193 0,2399 0,1528

assumes the highest and lowest values (0 or 1).
The implication ILK was not the best indicated for this application, since its results do
not follow the proposed order E(A1/2) > E(A) > E(A2) > E(A3) > E(A4). We also
point out that the proposed order has no relation to the axiom E4, Definition 4.
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Table 12 – A-IFE is obtained from the A-GIFIx (ΠLK) with respect to NS-dual
construcion

ΠLK E1 E2 E3 E4 E5 E6 E7

A
1
2 0,5462 0,5051 0,5105 0,8659 0,3645 0,3685 0,0923

A1 0,5496 0,4939 0,5054 0,8685 0,3564 0,3632 0,1200
A2 0,4588 0,3952 0,4064 0,8436 0,3338 0,3407 0,132
A3 0,3895 0,3330 0,3437 0,8262 0,2512 0,2643 0,1344
A4 0,3466 0,2937 0,3044 0,8146 0,2141 0,2313 0,1359



5 INTERVAL-VALUED INTUITIONISTIC FUZZY LOGIC

This chapter provides a brief account on the Interval-valed Intuitionistic Fuzzy
Logic (A-IvIFL) as proposed by Atanassov, keeping this work self-contained. Firstly,
by reporting basic concepts of interval-valued automorphisms, interval-valued fuzzy
negations on U and main properties of interval-valued fuzzy implications.

5.1 Basic Concepts of the Interval-Valued Fuzzy Logic

Based on interpretations provided by the interval-valued fuzzy set theory, the
membership degree of an element x ∈ χ to a fuzzy set corresponds to a value in
the considered membership interval. So, we cannot say in a precise way what that
value is, meaning that we just provide bounds for it represented by the interval-valued
membership function.

Let U = {[x1, x2] : x1, x2 ∈ U and x1 ≤ x2} be the set of all subintervals of the unit
interval U . The projections lU, rU : U→U are defined by

lU([x1, x2]) = x1 and rU, ([x1, x2]) = x2, ∀x, y ∈ U (54)

and for X ∈ U, lU(X) and rU(X) are also denoted by X and X, respectively.
For each x ∈ U , the degenerate interval [x, x] will be denoted by x and related set

D̄ = {x : x ∈ U} denotes the set of all degenerate intervals on U.
An interval-valued fuzzy set can be expressed as follows:

A = {(x, µA(x)) : x ∈ χ and µA(x) ∈ U}.

5.1.1 Order Relations on U

Among different order relations to compare elements in IvFSs (GEHRKE; WALKER;
WALKER, 1996), we take the component-wise Kulisch-Miranker order (or product
order), given by:

X ≤U Y ⇔ X ≤ Y and X ≤ Y , ∀X, Y ∈ U.
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Thus, 0 ≤U X ≤U 1, for all X ∈ U. Morover, for all X, Y ∈ U , by taking

∧(X, Y ) = {max(x, y) : x ∈ X, y ∈ Y } and ∨ (X, Y ) = {min(x, y) : x ∈ X, y ∈ Y }

the structured set U ≡ (U,≤U,∧,∨,1,0) is a lattice.
We also consider the relation �U⊆ U× U given as

X �U Y ⇔ X ≤ Y , ∀X, Y ∈ U.

Therefore, we have that X �U Y ⇒ X ≤U Y , ∀X, Y ∈ U.
Since each interval [X,X] ⊆ U can be assigned uniquely to a point (X,X) ∈ U ×

U = U2, intervals can be ordered by means of pointwise orders in U × U induced by
the partial order of intervals ≤U.

Remark that, when K([0, 1]) = {(x, y) ∈ [0, 1]2|x ≤ y}, there is a natural bijection
from U onto K([0, 1]) resulting in the following

[X,X] ≤U [Y , Y ]⇔ (X,X) ≤U×U (Y , Y ),

and meaning that a partial (linear) order on U induces a partial (linear) order on the
other, K([0, 1]).

However, a linear order of intervals is required in order to compare anyone of its
elements on U. Thus, we consider an order relation extending the partial order ≤U to a
linear order by applying the notion of an admissible order.

Definition 5. (BUSTINCE et al., 2013) Let (U,v) be a poset. The order v is called an
admissible order, if

(i) v is a linear order on U,

(ii) for all X, Y ∈ U, X v Y whenever X ≤U Y .

By Definition 5, an order vU is admissible, if it is linear and improve the order ≤U.

Example 4. By considering the lexicographical order on U × U , the order relations on
vLex1,vLex2 on U× U given as :

(i) [a, b] vLex1 [c, d]⇔ a < c ∨ a = c ∧ b ≤ d; and

(ii) [a, b] vLex2 [c, d]⇔ b < d ∨ b = d ∧ a ≤ c,

are admissible linear orders.
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5.1.2 Conjugation Operators on U

In this session, some concepts of interval automorphisms are presented. This study
is the basis for obtaining the conjugated functions, used in this work.

An interval function U → U is an interval automorphism (IvA) if it is bijective and
monotonic with respect to the product order, that is, X ≤U Y if and only if X ≤U Y .

Let Aut(U) be the set of all interval in U. Interval automorphisms are closed for
composition, that is, for all (∈ Aut(U), ◦) ∈ Aut(U); and for all ∈ Aut(U) there is the
reverse automorphism −1 ∈ U, such that ◦−1 = IdU. Thus, (Aut(U), ◦) is a group.

The action of an IvA : U → U about an interval function F : Un → U is an interval
function F : U→ U, called interval conjugated of F , defined by the expression:

F (X1, . . . , Xn) = Φ−1(F (Φ(X1), . . . ,Φ(Xn))). (55)

5.1.3 Dual Operators on U

Interval-valued fuzzy neagtions and dual operators are considered in the following.

Definition 6. (REISER et al., 2007) A interval function N : U→ U is an interval-valued
fuzzy negation (IvFN) if, for all X, Y ∈ U, it verifies the conditions:

N1: N([0, 0]) = 1; and N([1, 1]) = 0;

N2a : If X ≥ Y then N(X) ≤ N(Y ).

N2b : If X ⊆ Y then N(X) ⊇ N(Y ).

If N also satisfies the involutive property:

N3 : N(N(X)) = X, for all X ∈ U,

then N is called strong IvFN (REISER et al., 2007).

Definition 7. (REISER; BEDREGAL; REIS, 2012) Let N be an interval fuzzy strong
negation in U and F : Un ↔ U be an interval function. The interval function N-dual of
F is given by:

FN(X1, . . . , Xn) = N(F (N(X1), . . . ,N(Xn))). (56)

Example 5. The interval extension of the standard fuzzy negation NS : U→ U is given
as:

NS(X) = 1−X = [1−X, 1−X]. (57)

5.1.4 Aggregation Operators on U

An interval-valued extension of an aggregation function A : Un → U demands the
following conditions:
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A1: A(X) = 0⇔ X = (0, . . . ,0); A(X) = 1⇔ X = (1, . . . ,1);

A2: If X = (X1, . . . , Xn) ≤Un Y = (Y1, . . . , Yn) then A(X) ≤U M(Y);

A3: A(Xσ) = A(Xσ1 , . . . , Xσn) = A(X1, . . . , Xn) = A(X).

Interval-valued aggregations are idempotent if they also verify the following condition:

A4 : A(X,X) = X, ∀X ∈ U (idempotency property).

Example 6. Let A : Un → U be an idempotent IvA, together with the functions
∧
,
∨

:

U2 → U, given by:∧
(X, Y ) = [∧(X, Y ),∧(X,Y )] and

∨
(X, Y ) = [∨(X, Y ),∨(X,Y )]. (58)

The following inequation is held:∧
(X, Y ) ≤ A(X, Y ) ≤

∨
(X, Y ), ∀X, Y ∈ U. (59)

In the following, the definition of an interval extension of conjuntive and disjuntive
connectives on U is considered.

Definition 8. (BEDREGAL et al., 2007) A function T(S) : U2 → U is an Interval-valued
T-norma (Interval-valued T-(co)norma) IvT (IvS) if, for all X, Y, Z ∈ U the following
properties are verified:
T1: T(X, Y ) = T(Y,X); S1: S(X, Y ) = S(Y,X);
T2: T(X(T(Y, Z)) = T(T(X, Y ), Z); S2: S(X(S(Y, Z)) = S(S(X, Y ), Z);
T3: T(X, 1) = X; S3: S(X, 0) = X;
T4: T(X, Y ) ≤ T(X,Z) if Y ≤ Z S4: S(X, Y ) ≤ (X,Z) if Y ≤ Z.

Proposition 17. (BEDREGAL; TAKAHASHI, 2006a) A function T(S) : U2 → U is an
Interval-valued T-norma (Interval-valued T-(co)norma) IvT (IvS) if there are T1, T2(S1,
S2) : U2 → U such that T1(x, y) ≤ T2(x, y) (S1(x, y) ≤ S2(x, y)) and the following holds:

T(X, Y ) = [T1(X, Y ), T2(X,Y )] S(X, Y ) = [S1(X, Y ), S2(X,Y )] (60)

In Proposition 17, an interval-valued t-(co)norm can be considered as an interval
representation of a t-(co)norm. This generalization fits with the fuzzy principle, meaning
that the interval-valued membership degree can be thought of as an approximation of
the degree of exact relevance related to a specialist.

Thus, an IvT T is t-representable by t-norms T1 and T2, in the sense as proposed
in (DESCHRIJVER; KERRE, 2005; CORNELIS; DESCHRIJVER; KERRE, 2004). It is
analogous stated in the dual construction of an IvS, as can be seen in (BEDREGAL;
TAKAHASHI, 2006b).



56

5.1.5 Interval-valued Fuzzy (Co)Implications

Fuzzy (co)implications can then be naturally extended to an interval-based
approach. In the following, we study the definition and the main properties of
interval-valued fuzzy (co)implication.

Definition 9. (BEDREGAL et al., 2007) A function I(J) : U2 → U is a interval-valued
fuzzy (co)implication if it satisfies the following conditions:
I1: If X ≤ Z then I(X, Y ) ≥ I(Z, Y ); J1: If X ≤ Z then J(X, Y ) ≥ J(Z, Y );
I2: If Y ≤ Z then I(X, Y ) ≤ I(X,Z); J2: If Y ≤ Z then J(X, Y ) ≤ J(X,Z);
I3: I(0, Y ) = 1; J3: J(1, Y ) = 0;
I4: I(X,1) = 1; J4: J(X,0) = 0;
I5: I(1,0) = 0; J5: J(0,1) = 1.

Since real numbers may be identified with degenerate intervals in the context of
interval mathematics, the boundary conditions that must be satisfied by the classical
fuzzy implications can be naturally extended to interval fuzzy degrees, whenever
degenerate intervals are considered. So, an interval-valued fuzzy (co)implicator
I(J) : U2 → U verifies I5 (J5) together with the following boundary conditions:

I0: I(1,1) = I(0,0) = I(0,1) = 1; J0: J(1,1) = J(1,0) = J(0,0) = 0;

Several reasonable properties may be required for fuzzy (co)implications. In this
work, we consider the folowing ones:
I6: I(1, Y ) = Y ; J6: J(0, Y ) = Y .
I7: I(X, I(Y, Z))=I(Y, I(X,Z)); J7: J(X, J(Y, Z))=J(Y, J(X,Z));
I8: I(X, Y )=1⇔ X ≤U Y ; J8: J(X, Y )=0⇔ X ≥U Y ;
I9: I(X, Y ) = I(N(Y ),N(X)), N is a SIFN; J9: J(x, y) = J(N(Y ),N(X)), N is a SIFN;
I10: I(X, Y ) = 0⇔ X = 1 and Y = 0; J10: J(X, Y ) = 1⇔ X = 0 and Y = 1.

The conditions under which an interval-valued fuzzy (co)implication can be obtained
by a fuzzy (co)implication is studied in the proposition below:

Proposition 18. (BACZYNSKI; JAYARAM, 2007, Prop 21) A fuzzy (co)implication
I(J) : U2 → U satisfies properties I1 (J1) and I2 (J2) if and only if the interval fuzzy
(co)implication I is given as

I(X, Y ) = [I(X,Y ), I(X, Y )]; J(X, Y ) = [J(X,Y ), J(X, Y )]. (61)

See Table 13, the interval-approach extension related to fuzzy (co)implications in
Table 6 is presented. In addition, since the conditions of Proposition 18 are verified,
these interval-valued fuzzy implications can be expressed by the corresponding fuzzy
implications, as detailed in the following example.
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Table 13 – Interval- valued Fuzzy Implications and NS-dual constructions.

Interval-valued Fuzzy Implications Interval-valued Fuzzy Coimplications

ILK(X,Y )=

{
1, if X ≤ Y,
1−X + Y, otherwise;

JLK(X,Y )=

{
0, if X ≥ Y,
Y −X, otherwise;

IKD(X,Y )=

{
1, if X ≤ Y,
max(1−X,Y ), otherwise;

JKD(X,Y )=

{
0, if X ≥ Y,
min(1−X,Y ), otherwise;

IRB(X,Y )=

{
1, if X ≤ Y,
1−X +XY, otherwise;

JRB(X,Y )=

{
0, if X ≥ Y,
Y −XY, otherwise;

IGR(X,Y )=

{
1, if X ≤ Y,
0, otherwise;

JGR(X,Y )=

{
0, if X ≥ Y,
1, otherwise;

I30(X,Y )=

{
max(1−X,Y,0.5), if 0<Y <X<1,
max(1−X,Y ), otherwise;

J30(X,Y )=

{
min(1−X,Y,0.5), if 0<X<Y <1,
min(1−X,Y ), otherwise;

Example 7. When Eq. (61) is applied to the extension of Reichbach fuzzy implications
IRB and its NS-dual construction JRB, we obtain the next expressions:

IRB(X, Y ) =

{
1, if X ≤ Y,

1−X +XY, otherwise;
=

{
1, if X ≤ Y,

NS(X)+X ·Y, otherwise;

=

{
1, if X ≤ Y,[
NS(X)+X ·Y ,NS(X)+X ·Y

]
, otherwise;

JRB(X, Y ) =

{
0, if X ≥ Y,

Y −XY, otherwise;
=

{
0, if X ≥ Y,

NS(X) · Y, otherwise;

=

{
0, if X ≥ Y,[
NS(X) ·Y ,NS(X) · Y

]
, otherwise;

According with the conditions of Proposition 18, analogous interval representations can
be obtained to other (co)implications presented in Table 13.

5.2 Main Concepts of the Interval-Valued Intuitionistic Fuzzy Logic

Since Atanassov introduced the interval-valued fuzzy set theory, fruitful results have
been achieved, introducing several basic operations, expanding both depth and scope,
effectively aggregation and fuzzy connectives.
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5.2.1 Interval-valued Intuitionistic Fuzzy Sets

Based on (ATANASSOV; GARGOV, 1998) and later in (CORNELIS;
DESCHRIJVER; KERRE, 2004), we briefly report main concepts and properties
on interval-valued Atanassov’s intuitionistic fuzzy sets (A-IvIFSs shortly).

An A-IvIFS AI in a non-empty universe χ is expressed as

AI={(x,MAI (x), NAI (x)) : x∈χ,MAI (x) +NAI (x))≤1}, (62)

and the set of all A-IvIFSs is denoted by AI . Thus, an intuitionistic fuzzy truth value of
an element in AI is related to the ordered pair (MAI (x), NAI (x)).

When Ũ = {X̃ = (X1, X2) : (X1, X2) ∈U2 and X1 + X2 ≤ 1}1 denotes the set of all
Atanassov’s interval-valued intuitionistic fuzzy degrees, and cosidering

RI1: X̃ ≤Ũ Ỹ⇔X1≤Y1 and X2≥Y2;

RI2: X̃ �Ũ Ỹ ⇒ X1 ≤ Y1 and X2 ≤ Y2, for all X̃, Ỹ ∈ Ũ;

we have that (Ũ,≤Ũ) and (Ũ,�Ũ) are partial ordered sets with 0̃ = (0,1)≤Ũ X̃ and
1̃ = (1,0)≥Ũ X̃ as the least and greatest elements on Ũ, respectivelly.

An Atanassov’s interval-valued intuitionistic fuzzy degree has the projections lII , rII :

Ũ→ U defined by
lII(X̃) = X1 and rII(X̃) = X2.

When X1 +X2 = 1 then AI is restricted to the set A of all interval-valued fuzzy sets.
A function πAI : χ→U, called an interval-valued intuitionistic fuzzy index (A-IvIFIx)

of an element x ∈ χ, related to an A-IvIFS AI , is given as

πAI (x) = NS(MAI (x) +NAI (x)), (63)

modelling not only the uncertainty degree but also the hesitancy (indeterminance)
degree of x in AI .

Thus, the accuracy function hAI : χ → U provides the interval-valued accuracy
degree of x in AI , given as hAI (x) + πAI (x) = 1. So, it means that the largest
πA(x)(hA(x)) the higher the hesitancy (accuracy) degree of x ∈ AI .

Moreover, the difference between AI and BI is given by:

AI −BI = {X̃ = (min(NAI (x), NBI (x)),max(NAI (x),MBI (x))) : X̃ ∈ Ũ, x ∈ χ}.

5.2.2 Interval-Valued Intuitionistic Conjugate Operator

A bijective and monotonic function Φ : Ũ → Ũ is an interval-valued intuitionistic
fuzzy automorphism (IvIFA) on Ũ, meaning that below properties hold:

1 We assume the componentwise addition on U, see (MOORE, 1979).
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AI1: Φ(1̃) = 1̃ and Φ(0̃) = 0̃;

AI2: Φ ◦ Φ−1(X̃) = X̃;

AI3: X̃ ≤Ũ Ỹ if and only if Φ(X̃) ≤Ũ Φ(Ỹ ), for all X̃, Ỹ ∈ Ũ.

In the set of all IvIFAs (Aut(Ũ)), the conjugate function of fI : Ũn → Ũ is a function
fΦ
I : Ũn → Ũ, defined as follows

fΦ
I (X̃) = Φ−1(fI(Φ(X̃1), . . . ,Φ(X̃n))). (64)

Reporting main results in (COSTA; BEDREGAL; NETO, 2011, Theorem 17), let
φ : U→ U be an interval-valued automorphism, φ ∈ Aut(U). Then, a φ-representability
of Φ is given by

Φ(X̃) = (φ(lŨ(X̃)),1− φ(1− rŨ(X̃))),∀X̃ ∈ Ũ; (65)

Moreover, when φ ∈ Aut(U), for all X̃ ∈ Ũ, a φU -representability of Φ is given by

Φ(X̃) =
(
[φU(X1), φU(X1)], [1− φU(1−X2, 1− φU(1−X2]

)
. (66)

5.2.3 Interval-Valued Intuitionistic Dual Conectives

An interval-valued intuitionistic fuzzy negation (IvIFN shortly) NI : Ũ → Ũ satisfies,
for all X̃, Ỹ ∈ Ũ, the following properties:

NI1: NI(0̃) =NI(0,1) = 1̃ and NI(1̃) =NI(1,0) = 0̃;

NI2: If X̃ ≥Ũ Ỹ then NI(x̃)≤ŨNI(ỹ).

Moreover, NI is a strong IvIFN verifying the condition:

NI3: NI(NI(X̃)) = X̃, ∀X̃ ∈ Ũ.

Consider NI as IvIFN and f̃ : Ũn → Ũ. The NI-dual interval-valued intuitionistic
function of f̃ , denoted by f̃NI : Ũn → Ũ, is given by:

f̃NI (X̃) = NI(f̃(NI(X̃1), . . . ,NI(X̃n))),∀X̃ = (X̃1, . . . , X̃n) ∈ Ũn. (67)

When ÑI is a strong IvIFN, f̃ is a self-dual interval-valued intuitionistic function. And,
by (BACZYNSKI, 2004), taking a strong IvFN N : U→ U, a IvIFN NI : Ũ→ Ũ such that

NI(X̃) = (N(NS(X2)),NS(N(X1))), (68)



60

is a strong IvIFN generated by means of the standard IvFN NS. Additionally, if N = NS,
Eq. (31) can be reduced to

NI(X̃) = (X2, X1) = [NS(X), NS(X)].

Concluding this section, the complement of A-IvIFS AI is defined by

AIC={(x,NAI (x),MAI (x)) : x∈χ,MAI (x) +NAI (x))≤1}, (69)



6 INTERVAL EXTENSION OF THE GENERALIZED
ATANASSOV’S INTUITIONISTIC FUZZY INDEX

Since Atanassov’s interval-valued intuitinistic fuzzy logic was introduced, many
researchers have taken advantage of interval-valued intuitionistic fuzzy index to
represent not only the incertaitnty but also the imprecision in modelling the membership
and non-membership functions, which is strictly linked by interval-valued fuzzy
connectives and relevant in the composition of if-then rule of corresponding fuzzy
system.

In intuitionistic fuzzy reasoning theory, intuitionistic fuzzy index operators play an
important role. In this chapter we introduce distinct expressions for IvIFIx operators
which can be used in real world applications, investigating properties, dual and
conjugate constructions.

Focusing on the expressions of Atanassov’s interval-valued intuitionistic fuzzy index
based on the use of interval-valued fuzzy (co)implications, a methodology to provide
new expressions that preserve such properties are considered.

6.1 Generalized Atanassov’s Interval-valued Intuitionistic Fuzzy
Index

Denoting a measure of non-determinacy, the intuitionistic fuzzy index of an element
x ∈ χ in an interval-valued intuitionistic set AI , is conceived

In this section, we firstly introduced the axiomatic definition of a generalized
interval-valued intuitionistic fuzzy index. In the sequence, its main properties and
relationship with dual and conjugate operators are also discussed.

Definition 10. A function Π : Ũ→U is called a generalized Atanasso’s interval-valued
intuitionistic fuzzy index associated with a strong IvFN N (A-GIvIFIx(N)) if, for all
X1, X2, Y1, Y2 ∈ U, it holds that:

Π1: Π(X1, X2) = 1 if and only if X1 = X2 = 0;

Π2: Π(X1, X2) = 0 if and only if X1 +X2 = 1;
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Π3: If (Y1, Y2) �Ũ (X1, X2) then Π(X1, X2) ≤U Π(Y1, Y2);

Π4: Π(X1, X2) = Π(NI(X1, X2)) when N is a SIvFN.

6.2 Relationship with Interval-valued Fuzzy Connnectives

In this section, we discuss the condition under which an interval-valued fuzzy
(co)implication gives rise to generalized Atanasso’s interval-valued intuitionistic fuzzy
index associated with a strong IvFN, describing a new methodology to obtain different
expressions of such operator by making use of fuzzy (co)implication operators and
their dual constructors.

In the following, Theorem 5 extends main results in (BARRENECHEA et al., 2009).

Theorem 5. A function ΠN,I(ΠN,J) : Ũ → U is A-GIvIFIx(N) iff exists a (co)implicator
I(J) :U2→U verifying I1(J1), I8(J8), I9(J9) and I10(J10) such that

ΠI(X) = N(I(NS(X2), X1)) (ΠJ(X) = J(N(NS(X2)),N(X1))) . (70)

Proof. The Eq.(70b) is proved below. Analogously, it can be done to prove Eq.(70a).
(⇒) When N is involutive, J : U2 → U verifies J2, J8, J9 and J10, it holds that:

Π1 : ΠN,J(X1, X2) = 1⇔ J(N(NS(X2)),N(X1)) = 1 (by Eq.(70b)

⇔ NS(X2) = 1 andN(X1) = 1 (by J2)

⇔ X2 = X1 = 0 (by N1)

Π2 : ΠN,J(X1, X2) = 0⇔ J(N(1−X2),N(X1)) = 0 (by Eq.(70b)

⇔ N(1−X2) ≥ N(X1)

⇔ X1 +X2 ≤ 1 and X1 +X2 ≥ 1

⇔ X1 +X2 = 1 (by J8 and Eq.(62))

Π3 : (Y1, Y2) � (X1, X2)⇒ Y1 ≤ X1 and Y2 ≤ X2 by RI2

⇒ N(X1) ≥ N(Y1)andN(1−X2) ≤ N(1− Y2) by N2

⇒ J(N(1−X2),N(X1)) ≤ J(N(1− Y2),N(Y1)) by J1

⇒ ΠN,J(X1, X2) ≤ ΠN,J(Y1, Y2) by Eq.(33)

Π4 : ΠN,I(N((X1, X2)) = ΠJ(N(NS(X2)),NS(N(X1))) by Eq.(31)

= (J(X1, 1−X2)) by Eq.(33)

= (J(N(1−X2)),N(X1)) by J9

= ΠN,J((X1, X2)(X1, X2)) by Eq.(33)

(⇐) Considering the function J : U2 → U given as J(X1, X2) = 1, if X1 > X2; and
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J(X1, X2) = ΠN,J(X2,NS(N(X1))), otherwise, the following holds:

J2 :Y1≥Y2⇔J(X,Y2) =

{
1, if X > Y1,

ΠN,J(Y2,NS(N(X))), otherwise; by Eq.(33)

≥

{
1, if X > Y2,

J(X,Y2),otherwise; by Π3 and Eq.(33).

J8 : Strainghforward.

J9 : J(N(X2),N(X1)) =

{
1, if N(X2) > N(X1),

ΠN,J(X1, 1−X2),otherwise; by Eqs.(33) and (31)

=

{
1, if X1 ≥ X2,

ΠN,J(N(N(X2),NS(N(X1)))),otherwise by Π4 and Eq.(33)

= J(X1, X2),whenever N is a SFN.

J10 : J(X1, X2) = 1⇔ΠN,J(N(X2),1− N(X1)) = 1by Eq.(33)

⇔N(X2) = 1− N(X1) = 0⇔ X1 = 0 andX2 = 1 by Π1.

Therefore, Theorem 5 holds.

6.2.1 Dual Operators and A-IvIFIx with respect to IvFN

The Φ-representability and N-dual IvIFIx constructions are discussed below.

Proposition 19. Let IN (JN) :U2→U be the N-dual operator of a (co)implication I(J) :

U2 → U. The following holds:

ΠIN(X̃) = ΠI(X̃),
(

ΠJN(X̃) = ΠJ(X̃)
)
. (71)

Proof. ΠN,IN(X̃)=N(I(NS(X2), X1))=IN(N(NS(X2)),N(X1))=ΠN,I(X̃), ∀X̃∈Ũ.

In diagram of Figure 7 the following denotation is considered:
(i) C(I) and C(J) denote the class of all (co)implications;
(ii) C(N) denotes the class of all negations;
(iii) C(Π) provides denotation to the class of all A-IFIx;
In addition, the interrelations summarize the results stated in Theorem 5 and
Proposition 19 are summarized in the diagram presented in Figure 7).

Corollary 2. When N = NS, Eq.(70) in Theorem 5 is given as

ΠI(X̃) = NS(I(NS(X2), X1))
(

ΠJ(X̃) = J(X2,NS(X1)
)
. (72)

Proposition 20. Let N be an N -representable strong IvFN and πN,I : Ũ → U be
A-IFIx(N). If I, J are representable (co)implications given by Eq.(61), a function ΠI :
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C(I)
Eq. (70a)

- C(ΠI) = C(ΠJ) �
Eq. (70b)

C(J)

C(I)× C(N)

Eq.(67)

? Eq. (70a)
- C(ΠIN) = C(ΠJN)

Eq.(67)

?
�
Eq. (70b)

C(J)× C(N)

Eq.(67)

?

Figure 7 – Constructing A-IvIFIx from classes of implications.

Ũ→ U given by Eq.(72) can be expressed as

ΠI(X̃) = [ΠN,I(X2, X1),ΠI(X2, X1)] (73)

ΠJ(X̃) = [ΠJ(X2, X1),ΠJ(X2, X1)]. (74)

Proof. We prove Eq.(73a), the other one can be analogously done. By taking
X1 = [X1, X1] and X2 = [X2, X2] then X1 + X2 = [X1 + X2, X1 + X2] ≤ [1, 1],
meaning that X1 + X2 ≤ 1 and X1 + X2 ≤ 1. Therefore ΠN,I(X̃) = N(I([1 −
X2, 1−X1], [X1, X1])) = [N(I(1−X2, X1)), N(I(1−X2, X1))]. Concluding, ΠN,I(X̃) =

[ΠN,I(X2, X1),ΠN,I(X2, X1)]. So, Proposition 20 holds.

Example 8. Consider IRC and related NS-dual construction ΠNS,JRC. By preserving the
conditions of Proposition 20, Eq.(33) can be expressed as

ΠNS,IRC(X1, X2) = ΠNS,JRC(X1, X2)

ΠNS,IRC(X1, X2)=

{
0, if X1 +X2 = 1,

1−[1−X2−X1 +X2X1, 1−X2−X1 +X2X1],otherwise;

(75)

In analogous way, the methodology can be applied to others implications, obtaining
other examples of generalized interval-valued intuitionistic fuzzy indexes associated
with the interval extension of the standard negation.

Table 14, in the following, presents the method applied to ILK , IGR and I30.

6.2.1.1 Comparing results from application of the constructive method related to
A-GIvIFIx

According with (BACZYNSKI, 2004), the four fuzzy implications in Table 14 can be
ordered as follows:

ΠGR(X, Y ) ≥ ΠLK(X, Y ) ≥ ΠRB(X, Y ) ≥ ΠKD(X, Y ) (76)

However, the other implication Π30(X, Y ) is not comparable with the above four
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Table 14 – Generalized interval valued intuitionistic fuzzy index associated with the standard
negation.

Dual Functions Fuzzy A−GIvIFIx(NSI)

IKD(X, Y )=

{
1, if X ≤ Y,
max(1−X, Y ), otherwise;

ΠKD(X, Y )=

{
0, if X + Y = 1,
1−max(X, Y ), otherwise;

JKD(X, Y )=

{
0, if X ≥ Y,
min(1−X, Y ), otherwise;

ILK(X, Y )=

{
1, if X ≤ Y,
1−X + Y, otherwise;

ΠLK(X, Y )=

{
0, if X + Y = 1,
1−X − Y, otherwise;

JLK(x, y)=

{
0, if X ≥ Y,
Y −X, otherwise;

IRB(X, Y )=

{
1, if X ≤ Y,
1−X +XY, otherwise;

ΠRB(X, Y )=

{
0, if X + Y = 1,
1−X − Y +XY, otherwise;

JRB(X, Y )=

{
0, if X ≥ Y,
Y −XY, otherwise;

IGR(X, Y )=

{
1, if X ≤ Y,
0, otherwise;

ΠGR(X, Y )=

{
0, if X + Y = 1,
1, otherwise;

JGR(X, Y )=

{
0, if X ≥ Y,
1, otherwise;

I30(X, Y )=


1, if X≤Y,
max(1−X, Y,0.5), if 0<Y <X<1;
max(1−X, Y ), otherwise; Π30(X, Y )=


1, if X ≤ Y
min(1−X, Y,0.5), if 0<Y <X<1;
min(1−X, Y ), otherwise;

J30(X, Y )=


0, if X≥Y,
min(1−X, Y,0.5), if 0<Y <X<1;
min(1−X, Y ), otherwise;

implications, impling the use of admissible linear orders to order all these operators.

Example 9. Consider the following A-IvIFSs:

A1 = {(u, [0.3, 0.4], [0.1, 0.2])}

A2 = {(u, [0.5, 0.7], [0.2, 0.4])}

A3 = {(u, [0.3, 0.4], [0.0, 0.0])}

Based on A-IvIFIx, obtained through of interval-valued implications ILK , IRB, I30 the
following interval-values holds:
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A1 A2 A3

ΠILK [0.4, 0.6] [0, 0] [0.6, 0.7]
ΠIRB [0.48, 0.72] [0.18, 0.4] [0.6, 0.7]
ΠI30 [0.5, 0.5] [0.3, 0.5] [0.6, 0.7]

Using the lexicographical linear order vLex1,vLex2, by Definition 5, we have that:

ΠILK(X, Y ) ≤ ΠIRB(X, Y ) ≤ ΠI30(X, Y )

Analyzing the same input set, with the implication of IGR, we can infer that
IGR(X, Y ) ≥ ILK(X, Y ) ≥ IRB(X, Y ) than we conclude that

ΠIGR(X, Y ) ≤ ΠILK(X, Y ) ≤ ΠIRB(X, Y ) ≤ ΠI30(X, Y )

6.2.2 Relationship with Interval-valued Automorphisms

Proposition 21. Let NΦ : U → U be the φ-conjugate of a strong IvFN N : U→ U
and φ : U → U be a φ-representable IvA given by Eq.(66). When Φ : Ũ → Ũ is a
Φ-representable IvIF given by Eq.(65), a function ΠΦ : Ũ→ U given by

ΠΦ(X1, X2) = (φ−1(Π(φ(X1)),1− φ(1−X2)), (77)

is an A-GIvIFIx(NI) whenever Π : Ũ→ U is also an A-GIvIFIx(NI).

Proof. Let φ : Ũ → U be a φ-representable IvA and Π : Ũ → U be an A-GIvIFIx(NI). It
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holds that:

Π1 :ΠΦ(X1, X2) = 1⇔ φ−1(Π(φ(X1),1− φ(1−X2))) = 1 (by Eq.(65))

⇔ Π(φ(X1),1− φ(1−X2)) = 1 ( by AI1)

⇔ φ(X1) = 0 and1− φ(1−X2) = 0 (by Π1)

⇔ X1 = 0 andX2 = 0 (by AI1)

Π2 :ΠΦ(X1, X2) = 0⇔ φ−1(Π(φ(X1),1− φ(1−X2))) = 0 (by Eq.(65))

⇔ Π(φ(X1),1− φ(1−X2)) = 0 ( by AI1)

⇔ φ(X1) + 1− φ(1−X2) = 1 (by Π2)

⇔ φ(X1) = φ(1−X2)⇔ X1 = 1−X2 or ⇔ X1 +X2 = 1 ( by AI1)

Π3 :(X1, X2) � (Y1, Y2)⇒ X1 ≤ Y1 andX2 ≤ Y2 by �-relation

⇒ φ(X1) ≤ φ(Y1) and 1− φ(1−X2) ≤ 1− φ(1− Y2) by AI1

⇒ Π(φ(X1),1− φ(1−X2)) ≤ Π(φ(Y1),1− φ(1− Y2)) by Π3

⇒ φ−1 (Π(φ(X1),1− φ(1−X2))) ≤ φ−1 (Π(φ(Y1),1− φ(1− Y2))) by A1

⇒ Πφ
G(X1, X2) ≤ Πφ

G(Y1, Y2) (by Eq.(65)).

Let NI be a strong IvIFN given by Eq.(31) and NΦ
I its Φ−conjugate function.

Π4 :ΠΦ
(
NΦ
I (X1, X2)

)
= φ−1

(
Π(φ ◦ φ−1(NI(φ(X1, X2))))

)
(by Eq. (28))

= φ−1 (Π(NI(φ(X1, X2))))) = φ−1 (Π(φ(X1, X2))) = Π(X1, X2) (by Π4)

Therefore, Proposition 21 holds.

Corollary 3. In conditions of Proposition 21 and considering a φ-representable IvA
given by Eq.(66), we can express Eq.(40) as follows:

ΠΦ(X1, X2) =
[
Πφ(X1, X2),Πφ(X1, X2)

]
. (78)

Proof. Straightforward from Proposition 21.

Corollary 4. Let Φ be a φ-representable automorphism in Aut(Ũ) and I(J) : Ũ2 → Ũ
be the corresponding φ-conjugate operator related to a (co)implication I(J) : U2 → U,
verifying the conditions of Theorem 5. When NΦ is a strong φ-conjugate IvFN negation,
a function ΠIφ(ΠJφ) : Ũ→ U given by

ΠΦ
I (X1, X2) = NΦ(IΦ(NS(X2), X1)) (79)(

ΠΦ
J (X1, X2) = Jφ(NΦ(NS(X2),NΦ(X1))

)
. (80)

is an A-GIvIFIx(N).
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Proof. It follows from Proposition 21 and Theorem 5.

The main results in Corollary 4 and Proposition 21 are summarized in the diagram
below (figure 8):

In diagram of Figure 8 the following denotation is considered:
(i) C(I) and C(J) denote the class of all (co)implications;
(ii) C(N) denotes the class of all negations;
(iii) Aut(U) denotes the class of all automorphisms;
(iv) C(Π) provides denotation to the class of all A-GIvIFIx;
These interrelations summarize the results stated in Corollarys 3 and 4.

C(I)× C(N)×Aut(U)
Eq.(70)

- C(ΠI)×Aut(U)

C(IΦ)× C(NΦ)

Eq.(64)

? Eq.(70)
- C(ΠΦ

I ) = C(ΠIΦ)

Eq.(64)

?

Figure 8 – Diagramatical expression in the classes of A-IvIFIx and Aut(U)

Example 10. Consider IRC and related Φ-conjugate construction ΠΦ
NS,JRC given by

Eq.(75). For a φ-representable automorphim given as φ(X) = Xn, whenever n is a
nonnegative integer, we have the following:

ΠΦ
NS,IRC(X1, X2) =

[
n

√
(1−Xn

1 )(1−X2)n; n
√

(1−Xn
1 )(1−X2)n

]
. (81)



7 INTERVAL-VALUED INTUITIONISTIC FUZZY ENTROPY

The concept of entropy which measures the fuzziness of a fuzzy set was introduced
by De Luca and Termini (LUCA; TERMINI, 1972) in order to measure how far a fuzzy
set (FS) is from a crisp one. Since then, this concept has been adapted to the
different extensions of FSs and with different interpretations, as in modelling type-2
fuzzy sets (MIGUEL et al., 2017) (XU; SHEN, 2014), interpreting vague sets (ZHANG;
JIANG, 2008), dealing with intuitionistic fuzzy set (WEI; GAO; GUO, 2012), (YE,
2010),(VERMA; SHARMA, 2013), (LIU; REN, 2014) and also modelling interval-valued
intuitionistic fuzzy sets (JING; MIN, 2013) (ZHANG; JIANG, 2008), all of them measure
how far the considered extension is from a fuzzy set of reference.

In this sense, it is worth mentioning the following concepts: the Atanassov
intuitionistic fuzzy entropy measure, given by Szmidt and Kacprzyk (SZMIDT;
KACPRZYK, 2001) to measure how far A-IFS is from a crisp set. The entropy
for interval-valued fuzzy sets (IVFSs) defined by Burillo and Bustince (BURILLO;
BUSTINCE, 1996), which measures how far an IVFS or A- AIFS is from FS.

The generalized interval-valued intuitionistic fuzzy index seems to be suitable to
deal with measures of entropy in A-IvIFSs, modelling uncertainty and imprecision in
membership and non-membership functions.

Following this approach, this chapter generalizes results from (BUSTINCE et al.,
2011), discussing properties related to Atanassov’s interval-valued intuitionistic fuzzy
entropy (A-IvIFE) which are obtained by action of an interval-valued aggregation
applied to the generalized interval-valued intuitionistic fuzzy index.

Definition 11. An interval-valued function E : AI → U is called an A-IvIFE if E verifies
the following properties:

E2: E(AI) = 0⇔ AI ∈ A;

E2: E(AI) = 1⇔MAI (x) = NAI (x) = 0, ∀x ∈ χ;

E3: E(AI) = E(AI c);

E4: If AI �Ũ BI then E(AI) ≥U E(BI), ∀AI , BI ∈ AI .
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Now, main properties of A-IvIFE obtained by A-GIvIFIx are studied.

Theorem 6. Consider χ = {x1, . . . , xn}. Let M : Un → U be an interval-valued
aggregation, N be a strong IvFN and Π be an A−GIvIFIx(N). A function E : AI → U
given by

E(AI) = Mn
i=1Π(AI(xi)),∀xi ∈ χ, (82)

is an A-IvIFE in the sense of Definition 11.

Proof. Let AI c be the complement of AI given by Eq.(69). For all xi ∈ χ and AI , BI ∈
AI , we have that:

E1 : E(AI) = 0 ⇔ Mn
i=1Π(AI(xi)) = 0. By M1, E(AI) = 0 ⇔ MAI (xi) + NAI (xi) = 1.

Then, by Π2, E(AI) = 0⇔ AI ∈ A.

E2 : E(AI) = 1 ⇔ Mn
i=1Π(AI(xi)) = 1. By M1, E(AI) = 1 ⇔ MAI (xi) + NAI (xi) = 0,

meaning that MAI (xi) = NAI (xi) = 0.

E3 : E(AI)c = Mn
i=1Π(AI c(xi)) = Π(NI(X1, X2)). By Π3, the following holds E(AI)c =

Π(X1, X2). Concluding, E(AI)c = E(AI).

E4 : If AI �Ũ BI then AI(xi) �Ũ BI(xi). Based on Π3, it holds that Π(BI(xi)) ≤U

Π(AI(xi)). By M3, we obtain that Mn
i=1Π(BI(xi)) ≤U Mn

i=1Π(BI(xi)). As
conclusion, E(AI) ≥U E(BI).

Therefore, Theorem 6 is verified.

The next proposition formalizes the interval extension of the constructive method to
obtain interval fuzzy entropy from results in (BUSTINCE et al., 2011).

Proposition 22. Consider χ = {x1, . . . , xn}. Let M : Un → U be an interval-valued
aggregation, N be a strong IvFN and ΠN,I(ΠN,J) : Ũ → U is A-GIvIFIx(N) given by
Eq.(70). Then, for all xi ∈ χ, an A-IvIFE E : AI → U can be given by

EΠI(AI) = Mn
i=1ΠI(AI(xi)); (83)

EΠI(AI) = Mn
i=1ΠJ(AI(xi)). (84)

Proof. Straightforward from Theorems 5 and 6.

Corollary 5. Consider N = NS, A-GIvIFIx (NS) ΠN,I given by Eq.(70). Then, by taking
AI(xi) = (MAI (xi) = X1i, NAI (xi) = X2i) for all xi ∈ χ, an A-IvIFE E : AI → U which is
given in Eq.(82) can be expressed as

EΠI(AI(xi)) = Mn
i=1 (NS(I(NS(X2i), X1i)) ; (85)

EΠJ(AI(xi)) = Mn
i=1J(X2i,NS(X1i). (86)
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Proof. Straightforward from Proposition 22 and Theorem 5.

Example 11. Consider the arithmetic mean as an aggregation operator, NS as the
IvFN and IRC related to the A-GIvIFIx given in Eq.(75). For all xi ∈ χ and (X1i, X2i) ∈ Ũ
defining an A-IvIFS AI , we have the following:

EΠNS,IRB
(X1i, X2i) =

1

n

n∑
i=1

(NS(IRB(NS(X2i), X1i)) (87)

=
1

n

n∑
i=1

[1−X2i−X1i+X2iX1i, 1−X2i−X1i+X2iX1i]

7.0.1 Relationship with Intuitionistic Index and Conjugate Operators

Conjugation and duality properties related to generalized Atanassov’s Intuitionistic
Fuzzy Index are reported from (COSTA et al., 2017).

Proposition 23. Consider χ = {x1, . . . , xn} and Φ ∈ Aut(Ũ) a φ-representable IvIFA
given by Eq.(65). When Π is A-GIvIFIx(N), an A-IvIFE is a function EΦ : AI → U
defined by

EΦ(AI) = Mφn

i=1Πφ(AI(xi)),∀xi ∈ χ. (88)

Proof. Based on Eqs.(28) and (65), the following holds:

EΦ(AI(xi)) = EΦ(AI) = φ−1(E(φ(lŨ(AI(xi))),1− φ(1− rŨ(AI(xi))))

= φ−1Mn
i=1Π(φ(lŨ(AI(xi))),1− φ(1− rŨ(AI(xi))))

= φ−1
(
Mn

i=1(φ ◦ φ−1)(Π(φ(lŨ(AI(xi))),1− φ(1− rŨ(AI(xi))))
)

= φ−1
(
Mn

i=1(φ(Πφ(AI(xi)))
)

= Mφn

i=1Πφ(AI(xi))

The diagram below summarizes the main results related to the classes of
A-GIvIFIx(N) and A-IvIFE denoted by C(Π) and C(E), respectively in figure 9.

C(Π)
Eq.(65)

- C(E)

C(Π)× Aut(Ũ)

Eq.(65)

?
Eq.(65)

- C(E)× Aut(Ũ)

Eqs.(88)

?

Figure 9 – Conjugate construction of A-GIFIx(N ) and A-IvIFE on Aut(Ũ)

In the following, we extend the above concept of A-IvIFE which is obtained not
only from generalized intuitionistic fuzzy index as conceived in (BUSTINCE; BURILLO;
SORIA, 2003) but also from their dual and conjugate constructions.
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Proposition 24. Let Φ be a φ-representable automorphism in Aut(Ũ) and I(J) : Ũ2 →
Ũ be the corresponding φ-conjugate operator related to a (co)implication I(J) : U2 → U,
verifying the conditions of Theorem 5. Additionally, let NΦ be a strong φ-conjugate IvFN
negation and M : Un → U be an aggregation function. Then, for A ∈ A, the functions
EI,EΦ

I (EI,EΦ
I ) : A→ U given by

EI(A)(xi) = Mn
i=1 N(I(1−NAI (xi),MAI (xi))), (89)

EΦ
I (A)(xi) = Mφn

i=1 Nφ(Iφ(1−NAI (xi),MAI (xi))); (90)

EJ(A)(xi) = Mn
i=1 J(NAI (xi),1−MAI (xi)) (91)

EΦ
J (A)(xi) = Mφn

i=1 Jφ(NAI (xi),1−MAI (xi)). (92)

express an Atanassov’s intuitionistic fuzzy entropy .

Proof. Straightforward from Proposition 23.

Example 12. By Eqs.(89) and (90), an A-IvIFE expression is obtained as follows:

EΦ
NS ,IRB(A)(xi) =

1

n

n∑
i=1

[
n

√
(1−Xn

1i)(1−X2i)n; n
√

(1−Xn
1i)(1−X2i)

n

]
. (93)

7.0.2 Preserving fuzzyness and intuitionism based on A-IvIFE

Based on (JING; MIN, 2013), assuming that χ = {u}, A1 = {(u, [0.1, 0.2], [0.3, 0.4])}
and A2 = {(u, [0.2, 0.3], [0.4, 0.5])} in order to calcule the entropies by equations below

EY (A) =
1

n

n∑
i=1

[√
2 cos

µA(xi) + µA(xi)− νA(xi)− νA(xi)

8
π − 1]

1√
2− 1

; (94)

EG(A) =
1

n

n∑
i=1

cos
|µA(xi)− νA(xi)|+ |µA(xi)− νA(xi)|

8
π. (95)

Thus, E(A1) and E(A2) contains the difference between the membership and
nonmembership degrees related to the hesitancy degree.

However, despite the differences, the same value for related IvIFEs are matched,
making it impossible to distinguish the fuzzyness and intuitionism of these two cases.

Intuitively, it is easy to observe that A1 is more fuzzy than A2, meaning that πA1 ≥
πA2. However, this cannot be seen by using the above Eqs.(94) and (95). So, a more
sensitive definition of A-IvIFE is introduced in order to deal with this problem.

In our proposed methodology, we calculate the related IvIFEs by using Eq.(82) and
(93) together with corresponding A-IvIFIx given by Eqs.(75) and (81).

See these results presented in 1st and 2nd columns of Table 15 when the inputs
are given as A1 and A2. Since χ is singleton A-IvIFS, the resulting hesitant degree and
corresponding entropy measure coincide.



73

Additonally, it is possible to naturally preserve properties of related interval entropy,
meaning that A-IvIFE is an order perserving index, by including A-IFE.

Moreover, taking A3 = [0.2, 0.2], [0.3, 0.3] and A4 = [0.3, 0.3], [0.4, 0.4] as inputs,
the entropy values obtained with the degenerate intervals related to membership
and non-membership degrees are included in the interval entropy obtained with
non-degenerated interval-valued inputs. See these results in the 3rd and 4th columns
of Table 15.

Table 15 – A-IvIFIxs and A-IvIFEs related to A-IvIFSs from A1 to A4 A-IvIFSs.
A− IvIFIx A1 A2 A3 A4

Π(Ai) = EΠ(Ai) [0, 48; 0, 63] [0, 35; 0, 48] [0, 56; 0, 56] [0, 42; 0, 42]

Πφ(Ai) = EφΠ(Ai) [0, 5879; 0, 6965] [0, 4769; 0, 5879] [0, 4704; 0, 4704] [0, 3276; 0, 3276]

Through different input sets Entropy, (Eq. 94) and (Eq. 95), obtained equal values,
while the Entropy (Eq. 87) obtained through the use of the Reichemback implication
showed to be more sensitive with different results, in the same way, we can observe
through the results that EΠNS,IRB

presented values immediately relevant to the input set
for this application.



8 CONCLUSION

This chapter describes the main contribuitions of this work and also points out
possible further work.

8.1 Main Contributions

Making use of IFL, this work considers both approaches:

(i) the general concept of the generalized Atanassov’s intuitionistic fuzzy index
associated with a strong intuitionistic fuzzy negation, which is characterized
in terms of fuzzy (co)implication operators as a construction method to model
hesitation in intuitionistic fuzzy sets (ZANOTELLI et al., 2016);

(ii) Atanassov’s intuitionistic fuzzy entropy proposed in (BUSTINCE et al., 2011)
considering aggregation functions applied to the generalized Atanassov’s
Intuitionistic Fuzzy Index.

Following such results, this work also contributes with extended results in these two
related approaches:

(i) introduction of a more general concept of the generalized Atanassov’s
interval-valued intuitionistic fuzzy index associated with a strong interval-valued
intuitionistic fuzzy negation

1. characterized by using interval-valued fuzzy (co)implication operators as
a construction method to model hesitation and imprecision in intuitionistic
fuzzy sets (COSTA et al., 2017);

2. considered the concept of conjugate and dual interval fuzzy (co)implications,
mainly interested in representation method (CORNELIS; DESCHRIJVER;
KERRE, 2004) providing relevant properties satisfied by the generated
operators.

3. ilustrated results, exploring examples associated with the standard negation
together with known fuzzy implications: Lukaziewicz, Reichenbach,
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Klenee-Dienes, Gaines-Richard fuzzy (co)implications, preserving main
properties and also including operator I30 (LIN; XIA, 2006).

(ii) introduction of the concept of interval fuzzy entropy based on the generalized
Atanassov’s interval-valued intuitionistic fuzzy index and aggregation operators

1. dual and conjugate construction methods are considered in the study of
Atanassov’s intuitionistic fuzzy entropy (COSTA et al., 2016);

2. examples related to the interval representation of the above (co)implications
are discussed, based on the inteval-version of the arthmetic mean
agggregator (COSTA et al., 2017);

3. application of admissible linear order providing results in comparison to the
methodology for building fuzzy entropy.

In fact, there exist other entropies that we have not considered here. In special, the
Szmidt and Kacprzyk’s entropy, which relates Atanassov’s intuitionistic fuzzy sets and
crisp sets.

It is our intention in the future to develop a theoretical framework which allows
to consider different approaches to the concept of entropy considering the proposed
construction methodology.

Table 16 describes the main publications obtained in this work.

Table 16 – Publications

Publication Year

CNMAC Generalized Atanassov’s Intuitionistic Fuzzy Index and Conjugate with
S-implications

2016

ENPOS Índice Fuzzy Intuicionista Generalizado Conjugado com S-Implicações 2016

CBSF Best Paper - Atanassov’s Intuitionistic Fuzzy Entropy: Conjugation and
Duality

2016

Mathware & Soft
Computing

Analysing Fuzzy Entropy via Generalized Atanassov’s Intuitionistic
Fuzzy Indexes

2017

WEIT Truly Intuitionistic Fuzzy Properties of Implications from Generalized
Atanassov’s Intuitionistic Fuzzy Index

2017

NAFIPS Interval version of Generalized Atanassov’s Intuitionistic Fuzzy Index
(submitted)

2018
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8.2 Further work

Further work considers the extension of our results related to other properties
verified by the generalized Atanassov’s interval-valued intuitionistic fuzzy index and
the interval extension Atanassov’s intuitionistic fuzzy entropy and also the use other
admissible linear orders to compare the results of the interval entropy.

We also intend to handle both problems, focusing particularly on how other
aggregations can be used to obtain Atanassov’s intuitionistic fuzzy entropy based on
generalized Atanassov’s interval-valued intuitionistic fuzzy index, for instance, Choquet
integral allows to define many of the most usual aggregation functions.

Due to the relevance of a theoretical method to calculate the entropy of T2FSs, we
leave for a future work the deeper study of an application, i.e., analysing the conditions
under which the methodology and illustrative example can improve fuzzy systems in
making decision based on multi-attributes.
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