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RESUMO

BURTET, Juan. Predição de Dificuldade em Jogos Match-Three
Utilizando Redes Neurais Convolucionais. Orientador: Ricardo Matsumura de
Araújo. 2022. 45 f. Dissertação (Mestrado em Ciência da Computação) – Centro de
Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, 2022.

Desde o surgimento do gênero Match-Three em 1994, novos jogos com essa
temática foram criados, chegando ao seu ápice em 2012 com o lançamento de
Candy Crush Saga, que utilizou novos conceitos como mapas de diferentes formatos
e modos de jogo diversos. Com o aumento da popularidade de jogos deste estilo,
surgiu a necessidade de atualizações constantes de conteúdo. Um dos pontos-chave
da geração de conteúdo é a avaliação da dificuldade, que envolve uma grande
quantidade de tempo e testes com diferentes usuários. Devido a estes fatores, a
predição de dificuldade em jogos obteve grande foco na área de desenvolvimento
de jogos, removendo a necessidade de testar o conteúdo criado com jogadores
reais. No contexto de jogos Match-Three, uma das métricas usadas para estimar a
dificuldade é feita através do desempenho médio humano, que é calculado verificando
a porcentagem média de objetivos completados do mapa. Atualmente, existe a
possibilidade de predizer este desempenho através de simulações do estado do jogo,
o que faz este processo lento e custoso computacionalmente. Este trabalho apresenta
uma solução para resolver o problema da necessidade de múltiplas simulações do
jogo, utilizando Redes Neurais Convolucionais. Desta maneira, sendo possível
classificar a dificuldade de um mapa apenas observando seus aspectos visuais e
seus objetivos. Ao final do trabalho, foi possível alcançar um modelo de Redes
Neurais Convolucionais capaz de predizer a dificuldade corretamente de 75,6% dos
mapas.

Palavras-chave: Redes Neurais Convolucionais. Aprendizado Profundo. Predição de
Dificuldade. Match-Three.



ABSTRACT

BURTET, Juan. Difficulty Prediction in Match-Three Games Using Convolutional
Neural Networks. Advisor: Ricardo Matsumura de Araújo. 2022. 45 f. Dissertation
(Masters in Computer Science) – Technology Development Center, Federal University
of Pelotas, Pelotas, 2022.

Since the emergence of the Match-Three genre in 1994, new games with this
theme have been created, reaching its peak in 2012 with the launch of Candy Crush
Saga, wich utilized new concepts such as maps with different shapes and diverse
game modes. With the increasing popularity of games with this style, the need for
constant content updates has arisen. One of the key points of content generation is
the difficulty evaluation, wich envolves a great amount of time and tests with different
users. Due to these factors, the difficulty prediction in games has gained a big focus
on the game development area, removing the need of testing the created content with
real players. In the context of Match-Three games, one of the metrics used to estimate
the difficulty is made through the average human performance, wich is calculated by
verifying the percentage of the average map objectives completed. Currently, there is
the possibility of predicting this performance through simulations of the game state,
making this process slow and computationally costly. This work presents a solution
to the problem of the need for multiple game simulations, using Convolutional Neural
Networks. In this way, it is possible to classify the difficulty of a map by just observing
its visual aspects and its objectives. At the end of this work, it was possible to achieve
a model of Convolutional Neural Networks capable of predicting the difficulty of 75,6%
of the maps correctly.

Keywords: Convolutional Neural Network. Deep Learning. Difficulty Prediction. Match-
Three.
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1 INTRODUÇÃO

Desde o surgimento de Tetris, cada vez mais jogos com ideias simples são pro-
postos para tentar atrair o maior número de pessoas (JUUL, 2007). Com isso, surgiu
o estilo Tile-Matching, um modelo de jogos de quebra-cabeça com a necessidade de
criar padrões para completar um determinado desafio. Uma das categorias deste gê-
nero é o Match-Three, onde é necessário fazer combinações de três ou mais peças
iguais para prosseguir pelo jogo.

Com a chegada do século XXI, os jogos Match-Three tiveram um aumento de
popularidade com o surgimento do jogo Bejeweled (JUUL, 2007), que pode ser ob-
servado na Figura 1, e alcançando seu auge com o lançamento de Candy Crush pela
Empresa King para o Facebook em 2012. No jogo, o objetivo principal é trocar as
posições das peças do tabuleiro, que são representadas como doces, para assim,
elimina-las do campo e continuar adicionando novas peças.

Figura 1 – Captura de tela do jogo Bejeweled (Fonte: Bejeweled Wiki | Fandom (2021))

Em 2013, Candy Crush já tinha sido instalado mais de 500 milhões de vezes pelo
Facebook e em aparelhos iOS e Android (WEBSTER, 2013), com pelo menos 6,7
milhões de jogadores ativos diariamente (MUSIL, 2013). Com uma grande quantidade
de jogadores, foi percebida a necessidade de atualizações constantes de conteúdo do
jogo e, por isso, novos níveis são adicionados semanalmente.
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Essas necessidades de atualizações constantes levantam alguns problemas rela-
cionados a criação de mapas. A criação manual de mapas precisa especificar o for-
mato da fase, bem como os objetivos necessários para completar uma partida. Dessa
forma, fica evidente o problema de que cada nível é especificado por designers, que
precisam testar o conteúdo diversas vezes para saber se ele é possível de ser con-
cluído, se parece ser acessível e atrativo visualmente (STEVEN, 2018).

Atualmente, a produção manual de conteúdo em um jogo é geralmente custosa
economicamente (IOSUP, 2011), sendo necessário o trabalho de muitas pessoas ou
uma grande quantidade de tempo. Um dos principais problemas neste processo é a
necessidade de se avaliar um mapa novo com diferentes usuários, para ser possível
fazer uma avaliação da dificuldade deste conteúdo. Sendo assim, a dificuldade de um
jogo acaba sendo um fator de grande importância na percepção de qualidade para
um jogador (DENISOVA; GUCKELSBERGER; ZENDLE, 2017), o que faz a predição
dessa métrica um dos pontos chaves para um conteúdo criado.

A predição de dificuldades em jogos tem como foco principal a criação de um
agente que seja capaz de jogar o jogo, tendo a possibilidade de avaliar sua dificul-
dade através de múltiplas jogadas. Uma das técnicas muito utilizadas nesta área são
as Monte Carlo Tree Search (MCTS), que trabalham como um algoritmo de busca heu-
rística, onde simulações dos estados futuros são usados para decidir qual a melhor
ação do estado atual (BROWNE et al., 2012). Além disso, as MCTS tiveram destaque
após serem capazes de obter um desempenho melhor que um humano no jogo Go, o
que nenhum outro modelo de Inteligência Artificial foi capaz até o momento (SILVER
et al., 2017).

O foco das MCTS está na análise dos movimentos mais promissores, expandindo
a árvore de busca em amostragem aleatória no espaço de busca. A sua aplicação
em jogos é baseada em múltiplas jogadas, onde o jogo é percorrido até o final sele-
cionando movimentos aleatórios. Desta maneira, o resultado final de cada jogada é
utilizado para ponderar os nós da árvore, para que os caminhos com melhores resul-
tados tenham maior probabilidade de serem escolhidos em jogadas futuras.

No contexto de dificuldade em jogos Match-Three, os trabalhos de Poromaa (2017)
e Burtet (2019) utilizaram as MCTS para replicar a avaliação do desempenho humano
médio, sem a necessidade de utilizar jogadores reais. Em ambos os trabalhos, os tes-
tes foram avaliados através de uma comparação do desempenho médio recuperado
dos dados de jogadores reais, contra os resultados de múltiplas simulações utilizando
MCTS.

Apesar de existir muitos trabalhos que focam na avaliação de conteúdo de jogos de
maneira automática, poucos estão trabalhando diretamente na solução do problema
em jogos Match-Three. Além dos trabalhos mencionados no parágrafo anterior, o
trabalho de Gudmundsson et al. (2018) foi capaz de predizer a jogada mais “humana”
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para um determinado estado do jogo Candy Crush. Isto foi feito utilizando um modelo
de Redes Neurais Convolucionais (RNC) utilizando dados recuperados de milhões
de jogadores. Este trabalho possuí um grande ganho no tempo de processamento
em comparação aos que utilizaram as MCTS, pois o modelo é capaz de predizer a
próxima jogada visualizando o conteúdo do mapa sem a necessidade de simulação
de estados futuros. Entretanto, a etapa de repetir diversas partidas para se recuperar
o desempenho médio continua presente.

Sendo assim, este trabalho seguirá com o que foi desenvolvido em Burtet (2019),
que apresentava um gerador de mapas para jogos Match-Three, utilizando as MCTS
para simulação do estado do jogo. Como atualização para este trabalho, é proposto
a utilização de Redes Neurais Convolucionais para uma nova solução do problema de
predição de dificuldade de um mapa, utilizando apenas os padrões visuais do con-
teúdo, como seu formato e objetivos, sem a necessidade de múltiplas simulações.



2 TRABALHOS RELACIONADOS

Apesar de existir muitos trabalhos que focam na avaliação de conteúdo de jogos de
maneira automática, poucos estão trabalhando diretamente na solução do problema
em jogos Match-Three. Neste capítulo será explorado trabalhos que possuam foco na
predição de dificuldade, além da geração de conteúdo artificial que será utilizado para
o desenvolvimento desta dissertação.

2.1 Predição do desempenho humano médio

No trabalho “Crushing Candy Crush: Predicting Human Success Rate in a Mobile
Game using Monte-Carlo Tree Search” de Poromaa (2017), as MCTS foram utilizadas
com sucesso em jogos Match-Three. O método de busca das árvores de Monte Carlo
foram utilizados para replicar a avaliação de desempenho humano médio, retirando a
necessidade de jogadores humanos.

O jogo Candy Crush foi utilizado como base para o desenvolvimento deste traba-
lho, onde foi verificado a porcentagem de vitórias de jogadores reais em comparação
aos resultados de um bot utilizando MCTS. A Figura 2 apresenta uma visão geral do
processo aplicado pelo bot para cada jogada.

Este trabalho criou a possibilidade de avaliar o desempenho de mapas de forma
automática, sendo necessário cerca de 200 partidas para obter o resultado de vitórias.
Entretanto, este processo possuí um custo computacional elevado, devido as cente-
nas de simulações em cada estado do jogo para que o mesmo possua um resultado
semelhante a média humana.
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Figura 2 – Visão Geral do bot implementado para Candy Crush (Fonte: Poromaa (2017))

2.2 Geração de Mapas para Jogos Match-Three

Devido ao resultados alcançados pelo trabalho de Poromaa (2017), foi averiguado
a possibilidade da geração de mapas para este gênero de jogo feito de forma automá-
tica. Em “Geração Procedural de Mapas para Jogos Match-Three” de Burtet (2019),
algoritmos genéticos são utilizados para gerar mapas com um certo desempenho mé-
dio desejado.

Para o desenvolvimento deste trabalho, um jogo base foi criado para que os testes
pudessem ser aplicados. Este jogo possuia recursos básicos semelhantes ao Candy
Crush, com a presença de peças especiais, pontuações e modos de jogo a serem
finalizados. Diferente do trabalho anterior, a métrica de desempenho médio humano
utilizada foi modificada para a porcentagem de objetivos médios finalizados. Esta
métrica possuía uma variação menor através de múltiplos testes em comparação a
porcentagem de vitórias média.

No contexto de algoritmos genéticos, o objetivo do mapa criado é obter um de-
sempenho médio próximo ao requisitado pelo usuário. Sendo assim, a avaliação de
um conteúdo gerado é a diferença absoluta entre o desempenho médio do mapa e o
desempenho médio desejado. O fluxograma sobre o processo de geração de mapas
é apresentado na Figura 3.
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Figura 3 – Fluxograma do Gerador de Mapas (BURTET, 2019)

2.3 Predição da jogada mais humana

Um dos grandes problemas de utilizar as MCTS para predizer o desempenho mé-
dio humano é a necessidade de simular o estado atual do jogo inúmeras vezes, para
saber qual o melhor movimento a ser feito. Somado a isso, existe a necessidade de
repetir o processo de uma partida centenas de vezes para calcular a métrica desejada.
Para tentar solucionar isso, o trabalho “Human-Like Playtesting with Deep Learning”
de Gudmundsson et al. (2018) propõe a utilização de Redes Neurais Convolucionais
para predizer a jogada com comportamento mais próximo do humano, retirando a ne-
cessidade de simulações do estado atual do jogo.

Com a cooperação da Empresa King 1, foi recuperado milhões de dados de usuá-
rios do jogo Candy Crush contendo um certo estado de um mapa do jogo, junto da
jogada feito pelo jogador. Com estes dados, foi desenvolvido uma RNC que recebe
um estado do jogo e indica as probabilidades de um humano fazer uma certa jogada.
Este processo é exemplificado na Figura 4.

Ao fim do trabalho, é feito uma comparação entre os resultados da RNC contra a
utilização das MCTS. Foi observado que as Redes Neurais Convolucionais possuem
um desempenho superior na solução do problema de predição de dificuldade, pois
conseguem replicar um comportamento humano com mais precisão do que o trabalho
anterior produzido por Poromaa (2017). Entretanto, o ponto de maior destaque está no
tempo de processamento, pois este modelo retira a necessidade de simular estados
futuros do jogo para fazer uma única jogada.

1Desenvolvedora do jogo Candy Crush
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Figura 4 – Exemplo de um resultado do modelo de predição da jogada mais humana (Fonte:
Gudmundsson et al. (2018))



3 OBJETIVO

Este trabalho tem como objetivo criar um modelo de Redes Neurais Convolucio-
nais, que seja capaz de classificar a dificuldade de um mapa de jogo Match-Three,
utilizando apenas padrões visuais sobre seu formato e objetivos, sem a necessidade
de simulação de conteúdo.

3.1 Objetivo Específicos

Para que o objetivo geral deste trabalho seja alcançado, é necessário concluir os
objetivos específicos. Eles são divididos em: criar um dataset de mapas com suas
respectivas dificuldades, desenvolver modelos capazes de predizer a dificuldade de
um mapa e analisar os resultados para definir sua assertividade neste problema.

3.1.1 Dataset de mapas

Criação de um dataset de mapas de jogo Match-Three utilizando o gerador de ma-
pas desenvolvido em Burtet (2019), que será utilizado para treinar modelos de Apren-
dizado de Máquina. Estes mapas serão rotulados com suas respectivas dificuldades
através do cálculo do desempenho médio humano.

3.1.2 Desenvolvimento de modelos

Implementação de diferentes modelos de Redes Neurais Convolucionais com inspi-
ração do modelo desenvolvido em Gudmundsson et al. (2018). Estes modelos serão
capazes de predizer a dificuldade de um mapa de jogo Match-Three apenas obser-
vando seu aspectos visuais e objetivos.

3.1.3 Comparação e análise dos resultados

Comparação dos resultados de acurácia e F1-Score dos modelos desenvolvidos
com modelos clássicos de Aprendizado de Máquina, como: Árvores de Decisão, Ran-
dom Forest e XGBoost. Além disso, será avaliado seu desempenho com os modelos
de visão computacional AlexNet e ResNet-12. Ao fim, será analisado de forma mais
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detalhada os resultados do modelo de melhor acurácia, observando seu desempenho
em dificuldades específicas. Isto será feito utilizando a biblioteca Scikit-Learn (PE-
DREGOSA et al., 2011), que é capaz de retornar métricas de precisão e recall, além
da visualização da matriz de confusão das predições.



4 METODOLOGIA

Esta capítulo irá apresentar a metodologia utilizada para o desenvolvimento deste
trabalho, que foi dividida em cinco seções: geração dos exemplos, rotulamento, pré-
processamento, desenvolvimento de modelos e seus treinamentos.

4.1 Geração dos Exemplos

A primeira etapa para desenvolvimento deste trabalho é a criação do dataset con-
tendo as informações sobre o mapa, junto do seu desempenho médio calculado. Para
isso, foi utilizado o trabalho desenvolvido por Burtet (2019), que utiliza técnicas de
MCTS para criar um mapa que tenha uma taxa de desempenho médio próxima da
desejada pelo usuário. A representação de um mapa gerado é apresentado na Figura
5, que contém as informações utilizadas para inicializar uma partida dentro do jogo.

Figura 5 – Representação de um mapa criado pelo gerador

Essas informações estão presentes em um arquivo csv, que possuí os seguintes
dados: A1 indica o limite de movimentos que o jogador pode fazer para completar
o mapa; B1 indica a pontuação necessária para completar o objetivo de pontos; C1
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representa quantas peças diferentes estarão presentes no campo; O intervalo de A2
a I10 representa cada posição do mapa, e o que será preenchido nesta localização.
Em cada posição do mapa, é possível ter quatro valores distintos:

• 0 - uma área vazia, indicando que não pode haver peças neste local.

• 1 - uma peça padrão, gerada aleatoriamente pela quantidade de peças diferentes
que estão presentes no campo.

• 2 - uma peça de bloqueio, que precisa ser destruída para completar a partida.

• 3 - uma peça de objetivo, que precisa ser retirada do campo para completar a
partida.

Para este trabalho, as informações sobre limite de movimentos, pontuação e a
quantidade de peças diferentes serão iguais para todos os dados gerados. Isto foi
decidido para que os modelos de Aprendizado de Máquina testados trabalhem apenas
com a informação visual do mapa, verificando se mudanças na arquitetura podem
indicar a dificuldade média a ser encontrada pelos jogadores.

A métrica utilizada pelo gerador é calculada verificando a porcentagem média de
objetivos completados em cada uma das partidas avaliadas. Ao fim de uma partida, é
avaliado a porcentagem de objetivos completados: caso o mapa tenha sido finalizado
completamente, retorna o valor 1; Em caso contrário, é calculado a quantidade de ob-
jetivos finalizados e retornado o quão próximo o jogador estava de ganhar o mapa. O
resultado final é calculado fazendo a média dos resultados de 100 partidas diferentes.

Através dos resultados do trabalho de Burtet (2019), foi constatado que mapas com
desempenho médio abaixo de 75% possuem uma dificuldade próxima do impossível,
onde jogadores reais possuem chances muito baixas de finalizar o mapa com sucesso.
Sendo assim, os dados gerados foram limitados a ter desempenhos médios entre 75%
e 100%, para que os mapas possuam uma diferença de dificuldade mais perceptiva
entre os usuários.

Para geração dos dados, foi feito um processo de selecionar um valor de desem-
penho médio aleatório no intervalo de 75% até 100%, para tentar gerar mapas com
desempenhos mais diversificados. Durante a busca do mapa com a métrica desejada,
inúmeros mapas são criados durante o processo do algoritmo genético. Sendo assim,
os mapas gerados durante a busca são adicionados a base de dados caso estejam
dentro do intervalo de desempenho médio definido.

Ao fim do processo de geração, foi gerado um total de 13791 mapas distintos, onde
o mapa de menor de desempenho médio possui um valor exato de 75%, enquanto o
maior possui 99,9%. Algumas informações estatísticas sobre os mapas podem ser
encontradas na Tabela 1, além do gráfico do histograma dos dados na Figura 6.
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Tabela 1 – Estatísticas sobre o conjunto de dados gerados
Estatística Valor
Quantidade 13,791
Média 0.887
Desvio Padrão 0.065
Mínimo 0.750
Primeiro Quartil 0.837
Mediana 0.899
Terceiro Quartil 0.943
Máximo 0.999

Figura 6 – Histograma do Desempenho Médio dos dados gerados
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4.2 Rotulamento

Os exemplos gerados na seção anterior possuem um valor real como desempenho
médio humano. Para este trabalho, iremos trabalhar como um problema de classifica-
ção, onde o modelo terá que indicar em qual classe de dificuldade o mapa avaliado
está. Esta mudança é feita por dois motivos: diminuir a quantidade de resultados pos-
síveis a serem preditos, pois um problema de classificação é uma tarefa mais simples
de ser realizada e verificar se é possível diferenciar dificuldades apenas utilizando os
aspectos visuais de um mapa.

Para transformar os dados de desempenho médio em classes de dificuldade, são
definido intervalos de valores, onde cada um desses intervalos representam uma di-
ficuldade diferente. Para este trabalho, é definido cinco classes de dificuldade: Muito
Fácil, Fácil, Médio, Difícil e Muito Difícil. Os intervalos utilizados para cada uma das
classes pode ser verificado na Tabela 2.

Tabela 2 – Intervalos de classificação de dificuldade

Dificuldade Limites

Inferior Superior

Muito Fácil 0,95 1,00
Fácil 0,90 0,95
Médio 0,85 0,90
Difícil 0,80 0,85

Muito Difícil 0,75 0,80

Após a definição da dificuldade para cada um dos mapas, ficamos com os dados
divididos em cinco intervalos diferentes. As quantidades de mapas em cada uma das
classes pode ser verificado na Tabela 3.

Tabela 3 – Divisão das dificuldades por mapa

Dificuldade Quantidade

Muito Fácil 1833
Fácil 2211
Médio 2890
Difícil 4155

Muito Difícil 2702

Com os dados rotulados em suas respectivas dificuldades, é preciso separá-los
em 2 conjuntos distintos: Treino e Teste. Este processo é feito utilizando a biblioteca
Scikit-Learn (PEDREGOSA et al., 2011), onde é possível definir uma porcentagem
de divisão entre os dois grupos. Neste trabalho, foi utilizado a separação de 80%
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dos dados para treinamento e os 20% restantes para avaliar os desempenhos dos
modelos. As classes de dificuldade, junto das suas respectivas quantidades de treino
e teste podem ser verificados na Tabela 4.

Tabela 4 – Divisão dos dados de treino e teste

Dificuldade Quantidade

Treino Teste

Muito Fácil 1466 367
Fácil 1380 831
Médio 2312 578
Difícil 3713 442

Muito Difícil 2335 367

4.3 Pré-processamento

Apesar de termos todos os dados gerados e rotulados, ainda é necessário modi-
ficar a informação dos mapas para o formato de entrada dos modelos a serem ava-
liados. Como não foi encontrado outros trabalhos que trabalhem com a predição de
dificuldade utilizando RNCs, é proposto verificar o desempenho de diferentes mode-
los de Aprendizado de Máquina para comparar o possível ganho de desempenho do
nosso modelo contra opções já estabelecidas. Sendo assim, iremos dividir os pré-
processamentos em três seções diferentes: Modelos clássicos, Modelos de Visão
Computacional e Modelos desenvolvidos.

4.3.1 Modelos Clássicos

Os modelos clássicos utilizados utilizam os dados de formas tabulares, onde se
faz necessário modificar o formato de matriz que os mapas gerados possuem. Sendo
assim, é preciso aplicar um método de reshape nos dados, onde o mapa que possuí
um formato de 9x9 irá resultar em um vetor de 81 posições. A representação visual
desta operação é apresentada na Figura 7.

Figura 7 – Pré-processamento necessário para os modelos clássicos
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4.3.2 Modelos de Visão Computacional

Os modelos de visão computacional a serem avaliados neste trabalho foram as re-
des convolucionais AlexNet (KRIZHEVSKY; SUTSKEVER; HINTON, 2012) e ResNet-
18 (HE et al., 2015). Ambos os modelos já estão implementados através da biblioteca
PyTorch (PASZKE et al., 2019) e recebem como entrada uma imagem RGB de tama-
nho 224x224x3.

Para o pré-processamento, três operações são necessárias para que os dados
dos mapas estejam no formato correto: Normalizar a informação de cada posição
do mapa, expandir a matriz 9x9 para o formato 224x224 e por fim, replicar a matriz
expandida como três canais de cores diferentes.

Para a primeira etapa, é preciso modificar cada posição para que possuam valores
normalizados de 0 até 1, ao invés da atual formatação de 0 até 3. Este resultado é
alcançado com facilidade, apenas aplicando a operação de divisão em cada uma das
posições pelo maior valor possível, que neste caso é 3.

Em seguida, é necessário expandir a matriz que representa o mapa para o tama-
nho de entrada dos modelos. Este processo é feito utilizando o método de interpola-
ção nearest-neighbor (BOVIK, 2009) da biblioteca PIL (UMESH, 2012). O resultado
desta operação é que nenhuma informação original é perdida ou modificada, apenas
replicada para ser representada em uma resolução maior.

Por fim, é necessário replicar a matriz 224x224 em três camadas diferentes. Neste
processo, os mapas seriam representados como uma imagem em tons de cinza, onde
as diferenças de tom indicam os diferentes valores representados em cada posição do
mapa.

4.3.3 Modelos Desenvolvidos

O ultimo pré-processamento necessários nos dados é os que serão utilizados nos
modelos desenvolvidos especificamente para este trabalho. Este processo irá possuir
dois pré-processamentos distintos, para que possamos avaliar qual representação dos
mapas retorna um melhor resultado dos modelos.

4.3.3.1 Camada Única

No formato que iremos chamar de "camada única", a única operação necessária
nos dados é a normalização da informação. Este processo é exatamente o mesmo do
apresentado na seção dos modelos de visão computacional, onde cada posição do
mapa irá possuir um valor de 0 até 1.

4.3.3.2 Informação por Camada

Este formato possuí a representação de "cada informação em uma camada", onde
ao invés de trabalhar com os dados como uma matriz 9x9, a informação são divididas
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em quatro camadas booleanas, resultando em uma matriz 9x9x4. Neste processo,
cada camada teria a função de indicar a presença de tal valor. Sendo assim, a primeira
camada indicaria a posição do valor 0 no mapa, a segunda camada a posição do
valor 1 e assim por diante. Este pré-processamento da representação do mapa em
diferentes camadas foi inspirado do trabalho de Gudmundsson et al. (2018), onde o
mesmo processo é aplicado. Um exemplo desta operação pode ser visualizado na
Figura 8.

Figura 8 – Pré-processamento dos valores em diferentes camadas

4.4 Arquiteturas dos Modelos Desenvolvidos

Com os dados gerados e processados, é preciso definir a arquitetura dos nossos
modelos que serão avaliados para a solução do problema de predição de dificuldade.
Como foi definido na seção anterior que os dados para os modelos desenvolvidos são
divididos em dois grupos diferentes, o mesmo precisa ser feito para os modelos.

A arquitetura definida para este projeto foi baseada no trabalho de Gudmundsson
et al. (2018), pois o mesmo já trabalhou com uma entrada para representar um jogo
Match-Three, com a diferença de predizer a jogada mais humana do que a dificuldade
do mapa. Entretanto, a sua saída resultava em qual dos 144 movimentos possíveis
mais se parecia com o de um humano, o que faz ser necessário trabalhar com uma
rede muito mais profunda.

A nossa rede é definida iniciando com uma camada de convolução de 5 filtros de
tamanho 3, com padding e stride igual a 1. Este formato foi decidido para que sua
saída se mantenha no formato de 9x9 dos mapas, para que cada canal resultante en-
contre possíveis padrões para cada uma das dificuldades possíveis. Esta camada de
convolução definida permite que ela seja replicada diversas vezes, onde a sua saída
se conecta em outra camada de mesmo formato, apenas modificando a quantidade de
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canais de entrada. Após a saída das camadas de convolução, é feito uma ligação em
sequência de 3 módulos lineares FC (Fully Connected). O primeiro módulo FC possuí
um tamanho 405 (9x9x5), seguindo para um declínio de 256 até o último módulo de
128 entradas, resultando nas 5 saídas de dificuldade possíveis. Todas as camadas
de convolução e lineares contém a função de ativação ReLU (AGARAP, 2018), além
da adição de Dropout (p=0.5) (SRIVASTAVA et al., 2014) nas duas primeiras camadas
lineares. A ilustração da arquitetura da rede utilizada pode ser encontrada na Figura
9.

Figura 9 – Ilustração da arquitetura da rede desenvolvida

Para este trabalho, será testado modelos contendo de uma à três camadas de
convolução, onde cada uma desses versões terão testes feitos com as duas entradas
de pré-processamento apresentadas.

4.5 Treinamento dos Modelos

A etapa final da metodologia deste trabalho é o treinamento dos modelos. Neste
processo, será organizado os treinamentos dos três grupos de modelos diferentes:
clássicos, visão computacional e os desenvolvidos especificamente para esta tarefa.
Os dois primeiros grupos são focados para termos uma certa estimativa do desem-
penho desta tarefa, onde será feito múltiplas tentativas para encontrar os melhores
resultados nos nossos próprios modelos. A comparação dos modelos será feita avali-
ando a acurácia no conjunto de teste, além do seu F1-Score.

4.5.1 Modelos Clássicos

Os modelos clássicos a serem treinados são: Árvores de Decisão, Random Forest
e XGBoost. Os dois primeiros modelos estão desenvolvidos na biblioteca Scikit-Learn
(PEDREGOSA et al., 2011), enquanto o XGBoost possuí uma biblioteca própria para
sua utilização (CHEN; GUESTRIN, 2016).

Os treinamentos dos modelos clássicos foram feitos de forma simples, utilizando as
configurações padrões das bibliotecas, apenas modificando para “balanceado” a op-
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ção class_weight. Esta opção foi escolhida para garantir que todas as classes tenham
o mesmo peso, desconsiderando o desbalanceamento dos dados. Os resultados des-
ses testes serão considerados como um limite inferior de desempenho para este pro-
blema, já que o formato do mapa é desconsiderado ao fazer o pré-processamento
necessário.

4.5.2 Modelos de Visão Computacional

Este grupo de testes consiste nos modelos: AlexNet (KRIZHEVSKY; SUTSKE-
VER; HINTON, 2012) e ResNet-18 (HE et al., 2015), onde iremos verificar o desem-
penho de modelos de Redes Neurais Convolucionais conhecidos em tarefas de clas-
sificação de imagens. Os resultados destas arquiteturas são avaliadas para verificar
se a presença de camadas de convolução causam uma melhora no desempenho em
comparação aos modelos clássicos.

Os treinamentos dos modelos de visão computacional foram feitos por 50 épocas,
usando um Learning Rate de 0,01 e tamanho de batch igual a 8. Além disso, é ve-
rificado se a utilização de modelos pré-treinados retornam melhores resultados neste
problema. Todos os testes destes modelos foram feitos utilizando a biblioteca PyTorch
(PASZKE et al., 2019), que já possuí todos esses recursos desenvolvidos.

4.5.3 Modelos Desenvolvidos

A etapa final de testes consiste nos modelos desenvolvidos para este trabalho,
onde será avaliado qual pré-processamento obtém o melhor resultado, além de qual
quantidade de camadas de convolução é melhorar para solucionar o problema da
predição de dificuldade.

A grande maioria dos testes será feito na tentativa de obter os melhores resultados
de acurácia e F1-Score nos nossos modelos. Para isso, será avaliado os resultados
com diversos parâmetros diferentes, testando diferentes Learning Rates e quantidade
de épocas. Além disso, será verificado as diferenças no desempenho entre dados não
balanceados, utilizando técnicas de oversample e balanceando os pesos das classes.

Por fim, o melhor modelo encontrado terá uma análise mais completa, avaliando as
predições de dificuldade de cada classe individualmente. Isto será feito com a utiliza-
ção da biblioteca Scikit-Learn (PEDREGOSA et al., 2011), onde podemos recuperar
informações sobre precisão e recall nos dados de teste (HOSSIN; SULAIMAN, 2015),
além da impressão da matriz de confusão dos dados (TING, 2010).



5 RESULTADOS

Neste capítulo será apresentado os resultados dos testes apresentados na meto-
dologia, sendo dividido em três seções: testes dos modelos clássicos, modelos de
visão computacional e modelos desenvolvidos.

5.1 Modelos Clássicos

Os primeiros resultados obtidos para predição de dificuldade foram utilizando os
modelos clássicos. Os modelos de Árvores de Decisão e XGBoost obtiveram resul-
tados bem próximos, tanto de acurácia quanto de F1-Score, onde o segundo modelo
teve uma pequena vantagem em ambas as métricas. Entretanto, o modelo de Ran-
dom Forest conseguiu cerca de 6% mais de acurácia e F1-Score, obtendo 70,9% e
69,8%, respectivamente. Os modelos de Random Forest e XGBoost utilizam técnicas
de ensemble, onde os resultados de múltiplos modelos gerados são utilizados para se
chegar ao resultado final. Apesar de o XGBoost possuir uma capacidade de ter me-
lhores resultados, o Random Forest consegue generalizar com mais facilidade quando
utilizados os parâmetros padrões das bibliotecas (BENTÉJAC; CSÖRGO; MARTÍNEZ-
MUÑOZ, 2019). Os resultados das métricas para cada um dos modelos pode ser
encontrado na Tabela 5.

Tabela 5 – Resultados de acurácia e F1-Score dos modelos clássicos

Modelo Acurácia (%) F1-Score (%)

Árvores de Decisão 64.4 62.6
Random Forest 70.9 69.8
XGBoost 64.6 63.2

5.2 Modelos de Visão Computacional

Com os resultados preliminares dos modelos clássicos, já podemos ter uma base
de valores a serem batidos pelos modelos de visão computacional. Nesta seção,
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será avaliado os modelos AlexNet (KRIZHEVSKY; SUTSKEVER; HINTON, 2012) e
ResNet-12 (HE et al., 2015).

5.2.1 AlexNet

Para os testes iniciais da AlexNet, foi treinando o modelo por 50 épocas utilizando
um Learning Rate de 0.01, avaliando seu desempenho com e sem pré-treinamento. A
Tabela 6 contém os resultados destes testes e pode ser verificado que o modelo sem
pré-treinamento obteve um desempenho superior ao modelo pré-treinado. Isto pode
ocorrer pois o pré-treinamento é feito em cima de dados com domínio muito diferentes
do que o nosso trabalho propõem (KRIZHEVSKY; SUTSKEVER; HINTON, 2012).

Tabela 6 – Resultados de acurácia e F1-Score do modelos AlexNet com pré-treino e sem pré-
treino.

AlexNet Acurácia (%) F1-Score (%)

Com pré-treino 71.9 70.8
Sem pré-treino 75.8 74.2

5.2.2 ResNet-12

Devido ao ganho dos resultados do modelo AlexNet sem o pré-treinamento, foi de-
cidido fazer o treinamento do modelo ResNet-12 apenas desta maneira. O modelo
ResNet-12 obteve resultados inferiores aos testes anteriores, adquirindo uma acurá-
cia de 73,6% e um F1-Score de 72.4%. Estes resultados podem indicar o mesmo
comportamento dos modelos clássicos, onde um modelo mais simples possuí uma
capacidade de generalização melhor.

5.3 Modelos Desenvolvidos

Os primeiros testes feitos nos modelos desenvolvidos tem como objetivo verificar
qual pré-processamento garante os melhores resultados. Sendo assim, foi avaliado
seis treinamentos diferentes, que podem ser observados na Tabela 7. Todos os mo-
delos foram treinados por 500 épocas, utilizando um learning rate de 0,01 e tamanho
de batch igual a 8. Nestes testes, foi verificado a acurácia das combinações de pré-
processamento de “camada única” e “informação por camada”, com as três quantida-
des de camadas de convolução.
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Tabela 7 – Comparação dos resultados de acurácia dos modelos desenvolvidos treinados por
500 épocas, com learning rate de 0.01, com os dois pré-processamentos e quantidade dife-
rentes de camadas de convolução.

Pré-Processamento Camadas de Convolução Acurácia (%)

Camada única 1 64.3
Camada única 2 71.5
Camada única 3 69.1

Informação por camada 1 74.5
Informação por camada 2 74.8
Informação por camada 3 75.6

Neste teste, foi observado que os dados pré-processados por “informação por
camada” obtiveram os melhores resultados de acurácia em comparação a “camada
única” em qualquer uma das quantidades de camadas de convolução. Na avaliação
de apenas uma camada de convolução, o pré-processamento de “informação por ca-
mada” teve a maior diferença de acurácia, chegando a mais de 10% de ganho. Devido
a esses resultados, todos os testes posteriores utilizarão apenas o pré-processamento
de “informação por camada”.

Já nesta segunda rodada de testes, é feito o treinamento pelo mesmo número de
épocas e mesmo learning rate, só que verificando a diferença dos resultados utili-
zando técnicas de balanceamento dos dados. Os resultados desses testes pode ser
encontrado na Tabela 8. Como pode ser observado, a utilização do balanceamento
dos dados não garantiu resultados melhores que os testes anteriores, onde todos os
seus testes resultaram em uma acurácia próxima de 73%. Apesar de não ficar com
resultados muito abaixo, é possível verificar que não aplicar balanceamento nos dados
garante modelos mais acurados em todas as arquiteturas avaliadas. Entretanto, todos
os dados balanceados obtiveram resultados muito próximos, o que permite mais uma
rodada de testes para avaliação.

Como os resultados dos balanceamento de dados não tiveram uma grande vari-
ação de acurácia, os mesmos testes serão refeitos com o aumento do learning rate
para 0,1. Esta informação pode ser encontrada na Tabela 9, que apresenta dados sem
nenhuma melhora em relação aos testes anteriores. Aqui podemos observar que os
modelos tiveram resultados mais variados e piores que utilizando um learning rate me-
nor, o que pode indicar que o modelo esteja começando a dar “overfit” ao conjunto de
treinamento ou que este learning rate seja alto demais para essas arquiteturas. Vale
notar que o teste de melhor resultado foi utilizando apenas uma camada de convolu-
ção e balanceando pelo peso nas classes, alcançando 72.6% de acurácia. Entretanto,
o modelo com o pior resultado em acurácia nos testes utilizando learning rate de 0,01
continua sendo superior a este, o que leva a conclusão que o balanceamento dos
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Tabela 8 – Comparação dos resultados de acurácia dos modelos desenvolvidos treinados por
500 épocas, com learning rate de 0.01, com pré-processamento de “informação por camada”,
quantidade diferentes de camadas de convolução e diferentes métodos de balanceamento dos
dados.

Camadas de Convolução Balanceamento dos Dados Acurácia (%)

1 Nenhum 74.5
1 Peso nas classes 73.1
1 Oversample 73.3

2 Nenhum 74.8
2 Peso nas classes 73.1
2 Oversample 73.5

3 Nenhum 75.6
3 Peso nas classes 72.9
3 Oversample 73.3

Tabela 9 – Comparação dos resultados de acurácia dos modelos desenvolvidos treinados por
500 épocas, com learning rate de 0.1, com pré-processamento de “informação por camada”,
quantidade diferentes de camadas de convolução e diferentes métodos de balanceamento dos
dados.

Camadas de Convolução Balanceamento dos Dados Acurácia (%)

1 Nenhum 72.0
1 Peso nas classes 72.6
1 Oversample 72.2

2 Nenhum 71.4
2 Peso nas classes 68.6
2 Oversample 71.7

3 Nenhum 70.0
3 Peso nas classes 71.9
3 Oversample 72.1
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dados nestas arquiteturas não é vantajoso.
Como tentativa para melhorar os resultados dos melhores modelos, será feito uma

última rodada de testes, retornando o learning rate para 0.01 mas aumentando o nú-
mero de épocas para 1000. Além disso, como agora estamos comparando apenas
três modelos, é adicionado a métrica de F1-Score para possuirmos mais informações
do desempenho desses modelos. Os resultados deste último teste podem ser encon-
trados na Tabela 10. Aqui podemos conferir que o aumento de épocas não causaram
retorno de acurácia aos modelos avaliados, podendo ser observado uma perda de de-
sempenho em todas as arquiteturas. Estes resultados podem indicar novamente que
os modelos estão caminhando em direção ao “overfit” dos dados, devido a perda de
acurácia no conjunto de teste.

Tabela 10 – Comparação dos resultados de acurácia e F1-Score dos modelos desenvolvi-
dos por 1000 épocas, com learning rate de 0.1, com pré-processamento de “informação por
camada”, quantidade diferentes de camadas de convolução e diferentes métodos de balance-
amento dos dados.

Camadas de Convolução Acurácia (%) F1-Score (%)

1 73.5 72.2
2 74.2 72.8
3 73.2 72.2

Com os resultados obtidos neste trabalho, podemos verificar que o teste com me-
lhores resultados de acurácia foi utilizando uma arquitetura de três camadas de con-
volução, sem balanceamento dos dados, sendo treinado por 500 épocas e learning
rate de 0,01. Considerando este modelo como a melhor arquitetura para solucionar o
problema de predição de dificuldade, será feito uma análise mais profunda sobre seus
resultados.

Uma maneira simples de avaliar o desempenho de um modelo de aprendizado de
máquina em problemas de classificação é utilizando o método chamado “Relatório de
Classificação” da biblioteca Scikit-Learn (PEDREGOSA et al., 2011). Este método
retorna a avaliação de algumas métricas, comparando os resultados preditos pelo
modelo em comparação aos resultados reais. As métricas utilizadas são as seguintes
(HOSSIN; SULAIMAN, 2015):

• Precisão - Habilidade do classificador identificar apenas as instâncias corretas
de cada classe.

• Recall - Habilidade do classificador em encontrar todas as respostas corretas de
cada classe.

• F1-Score - média harmônica da precisão e sensibilidade.
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• Quantidade - número de ocorrências da classe no conjunto de teste.

A impressão do relatório de classificação do melhor modelo desenvolvido pode
ser verificado na Tabela 11. Com estas informações, podemos ter uma percepção
mais completa do desempenho do modelo. Como pode ser observado, a classe de
dificuldade que o modelo possuí maior facilidade de detecção é a “Muito Fácil”, onde
91% desses mapas foram classificados corretamente. Outro ponto de destaque é a
dificuldade “Fácil”, onde o modelo obteve 78% de precisão nos acertos, o que pode ser
causado por ser a classe com maior quantidade de exemplos de treino e teste. Além
disso, as classes “Médio” e “Difícil” tiveram os piores resultados, obtendo um F1-Score
de 68% e 62%, respectivamente. Entretanto, apesar da dificuldade “Muito Difícil” ser a
com menor quantidade de exemplos para testes, ela conseguiu uma precisão próxima
das duas melhores classes. Com estes resultados, podemos supor que o modelo tem
mais facilidade em classificar as dificuldades em cada extremo e tendo problemas para
decidir as dificuldades próximas de “Médio”.

Tabela 11 – Relatório de Classificação do melhor modelo desenvolvido.

Dificuldade Precisão (%) Recall (%) F1-Score (%) Quantidade

Muito Fácil 77 91 83 541
Fácil 78 76 77 831
Médio 70 67 68 578
Difícil 64 61 62 442
Muito Difícil 77 70 73 367

Uma maneira de poder verificar como estão distribuídos os erros e acertos do mo-
delo é através de uma Matriz de Confusão (TING, 2010). Esta representação dos
resultados permite avaliar como ficou cada uma das predições do modelo, indicando
onde o mesmo errou e como foi este erro. A ilustração da Matriz de Confusão do
melhor modelo desenvolvido pode ser encontrada na Figura 10. Aqui podemos ob-
servar o que foi suposto pelo Relatório de Classificação, onde pode ser verificado que
as classes nos extremos tem mais facilidade de acertar, principalmente a dificuldade
“Muito Fácil”. Além disso, é possível verificar que os erros nas outras classes se en-
contram principalmente nas dificuldades adjacentes, o que é uma boa indicação da
capacidade do modelo em predizer a dificuldade de um mapa.

Por fim, é válido ressaltar que o modelo AlexNet obteve uma acurácia superior ao
melhor modelo desenvolvido, o que é uma indicação que esta rede seria melhor para
solucionar o nosso problema. Entretanto, a diferença é de apenas 0.2% de ganho no
conjunto de teste e levando um tempo de treinamento superior aos nossos modelos
desenvolvidos. Ao fim deste trabalho, no capítulo de Apêndice, é possível verificar



37

Figura 10 – Matriz de confusão do melhor modelo desenvolvido.
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o Relatório de Classificação na Tabela 12 e a matriz de confusão dos resultados da
AlexNet na Figura 11.



6 CONCLUSÃO

Esse trabalho apresentou uma maneira de avaliar a dificuldade de mapas de jogos
Match-Three utilizando Redes Neurais Convolucionais, sem a necessidade de simu-
lação de múltiplas jogadas. Com os diversos testes dos modelos criados, foi possível
fazer uma análise da dificuldade de uma fase apenas observando seu formato e seus
objetivos, alcançando uma acurácia de 75,6%. O melhor resultado do modelo foi em
prever mapas de dificuldade “Muito Fácil”, obtendo uma Precisão de 77%, Recall de
91% e F1-Score de 83%.

Em comparação aos trabalhos relacionados, o modelo proposto possui a vantagem
em tempo de processamento, pois retira a necessidade de simular o mapa inúmeras
vezes para recuperar seu desempenho médio. Entretanto, analisando a acurácia dos
resultados, esta comparação não é possível, pois outros trabalhos tentam predizer o
exato valor de desempenho médio humano, enquanto este trabalho ataca o problema
avaliando a dificuldade em diferentes categorias. Além disso, a métrica usada para
dificuldade não é equivalente aos outros trabalhos, que utilizam a porcentagem de
vitórias enquanto este trabalho utilizou a porcentagem de objetivos completados.

Analisando os resultados do melhor modelo desenvolvido, foi possível avaliar que
o mesmo possuí uma boa lógica para predizer as dificuldades, onde a grande mai-
oria dos seus erros se encontram nas dificuldades adjacentes da correta. Este erro
pode ser causado pelos motivos que a métrica de desempenho médio não é um valor
completamente confiável, pois seu resultado é gerado em um número de cem simu-
lações, podendo causar variações que podem levar a uma dificuldade classificada
diferente. Para tentar sanar tal problema, uma nova leva de testes podem ser feitos ao
desempenho médio humano, calculando esta métrica através de um número maior de
simulações. Além disso, a divisão em um número menor de dificuldades poderia facili-
tar o modelo em agrupar os mapas nas classes corretamente ou até mesmo trabalhar
com intervalos com distâncias distintas.

Por fim, a possibilidade de se avaliar mapas com dados de jogadores reais cau-
saria resultados mais confiáveis, o que permite um melhor estudo de como melhorar
o desempenho dos modelos nesta tarefa. Além disso, uma etapa seguinte para este
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projeto seria a predição do valor real da dificuldade, trabalhando como um problema
de regressão. Desta maneira, seria possível aplicar uma modificação no próprio gera-
dor de mapas desenvolvido em Burtet (2019), possibilitando a criação de conteúdo de
forma mais rápida e dinâmica, além de uma possível validação do conteúdo gerado
manualmente, sem a necessidade de testes com jogadores reais.
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APÊNDICE A – Resultados completos do modelo AlexNet

Tabela 12 – Relatório de Classificação da AlexNet
Dificuldade Precisão (%) Recall (%) F1-Score (%) Quantidade
Muito Fácil 84 90 87 541
Fácil 81 81 81 831
Médio 71 69 70 578
Difícil 61 61 61 442
Muito Difícil 75 70 72 367

Figura 11 – Matriz de confusão do modelo AlexNet
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