UNIVERSIDADE FEDERAL DE PELOTAS
Centro de Desenvolvimento Techolégico
Programa de Pés-Graduacao em Computacao

R A A A A
A5 pRAS™

Dissertacao

Predicao de Dificuldade em Jogos Match-Three
Utilizando Redes Neurais Convolucionais

Juan Burtet

Pelotas, 2022

Juan Burtet

Predicao de Dificuldade em Jogos Match-Three
Utilizando Redes Neurais Convolucionais

Dissertagao apresentada ao Programa de Pés-
Graduacdo em Computacdo do Centro de De-
senvolvimento Tecnol6gico da Universidade Fe-
deral de Pelotas, como requisito parcial a obten-
cao do titulo de Mestre em Ciéncia da Computa-
cao.

Orientador: Prof. Dr. Ricardo Matsumura de Araujo

Pelotas, 2022

Universidade Federal de Pelotas / Sistema de Bibliotecas
Catalogacao na Publicacao

B973p Burtet, Juan

Predicao de dificuldade em jogos match-three
utilizando redes neurais convolucionais / Juan Burtet ;
Ricardo Matsumura Araujo, orientador. — Pelotas, 2022.

45 f. 1 il.

Dissertacao (Mestrado) — Programa de Pds-Graduagao
em Computacao, Centro de Desenvolvimento Tecnoldgico,
Universidade Federal de Pelotas, 2022.

1. Redes neurais convolucionais. 2. Aprendizado
profundo. 3. Predicao de dificuldade. 4. Match-three. I.
Aradjo, Ricardo Matsumura, orient. Il. Titulo.

CDD : 005

Elaborada por Maria Inez Figueiredo Figas Machado CRB: 10/1612

Juan Burtet

Predicao de Dificuldade em Jogos Match-Three
Utilizando Redes Neurais Convolucionais

Dissertacado aprovada, como requisito parcial, para obtencdo do grau de Mestre em
Ciéncia da Computagéo, Programa de P6s-Graduagdo em Computagédo, Centro de
Desenvolvimento Tecnolégico, Universidade Federal de Pelotas.

Data da Defesa: 08 de abril de 2022

Banca Examinadora:
Prof. Dr. Ricardo Matsumura Araujo (orientador)
Doutor em Computacéo pela Universidade Federal do Rio Grande do Sul.

Prof. Dr. Tiago Thompsen Primo
Doutor em Computacao pela Universidade Federal do Rio Grande do Sul.

Prof. Dr. Frederico Schmitt Kremer
Doutor em Biotecnologia pela Universidade Federal de Pelotas.

Dedico este trabalho a todas as pessoas que me aju-
daram de alguma maneira e fizeram com que esta
etapa fosse finalizada.

If a machine is expected to be infallible,
it cannot also be intelligent.
— ALAN TURING

RESUMO

BURTET, Juan. Predicao de Dificuldade em Jogos Match-Three

Utilizando Redes Neurais Convolucionais. Orientador: Ricardo Matsumura de
Araujo. 2022. 45 f. Dissertacdo (Mestrado em Ciéncia da Computagcao) — Centro de
Desenvolvimento Tecnolégico, Universidade Federal de Pelotas, Pelotas, 2022.

Desde o surgimento do género Match-Three em 1994, novos jogos com essa
tematica foram criados, chegando ao seu 4pice em 2012 com o langcamento de
Candy Crush Saga, que utilizou novos conceitos como mapas de diferentes formatos
e modos de jogo diversos. Com o0 aumento da popularidade de jogos deste estilo,
surgiu a necessidade de atualizac6es constantes de contetdo. Um dos pontos-chave
da geragdo de conteudo é a avaliagdo da dificuldade, que envolve uma grande
quantidade de tempo e testes com diferentes usuarios. Devido a estes fatores, a
predicdo de dificuldade em jogos obteve grande foco na drea de desenvolvimento
de jogos, removendo a necessidade de testar o conteudo criado com jogadores
reais. No contexto de jogos Match-Three, uma das métricas usadas para estimar a
dificuldade é feita através do desempenho médio humano, que é calculado verificando
a porcentagem média de objetivos completados do mapa. Atualmente, existe a
possibilidade de predizer este desempenho através de simulagdes do estado do jogo,
o que faz este processo lento e custoso computacionalmente. Este trabalho apresenta
uma solucé@o para resolver o problema da necessidade de multiplas simulagdes do
jogo, utilizando Redes Neurais Convolucionais. Desta maneira, sendo possivel
classificar a dificuldade de um mapa apenas observando seus aspectos visuais e
seus objetivos. Ao final do trabalho, foi possivel alcangcar um modelo de Redes
Neurais Convolucionais capaz de predizer a dificuldade corretamente de 75,6% dos
mapas.

Palavras-chave: Redes Neurais Convolucionais. Aprendizado Profundo. Predicdo de
Dificuldade. Match-Three.

ABSTRACT

BURTET, Juan. Difficulty Prediction in Match-Three Games Using Convolutional
Neural Networks. Advisor: Ricardo Matsumura de Araujo. 2022. 45 f. Dissertation
(Masters in Computer Science) — Technology Development Center, Federal University
of Pelotas, Pelotas, 2022.

Since the emergence of the Match-Three genre in 1994, new games with this
theme have been created, reaching its peak in 2012 with the launch of Candy Crush
Saga, wich utilized new concepts such as maps with different shapes and diverse
game modes. With the increasing popularity of games with this style, the need for
constant content updates has arisen. One of the key points of content generation is
the difficulty evaluation, wich envolves a great amount of time and tests with different
users. Due to these factors, the difficulty prediction in games has gained a big focus
on the game development area, removing the need of testing the created content with
real players. In the context of Match-Three games, one of the metrics used to estimate
the difficulty is made through the average human performance, wich is calculated by
verifying the percentage of the average map objectives completed. Currently, there is
the possibility of predicting this performance through simulations of the game state,
making this process slow and computationally costly. This work presents a solution
to the problem of the need for multiple game simulations, using Convolutional Neural
Networks. In this way, it is possible to classify the difficulty of a map by just observing
its visual aspects and its objectives. At the end of this work, it was possible to achieve
a model of Convolutional Neural Networks capable of predicting the difficulty of 75,6%
of the maps correctly.

Keywords: Convolutional Neural Network. Deep Learning. Difficulty Prediction. Match-
Three.

Figura 1

Figura 2

Figura 3
Figura 4

Figura 5
Figura 6
Figura 7
Figura 8
Figura 9

Figura 10
Figura 11

LISTA DE FIGURAS

Captura de tela do jogo Bejeweled (Fonte: Bejeweled Wiki | Fandom
(2021)) . . . e

Visao Geral do bot implementado para Candy Crush (Fonte: Poro-
maa (2017))
Fluxograma do Gerador de Mapas (BURTET, 2019)
Exemplo de um resultado do modelo de predicao da jogada mais
humana (Fonte: Gudmundsson etal. (2018))

Representacdo de um mapa criado pelogerador
Histograma do Desempenho Médio dos dados gerados
Pré-processamento necessario para os modelos classicos
Pré-processamento dos valores em diferentes camadas
llustragdo da arquitetura da rede desenvolvida

Matriz de confusao do melhor modelo desenvolvido.

Matriz de confusao do modelo AlexNet

Tabela 1
Tabela 2
Tabela 3
Tabela 4

Tabela 5
Tabela 6

Tabela 7

Tabela 8

Tabela 9

Tabela 10

Tabela 11
Tabela 12

LISTA DE TABELAS

Estatisticas sobre o conjunto de dados gerados
Intervalos de classificacdo de dificuldade
Divisdo das dificuldadespormapa
Divisdo dos dados de treinoeteste

Resultados de acuréacia e F1-Score dos modelos classicos
Resultados de acuracia e F1-Score do modelos AlexNet com pré-
treinoesempré-treino.
Comparacao dos resultados de acuracia dos modelos desenvolvi-
dos treinados por 500 épocas, com learning rate de 0.01, com 0s
dois pré-processamentos e quantidade diferentes de camadas de
CONVOIUGAO.
Comparacao dos resultados de acuracia dos modelos desenvolvi-
dos treinados por 500 épocas, com learning rate de 0.01, com pré-
processamento de “informacgao por camada”, quantidade diferentes
de camadas de convolucéo e diferentes métodos de balanceamento
dosdados.
Comparacao dos resultados de acuracia dos modelos desenvolvi-
dos treinados por 500 épocas, com learning rate de 0.1, com pré-
processamento de “informacéo por camada”, quantidade diferentes
de camadas de convolucéo e diferentes métodos de balanceamento
dosdados.
Comparacao dos resultados de acuracia e F1-Score dos modelos
desenvolvidos por 1000 épocas, com learning rate de 0.1, com pré-
processamento de “informacgao por camada”, quantidade diferentes
de camadas de convolucéo e diferentes métodos de balanceamento
dosdados.
Relatério de Classificacao do melhor modelo desenvolvido.

Relatério de Classificacdoda AlexNet

LISTA DE ABREVIATURAS E SIGLAS

MCTS Monte Carlo Tree Search

RNC Redes Neurais Convolucionais

SUMARIO

1 INTRODUGAODttt it e ettt e e e e e e et e et e e e

2 TRABALHOS RELACIONADOS ¢ttt innnnn.
2.1 Predicao do desempenho humanomédio
2.2 Geracao de Mapas para Jogos Match-Three
2.3 Predicaodajogadamaishumana.

3 OBJETIVOt e e e e e e e e e e e e e e e
3.1 Objetivo Especificos
3.1.1 Datasetdemapas
3.1.2 Desenvolvimentodemodelos
3.1.3 Comparagédo e andlisedosresultados

4 METODOLOGIAt i i e e s e e e e e e e e e et et e
41 GeracaodosExemplos
42 RBRotulamentoo
4.3 Pré-processamento
431 Modelos CIassicos i i e
4.3.2 Modelos de Visao Computacional
4.3.3 Modelos Desenvolvidos
4.4 Arquiteturas dos Modelos Desenvolvidos
4.5 TreinamentodosModelos
451 Modelos CIassicos o i i i e e
4.5.2 Modelos de Visao Computacional
45.3 Modelos Desenvolvidos e

5 RESULTADOS i i ittt e st s e st st et e et e e
5.1 Modelos Classicos e
5.2 Modelos de Visao Computacional
521 AlexNet e
522 ResNet-12 e
5.3 Modelos Desenvolvidos

6 CONCLUSAOD . . . ittt e e e e e e e e e e e e e s s s s
REFERENCIASttt et e e e e e e e e e e e e s e e s s s,
APENDICE A RESULTADOS COMPLETOS DO MODELO ALEXNET

1 INTRODUCAO

Desde o surgimento de Tetris, cada vez mais jogos com ideias simples sao pro-
postos para tentar atrair o maior numero de pessoas (JUUL, 2007). Com isso, surgiu
o estilo Tile-Matching, um modelo de jogos de quebra-cabeca com a necessidade de
criar padrées para completar um determinado desafio. Uma das categorias deste gé-
nero é o Match-Three, onde é necessario fazer combinagdes de trés ou mais pecas
iguais para prosseguir pelo jogo.

Com a chegada do século XXI, os jogos Match-Three tiveram um aumento de
popularidade com o surgimento do jogo Bejeweled (JUUL, 2007), que pode ser ob-
servado na Figura 1, e alcangando seu auge com o langamento de Candy Crush pela
Empresa King para o Facebook em 2012. No jogo, o objetivo principal é trocar as
posicdes das pecas do tabuleiro, que sdo representadas como doces, para assim,
elimina-las do campo e continuar adicionando novas pecas.

REIEWE'E

: cdldh & LU & ¢
T | JOCAGARE E @
fOPLPOVPS
P59 L SS09

090V 00 A
AESOEOoE N
QO L DADY Y

Figura 1 — Captura de tela do jogo Bejeweled (Fonte: Bejeweled Wiki | Fandom (2021))

Em 2013, Candy Crush j& tinha sido instalado mais de 500 milhdes de vezes pelo
Facebook e em aparelhos iOS e Android (WEBSTER, 2013), com pelo menos 6,7
milh6es de jogadores ativos diariamente (MUSIL, 2013). Com uma grande quantidade
de jogadores, foi percebida a necessidade de atualiza¢des constantes de conteudo do
jOgo €, por isso, novos niveis sdo adicionados semanalmente.

14

Essas necessidades de atualizagdes constantes levantam alguns problemas rela-
cionados a criacdo de mapas. A criagdo manual de mapas precisa especificar o for-
mato da fase, bem como os objetivos necessarios para completar uma partida. Dessa
forma, fica evidente o problema de que cada nivel é especificado por designers, que
precisam testar o contetdo diversas vezes para saber se ele é possivel de ser con-
cluido, se parece ser acessivel e atrativo visualmente (STEVEN, 2018).

Atualmente, a produgcao manual de conteddo em um jogo € geralmente custosa
economicamente (IOSUP, 2011), sendo necessario o trabalho de muitas pessoas ou
uma grande quantidade de tempo. Um dos principais problemas neste processo € a
necessidade de se avaliar um mapa novo com diferentes usuarios, para ser possivel
fazer uma avaliagéo da dificuldade deste conteudo. Sendo assim, a dificuldade de um
jogo acaba sendo um fator de grande importancia na percepc¢ao de qualidade para
um jogador (DENISOVA; GUCKELSBERGER; ZENDLE, 2017), o que faz a predigao
dessa métrica um dos pontos chaves para um conteudo criado.

A predicao de dificuldades em jogos tem como foco principal a criacdo de um
agente que seja capaz de jogar o jogo, tendo a possibilidade de avaliar sua dificul-
dade através de multiplas jogadas. Uma das técnicas muito utilizadas nesta area sao
as Monte Carlo Tree Search (MCTS), que trabalham como um algoritmo de busca heu-
ristica, onde simulagdes dos estados futuros sao usados para decidir qual a melhor
acao do estado atual (BROWNE et al., 2012). Além disso, as MCTS tiveram destaque
apos serem capazes de obter um desempenho melhor que um humano no jogo Go, o
gue nenhum outro modelo de Inteligéncia Artificial foi capaz até o momento (SILVER
et al., 2017).

O foco das MCTS esta na analise dos movimentos mais promissores, expandindo
a arvore de busca em amostragem aleatéria no espaco de busca. A sua aplicacédo
em jogos é baseada em multiplas jogadas, onde o jogo é percorrido até o final sele-
cionando movimentos aleatérios. Desta maneira, o resultado final de cada jogada é
utilizado para ponderar os nGs da arvore, para que os caminhos com melhores resul-
tados tenham maior probabilidade de serem escolhidos em jogadas futuras.

No contexto de dificuldade em jogos Match-Three, os trabalhos de Poromaa (2017)
e Burtet (2019) utilizaram as MCTS para replicar a avaliacao do desempenho humano
médio, sem a necessidade de utilizar jogadores reais. Em ambos os trabalhos, os tes-
tes foram avaliados através de uma comparacdo do desempenho médio recuperado
dos dados de jogadores reais, contra os resultados de multiplas simulacdes utilizando
MCTS.

Apesar de existir muitos trabalhos que focam na avaliacdo de conteudo de jogos de
maneira automatica, poucos estao trabalhando diretamente na solucao do problema
em jogos Match-Three. Além dos trabalhos mencionados no paragrafo anterior, o
trabalho de Gudmundsson et al. (2018) foi capaz de predizer a jogada mais “humana”

15

para um determinado estado do jogo Candy Crush. Isto foi feito utilizando um modelo
de Redes Neurais Convolucionais (RNC) utilizando dados recuperados de milhdes
de jogadores. Este trabalho possui um grande ganho no tempo de processamento
em comparagao aos que utilizaram as MCTS, pois 0 modelo é capaz de predizer a
proxima jogada visualizando o conteudo do mapa sem a necessidade de simulagao
de estados futuros. Entretanto, a etapa de repetir diversas partidas para se recuperar
o desempenho médio continua presente.

Sendo assim, este trabalho seguird com o que foi desenvolvido em Burtet (2019),
que apresentava um gerador de mapas para jogos Match-Three, utilizando as MCTS
para simulagao do estado do jogo. Como atualizacao para este trabalho, é proposto
a utilizacao de Redes Neurais Convolucionais para uma nova solug¢ao do problema de
predicdo de dificuldade de um mapa, utilizando apenas os padrdes visuais do con-
teudo, como seu formato e objetivos, sem a necessidade de multiplas simulagdes.

2 TRABALHOS RELACIONADOS

Apesar de existir muitos trabalhos que focam na avaliacao de conteudo de jogos de
maneira automatica, poucos estao trabalhando diretamente na solucdo do problema
em jogos Match-Three. Neste capitulo sera explorado trabalhos que possuam foco na
predicao de dificuldade, além da geracao de conteudo artificial que sera utilizado para
o desenvolvimento desta dissertacao.

2.1 Predicao do desempenho humano médio

No trabalho “Crushing Candy Crush: Predicting Human Success Rate in a Mobile
Game using Monte-Carlo Tree Search” de Poromaa (2017), as MCTS foram utilizadas
com sucesso em jogos Match-Three. O método de busca das arvores de Monte Carlo
foram utilizados para replicar a avaliagdo de desempenho humano médio, retirando a
necessidade de jogadores humanos.

O jogo Candy Crush foi utilizado como base para o desenvolvimento deste traba-
lho, onde foi verificado a porcentagem de vitérias de jogadores reais em comparacao
aos resultados de um bot utilizando MCTS. A Figura 2 apresenta uma visdo geral do
processo aplicado pelo bot para cada jogada.

Este trabalho criou a possibilidade de avaliar o desempenho de mapas de forma
automatica, sendo necessario cerca de 200 partidas para obter o resultado de vitérias.
Entretanto, este processo possui um custo computacional elevado, devido as cente-
nas de simulagdes em cada estado do jogo para que 0 mesmo possua um resultado
semelhante a média humana.

17

Chosen
moves

MCTS Tree Border ---1-----<--=============-

@ Expansion

Playout/
Rollout

Figura 2 — Visdo Geral do bot implementado para Candy Crush (Fonte: Poromaa (2017))

2.2 Geracao de Mapas para Jogos Match-Three

Devido ao resultados alcangados pelo trabalho de Poromaa (2017), foi averiguado
a possibilidade da geracédo de mapas para este género de jogo feito de forma automa-
tica. Em “Geracao Procedural de Mapas para Jogos Match-Three” de Burtet (2019),
algoritmos genéticos sao utilizados para gerar mapas com um certo desempenho mé-
dio desejado.

Para o desenvolvimento deste trabalho, um jogo base foi criado para que os testes
pudessem ser aplicados. Este jogo possuia recursos basicos semelhantes ao Candy
Crush, com a presencga de pecas especiais, pontuacées e modos de jogo a serem
finalizados. Diferente do trabalho anterior, a métrica de desempenho médio humano
utilizada foi modificada para a porcentagem de objetivos médios finalizados. Esta
métrica possuia uma variagcdo menor através de multiplos testes em comparacgéo a
porcentagem de vitérias média.

No contexto de algoritmos genéticos, o objetivo do mapa criado é obter um de-
sempenho médio préximo ao requisitado pelo usuario. Sendo assim, a avaliagdo de
um conteudo gerado € a diferenca absoluta entre o desempenho médio do mapa € o
desempenho médio desejado. O fluxograma sobre o processo de geracao de mapas
€ apresentado na Figura 3.

18

|

Seleciona os melhores
da populagao
Recebe o Desempenho Cruzamento dos
médio esperado selecionados

!

Cria a populagio inicial

Desempenho
esperado ou limite
de geragdes
alcancada?

novos contetdos gerados

Avaliacio dos novos [Salua o melhor conteddo geradn]
Avalia a Populagao

I [Mutagdes aplicadas aos]

conteados gerados

: Fim
os melhores conteddos

Nova populacdo apenas com }

Figura 3 — Fluxograma do Gerador de Mapas (BURTET, 2019)

2.3 Predicao da jogada mais humana

Um dos grandes problemas de utilizar as MCTS para predizer o desempenho mé-
dio humano é a necessidade de simular o estado atual do jogo inUmeras vezes, para
saber qual o melhor movimento a ser feito. Somado a isso, existe a necessidade de
repetir o processo de uma partida centenas de vezes para calcular a métrica desejada.
Para tentar solucionar isso, o trabalho “Human-Like Playtesting with Deep Learning”
de Gudmundsson et al. (2018) propde a utilizacado de Redes Neurais Convolucionais
para predizer a jogada com comportamento mais proximo do humano, retirando a ne-
cessidade de simulag¢des do estado atual do jogo.

Com a cooperacgédo da Empresa King ', foi recuperado milhdes de dados de usua-
rios do jogo Candy Crush contendo um certo estado de um mapa do jogo, junto da
jogada feito pelo jogador. Com estes dados, foi desenvolvido uma RNC que recebe
um estado do jogo e indica as probabilidades de um humano fazer uma certa jogada.
Este processo é exemplificado na Figura 4.

Ao fim do trabalho, é feito uma comparacao entre os resultados da RNC contra a
utilizacdo das MCTS. Foi observado que as Redes Neurais Convolucionais possuem
um desempenho superior na solucdo do problema de predicdo de dificuldade, pois
conseguem replicar um comportamento humano com mais precisao do que o trabalho
anterior produzido por Poromaa (2017). Entretanto, o ponto de maior destaque esta no
tempo de processamento, pois este modelo retira a necessidade de simular estados
futuros do jogo para fazer uma Unica jogada.

'Desenvolvedora do jogo Candy Crush

Unseen input

@ Supervised learning

Cloud Machine Learning

Trained with data
from human players

Action #1
Prediction: 5%

Action #2
Prediction: 94%
Most human-like move

Action #3
Prediction: 1%

19

Figura 4 — Exemplo de um resultado do modelo de predicdo da jogada mais humana (Fonte:

Gudmundsson et al. (2018))

3 OBJETIVO

Este trabalho tem como objetivo criar um modelo de Redes Neurais Convolucio-
nais, que seja capaz de classificar a dificuldade de um mapa de jogo Match-Three,
utilizando apenas padrdes visuais sobre seu formato e objetivos, sem a necessidade
de simulacao de conteudo.

3.1 Obijetivo Especificos

Para que o objetivo geral deste trabalho seja alcangado, é necessario concluir os
objetivos especificos. Eles séo divididos em: criar um dataset de mapas com suas
respectivas dificuldades, desenvolver modelos capazes de predizer a dificuldade de
um mapa e analisar os resultados para definir sua assertividade neste problema.

3.1.1 Dataset de mapas

Criacao de um dataset de mapas de jogo Match-Three utilizando o gerador de ma-
pas desenvolvido em Burtet (2019), que sera utilizado para treinar modelos de Apren-
dizado de Maquina. Estes mapas serao rotulados com suas respectivas dificuldades
através do calculo do desempenho médio humano.

3.1.2 Desenvolvimento de modelos

Implementacéao de diferentes modelos de Redes Neurais Convolucionais com inspi-
racdo do modelo desenvolvido em Gudmundsson et al. (2018). Estes modelos serdo
capazes de predizer a dificuldade de um mapa de jogo Match-Three apenas obser-
vando seu aspectos visuais e objetivos.

3.1.3 Comparacao e analise dos resultados

Comparacao dos resultados de acuracia e F1-Score dos modelos desenvolvidos
com modelos classicos de Aprendizado de Maquina, como: Arvores de Decisdo, Ran-
dom Forest e XGBoost. Além disso, sera avaliado seu desempenho com os modelos
de visao computacional AlexNet e ResNet-12. Ao fim, sera analisado de forma mais

21

detalhada os resultados do modelo de melhor acuracia, observando seu desempenho
em dificuldades especificas. Isto sera feito utilizando a biblioteca Scikit-Learn (PE-
DREGOSA et al., 2011), que € capaz de retornar métricas de precisao e recall, além
da visualizacdo da matriz de confusao das predicdes.

4 METODOLOGIA

Esta capitulo irda apresentar a metodologia utilizada para o desenvolvimento deste
trabalho, que foi dividida em cinco secdes: geracao dos exemplos, rotulamento, pré-
processamento, desenvolvimento de modelos e seus treinamentos.

4.1 Geracao dos Exemplos

A primeira etapa para desenvolvimento deste trabalho é a criagdo do dataset con-
tendo as informacgdes sobre o mapa, junto do seu desempenho médio calculado. Para
isso, foi utilizado o trabalho desenvolvido por Burtet (2019), que utiliza técnicas de
MCTS para criar um mapa que tenha uma taxa de desempenho médio proxima da
desejada pelo usuario. A representacdo de um mapa gerado é apresentado na Figura
5, que contém as informagdes utilizadas para inicializar uma partida dentro do jogo.

A D|E F| G| H |

W
v

]

| on | B | W

9

R R ® N @ R R R

R B ® N O® B B Rl

B B ® N @ R R RO

B R ® N & B B R

B R ® N ©® B B B

B R ® N & B B R
B R R ® N © B B R
B R RO NO® R B R
R R R ® NGO R R R

[
=
[y
=
[y
=

10

Figura 5 — Representacdo de um mapa criado pelo gerador

Essas informacdes estao presentes em um arquivo csv, que possui 0s seguintes
dados: A1 indica o limite de movimentos que o jogador pode fazer para completar
0 mapa; B1 indica a pontuacao necessaria para completar o objetivo de pontos; C1

23

representa quantas pecas diferentes estardao presentes no campo; O intervalo de A2
a 10 representa cada posicdo do mapa, e o0 que sera preenchido nesta localizagao.
Em cada posicdo do mapa, € possivel ter quatro valores distintos:

» 0 - uma area vazia, indicando que nao pode haver pecas neste local.

» 1-uma peca padrao, gerada aleatoriamente pela quantidade de pecas diferentes
que estao presentes no campo.

» 2 - uma peca de blogqueio, que precisa ser destruida para completar a partida.

» 3 - uma peca de objetivo, que precisa ser retirada do campo para completar a
partida.

Para este trabalho, as informacdes sobre limite de movimentos, pontuagéo e a
quantidade de pecas diferentes serdo iguais para todos os dados gerados. Isto foi
decidido para que os modelos de Aprendizado de Maquina testados trabalhem apenas
com a informacao visual do mapa, verificando se mudancgas na arquitetura podem
indicar a dificuldade média a ser encontrada pelos jogadores.

A métrica utilizada pelo gerador é calculada verificando a porcentagem média de
objetivos completados em cada uma das partidas avaliadas. Ao fim de uma partida, é
avaliado a porcentagem de objetivos completados: caso o mapa tenha sido finalizado
completamente, retorna o valor 1; Em caso contrario, é calculado a quantidade de ob-
jetivos finalizados e retornado o quao préximo o jogador estava de ganhar o mapa. O
resultado final é calculado fazendo a média dos resultados de 100 partidas diferentes.

Através dos resultados do trabalho de Burtet (2019), foi constatado que mapas com
desempenho médio abaixo de 75% possuem uma dificuldade préxima do impossivel,
onde jogadores reais possuem chances muito baixas de finalizar o mapa com sucesso.
Sendo assim, os dados gerados foram limitados a ter desempenhos médios entre 75%
e 100%, para que os mapas possuam uma diferenca de dificuldade mais perceptiva
entre 0s usuarios.

Para geracédo dos dados, foi feito um processo de selecionar um valor de desem-
penho médio aleat6rio no intervalo de 75% até 100%, para tentar gerar mapas com
desempenhos mais diversificados. Durante a busca do mapa com a métrica desejada,
inUmeros mapas sao criados durante o processo do algoritmo genético. Sendo assim,
0s mapas gerados durante a busca séo adicionados a base de dados caso estejam
dentro do intervalo de desempenho médio definido.

Ao fim do processo de geragao, foi gerado um total de 13791 mapas distintos, onde
0 mapa de menor de desempenho médio possui um valor exato de 75%, enquanto o
maior possui 99,9%. Algumas informacoes estatisticas sobre os mapas podem ser
encontradas na Tabela 1, além do grafico do histograma dos dados na Figura 6.

Tabela 1 — Estatisticas sobre o conjunto de dados gerados

1000 A

800 4

Quantidade

400 4

200 A

04

600 4

Estatistica Valor
Quantidade 13,791
Média 0.887
Desvio Padrao 0.065
Minimo 0.750
Primeiro Quartil 0.837
Mediana 0.899
Terceiro Quartil 0.943
Maximo 0.999

07s 0.80 085 0.90 0as
Desempenho Médio

Figura 6 — Histograma do Desempenho Médio dos dados gerados

24

25

4.2 Rotulamento

Os exemplos gerados na secao anterior possuem um valor real como desempenho
médio humano. Para este trabalho, iremos trabalhar como um problema de classifica-
¢éo, onde o modelo tera que indicar em qual classe de dificuldade o mapa avaliado
esta. Esta mudanca é feita por dois motivos: diminuir a quantidade de resultados pos-
siveis a serem preditos, pois um problema de classificacao € uma tarefa mais simples
de ser realizada e verificar se é possivel diferenciar dificuldades apenas utilizando os
aspectos visuais de um mapa.

Para transformar os dados de desempenho médio em classes de dificuldade, sao
definido intervalos de valores, onde cada um desses intervalos representam uma di-
ficuldade diferente. Para este trabalho, € definido cinco classes de dificuldade: Muito
Facil, Facil, Médio, Dificil e Muito Dificil. Os intervalos utilizados para cada uma das
classes pode ser verificado na Tabela 2.

Tabela 2 — Intervalos de classificagéo de dificuldade

Dificuldade Limites
Inferior Superior
Muito Facil 0,95 1,00
Facil 0,90 0,95
Meédio 0,85 0,90
Dificil 0,80 0,85
Muito Dificil 0,75 0,80

Apos a definicdo da dificuldade para cada um dos mapas, ficamos com os dados
divididos em cinco intervalos diferentes. As quantidades de mapas em cada uma das
classes pode ser verificado na Tabela 3.

Tabela 3 — Divisdo das dificuldades por mapa
Dificuldade Quantidade

Muito Facil 1833
Facil 2211
Medio 2890
Dificil 4155
Muito Dificil 2702

Com os dados rotulados em suas respectivas dificuldades, é preciso separa-los
em 2 conjuntos distintos: Treino e Teste. Este processo é feito utilizando a biblioteca
Scikit-Learn (PEDREGOSA et al., 2011), onde € possivel definir uma porcentagem
de divisdo entre os dois grupos. Neste trabalho, foi utilizado a separacao de 80%

26

dos dados para treinamento e os 20% restantes para avaliar os desempenhos dos
modelos. As classes de dificuldade, junto das suas respectivas quantidades de treino
e teste podem ser verificados na Tabela 4.

Tabela 4 — Divisao dos dados de treino e teste

Quantidade
Treino Teste
Muito Facil 1466 367

Dificuldade

Facil 1380 831
Medio 2312 578
Dificil 3713 442

Muito Dificil 2335 367

4.3 Pré-processamento

Apesar de termos todos os dados gerados e rotulados, ainda € necessario modi-
ficar a informacao dos mapas para o formato de entrada dos modelos a serem ava-
liados. Como néo foi encontrado outros trabalhos que trabalhem com a predicao de
dificuldade utilizando RNCs, é proposto verificar o desempenho de diferentes mode-
los de Aprendizado de Maquina para comparar o possivel ganho de desempenho do
nosso modelo contra opcdes ja estabelecidas. Sendo assim, iremos dividir os pré-
processamentos em trés secoes diferentes: Modelos classicos, Modelos de Visao
Computacional e Modelos desenvolvidos.

4.3.1 Modelos Classicos

Os modelos classicos utilizados utilizam os dados de formas tabulares, onde se
faz necessario modificar o formato de matriz que os mapas gerados possuem. Sendo
assim, € preciso aplicar um método de reshape nos dados, onde o0 mapa que possui
um formato de 9x9 ira resultar em um vetor de 81 posi¢cdes. A representacao visual
desta operacgao é apresentada na Figura 7.

[[a1TB1]c[o1E1[F1[G1][R1[11
A2|B2|c2|p2|E2|F2[G2|H2| 12
A3(B3|c3|D3|E3|F3|G3|H3| 13
A4|B4[ca|D4|E4|F4|Ga[Ha| 14
Q | [as]B5|cs|p5[E5|F5]65[H5[15 - [a1]B1]c1].. [.. [.. [Go[He[19]
A6|B6|c6|D6|E6 | F6 |G6|H6| 16 ‘ '
A7|B7|c7|p7|E7|F7|67|H7| 17 81
Ag|B8|cs|Ds|E8|F8|G8|Ha|18
A9|B9|co|Do|E9|F9|Go|Ho| 19

9
Figura 7 — Pré-processamento necessario para os modelos classicos

27

4.3.2 Modelos de Visao Computacional

Os modelos de visdo computacional a serem avaliados neste trabalho foram as re-
des convolucionais AlexNet (KRIZHEVSKY; SUTSKEVER; HINTON, 2012) e ResNet-
18 (HE et al., 2015). Ambos os modelos ja estdo implementados através da biblioteca
PyTorch (PASZKE et al., 2019) e recebem como entrada uma imagem RGB de tama-
nho 224x224x3.

Para o pré-processamento, trés operagdes sao necessarias para que os dados
dos mapas estejam no formato correto: Normalizar a informacao de cada posicao
do mapa, expandir a matriz 9x9 para o formato 224x224 e por fim, replicar a matriz
expandida como trés canais de cores diferentes.

Para a primeira etapa, é preciso modificar cada posi¢cao para que possuam valores
normalizados de 0 até 1, ao invés da atual formatacdo de 0 até 3. Este resultado é
alcancado com facilidade, apenas aplicando a operagao de divisdo em cada uma das
posicdes pelo maior valor possivel, que neste caso é 3.

Em seguida, é necessério expandir a matriz que representa o0 mapa para o tama-
nho de entrada dos modelos. Este processo é feito utilizando o método de interpola-
cao nearest-neighbor (BOVIK, 2009) da biblioteca PIL (UMESH, 2012). O resultado
desta operacao € que nenhuma informacao original € perdida ou modificada, apenas
replicada para ser representada em uma resolugéo maior.

Por fim, é necessario replicar a matriz 224x224 em trés camadas diferentes. Neste
processo, 0S mapas seriam representados como uma imagem em tons de cinza, onde
as diferencgas de tom indicam os diferentes valores representados em cada posi¢ao do
mapa.

4.3.3 Modelos Desenvolvidos

O ultimo pré-processamento necessarios nos dados é os que serdo utilizados nos
modelos desenvolvidos especificamente para este trabalho. Este processo ird possuir
dois pré-processamentos distintos, para que possamos avaliar qual representacéo dos
mapas retorna um melhor resultado dos modelos.

4.3.3.1 Camada Unica

No formato que iremos chamar de "camada unica", a Unica operagao necessaria
nos dados é a normalizagédo da informagéo. Este processo é exatamente o mesmo do
apresentado na secédo dos modelos de visdao computacional, onde cada posi¢cao do
mapa ira possuir um valor de 0 até 1.

4.3.3.2 Informacéo por Camada

Este formato possui a representacdo de "cada informagdo em uma camada”, onde
ao invés de trabalhar com os dados como uma matriz 9x9, a informagao sao divididas

28

em quatro camadas booleanas, resultando em uma matriz 9x9x4. Neste processo,
cada camada teria a fungéo de indicar a presenca de tal valor. Sendo assim, a primeira
camada indicaria a posicdo do valor 0 no mapa, a segunda camada a posi¢ao do
valor 1 e assim por diante. Este pré-processamento da representacdo do mapa em
diferentes camadas foi inspirado do trabalho de Gudmundsson et al. (2018), onde o
mesmo processo € aplicado. Um exemplo desta operacao pode ser visualizado na
Figura 8.

oJoJoJoJoJo]o]o]o
0Jlolotlod1104d0 0
oJoJolofofofo]o]oFTo
0]l0p]o
H ofopfo
ofololafofololo]o D 22 g
22[2[2[2[2]2]2]2| WP oblo
oPl0

0

0

9x9

9x9x4
Figura 8 — Pré-processamento dos valores em diferentes camadas

4.4 Arquiteturas dos Modelos Desenvolvidos

Com os dados gerados e processados, € preciso definir a arquitetura dos nossos
modelos que serdo avaliados para a solugéo do problema de predi¢ao de dificuldade.
Como foi definido na secéo anterior que os dados para os modelos desenvolvidos sao
divididos em dois grupos diferentes, 0 mesmo precisa ser feito para os modelos.

A arquitetura definida para este projeto foi baseada no trabalho de Gudmundsson
et al. (2018), pois 0 mesmo ja trabalhou com uma entrada para representar um jogo
Match-Three, com a diferenca de predizer a jogada mais humana do que a dificuldade
do mapa. Entretanto, a sua saida resultava em qual dos 144 movimentos possiveis
mais se parecia com o de um humano, o que faz ser necessario trabalhar com uma
rede muito mais profunda.

A nossa rede é definida iniciando com uma camada de convolucao de 5 filtros de
tamanho 3, com padding e stride igual a 1. Este formato foi decidido para que sua
saida se mantenha no formato de 9x9 dos mapas, para que cada canal resultante en-
contre possiveis padrdes para cada uma das dificuldades possiveis. Esta camada de
convolugéo definida permite que ela seja replicada diversas vezes, onde a sua saida
se conecta em outra camada de mesmo formato, apenas modificando a quantidade de

29

canais de entrada. Apés a saida das camadas de convolugéo, é feito uma ligagdo em
sequéncia de 3 mddulos lineares FC (Fully Connected). O primeiro médulo FC possui
um tamanho 405 (9x9x5), seguindo para um declinio de 256 até o ultimo modulo de
128 entradas, resultando nas 5 saidas de dificuldade possiveis. Todas as camadas
de convolucgao e lineares contém a fungéao de ativagcdo ReLU (AGARAP, 2018), além
da adicao de Dropout (p=0.5) (SRIVASTAVA et al., 2014) nas duas primeiras camadas
lineares. A ilustragdo da arquitetura da rede utilizada pode ser encontrada na Figura

9.

entrada:
mapa do jogo

s
9[/s - 128 /\
9
x3
3x3 conv FC FC FC
5 filters » 256 neurons » 128 neurons 5 neufons
RELU RELU RELU

—

Figura 9 — llustracao da arquitetura da rede desenvolvida

A2

saida:
5 dificuldades

Para este trabalho, sera testado modelos contendo de uma a trés camadas de
convolucéo, onde cada uma desses versodes terdo testes feitos com as duas entradas
de pré-processamento apresentadas.

4.5 Treinamento dos Modelos

A etapa final da metodologia deste trabalho € o treinamento dos modelos. Neste
processo, sera organizado os treinamentos dos trés grupos de modelos diferentes:
classicos, visdo computacional e os desenvolvidos especificamente para esta tarefa.
Os dois primeiros grupos sao focados para termos uma certa estimativa do desem-
penho desta tarefa, onde sera feito multiplas tentativas para encontrar os melhores
resultados nos nossos préprios modelos. A comparacao dos modelos sera feita avali-

ando a acuracia no conjunto de teste, além do seu F1-Score.

4.5.1

Modelos Classicos

Os modelos classicos a serem treinados sdo: Arvores de Decisdo, Random Forest
e XGBoost. Os dois primeiros modelos estdo desenvolvidos na biblioteca Scikit-Learn
(PEDREGOSA et al., 2011), enquanto o XGBoost possui uma biblioteca prépria para

sua utilizacdao (CHEN; GUESTRIN, 2016).

Os treinamentos dos modelos classicos foram feitos de forma simples, utilizando as
configuracdes padrdes das bibliotecas, apenas modificando para “balanceado” a op-

30

cao class_weight. Esta opgao foi escolhida para garantir que todas as classes tenham
0 mesmo peso, desconsiderando o desbalanceamento dos dados. Os resultados des-
ses testes serdo considerados como um limite inferior de desempenho para este pro-
blema, ja4 que o formato do mapa & desconsiderado ao fazer o pré-processamento
necessario.

4.5.2 Modelos de Visao Computacional

Este grupo de testes consiste nos modelos: AlexNet (KRIZHEVSKY; SUTSKE-
VER; HINTON, 2012) e ResNet-18 (HE et al., 2015), onde iremos verificar o desem-
penho de modelos de Redes Neurais Convolucionais conhecidos em tarefas de clas-
sificagdo de imagens. Os resultados destas arquiteturas sdo avaliadas para verificar
se a presencga de camadas de convolu¢do causam uma melhora no desempenho em
comparacao aos modelos classicos.

Os treinamentos dos modelos de visao computacional foram feitos por 50 épocas,
usando um Learning Rate de 0,01 e tamanho de batch igual a 8. Além disso, € ve-
rificado se a utilizagdo de modelos pré-treinados retornam melhores resultados neste
problema. Todos os testes destes modelos foram feitos utilizando a biblioteca Py Torch
(PASZKE et al., 2019), que ja possui todos esses recursos desenvolvidos.

4.5.3 Modelos Desenvolvidos

A etapa final de testes consiste nos modelos desenvolvidos para este trabalho,
onde sera avaliado qual pré-processamento obtém o melhor resultado, além de qual
quantidade de camadas de convolucdo é melhorar para solucionar o problema da
predicao de dificuldade.

A grande maioria dos testes ser4 feito na tentativa de obter os melhores resultados
de acuracia e F1-Score nos nossos modelos. Para isso, sera avaliado os resultados
com diversos parametros diferentes, testando diferentes Learning Rates e quantidade
de épocas. Além disso, sera verificado as diferengas no desempenho entre dados néao
balanceados, utilizando técnicas de oversample e balanceando os pesos das classes.

Por fim, o melhor modelo encontrado tera uma analise mais completa, avaliando as
predicdes de dificuldade de cada classe individualmente. Isto sera feito com a utiliza-
¢éo da biblioteca Scikit-Learn (PEDREGOSA et al., 2011), onde podemos recuperar
informacdes sobre precisao e recall nos dados de teste (HOSSIN; SULAIMAN, 2015),
além da impressao da matriz de confusdo dos dados (TING, 2010).

5 RESULTADOS

Neste capitulo serd apresentado os resultados dos testes apresentados na meto-
dologia, sendo dividido em trés secdes: testes dos modelos classicos, modelos de
visdo computacional e modelos desenvolvidos.

5.1 Modelos Classicos

Os primeiros resultados obtidos para predigédo de dificuldade foram utilizando os
modelos classicos. Os modelos de Arvores de Decisdo e XGBoost obtiveram resul-
tados bem proximos, tanto de acuracia quanto de F1-Score, onde o segundo modelo
teve uma pequena vantagem em ambas as métricas. Entretanto, o modelo de Ran-
dom Forest conseguiu cerca de 6% mais de acuracia e F1-Score, obtendo 70,9% e
69,8%, respectivamente. Os modelos de Random Forest e XGBoost utilizam técnicas
de ensemble, onde os resultados de multiplos modelos gerados sao utilizados para se
chegar ao resultado final. Apesar de o XGBoost possuir uma capacidade de ter me-
Ihores resultados, 0 Random Forest consegue generalizar com mais facilidade quando
utilizados os parametros padrdes das bibliotecas (BENTEJAC; CSORGO; MARTINEZ-
MUNOZ, 2019). Os resultados das métricas para cada um dos modelos pode ser
encontrado na Tabela 5.

Tabela 5 — Resultados de acuracia e F1-Score dos modelos classicos

Modelo Acuracia (%) F1-Score (%)
Arvores de Decisao 64.4 62.6
Random Forest 70.9 69.8
XGBoost 64.6 63.2

5.2 Modelos de Visao Computacional

Com os resultados preliminares dos modelos classicos, ja podemos ter uma base
de valores a serem batidos pelos modelos de visdo computacional. Nesta secéo,

32

serd avaliado os modelos AlexNet (KRIZHEVSKY; SUTSKEVER; HINTON, 2012) e
ResNet-12 (HE et al., 2015).

5.2.1 AlexNet

Para os testes iniciais da AlexNet, foi treinando o modelo por 50 épocas utilizando
um Learning Rate de 0.01, avaliando seu desempenho com e sem pré-treinamento. A
Tabela 6 contém os resultados destes testes e pode ser verificado que o modelo sem
pré-treinamento obteve um desempenho superior ao modelo pré-treinado. Isto pode
ocorrer pois o pré-treinamento é feito em cima de dados com dominio muito diferentes
do que o nosso trabalho propdem (KRIZHEVSKY; SUTSKEVER; HINTON, 2012).

Tabela 6 — Resultados de acuracia e F1-Score do modelos AlexNet com pré-treino e sem pré-
treino.

AlexNet Acuracia (%) F1-Score (%)

Com pré-treino 71.9 70.8
Sem pre-treino 75.8 74.2

5.2.2 ResNet-12

Devido ao ganho dos resultados do modelo AlexNet sem o pré-treinamento, foi de-
cidido fazer o treinamento do modelo ResNet-12 apenas desta maneira. O modelo
ResNet-12 obteve resultados inferiores aos testes anteriores, adquirindo uma acura-
cia de 73,6% e um F1-Score de 72.4%. Estes resultados podem indicar o mesmo
comportamento dos modelos classicos, onde um modelo mais simples possui uma
capacidade de generalizacdo melhor.

5.3 Modelos Desenvolvidos

Os primeiros testes feitos nos modelos desenvolvidos tem como objetivo verificar
qual pré-processamento garante os melhores resultados. Sendo assim, foi avaliado
seis treinamentos diferentes, que podem ser observados na Tabela 7. Todos os mo-
delos foram treinados por 500 épocas, utilizando um learning rate de 0,01 e tamanho
de batch igual a 8. Nestes testes, foi verificado a acuracia das combinacdes de pré-
processamento de “camada unica” e “informacao por camada”, com as trés quantida-
des de camadas de convolucgao.

33

Tabela 7 — Comparacao dos resultados de acuracia dos modelos desenvolvidos treinados por
500 épocas, com learning rate de 0.01, com os dois pré-processamentos e quantidade dife-
rentes de camadas de convolugéo.

Pré-Processamento Camadas de Convolucao Acuracia (%)

Camada unica 1 64.3
Camada unica 2 71.5
Camada unica 3 69.1
Informacgéo por camada 1 74.5
Informacao por camada 2 74.8
Informacao por camada 3 75.6

Neste teste, foi observado que os dados pré-processados por “informacao por
camada” obtiveram os melhores resultados de acuracia em comparagdo a “camada
unica” em qualquer uma das quantidades de camadas de convolucdo. Na avaliagdo
de apenas uma camada de convolucao, o pré-processamento de “informacéo por ca-
mada” teve a maior diferenca de acuracia, chegando a mais de 10% de ganho. Devido
a esses resultados, todos os testes posteriores utilizardo apenas o pré-processamento
de “informagé&o por camada”.

Ja nesta segunda rodada de testes, é feito o treinamento pelo mesmo numero de
épocas e mesmo learning rate, s6 que verificando a diferenga dos resultados utili-
zando técnicas de balanceamento dos dados. Os resultados desses testes pode ser
encontrado na Tabela 8. Como pode ser observado, a utilizagdo do balanceamento
dos dados nado garantiu resultados melhores que os testes anteriores, onde todos os
seus testes resultaram em uma acuracia préxima de 73%. Apesar de nao ficar com
resultados muito abaixo, é possivel verificar que nao aplicar balanceamento nos dados
garante modelos mais acurados em todas as arquiteturas avaliadas. Entretanto, todos
os dados balanceados obtiveram resultados muito proximos, o que permite mais uma
rodada de testes para avaliacao.

Como os resultados dos balanceamento de dados n&o tiveram uma grande vari-
acao de acuracia, os mesmos testes serdo refeitos com o aumento do learning rate
para 0,1. Esta informacao pode ser encontrada na Tabela 9, que apresenta dados sem
nenhuma melhora em relacédo aos testes anteriores. Aqui podemos observar que 0s
modelos tiveram resultados mais variados e piores que utilizando um learning rate me-
nor, o que pode indicar que o modelo esteja comecando a dar “overfit” ao conjunto de
treinamento ou que este learning rate seja alto demais para essas arquiteturas. Vale
notar que o teste de melhor resultado foi utilizando apenas uma camada de convolu-
cao e balanceando pelo peso nas classes, alcangando 72.6% de acuracia. Entretanto,
o modelo com o pior resultado em acuracia nos testes utilizando learning rate de 0,01
continua sendo superior a este, 0 que leva a conclusdao que o balanceamento dos

34

Tabela 8 — Comparacao dos resultados de acuracia dos modelos desenvolvidos treinados por
500 épocas, com learning rate de 0.01, com pré-processamento de “informagéo por camada”,
quantidade diferentes de camadas de convolugao e diferentes métodos de balanceamento dos
dados.

Camadas de Convolucao Balanceamento dos Dados Acuracia (%)

1 Nenhum 74.5
Peso nas classes 73.1

Oversample 73.3

2 Nenhum 74.8
2 Peso nas classes 73.1
2 Oversample 73.5
3 Nenhum 75.6
3 Peso nas classes 72.9
3 Oversample 73.3

Tabela 9 — Comparacao dos resultados de acuracia dos modelos desenvolvidos treinados por
500 épocas, com learning rate de 0.1, com pré-processamento de “informacao por camada”,
quantidade diferentes de camadas de convolugéao e diferentes métodos de balanceamento dos

dados.

Camadas de Convolucao Balanceamento dos Dados Acuracia (%)

1 Nenhum 72.0
1 Peso nas classes 72.6
1 Oversample 72.2
2 Nenhum 71.4
2 Peso nas classes 68.6
2 Oversample 71.7
3 Nenhum 70.0
3 Peso nas classes 71.9
3 Oversample 721

35

dados nestas arquiteturas nao é vantajoso.

Como tentativa para melhorar os resultados dos melhores modelos, sera feito uma
ultima rodada de testes, retornando o learning rate para 0.01 mas aumentando o nu-
mero de épocas para 1000. Além disso, como agora estamos comparando apenas
trés modelos, € adicionado a métrica de F1-Score para possuirmos mais informacdes
do desempenho desses modelos. Os resultados deste ultimo teste podem ser encon-
trados na Tabela 10. Aqui podemos conferir que 0 aumento de épocas nao causaram
retorno de acuracia aos modelos avaliados, podendo ser observado uma perda de de-
sempenho em todas as arquiteturas. Estes resultados podem indicar novamente que
os modelos estdo caminhando em dire¢do ao “overfit” dos dados, devido a perda de
acuracia no conjunto de teste.

Tabela 10 — Comparacédo dos resultados de acuracia e F1-Score dos modelos desenvolvi-
dos por 1000 épocas, com learning rate de 0.1, com pré-processamento de “informacao por
camada”, quantidade diferentes de camadas de convolugao e diferentes métodos de balance-
amento dos dados.

Camadas de Convolucao Acuracia (%) F1-Score (%)

1 73.5 72.2
2 74.2 72.8
3 73.2 72.2

Com os resultados obtidos neste trabalho, podemos verificar que o teste com me-
lhores resultados de acuracia foi utilizando uma arquitetura de trés camadas de con-
volucdo, sem balanceamento dos dados, sendo treinado por 500 épocas e learning
rate de 0,01. Considerando este modelo como a melhor arquitetura para solucionar o
problema de predicao de dificuldade, sera feito uma analise mais profunda sobre seus
resultados.

Uma maneira simples de avaliar o desempenho de um modelo de aprendizado de
maquina em problemas de classificacao é utilizando o método chamado “Relatoério de
Classificagao” da biblioteca Scikit-Learn (PEDREGOSA et al., 2011). Este método
retorna a avaliagdo de algumas métricas, comparando os resultados preditos pelo
modelo em comparacao aos resultados reais. As métricas utilizadas sdo as seguintes
(HOSSIN; SULAIMAN, 2015):

 Precisao - Habilidade do classificador identificar apenas as instancias corretas
de cada classe.

» Recall - Habilidade do classificador em encontrar todas as respostas corretas de
cada classe.

» F1-Score - média harménica da precisao e sensibilidade.

36

» Quantidade - numero de ocorréncias da classe no conjunto de teste.

A impressao do relatério de classificacao do melhor modelo desenvolvido pode
ser verificado na Tabela 11. Com estas informacdes, podemos ter uma percepcao
mais completa do desempenho do modelo. Como pode ser observado, a classe de
dificuldade que o modelo possui maior facilidade de deteccéo é a “Muito Facil”, onde
91% desses mapas foram classificados corretamente. Outro ponto de destaque € a
dificuldade “Facil”, onde o0 modelo obteve 78% de precisao nos acertos, o que pode ser
causado por ser a classe com maior quantidade de exemplos de treino e teste. Além
disso, as classes “Médio” e “Dificil” tiveram os piores resultados, obtendo um F1-Score
de 68% e 62%, respectivamente. Entretanto, apesar da dificuldade “Muito Dificil” ser a
com menor quantidade de exemplos para testes, ela conseguiu uma precisao préxima
das duas melhores classes. Com estes resultados, podemos supor que 0 modelo tem
mais facilidade em classificar as dificuldades em cada extremo e tendo problemas para
decidir as dificuldades préximas de “Médio”.

Tabela 11 — Relatério de Classificacdo do melhor modelo desenvolvido.

Dificuldade Precisao (%) Recall (%) F1-Score (%) Quantidade

Muito Facil 77 91 83 541
Facil 78 76 77 831
Medio 70 67 68 578
Dificil 64 61 62 442
Muito Dificil 77 70 73 367

Uma maneira de poder verificar como estao distribuidos os erros e acertos do mo-
delo é através de uma Matriz de Confusdo (TING, 2010). Esta representacdo dos
resultados permite avaliar como ficou cada uma das predi¢cdes do modelo, indicando
onde o mesmo errou e como foi este erro. A ilustracdo da Matriz de Confusdo do
melhor modelo desenvolvido pode ser encontrada na Figura 10. Aqui podemos ob-
servar o que foi suposto pelo Relatorio de Classificagdo, onde pode ser verificado que
as classes nos extremos tem mais facilidade de acertar, principalmente a dificuldade
“Muito Facil”. Além disso, é possivel verificar que os erros nas outras classes se en-
contram principalmente nas dificuldades adjacentes, o que é uma boa indicagdo da
capacidade do modelo em predizer a dificuldade de um mapa.

Por fim, € valido ressaltar que o modelo AlexNet obteve uma acuracia superior ao
melhor modelo desenvolvido, o que € uma indicacédo que esta rede seria melhor para
solucionar o nosso problema. Entretanto, a diferenca € de apenas 0.2% de ganho no
conjunto de teste e levando um tempo de treinamento superior aos nossos modelos
desenvolvidos. Ao fim deste trabalho, no capitulo de Apéndice, é possivel verificar

=
o
& 57
9.31%
2
=
=
—
o 5
= 272%
(]
=
L= 3
5w 0.11%
E =
= 0
=
= 0.00%
—
]
= o
e 0.00%
=
=
i
MUITD DIFICIL

Figura 10 — Matriz de confusao do melhor modelo desenvolvido.

3.01%

971%

2.36%

2
0.07%

0.00%

L
DIFICIL

20
0.72%

319%

Al
MEDIC
Valor Predito

0.18%

0.36%

N
FACIL

2
0.07%

0.04%

MUITD FACIL

600

500

400

300

- 200

-100

37

38

o Relatério de Classificagcdo na Tabela 12 e a matriz de confusdo dos resultados da
AlexNet na Figura 11.

6 CONCLUSAO

Esse trabalho apresentou uma maneira de avaliar a dificuldade de mapas de jogos
Match-Three utilizando Redes Neurais Convolucionais, sem a necessidade de simu-
lacdo de multiplas jogadas. Com os diversos testes dos modelos criados, foi possivel
fazer uma analise da dificuldade de uma fase apenas observando seu formato e seus
objetivos, alcancando uma acuracia de 75,6%. O melhor resultado do modelo foi em
prever mapas de dificuldade “Muito Facil”, obtendo uma Precisdo de 77%, Recall de
91% e F1-Score de 83%.

Em comparagéo aos trabalhos relacionados, 0 modelo proposto possui a vantagem
em tempo de processamento, pois retira a necessidade de simular o mapa inimeras
vezes para recuperar seu desempenho médio. Entretanto, analisando a acuracia dos
resultados, esta comparagédo nao € possivel, pois outros trabalhos tentam predizer o
exato valor de desempenho médio humano, enquanto este trabalho ataca o problema
avaliando a dificuldade em diferentes categorias. Além disso, a métrica usada para
dificuldade nédo é equivalente aos outros trabalhos, que utilizam a porcentagem de
vitérias enquanto este trabalho utilizou a porcentagem de objetivos completados.

Analisando os resultados do melhor modelo desenvolvido, foi possivel avaliar que
0 mesmo possui uma boa légica para predizer as dificuldades, onde a grande mai-
oria dos seus erros se encontram nas dificuldades adjacentes da correta. Este erro
pode ser causado pelos motivos que a métrica de desempenho médio nao é um valor
completamente confiavel, pois seu resultado é gerado em um numero de cem simu-
lacGes, podendo causar variagbes que podem levar a uma dificuldade classificada
diferente. Para tentar sanar tal problema, uma nova leva de testes podem ser feitos ao
desempenho médio humano, calculando esta métrica através de um namero maior de
simulagbes. Além disso, a divisdo em um numero menor de dificuldades poderia facili-
tar o modelo em agrupar os mapas nas classes corretamente ou até mesmo trabalhar
com intervalos com distancias distintas.

Por fim, a possibilidade de se avaliar mapas com dados de jogadores reais cau-
saria resultados mais confiaveis, o que permite um melhor estudo de como melhorar
o desempenho dos modelos nesta tarefa. Além disso, uma etapa seguinte para este

40

projeto seria a predicdo do valor real da dificuldade, trabalhando como um problema
de regressdo. Desta maneira, seria possivel aplicar uma modificagdo no proprio gera-
dor de mapas desenvolvido em Burtet (2019), possibilitando a criacdo de conteudo de
forma mais rapida e dinamica, além de uma possivel validacao do conteudo gerado
manualmente, sem a necessidade de testes com jogadores reais.

REFERENCIAS

AGARAP, A. F. Deep learning using rectified linear units (relu). arXiv preprint ar-
Xiv:1803.08375, [S.l.], 2018.

Bejeweled Wiki | Fandom. Captura de tela de Bejeweled. [Online; acessado 10 de
marco, 2021]. Disponivel em: <https://bejeweled.fandom.com/wiki/Bejeweled>.

BENTEJAC, C.; CSORGO, A.; MARTINEZ-MUNOZ, G. A Comparative Analysis of
XGBoost. CoRR, [S.l.], v.abs/1911.01914, 2019.

BOVIK, A. C. Chapter 3 - Basic Gray Level Image Processing. In: BOVIK, A. (Ed.). The
Essential Guide to Image Processing. Boston: Academic Press, 2009. p.43-68.

BROWNE, C. B. et al. A Survey of Monte Carlo Tree Search Methods. IEEE Tran-
sactions on Computational Intelligence and Al in Games, [S.l.], v.4, n.1, p.1-43,
mar 2012.

BURTET, J. Geracao Procedural de Mapas para Jogos Match-Three. 2019. Bache-
lor's thesis — Universidade Federal de Pelotas (UFPEL).

CHEN, T.; GUESTRIN, C. XGBoost: A Scalable Tree Boosting System. In: ACM
SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND
DATA MINING, 22., 2016, New York, NY, USA. Proceedings... ACM, 2016. p.785—
794. (KDD ’16).

DENISOVA, A.; GUCKELSBERGER, C.; ZENDLE, D. Challenge in Digital Games:
Towards Developing a Measurement Tool. In: CHI CONFERENCE EXTENDED ABS-
TRACTS ON HUMAN FACTORS IN COMPUTING SYSTEMS, 2017., 2017, New York,
NY, USA. Proceedings... Association for Computing Machinery, 2017. p.2511-2519.
(CHI EA’17).

Gudmundsson, S. F. et al. Human-Like Playtesting with Deep Learning. In: IEEE CON-
FERENCE ON COMPUTATIONAL INTELLIGENCE AND GAMES (CIG), 2018., 2018.
Anais... [S.l.: s.n.], 2018. p.1-8.

42

HE, K.; ZHANG, X.; REN, S.; SUN, J. Deep Residual Learning for Image Recognition.
CoRR, [S.1.], v.abs/1512.03385, 2015.

HOSSIN, M.; SULAIMAN, M. A review on evaluation metrics for data classification eva-
luations. International Journal of Data Mining & Knowledge Management Process,
[S.L], v.5,n.2, p.1, 2015.

IOSUP, A. POGGI: generating puzzle instances for online games on grid infrastruc-
tures. Concurrency and Computation: Practice and Experience, [S.l.], v.23, n.2,
p.158-171, 2011.

JUUL, J. SWAP ADJACENT GEMS TO MAKE SETS OF THREE: A HISTORY OF
MATCHING TILE GAMES. ARTIFACT, [S.l.], v.1, p.205-216, 12 2007.

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. ImageNet Classification with Deep
Convolutional Neural Networks. In: PEREIRA, F.; BURGES, C. J. C.; BOTTOU, L.;
WEINBERGER, K. Q. (Ed.). Advances in Neural Information Processing Systems
25. [S.L.]: Curran Associates, Inc., 2012. p.1097-1105.

MUSIL, S. Candy Crush Saga tops iTunes app download list for 2013 -
CNET. Disponivel em: <https://www.cnet.com/news/candy-crush-saga-tops-itunes-
app-download-list-for-2013/>. Acesso em: 2019-04-23.

PASZKE, A. et al. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In: WALLACH, H. et al. (Ed.). Advances in Neural Information Processing
Systems 32. [S.|.]: Curran Associates, Inc., 2019. p.8024-8035.

PEDREGOSA, F. et al. Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research, [S.l.], v.12, p.2825-2830, 2011.

POROMAA, E. R. Crushing Candy Crush : Predicting Human Success Rate in a Mo-
bile Game using Monte-Carlo Tree Search. 2017. Dissertacdo (Mestrado em Ciéncia
da Computagcédo) — KTH, School of Computer Science and Communication (CSC).

SILVER, D. et al. Mastering the game of Go without human knowledge. Nature, [S.1.],
v.550, p.354—, Oct. 2017.

SRIVASTAVA, N. et al. Dropout: a simple way to prevent neural networks from overfit-
ting. Journal of Machine Learning Research, [S.|.], v.15, n.1, p.1929-1958, 2014.

STEVEN, R. Creating Candy Crush: Behind the scenes at King’s Stockholm
studio. Disponivel em: <https://www.creativereview.co.uk/creating-candy-
crush/?fbclid=IwAR3JLA5qTCFgxi9ycGDCgn6zVwhXCXwCNMUrInX
KORLzznCJvpMg1UhDXNk>. Acesso em: 2019-04-23.

43

TING, K. M. Confusion Matrix. In: SAMMUT, C.; WEBB, G. I. (Ed.). Encyclopedia of
Machine Learning. [S.l.]: Springer, 2010. p.209.

UMESH, P. Image Processing in Python. CSI Communications, [S.l.], v.23, 2012.

WEBSTER, A. Half a billion people have installed ’Candy Crush Saga’ - The
Verge. Disponivel em: <https://www.theverge.com/2013/11/15/5107794/candy-crush-
saga-500-million-downloads>. Acesso em: 2019-04-23.

Apéndices

APENDICE A — Resultados completos do modelo AlexNet

Tabela 12 — Relatério de Classificacdo da AlexNet

Dificuldade Precisao (%) Recall (%) F1-Score (%) Quantidade
Muito Facil 84 90 87 541
Facil 81 81 81 831
Médio 71 69 70 578
Dificil 61 61 61 442
Muito Dificil 75 70 72 367

i r=yl 95 15]]

=] 1 931% 344% 0.54% 0.00% 0.00% B00

5

=

=

= 500

N 82 269 81 g 0

o 301% 9.75% 294% 0.33% 0.00%

E

400

E 1 3 72
5 g 011% 261%
Sy - 300

= - ! ¥ 5 - 200

% 0.04% 0.14%

-100

o 0 0

S 0.00% 0.00%

b

2 0

E MUITO IDIF[«CIL DIFIlCIL MEbID FA‘IZIL MUITO FACIL

Valor Predito

Figura 11 — Matriz de confusdo do modelo AlexNet

45

	Introdução
	Trabalhos Relacionados
	Predição do desempenho humano médio
	Geração de Mapas para Jogos Match-Three
	Predição da jogada mais humana

	Objetivo
	Objetivo Específicos
	Dataset de mapas
	Desenvolvimento de modelos
	Comparação e análise dos resultados

	Metodologia
	Geração dos Exemplos
	Rotulamento
	Pré-processamento
	Modelos Clássicos
	Modelos de Visão Computacional
	Modelos Desenvolvidos

	Arquiteturas dos Modelos Desenvolvidos
	Treinamento dos Modelos
	Modelos Clássicos
	Modelos de Visão Computacional
	Modelos Desenvolvidos

	Resultados
	Modelos Clássicos
	Modelos de Visão Computacional
	AlexNet
	ResNet-12

	Modelos Desenvolvidos

	Conclusão
	Referências
	Resultados completos do modelo AlexNet

