

UNIVERSIDADE FEDERAL DE PELOTAS

Centro de Desenvolvimento Tecnológico

Programa de Pós-Graduação em Computação

Tese

Heuristic-based Algorithms and Hardware Designs for

Fast Intra-picture Prediction in AV1 Video Coding

Marcel Moscarelli Corrêa

Pelotas, 2023.

2

MARCEL MOSCARELLI CORRÊA

Heuristic-based Algorithms and Hardware Designs for

Fast Intra-picture Prediction in AV1 Video Coding

Ph.D. Thesis submitted to the Graduate Program in

Computing of the Federal University of Pelotas as

partial requirement for the degree of Doctor of

Philosophy.

Advisor: Luciano Volcan Agostini, Ph.D.

Co-advisors: Guilherme Ribeiro Corrêa, Ph.D.

 Daniel Munari Palomino, Ph.D.

Pelotas, 2023.

3

Universidade Federal de Pelotas / Sistema de Bibliotecas

Catalogação na Publicação

Elaborada por Maria Inez Figueiredo Figas Machado CRB: 10/1612

C823h Corrêa, Marcel Moscarelli

Heuristic-based algorithms and hardware designs for

fast intra-picture prediction in AV1 video coding / Marcel

Moscarelli Corrêa ; Luciano Volcan Agostini, orientador ;

Guilherme Ribeiro Corrêa, Daniel Munari Palomino,

coorientadores. — Pelotas, 2023.

126 f. : il.

Tese (Doutorado) — Programa de Pós-Graduação em

Computação, Centro de Desenvolvimento Tecnológico,

Universidade Federal de Pelotas, 2023.

1. Codificação de vídeo. 2. Predição intra. 3. Decisão de

modo. 4. AV1. 5. Arquitetura em hardware. I. Agostini,

Luciano Volcan, orient. II. Corrêa, Guilherme Ribeiro,

coorient. III. Palomino, Daniel Munari, coorient. IV. Título.

CDD : 005

4

Marcel Moscarelli Corrêa

Heuristic-based Algorithms and Hardware Designs for

Fast Intra-picture Prediction in AV1 Video Coding

Tese aprovada como requisito parcial para obtenção do grau de Doutor em Ciência

da Computação no Programa de Pós-Graduação em Computação da Universidade

Federal de Pelotas.

Data da Defesa: 14 de fevereiro de 2023.

Banca examinadora:

Prof. Dr. Luciano Volcan Agostini (Orientador)

Doutor em Ciência da Computação pela Universidade Federal do Rio Grande do Sul

Prof. Dr. Guilherme Ribeiro Corrêa (Coorientador)

Doutor em Engenharia Eletrotécnica e de Computadores pela Universidade de

Coimbra

Prof. Dr. Daniel Munari Palomino (Coorientador)

Doutor em Ciência da Computação pela Universidade Federal do Rio Grande do Sul

Prof. Dr. Nuno Filipe Valentim Roma

Doutor em Engenharia Eletrotécnica e de Computadores pelo Instituto Superior

Técnico

Prof. Dr. Gustavo Freitas Sanchez

Doutor em Ciência da Computação pela Pontifícia Universidade Católica do Rio

Grande do Sul

Prof. Dr. Wagner Ishizaka Penny

Doutor em Ciência da Computação pela Universidade Federal de Pelotas

Prof. Dr. Marilton Sanchotene de Aguiar

Doutor em Ciência da Computação pela Universidade Federal do Rio Grande do Sul

5

Agradeço às instituições públicas de ensino

pela educação gratuita e de qualidade

que me foi fornecida.

6

“Sob os ventos da redemocratização, dizíamos:

ditadura nunca mais!

Hoje, depois do terrível desafio que superamos, devemos dizer:

democracia para sempre!”

(Lula)

7

RESUMO

CORRÊA, Marcel Moscarelli. Heuristic-based Algorithms and Hardware Designs
for Fast Intra-picture Prediction in AV1 Video Coding. 2023. 126f.
Tese (Doutorado em Ciência da Computação) – Programa de Pós-Graduação em
Computação. Universidade Federal de Pelotas, Pelotas.

A codificação de vídeo para fins de compressão é indispensável para qualquer
aplicação ou serviço baseado na manipulação de vídeos digitais. Sem compressão,
conteúdo de vídeo digital moderno requer uma quantidade proibitiva de dados.
Um formato de codificação de vídeo define o formato de representação do conteúdo
de vídeo em uma forma comprimida, para ser utilizada de maneira conveniente para
armazenamento e transmissão. Formatos de vídeo são tipicamente padronizados e
têm codificadores e decodificadores de vídeo desenvolvidos para eles, implementados
tanto em software quanto em hardware. Esta tese apresenta algoritmos apropriados
para implementação em hardware, capazes de reduzir o número de operações
associadas à etapa de decisão de modo da predição intraquadros em um codificador
de vídeo, que é um dos módulos do codificador que mais consome recursos de
processamento. Ainda, esta tese também apresenta arquiteturas em hardware que
implementam os algoritmos propostos, otimizadas para baixa potência dissipada e alta
eficiência energética. Todas as soluções de software e hardware descritas nesta tese
têm como alvo o formato AOMedia Video 1 (AV1), que é o estado da arte em formatos
de vídeo abertos e livres de royalties. Todos os algoritmos propostos foram testados
no software de referência do codificador AV1, utilizando-se condições comuns de teste
deste campo de pesquisa, e todas as arquiteturas de hardware foram descritas em
VHDL e sintetizadas para tecnologia TSMC 40nm. Os resultados de eficiência de
compressão e tempo de codificação dos algoritmos propostos e, também,
os resultados de custo em portas lógicas e consumo de energia das arquiteturas de
hardware, confirmam que as soluções desenvolvidas durante este projeto de
doutorado atendem as demandas das tecnologias atuais de vídeo, como a codificação
de resoluções Ultra-High Definition (UHD) em alta velocidade e alta qualidade visual.

Palavras-chave: Codificação de vídeo; predição intra; decisão de modo; AV1;
arquitetura em hardware.

8

ABSTRACT

CORRÊA, Marcel Moscarelli. Heuristic-based Algorithms and Hardware Designs
for Fast Intra-picture Prediction in AV1 Video Coding. 2023. 126f.
Thesis (Ph.D. in Computer Science) – Graduate Program in Computing. Federal
University of Pelotas, Pelotas.

Video coding for compression purposes is paramount for any application or service
based on digital video. Without compression, modern digital content requires a
prohibitively large amount of data. A video coding format defines the format for video
content representation in a compressed form, to be used conveniently for storage or
transmission. Video formats are, typically, standardized and have video encoders and
decoders made for them, in both software and hardware. This thesis presents
hardware-friendly algorithms capable of reducing the number of operations of the video
encoder mode decision process in the intra-picture prediction module, one of its most
time-consuming modules. Additionally, it also presents intra-picture prediction
hardware designs, optimized for both low power and high energy efficiency,
implementing the proposed algorithms. All software and hardware solutions described
in this thesis target the AOMedia Video 1 (AV1) format, which is state-of-the-art in
open-source and royalty-free video coding. All algorithms proposed were evaluated in
the AV1 reference software using common test conditions, and all hardware designs
were described in VHDL and synthesized to TSMC 40nm standard-cells technology.
The encoding efficiency and encoding time results for the proposed algorithms, as well
as the gate count and energy consumption results for the hardware designs, confirm
that solutions developed during this Ph.D. project meet the requirements of current
video technology, such as coding of Ultra-High Definition (UHD) resolutions at high
speeds and high visual quality.

Keywords: Video coding; intra prediction; mode decision; AV1; hardware design.

9

LIST OF FIGURES

Figure 1 Example of the RGB (left) and YCbCr (right) channels separated. Picture:
John Moulton Barn (Public domain) .. 28

Figure 2 Diagram of a typical hybrid block-based video coder 32

Figure 3 AV1 10-way block partitioning tree. The numbers inside each final
subpartition (in blue) indicate the order these will be processed by the following stages
(raster scan). The name of each partition mode is shown below blocks 33

Figure 4 Example of frame partitioning of the test sequence Crosswalk (Property of
Netflix Inc. and licensed under CC BY-NC-ND 4.0) ... 34

Figure 5 Left: Luminance frame of the test sequence Akiyo (Property of Stadium
Inc.). Middle: Same frame predicted with 8×8 AV1 intra prediction modes. Right:
Residual information obtained ... 36

Figure 6 Top: Input image. Bottom: Residual information of the same image after
AV1 intra prediction ... 37

Figure 7 Block of size 8×4 to be predicted using reference arrays of size 13 41

Figure 8 DC algorithm for when all reference samples are available 43

Figure 9 Example of DC predictions for a block of size 4×4 when (a) all samples
are available, (b) only left samples are available, (c) only top samples are available,
and (d) no samples are available .. 44

Figure 10 Paeth algorithm .. 44

Figure 11 Example of a Paeth prediction ... 45

Figure 12 Smooth Vertical algorithm .. 45

Figure 13 Smooth Horizontal algorithm ... 45

Figure 14 Example of predictions using the Smooth mode (left), Smooth Vertical
mode (middle), and Smooth Horizontal mode (right) ... 46

Figure 15 RBF algorithm for a single 4×2 patch .. 47

Figure 16 Example of the four stages of an RBF prediction of an 8×4 block 47

Figure 17 Stages of the CFL algorithm .. 49

Figure 18 Nominal angles (black) and derived angles (blue) supported in AV1..... 50

Figure 19 Directional prediction algorithm for any prediction angle 51

Figure 20 Example of predictions using the nominal directional modes 53

Figure 21 Example of a prediction using the Color Palette mode for
an 8×8 block .. 54

Figure 22 Compound inter-intra prediction wedge masks 55

Figure 23 Compound inter-intra prediction mode-specific masks 56

10

Figure 24 PDBs adapted to the reduced size of 4×4. Each direction d is named after
an AV1 intra mode related to the same angle. The numbers inside each square identify
to which line k a sample belongs ... 67

Figure 25 Example of an 8×8 to 4x4 subsampling ... 68

Figure 26 Example of PDBs and calculation of the dominant direction, based on the
input block of the previous figure ... 69

Figure 27 Examples of RD-lists created from dominant direction 90, and best
adjacent direction 113 (left side) and 67 (right side) .. 71

Figure 28 Heat maps showing the average error of non-directional intra modes when
applied to blocks of size 16×16 ... 73

Figure 29 Heat maps showing the average error of nominal directional intra modes
when applied to blocks of size 16×16 .. 73

Figure 30 Left: 25% of the highest error positions are checked in the subsampling
mask. Right: 25% of the previously checked positions are unchecked uniformly and
redistributed uniformly in the empty area .. 75

Figure 31 Encoding efficiency loss and encoding time difference for different
threshold values, with Thr=15 showing the best trade-off ... 77

Figure 32 Encoding efficiency curves for 15 different parameter combinations 78

Figure 33 Intra prediction base design ... 82

Figure 34 Directional intra prediction design .. 83

Figure 35 Directional sample prediction unit, responsible for generating one
directional predicted sample from a pair of two reference samples 86

Figure 36 Non-directional intra prediction design ... 88

Figure 37 Smooth prediction multiplier unit or size 8 ... 89

Figure 38 One of the two shift-add trees used in the SPMU for size 8, highly
optimized for subexpression reuse and minimum tree depth 90

Figure 39 Prediction order of Smooth Vertical, Smooth Horizontal and Smooth
modes for blocks of size 4×4. In asymmetrical blocks, one of the modes will finish
before the others ... 90

Figure 40 Paeth calculation circuit. Bottom part is replicated 64 times 92

Figure 41 Paeth comparison circuit. This is replicated 64 times 92

Figure 42 DC Unit .. 93

Figure 43 Unified multifilter prediction unit ... 94

Figure 44 Prediction order of the Recursive-filtering-based multifilter unit for blocks
of size 4×4. If the block width is less than 64, two entire rows will be processed per
cycle, otherwise, two entire rows will be processed every two cycles 95

Figure 45 Example of an SSE tree of size 4 .. 98

11

Figure 46 Left: 2:1 comparator. Right: Simplified notation for the same circuit 98

Figure 47 66:1 comparator with seven levels of depth. Each color represents a level
of 2:1 comparators .. 99

Figure 48 Texture-based fast mode decision design ... 100

Figure 49 Processing unit for d=203, d=180 and d=157 101

Figure 50 14:1 comparator with four levels of depth .. 102

Figure 51 Example of 8×8 subsampling mask to be applied to an SSE tree 103

Figure 52 Intra prediction hardware design optimized with TdFMD and MaSBM 104

12

LIST OF TABLES

Table 1 Impact of individual intra prediction tools in an AV1 encoder
(CHUANG et al., 2022). ... 23

Table 2 Top-left reference sample derivation ... 42

Table 3 Above reference samples derivation .. 42

Table 4 Left reference samples derivation .. 42

Table 5 Contents of the SmoothCoefficients array according to each size 46

Table 6 Filter coefficients stored in the IntraFilterTaps array 48

Table 7 All the directional modes supported by AV1 and their
associated angles .. 50

Table 8 Possible values for the dx and dy variables in the
directional prediction ... 52

Table 9 Summary of AV1-related algorithmic optimization 58

Table 10 Summary of AV1-related hardware designs .. 60

Table 11 RD-list created for sharp blocks according to the dominant and best
adjacent directions .. 70

Table 12 Encoding efficiency and encoding time difference results for different HEA
and LEA combinations .. 78

Table 13 Encoding efficiency and time difference results for the integration of
TbFMD and MaSBM per sequence, per class and total .. 80

Table 14 Filter selector for AboveRow (only nominal modes are shown) 85

Table 15 Filter selector for LeftCol (only nominal modes are shown) 85

Table 16 List of coefficients used by the parallel multiplierless
multiplication units ... 95

Table 17 Finite state machine description of the shared control unit 97

Table 18 Synthesis results for the unoptimized non-directional
intra prediction module .. 106

Table 19 Synthesis results for the unoptimized directional intra
prediction module .. 106

Table 20 Synthesis results for the unoptimized SSE-based decision module 106

Table 21 Synthesis results for the unoptimized base design (total) 106

Table 22 Synthesis results for the TbFMD-optimized directional
intra prediction module .. 108

Table 23 Synthesis results for the TbFMD-optimized SSE-based
decision module .. 108

13

Table 24 Synthesis results for the TbFMD-MaSBM-optimized SSE-based
decision module .. 108

Table 25 Synthesis results for fully-optimized design (total) 109

Table 26 Detailed power results for the unoptimized and fully
optimized designs .. 109

Table 27 Test sequences used in the experiments conducted 122

14

LIST OF ACRONYMS AND ABBREVIATIONS

1-D One-dimensional

2-D Two-dimensional

3-D Three-dimensional

AC Alternate Current (transform coefficient)

ADST Asymmetrical Discrete Sine Transform

AOMedia Alliance for Open Media

ASIC Application-specific Integrated Circuit

AV1 AOMedia Video 1

AVC Advanced Video Coding (H.264, MPEG-4 Part 10 standard)

BD-BR Bjøntegaard Delta Bit Rate

CABAC Context-adaptive Binary Arithmetic Coding

CAVLC Context-adaptive Variable-length Coding

CDEF Constrained Directional Enhancement Filter

CFL Chroma from Luma

Codec Coder/Decoder

CMYK Cyan, Magenta, Yellow, Key (color model)

CTC Common Test Conditions

dB Decibel

DBF Deblocking Filter

DC Direct Current (transform coefficient)

DCT Discrete Cosine Transform

DFS Depth-first Search

DMPU Directional Mode Prediction Units

DSPU Directional Sample Prediction Units

DSGF Dual Self-Guided Filter

FHD 1080p Full High Definition (1920×1080 pixels)

flipADST Inverted ADST

15

FSM Finite State Machine

HD High Definition

HD 720p 1280×720 pixels

HEA High Error Area

HEVC High Efficiency Video Coding (H.265, MPEG-H Part 2 standard)

HTTP Hypertext Transfer Protocol

IDTX Identity Transform

IEC International Electrotechnical Commission

IP Internet Protocol

ISO International Organization for Standardization

ITU International Telecommunication Union

ITU-T ITU Telecommunication Standardization Sector

JVET Joint Video Experts Team

KLT Karhunen-Loeve Transform

LEA Low Error Area

LRF Loop Restoration Filter

MaSBM Mode-adaptive Subsampling in Block Matching

ME Motion Estimation

MPEG Moving Picture Experts Group

MPEG-2 MPEG-2 Video (H.262, MPEG-2 Part 2 standard)

MSE Mean Squared Error

PDB Perfectly Directional Blocks

PMMU Parallel Multiplierless Multiplication Units

PSNR Peak Signal-to-noise Ratio

RBF Recursive-based-filtering

RD Rate-distortion

RDO Rate-distortion Optimization

RGB Red, Green, Blue (color model)

16

RTL Register-transfer Level

SD Standard Definition

SAD Sum of Absolute Differences

SCC Screen Content Coding

SPMU Smooth Prediction Multiplication Unit

SSE Sum of Squared Errors

SSNWF Separable Symmetric Normalized Wiener Filter

SVM Support Vector Machine

TbFMD Texture-based Fast Mode Decision

TCP Transfer Control Protocol

TGM Text and Graphics with Motion

TSMC Taiwan Semiconductor Manufacturing Company

UHD Ultra-High Definition

UHD 4K 3840×2160 pixels

UHD 8K 7680×4320 pixels

UMPU Unified Multifilter Prediction Unit

VCEG Video Coding Experts Group

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VP8 Royalty-free video codec developed by On2 Technologies

VP9 Royalty-free video codec developed by Google Inc.

VP10 Unfinished royalty-free video codec developed by Google Inc.

VVC Versatile Video Coding (H.266, MPEG-I Part 3 standard)

YCbCr Luminance, Blue-difference chrominance and Red-difference

chrominance (color model)

17

CONTENTS

LIST OF FIGURES .. 9

LIST OF TABLES ... 12

LIST OF ACRONYMS AND ABBREVIATIONS ... 14

1 INTRODUCTION ... 20

1.1 Research Hypothesis ... 22

1.2 Main Contributions ... 24

1.3 Thesis Organization ... 24

2 VIDEO CODING BACKGROUND ... 26

2.1 Representation of Digital Videos .. 26

2.2 Redundancies in Digital Videos .. 28

2.3 Compression of Digital Videos .. 30

2.4 Distortion Metrics ... 30

2.5 Hybrid Block-based Video Encoder .. 32

2.5.1 Frame Partitioning .. 32

2.5.2 Prediction Stage ... 34

2.5.3 Transform Coding... 36

2.5.4 Quantization ... 38

2.5.5 Entropy Coding .. 38

2.5.6 In-loop Filtering .. 39

2.5.7 Mode Decision ... 39

3 AV1 INTRA-PICTURE PREDICTION .. 41

3.1 Reference Samples .. 41

3.2 Intra Prediction Modes ... 43

3.2.1 DC Mode .. 43

3.2.2 Paeth Mode .. 44

3.2.3 Smooth, Smooth Vertical and Smooth Horizontal Modes 45

3.2.4 Recursive-based-filtering (RBF) Modes ... 46

3.2.5 Chroma-from-Luma Mode .. 49

3.2.6 Directional Prediction Modes .. 50

18

3.2.7 Screen Content Prediction Modes .. 54

3.3 Compound Inter-intra Prediction .. 55

4 RELATED WORKS ... 57

4.1 AV1-related Algorithmic Optimization .. 57

4.2 AV1-related Hardware Designs ... 59

4.2.1 Designs for Intra Prediction .. 61

4.2.2 Designs for Inter Prediction .. 62

4.2.3 Designs for In-loop Filtering ... 63

4.2.4 Designs for Entropy Coding ... 64

4.3 Research Opportunities ... 64

5 HEURISTIC-BASED ALGORITHMS FOR AV1 INTRA-PICTURE PREDICTION. 66

5.1 Algorithm 1: Texture-based Fast Mode Decision (TbFMD) 66

5.1.1 Direction Detection Step ... 66

5.1.2 RD-list Creation Step .. 69

5.2 Algorithm 2: Mode-adaptive Subsampling in Block Matching (MaSBM) 71

5.2.1 Observation of SSE Error in Intra Prediction .. 72

5.2.2 Mode-adaptive SSE Subsampling Masks .. 74

5.3 Results and Discussion ... 76

5.3.1 Results for Algorithm 1: Texture-based Fast Mode Decision (TbFMD) 76

5.3.2 Results for Algorithm 2: Mode-adaptive Subsampling in Block Matching

(MaSBM) ... 77

5.3.3 Results for Algorithms 1 and 2 Combined .. 79

6 HARDWARE DESIGNS FOR AV1 INTRA-PICTURE PREDICTION 82

6.1 AV1 Directional Intra Prediction Design ... 83

6.1.1 Reference Sample Filtering Units ... 84

6.1.2 Reference Sample Upscaling Units .. 85

6.1.3 Directional Mode Prediction Units .. 85

6.2 Non-directional Intra Prediction Module ... 87

6.2.1 Smooth Vertical, Smooth Horizontal and Smooth Units 88

6.2.2 Paeth Unit .. 91

6.2.3 DC Unit ... 92

19

6.2.4 Recursive-based-filtering Multifilter Unit ... 94

6.3 Shared Control Unit .. 96

6.4 SSE-based Decision Design .. 97

6.5 Design Optimization with TdFDM and MaSBM Algorithms 99

6.5.1 TdFDM Optimization .. 99

6.5.2 MaSBM Optimization .. 102

6.6 Synthesis Results and Discussion ... 104

6.6.1 Results for the Base Intra Prediction Design .. 105

6.6.2 Results for the Optimized Intra Prediction Modules 107

7 CONCLUSIONS .. 110

REFERENCES .. 112

Appendix A – Experimental Setup ... 122

Appendix B – List of Published Papers During the Ph.D. Studies 124

20

1 INTRODUCTION

Internet-based video traffic has been pushing telecommunication infrastructures

to their limit because of the ever-increasing demand for video-based services, such as

social media, streaming, video conferencing, and cloud gaming. More recently, in

2019, the world started facing the SARS-CoV-2 pandemic, which led people to heavily

depend on video services for their work, educational and social routines more than

ever before.

According to Cisco Systems Inc. (2020), from 2017 to 2020, this type of traffic

grew 29% annually and was expected to reach 325 exabytes per month by the end of

2022, representing 82% of the global internet traffic. It was also expected that in 2022,

of all video traffic, 22.3% would be in Ultra-High Definition (UHD) resolutions, 56.8% in

High Definition (HD), and 20.9% in Standard Definition (SD) or lower. Furthermore, by

2023, two-thirds of the installed television sets are expected to be UHD-capable, up

from 33% in 2018. This will cause an even bigger impact on the infrastructure because

the increase in video definition causes a multiplicative effect on the data volume. For

example, a single UHD 4K (3640×2160 pixels) uncompressed frame has four times

more data than a Full HD 1080p (FHD) (1920×1080 pixels) frame, and the increase in

spatial resolution often comes paired with an increase in temporal resolution (frame

refresh rate), which also leads to a linear increase in data.

To address this, standardization bodies such as the Telecommunication

Standardization Sector of the International Telecommunication Union (ITU-T) and the

International Electrotechnical Commission (IEC) of the International Organization for

Standardization (ISO), have been developing video coding standards for decades, with

the Versatile Video Coding (H.266/VVC) (ITU-T, 2020; BROSS et al., 2021) being the

most efficient video coding standard developed. The H.266/VVC standard was

released in July 2020, coming from a long line of successful video coding standards

defined by a joint effort of the ISO/IEC MPEG (Moving Picture Experts Group) and the

ITU-T VCEG (Video Coding Experts Group) that includes the well-known High

Efficiency Video Coding (H.265/HEVC) (ITU-T, 2013; SULLIVAN et al., 2012),

Advanced Video Coding (H.264/AVC) (ITU-T, 2003; WIEGAND et al., 2003), and

MPEG-2 (ITU-T, 1995).

In recent years, the licensing for commercial use of such standards started to

become prohibitively expensive and exceedingly bureaucratic due to a large number

21

of patent holders associated to each standard, affecting even the largest companies,

as explained by Rosenberg (2015) on behalf of the Cisco Systems Inc.:

Unfortunately, the patent licensing situation for H.265 has recently taken a
turn for the worse. Two distinct patent licensing pools have formed so far, and
many license holders are not represented in either. There is just one license
pool for H.264. The total costs to license H.265 from these two pools is up to
sixteen times more expensive than H.264, per unit. H.264 had an upper bound
on yearly licensing costs, whereas H.265 has no such upper limit.

Motivated by this, companies started to look for royalty-free alternatives to the

standards. Indeed, the incredible growth of the internet is a consequence of its

founding core technologies being open and freely implementable (MUKHERJEE et al.,

2013), such as the HyperText Transfer Protocol (HTTP), Transfer Control Protocol

(TCP), and Internet Protocol (IP). Nowadays, however, digital video technology

became undeniably a central pillar of the internet experience, making free solutions for

video coding a subject of great relevance.

A notable example was the start of the WebM project and the acquisition by

Google Inc. of the company named On2 Technologies Inc., which originally developed

the VP8 (BANKOSKI et al., 2011; BANKOSKI; WILKINS; XU, 2011) coder/decoder

(codec), later releasing VP8 freely under the CC BY 3.0 license. The VP9 (GRANGE;

RIVAZ; HUNT, 2016; MUKHERJEE et al., 2013) format was later developed by Google

Inc., which is still used in various of Google’s own video services. In 2015, as Google

Inc. was working on a successor for VP9, called VP10, other companies were

developing their own royalty-free and open-source video codecs: Cisco Systems Inc.

and Mozilla Corporation were involved in the creation of Thor (BJØNTEGAARD et al.,

2016) and Daala (VALIN et al., 2016), respectively.

In the end, these three companies, together with eleven more companies, joined

efforts and founded the Alliance for Open Media (AOMedia) industry consortium, later

releasing the AOMedia Video 1 (AV1) (RIVAZ; HAUGHTON, 2019; HAN et al., 2021)

in June 2018, to be the state-of-the-art royalty-free video format. The AV1 is highly

based on features from all the unreleased VP10, Thor, and Daala codecs.

Several new coding tools were developed and enhanced in the next-generation

codecs (AV1 and H.266/VVC) to deal with the new requirements of video applications

and to provide high coding efficiency. These improvements include larger block sizes,

flexible block partitioning structures, a higher number of intra prediction modes,

the support of affine modes for inter prediction, more transform sizes and types,

22

improved implementations of quantization and entropy coding, more in-loop filters, and

many other novelties.

Even though both the AV1 and H.266/VVC can achieve a satisfactory

performance for current video content, this efficiency implicates a very high

computational effort. As a consequence, video encoding is an unfeasible task for

software solutions when real-time processing and high resolutions are desired, even

for high-end devices.

Moreover, in a world where most video-enabled devices are powered by

batteries, an efficient combination of hardware-friendly algorithms and Application-

specific Integrated Circuit (ASIC) designs is mandatory to produce low-power devices

and to allow for faster encoding and decoding speeds in video systems. Although

solutions of this type have been proposed for previous codecs, these cannot be used

directly in the current codecs without being redesigned to some extent.

1.1 Research Hypothesis

The current-generation video codecs, AV1 and H.266/VVC, outperform their

predecessors by a significant margin. According to experiments conducted by Nguyen

and Marpe (2018), AV1 shows an improvement of 23.4% when compared to VP9, and

H.266/VVC shows an improvement of 31.6% when compared to H.264/HEVC, both

measured in terms of Bjøntegaard Delta Bit Rate (BD-BR) (see Section 2.4).

Such improvements are due to the increased number of block sizes supported

by these codecs, and also due to the increased set of modes supported by different

stages of the coder. However, this also led to the growth of the combinatorial space,

making the encoder task of selecting the best modes drastically more complex.

Separate studies made by Saldanha et al. (2020) and Bossen et al. (2021) suggest

that the H.266/VVC reference software requires up to 27 times more computational

effort than the H.265/HEVC reference software, whilst a study made by Nguyen and

Marpe (2018) shows that the AV1 reference software requires up to 58 times more run

time than the VP9 reference software.

Regarding the intra-picture prediction stage of the AV1, which is the focus of

this project, a study made by Chuang et al. (2022) evaluated the impact of each of the

novel tools added to the AV1 intra-prediction (see Chapter 3) individually, in terms of

encoding time difference and image distortion (see Section 2.4). Table 1 shows this

impact in a test setup where each tool is enabled one at a time while the others are

23

disabled. It can be observed that some tools alone can increase the encoding runtime

significantly and, when added together, these tools are expected to increase the

runtime of the baseline intra prediction stage. Regardless of the encoding time impact,

these tools must not be disabled, since it can also be observed in the same table that

the reduction in image distortion is also very expressive.

Table 1 Impact of individual intra prediction tools in an AV1 encoder
(CHUANG et al., 2022).

Tool PSNR-Y (%) Encoding Time (%)

Intra Angle Delta −2.42 103.74

Paeth Mode −0.14 101.95

Smooth Modes −0.90 104.63

Recursive-based-filtering Modes −0.77 109.62

Filtering of Ref. Samples −0.36 102.47

Chroma from Luma Mode −0.36 101.04

Intra Block Copy Mode −4.81 102.75

Palette Mode −6.47 100.77

The AV1 was chosen as the focus of this work due to its very high commercial

relevance, for being both open-source and royalty-free, and also due to its academic

relevance, for adding many novel and complex tools never studied before.

Furthermore, considering the high relevance of the AV1 intra prediction and the

research opportunities related to it, as will be explained in Chapter 4, this stage of the

encoder was chosen to be the target of this research project.

Based on these facts, the question this research project sought to answer is:

“Considering the very high computational effort required by the AV1 intra-picture

prediction, is it possible to generate novel algorithms and hardware-based solutions

able to support the processing of ultra-high-definition videos in real-time?”

Justified by the large number of novel tools introduced to the intra-picture

prediction stage, associated with the small number of works in the literature seeking to

improve this stage of the encoder, two main research hypotheses were explored in this

thesis.

First hypothesis:

“Information about the direction and smoothness of the input image texture, as

well as the error distribution pattern of each prediction mode, can both be used to

develop heuristics to reduce the number of AV1 intra-picture prediction modes

processed and the number of operations executed in distortion metric calculation for

block matching.”

24

Second hypothesis:

"An efficiently designed hardware architecture for the original AV1 algorithms

and the proposed heuristic-based algorithms is a promising solution to allow the

processing of ultra-high-definition videos in real-time by the AV1 intra prediction.”

Then, considering these hypotheses, the main thesis investigated in this work

is:

“It is possible to reduce the computational effort of the AV1 intra-picture

prediction by developing hardware-friendly heuristic-based algorithms and, then,

generating efficient hardware designs able to process ultra-high-definition videos in

real-time.”

1.2 Main Contributions

The main contribution of this research project is the development of both

software and hardware solutions for fast the intra prediction in AV1.

Many works were published with specific contributions as the project developed:

• Development of an AV1 intra-picture prediction hardware designs (CORRÊA

et al., 2019a, 2019b, 2020a, 2020b; NETO et al., 2020, 2021a, 2021b, 2022);

• Development of hardware-friendly heuristic-based algorithms capable of

reducing the number of operations in intra prediction (CORRÊA et al., 2022a,

2022b);

• Development of intra-picture prediction hardware designs optimized with the

proposed algorithms (CORRÊA et al. 2022b).

1.3 Thesis Organization

This thesis is organized as follows:

Chapter 2 provides the basic video coding concepts needed for the

understanding of the proposed solutions, and also provides information on different

parts of an AV1 coder.

Chapter 3 provides an in-depth technical view of the AV1 intra-picture prediction

techniques.

Chapter 4 presents a review of the related works that propose system-level

solutions for complexity reduction in an AV1 encoder, as well as works that propose

25

dedicated hardware designs for modules of an AV1 encoder and decoder. It also

discusses opportunities in the area of research.

Chapter 5 presents heuristic-based algorithms for the intra prediction stage of

the AV1 encoder.

Chapter 6 presents hardware designs for the intra prediction stage of the AV1

encoder.

Chapter 7 presents the conclusions of this thesis, summarizing the major

results, identifying possible extensions of the project, and pointing out future research

directions in the area.

Appendix A presents the test sequences and coding parameters used for all

experiments during this Ph.D. project.

Appendix B lists all the peer-reviewed published papers that were produced

during the Ph.D. project.

26

2 VIDEO CODING BACKGROUND

This chapter presents the basic concepts behind the video coding

(compression) process.

2.1 Representation of Digital Videos

A video is made of a series of still images that, when displayed at a sufficiently

high refresh rate, provides the viewer with the perception of smooth movement.

Video sequences vary in spatial resolution, refresh rate, color space, and other

characteristics. Contemporary videos tend to be fully digital through the entire process

of production, distribution, and playback.

Each still image in a digital video sequence is called a frame, organized as a

matrix of pixels. In this context, a pixel is the smallest addressable element in a frame,

and it is a combination of different samples of a color space.

A color space is an arbitrary model for representing colors as tuples, e.g., triples

in the Red, Green, Blue (RGB) model, and quadruples in the Cyan, Magenta, Yellow,

Key (CMYK) model. The RGB color model is typically used in display devices of various

technologies, and it is an additive color model in which the red, green, and blue primary

colors of light are added to reproduce a broader array of colors. The CMYK model,

on the other hand, is a subtractive color model that mixes the subtractive primaries

cyan, magenta, and yellow to block light, rather than adding it, which is particularly

convenient for color printers.

For video coding, however, the Luminance, Blue-difference Chrominance, and

Red-difference Chrominance (YCbCr) model is the most suitable. In this color model,

the luminance information, which is closely related to the perception of brightness,

is completely separated from chrominance information, allowing encoders to take

advantage of the human visual system characteristic of being much more sensitive to

luminance than to color information. One practical example of this is the color

subsampling technique, which is used to decrease the resolution allocated to the

chrominance channels, without significant loss of information being perceived by the

human eye. The most common color sampling schemes are called 4:4:4, 4:2:2, 4:2:0,

and 4:0:0. In the 4:4:4 sampling, the resolution of the luminance and both chrominance

channels are kept intact and no color information is discarded, whereas in the 4:2:2

and 4:2:0 subsampling, the resolution of both chrominance samples is reduced by 50%

27

and 75%, respectively. Finally, in the 4:0:0 scheme, only luminance information is

carried.

Figure 1 shows a picture in full color and the same picture with the three

channels of the RGB color model separated (left), and the same for the YCbCr color

model (right). It can be observed clearly that each channel of the RGB color model

represents the intensity of each of the primary colors, and that there is a part of the

luminance information shared among all three channels. Furthermore, it can also be

observed that the luminance channel Y of the YCbCr color model has all the luminance

information, seen as a grayscale image, whereas both the chrominance channels only

have color information, making it impossible to perceive edges and depth information

in detail due to the lack of light information.

This way, the representation of digital videos in an uncompressed format

demands a prohibitive amount of storage space or network bandwidth. For example,

a UHD 4K video, displayed at a refresh rate of 30 fps (frames per second), with 8 bits

per channel in the 4:2:0 sampling scheme, which are qualities of videos commonly

used in internet streaming and digital television broadcasting nowadays, requires a

bandwidth of approximately 3 Gbps (three billion bits per second). A video with these

same qualities and 30 minutes of duration requires approximately 672 GB

(672 billion bytes) of storage space.

28

Figure 1 Example of the RGB (left) and YCbCr (right) channels separated. Picture: John Moulton
Barn (Public domain).

2.2 Redundancies in Digital Videos

Although digital videos demand a very high volume of data to be represented,

much of this data can be compressed due to the strong correlation both between

successive frames and within the frame content itself (GHANBARI, 2011). The goal of

video compression is to eliminate irrelevant and redundant data present in the video

representation.

Irrelevant information in the video representation is always of a visual nature

and is deemed irrelevant due to the limitations of the human visual system. For

Y

Cb

Cr

R

G

B

29

example, the human eye is not sensible to high-frequency distortions (CORRÊA,

2014),

i.e., it can effectively perceive subtle variations of luminance over a relatively large area

but struggles to perceive such variations in small areas (CORRÊA et al., 2016).

Hence, for compression purposes, an encoder can discard information that the human

eye is not sensible to.

Redundant information in a digital video can be of a visual nature (spatial and

temporal) or statistical nature (entropic). These types of redundancy can be defined as

follows (AGOSTINI, 2007):

• Spatial Redundancy: Also called intra-picture redundancy, it is the similarity

between pixels spatially close to each other. This redundancy can be

explored in the spatial domain by the intra-picture prediction stage of a video

coder.

• Temporal Redundancy: Also called inter-picture redundancy, it is the

similarity between frames temporally close to each other. Because of the

high refresh rate of a video, pixels tend to not change from one frame to

another, and changes are likely to be small variations in pixel intensity (e.g.,

change in lighting) and position (e.g., the motion of an object or the entire

background). This redundancy can be explored by the inter-picture

prediction stage of a video coder.

• Entropic Redundancy: In information theory, entropy is related to the

occurrence frequency of symbols. In a scenario where all symbols have the

same probability of occurring, the same number of bits must be used to

represent these symbols. On the other hand, if some symbols have a higher

probability of occurring, then this redundancy can be explored by assigning

variable length codes to these symbols (i.e., codes with fewer bits assigned

to more frequent symbols). The entropic redundancy is explored by the

entropy coding stage of a video coder.

30

2.3 Compression of Digital Videos

Irrelevant and redundant information can be explored by using lossless and

lossy compression. The intra-picture prediction, inter-picture prediction, and entropy

coding all aim at reducing redundancy without causing any loss of information.

Compression techniques that do not cause loss of information are classified as lossless

compression techniques (i.e., the decompressed data is identical to the original).

On the other hand, compression techniques that aim at discarding information that is

not relevant or is less relevant to the human visual system are classified as lossy

compression techniques (i.e., the image can be reconstructed with a visual fidelity

relative to the compression parameters, but never identical to the original).

Video compression can be lossless throughout the entire process, which can be

particularly useful for applications that cannot tolerate any loss of sensitive information

and the addition of compression artifacts. However, for the majority of consumer

applications, lossy techniques are used, as these are capable of adding substantial

gains to the resulting compression rate.

2.4 Distortion Metrics

Lossy video compression causes distortion, and this distortion must be

measured. Visual quality, however, is inherently subjective and, therefore, it is difficult

to obtain a completely accurate measurement of it. There are standardized

methodologies for the assessment of subjective image quality including, general

testing methods, the grading scales used during assessments, and the viewing

conditions recommended for carrying out assessments, which are well described in

Recommendation ITU-R BT.500-14 (ITU-T, 2019). Quality can also be measured

objectively with metrics that compare pixels of the original and the reconstructed

image.

The most commonly used objective distortion metric is the Peak Signal-to-noise

Ratio (PSNR). The PSNR, measured in decibels (dB), of a test image T of size M×N,

when compared to the original image O, is described in eq. (1), where the dividend

MAX is the maximum value possible for an unsigned sample (e.g., 255 for an 8-bit

sample) and the divisor is the Mean Squared Error (MSE) function, described in

eq. (2), which is also a distortion metric by itself.

31

𝑃𝑆𝑁𝑅(𝑂, 𝑇)𝑑𝐵 = 10log10 (
𝑀𝐴𝑋

𝑀𝑆𝐸(𝑂, 𝑇)
) (1)

𝑀𝑆𝐸(𝑂, 𝑇) =
1

𝑀𝑁
∑ ∑(𝑇𝑖,𝑗 − 𝑂𝑖,𝑗)

2
𝑁−1

𝑗=0

𝑀−1

𝑖=0

 (2)

To measure the distortion in smaller regions of an image, like when comparing

a predicted block against the original in inter- and intra-picture prediction (known as

block matching), simpler metrics are used, such as the MSE, the Sum of Absolute

Differences (SAD) and the Sum of Squared Errors (SSE), respectively described in

eqs. (2), (3), and (4).

𝑆𝐴𝐷(𝑂, 𝑇) = ∑ ∑|𝑇𝑖,𝑗 − 𝑂𝑖,𝑗|

𝑁−1

𝑗=0

𝑀−1

𝑖=0

 (3)

𝑆𝑆𝐸(𝑂, 𝑇) = ∑ ∑(𝑇𝑖,𝑗 − 𝑂𝑖,𝑗)
2

𝑁−1

𝑗=0

𝑀−1

𝑖=0

 (4)

Another metric for perceptual visual quality is the Video Multi-method

Assessment Fusion (VMAF) (NETFLIX INC, 2022a; LIU et al., 2013; LIN et al., 2014),

which attempts to predict subjective quality by combining multiple objective quality

metrics. According to Netflix Inc. (2022b), the basic rationale is that each elementary

metric may have its strengths and weaknesses, and by fusing elementary metrics into

a final metric using a machine-learning algorithm, in this case, the Support Vector

Machine (SVM) regressor, the final metric could preserve the strengths of the individual

metrics, and deliver a more accurate final score.

However, the measurement of compression efficiency should not rely on

distortion alone, but also on the resulting bit rate, that is, a Rate-distortion (RD) metric.

A notable example of such a method is the Bjøntegaard Model (BJØNTEGAARD,

2011). In this model, PSNR is the metric of choice for distortion, because of its

simplicity, and also because it reasonably matches subjective opinion scores.

In the scope of this thesis, the metric used to evaluate the proposed algorithms

is the Bjøntegaard Delta Bit Rate (BD-BR), which reports the average bit rate difference

in percent for two videos (e.g.: original versus compressed) considering the same

PSNR.

32

2.5 Hybrid Block-based Video Encoder

Most of the contemporary encoders are based on the following signal and data

processing operations: (i) inter- and intra-frame prediction, (ii) de-correlating transform

(T module), (iii) quantization (Q module), and (iv) entropy coding, as shown in

Figure 2. A reconstruction loop (complete decoder) with inverse quantization

(IQ module) and inverse transform (IT module) is also included because the coder

must use only reference frames available to the decoders, so decoders can replicate

identical predictions (SALDANHA, 2021). Additionally, an optional in-loop filtering

module (not shown in Figure 2) can also be included to improve the subjective image

quality of reconstructed frames. Hybrid block-based encoders apply the

abovementioned operations after partitioning frames into smaller blocks and use both

motion- and still-picture coding techniques (SULLIVAN; WIEGAND, 1998).

Figure 2 Diagram of a typical hybrid block-based video coder.

The following subsections describe the different stages of video compression

shown in Figure 2, while briefly explaining the AV1 implementation of these stages.

2.5.1 Frame Partitioning

Before any signal processing operation can happen, in block-based video

coding, a frame must be divided into several blocks of pixels of the maximum size

supported by the codec. These blocks can then be further subdivided into smaller

blocks during the prediction process. Each video codec defines a variable range of

block sizes it can use.

Entropy

coding

Rec.

predicted

samples

Reference

samples

RefRefRefRef
Original

frame

Input video

Inter-frame

prediction

Intra-frame

prediction

Original

samples

01011010

11011101

10011011

Quantized

residue

Rec.

prediction

residue

Original

samples

Prediction

residue
T Q

IT IQ

Mode

decision

+
− Predicted

samples

RefRefRefRef
Reference

frame

Output

bitstream

+

−

In-loop

Filtering

33

In AV1, a frame is initially partitioned in Superblocks (SBs), which is the biggest

block size supported (128×128 or 64×64 pixels). To deliver an optimal prediction for

each SB, the encoder can further divide each SB using a 10-way partition tree

structure, as illustrated in Figure 3. In the figure, partitions filled in blue are final, but all

four subpartitions of the unfilled partition (SPLIT) can be recursively divided based on

the same 10-way tree structure, down to 4×4 pixels, which is the smallest supported

block size (RIVAZ; HAUGHTON, 2019). This way, the 24 block sizes supported in AV1,

including symmetrical and rectangular sizes, are the ones contained in the following

set: {4×4, 8×8, 16×16, 32×32, 64×64, 128×128, 4×8, 8×4, 8×16, 16×8, 16×32, 32×16,

32×64, 64×32, 64×128, 128×64, 4×16, 16×4, 8×32, 32×8, 16×64, 64×16, 32×128 e

128×32} (HAN et al., 2021).

Figure 3 AV1 10-way block partitioning tree. The numbers inside each final subpartition (in blue)
indicate the order these will be processed by the following stages (raster scan). The name of each
partition mode is shown below blocks.

Figure 4 shows an example of frame partitioning (BEBENITA, 2017), generated

using the AOM Analyzer tool (XIPH.ORG FOUNDATION, 2022). In the figure, it can

be observed that the variable block size structure gives the coder freedom to explore

less detailed portions of the image with large block sizes (reducing the overhead of

signaling multiple smaller blocks), and more detailed portions of the image with small

block sizes (prioritizing visual quality).

Super

Block

(SB)

3

1 2 1

2 3

3

1

2

1

2

3

1

1

2

1 32 4

1

3

2

4

1 2

128 128 or 64 64 pixels.

Can be further

partitioned

recursively.

VERT_A VERT_B HORZ_A HORZ_B SPLIT

VERT HORZ VERT_4 HORZ_4 NONE

34

Figure 4 Example of frame partitioning of the test sequence Crosswalk (Property of Netflix Inc.
and licensed under CC BY-NC-ND 4.0).

2.5.2 Prediction Stage

In inter-picture prediction, or simply inter prediction, the translational motion of

areas of the frame can be estimated by searching for similar blocks in a reference

frame around its original position, and by taking the difference of the best match,

in what is called the Motion Estimation (ME) algorithm of a motion-compensated

prediction. The ME reduces the temporal redundancy of a frame, and results in blocks

of residual information (error) and Motion Vectors (MV) that are used to describe the

displacement of predicted blocks. For static parts of the scene, residual differences

can be zero, with no error to be coded, whereas for parts of the scene with motion, a

significant error can exist, which needs to be coded.

The AV1 motion-compensated prediction supports all 24 block sizes and may

use up to seven reference frames, with four being frames that precede the current

frame in terms of display order, and three coming after. AV1 brings a variety of novel

solutions when compared to older codecs, such as: (i) Affine Motion Compensation,

which uses affine transformations to capture non-translational object movements (e.g.,

rotation, translation, and scaling); (ii) Compound Prediction, which linearly combines

two predictions from different reference frames in a single one; and others.

In intra-picture prediction, or simply intra prediction, spatial redundancy can be

explored in the spatial domain by predicting entire blocks using reconstructed samples

35

of previously encoded spatial neighbor blocks from the same frame. This type of

prediction usually applies filters to the reference samples to generate different kinds of

directional and smooth textures. Just like in the inter prediction, the objective is to

obtain a predicted block that results in the lowest residual information when compared

to the original block.

AV1 intra prediction supports the 19 block sizes that are equal to or smaller than

64×64 samples. For all mentioned block sizes, the codec supports 56 directional

prediction algorithms (modes) to explore spatial redundancies in directional textures

(e.g., samples belonging to the same edge of an object tend to be similar), and also

supports various non-directional prediction modes, such as: (i) DC, similar to the mode

used in many older codecs; (ii) Smooth, Smooth Vertical, and Smooth Horizontal,

inspired in the H.265/HEVC Planar mode and H.264/AVC Plane mode; (iii) Paeth,

evolved from the VP9 True Motion mode; (iv) five different Recursive-based-filtering

(RBF) modes, which attempt to break data dependency by further dividing the intra

block into smaller 4×2 patches; and (v) Chroma from Luma (CFL) mode, which predicts

chrominance samples based on the information of the luminance prediction

(TRUDEAU; EGGE; BARR, 2018). Two modes particularly efficient for Screen Content

Coding (SCC) are also available: the Intra Block Copy (LI et al., 2018) and Color

Palette (GUO et al., 2014) modes. Chapter 3 gives an in-depth view of the AV1 intra

prediction module, as it is the focus of this work.

As mentioned above, the goal of both inter and intra predictions is to minimize

the residual information, which can be coded much more effectively than the original

visual data. Figure 5 shows an original luminance of the Akiyo test sequence (left),

an example of AV1 intra prediction, restricted to the 8×8 block size to give a better

visualization of block boundaries (middle); and the resulting residual information

(prediction error) that must be coded (right). The figure demonstrates the low-energy

nature of the residual information that can be obtained when the predictions are done

effectively, where white and black areas are of high-energy (negative and positive

differences), and gray areas are closer to zero energy.

36

Original Predicted Residual Information

Figure 5 Left: Luminance frame of the test sequence Akiyo (Property of Stadium Inc.). Middle:
Same frame predicted with 8×8 AV1 intra prediction modes. Right: Residual information obtained.

Finally, it is important to mention that by using the side information that tells how

a block was coded (i.e., intra mode, reference frame, motion vector, etc), a decoder

can always replicate the same prediction done by the coder, and by adding it to the

residual block, the reconstructed block is obtained.

2.5.3 Transform Coding

The transform coding is another stage that allows the removal of spatial

redundancies in images, but in the frequency domain, as natural images tend to

concentrate most of their energy in low-frequency coefficients (GHANBARI, 2011).

The transform itself, however, does not result in compression, because the signal

energy in the pixel domain is equal to the energy in the frequency domain. Although,

in the frequency domain, coefficients with irrelevant magnitude can be quantized

(resulting in zero) and high-frequency coefficients can be quantized to a higher degree

for not being very important to the human visual system. For this reason, a transform

kernel must also be efficient in separating components with minimal inter-dependence

(decorrelation) (RICHARDSON, 2010).

The Two-dimensional (2-D) Discrete Cosine Transform II (DCT-II), as defined

in eq. (5), is a widely used transform in image and video compression. When applied

to an image matrix X of size N×M, it results in a matrix Y of coefficients of the same

size, where Y0,0 is the zero-frequency coefficient called DC, whereas the remaining

coefficients are called AC coefficients.

𝑌𝑥,𝑦 = ∑ ∑ 𝑋𝑖,𝑗 cos [
𝜋

𝑁
(𝑖 +

1

2
) 𝑥] cos [

𝜋

𝑀
(𝑗 +

1

2
) 𝑦]

𝑀−1

𝑗

𝑁−1

𝑖

 (5)

37

DCT−II
→

Input Frame

 Transform Coefficients

DCT−II
→

Residual Information Transform Coefficients

Figure 6 Top: Input image. Bottom: Residual information of the same image after AV1 intra
prediction.

Figure 6 illustrates the advantage of applying the DCT-II to the low-energy

residual information. At the top, an input image of artist James Brown of 256×256 pixels

in size is shown, whereas, in the bottom, the residual information resulting from

applying AV1 intra prediction to the same frame is shown. Two things can be observed:

(i) the residual information can be represented with much smaller transform

coefficients, and (ii) most big coefficients (bright area) are concentrated in the top-left

(shown in logarithmic scale for better visualization).

AV1 defines transform kernels for the 19 symmetrical and rectangular sizes

equal to or smaller than 64×64. A rich set of 2-D transform kernels is defined for both

inter and intra predicted blocks consisting of 16 combinations of one-dimensional

(1-D) vertical and horizontal DCT, Asymmetrical Discrete Sine Transform (ADST),

flipped ADST, and Identity Transform (IDTX) (HAN et al., 2021). The DCT is used for

being a good low-complexity approximation of the optimal Karhunen-Loeve Transform

(KLT). For the intra predicted blocks, which tend to concentrate higher residual energy

on the bottom and/or right corners, the asymmetrical transforms ADST and flipped

ADST are particularly effective (PARKER et al., 2016). The IDTX, when combined with

38

the other 1-D transforms, provides 1-D transforms that can be useful for dominant

horizontal and vertical patterns in texture (HAN et al., 2021). Furthermore, a 2-D IDTX

is equivalent to a transform skip, and it can be effective for certain patterns found in

SCC (PARKER et al., 2016).

2.5.4 Quantization

Quantization is the process of mapping a signal with a range of values to a

quantized signal with a reduced range of values and, therefore, is a lossy process.

Examples of the quantizer and inverse quantizer functions for image compression are

described in eq. (6) and eq. (7), where step is directly associated with a Quantization

Parameter (QP). It can be observed that the lossy aspect of the quantizer function Q(Y)

is a consequence of the fractional part of the division being discarded, thus the inverse

quantizer function IQ(Y) is not capable of recovering the original pre-quantized value.

The QP plays an important role in the RD control of a video coder, as higher QPs will

result in a smaller, and hence more compressible range of transform coefficients,

whereas smaller QPs will result in a higher range of coefficients that best match the

pre-quantized values.

𝑄(𝑌) = ⌊
𝑌

𝑠𝑡𝑒𝑝
⌋ (6)

𝐼𝑄(𝑌) = 𝑌 × 𝑠𝑡𝑒𝑝 (7)

The QPs in AV1 range between 0 and 255, and each QP has associated with it

two different step values, a smaller one to be applied exclusively to the DC coefficient,

and a larger one to be applied to the AC coefficients (RIVAZ; HAUGHTON, 2019).

Additionally, AV1 supports 15 sets of quantization weighting matrices that can further

scale the quantization step differently for each frequency coefficient (HAN et al., 2021),

allowing for a better exploration of the human visual system.

2.5.5 Entropy Coding

The entropy coding processes matrices of quantized coefficients, which can be

reordered to group the coefficients from the region with multiple zeros,

and lateral data, such as motion vectors, prediction modes, and a variety of bitstream

headers, to reduce their statistical redundancy. Variable-length coding (such as

Huffman coding) and arithmetic coding are the common methods of entropy coding

39

used in video compression. Since efficient entropy coding depends on accurate symbol

probability models (RICHARDSON, 2010), video standards further improved these

algorithms to be context-based, using local spatial and/or temporal characteristics of

the signal to estimate the probability of symbols being encoded. Notable examples of

entropy coding algorithms are Context-adaptive Variable-length Coding (CAVLC) and

Context-adaptive Binary Arithmetic Coding (CABAC), the latter being significantly more

efficient at cost of requiring more processing power from both the encoder and

decoder.

AV1 uses a context-adaptive multi-symbol arithmetic coder, with integer

symbols ranging from 2 to 14, and the probability model is updated per symbol coding.

Specifically, for transform coefficient coding, AV1 allows the coefficient matrix to be

reordered (mapped to a 1-D array) in the following scan orders: (i) column scan for 1-

D vertical transforms, (ii) row scan for 1-D horizontal transforms, and (iii) zig-zag scan

starting at the DC coefficient and moving towards the opposite corner for 2-D

transforms, including the 2-D IDTX (HAN et al., 2021).

2.5.6 In-loop Filtering

The encoding process inevitably adds artifacts in the compressed videos,

mainly because of the block partitioning and the quantization. Typical coding artifacts

are blocking, ringing, and blurring. These artifacts decrease the video subjective quality

and compromise the quality of prediction references. Thus, all modern codecs allow

the use of in-loop filtering to reduce these artifacts.

AV1 supports three optional in-loop filters: the Deblocking Filter (DBF), the

Constrained Directional Enhancement Filter (CDEF) (MIDTSKOGEN; VALIN, 2018),

and the Loop Restoration Filter (LRF) (MUKHERJEE et al., 2017). The improved

filtered frames are used as reference frames for the prediction of subsequent frames.

2.5.7 Mode Decision

The RD efficiency of the compression is based on a complex interaction

between various possibilities of coding parameters, like block sizes, prediction modes,

transform types, quantization parameters, and others. Therefore, one of the biggest

challenges in video compression is the control of an encoder.

40

The control of the encoder, or its mode decision, uses the Rate-distortion

Optimization (RDO) technique for taking decisions of “What part of the image should

be encoded using what tool?” by minimizing the distortion D, where the number of bits

needed R is subject to a bit rate constraint Ri, as defined in eq. (8). The optimization

task can be solved using Lagrangian optimization, where D is weighted against R,

and the Lagrangian rate-distortion J is minimized for a particular value of the Lagrange

multiplier λ, as read in eq. (9). Each solution to eq. (9) for a given value of the Lagrange

multiplier λ corresponds to an optimal solution to eq. (8) (SULLIVAN; WIEGAND,

1998).

min{𝐷} , where 𝑅 < 𝑅𝑖 (8)

min{𝐽} , where 𝐽 = 𝐷 + 𝜆𝑅 (9)

As there are no simple models for estimating the RD cost J that will result from

a given combination of coding parameters for a block, the RDO technique in a video

encoder must pass the block through all the coding loop to obtain the real RD cost for

that combination of parameters (CORRÊA et al., 2016). The RDO is optimal for mode

decision, but the number of possible coding parameter combinations is so large that

testing all possibilities is an unfeasible task. In practical applications, different modules

of the encoder often implement suboptimal local mode decisions, known as fast mode

decision algorithms, to reduce the set of parameters sent to the RDO for the more

expensive evaluation.

41

3 AV1 INTRA-PICTURE PREDICTION

This section gives an in-depth view of the AV1 intra prediction, which is the focus

of the optimizations proposed in this thesis.

The AV1 intra prediction process is invoked for intra blocks to predict a part of

the block corresponding to a transform block. When the transform size used is smaller

than the intra block itself, this process is invoked multiple times within the intra block,

in raster order, using the same intra mode (RIVAZ; HAUGHTON, 2018).

3.1 Reference Samples

To predict a block, the intra prediction modes use reference samples from

previously reconstructed blocks located to the left and above the current block.

The number of reference samples needed from each side is the sum of the width and

height of the block to be predicted, plus one sample.

Figure 7 Block of size 8×4 to be predicted using reference arrays of size 13.

Figure 7 illustrates this concept for a block of size 8×4 (white squares). From

this point forward, reconstructed samples in the current frame will be referred to as a

2-D array called CurrFrame, the current block to be predicted will be referred to as a

2-D array called Pred, and the reference samples above and to the left of Pred will be

referred as two 1-D arrays of samples called AboveRow and LeftCol, respectively.

Additionally, the width and height of Pred will be referred to as W and H.

AboveRow [−1 to 11]

L
e

ft
C

o
l
[−
1
 t
o
 1
1
]

Pred [0 to 3][0 to 7]

42

Since the reference samples must come from already reconstructed transform

blocks, some of these may not be available and must be somehow replaced. This

happens, for example, when the coder has to predict a block located at the left edge

of the frame, which does not have any reference sample to its left. At the beginning of

the prediction process, for a given block, both AboveRow[−1] and LeftCol[−1] are set

according to Table 2, while the remaining positions of AboveRow and LeftCol are set

according to Table 3 and Table 4, respectively. In these tables, variables X and Y point

to the top-left position of Pred within CurrFrame.

Table 2 Top-left reference sample derivation

Above
Available?

Left
Available?

Procedure for AboveRow[−1] and LeftCol[−1]

True True AboveRow[−1] and LeftCol[−1] are set to CurrFrame[Y−1][X−1].

True False AboveRow[−1] and LeftCol[−1] are set to CurrFrame[Y−1][X].

False True AboveRow[−1] and LeftCol[−1] are set to CurrFrame[Y][X−1].

False False
AboveRow[−1] and LeftCol[−1] are set to 128, 512 or 2048, depending on the bit
depth (8, 10 or 12).

Table 3 Above reference samples derivation

Above
Available?

Left
Available?

Above
Right

Available?
Procedure for AboveRow[pos] for pos = 0...w+h−1

True True True
If pos<2*W, then AboveRow[pos] is set to
CurrFrame[Y−1][X+pos].
Otherwise, AboveRow[pos] is set to CurrFrame[Y−1][X+2*W−1].

True True False
If pos<W, then AboveRow[pos] is set to CurrFrame[Y−1][X+pos].
Otherwise, AboveRow[pos] is set to CurrFrame[Y−1][X+W−1].

False True - AboveRow[pos] is set to CurrFrame[Y][X−1].

False False -
AboveRow[pos] is set to 127, 511 or 2047, depending on the bit
depth (8, 10 or 12).

Table 4 Left reference samples derivation

Above
Available?

Left
Available?

Below Left
Available?

Procedure for LeftCol[pos] for pos = 0...w+h−1

True True True
If pos<2*H, then LeftCol[pos] is set to CurrFrame[Y+pos][X−pos].
Otherwise, LeftCol[pos] is set to CurrFrame[Y+2*H−1][X−1].

True True False
If pos<H, then LeftCol[pos] is set to CurrFrame[Y+pos][X−1].
Otherwise, LeftCol[pos] is set to CurrFrame[Y+H−1][X−1].

True False - LeftCol[pos] is set to CurrFrame[Y−1][X].

False False -
LeftCol[pos] is set to 129, 513 or 2049, depending on the bit
depth (8, 10 or 12).

After both arrays of reference samples are constructed, the prediction can be

applied according to any of the modes described in the next section.

43

3.2 Intra Prediction Modes

As mentioned briefly in Section 2.5.2, AV1 supports 56 directional prediction

modes to exploit more varieties of spatial redundancy in directional textures, and 11

non-directional modes to explore the spatial correlation of samples in smooth surfaces

and the coherence of luminance and chrominance planes. It also supports two modes

developed particularly for SCC. The intra prediction can be used for blocks of 64×64

samples or smaller, down to the minimum size of 4×4, with a few restrictions that will

be highlighted in the following sections.

3.2.1 DC Mode

The DC prediction mode appears in many other video codecs. The AV1 version,

however, is based on the DC mode used in VP9 (GRANGE; RIVAZ; HUNT, 2016),

which considers the availability of the reference samples. Although the construction of

the reference arrays already deals with the availability issue, the DC mode uses a

different method.

As described in Figure 8, when both reference arrays are available, the DC

mode produces a solid surface, that is, every sample is the arithmetic mean of the

reference samples used. However, if only one of the reference arrays is available, then

only the available array will be used in the arithmetic mean. Lastly, if none of the array

references are available, the predicted sample is set according to the bit depth.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

dc = 0

FOR i in 0 to H − 1:

 dc = dc + LeftCol[i]

END FOR

FOR j in 0 to W − 1:

 dc = dc + AboveRow[j]

END FOR

dc = dc + (W + H) / 2

dc = dc / (W + H)

FOR i in 0 to H − 1:

 FOR j in 0 to W − 1:

 Pred[i][j] = dc

 END FOR

END FOR

Figure 8 DC algorithm for when all reference samples are available.

Figure 9 illustrates four examples of DC predictions for a luminance block of

size 4×4, one for each DC case. In the figure, the omitted reference samples are not

used by the algorithm.

44

Figure 9 Example of DC predictions for a block of size 4×4 when (a) all samples are available,
(b) only left samples are available, (c) only top samples are available, and (d) no samples are available.

3.2.2 Paeth Mode

The Paeth prediction mode is a novelty of the AV1, inspired by the TM mode

from VP9 (MUKHERJEE et al., 2013). This mode generates a fairly smooth surface by

using only exact copies of reference samples.

As described in Figure 10, for each predicted sample, a comparison is done

among the top-left, vertically aligned, and horizontally aligned reference samples. The

algorithm then selects as predicted sample the reference sample that will result in a

smoother gradient. Figure 11 illustrates an example of Paeth prediction for an 8×4

luminance block.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

FOR i in 0 to H − 1:

 FOR j in 0 to W − 1:

 base = LeftCol[i] + AboveRow[j] – AboveRow[−1]

 pLeft = ABS(base − LeftCol[i])

 pTop = ABS(base − AboveRow[j])

 pTopLeft = ABS(base − AboveRow[−1])

 IF pLeft <= pTop AND pLeft <= pTopLeft:

 Pred[i][j] = LeftCol[i]

 ELSE IF pTop <= pTopLeft:

 Pred[i][j] = AboveRow[j]

 ELSE

 Pred[i][j] = AboveRow[-1]

 END IF

 END FOR

END FOR

Figure 10 Paeth algorithm.

57 57 57 57

57 57 57 57

57 57 57 57

57 57 57 57

60 60 99 99

58

58

10

10

(a)

34 34 34 34

34 34 34 34

34 34 34 34

34 34 34 34

58

58

10

10

(b)

80 80 80 80

80 80 80 80

80 80 80 80

80 80 80 80

60 60 99 99

(c) (d)

128 128 128 128

128 128 128 128

128 128 128 128

128 128 128 128

45

Figure 11 Example of a Paeth prediction.

3.2.3 Smooth, Smooth Vertical and Smooth Horizontal Modes

The Smooth family of prediction modes uses linear interpolation, with a

precision of 1/256 of a sample, to generate very smooth surfaces. These modes were

inspired by the Plane mode from H.264/AVC (WIEGAND et al., 2003) and the Planar

mode from H.265/HEVC (SULLIVAN et al., 2012).

As described in Figure 12 and Figure 13, respectively, the Smooth Vertical

mode interpolates samples using the LeftCol[H−1] sample and various samples from

the AboveRow array, and the Smooth Horizontal mode interpolates samples using the

AboveRow[W−1] samples and various samples from LeftCol. Each sample predicted

by the generic mode is equivalent to the arithmetic mean of the samples predicted by

the vertical and horizontal modes. In these algorithms, the SmoothCoefficients array

stores a set of constants, which vary in size according to W (for the horizontal mode)

or H (for the vertical mode), as listed in Table 5. Figure 9 illustrates examples of

predictions using the Smooth family of modes.

1

2

3

4

5

6

7

FOR i in 0 to H − 1:

 FOR j in 0 to W − 1:

 a = SmoothCoefficients[i] * AboveRow[j]

 b = (256 − SmoothCoefficients[i]) * LeftCol[H−1]

 Pred[i][j] = (a + b + 128) / 256

 END FOR

END FOR

Figure 12 Smooth Vertical algorithm.

1

2

3

4

5

6

7

FOR i in 0 to H − 1:

 FOR j in 0 to W − 1:

 a = SmoothCoefficients[j] * LeftCol[i]

 b = (256 − SmoothCoefficients[j]) * AboveRow[W−1]

 Pred[i][j] = (a + b + 128) / 256

 END FOR

END FOR

Figure 13 Smooth Horizontal algorithm.

25 50 99 99

0

40

59

87

90 50 50 40

0 30 99 99

40 50 99 99

59 59 99 99

87 87 99 99

90 30 30 0

90 50 50 40

90 59 59 59

90 87 87 87

30

46

Table 5 Contents of the SmoothCoefficients array according to each size

Size Coefficient Set

4 {255, 149, 85, 64}

8 {255, 197, 146, 105, 73, 50, 37, 32}

16 {255, 225, 196, 170, 145, 123, 102, 84, 68, 54, 43, 33, 26, 20, 17, 16}

32
{255, 240, 225, 210, 196, 182, 169, 157, 145, 133, 122, 111, 101, 92, 83, 74, 66, 59, 52,
45, 39, 34, 29, 25, 21, 17, 14, 12, 10, 9, 8, 8}

64
{255, 248, 240, 233, 225, 218, 210, 203, 196, 189, 182, 176, 169, 163, 156, 150, 144,
138, 133, 127, 121, 116, 111, 106, 101, 96, 91, 86, 82, 77, 73, 69, 65, 61, 57, 54, 50, 47,
44, 41, 38, 35, 32, 29, 27, 25, 22, 20, 18, 16, 15, 13, 12, 10, 9, 8, 7, 6, 6, 5, 5, 4, 4, 4}

Figure 14 Example of predictions using the Smooth mode (left), Smooth Vertical mode (middle),
and Smooth Horizontal mode (right).

3.2.4 Recursive-based-filtering (RBF) Modes

This group of modes is a novelty of the AV1 codec, available only for luminance

blocks of size 32×32 or smaller and designed to mitigate the decaying spatial

correlation as the distance between a predicted sample and the reference sample

arrays increases.

The RBF algorithm divides the block Pred, regardless of its size, into smaller

patches of size 4×2, and predicts these in raster order within Pred. The prediction of a

single patch is done with a set of eight 7-tap filters, with different coefficients used for

each one of the eight samples inside the patch. There are a total of five RBF modes,

which share the same algorithm, but differ in the coefficients that the filters use.

Each patch uses as reference samples the seven adjacent samples. Therefore,

some patches may use reference samples from the AboveRow (if it belongs to the first

row of patches) and/or LeftCol (if it belongs to the first column of patches), or use

samples from previously predicted 4×2 patches. Except for the first patch, every patch

depends on the predicted samples from the ones predicted before, thus making it a

recursive process with a considerable degree of data dependency.

45 46 82 86

46 47 69 71

35 41 56 59

12 27 45 50

90 50 99 99

0

40

40

0

0 41 66 74

40 65 79 84

40 65 79 84

0 41 66 74

0

40

40

0

99

90 50 99 99

52 29 58 58

30 17 33 33

23 13 25 25

90 50 99 99

0

47

The algorithm used in the prediction of a 4×2 patch is described in Figure 15,

where:

• B is a 1-D array that stores predicted samples in raster order within the 4×2

patch;

• L is a 1-D array containing the reference samples, where L[0] is the reference

located above and to the left of the patch, L[1] to L[4] are references located

above, and L[5] and L[6] are references located at the left;

• RbfMode identifies the RBF mode (from 0 to 4);

• IntraFilterTaps is a 3-D constant array of coefficients, as listed in Table 6.

Figure 16 illustrates the four stages of an RBF prediction of an 8×4 block,

highlighting in blue the reference samples used for the prediction of each 4×2 patch.

1

2

3

4

5

6

7

FOR i in 0 to 7:

 aux = 0

 FOR j in 0 to 6:

 aux = aux + FilterCoefficients[RbfMode][i][j] * L[j]

 END FOR

 B[i] = (aux + 8) / 16

END FOR

Figure 15 RBF algorithm for a single 4×2 patch.

Figure 16 Example of the four stages of an RBF prediction of an 8×4 block.

25 50 99 99

0

40

59

87

90 50 50 40

4 25 61 73

32 39 58 64

30

25 50 99 99

0

40

59

87

90 50 50 40

49 49 59 63

75 67 69 69

74 53 53 44

66 57 55 48

4 25 61 73

32 39 58 64

30 25 50 99 99

0

40

59

87

90 50 50 40

49 49 59 63

75 67 69 69

74 53 53 44

66 57 55 48

65 59 58 52

68 64 62 58

4 25 61 73

32 39 58 64

30

25 50 99 99

0

40

59

87

90 50 50 40

74 53 53 44

66 57 55 48

4 25 61 73

32 39 58 64

30

1st block 2nd block

3rd block 4th block

48

Table 6 Filter coefficients stored in the IntraFilterTaps array

RbfMode B Coefficients

0

0 {−6, 10, 0, 0, 0, 12, 0}

1 {−5, 2, 10, 0, 0, 9, 0}

2 {−3, 1, 1, 10, 0, 7, 0}

3 {−3, 1, 1, 2, 10, 5, 0}

4 {−4, 6, 0, 0, 0, 2, 12}

5 {−3, 2, 6, 0, 0, 2, 9}

6 {−3, 2, 2, 6, 0, 2, 7}

7 {−3, 1, 2, 2, 6, 3, 5}

1

0 {−10, 16, 0, 0, 0, 10, 0}

1 {−6, 0, 16, 0, 0, 6, 0}

2 {−4, 0, 0, 16, 0, 4, 0}

3 {−2, 0, 0, 0, 16, 2, 0}

4 {−10, 16, 0, 0, 0, 0, 10}

5 {−6, 0, 16, 0, 0, 0, 6}

6 {−4, 0, 0, 16, 0, 0, 4}

7 {−2, 0, 0, 0, 16, 0, 2}

2

0 {−8, 8, 0, 0, 0, 16, 0}

1 {−8, 0, 8, 0, 0, 16, 0}

2 {−8, 0, 0, 8, 0, 16, 0}

3 {−8, 0, 0, 0, 8, 16, 0}

4 {−4, 4, 0, 0, 0, 0, 16}

5 {−4, 0, 4, 0, 0, 0, 16}

6 {−4, 0, 0, 4, 0, 0, 16}

7 {−4, 0, 0, 0, 4, 0, 16}

3

0 {−2, 8, 0, 0, 0, 10, 0}

1 {−1, 3, 8, 0, 0, 6, 0}

2 {−1, 2, 3, 8, 0, 4, 0}

3 {0, 1, 2, 3, 8, 2, 0}

4 {−1, 4, 0, 0, 0, 3, 10}

5 {−1, 3, 4, 0, 0, 4, 6}

6 {−1, 2, 3, 4, 0, 4, 4}

7 {−1, 2, 2, 3, 4, 3, 3}

4

0 {−12, 14, 0, 0, 0, 14, 0}

1 {−10, 0, 14, 0, 0, 12, 0}

2 {−9, 0, 0, 14, 0, 11, 0}

3 {−8, 0, 0, 0, 14, 10, 0}

4 {−10, 12, 0, 0, 0, 0, 14}

5 {−9, 1, 12, 0, 0, 0, 12}

6 {−8, 0, 0, 12, 0, 1, 11}

7 {−7, 0, 0, 1, 12, 1, 9}

49

3.2.5 Chroma-from-Luma Mode

The AV1 CFL mode (TRUDEAU; EGGE; BARR, 2018), allowed only for

chrominance blocks, is inspired by the proposals made by Chen et al. (2011) and

Pu et al. (2013).

The stages of the CFL algorithm, as illustrated in Figure 17, are the following:

1. The reconstructed luminance block is subsampled to match the size of the

chrominance block (if needed);

2. The arithmetic mean of all samples from the luminance block is calculated,

and subtracted from each sample to generate a matrix called AC

contributions;

3. Two matrices of scaled AC contributions are generated, one for each

chrominance plane, by multiplying the AC contributions by the scaling

variables CflAlphaU and CflAlphaV, to which the coder can assign values

from 0 to 2 in steps of 0.125.

4. Finally, a regular DC prediction is done for each chrominance block, which

are then added to the associated scaled AC contributions, to generate the

final CFL prediction for both chrominance blocks.

Figure 17 Stages of the CFL algorithm.

In this mode, the encoder can explore 17 possibilities for each of the two scaling

variables. Considering that applying a scaling coefficient to the AC contribution

requires one multiplication and one sum per sample, plus a way of testing the resulting

predicted block for distortion, then the CFL mode can be considered significantly more

complex than most modes if the coder is given the freedom of testing multiple

possibilities.

Reconstructed

Luma Block
Subsampling Arithmetic Mean

−

Scaling Coefficients

CflAlphaCb and CflAlphaCr

AC Contribution

+
DC Prediction of the Cb and Cr blocks

CfL Predictions

50

3.2.6 Directional Prediction Modes

In AV1, there are eight directional prediction modes, called nominal modes, that

were directly inherited from the VP9 (GRANGE; RIVAZ; HUNT, 2016). These modes

are particularly efficient for predicting blocks that are located at heterogeneous parts

of the image, e.g., where the edges of objects are located.

From each nominal angle, six new modes are defined with small variations of

−9, −6, −3, +3, +6, and +9 degrees (known as Intra Angle Delta), resulting in a total of

56 directional modes. For blocks smaller than 8×8, however, only the eight nominal

modes can be used.

Table 7 lists the eight nominal angles and the derived angles associated with

these. Figure 18 illustrates all the angles supported.

Table 7 All the directional modes supported by AV1 and their associated angles

Nominal Mode Nominal and Derived Angles

D45_PRED 36 39 42 45 48 51 54

D67_PRED 58 61 64 67 70 73 76

V_PRED 81 84 87 90 93 96 99

D113_PRED 104 107 110 113 116 119 121

D135_PRED 126 129 132 135 138 141 144

D157_PRED 148 151 154 157 160 163 166

H_PRED 171 174 177 180 183 186 189

D203_PRED 194 197 200 203 206 209 211

Figure 18 Nominal angles (black) and derived angles (blue) supported in AV1.

51

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

FOR i in 0 to H−1:

 FOR j in 0 to W−1:

 IF pAngle < 90:

 idx = (i + 1) * dx

 base = (idx >> (6 − upsampleAbove)) + (j << upsampleAbove)

 shift = (idx << upsampleAbove) >> 1) & 31

 maxBase = (W+H−1) << upsampleAbove

 IF base < maxBase:

 Pred[i][j] = AboveRow[base] * (32 – shift) + AboveRow[base+1] * shift

 Pred[i][j] = (Pred[i][j] + 16) / 32

 ELSE:

 Pred[i][j] = AboveRow[maxBase]

 END IF

 ELSE IF pAngle > 90 AND pAngle < 180:

 idx = (j << 6) – (i + 1) * dx

 base = idx >> (6 – upsampleAbove)

 IF base >= –(1 << upsampleAbove):

 shift = ((idx << upsampleAbove) >> 1) & 31

 Pred[i][j] = AboveRow[base] * (32 – shift) + AboveRow[base + 1] * shift

 ELSE:

 idx = (i << 6) – (j + 1) * dy

 base = idx >> (6 – upsampleLeft)

 shift = ((idx << upsampleLeft) >> 1) & 31

 Pred[i][j] = LeftCol[base] * (32 – shift) + LeftCol[base + 1] * shift

 END IF

 Pred[i][j] = (Pred[i][j] + 16) / 32

 ELSE IF pAngle > 180:

 idx = (j + 1) * dy

 base = (idx >> (6 − upsampleLeft)) + (i << upsampleLeft)

 shift = (idx << upsampleLeft) >> 1) & 31

 Pred[i][j] = LeftCol[base] * (32 – shift) + LeftCol[base + 1] * shift

 Pred[i][j] = (Pred[i][j] + 16) / 32

 ELSE IF pAngle == 90:

 Pred[i][j] = AboveRow[j]

 ELSE IF pAngle == 180:

 Pred[i][j] = LeftCol[i]

 END IF

 END FOR

END FOR

Figure 19 Directional prediction algorithm for any prediction angle.

As described in Figure 19, AV1 uses a universal directional algorithm that links

each predicted sample to a fractional position in the AboveRow or LeftCol arrays and

generates the predicted sample using bilinear interpolation with a precision of 1/32 of

a sample. In this algorithm: (i) the variables upsampleAbove and upsampleLeft

indicate, respectively, if the AboveRow and LeftCol arrays were upscaled to twice their

original size by an optional filtering process; (ii) the variable pAngle refers to the angle

associated with the directional mode being processed; and (iii) the dx and dy variables

52

are partially calculated based in eq. (10) and eq. (11), respectively, and then translated

as listed in Table 8.

𝑟𝑒𝑓𝐴𝑛𝑔𝑙𝑒𝑑𝑥 = {
𝑝𝐴𝑛𝑔𝑙𝑒, 𝑝𝐴𝑛𝑔𝑙𝑒 < 90

180 − 𝑝𝐴𝑛𝑔𝑙𝑒, 90 < 𝑝𝐴𝑛𝑔𝑙𝑒 < 180
 (10)

𝑟𝑒𝑓𝐴𝑛𝑔𝑙𝑒𝑑𝑦 = {
𝑝𝐴𝑛𝑔𝑙𝑒 − 90, 90 < 𝑝𝐴𝑛𝑔𝑙𝑒 < 180
270 − 𝑝𝐴𝑛𝑔𝑙𝑒, 180 < 𝑝𝐴𝑛𝑔𝑙𝑒

 (11)

Table 8 Possible values for the dx and dy variables in the directional prediction

refAngle dx or dy

3 1023

6 547

9 372

14 273

17 215

20 178

23 151

26 132

29 116

32 102

36 90

39 80

42 71

45 64

48 57

51 51

54 45

58 40

61 35

64 31

67 27

70 23

73 19

76 15

81 11

84 7

87 3

If the optional upscaling (mentioned above) and smoothing filtering tool is

activated for the coding of a sequence, the reference sample arrays can be pre-

processed in the scope of the directional prediction modes. A wide set of conditions

must be met for determining if a specific type of filter will be used or not.

These conditions are briefly explained below, and for a more detailed description,

please refer to Rivaz and Haughton (2018).

The smoothing filtering process may apply a 3-tap filter to AboveRow[−1] and

LeftCol[−1], depending on the values of pAngle, W, and H. It may also apply a 5-tap

filter on the remaining samples of AboveRow and LeftCol, depending if the reference

53

samples stored in these arrays were originally available (see Section 3.1). There are

three different sets of weights (filter strengths) for the 5-tap filter, the right one is

selected based on values of pAngle, W, H, and if the blocks located above and to the

left of Pred were previously predicted using one of the three Smooth modes.

The upscaling process for AboveRow can only happen for angles from 93 to

129 degrees inclusive, and for LeftCol only for angles from 183 to 211 inclusive. For

both AboveRow and LeftCol, the upscaling can only happen if the sum of W and H is

less than or equal to 16, or 8 if one of the blocks located above and to the left of Pred

were previously predicted using one of the three Smooth modes. When invoked, the

upscaling process doubles the size of one or both arrays of reference samples, filling

each position between the original reference samples with a half-sample interpolated

by a 4-tap filter.

Figure 20 illustrates the directional prediction of the eight nominal modes for a

4×4 block. In this figure, the hypothetical reference samples, common to all modes,

are shown at the top.

Figure 20 Example of predictions using the nominal directional modes.

31 31 31 31

31 31 31 31

31 31 31 31

31 31 31 31

V_PRED

63 63 63 63

63 63 63 63

63 63 63 63

63 63 63 63

H_PRED

31 31 31 127

31 31 127 127

31 127 127 127

127 127 127 127

D45_PRED

127 31 31 31

63 127 31 31

63 63 127 31

63 63 63 127

D135_PRED

73 31 31 31

112 31 31 31

63 58 31 31

63 97 31 31

D113_PRED

63 63 67 31

63 63 63 63

63 63 63 63

63 63 63 63

D157_PRED

63 63 63 63

63 63 63 63

63 63 47 20

37 10 0 0

D203_PRED

31 31 31 70

31 31 31 112

31 31 55 127

31 31 97 127

D67_PRED

31 31 31 31

63

63

63

63

127

0

0

0

0

127 127 127 127

Pred

54

3.2.7 Screen Content Prediction Modes

Xu and Liu (2022) define screen content as video content not captured by

cameras, such as computer-generated text, graphics, and animation. AV1 supports

two different prediction modes for SCC: The Color Palette mode and the Intra Block

Copy mode.

The Color Palette prediction mode is effective when blocks can be approximated

by a small number of unique colors. This mode is allowed only for blocks of size 8×8

or larger. The bitstream structure requires an array representing a color palette of two

to eight colors and, also, a structure map, which is a 2-D array filled with the indexes

of the colors (according to the palette) to be used in the prediction. The encoder can

explore different sizes of palettes and different colors to optimize the resulting RD cost,

making this mode more complex than most of the others, depending on the strategy

adopted by the encoder. Figure 21 illustrates an 8×8 block predicted with a palette of

five colors.

Figure 21 Example of a prediction using the Color Palette mode for an 8×8 block.

The Intra Block Copy mode allows the intra coder to refer back to previously

coded samples in the same frame in the same way the inter-picture prediction refers

back to previously coded samples in previously coded frames. It is very efficient in

frames where many repeated textures and patterns are present. The location of the

block used as reference is specified by a displacement vector in a way similar to motion

vectors in motion compensation. Displacement vectors are limited to integer values for

the luminance plane and may be fractional for chrominance planes, where bilinear

filtering is used for interpolation. This mode is only allowed for intra-only frames, where

conventional inter-picture coding cannot happen.

193 193 162 77

193 186 77 77

193 152 77 77

193 77 77 77

147 200 200 200

188 200 200 200

200 200 200 200

200 200 200 200

178 77 77 77

141 77 77 77

77 77 77 77

77 77 77 77

200 200 200 200

200 200 200 200

200 200 200 200

200 200 200 200

Original

193 193 141 77

193 193 77 77

193 141 77 77

193 77 77 77

147 200 200 200

200 200 200 200

200 200 200 200

200 200 200 200

193 77 77 77

141 77 77 77

77 77 77 77

77 77 77 77

200 200 200 200

200 200 200 200

200 200 200 200

200 200 200 200

Pred

0 0 1 2

0 0 2 2

0 1 2 2

0 2 2 2

3 4 4 4

4 4 4 4

4 4 4 4

4 4 4 4

0 2 2 2

1 2 2 2

2 2 2 2

2 2 2 2

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4 4

Map

0 1 2 3 4

77 141 147 193 200

Palette

55

3.3 Compound Inter-intra Prediction

In AV1, the encoder is allowed to combine an intra predicted block with an inter

predicted block to form a compound prediction. The intra prediction modes allowed are

DC, Smooth, Directional Vertical, and Smooth Vertical, whereas the only inter

prediction allowed is translational.

There are two forms of compound inter-intra prediction, one using wedge masks

to split the block into two sections along with various oblique angles, and another using

mode-specific masks. The use of masks is as defined in eq (12), where PIntra and

PInter are respectively intra and inter predicted blocks, M is a mask in the form of a

matrix with values in the [0, 1] range, and C is the resulting compound predicted block.

𝐶𝑥,𝑦 = 𝑀𝑥,𝑦 × 𝑃𝐼𝑛𝑡𝑟𝑎𝑥,𝑦 + (1 −𝑀𝑥,𝑦) × 𝑃𝐼𝑛𝑡𝑒𝑟𝑥,𝑦 (12)

Figure 22 illustrates the 16 wedge masks supported. In each mask, most of the

Mx,y values are either 0 or 1, except near the transition edge, where there is a gradual

change, with 0.5 values at the actual edge.

Figure 22 Compound inter-intra prediction wedge masks.

Figure 23 (HAN et al., 2021) illustrates the mode-specific masks. In this figure,

it can be observed that for the Directional Vertical, Directional Horizontal, and Smooth

modes, the mask weights are higher (i.e., prioritize the intra sample instead of the inter)

for positions that are closer to the reference samples used by the mode in question.

As the distance from the reference samples increase, the accuracy of the intra

prediction decreases, and the mask weights prioritize the inter predicted samples

instead.

56

Figure 23 Compound inter-intra prediction mode-specific masks.

As described above, AV1 supports numerous possible compound inter-intra

prediction. Therefore, an encoder that evaluates every possibility in the RDO loop may

achieve satisfactory compression efficiency, at cost of a significant complexity added

to the prediction of a single block.

1,00

0,75

0,50

0,25

0,00
DCSmoothHorizontalVertical

57

4 RELATED WORKS

Firstly, this chapter presents a review of the related works that propose system-

level solutions for computational effort reduction in an AV1 encoder and works that

propose dedicated hardware designs for modules of an AV1 encoder and decoder.

Works that were published as part of this Ph.D. project were also included in the

discussion due to the small number of related works found in the literature. Finally, this

chapter presents and discusses research opportunities that are aligned with the thesis

of this Ph.D. project.

4.1 AV1-related Algorithmic Optimization

Most of the published papers that propose ways of reducing the complexity in

the current-generation encoders, such as AV1, address the topic of block partitioning.

Optimizations in this area generally consist of early termination of the block partitioning

exploration, thus completely avoiding the cost of processing partitions from deeper

levels of a tree branch.

A common kind of optimization is to reduce the coding search space by

exploiting certain features of a codec based on previous observations. However,

different methods based on neural networks also exist.

Since the release of the AV1 bitstream specification, a few works have been

published covering heuristic-based and machine-learning solutions for the block

partitioning stage, intra prediction stage, and inter prediction stage of the AV1 encoder.

It is important to mention that system-level solutions for different stages of the encoder

can and should be used together to allow for better results. Table 9 lists all these works,

and the following paragraphs present them with further details.

58

Table 9 Summary of AV1-related algorithmic optimization

Work Stage
Software
Version

Time Saving
(%)

BD-BR
(%)

Chiang
et al. (2019)

Block Partitioning
(Enc.)

- 64.14 0.61

Chen
et al. (2019)

Block Partitioning
(Enc.)

1.0.0 35.7 0.61

Guo
et al. (2018a)

Block Partitioning
(Enc.)

- 33.4 0.14

Guo
et al. (2018b)

Block Partitioning
(Enc.)

- 34.7 2.12

Kim
et al. (2019)

Inter (Enc.) 1.0.0 57.7 1.59

Jeong
et al. (2019a)

Intra (Enc.) - 8.67 0.04

Jeong
et al. (2019b)

Intra (Enc.) - 15.86 0.44

Corrêa
et al. (2022a) *

Intra (Enc.) 2.0.0 15.36 0.60

Corrêa
et al. (2022b) *

Intra (Enc.) 2.0.0 22.56 1.26

* Works developed as part this Ph.D. project.

Chiang, Han, and Xu (2019) propose a two-pass method for evaluating the AV1

block partitioning tree of an SB: (i) the first pass uses a binary tree that allows only the

NONE and SPLIT partition modes, instead of the usual 10-way partition tree (see

Figure 3), which is used only to estimate the probable depth of the tree branches, and

(ii) the second pass tests all others partition modes (except the SPLIT), on tree nodes

that were selected as NONE in the first pass. Each partition tested usually needs to go

through the exhaustive RDO process, but the authors also propose a two-pass method

for evaluating the RD cost of each partition, which consists of a simplified RD

evaluation of the residual information of each prediction mode in the first pass, and the

usual RDO evaluation for a subset of the best candidates selected in the first pass.

Chen et al. (2019) propose a conditional Bayesian inference model to perform

early termination in the AV1 block partitioning tree exploration, based on how the same

input was previously encoded by an HEVC encoder. Although the AV1 specifies a

wider set of block sizes than HEVC, the authors also propose a prior probability

estimation for the depth of AV1 partition trees that can be updated during the encoding.

Likewise, Guo et al. (2018a) also propose a Bayesian approach for early

termination of the AV1 block partitioning tree exploration, but in the context of multi-

rate video encoding, where the encoding of a video sequence is done by a reference

instance of the encoder, while N other instances encode the same input

simultaneously, each consulting the reference instance to accelerate their own RD

59

decisions. In this work, however, the authors wrongly affirmed that in AV1 superblocks

start at the size of 64×64 and that blocks can only be divided into four or two parts.

Guo, Han, and Wen (2018b) propose an early termination scheme for the AV1

block partitioning tree exploration, in the context of multiple resolutions encoding.

In this solution, high-resolution encoding is accelerated by referring to decisions made

in low-resolution encoding. In this work, however, the authors once again wrongly

affirmed that the AV1 block partitioning is based on a 4-way partition tree.

Kim et al. (2019) propose a machine learning-based solution to accelerate the

AV1 inter prediction stage. The authors observed that not all video sequences benefit

from compound prediction modes. Therefore, in this solution, a decision tree trained

based on seven features extracted while encoding each block is used to decide

whether to skip compound prediction modes or not.

Jeong, Gankhuyag, and Kim (2019a) propose an optimization to the reference

software mode decision by adding an adaptive margin for early termination based on

the accuracy of the mode decision when compared to the RDO.

Jeong, Gankhuyag, and Kim (2019b) propose a fast mode decision applied to

blocks of chrominance samples only, based on how the same block of luminance was

coded.

Corrêa et al. (2022a) propose a mode-adaptive distortion metric subsampling

technique to reduce the cost of the SAD/SSE operations of the intra prediction stage,

allowing for faster encoding times on software encoders and for lower area and lower

power dissipation on hardware encoders. This work is part of this Ph.D. project and is

further described in Chapter 5.

Corrêa et al. (2022b) propose a fast decision algorithm for the AV1 intra

prediction, inspired by the direction detection algorithm used on the CDEF of the same

codec. The main objective is to reduce the number of intra candidates with a low-cost

heuristic, thus allowing a faster prediction time in software and also allowing a low-area

and low-power intra prediction hardware design. This work is part of this Ph.D. project

and is also further described in Chapter 5.

4.2 AV1-related Hardware Designs

Since the release of AV1, several hardware-related works have been published

covering three areas: (i) intra-frame prediction, (ii) inter-frame prediction, (iii) in-loop

filtering, and (iv) entropy coding. Most of these works were developed in the same

60

research group in which this project was carried out. It is important to mention that

some of these works target the encoder, whereas others target the decoder, and the

ones that target the former tend to be more complex due to the decisions that an

encoder must take. Table 10 summarizes all these works, whereas the next sections

present them in further detail.

Table 10 Summary of AV1-related hardware designs

Work Stage Technology
Gate Count
(2-NAND)

Freq.
(MHz)

Power
(mW)

Throughput

Corrêa
et al. (2019a) *

Intra
(Enc.)

TSMC 40nm 247.28 315 268.36 4K@120fps

Corrêa
et al. (2019b) *

Intra
(Enc.)

TSMC 40nm 109.57 648 16.1 4K@30fps

Corrêa
et al. (2020a) *

Intra
(Enc.)

TSMC 40nm 455.8 1,296 40.92 4K@60fps

Corrêa
et al. (2020b) *

Intra
(Enc.)

TSMC 40nm 128.5 648 65.5 4K@30fps

Neto
et al. (2020) *

Intra
(Enc.)

TSMC 40nm 821.835 1,902 1,613 4K@60fps

Neto
et al. (2021a) *

Intra
(Enc.)

TSMC 40nm 584.845 1,296 4,110 4K@60fps

Neto
et al. (2021b) *

Intra
(Enc.)

TSMC 40nm 2794 1,902
82.76

631.76
4K@60fps

Neto
et al. (2022) *

Intra
(Enc.)

TSMC 40nm 2504.715 1,902
1,182
9,468

4K@60fps

Goebel
et al. (2019)

Intra
(Dec.)

TSMC 40nm 89.39 132.1 7.96 4K@60fps

Domanski
et al. (2019)

Inter
(Dec.)

TSMC 40nm 141.1 279.9 81.31 8K@30fps

Domanski
et al. (2021)

Inter
(Dec.)

TSMC 40nm 72.64 686 26.79 8K@30fps

Freitas
et al. (2020)

Inter
(Dec.)

TSMC 40nm
106.17
270.44

448.43
344.83

56.37
240.75

8K@30fps
8K@120fps

Freitas
et al. (2021)

Inter
(Dec.)

ST 65nm 104.3 441 63.14 8K@120fps

Freitas
et al. (2022)

Inter
(Dec.)

TSMC 40nm 324.79 1,000 51.15 8K@60fps

Zummach
et al. (2020a)

Filtering
(Dec.)

TSMC 40nm 369 23 65 4K@60fps

Zummach
et al. (2020b)

Filtering
(Dec.)

TSMC 40nm 185 93 43 4K@60fps

Zummach
et al. (2020c)

Filtering
(Dec.)

TSMC 40nm 39.35 16.2 3.96 4K@60fps

Palau
et al. (2022a)

Filtering
(Dec.)

TSMC 40nm 177.58 212.86 120.21 4K@60fps

Palau
et al. (2022b)

Filtering
(Dec.)

TSMC 40nm 37.78 207.03 26.36 4K@60fps

Bitencourt
et al. (2022)

Entropy
(Enc.)

ST 65nm
11.7K
11.2K

581
563

7.801
6.166

8K@120fps

Gomes
et al. (2021)

Entropy
(Dec.)

ST 65nm 34.3K 467 - 8K@60fps

* Works developed as part this Ph.D. project.

61

4.2.1 Designs for Intra Prediction

Corrêa et al. (2019a; 2019b; 2020a; 2020b) and Neto et al. (2020; 2021a;

2021b; 2022) presented architectures for the intra prediction module at the encoder.

These works are part of this Ph.D. project, and their results lead to the final designs

described in Chapter 6. On the other hand, Goebel et al. (2019) presented an intra

prediction architecture for the decoder side. All these architectures have in common

the support for every possible block partition allowed by the AV1 specification.

In the work by Corrêa et al. (2019a), a non-directional intra prediction module

for the encoder side, limited to a single prediction mode (Paeth), and able to reach high

throughput was presented. Massive parallelism is used to allow the processing of a

whole 32x32 block (or any smaller block) in a single clock cycle. A throughput of 30

frames per second (fps) for UHD 8K videos was reported.

In Corrêa et al. (2019b), a non-directional intra prediction module for the

encoder side, limited to four intra prediction modes, was presented. The authors

optimized all multiplication blocks to keep the area and power within feasible limits.

The parallelism strategy allowed the processing of one block row/column per clock

cycle. Thus, the number of cycles depends on the width or height of the block,

whichever is the largest. Similarly, in Corrêa et al. (2020a), a non-directional intra

prediction module for the encoder side, capable of processing ten non-directional

modes, was presented. A throughput of 30 fps for UHD 4K videos was reported for

both architectures.

In Corrêa et al. (2020b) and Neto et al. (2020), directional intra prediction

designs for the encoder side that share many similarities were described. Both designs

support all 56 directional prediction modes, however, only the design proposed by Neto

et al. (2020) gives support to the four smoothing filtering processes of reference

samples and the upscaling of reference samples. All 56 prediction modes are

processed in parallel in both works, one row/column per clock cycle. Although the

number of prediction modes being processed in parallel is quite large, a significant

amount of redundant operations is reused in Corrêa et al. (2020b) because all

predicted blocks share the same reference samples as input due to the lack of the

smoothing filtering step. This, however, could not be done with the same degree of

efficiency in the architecture proposed by Neto et al. (2020), because for each of the

56 prediction modes, the encoder can use a different configuration of smoothing

62

filtering and upscaling of the reference samples. A throughput of 60 fps for UHD 4K

was reported for both architectures.

In Neto et al. (2021a), a study regarding the redundancy of operations in the

directional intra prediction filters was presented, together with an architecture with

operation sharing amongst different filters. The authors reported a decrease in power

dissipation and gate count with the proposed optimization when compared to a naive

solution, and also reported a throughput of 60 fps for UHD 4K.

In Neto et al. (2021b; 2022), two different solutions for directional intra prediction

were presented, both capable of operating in a high-quality or low-power setting. These

architectures support the smooth filtering and upscaling process, although the low-

power setting disables these features to reduce energy consumption, at cost of

compression efficiency losses. A throughput of 60 fps for UHD 4K was reported for

both architectures.

In Goebel et al. (2019), a non-directional intra prediction module for the decoder

limited to the DC and CFL prediction modes was presented. The sample-level

parallelism of the architecture allowed the processing of any block size as subblocks

of size 4x4 (16 samples per cycle). In the decoding process, each block must be

predicted only once using the prediction mode signaled in the bitstream, hence the

CFL unit of this design is only used for CFL-coded blocks, but the DC unit is used for

both modes because the DC algorithm is one of the steps of the CFL prediction. The

authors reported a throughput of 60 fps for UHD 4K.

4.2.2 Designs for Inter Prediction

Domanski et al. (2019; 2021) and Freitas et al. (2020; 2021; 2022) presented

architectures for the subpixel interpolation filter present in the inter prediction module

of the decoder.

In Domanski et al. (2019), the sample-level parallelism of the architecture allows

the processing of any block size as subblocks of size 4x4 (16 samples per cycle), but

since it is a decoder design, only one of the many supported filters is used per predicted

block (the one signaled in the bitstream). In Domanski et al. (2021), a similar

architecture is presented, but making use of approximate computing to generate more

hardware-friendly filter coefficients. The authors reported a throughput of 30 fps for

UHD 8K for both architectures and a power reduction of 80% in the approximate

solution when compared to its precise counterpart.

63

In Freitas et al. (2020), an architecture for a subset of the interpolation filters,

called Regular, is presented. Similarly, in Freitas et al. (2021), an architecture for a

subset of the interpolation filters, called Sharp, is presented. In both designs, the level

of parallelism is configurable, ranging from 4 to 128 samples per cycle, and because

of this, the authors reported a very high throughput of 120 fps for UHD 8K. Finally, in

Freitas et al. (2022), an architecture for the complete set of filters is presented, for

which the authors reported a throughput of 60 fps for UHD 8K.

4.2.3 Designs for In-loop Filtering

Zummach et al. (2020a; 2020b; 2020c) and Palau et al. (2022a; 2022b)

presented architectures for the CDEF, DBF, and LRF in-loop filters for the AV1

decoder.

In Zummach et al. (2020a), a CDEF architecture for the decoder was presented.

The CDEF process is applied to each area of size 8×8 within a frame, and the

architecture was designed with enough parallelism to process an 8×8 area every three

clock cycles. The architecture is composed of a direction search unit, which classifies

the input texture with one of eight directions, and a filtering core unit, which filters the

input texture using 64 filter kernels based on the detected direction.

In Zummach et al. (2020b), another version of the architecture with lower parallelism

was presented, this one capable of processing an area of 8×1 of the frame every three

cycles. The authors reported a throughput of 60 fps for UHD 4K for both designs.

In Zummach et al. (2020c), a DBF architecture for the decoder was presented.

The architecture implements a parallelism of 56 samples per cycle, which is enough to

allow a very low frequency when processing high-resolution videos. The authors

reported a throughput of 60 fps for UHD 4K.

In Palau et al. (2022a), a Dual Self-Guided Filter (DSGF) architecture is

presented, whereas in In Palau et al. (2022b), an architecture for the Separable

Symmetric Normalized Wiener Filter (SSNWF) is presented. Together, both

architectures form an LRF module, which is used for denoising and/or edge

enhancement. The presented hardware designs target the decoder and, according to

the authors, can process at 60 fps for UHD 4K videos.

64

4.2.4 Designs for Entropy Coding

Bitencourt, Ramos, and Bampi (2021; 2022) presented two architectures for the

arithmetic encoder of the AV1 entropy encoding stage, one being a straightforward

design pipelined for high throughput, and another being an optimized version of the

former with low-power techniques, such as clock gating and operand isolation.

The authors reported a 20.9% power reduction in the optimized version, and that both

designs can process at 120 fps for UHD 8K videos.

Gomes and Ramos (2021) presented one architecture for the arithmetic

decoder of the AV1 entropy decoder. This design is divided into two main modules,

one to decode symbols from a binary alphabet, and another to decode symbols from

the multi-symbol alphabet. The authors report a throughput of one symbol of any

alphabet per cycle, resulting in an estimated performance of 60 fps for UHD 8K videos.

4.3 Research Opportunities

In Section 4.1, it was shown that there are a few algorithmic-based solutions for

computational effort reduction of an AV1 encoder. If the works of Corrêa et al. (2022a;

2022b) are not considered, which are both part of this Ph.D. project, then only two

works focus on optimizing intra prediction, and all others target the task of simplifying

the block partitioning decision, which is a global decision that affects the prediction

stage of a given block, as well as all encoding stages that follow. However, there are

many other decisions that an encoder must take locally in other stages, such as inter

and intra prediction stages, transform coding, and entropy coding. These local

decisions allow for optimization and, thus, this subject offer research opportunity.

The works of Corrêa et al. (2022a; 2022b) propose optimizations for the intra

prediction stage of an AV1 encoder. These optimizations do not compete with most of

the related works listed in this chapter, but instead, it can be paired with those to form

a highly optimized encoder. The proposed solutions are fully described in Chapter 5.

In Section 4.2, several hardware architectures were described for the AV1

encoder and decoder sides. However, all of these works only propose implementations

of the original algorithms defined in the AV1 specification. Although this kind of work

also contributes to its field of research, there is a clear absence of works that propose

hardware designs for optimized algorithms.

65

To fill this gap, the work of Corrêa et al. (2022b), which is part of this Ph.D.

project, proposes a fast mode decision algorithm for the intra prediction and also

proposes a hardware design for it. Designs following this strategy are described in

Chapter 6.

66

5 HEURISTIC-BASED ALGORITHMS FOR AV1 INTRA-PICTURE

PREDICTION

This chapter presents heuristic-based algorithms for the intra prediction stage

of the AV1 encoder, which were published in Corrêa et al. (2022a; 2022b).

5.1 Algorithm 1: Texture-based Fast Mode Decision (TbFMD)

The main purpose of a fast mode decision algorithm is to mitigate the large

combinatorial space of block sizes and prediction modes allowed in AV1.

The proposed heuristic-based method (CORRÊA et al., 2022b) operates in two

steps: (i) detection of the dominant direction of the input block texture, and (ii) creation

of a list with a reduced number of prediction modes (RD-list), according to the dominant

direction detected.

5.1.1 Direction Detection Step

The direction detection step proposed in this work is based on a solution first

described in the Daala codec (VALIN et al., 2016), and later added as part of the AV1

CDEF in-loop filtering stage (MIDTSKOGEN; VALIN, 2018). This algorithm has been

proven efficient at detecting texture direction for the objectives of the in-loop filtering

stage of the codec and, since this information can be valuable for an intra-frame

prediction fast mode decision heuristic, it was adapted to define which prediction

modes are more likely to be good candidates for an input block.

In the CDEF, the direction detection algorithm finds, for each 8×8 input block,

the direction d that matches the input block by comparing it to eight Perfectly

Directional Blocks (PDB), one for each of eight directions d. The PDBs are matrices

(blocks) where all samples belonging to line k have the same value, which is the

average of the samples from that line. The SSE distortion metric is the one used in this

comparison.

At the in-loop filtering stage, the direction detection as used in the AV1 algorithm

must have high accuracy, because errors at this stage can produce visible artifacts in

the resulting image. On the other hand, a fast mode decision algorithm at the intra

prediction stage has much more flexibility to explore a trade-off between accuracy and

the use of computational resources. With the main objective of developing a fast

67

decision algorithm that is hardware-friendly, the direction detection algorithm from

CDEF was adapted to work with PDBs of a reduced size of 4×4 samples, significantly

reducing the number of operations required to compute the SSE between an input

block and the eight PDBd, although also reducing the accuracy of the algorithm.

Because the PDBd has a fixed 4×4 size, all sizes of input blocks must also be

subsampled to 4×4 before undergoing the direction detection step, but their original

size is used in the prediction itself. Figure 24 shows the eight PDBd, and also how

samples are distributed in lines k.

Figure 24 PDBs adapted to the reduced size of 4×4. Each direction d is named after an AV1 intra
mode related to the same angle. The numbers inside each square identify to which line k a sample
belongs.

As first proposed by Midtskogen and Valin (2018), for each of the eight

directions d, the average μd,k of the samples of a line k is defined as in eq. (13), where

xp is the value of sample p in the input block, Pd,k is the set of samples in line k, and

Nd,k is the number of samples in Pd,k. In the adapted algorithm proposed in this thesis,

N ranges from 1 to 4.

𝜇𝑑,𝑘 =
1

𝑁𝑑,𝑘
∑ 𝑥𝑝
𝑝∈𝑃𝑑,𝑘

 (13)

The error between the input block and the PDBd, given by the SSE metric, is

defined as in eq. (14).

𝐸𝑑
2 =∑(∑ (𝑥𝑝 − 𝜇𝑑,𝑘)

2

𝑝∈𝑃𝑑,𝑘

)

𝑘

 (14)

d=45 d=203 d=180 d=157

3 2 1 0

3 2 1 0

4 3 2 1

4 3 2 1

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

d=135 d=113 d=90 d=67

0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 3

0 1 2 3

1 2 3 4

2 3 4 5

3 4 5 6

0 0 1 1

1 1 2 2

2 2 3 3

3 3 4 4

1 1 0 0

2 2 1 1

3 3 2 2

4 4 3 3

3 2 1 0

4 3 2 1

5 4 3 2

6 5 4 3

0 1 2 3

0 1 2 3

1 2 3 4

1 2 3 4

68

Substituting eq. (13) into eq. (14) leads to the simplified error, defined in eq.

(15).

𝐸𝑑
2 =∑𝑥𝑝

2

𝑝

−∑
1

𝑁𝑑,𝑘
(∑ 𝑥𝑝
𝑝∈𝑃𝑑,𝑘

)

2

𝑘

 (15)

Finally, because the first term of eq. (15) refers only to samples from the input

block, it is not influenced by the variable d in any way. Hence, this constant can be

removed from the equation and, instead of looking for the lowest error, the algorithm

must look for the highest sum Sd, expressed as in eq. (16). The dominant direction is

given by the highest of the eight Sd values.

𝑆𝑑 =∑
1

𝑁𝑑,𝑘
(∑ 𝑥𝑝
𝑝∈𝑃𝑑,𝑘

)

2

𝑘

 (16)

Figure 25 and Figure 26 together illustrate the direction detection step.

Figure 25 shows an example of an 8×8 input block being subsampled to 4×4, and

Figure 26 shows the PDBs for this subsampled block and also the Sd values for these

PDBs as if calculated using eq. (16). According to this example, the dominant direction

of the input block texture follows a 45-degree angle, because S45 is the highest among

all Sd values, meaning that the PDB45 is the most similar to the subsampled input block.

In the figures, the color used for each sample, as well as their numerical label,

represent their 8-bit luminance value.

Figure 25 Example of an 8×8 to 4x4 subsampling.

26 148 184 96

93 175 162 22

152 149 37 16

48 34 29 32

26 76 148 183

46 113 167 184

93 148 175 184

142 158 165 157

184 171 96 29

184 137 53 20

162 70 22 22

97 31 19 16

152 159 149 102

124 102 79 45

48 42 34 26

40 34 38 35

37 20 16 16

24 21 23 22

29 32 32 32

35 35 35 37

8 8 Input Block 4 4 Subsampled Block

Subsampling

69

Figure 26 Example of PDBs and calculation of the dominant direction, based on the input block of
the previous figure.

5.1.2 RD-list Creation Step

For a given input block, the best decision can only be achieved by passing all

the possible prediction candidates through the complete encoding loop and, then, by

evaluating their RD costs to select the best prediction mode. However, since the RDO

is a bottleneck of the encoding process due to its prohibitive computational effort,

a fast mode decision is needed to mitigate this problem.

The fast mode decision algorithm proposed creates reduced a RD-list (list of

promising candidates) to be sent to the RDO by using only information from the

direction detection step, i.e., based on a heuristic, prediction modes are discarded

without ever being evaluated by the exhaustive RDO task. For a given input block, the

decision algorithm works as follows:

1. The algorithm classifies the input block as being a smooth or a sharp texture

by subtracting the Sd of the dominant direction (Sdominant_d) from the Sd of its

orthogonal direction (Sorthogonal_d) and then performing a right shift by a

threshold Thr, as defined in eq. (17). If the contrast C results in a positive

value, the block is classified as a sharp texture, otherwise, smooth.

2. If the block is smooth, then a very small RD-list is created from the ND set,

which is composed of non-directional modes only.

26 119 170 112

119 170 112 25

170 112 25 12

112 25 12 26

PDB45

S45 = 173,779

88 88 136 136

136 136 120 120

120 120 27 27

27 27 23 23

PDB203

S203 = 156,498

114 114 114 114

112 112 112 112

86 86 86 86

29 29 29 29

PDB180

S180 = 140,417

90 90 139 139

78 78 90 90

88 88 78 78

37 37 88 88

PDB157

S157 = 134,207

67 107 102 94

88 67 107 102

91 88 67 107

44 91 88 67

PDB135

S135 = 128,985

75 96 97 56

75 96 97 56

99 75 96 97

99 75 96 97

PDB113

S113 = 127,317

79 125 102 37

79 125 102 37

79 125 102 37

79 125 102 37

PDB90

S90 = 139,740

60 129 131 42

60 129 131 42

129 131 42 15

129 131 42 15

PDB67

S67 = 155,770

70

3. Otherwise, if the block is sharp, then a reduced RD-list is created from the

union of the ND set and the directional mode that follows the exact detected

direction. Then, it is also verified which of the two directions adjacent to the

dominant direction has the highest Sd value. The three closest angle

variations that follow the best adjacent direction are also appended to the

final RD-list.

𝐶𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡_𝑑 = (𝑆𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡_𝑑 − 𝑆𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙_𝑑) ≫ 𝑇ℎ𝑟 (17)

Table 11 shows the reduced RD-list created for sharp blocks. It can be observed

that the proposed fast mode decision reduces the set of possible directional prediction

modes from 56 to just four, in the worst case, for sharp blocks. As previously discussed,

no directional mode is evaluated when a block is classified as smooth.

Table 11 RD-list created for sharp blocks according
to the dominant and best adjacent directions

Dominant
direction (d)

Best adjacent
direction (d)

Reduced RD-list

45
67 ND ∪ {45} ∪ {36, 39, 42}
203 ND ∪ {45} ∪ {48, 51, 54}

203
45 ND ∪ {203} ∪ {206, 209, 211}
180 ND ∪ {203} ∪ {194, 197, 200}

180
203 ND ∪ {180} ∪ {183, 186, 189}
157 ND ∪ {180} ∪ {171, 174, 177}

157
180 ND ∪ {157} ∪ {160, 163, 166}
135 ND ∪ {157} ∪ {148, 151, 154}

135
157 ND ∪ {135} ∪ {138, 141, 144}
113 ND ∪ {135} ∪ {126, 129, 132}

113
135 ND ∪ {113} ∪ {116, 119, 122}
90 ND ∪ {113} ∪ {104, 107, 110}

90
113 ND ∪ {90} ∪ {93, 96, 99}
67 ND ∪ {90} ∪ {81, 84, 87}

67
90 ND ∪ {67} ∪ {70, 73, 76}
45 ND ∪ {67} ∪ {58, 61, 64}

Figure 27 shows two examples of RD-lists. On the left side, an RD-list composed

of the prediction modes ND ∪ {99, 96, 93, 90} is presented, created from a dominant

direction 90, and the best adjacent direction 113. On the right side, an RD-list

ND ∪ {90, 87, 84, 81} is presented, created from the same dominant direction, but the

opposite adjacent direction. For a full picture illustrating all prediction angles, refer to

Figure 18.

71

Figure 27 Examples of RD-lists created from dominant direction 90, and best adjacent direction
113 (left side) and 67 (right side).

5.2 Algorithm 2: Mode-adaptive Subsampling in Block Matching (MaSBM)

In the AV1 intra prediction, a single 64×64 superblock (SB) can be partitioned

into 1,869 different intra subblocks according to a 10-way partition tree. As explained

in Section 3.2, each block can be predicted by many different intra modes, resulting in

a high number of predicted candidates that must be evaluated by the RDO. One way

to mitigate this problem is to reduce the number of prediction modes computed,

as proposed in Section 5.1, and another fairly common way is to evaluate the predicted

blocks locally with a distortion metric, such as the SSE, and to create an RD-list

composed of the N candidates with the lowest distortion. Selecting candidates locally

using the SSE is a heuristic method, because it only considers the distortion between

candidates and the input block, whereas the RDO also considers the bit rate impact of

each decision.

Still, as can be verified in eq. (4), the SSE operation for blocks of size M×N can

be quite expensive, requiring M×N subtractions, M×N multiplications, and M×N−1

sums of varying bit depths. Therefore, a more efficient heuristic should be able to not

only select candidates locally with the SSE but also reduce the number of arithmetic

operations required by each SSE.

Dominant d:

Best adjacent d:

RD-list:

Dominant d:

Best adjacent d:

RD-list:

90

113

ND ∪ {99, 96, 93, 90}

90

67

ND ∪ {90, 87, 84, 81}

72

5.2.1 Observation of SSE Error in Intra Prediction

Because the intra prediction modes are limited to using only reference samples

adjacent to the left and above the input block, as explained in Section 3.1, more

accurate predicted samples are obtained in positions spatially closer to the reference

samples, and less accurate predicted samples are obtained as the spatial distance

from the reference arrays increases.

To verify the extent of the loss of accuracy in intra predicted samples spatially

located far away from the reference samples (e.g., in the bottom-right corner of a

block), experiments were performed in the AV1 reference software libaom 2.0.0

(AOMedia, 2022). The experiments consisted of recording the residual information of

every intra predicted block and computing the average residue (error) for each

combination of block size and prediction mode.

Figure 28 shows, in the form of heat maps, the average error for non-directional

modes, normalized to a 0 to 1 range, when applied to blocks of size 16×16. It can be

noticed that prediction modes such as Smooth, Paeth, and DC, which make use of all

reference samples from both the AboveRow and LeftCol arrays, show a clear pattern

of lower error in the top-left region of the blocks and higher error in the bottom-right

region. On the other hand, the Smooth Vertical mode, which uses all samples from

AboveRow and only the last sample of LeftCol, shows a pattern of lower error in the

whole top region and a small portion of the bottom-left corner.

Figure 29 shows the average error for the eight nominal directional modes when

applied to blocks of the same size. Directional 180 and 203 are modes that only use

references from LeftCol and show a pattern of lower error in the left region of the block,

whereas Directional 45, 67, and 90 are modes that only use references from

AboveRow and show a pattern of lower error in the top region. On the other hand,

Directional Modes 113, 135, and 157 use reference samples from both arrays and

show a pattern of lower error around both the top and left edges of the block.

73

Figure 28 Heat maps showing the average error of non-directional intra modes when applied to
blocks of size 16×16.

Figure 29 Heat maps showing the average error of nominal directional intra modes when applied
to blocks of size 16×16.

0.0

1.0

0.5
Smooth

Paeth

Smooth Vertical Smooth Horizontal

DC

0.0

1.0

0.5

Directional 45

Directional 203Directional 180

Directional 157Directional 135Directional 113

Directional 90Directional 67

74

Based on this error pattern data, a heuristic-based method of subsampling the

distortion metric used for block matching can be made.

5.2.2 Mode-adaptive SSE Subsampling Masks

The proposed mode-adaptive SSE subsampling algorithm

(CORRÊA et al., 2022a) reduces the overall cost of the SSE computation by applying

a non-uniform subsampling pattern, prioritizing the warm areas of the heat map

associated with each prediction mode, whilst discarding samples from the cold areas.

For each possible combination of prediction mode and block size, a subsampling mask

is generated offline (not during encoding time) by the algorithm.

To define an effective way of subsampling SSE operations based solely on the

error patterns (heat maps) presented in Section 5.2.1, experiments were done in

libaom 2.0.0 (AOMedia, 2022). Promising results were obtained for subsampling

masks that eliminate up to three-quarters of the predicted samples during SSE

computation. However, even though the warm areas are decisive in discarding bad

prediction candidates, it was observed the cold areas must also be considered, but to

a lesser extent.

Therefore, for a given prediction mode and block size, the proposed

subsampling mask generation algorithm is done in two steps, using as input the

average error (heat maps) associated with the mode and size, and delivering as output

a subsampling mask, which is simply a matrix of 0’s and 1’s telling which positions are

to be ignored or considered, respectively, during the SSE computation.

1. A parameter HEA (Higher Error Area) is used to determine the percentage of

the highest error positions to be considered, e.g., HEA=25% will result in a

loop that finds one-quarter of the positions in the heat map with the highest

average error, and checks these positions in the mask, whilst the other three-

quarters of the mask will remain unchecked.

2. A parameter LEA (Lower Error Area) is used to determine a percentage of

the positions checked in the first step that will be unchecked uniformly, with

the same number of positions checked uniformly in the empty area from the

first step.

Figure 30 shows the subsampling mask obtained by the proposed algorithm

using as input the average error of the Directional 90 mode in blocks of size 32×32.

75

The parameters used in this example are HEA=25% and LEA=25%. In the first step

(left side of Figure 30), a loop checks in the mask (green positions) the 256 positions

with the highest error from the heat map used as input, i.e., 25% of the 1024 positions

of a block of size 32×32, according to the HEA parameter. In the second step, another

loop unchecks uniformly 64 of the green positions (positions with an X), one at every

four, and then checks the same number of positions in the originally empty area, one

at every twelve positions (blue positions), i.e, 25% of the 256 checked positions,

according to the LEA parameter.

With subsampling masks like the one from Figure 30 (right side), every time the

encoder uses the Directional 90 mode in the prediction of a block of size 32×32, it will

only use the green and blue positions in the distortion metric computation, while

ignoring the rest of the block, thus saving a significant number of arithmetic operations.

Figure 30 Left: 25% of the highest error positions are checked in the subsampling mask. Right:
25% of the previously checked positions are unchecked uniformly and redistributed uniformly in the
empty area.

It is important to note that the set of subsampling masks generated by this

algorithm depends on the heat maps provided, which in turn depend heavily on how

the experiments were conducted. Different sets of test sequences and different sets of

parameters will result in slightly different heat maps; however, the pattern of the

prediction error of each mode is consistent. Furthermore, subsampling masks

particularly efficient for a specific kind of content can be generated if the heat maps

Step 1 Step 2 (Output)

X
X

X
X
XX X X X

X X X
X X X
X X X

X X X
X X X

X X X
X X X

X
XX

X X X X X X X
X X

X X X
X X X X X

X X X

X
X

X
X

X

X

X
X

X X

X

76

were generated using the same content, e.g., heat maps showing the average error

for digital screen content will lead to subsampling masks more adequate to SCC.

5.3 Results and Discussion

Sections 5.3.1 and 5.3.2 shows the results of the TbFMD and MaSBM

algorithms, each one tested with different parameter combinations. Section 5.3.3

shows the results for the two algorithms combined and discusses related works.

All experiments were done with the AV1 reference software libaom 2.0.0

(AOMedia, 2022), following the coding parameters recommended in the document

CWG-B075o (ZHAO et al., 2021), and using the test sequences recommended in

document JVET-W2017-v1 (KARCZEWICZ; YE, 2021). The results for encoding

efficiency are presented in BD-BR, and for encoding time difference are presented in

ΔT (eq. 18), where Tproposal and Treference are the execution time of the original software

and the software modified with the proposed algorithms, respectively. More detailed

information related to the software experiments can be read in Appendix A.

∆𝑇 =
𝑇𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 − 𝑇𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑇𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
× 100 (18)

5.3.1 Results for Algorithm 1: Texture-based Fast Mode Decision (TbFMD)

In the CDEF (MIDTSKOGEN; VALIN, 2018), the direction detection is used in

in-loop filtering and, in that context, Thr=10 is considered a good threshold point.

In the intra prediction context, however, a higher than ideal Thr value classifies more

blocks as smooth, disabling all directional intra modes even if the block has edges,

whereas a lower than ideal Thr classifies more blocks as sharp, even if they are smooth

surfaces, testing directional intra modes pointlessly.

To find the ideal threshold for intra prediction, firstly the same threshold of CDEF

was tested and found to be too conservative in this context, most of the time not

disabling directional modes for smooth surfaces. Then, different thresholds from the

interval 10≤Thr≤18 were evaluated. Figure 31 shows the compression efficiency and

encoding time results for different threshold points. In the figure, it can be observed

that the encoding time was reduced in an almost linear pattern as the threshold

increased, with Thr=10 giving a reduction of 17.5% and Thr=18 giving a reduction of

28.6%. On the other hand, the encoding efficiency curve kept stable from Thr=10

77

(1.18%) to Thr=15 (1.26%), but plummeted beyond that point, reaching 2.00%

BD-BRYUV for Thr=18, indicating that the algorithm started classifying sharp blocks as

smooth incorrectly as the threshold increased beyond 15. Therefore, for the AV1 intra

prediction, the ideal Thr for the TbFMD algorithm was defined as 15, which provided a

good trade-off between encoding time reduction and encoding efficiency loss, of 22.6%

and 1.26%, respectively.

Figure 31 Encoding efficiency loss and encoding time difference for different threshold values,
with Thr=15 showing the best trade-off.

5.3.2 Results for Algorithm 2: Mode-adaptive Subsampling in Block Matching

(MaSBM)

The subsampling masks can be generated with a variety of combinations of

HEA and LEA parameters. To find the most efficient setup, experiments were

conducted using all combinations between HEA={25%, 50%, 75%} and

LEA={0%, 25%, 50%, 75%, 100%}. It is important to note that when LEA=0%, the mask

generation algorithm stops in the first stage, and when LEA=100%, there is no longer

a mode-adaptive subsampling, and instead, a simple uniform subsampling is used for

every prediction mode. In these experiments, the fast mode decision lets the intra

prediction generate all possible candidates and then creates a reduced RD-list with the

four candidates with the lowest error according to the subsampled SSE operations.

Table 12 shows the resulting BD-BRYUV and ΔT, and Figure 32 shows the

behavior of the BD-BRYUV curves (in logarithmic scale) for all combinations of

parameters. The algorithm tested used heat maps generated with experiments that

1,0%

1,2%

1,4%

1,6%

1,8%

2,0%
10 11 12 13 14 15 16 17 18

-29%

-27%

-25%

-23%

-21%

-19%

-17%
10 11 12 13 14 15 16 17 18

Δ
T

 (
%

)

Threshold (Thr)

B
D

-B
R

Y
U

V
(%

)

1.0%

1.2%

1.4%

1.6%

1.8%

2.0%

1.99%

1.66%

1.40%

1.25%1.23%
1.20%1.19%1.18%

−17.53%
−17.89%

−18.57%

−19.33%

−21.09%

−25.03%

−25.91%

−28.15%

−22.56%

1.26%

78

followed the parameters described in Appendix A, except that only the first 25 frames

of each test sequence were used, instead of the whole sequence.

Table 12 Encoding efficiency and encoding time difference results for different
HEA and LEA combinations

HEA
(%)

LEA
(%)

BD-BRYUV
(%)

ΔT (%)

25

0 1.85

−12.01

25 1.09

50 0.76

75 0.81

100 1.14

50

0 0.64

−3.75

25 0.23

50 0.05

75 0.06

100 0.10

75

0 0.45

−2.51

25 0.18

50 0.04

75 0.04

100 0.08

Figure 32 Encoding efficiency curves for 15 different parameter combinations.

As can be observed in Table 12, in terms of encoding time reduction, only the

HEA parameter matters, because it is the one that defines the degree of subsampling,

directly affecting the number of operations skipped. A setting of HEA=25% provided

12% of encoding time reduction, whereas the less aggressive settings of HEA=50%

and 75% led to a much lower time saving of 3.8% and 2.5%, respectively.

HEA=25%

HEA=50%

HEA=75%

10%

1%

0.1%

0.01%

B
D

-B
R

Y
U

V

0% 25% 50% 75% 100%

LEA

79

Although HEA=25% provides significantly better time-saving results, it can be

observed in Figure 32 (blue line) that this setting also results in a much higher impact

on encoding efficiency. It can also be observed that the HEA=50% (orange line) and

HEA=75% (green line) curves are very close to each other, and from a hardware-

friendly perspective, HEA=50% was found to be an ideal choice among the two, since

the software results are similar, but HEA=50% allows more arithmetic operations to be

skipped, hence allowing more area and/or power to be saved, depending on the

hardware design itself.

Regarding the LEA parameter, the same behavior can be observed in

Figure 32 for all curves. The LEA=0% setting, which concentrates all the operations in

the higher error area, provides the worst encoding quality results, showing that the

lower error area cannot be completely ignored. Among the LEA=25%, LEA=50%, and

LEA=75% settings, it can be observed that the uniform redistribution of 50% of the

positions checked in the first stage of the mask generation, provides the best encoding

quality results. It is also important to mention the specific case of the LEA=100%

setting, which is similar to a naive non-adaptive uniform subsampling solution, that

showed better results than the proposed mode-adaptive subsampling method in its

LEA=0% and LEA=25% configurations.

Therefore, the HEA=50% and LEA=50% setup was found to be the ideal

solution when encoding efficiency is a priority over encoding time savings, providing a

negligible BD-BRYUV impact of 0.05% and time-saving of 3.75%. Otherwise, if encoding

time savings is the priority or a low-power design is desired, the HEA=25% and

LEA=50% setup can be used, providing a BD-BRYUV impact of 0.76% and time savings

of 12.01%.

5.3.3 Results for Algorithms 1 and 2 Combined

The previous sections presented the results for each algorithm when used

individually. This section provides the results of both the TbFMD and MaSBM

algorithms interacting with each other in the same AV1 encoder.

TbFMD is executed before the prediction of intra modes, effectively reducing

the number of modes computed from the maximum number of modes supported by

the codec to only the set of non-directional modes (in case of a smooth input block),

or the ND set plus four directional modes (in case of a sharp input block). On the other

hand, MaSBM is only executed after the prediction of intra modes and, therefore,

80

its performance is directly affected by the output of TbFMD, because it will no longer

apply subsampling to the full set of intra predicted blocks, but only to the reduced set

of modes defined by TbFMD. With the integration of both algorithms, the optimized

intra prediction module works with the following steps:

1. Algorithm 1 creates a reduced RD-list of 11 up to a maximum of 15, although

the number of modes can be lower if certain optional modes are disabled in

the encoder, such as the RBF and SCC modes.

2. The intra prediction module generates the candidates based on the RD-list.

3. All candidates are evaluated according to the mode-adaptive subsampled

SSE masks and only the four best candidates are kept in the RD-list.

4. Finally, the modified RD-list with only four candidates is sent to the RDO.

Experiments were conducted with the two algorithms combined, with Thr=15 as

the parameter for the TbFMD algorithm, and HEA=50 and LEA=50% for MaSBM.

Table 13 shows detailed results of these experiments.

Table 13 Encoding efficiency and time difference results for the integration of TbFMD
and MaSBM per sequence, per class and total

Class Sequence
BD-BRYUV

(%)
ΔT
(%)

A1
(UHD 4K)

Tango2 1.38 −35.44

FoodMarket4 1.17 −40.13

Campfire 111 −32.71

A1 Average 1.22 −36.09

A2
(UHD 4K)

CatRobot 0.85 −32.93

DaylightRoad2 1.08 −29.66

ParkRunning3 0.89 −26.39

A2 Average 0.94 −29.66

B
(1080p)

MarketPlace 3.15 −29.22

RitualDance 0.63 −35.88

Cactus 2.70 −25.30

BasketballDrive −0.50 −29.77

BQTerrace 0.66 −22.68

B Average 1.33 −28.57

C
(480p)

BasketballDrill 1.82 −22.57

BQMall 0.97 −22.25

PartyScene 1.45 −16.03

RaceHorses 1.52 −23.66

C Average 1.44 −21.13

E
(720p)

FourPeople 1.32 −30.53

Johnny 1.22 −35.77

KristenAndSara 1.86 −34.35

E Average 1.47 −33.55

ABCE Average 1.28 −29.80

81

In this table, it can be observed that the ABCE average is lower than the sum of

the impact caused by each algorithm when used individually. This is explained by the

fact that MaSBM, when used individually, selects the four best candidates out of the

full set of prediction modes relying only on a subsampled distortion metric. On the other

hand, when paired with TbFMD, it selects the best candidates out of an already

reduced set of prediction modes, and, therefore, errors related to the heuristic of

subsampling are limited to a set of probable candidates. It is relevant to mention that,

in this table, it can also be observed that the proposed algorithms perform better than

the average for UHD 4K videos, showing that the selected parameters are suitable for

very high-definition videos.

Considering the low BD-BRYUV impact of 1.28%, the significant time saving of

29.8%, and their hardware-friendly characteristics, it can be said that the proposed

algorithms combined achieve the goals of this Ph.D. thesis.

The algorithms in Jeong, Gankhuyag, and Kim (2019a; 2019b) can be directly

compared to the one proposed in this section, as they also propose fast mode

decisions for AV1 intra prediction. Jeong, Gankhuyag, and Kim (2019a) report a

BD-BR impact of 0.44% and ΔT of −15.86%, which is a lower encoding efficiency

impact, but also a lower time saving than the algorithm proposed in this section. Jeong,

Gankhuyag, and Kim (2019b) report a BD-BR impact of 0.04% and a ΔT of −8.67%,

which is a negligible impact, but also a modest time saving when compared to the

algorithm proposed in this section.

The works from Guo et al. (2018a; 2018b), Chen et al. (2019), and Chiang, Han,

and Xu (2019) cannot be directly compared to the one presented in this section,

because these works optimize the block partitioning stage of the encoder and leave

the intra prediction module untouched. However, this means that the algorithms from

this Ph.D. project could be paired with the algorithms of the abovementioned works to

achieve further optimization of the encoder.

82

6 HARDWARE DESIGNS FOR AV1 INTRA-PICTURE PREDICTION

This chapter presents hardware designs for the intra prediction stage of the AV1

encoder. These designs are based on the already published contributions of Corrêa et

al. (2019a; 2019b; 2020a; 2020b; 2022b) and Neto et al. (2020; 2021a; 2021b; 2022).

The base design, before any optimization, is shown in Figure 33. This design is

composed of a dedicated directional intra prediction design (Section 6.1),

a dedicated non-directional intra prediction design (Section 6.2), a control unit shared

by both designs (Section 6.3), and an SSE-based local decision design (Section 6.4).

Optimizations on top of the base design using the algorithms proposed in

Chapter 5 are presented in Section 6.5, and results are discussed in Section 6.6.

Figure 33 Intra prediction base design.

Non-directional

Intra

Prediction

Design

Directional

Intra

Prediction

Design

Comparators (66:4)

Shared

Control

Output: RD-list (4 candidates)

Input:

Original block

Encoder signals

SSE

Tree

s:64

Prediction Module

SSE

Tree

s:64

SSE

Tree

s:64

SSE

Tree

s:64

SSE

Tree

s:64

SSE

Tree

s:64

SSE

Tree

s:64
… …Array of 66 SSE Trees

of size 64

SSE-based Decision

83

6.1 AV1 Directional Intra Prediction Design

The proposed design for the directional intra prediction (CORRÊA et al., 2020b,

NETO et al., 2020; 2021a; 2021b; 2022) works at 64×64 SB level, which is the

maximum block size allowed by the AV1 intra prediction modes.

This module is mainly composed of two Reference Sample Filtering Units

(RSFUs), two Reference Sample Upscaling Units (RSUUs), 78 Directional Mode

Prediction Units (DMPU) working in parallel, and several buffers for holding each

possibility of filtered and upscaled reference arrays. Figure 34 shows a register-

transfer level (RTL) diagram of this design.

Figure 34 Directional intra prediction design.

Filter Strength 0

Filter Strength 1

Filter Strength 2

Filter Strength 3

AboveRow

Buffers

Corner

Buffer

Original

Filtered

AboveRow

Ref. Array

Filtering Unit

Ref. Array

Upscaling Units

Upscaled AboveRow

Buffers

Corner

Filter

Filter Strength 0

Filter Strength 1

Filter Strength 2

Filter Strength 3

LeftCol

Buffers

LeftCol

Ref. Array

Filtering Unit

Ref. Array

Upscaling Units

Upscaled LeftCol

Buffers

Filter Strength 0

Filter Strength 1

Filter Strength 2

Filter Strength 3

Filter Selectors

Filter Strength 0

Filter Strength 1

Filter Strength 2

Filter Strength 3
Control

Signals

56 DMPUs for

normal sized arrays

22 DMPUs for

upscaled arrays

84

6.1.1 Reference Sample Filtering Units

There are one corner filter and three different types of array filters in the RSFUs.

The corner filter is applied to a single reference sample, which is the top-left reference

sample (see Figure 7). A three-tap filter for the corner samples is defined as a

combinational circuit made entirely of shift-adds operations that produces the same

results as eq. (19), where a and c are AboveRow[0] and LeftCol[0], and b is

AboveRow[-1]. A filter selector is used to send the filtered corner sample only to MPUs

with 90<pAngle<180 and only if the block size follows the rule height+width>=24.

𝑐𝑓 = (5𝑎 + 6𝑏 + 5𝑐 + 8) ÷ 16 (19)

The array filters require up to three reference samples from each side of the

sample being filtered. There are three different filter strengths, and all are needed

because different DMPUs can use different filter strengths for a given reference

sample, or no filter at all. The filters for strength levels one, two, and three are also

combinational circuits made entirely of shift-adds operations that produce the same

results as eqs. (20-22), respectively, where x is a sample from either AboveRow or

LeftCol and i the index of the sample in the array.

𝑓𝑠1 = (4𝑥𝑖−1 + 8𝑥𝑖 + 4𝑥𝑖+1 + 8) ÷ 16 (20)

𝑓𝑠2 = (5𝑥𝑖−1 + 6𝑥𝑖 + 5𝑥𝑖+1 + 8) ÷ 16 (21)

𝑓𝑠3 = (2𝑥𝑖−2 + 4𝑥𝑖−1 + 4𝑥𝑖 + 4𝑥𝑖+1 + 2𝑥𝑖+2 + 8) ÷ 16 (22)

There are six arrays of filters working in parallel, one of each strength for each

array of reference samples. Each array of filters has 129 filters working in parallel,

which is the size of the input reference sample arrays in the worst-case scenario, and

is also the size of each buffer for filtered reference samples. The filter selector used to

decide which filtered LeftCol and filtered AboveRow are sent to each DMPU follows

rules based on the size of the input block and on how previous blocks were coded.

Table 14 and Table 15 show the filter selector decisions for the nominal angles, where

the first number of a pair is the filter strength if no adjacent neighbors were coded using

one of the three Smooth modes, and the second number is if at least one was.

85

Table 14 Filter selector for AboveRow (only nominal modes are shown)

Block Size
DMPU

45 67 113 135 157 203

4×4 0, 1 0, 0 0, 0 0, 1 1, 2 1, 2

4×8, 8×4, 8×8 1, 1 0, 1 0, 1 1, 1 1, 2 1, 2

8×16, 16×8 3, 3 2, 3 2, 3 3, 3 3, 3 3, 3

16×16 3, 3 2, 3 2, 3 3, 3 3, 3 3, 3

> 16×16 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3

Table 15 Filter selector for LeftCol (only nominal modes are shown)

Block Size
DMPU

45 67 113 135 157 203

4×4 1, 2 1, 2 1, 2 0, 1 0, 0 0, 0

4×8, 8×4, 8×8 1, 2 1, 2 1, 2 1, 1 0, 1 0, 1

8×16, 16×8 3, 3 3, 3 3, 3 3, 3 2, 3 2, 3

16×16 3, 3 3, 3 3, 3 3, 3 2, 3 2, 3

> 16×16 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3

6.1.2 Reference Sample Upscaling Units

The content of each of the buffers for filtered reference arrays can also be

upscaled according to the following rules: If no adjacent neighbors were coded using

one of the three Smooth modes, upscaling happens for blocks of size {4×4, 4×8, 8×4},

otherwise, upscaling happens only for blocks of size 4×4. Therefore, more buffers were

needed to store the extra samples generated in the upscaling process, each holding

33 samples needed in the worst-case scenario.

Like the filters described in Section 6.1.1, the upscaling filters were implemented

as shift-adds operations in a combinational form to produce the same results as

eq. (23), where us is the sample interpolated between the positions i and i+1 of a

reference sample array. The upscaling filter also has a clip operation applied at its

output to keep the resulting upscaled sampled within the bit depth limits.

𝑢𝑠 = (−𝑥𝑖−1 + 9𝑥𝑖 + 9𝑥𝑖+1 − 𝑥𝑖+2 + 8) ÷ 16 (23)

6.1.3 Directional Mode Prediction Units

Each DMPU is responsible for one of the 56 directional prediction modes and is

composed of various Directional Sample Prediction Units (DSPU) in parallel, each

capable of generating one predicted sample according to lines 10, 21, 26, and 34 of

the algorithm shown in Figure 19.

The DSPU is illustrated in Figure 35. The inputs a and b are multiplied by

coefficients ranging from 0 to 32 using only shift-add trees, each one designed for

86

minimum tree depth. This approach without the use of multipliers is relevant in an

encoder solution because the high-throughput constraint can only be met with a low-

latency design. Moreover, it is important to mention that one coefficient complements

the other, that is, when a coefficient is equal to 15 the other will necessarily be 17 and,

because of that, only 16 different DSPUs models exist and were replicated multiple

times according to the need of each DMPU.

Figure 35 Directional sample prediction unit, responsible for generating one directional predicted
sample from a pair of two reference samples.

The 17 DMPUs for modes associated with pAngle<90 (see Table 7) are each

made of an array of 64 DSPUs in parallel, using reference samples from AboveRow

as inputs. Therefore, each DMPU is capable of generating a column of 64 samples per

cycle. The 10 DMPUs for modes associated with pAngle>180 are also made of 64

parallel DSPUs each. Their design is analog to the DMPUs for pAngle<90, but instead

of a column, each DMPU is capable of generating a row of 64 samples per cycle using

references from LeftCol.

In the case of the DMPUs for pAngle<90, the 64 positions of a column have their

own shift values, but the shift values repeat among different columns (see Figure 19).

This means the same array of DSPUs can be used to predict all columns of a block.

Also, the coefficients required to predict columns of size 4, 8, 16, and 32 are the same

required to predict the first half of a column of size 64, allowing blocks smaller than 64

samples in height to be predicted using only a subset of the array of DSPUs. The same

is true for DMPUs with pAngle>180, but in this case, the prediction happens row by

row.

The 27 DMPUs for modes associated with 90<pAngle<180 are made of 64

DSPUs connected to one reference array and up to 56 DSPUs connected to the other

reference array. That is, these DMPUs have the combined logic of the DMPUs for

pAngle<90 and pAngle>180. The exact number of DSPUs needed by each DMPU

varies according to how close the mode pAngle is from the vertical and horizontal

angles. For example, the MPU for pAngle=93 requires 64 DSPUs connected to

Shift-add

Tree 1

Shift-add

Tree 2

+ + >> 5

a

b

out

DSPU

1610

87

AboveRow, but only two DSPUs connected to LeftCol, whereas the DMPU for

pAngle=48 requires 64 DSPUs connected to AboveRow and 56 DSPUs connected to

LeftCol.

The number of reference samples used as input in each DMPU varies according

to the angle associated do its prediction mode. For example, the DMPU for pAngle=87

(closest to the vertical angle) uses only five reference samples to predict a column of

size 64, repeating the same references for multiple DSPUs, whereas the DMPU for

pAngle=36 (farthest from the vertical angle) uses 64 different reference samples to

predict a column of size 64.

Moreover, there are 22 DMPUs for the same modes already covered in the

previous paragraphs, but adapted to deal with the coefficients used in the case of

upscaled reference samples array. These DMPUs are much smaller, as 8×8 is the

largest block size that admits upscaling.

Samples predicted using AboveRow as the reference array have a unique base

index along a column, responsible for defining which reference samples are used (see

Figure 19). However, as the prediction moves to the next column, all base indexes are

simply incremented by one. This is analog for samples predicted using LeftCol. The

DMPUs are connected to the buffers considering the indexes needed for predicting the

first column/row of a block, and as the prediction moves to the next column/row every

cycle, the content of each register is moved towards the leftmost register.

6.2 Non-directional Intra Prediction Module

This design for non-directional modes (CORRÊA et al., 2019a; 2019b; 2020a)

works at the 64×64 block level, which is the maximum size allowed by the AV1 intra

prediction, and shares the same control unit of the directional design, meaning that

both designs work in synchrony as one complete intra prediction architecture. The RTL

diagram of the design is illustrated in Figure 36.

Unlike the directional intra prediction algorithm, which is the same for all 56

modes, the non-directional intra prediction uses very distinct algorithms for each of its

modes. As can be observed in Figure 36, each mode has its own module operating in

parallel with the others.

88

Figure 36 Non-directional intra prediction design.

6.2.1 Smooth Vertical, Smooth Horizontal and Smooth Units

As can be observed in Figure 36, there are three Smooth Units, one for each of

the Smooth modes. These units share a buffer, which is needed because the Smooth

Unit uses as input the predicted samples from Smooth Unit (Horizontal) and Smooth

Unit (Vertical).

Since the algorithms from Figure 12 and Figure 13 are simply transposed

versions of each other, and share the same constant coefficients array, a single

prediction unit was designed and instantiated twice. The unit operating as a Smooth

Vertical mode can predict an entire column in one clock cycle using a pair of

references, thus it takes a total of width cycles to predict an entire block. The pair of

reference samples per cycle is composed of one reference sample from the

AboveRow, aligned with the column to be predicted (which changes every cycle) and

the bottommost reference from LeftCol (which stays the same for the entire block). The

procedure is analog for the unit operating in a Smooth Horizontal mode. It can predict

an entire row in one cycle, hence it takes height cycles to predict an entire block. The

pair of references per cycle is composed of one reference from the LeftCol, aligned

with the row to be predicted, and the rightmost reference from AboveRow.

Smooth Unit

(Vertical)

Inputs:

- x: AboveRow[step]

- y: LeftCol[height-1]

height

Input:

AboveRow

LeftCol

Smooth Buffer.

C
o

n
tr

o
l

Inputs:

Pred. samples from Vert. and Horz.

units as they become available.

Smooth Unitstep

step

Recursive-based Filtering

Multifilter Unit

Inputs:

- Samples from Ref. Buffer

- Samples from RBF Buffer

isLuma

RBF Buffer. . .
step

height

width

leftAvailable

aboveAvailable

DC Unit

Inputs:

- x: AboveRow[step]

- y: LeftCol[step]

R
e

f.
 B

u
ff

e
r

.
.
.

step

Smooth OutputsPaeth, RBF, DC Outputs

Inputs:

- x: LeftCol[step]

- y: AboveRow[width-1]

Smooth Unit

(Horizontal)widthheight

Inputs:

- sTop: AboveRow[step]

- sTopLeft: LeftCol[-1]

- sLeft[0 to 64]: LeftCol[0 to 64]

Paeth Unit

89

Since there are five different coefficient sets based on each possible size of the

column/row to be predicted (see Table 5), a Smooth Unit for Horizontal or Vertical

modes has five independent subunits to deal with each block size. These subunits,

named Smooth Prediction Multiplication Unit (SPMU), generate all multiplications

needed for a given pair of samples, using only shift-add operations. This strategy

allows the avoidance of high latency generic multipliers, which is important on an

encoder.

The shift-add trees that compose each SPMU were optimized for subexpression

reuse and minimum tree depth, increasing the cost of each adder, but reducing the

critical path of the tree. The algorithms used for generating such very optimized shift-

add trees were highly based on methods presented by Dempster and Macleod (1995),

and Vorenenko and Püschel (2007).

Figure 37 illustrates an SPMU responsible for the multiplications according to

the array of coefficients of size 8. This figure also shows the next step, which is adding

pairs of scaled samples, rounding, and dividing, finally resulting in eight predicted

samples (each cycle). The SPMUs for sizes 4, 16, 32, and 64 are not shown in this

figure. Figure 38 shows one of the two shift-add trees used in x-SPMU of size 8, which

is composed of nine adders and has a depth of two.

Figure 37 Smooth prediction multiplier unit or size 8.

x

255x 146x 73x 37x

197x 105x 50x 32x

x-PMIU

size: 8
(switches every cycle)

y

1y 110y 183y 219y

59y 151y 206y 224y

y-PMIU

size: 8
(switches once per block)

Sum, Rounding and Division 8 predicted

samples

x

255x 149x 85x 64x

x-PMIU

size: 4
(switches every cycle)

y

1y 107y 171y 192y

y-PMIU

size: 4
(switches once per block)

Sum, Rounding and Division 4 predicted

samples

x-SPMU for

arrays of size 8

X

(input changes every cycle)

y-SPMU for

arrays of size 8

y

(input stays the same)

Adders 8 predicted

samples

90

Figure 38 One of the two shift-add trees used in the SPMU for size 8, highly optimized for
subexpression reuse and minimum tree depth.

Figure 39 Prediction order of Smooth Vertical, Smooth Horizontal and Smooth modes for blocks
of size 4×4. In asymmetrical blocks, one of the modes will finish before the others.

+

(73x)

−

(3x)

−

(255x)

+

(197x)

+

(9x)

+

(105x)

+

(37x)

+

(25x)

+

(5x)

32x255x

<< 1

(50x)

<< 6

(64x)

<< 4

(16x)

<< 8

(256x)

<< 3

(8x)

<< 2

(4x)

<< 5

(32x)

37x50x73x

<< 5

(96x)

<< 2

(36x)

105x

<< 6

(192x)

197x 146x

<< 1

(146x)

x

- -

y

x

y

x

?

?

?

?y

x

?

?

?

?

?

?

?

?y

x

? ?

? ?

? ?

? ?

?

?

?

?

Cycle 1 Cycle 2 Cycle 3 Cycle 4

x

? ? ? ?

? ? ? ?

? ? ? ? x

y

x

? ? ? ?

y

x

? ? ? ?

? ? ? ?

y

?

?

?

? ? ? ?

? ?

? ?

? ? ? ?

? ? ? ?

? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

S
.
V

er
ti

ca
l

S
.
H

o
ri

zo
n
ta

l
S

m
o
o
th

91

Finally, the Smooth Unit is an array of sum, rounding and division operations

responsible for computing the average between the Smooth Vertical and Smooth

Horizontal predicted samples, as they become available. The prediction order for all

three units, for blocks of size 4×4, is illustrated in Figure 39, where filled squares are

predicted samples and question mark squares are samples yet to be predicted.

6.2.2 Paeth Unit

To predict an entire column of samples per cycle, the Paeth Unit has a single

instance of a circuit (top half of Figure 40) that calculates (24) and (25), where sTop is

the reference from AboveRow aligned with the column and sTopLeft is the reference

from AboveRow[−1]. Both (24) and (25) are calculated only once per predicted column.

𝑝𝐿𝑒𝑓𝑡 = |𝑠𝑇𝑜𝑝 − 𝑠𝑇𝑜𝑝𝐿𝑒𝑓𝑡| (24)

𝑝𝑇𝑜𝑝𝐿𝑒𝑓𝑡𝑡𝑒𝑚𝑝 = 𝑠𝑇𝑜𝑝 − (𝑠𝑇𝑜𝑝𝐿𝑒𝑓𝑡 ≪ 1) (25)

It also has 64 instances of a circuit (bottom half of Figure 40) that calculates a

total of height values of (26) and (27), all in parallel, where sLeftn is the reference

horizontally aligned with the nth position from the current column (read from the LeftCol

array).

𝑝𝑇𝑜𝑝 = |𝑠𝑇𝑜𝑝 − 𝑠𝐿𝑒𝑓𝑡𝑛| (26)

𝑝𝑇𝑜𝑝𝐿𝑒𝑓𝑡𝑛 = 𝑝𝑇𝑜𝑝𝐿𝑒𝑓𝑡𝑡𝑒𝑚𝑝 + 𝑠𝐿𝑒𝑓𝑡𝑛 (27)

Finally, it has 64 instances of a comparison circuit (Figure 41) for the final

decision step, which compares a total of height 3-uples composed of pLeft, pTopn and

pTopLeftn, and selects the appropriate reference samples as output.

The Paeth Unit takes width cycles to predict an entire block, and it follows the

same prediction order as the Smooth Unit (Vertical) (see Figure 39).

92

Figure 40 Paeth calculation circuit. Bottom part is replicated 64 times.

Figure 41 Paeth comparison circuit. This is replicated 64 times.

6.2.3 DC Unit

Unlike the other prediction units, the DC mode has only a single output, which

is then used to represent a homogeneous predicted block. This makes the DC Unit the

simplest of the prediction units.

The first part of the DC Unit (top half of Figure 42) is the sum of all the LeftCol

references, one per cycle, using an accumulator register, and the sum of a constant

value based on height for rounding purposes. In parallel to that, the same happens to

- ABS

sTop

sTopLeft

pLeft

pTopLeft_temp

<< 1

ABS-

1 instance

- ABS

sTop

sLeft[n]

pTop[n]

+
pTopLeft_temp

pTopLeft[n]

64 instances

p_left[7..0] <

CIN

A[7..0]

B[7..0]
p_top[7..0]

<

CIN

A[8..0]

B[8..0]
p_topleft[8..0]

s_out[7..0]
0

1

<

CIN

A[8..0]

B[8..0]

s_left[7..0]

0

1
s_topleft[7..0]

s_top[7..0]

PaethCol[n]

sTopLeft

sTop

sLeft[n]

pLeft

pTop[n]

pTopleft[n]

64 instances

93

AboveRow references. This way, the DC Unit takes height cycles to add all LeftCol

references and width cycles to add all AboveRow references. For asymmetrical blocks,

one side finishes first and waits for the other, which means the total number of cycles

needed is the largest between height and width.

The second part (bottom half of Figure 42) performs the following operations: (i)

divides the left accumulator by height to obtain the average of LeftCol, (ii) divides the

right accumulator by width to obtain the average of AboveRow, and (iii) adds the values

stored in the accumulators and divides the result by width+height to obtain the overall

average. The choice of which average to use as the DC Unit output (including the bit

depth average) depends on the availability of adjacent reference samples, selected

using the leftAvailable and aboveAvailable control flags.

Figure 42 DC Unit.

+

+

AC

LeftCol[step]

32d2d

4d

8d

16d

+

height

+

AC

AboveRow[step]

32d2d

4d

8d

16d

+

width

Divide by:

4, 8, 16, 32 or 64

Divide by:

4, 8, 16, 32 or 64

Divide by:

8, 16, 32, 64, 128,

12, 24, 48, 96,

20, 40 or 80
128d

leftAvailable
aboveAvailable

00

10

01

11
DC

out

814

14 6

3

14

15

8

8

8

8

1

94

6.2.4 Recursive-based-filtering Multifilter Unit

This prediction unit is based on a Unified Multifilter Prediction Unit (UMPU), as

illustrated in Figure 43, which can apply the five RBF modes to a single 4×2 subblock.

The coefficients from Table 6 were rearranged in a way that allows maximum

reuse of subexpressions for all coefficients applied to the same input. That is, the first

coefficient of each set in Table 6 is applied to the first reference L[0], the second

coefficient of each set is applied to the second reference L[1], and so on. The resulting

sets of coefficients grouped in function of L are listed in Table 16.

This way, the UMPU has seven Parallel Multiplierless Multiplication Units

(PMMU), one for each set of coefficients associated with each of the seven references.

The PMMUs are designed as shift-add trees, in a similar way as described SPMUs

from the Smooth Units, but the resulting shift-add trees are much less complex in this

case because the coefficient sets from Table 16 are composed of a small number of

small integers.

Figure 43 Unified multifilter prediction unit.

PMMU

for

L[0]

PMMU

for

L[1]

PMMU

for

L[2]

PMMU

for

L[3]

PMMU

for

L[4]

PMMU

for

L[5]

PMMU

for

L[6]

Filtering

for

Block[0]

Filtering

for

Block[1]

Filtering

for

Block[2]

Filtering

for

Block[3]

Filtering

for

Block[4]

Filtering

for

Block[5]

Filtering

for

Block[6]

Filtering

for

Block[7]

Mode 0

predicted

subblock

Mode 1

predicted

subblock

Mode 2

predicted

subblock

Mode 3

predicted

subblock

Mode 5

predicted

subblock

95

Table 16 List of coefficients used by the parallel multiplierless multiplication units

PMMU
for…

Coefficients Set
Size of

Set

L[0] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12} 11

L[1]

{1, 2, 3, 4, 6, 8, 10, 12, 14, 16} 10 L[2]

L[3]

L[4] {4, 6, 8, 10, 12, 14, 16} 7

L[5]
{1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14,

16}
13

L[6] {2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 16} 12

The seven outputs of each PMMUs are the scaled references L, which are then

used as input by eight Filtering Units, each responsible for generating one predicted

sample by applying a 7-tap filter to the scaled references.

The Recursive-based-filtering Multifilter Unit has eight instances of UMPUs in a

combinational setting. This long combinational path represents the critical path of the

proposed architecture. This unit can process two rows of 32 samples per cycle, which

means it finishes faster than the other predictions units, and then stays idle, for blocks

with a width of 32 or less. The prediction order for this unit is illustrated in Figure 44.

Figure 44 Prediction order of the Recursive-filtering-based multifilter unit for blocks of size 4×4. If
the block width is less than 64, two entire rows will be processed per cycle, otherwise, two entire rows
will be processed every two cycles.

It is important to mention that the RBF modes are only allowed for luminance

blocks, hence this prediction unit stays idle during the prediction of chrominance

blocks, which represents 50% of the blocks for the 4:2:0 color subsampling considered

in this work.

L0

L5

L6

L1 L2 L3 L4

? ? ? ?

? ? ? ?

Cycle 1 Cycle 2

L0

L5

L6

L1 L2 L3 L4

96

6.3 Shared Control Unit

The control unit shared between the directional and non-directional prediction

modules is a Finite State Machine (FSM), responsible for making all combinations of

block partitions allowed by AV1, by exploring the partition tree (see Figure 3) using a

Depth-first Search (DFS) approach, as described in Table 17.

In this table, the variable N indicates the partition size, which can be one of the

values from the set {4, 8, 16, 32, 64}. The variable ID[N] indicates if the sub-partition

of size N×N is the first, second, third, or fourth from a parent partition of size 2N×2N

(see SPLIT mode in Figure 3).

In the first state, “64_START”, a new 64×64 SB is received and the prediction

modules immediately execute all prediction modes on it. For clarity, all other states

were named after the AV1 partition modes (see Figure 3), where the suffix N is a

generic way to describe a set of states for different partition sizes.

The state “N_SPLIT” controls the DFS traversal by doing the following: (i) if the

current sub-partition is not the fourth within a SPLIT mode, switch to the next

sub-partition after all lower branches of the current sub-partition have been explored,

(ii) if the current sub-partition is the fourth and the size is not 32×32, backtrack to the

upper level, (iii) if the current sub-partition is the fourth and the size is 32×32, reset the

machine by going back to the state 64_START. The state “N_SPLIT” is also executed

to explore a lower level of the tree after all prediction modes have been executed for a

given partition bigger than 4×4.

The remaining states are responsible for executing the intra prediction on blocks

that compose a partition of size N×N. For example, the “8_HORZ_A” state operates

on an 8×8 partition and executes the whole prediction process three times: twice for

4×4 blocks and once for an 8×4 block.

By following this control scheme, the directional and non-directional intra

prediction modules can predict all 1,869 possible blocks inside one 64×64 SB in 7,108

clock cycles.

97

Table 17 Finite state machine description of the shared control unit

Current State Prediction Information and Next State

64_START
Receives a 64×64 superblock.

Next state: 64_NONE.

N_SPLIT

If ID[N] < 4:

 ID[N]: ID[N] + 1

 Next State: N_NONE

Otherwise, if N = 32 and ID[32] = 4:

 Next State: 64_START

Otherwise, if N < 32 and ID[N] = 4:

 Next State: 2N_SPLIT

N_NONE

Predicts one N×N block.

If N > 4:

 Next State: N_VERT

Otherwise, if N = 4:

 Next State: 4_SPLIT

N_VERT
Predicts two N/2×N blocks.

Next state: N_HORZ

N_HORZ
Predicts two N×N/2 blocks.

Next state: N_VERT_A

N_VERT_A
Predicts two N/2×N/2 blocks and one N/2×N block.

Next state: N_VERT_B

N_VERT_B
Predicts one N/2×N block and two N/2×N/2 blocks.

Next state: N_HORZ_A

N_HORZ_A
Predicts two N/2×N/2 blocks and one N×N/2 block.

Next state: N_HORZ_B

N_HORZ_B

Predicts one N×N/2 block and two N/2×N/2 blocks.

If N > 8:

 Next State: N_VERT_4

Otherwise, if N = 8:

 ID[4]: 0

 Next State: 4_SPLIT

N_VERT_4
Predicts four N/4×N blocks.

Next state: N×N_HORZ_4

N_HORZ_4

Predicts four N×N/4 blocks.

ID[N/2]: 0

Next state: N/2_SPLIT

6.4 SSE-based Decision Design

Considering that, together, the intra prediction designs produce 66 candidates,

there must be a local decision to reduce the number of candidates to be sent to the

RDO. In this work, an SSE-based decision, commonly found in many encoders, was

implemented, which is composed by an array of SSE trees for each candidate working

in parallel, followed by a comparator responsible for selecting the four best candidates.

Figure 45 illustrates an example of an SSE tree of size four, composed of four

subtractors, four multipliers, and three adders of varying bit widths. In this example,

four samples from a candidate can be compared with four original samples, in parallel

and the accumulator register in the end allows the circuit to be used for blocks of any

size. For example, the block matching of a candidate of size 4×4 comparing four

98

samples per cycle would take four cycles. In this work, however, to keep up with the

throughput of the intra prediction modules, SSE trees of size 64 are used instead. Each

SSE tree of this size requires 64 subtractors, 64 multipliers, and 63 adders.

Figure 45 Example of an SSE tree of size 4.

The comparator used in the base design has to select the lowest four SSEs

resulting from the SSE trees. This is done with a tree arrangement of 2:1 comparators,

forming a 66:1 comparator that selects the lowest SSE among its inputs in one cycle.

The inputs of the 66:1 comparator come from a buffer and, after each cycle,

the selected lowest SSE is replaced in the buffer for a maximum SSE value, in a way

that allows the next lowest to be selected in the following cycle, thus taking four cycles

to select the four lowest SSE values. The comparator loop is called a 66:4 comparator.

Figure 46 shows the structure of a 2:1 comparator (left) and a simpler notation for a

2:1 comparator (right), where black lines are signals and colored lines are comparators.

Figure 47 shows the tree arrangement for a 66:1 comparator illustrated in the

abovementioned notation.

Figure 46 Left: 2:1 comparator. Right: Simplified notation for the same circuit.

a[0]

b[0]

a[1]

b[1]

a[2]

b[2]

a[3]

b[3]

+

+

+ AC
SSE(a,b)

8
16

8

17

18

−
9

−

−

−

−

1

0

1

0

MSB

−

sse_x

sse_y

id_x

id_y

best_sse

best_id

x

y

min(x, y)

99

Figure 47 66:1 comparator with seven levels of depth. Each color represents a level of 2:1
comparators.

Block matching units in dedicated hardware designs can use a significant

number of resources if not designed efficiently. In the HEVC intra prediction module

proposed by Corrêa et al. (2017), the SAD trees were responsible for 37% of the gate

count of the complete design. Therefore, this SSE-based design is also expected to

consume an expressive number of resources, both in terms of area and power, unless

optimized.

6.5 Design Optimization with TdFDM and MaSBM Algorithms

The following sections present design optimizations for the directional and non-

directional intra prediction modules, based on the algorithms proposed in

Chapter 5.

6.5.1 TdFDM Optimization

For this work, the proposed fast mode decision algorithm was implemented in

hardware in a purely combinational way. This means that the decision of which modes

will be included in the RD-list is done in only one cycle.

Figure 48 illustrates the proposed fast mode decision design (CORRÊA et al.,

2022b). It shows that to find the dominant direction d, all eight Sd values are computed

in parallel by the green-colored processing units. Figure 24 shows that eight sums can

be shared between d={203, 180, 157}, and eight sums can be shared between

d={113, 90, 67}. Thus, to reduce the number of required adders, these redundant sums

were named, respectively, h0 to h7 (horizontal pairs) and v0 to v7 (vertical pairs).

10 Non-directional

Candidates

56 Non-directional

Candidates

Best Candidate

100

Figure 48 Texture-based fast mode decision design.

Figure 49 illustrates the circuit of the processing unit for the Sd values of d=203,

d=180, and d=157, using the redundant sums h0 to h7 as input. The same circuit is

replicated for the processing of d=67, d=90, and d=113, respectively, but using the v0

to v7 signals as input instead. The circuits for the processing of d=45 and d=135 (not

shown) share the same design between them, but no redundant operations are shared

in these circuits.

It can be observed in Figure 49 that right after the square operators, to avoid

the use of dividers that would be required for the non-power of 2 divisions,

multiplications in the form of shift-adds are used instead. These multiplications use the

least common multiple possible for 1 ≤Nd,k ≤4, which is 12. This way, instead of dividing

by Nd,k, the proposed circuit multiplies the signal by 12/Nd,k (12, 6, 4, and 3).

−

C
o

m
p

a
ra

to
r

>>

15

−

Test

Zero

best_adj

is_smooth

best_d_id
best_d orth_d adj1_d adj2_d

Sd203

Sd180

Sd157

Sd67

Sd90

Sd113

Sd45

Sd135

a b c d
e f g h
i j k l

m n o p

c
a

lc
.
h

0
 t
o

 h
7

input_block

c
a

lc
.
v
0

 t
o

 v
7

101

Figure 49 Processing unit for d=203, d=180 and d=157.

The computed 24-bit Sd values (Sd203, Sd180, Sd157, Sd67, Sd90, Sd113,

Sd45, and Sd135) and their 3-bit id signals are sent to a comparator, which selects the

highest value as the dominant direction. The output of the comparator is the id signal

of the dominant direction (best_d_id), which is used as the selection signal for four

different multiplexers.

All the multiplexers receive the eight Sd values as input, but in different orders.

This way, based on the same selection signal, the multiplexers select the Sd of the

dominant direction (best_d), the orthogonal direction (orth_d), and the two adjacent

directions (adj1_d and adj2_d).

The orth_d value is subtracted from the best_d value, then the result is right

shifted by 15 and, finally, a test is done to check if the result is zero using several 1-bit

h0

h1

h2

h3

h4

h5

h6

h7

h1

h0

h3

h2

h5

h4

h7

h6

h2

h3

h4

h5

h6

h7

h0

h1

<<2

<<1
+

+
<<1

+

+
<<1

+

+
<<1

+

<<2

<<1
+

+
<<1

+

+
<<1

+

+
<<1

+

+
<<1

+

<<2

<<1
+

+
<<1

+

+
<<1

+

+
<<1

+

<<2

<<1
+

+

+

+

+

+

+
+

+

+

+
+

h(0 to 7)

S_d203

S_d180

S_d157

102

OR gates and one NOT gate, resulting in the is_smooth output. The adj1_d is

subtracted from adj2_d and the most significant bit is sent as the best_adj output.

The TbFMD design is placed before the intra prediction modules themselves,

and the outputs best_d_id (3 bits), best_adj (1 bit), and is_smooth (1 bit) are sufficient

for disabling certain directional intra prediction units using operand isolation to prevent

gate switching from arithmetic operations, and clock gating to prevent changing of the

state of the associated registers, according to the RD-lists listed in Table 11.

Since, in the worst-case scenario, the intra prediction module optimized with

TbFMD produces 14 candidates, the SSE-based final decision can be heavily reduced.

A TbFMD-optimized design does not use an array of 64 SSE trees and a 66:1

comparator, as described in Section 6.4, but instead uses only 14 SSE trees and a

much smaller 14:1 comparator, which is illustrated in Figure 50.

Figure 50 14:1 comparator with four levels of depth.

6.5.2 MaSBM Optimization

This optimization adds an extra control unit exclusive to the SSE trees, which is

responsible for applying the operand isolation low-power technique to the inputs of

each tree. Since each tree is dedicated to a single prediction mode, each can be

controlled according to the subsampling mask of that specific mode.

Each position of a subsampling mask has only two states, on and off.

For example, if an 8×8 block was to be compared with an SSE tree controlled by the

subsampling mask shown in Figure 51: In cycle 1, only the first, sixth, and eighth

DC

Paeth

Smooth
Smooth V.

Smooth H.

RBF (0)

RBF (1)

RBF (2)

RBF (3)

RBF (4)

Four Directional

Modes from TbFMD

103

subtractor, and some operators from deeper levels of these branches would remain

active, whilst the other five subtractors would receive zero as input. In cycle 2, only the

fifth, seventh, and eighth subtractors would operate with real inputs. For the next six

cycles, it can be observed that operations disabled in the mask are very likely to remain

disabled, which makes the operand isolation effective in reducing dynamic switching,

and in fact, in this example, two columns are never considered in the SSE calculation.

Figure 51 Example of 8×8 subsampling mask to be applied to an SSE tree.

It is also important to mention that for blocks smaller than 64 samples, the

unused branches of an SSE tree also stay disabled using the same low-power

technique.

For maximum optimization in terms of power reduction, the MaSBM parameters

adopted are HEA=25% and LEA=50%. Therefore, with this degree of subsampling,

only 25% of the predicted samples of each candidate will be considered in block

matching.

An RTL diagram of the complete design, optimized with both TbFMD and

MaSBM is illustrated in Figure 52. When compared to the base design shown in

Figure 33, it can be observed that each of the 14 SSE trees is controlled individually

by a MaSBM control unit, which also controls the comparison loop. This MaSBM unit

receives the RD-list from TbFMD as input, which is important because: (i) although the

first ten SSE trees are always used for the same non-directional modes, the last four

SSE trees operate with varying subsets of the directional modes, and (ii) in case of

smooth blocks, no directional candidates are generated and, in this case, the MaSBM

control disables these trees completely.

Cycle 1 →
Cycle 2 →
Cycle 3 →
Cycle 4 →
Cycle 5 →
Cycle 6 →
Cycle 7 →
Cycle 8 →

104

Figure 52 Intra prediction hardware design optimized with TdFMD and MaSBM.

6.6 Synthesis Results and Discussion

All hardware designs presented in the previous sections were fully described in

Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL)

and synthesized to the Taiwan Semiconductor Manufacturing Company (TSMC) 40nm

standard-cells library, simulating the inputs using a switching rate of 20%.

The first intra prediction designs for the AV1 encoder in the literature were

developed during this Ph.D. project, and to this date, there are no similar works in the

literature. Thus, a fair comparison of the synthesis results with related works cannot

be presented. However, intra prediction designs have been published in the past for

older video coding formats. The works from Palomino et al. (2012), Zhou, Ding and Yu

(2013), Pastuszak and Abramowski (2016), Fang, Chen and Chang (2016), Min, Xu,

and Cheung (2017), and Corrêa et al. (2017) present intra prediction designs for the

H.265 standard, whereas works from Huang et al. (2005), Jin, Jung and Lee (2007),

Wang et al. (2007), Kuo and Lin (2008), Lin et al. (2009), Lin et al. (2010) present

architectures for the H.264 standard.

Non-directional

Intra

Prediction

Design

Directional

Intra

Prediction

Design

Comparators (14:4)

Shared

Control

Output: RD-list (4 candidates)

Input:

Original block

Encoder signals

Prediction Module

SSE-based Decision

TbFMD Output:

RD-list

(4 directional

candidates)

Texture-based

Fast Mode Decision

SSE

Tree

s:64

SSE

Tree

s:64

SSE

Tree

s:64

SSE

Tree

s:64

SSE

Tree

s:64

SSE

Tree

s:64

SSE

Tree

s:64

SSE

Tree

s:64

SSE

Tree

s:64

SSE

Tree

s:64

SSE

Tree

s:64

SSE

Tree

s:64

SSE

Tree

s:64

SSE

Tree

s:64

MaSBM

Control

TbFMD

RD-List

105

It is important to mention that none of the architectures proposed for older

formats can be used for an AV1 encoder since the algorithms and bitstream

specifications are very different. Also, both the H.265 and H.264 intra prediction

modules are much less complex than their AV1 counterpart. The H.265 intra prediction

allows 35 modes (two of which are non-directional) and supports 4×4, 8×8, 16×16 and

32×32 block sizes, whereas the H.264 intra prediction allows nine modes (one non-

directional) for the 4×4 block size and four modes (two non-directional) for the 16×16

block size.

Due to the abovementioned gap in complexity between AV1 and older codecs,

and also because these designs use different technologies in the synthesis process,

a fair comparison between these works is also not viable.

6.6.1 Results for the Base Intra Prediction Design

As mentioned in Section 6.3, the non-directional and directional intra prediction

modules operating according to the shared control unit can predict all 1,869 possible

subblocks inside a 64×64 SB in 7,108 clock cycles.

To allow real-time processing, three target throughputs were considered in this

work: UHD 4K at 30 fps, FHD 1080p at 60 and 30 fps. Thus, for each case the

processing of 91,124; 45,560 and 22,780 blocks of 64×64 are required per second,

respectively, leading to target frequencies of 648, 324, and 162 MHz, respectively. The

abovementioned target frequencies were calculated using eq. (28), where the

multiplication by the constant 1.5 is done to consider the additional chrominance

samples in the 4:2:0 color subsampling scheme, and the constant 4,096 represents

the number of samples belonging to a 64×64 SB.

𝐹𝑟𝑒𝑞 =
𝐹𝑟𝑎𝑚𝑒𝑊𝑖𝑑𝑡ℎ × 𝐹𝑟𝑎𝑚𝑒𝐻𝑒𝑖𝑔ℎ𝑡 × 𝑓𝑝𝑠 × 7108 × 1.5

4096
 (28)

Since this work focuses on the intra prediction module only, the delay of the

other encoder modules cannot be estimated. Therefore, the presented target

frequencies consider the intra prediction modules only.

Furthermore, it is very important to mention that this means the proposed design

implements a partition tree exploration that includes every single possibility, i.e., no

fast decision for early termination is used, as this is not part of the scope of this work.

Therefore, the following results are the worst-case scenario possible, since the use of

106

an early termination algorithm in block partitioning would, in average, result in a much

lower number of cycles needed for each SB. There are no other known designs in the

literature that implement a full exploration of the block partitioning tree.

Table 18, Table 19, Table 20, and Table 21 list the power dissipation, energy

use, and gate count results for the unoptimized versions of the non-directional intra

prediction module, directional intra prediction module, SSE-based decision module,

and integrated base design (total), respectively.

Table 18 Synthesis results for the unoptimized non-directional intra prediction module

Target
Throughput

Frequency
(MHz)

Power
(mW)

Energy
(pJ/sample)

Area
(2NAND
KGates)

1080p at 30 fps 162 32.32 0.346 286.4

1080p at 60 fps 324 50.03 0.268 287.0

UHD 4K at 30 fps 648 75.33 0.202 348.5

Table 19 Synthesis results for the unoptimized directional intra prediction module

Target
Throughput

Frequency
(MHz)

Power
(mW)

Energy
(pJ/sample)

Area
(2NAND
KGates)

1080p at 30 fps 162 21.65 0.232 510.5

1080p at 60 fps 324 34.54 0.185 512.9

UHD 4K at 30 fps 648 79.53 0.213 601.9

Table 20 Synthesis results for the unoptimized SSE-based decision module

Target
Throughput

Frequency
(MHz)

Power
(mW)

Energy
(pJ/sample)

Area
(2NAND
KGates)

1080p at 30 fps 162 18.33 0.196 255.01

1080p at 60 fps 324 30.42 0.163 279.97

UHD 4K at 30 fps 648 51.08 0.137 323.14

Table 21 Synthesis results for the unoptimized base design (total)

Target
Throughput

Frequency
(MHz)

Power
(mW)

Energy
(pJ/sample)

Area
(2NAND
KGates)

1080p at 30 fps 162 72.30 0.774 1,051.91

1080p at 60 fps 324 114.99 0.616 1,079.87

UHD 4K at 30 fps 648 205.94 0.552 1,273.54

Table 18 and Table 19 show that, for the highest throughput target, the power

dissipation and energy efficiency of the non-directional and directional prediction

modes are roughly the same, although the directional intra prediction module required

72% more gates in its design.

Moreover, regarding the non-directional intra prediction module, it is relevant to

observe that 69.2% of its power dissipation comes from the RBF Multifilter Unit alone.

However, this result is acceptable, because this unit performs five of the ten non-

107

directional modes. On the other hand, this unit’s gate count represents only 19% of the

total, because of the massive subexpression reuse between different RBF modes.

Furthermore, the RBF Multifilter Unit represents the critical path of the proposed

design, due to its very high data dependency. The use of eight UMPUs connected

serially results in a combinational critical path that is acceptable for the target

throughput of UHD 4K at 30 fps, to increase the throughput even more, this unit would

require UMPUs working in a pipelined manner, and the control unit would have to be

redesigned to keep all units synchronized.

Regarding the directional intra prediction module, the power dissipation, energy

efficiency, and gate count of all DMPUs for normal-sized arrays are close to the

average, except of course for modes with horizontal, vertical, and diagonal angles,

which do not require any interpolation. This result was expected since all the directional

intra prediction modes follow one universal algorithm.

It can also be observed, in Table 21, that even though the power dissipation

increases as the target frequency increases, the energy efficiency improves, since the

energy use per predicted sample decreases.

Finally, regarding the SSE-based decision module, it can be observed that its

cost is very high when compared to the total results. For the highest throughput target,

this decision module alone requires 25.37% of the total number of gates and is

responsible for 24.8% of the total power.

6.6.2 Results for the Optimized Intra Prediction Modules

The results presented in this section are divided into two distinct versions: one

optimized only with TbFMD, and the other optimized with both TbFMD and MaSBM.

Table 22 lists the power dissipation, energy use, and gate count results for the

directional intra prediction module optimized with TbFMD, to be compared directly

against results from Table 19. It can be observed that, for the highest throughput target,

the extra components of TbFMD increased the gate count by 17.1%, but reduced the

power dissipated by this module by 88%, collaborating significantly with the energy

efficiency of the whole design. Therefore, the TbFMD optimization offers an excellent

trade-off of a small impact in gate count and an expressive gain in power reduction and

energy efficiency.

108

Table 22 Synthesis results for the TbFMD-optimized directional intra prediction module

Target
Throughput

Frequency
(MHz)

Power
(mW)

Energy
(pJ/sample)

Area
(2NAND
KGates)

1080p at 30 fps 162 3.03 0.032 645.9

1080p at 60 fps 324 4.49 0.024 632.9

UHD 4K at 30 fps 648 9.54 0.026 734.9

Table 23 lists the results for the SSE-based decision optimized by the TbFMD,

to be compared directly against Table 20. The use of TbFMD reduces the number of

total candidates from 66 to 14, in the worst-case scenario, allowing for a much smaller

number of SSE trees and a simpler SSE comparator. It can be observed that, for the

highest throughput target, the downsizing of this module resulted in a reduction of 78%

in power dissipated and 71% in the number of gates, which makes this decision module

more viable than its unoptimized counterpart.

Table 23 Synthesis results for the TbFMD-optimized SSE-based decision module

Target
Throughput

Frequency
(MHz)

Power
(mW)

Energy
(pJ/sample)

Area
(2NAND
KGates)

1080p at 30 fps 162 3.84 0.041 64.75

1080p at 60 fps 324 6.08 0.033 75.59

UHD 4K at 30 fps 648 11.23 0.030 93.71

Table 24 also lists the results for the SSE-based decision, but optimized with

both TbFMD and MaSBM. The use of MaSBM adds extra control components to the

array of SSE trees to reduce its power dissipated with the low-power operand isolation

technique, based on subsampling masks. It can be observed that when compared to

the TbFMD-optimized version (Table 23), a reduction of 60% in power dissipated was

achieved at the cost of an increase of 21% in the number of gates. When compared to

the unoptimized version (Table 20), it achieved a very expressive power reduction of

91.2% and a reduction of 71% in the number of gates.

Table 24 Synthesis results for the TbFMD-MaSBM-optimized
SSE-based decision module

Target
Throughput

Frequency
(MHz)

Power
(mW)

Energy
(pJ/sample)

Area
(2NAND
KGates)

1080p at 30 fps 162 1.21 0.013 77.05

1080p at 60 fps 324 2.55 0.014 89.95

UHD 4K at 30 fps 648 4.49 0.012 113.39

109

Table 25 lists the synthesis results for the complete and fully-optimized intra

prediction design developed during this Ph.D. project, to be directly compared against

the unoptimized version from Table 21. For the highest throughput target, a modest

reduction of 6% in the number of gates allowed for a very significant reduction of 56.6%

in total power dissipated. In this final design, it is important to note that most of the

power dissipated comes from the non-directional intra prediction design, which is not

optimized in any way by any of the proposed algorithms.

Table 25 Synthesis results for fully-optimized design (total)

Target
Throughput

Frequency
(MHz)

Power
(mW)

Energy
(pJ/sample)

Area
(2NAND
KGates)

1080p at 30 fps 162 36.56 0.392 1,009.35

1080p at 60 fps 324 57.07 0.306 1,009.85

UHD 4K at 30 fps 648 89.36 0.239 1,196.79

And, finally, Table 26 compares the unoptimized base design from Table 21 and

the fully optimized design from Table 25 in terms of total power, dynamic power, and

leakage power. In this comparison, the highest target throughput (UHD 4K at 30 fps)

was considered. In the unoptimized design, a leakage power of 3.52 mW was

observed, representing 1.71% of the total power. In the fully-optimized design,

however, after the removal of an expressive number of SSE trees and after the

insertion of the TbFMD and MaSBM modules, a leakage power of 3.41 mW was

observed, representing a total of 3.82% of the total power. By comparing the dynamic

power of both designs, it can be seen that the optimization strategies significantly

reduced the switching activity of the circuit.

Table 26 Detailed power results for the unoptimized and fully optimized designs

Design
Total

Power
Dynamic

Power
Leakage
Power

Unoptimized base design 205.94 mW
202.42 mW
(98.29%)

3.52 mW
(1.71%)

Fully optimized design 89.36 mW
85.95 mW
(96.18%)

3.41 mW
(3.82%)

110

7 CONCLUSIONS

In this chapter, this thesis is concluded with a summary of the main

achievements, as well as some directions for future research.

The research work developed in the scope of this thesis contributed to novel

solutions for reducing the number of operations in the intra prediction stage of modern

video encoders. The study included extensive experiments using the AV1 video format,

which was still under development when this Ph.D. project started.

At the beginning of the research work presented in this thesis, there was no

work published in the technical literature focusing on the new algorithms introduced in

AV1 during its development, and studies of compression efficiency and computational

complexity were not available either. This way, this project started with the extensive

study of the reference software during its development, of draft documents and

discussion boards, which led to a major contribution of this project: the first combined

overview of the AV1 and VVC features, algorithmic solutions, and hardware designs

(CORRÊA et al., 2021).

As soon as the first release version of the AV1 specification was published,

various contributions were made in the form of hardware implementations of the intra

prediction algorithms (CORRÊA et al., 2019a; 2019b; 2020a; 2020b, NETO et al.,

2020; 2021a; 2021b; 2022).

With enough parts of the intra prediction module of the encoder developed in

hardware, the focus of this project shifted towards creating heuristic-based algorithms

that could be used in either software or hardware solutions. This study led to the

algorithmic contributions of this project, a fast mode decision algorithm that evaluates

the characteristics of input block texture to reduce the number of intra prediction modes

executed (CORRÊA et al., 2022b), and a mode-adaptive subsampling algorithm to

reduce the number of arithmetic operations in block matching (CORRÊA et al., 2022a).

After achieving very positive results in the algorithm development, the focus of

this project shifted back to hardware development, and two designs for the heuristic-

based algorithms were made and integrated into the intra prediction modules that were

developed in the early stages of this project (CORRÊA et al., 2022b).

The software results were very satisfactory in terms of encoding efficiency and

encoding time and, on average, the algorithms showed their best performance for UHD

resolutions. The hardware results were also satisfactory in terms of area, power, and

111

energy efficiency, the latter being paramount in a world overwhelmed by battery-

powered devices.

Considering all the positive results presented in this work, it is concluded that

the thesis proposed in this project, “It is possible to reduce the computational effort of

the AV1 intra-picture prediction by developing hardware-friendly heuristic-based

algorithms and, then, generate efficient hardware designs able to process ultra-high-

definition videos in real-time.”, proved to be valid.

In future works, there are two clear paths to be followed:

1. The adaptation of the algorithms presented in this work to fit other state-of-

the-art video formats, such as VVC, which comprises algorithms that are

very different from the ones in AV1, but still follows the same block-based

prediction in the spatial domain.

2. Further optimization of the MaSBM algorithm in the form of also applying the

subsampling masks to the prediction process of candidates. In other words,

if only a subset of the predicted samples is needed per candidate for block

matching, that means that only that subset needs to be predicted, with a full

prediction occurring only for the candidates selected to be passed forward

to the RDO process. This should lead to massive gains in the intra prediction

stage itself, as the number of arithmetic operations needed for the prediction

of candidates would be reduced proportionally to the degree of subsampling

used.

3. The replacement of the SSE metric in the MaSBM in favor of the less

demanding SAD metric.

4. The development of a heuristic-based algorithm capable of optimizing the

non-directional intra prediction stage of the encoder, which was not affected

by any of the algorithms proposed in this work.

112

REFERENCES

AGOSTINI, L. Desenvolvimento de Arquiteturas de Alto Desempenho Dedicadas
à Compressão de Vídeo Segundo o Padrão H.264/AVC. 2007. Thesis (Ph.D.) –
Programa de Pós-Graduação em Computação, Universidade Federal do Rio Grande
do Sul, Porto Alegre, 2007.

AOMedia. AV1 Codec Library. Available at
<https://aomedia.googlesource.com/aom/>. 2022. Accessed in: January 10th, 2023.

BANKOSKI, J. et al. RFC 6386 VP8 Data Format and Decoding Guide. Available at
<https://datatracker.ietf.org/doc/rfc6386/>. 2011. Accessed in: January 10th, 2023.

BANKOSKI, J.; WILKINS, P.; XU, Y. Technical overview of VP8, an open source video
codec for the web. In: IEEE International Conference on Multimedia and Expo,
Barcelona, 2011. Proceedings: IEEE, 2011. doi: 10.1109/ICME.2011.6012227

BEBENITA, M. AV1 Bitstream Analyzer. Available at
<https://medium.com/hackernoon/av1-bitstream-analyzer-d25f1c27072b>. 2017.
Accessed in: January 10th, 2023.

BITENCOURT, T.; RAMOS, F.; BAMPI, S. High-Throughput and Low-Power
Architectures for the AV1 Arithmetic Encoder. In: 2021 34th SBC/SBMicro/IEEE/ACM
Symposium on Integrated Circuits and Systems Design (SBCCI), 2021, Campinas.
Proceedings: IEEE, 2021. doi: 10.1109/SBCCI53441.2021.9529994

BITENCOURT, T.; RAMOS, F.; BAMPI, S. Power-Saving 8K Real-Time AV1
Arithmetic Encoder Architecture. IEEE Design & Test, v.39, n.6, p.128-137, 2022. doi:
10.1109/MDAT.2022.3184625

BJØNTEGAARD, G. VCEG-M33: Calculation of average PSNR differences between
RD-curves. Austin, 2001. Available at <https://www.itu.int/wftp3/av-arch/video-
site/0104_Aus/VCEG-M33.doc>. Accessed in: January 10th, 2023.

BJØNTEGAARD, G. et al. The Thor Video Codec. In: 2016 Data Compression
Conference (DCC), 2016, pp. 476-485, doi: 10.1109/DCC.2016.74

BOSSEN, F. et al. JVET-W0003: AHG report: Test Model Software Development
(AHG3). Teleconference, 2021. Available at <https://jvet-experts.org/>. Accessed in:
January 10th, 2023.

BROSS, B. et al. Overview of the Versatile Video Coding (VVC) Standard and its
Applications. IEEE Transactions on Circuits and Systems for Video Technology,
v.31, n.10, p.3736-3764, 2021. doi: 10.1109/TCSVT.2021.3101953

113

CHEN, J. et al. JCTVC-E266: CE6.a.4: Chroma intra prediction by reconstructed luma
samples. Geneva, 2011. Available at <https://www.itu.int/wftp3/av-arch/jctvc-
site/2011_03_E_Geneva/>. Accessed in: January 10th, 2023.

CHEN, X. et al. A Conditional Bayesian Block Structure Inference Model for Optimized
AV1 Encoding. In: 2019 IEEE International Conference on Multimedia and Expo
(ICME), 2019, Shanghai. Proceedings: IEEE, 2019.
doi: 10.1109/ICME.2019.00221

CHIANG, C.; HAN, J.; XU, Y. A Multi-Pass Coding Mode Search Framework For AV1
Encoder Optimization. In: 2019 Data Compression Conference (DCC), 2019,
Snowbird. Proceedings: IEEE, 2019. doi: 10.1109/DCC.2019.00054

CHUANG, H.; LEI, Z.; OPALACH, A.; NORKIN, A. Analysis of AV1 coding tools. In:
SPIE Optical Engineering + Applications, 2022, San Diego. Proceedings SPIE 12226:
SPIE, 2016. doi: 10.1117/12.2635956

CISCO SYSTEMS INC. Cisco Annual Internet Report (2018–2023) White Paper.
Available at: <https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html>. 2020. Accessed
in: January 10th, 2023.

CORRÊA, G. Computational Complexity Reduction and Scaling for High
Efficiency Video Encoders. 2014. Thesis (Ph.D.) – Departamento de Engenharia
Eletrotécnica e de Computadores, Universidade de Coimbra, Coimbra, 2014.

CORRÊA, G. et al. Complexity-Aware High Efficiency Video Coding. Cham,
Springer, 2016. doi: 10.1007/978-3-319-25778-5

CORRÊA, M.; ZATT, B.; PORTO, M.; AGOSTINI, L. High-throughput HEVC
intrapicture prediction hardware design targeting UHD 8K videos. In: 2017 IEEE
International Symposium on Circuits and Systems (ISCAS), 2017, Baltimore.
Proceedings: IEEE, 2017. doi: 10.1109/ISCAS.2017.8050702

CORRÊA, M. et al. A High Throughput Hardware Architecture Targeting the AV1 Paeth
Intra Predictor. In: 2019 IEEE 10th Latin American Symposium on Circuits & Systems
(LASCAS), 2019, Armenia. Proceedings: IEEE, 2019.
doi: 10.1109/LASCAS.2019.8667544

CORRÊA, M. et al. High Throughput Hardware Design for AV1 Paeth and Smooth Intra
Modes. In: 2019 IEEE International Symposium on Circuits and Systems (ISCAS),
2019, Sapporo. Proceedings: IEEE, 2019.
doi: 10.1109/ISCAS.2019.8702258

CORRÊA, M. et al. A High-Throughput Hardware Architecture for AV1 Non-Directional
Intra Modes. IEEE Transactions on Circuits and Systems I: Regular Papers, v.67,
n.5, p.1481-1494, 2020.

114

CORRÊA, M. et al. ASIC Solution for the Directional Intra Prediction of the AV1
Encoder Targeting UHD 4K Videos. In: 2020 IEEE International Symposium on Circuits
and Systems (ISCAS), 2020, Sapporo. Proceedings: IEEE, 2020.
doi: 10.1109/ISCAS45731.2020.9180526

CORRÊA, M. et al. AV1 and VVC Video Codecs: Overview on Complexity Reduction
and Hardware Design. IEEE Open Journal of Circuits and Systems, v.2, p.564-576,
2021. doi: 10.1109/OJCAS.2021.3107254

CORRÊA, M. et al. Mode-Adaptive Subsampling of SAD/SSE Operations for Intra
Prediction Cost Reduction. In: 2022 IEEE International Symposium on Circuits and
Systems (ISCAS), 2022, Austin. Proceedings: IEEE, 2022.
doi: 10.1109/ISCAS48785.2022.9937507

CORRÊA, M.; PALOMINO, D.; CORRÊA, G.; AGOSTINI, L. Direction-Based Fast
Mode Decision and Hardware Design for the AV1 Intra Prediction. In: Symposium on
Integrated Circuits and Systems Design (SBCCI), 2022, Porto Alegre. Proceedings:
IEEE, 2022. doi: 10.1109/SBCCI55532.2022.9893253

DEMPSTER, A.; MACLEOD, M. Use of minimum-adder multiplier blocks in FIR digital
filters. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing, v.42, n.9, p.569-577, 1995. doi: 10.1109/82.466647

DOMANSKI, R. et al. High-Throughput Multifilter Interpolation Architecture for AV1
Motion Compensation. IEEE Transactions on Circuits and Systems II: Express
Briefs, v.66, n.5, p.883-887, 2019. doi: 10.1109/TCSII.2019.2909705

DOMANSKI, R. et al. Low-Power and High-Throughput Approximated Architecture for
AV1 FME Interpolation. In: 2021 IEEE International Symposium on Circuits and
Systems (ISCAS), 2021, Daegu. Proceedings: IEEE, 2021.
doi: 10.1109/ISCAS51556.2021.9401224

FANG, H.; CHEN, H.; CHANG, T. Fast intra prediction algorithm and design for high
efficiency video coding. In: IEEE International Symposium on Circuits and Systems
(ISCAS), 2016, Montreal. Proceedings: IEEE, 2016.
doi: 10.1109/ISCAS.2016.7538911

FREITAS, D. et al. Hardware Architecture for the Regular Interpolation Filter of the
AV1 Video Coding Standard. In: 2020 28th European Signal Processing Conference
(EUSIPCO), 2020, Amsterdam. Proceedings: IEEE, 2020.
doi: 10.23919/Eusipco47968.2020.9287551

FREITAS, D.; DINIZ, C.; GRELLERT, M.; CORRÊA, G. High-Throughput Sharp
Interpolation Filter Hardware Architecture for the AV1 Video Codec. In: 2021 34th
SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems Design
(SBCCI), 2021, Campinas. Proceedings: IEEE, 2021.
doi: 10.1109/SBCCI53441.2021.9529993

115

FREITAS, D. et al. High-Throughput Multifilter VLSI Design for the AV1 Fractional
Motion Estimation. In: 2022 35th SBC/SBMicro/IEEE/ACM Symposium on Integrated
Circuits and Systems Design (SBCCI), 2022, Porto Alegre. Proceedings: IEEE, 2022
doi: 10.1109/SBCCI55532.2022.9893255

GHANBARI, M. Standard Codecs: Image compression to advanced video coding. 3rd
ed. London: IET, 2011. doi: 10.1049/PBTE054E

GOEBEL, J.; ZATT, B.; AGOSTINI, L.; PORTO, M. Hardware Design of DC/CFL Intra-
Prediction Decoder for the AV1 Codec. In: 32nd Symposium on Integrated Circuits and
Systems Design (SBCCI), 2019, São Paulo. Proceedings: IEEE, 2019.

GOMES, J.; RAMOS, F. High-Performance Design for the AV1 Multi - Alphabet
Arithmetic Decoder. In: 2021 34th SBC/SBMicro/IEEE/ACM Symposium on Integrated
Circuits and Systems Design (SBCCI), 2021, Campinas. Proceedings: IEEE, 2021.
doi: 10.1109/SBCCI53441.2021.9529970

GRANGE, A.; RIVAZ, P.; HUNT, J. VP9 Bitstream & Decoding Process Specification.
Available at <https://www.webmproject.org/vp9/>. 2016. Accessed in: January 10th,
2023.

GUO. B. et al. A Bayesian Approach to Block Structure Inference in AV1-Based Multi-
Rate Video Encoding. In: 2018 Data Compression Conference (DCC), 2018, Snowbird.
doi: 10.1109/DCC.2018.00047

GUO. B.; Y. HAN, Y.; WEN, J. Fast Block Structure Determination in Av1-Based
Multiple Resolutions Video Encoding. In: 2018 IEEE International Conference on
Multimedia and Expo (ICME), 2018, San Diego. doi: 10.1109/ICME.2018.8486492

GUO, L. et al. Color palette for screen content coding. In: IEEE International
Conference on Image Processing (ICIP), 2014, Paris. Proceedings: IEEE, 2014.
p.5556-5560. doi: 10.1109/ICIP.2014.7026124

HAN, J. et al. A Technical Overview of AV1. Proceedings of the IEEE, v.109, n.9,
p.1435-1462, 2021. doi: 10.1109/JPROC.2021.3058584

HUANG, Y.; HSIEH, B.; CHEN, T.; CHEN, L. Analysis, fast algorithm, and VLSI
architecture design for H.264/AVC intra frame coder. IEEE Transactions on Circuits
and Systems for Video Technology, v.15, n.3, p.378-401, 2005.
doi: 10.1109/TCSVT.2004.842620

ITU-T. Recommendation H.262: Information technology – Generic coding of moving
pictures and associated audio information: Video (07/95). 1995. 211p.

ITU-T. Recommendation H.264: Advanced video coding for generic audiovisual
services (05/03). 2003. 282p.

116

ITU-T. Recommendation H.265: High efficiency video coding (04/13). 2013. 317p.

ITU-T. Recommendation H.266: Versatile video coding. 2020. 516p.

ITU-T. Recommendation ITU-R BT.500-14: Methodologies for the subjective
assessment of the quality of television images (10/2019). 2019. 102p.

JEONG, J.; GANKHUYAG, G.; KIM, Y. Fast Chroma Prediction Mode Decision based
on Luma Prediction Mode for AV1 Intra Coding. In: International Conference on
Information and Communication Technology Convergence (ICTC), 2019, Jeju.
Proceedings: IEEE, 2019. doi: 10.1109/ICTC46691.2019.8939936

JEONG, J.; GANKHUYAG, G.; KIM, Y. A Fast Intra Mode Decision Based on Accuracy
of Rate Distortion Model for AV1 Intra Encoding. In: 34th International Technical
Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), Jeju,
2019. Proceedings: IEEE, 2019.
doi: 10.1109/ICTC46691.2019.8939936

JIN, G.; JUNG, J.; LEE, H. An Efficient Pipelined Architecture for H.264/AVC Intra
Frame Processing. In: IEEE International Symposium on Circuits and Systems
(ISCAS), 2007, New Orleans. Proceedings: IEEE, 2019.
doi: 10.1109/ISCAS.2007.378825

KARCZEWICZ, M.; YE, Y. JVET-W2017-v1: Common test conditions and evaluation
procedures for enhanced compression tool testing.
Teleconference, 2021. Available at <https://jvet-
experts.org/doc_end_user/documents/23_Teleconference/wg11/JVET-W2017-
v1.zip>. Accessed in: January 10th, 2023.

KIM, J. et al. Fast Inter-prediction Based on Decision Trees for AV1 Encoding. In: 2019
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2019, Brighton. Proceedings: IEEE, 2019.
doi: 10.1109/ICASSP.2019.8683580

KUO, H.; LIN, Y. An H.264/AVC full-mode intra-frame encoder for 1080HD video. In:
IEEE International Conference on Multimedia and Expo (ICME), 2008, Hannover.
Proceedings: IEEE, 2008. doi: 10.1109/ICME.2008.4607615

LI, J. et al. Intra Block Copy for Screen Content in the Emerging AV1 Video Codec. In:
Data Compression Conference (DCC), 2018, Snowbird. Proceedings: IEEE, 2018.
p.355-364. doi: 10.1109/DCC.2018.00044

LIN, Y.; KU, C.; LI, D.; CHANG, T. A 140-MHz 94 K Gates HD1080p 30-Frames/s Intra-
Only Profile H.264 Encoder. IEEE Transactions on Circuits and Systems for Video
Technology, v.19, n.3, p.432-436, 2009. doi: 10.1109/TCSVT.2009.2013511

117

LIN, H.; WU, K.; LIU, B; YANG, J. An Efficient VLSI Architecture for Transform-Based
Intra Prediction in H.264/AVC. IEEE Transactions on Circuits and Systems for
Video Technology, v.20, n.6, p.894-906, 2010. doi: 10.1109/TCSVT.2010.2046059

LIN, J. et al. A fusion-based video quality assessment (fvqa) index. In: Signal and
Information Processing Association Annual Summit and Conference (APSIPA), 2014,
Siem Reap. Proceedings: IEEE, 2014. doi: 10.1109/APSIPA.2014.7041705

LIU, T.; LIN, Y.; LIN, W.; KUO, C. Visual quality assessment: Recent developments,
coding applications and future trends. APSIPA Transactions on Signal and
Information Processing, v.2, e.4, 2013. doi:10.1017/ATSIP.2013.5

MIDTSKOGEN, S.; VALIN, J. The Av1 Constrained Directional Enhancement Filter
(Cdef). In: IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2018, Calgary. Proceedings: IEEE, 2018. p.1193-1197.
doi: 10.1109/ICASSP.2018.8462021

MIN, B.; XU, Z.; CHEUNG, R. A Fully Pipelined Hardware Architecture for Intra
Prediction of HEVC. IEEE Transactions on Circuits and Systems for Video
Technology, v.27, n.12, p.2702-2713, 2017. doi: 10.1109/TCSVT.2016.2593618

MUKHERJEE, D. et al. A Technical Overview of VP9—The Latest Open-Source Video
Codec. SMPTE Motion Imaging Journal, v.124, n.1, p.44-54, 2015.
doi: 10.5594/j18499

MUKHERJEE, D. et al. A switchable loop-restoration with side-information framework
for the emerging AV1 video codec. In: IEEE International Conference on Image
Processing (ICIP), 2017, Beijing. Proceedings: IEEE, 2017. p.265-269.
doi: 10.1109/ICIP.2017.8296284

NETFLIX INC. VMAF - Video Multi-Method Assessment Fusion. Available at
<https://github.com/Netflix/vmaf>. 2022. Accessed in: January 10th, 2023.

NETFLIX INC. Toward A Practical Perceptual Video Quality Metric. Available at
<https://netflixtechblog.com/toward-a-practical-perceptual-video-quality-metric-
653f208b9652>. 2022. Accessed in: January 10th, 2023.

NETO, L. et al. Directional Intra Frame Prediction Architecture with Edge Filter and
Upsampling for AV1 Video Coding. In: Symposium on Integrated Circuits and Systems
Design (SBCCI), 2020, Campinas. Proceedings: IEEE, 2020.
doi: 10.1109/SBCCI50935.2020.9189902

NETO, L. et al. Exploring Operation Sharing in Directional Intra Frame Prediction of
AV1 Video Coding. In: IEEE Latin America Symposium on Circuits and System
(LASCAS), 2021, Arequipa. Proceedings: IEEE, 2021.
doi: 10.1109/LASCAS51355.2021.9459136

118

NETO, L. et al. Configurable Power/Quality-Aware Hardware Design for the AV1
Directional Intra Frame Prediction. In: 2021 34th SBC/SBMicro/IEEE/ACM Symposium
on Integrated Circuits and Systems Design (SBCCI), 2021, Campinas. Proceedings:
IEEE, 2021. doi: 10.1109/SBCCI53441.2021.9529997

NETO, L. et al. Power-Quality Configurable Hardware Design for AV1 Directional Intra-
Frame Prediction. IEEE Design & Test, v.39, n.2, p.38-45, 2022.
doi: 10.1109/MDAT.2022.3146083

NGUYEN, T.; MARPE, D. Future Video Coding Technologies: A Performance
Evaluation of AV1, JEM, VP9, and HM. In: Picture Coding Symposium (PCS), 2018,
San Francisco. Proceedings: IEEE, 2018. p.31-35. doi: 10.1109/PCS.2018.8456289

PALAU, R. et al. An UHD 4K@60fps Dual Self-Guided Filter Targeting the AV1
Decoder. In: 2022 35th SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits
and Systems Design (SBCCI), 2022, Porto Alegre. Proceedings: IEEE, 2022.
doi: 10.1109/SBCCI55532.2022.9893236

PALAU, R. et al. Hardware Design for the Separable Symmetric Normalized Wiener
Filter of the AV1 Decoder. In: 2022 35th SBC/SBMicro/IEEE/ACM Symposium on
Integrated Circuits and Systems Design (SBCCI), 2022, Porto Alegre. Proceedings:
IEEE, 2022. doi: 10.1109/SBCCI55532.2022.9893219

PALOMINO, D. et al. A memory aware and multiplierless VLSI architecture for the
complete intra prediction of the HEVC emerging standard. In: in IEEE International
Conference on Image Processing (ICIP), 2012, Orlando. Proceedings: IEEE, 2012.
doi: 10.1109/ICIP.2012.6466830

PARKER, S. et al. On transform coding tools under development for VP10. In: SPIE
Optical Engineering + Applications, 2016, San Diego. Proceedings SPIE 9971
997119: SPIE, 2016. doi: 10.1117/12.2239105

PASTUSZAK, G.; ABRAMOWSKI, A. Algorithm and architecture design of the
H.265/HEVC intra encoder. IEEE Transactions on Circuits and Systems for Video
Technology, v.26, n.1, p.210-222, 2016. doi: 10.1109/TCSVT.2015.2428571

PU, W. et al. JCTVC-N0266: Non RCE1: Inter Color Component Residual Prediction.
Vienna, 2013. Available at <http://phenix.it-
sudparis.eu/jct/doc_end_user/current_document.php?id=7982>. Accessed in:
January 10th, 2023.

RICHARDSON, I. The H.264 advanced video compression standard. 2nd ed.
Chichester: Wiley, 2010.

RIVAZ, P.; HAUGHTON, J. AV1 Bitstream & Decoding Process Specification v.1.0.0-
errata1. Available at <https://aomediacodec.github.io/av1-spec/av1-spec.pdf>. 2019.
Accessed in: January 10th, 2023.

119

SALDANHA, M. et al. Complexity Analysis of VVC Intra Coding. In: IEEE International
Conference on Image Processing (ICIP), 2020, Abu Dhabi. Proceedings: IEEE, 2020.
p.3119-3123. doi: 10.1109/ICIP40778.2020.9190970

SALDANHA, M. Exploration of Encoding Time Reduction Solutions for Intra-
Frame Prediction of VVC Encoders. 2021. Thesis (Ph.D.) – Programa de Pós-
Graduação em Computação, Universidade Federal de Pelotas, Pelotas, 2021.

SULLIVAN, G.; WIEGAND, T. Rate-distortion optimization for video compression.
IEEE Signal Processing Magazine, v.15, n.6, p.74-90, 1998.
doi: 10.1109/79.733497

SULLIVAN, G. et al. Overview of the High Efficiency Video Coding (HEVC) Standard.
IEEE Transactions on Circuits and Systems for Video Technology, v.22, n.12,
p.1649-1668, 2012. doi: 10.1109/TCSVT.2012.2221191

TRUDEAU, L.; EGGE, N.; BARR, D. Predicting Chroma from Luma in AV1. In: Data
Compression Conference (DCC), 2018, Snowbird. Proceedings: IEEE, 2018. p.374-
382. doi: 10.1109/DCC.2018.00046

VALIN, J. et al. Daala: A perceptually-driven still picture codec. In: IEEE International
Conference on Image Processing (ICIP), 2016, Phoenix. Proceedings: IEEE, 2016.
p.76-80. doi: 10.1109/ICIP.2016.7532322

VORONENKO, Y.; PÜSCHEL, M. Multiplierless multiple constant multiplication.
ACM Transactions on Algorithms, v.3, n.2, 2007.
doi: 10.1145/1240233.1240234

WANG, J.; WANG, J; YANG, J.; CHEN, J. A Fast Mode Decision Algorithm and Its
VLSI Design for H.264/AVC Intra-Prediction. IEEE Transactions on Circuits and
Systems for Video Technology, v.17, n.10, p.1414-1422, 2007.
doi: 10.1109/TCSVT.2007.903786

WIEGAND, T. et al. Overview of the H.264/AVC video coding standard. IEEE
Transactions on Circuits and Systems for Video Technology, v.13, n.7, p.560-576,
2003. doi: 10.1109/TCSVT.2003.815165

XIPH.ORG FOUNDATION. AOM Analyzer. Available at
<https://github.com/xiph/aomanalyzer>. 2022. Accessed in: January 10th, 2023.

XU, X.; LIU, S. Overview of Screen Content Coding in Recently Developed Video
Coding Standards. IEEE Transactions on Circuits and Systems for Video
Technology, v.32, n.2, p.839-852, 2022, doi: 10.1109/TCSVT.2021.3064210

ZHAO, X. et al. CWG-B075o: AOM Common Test Conditions v2.0. 2021. Available at
< https://aomedia.org/docs/CWG-B075o_AV2_CTC_v2.pdf>. Accessed in:
January 10th, 2023.

120

ZHOU, N.; DING, D.; YU, L. On hardware architecture and processing order of HEVC
intra prediction module. In: in Picture Coding Symposium (PCS), 2013, San Jose.
Proceedings: IEEE, 2013. doi: 10.1109/PCS.2013.6737693

ZUMMACH, E. et al. High-Throughput CDEF Architecture for the AV1 Decoder
Targeting 4K@60fps Videos. In: 2020 IEEE 11th Latin American Symposium on
Circuits & Systems (LASCAS), 2020, San Jose. Proceedings: IEEE, 2020.
doi: 10.1109/LASCAS45839.2020.9068979

ZUMMACH, E. et al. Efficient Hardware Design for the AV1 CDEF Filter Targeting 4K
UHD Videos. In: 2020 IEEE International Symposium on Circuits and Systems
(ISCAS), 2020, Seville. Proceedings: IEEE, 2020.
 doi: 10.1109/ISCAS45731.2020.9180525

ZUMMACH, E. et al. An UHD 4K@60fps Deblocking Filter Hardware Targeting the
AV1 Decoder. In: 2020 27th IEEE International Conference on Electronics, Circuits
and Systems (ICECS), 2020, Glasgow. Proceedings: IEEE, 2020.
doi: 10.1109/ICECS49266.2020.9294930

121

Appendices

122

Appendix A – Experimental Setup

When this research project started, the AV1 video format was still in stage of

development, and there were no official guidelines on how to conduct experiments with

it. On the other hand, common test conditions for experiments with the MPEG and

VCEG standardized formats were available and in a very mature stage.

Because of that, the experiments conducted in this research project used a set

of test sequences recommended by the Joint Video Experts Team (JVET), in the JVET-

W2017-v1 document (KARCZEWICZ; YE, 2021), known as Common Test Conditions

(CTC). According to the CTC, the Classes “D”, “F” and “Text and Graphics with Motion”

(TGM) are not to be included by default in the test results, unless low resolutions are

desired (class D with 240p videos) or digital screen content (classes F and TGM).

Therefore, those three classes were left out of the experiments of this Ph.D. project.

Table 27 lists the test sequences used.

Table 27 Test sequences used in the experiments conducted

Class Resolution Sequence
Frame
Count

Frame
Rate (fps)

Bit Depth

A1
3840×2160
(UHD 4K)

Tango2 294 60 10

FoodMarket4 300 60 10

Campfire 300 30 10

A2
3840×2160
(UHD 4K)

CatRobot 300 60 10

DaylightRoad2 300 60 10

ParkRunning3 300 50 10

B
1920×1080

(1080p)

MarketPlace 600 60 10

RitualDance 600 60 10

Cactus 500 50 8

BasketballDrive 500 50 8

BQTerrace 500 60 8

C
832×480
(480p)

BasketballDrill 500 50 8

BQMall 600 60 8

PartyScene 500 50 8

RaceHorses 300 30 8

E
1280×720

(720p)

FourPeople 600 60 8

Johnny 600 60 8

KristenAndSara 600 60 8

When a CTC document got released by AOMedia (ZHAO, 2021), the

parameters used in libaom 2.0.0 for the intra prediction experiments became:

• --cpu-used=0 (Slowest speed setting)

• --passes=1 (Single pass)

• --end-usage=q (Rate-control based in QP)

• --cq=x (Sets the QP as x)

123

• --kf-min-dist=0 (Disables inter prediction)

• --kf-max-dist=0 (Disables inter prediction)

• --enable-tpl-model=0 (Disables this feature)

• --enable-keyframe-filtering=0 (Disables this feature)

• --deltaq-mode=0 (Disables this feature)

Also, according to the AOMedia CTC, all the encoding quality results presented

in the form of BD-BRYUV in this thesis are computed using the frame-averaged

PSNRYUV, where the PSNR for each channel is computed separately and are then

combined according to eq. (29).

𝑃𝑆𝑁𝑅𝑌𝑈𝑉 =
14 × 𝑃𝑆𝑁𝑅𝑌 + 𝑃𝑆𝑁𝑅𝑈 + 𝑃𝑆𝑁𝑅𝑉

16
 (29)

124

Appendix B – List of Published Papers During the Ph.D. Studies

The Ph.D. project presented in this thesis resulted in 16 peer-reviewed

publications, which are listed below. Publications in small regional conferences were

omitted purposely.

B.1. Journal Articles

I. PORTO, R.; CORRÊA, M.; GOEBEL, J.; ZATT, B.; ROMA, N.;
AGOSTINI, L.; PORTO, M. UHD 8K energy-quality scalable HEVC intra-
prediction SAD unit hardware using optimized and configurable imprecise
adders. Journal of Real-Time Image Processing, v.17, p.1685-1701,
2020. doi: 10.1007/s11554-019-00934-2

II. CORRÊA, M.; WASKOW, B.; GOEBEL, J.; PALOMINO, D.; CORRÊA, G.;
AGOSTINI, L. A High-Throughput Hardware Architecture for AV1 Non-
Directional Intra Modes. IEEE Transactions on Circuits and Systems I:
Regular Papers, v.67, n.5, p.1481-1494, 2020.
doi: 10.1109/TCSI.2020.2973031

III. CORRÊA, M.; SALDANHA, M.; BORGES, A.; CORRÊA, G.;
PALOMINO, D.; PORTO, M.; ZATT, B.; AGOSTINI, L. AV1 and VVC Video
Codecs: Overview on Complexity Reduction and Hardware Design. IEEE
Open Journal of Circuits and Systems, v.2, p.564-576, 2021.
doi: 10.1109/OJCAS.2021.3107254

IV. NETO, L.; CORRÊA, M.; PALOMINO, D.; AGOSTINI, L.; CORRÊA, G.
Power-Quality Configurable Hardware Design for AV1 Directional Intra-
Frame Prediction. IEEE Design & Test, v.39, n.2, p.38-45, 2022.
doi: 10.1109/MDAT.2022.3146083

B.2. Conference Papers

I. FERREIRA, R.; LEME, M.; CORRÊA, M.; AGOSTINI, L.; DINIZ, C.;
ZATT, B. Approximate Subtractor Operator for Low-Power Video Coding
Hardware Accelerators. In: IEEE International Conference on Electronics,
Circuits and Systems (ICECS), 2019, Genoa.
doi: 10.1109/ICECS46596.2019.8964783

II. CORRÊA, M.; ZATT, B.; PALOMINO, D.; CORRÊA, G.; AGOSTINI, L.
A Fast Local Mode Decision for the HEVC Intra Prediction Based on
Direction Detection. In: European Signal Processing Conference
(EUSIPCO), 2019, A Coruña. doi: 10.23919/EUSIPCO.2019.8903093

III. CORRÊA, M.; WASKOW, B.; ZATT, B.; PALOMINO, D.; CORRÊA, G.;
AGOSTINI, L. High Throughput Hardware Design for AV1 Paeth and

125

Smooth Intra Modes. In: 2019 IEEE International Symposium on Circuits
and Systems (ISCAS), 2019, Sapporo. 2019.
doi: 10.1109/ISCAS.2019.8702258

IV. CORRÊA, M.; WASKOW, B.; GOEBEL, J.; PALOMINO, D.; CORRÊA, G.;
AGOSTINI, L. A High Throughput Hardware Architecture Targeting the AV1
Paeth Intra Predictor. In: 2019 IEEE 10th Latin American Symposium on
Circuits & Systems (LASCAS), 2019, Armenia.
doi: 10.1109/LASCAS.2019.8667544.

V. SALDANHA, M.; CORRÊA, M.; CORRÊA, G.; PALOMINO, D.;
PORTO, M.; ZATT, B.; AGOSTINI, L. An Overview of Dedicated Hardware
Designs for State-of-the-Art AV1 and H.266/VVC Video Codecs. In: IEEE
International Conference on Electronics, Circuits and Systems (ICECS),
2020, Glasgow. 2020. doi: 10.1109/ICECS49266.2020.9294862

VI. CORRÊA, M.; NETO, L.; PALOMINO, D.; CORRÊA, G.; AGOSTINI, L.
ASIC Solution for the Directional Intra Prediction of the AV1 Encoder
Targeting UHD 4K Videos. In: 2020 IEEE International Symposium on
Circuits and Systems (ISCAS), 2020, Sevilla.
doi: 10.1109/ISCAS45731.2020.9180526

VII. NETO, L.; CORRÊA, M.; PALOMINO, D.; AGOSTINI, L.; CORRÊA, G.
Directional Intra Frame Prediction Architecture with Edge Filter and
Upsampling for AV1 Video Coding. In: Symposium on Integrated Circuits
and Systems Design (SBCCI), 2020, Campinas.
doi: 10.1109/SBCCI50935.2020.9189902

VIII. NETO, L.; CORRÊA, M.; PALOMINO, D.; AGOSTINI, L.; CORRÊA, G.
Exploring Operation Sharing in Directional Intra Frame Prediction of AV1
Video Coding. In: IEEE Latin America Symposium on Circuits and System
(LASCAS), 2021, Arequipa. doi: 10.1109/LASCAS51355.2021.9459136.

IX. NETO, L. CORRÊA, M.; ZATT, B.; PALOMINO, D.; AGOSTINI, L.;
CORRÊA, G. Configurable Power/Quality-Aware Hardware Design for the
AV1 Directional Intra Frame Prediction. In: 2021 34th
SBC/SBMicro/IEEE/ACM Symposium on Integrated Circuits and Systems
Design (SBCCI), 2021, Campinas.
doi: 10.1109/SBCCI53441.2021.9529997

X. CORRÊA, M.; ROMA, N.; PALOMINO, D.; CORRÊA, G.; AGOSTINI, L.
Mode-Adaptive Subsampling of SAD/SSE Operations for Intra Prediction
Cost Reduction. In: 2022 IEEE International Symposium on Circuits and
Systems (ISCAS), 2022, Austin. doi: 10.1109/ISCAS48785.2022.9937507

XI. PALAU, R.; GOEBEL, J.; ZUMMACH, E.; VIANA, R.; CORRÊA, M.;
CORRÊA, G.; PORTO, M.; AGOSTINI, L. An UHD4K@60fps Dual Self-
Guided Filter Targeting the AV1 Decoder. In: Symposium on Integrated
Circuits and Systems Design (SBCCI), 2022, Porto Alegre.
doi: 10.1109/SBCCI55532.2022.9893236

126

XII. CORRÊA, M.; PALOMINO, D.; CORRÊA, G.; AGOSTINI, L.
Direction-Based Fast Mode Decision and Hardware Design for the AV1 Intra
Prediction. In: Symposium on Integrated Circuits and Systems Design
(SBCCI), 2022, Porto Alegre. doi: 10.1109/SBCCI55532.2022.9893253

