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RESUMO 

CORRÊA, Marcel Moscarelli. Heuristic-based Algorithms and Hardware Designs 
for Fast Intra-picture Prediction in AV1 Video Coding. 2023. 126f. 
Tese (Doutorado em Ciência da Computação) – Programa de Pós-Graduação em 
Computação. Universidade Federal de Pelotas, Pelotas. 
 
A codificação de vídeo para fins de compressão é indispensável para qualquer 
aplicação ou serviço baseado na manipulação de vídeos digitais. Sem compressão, 
conteúdo de vídeo digital moderno requer uma quantidade proibitiva de dados.  
Um formato de codificação de vídeo define o formato de representação do conteúdo 
de vídeo em uma forma comprimida, para ser utilizada de maneira conveniente para 
armazenamento e transmissão. Formatos de vídeo são tipicamente padronizados e 
têm codificadores e decodificadores de vídeo desenvolvidos para eles, implementados 
tanto em software quanto em hardware. Esta tese apresenta algoritmos apropriados 
para implementação em hardware, capazes de reduzir o número de operações 
associadas à etapa de decisão de modo da predição intraquadros em um codificador 
de vídeo, que é um dos módulos do codificador que mais consome recursos de 
processamento. Ainda, esta tese também apresenta arquiteturas em hardware que 
implementam os algoritmos propostos, otimizadas para baixa potência dissipada e alta 
eficiência energética. Todas as soluções de software e hardware descritas nesta tese 
têm como alvo o formato AOMedia Video 1 (AV1), que é o estado da arte em formatos 
de vídeo abertos e livres de royalties. Todos os algoritmos propostos foram testados 
no software de referência do codificador AV1, utilizando-se condições comuns de teste 
deste campo de pesquisa, e todas as arquiteturas de hardware foram descritas em 
VHDL e sintetizadas para tecnologia TSMC 40nm. Os resultados de eficiência de 
compressão e tempo de codificação dos algoritmos propostos e, também,  
os resultados de custo em portas lógicas e consumo de energia das arquiteturas de 
hardware, confirmam que as soluções desenvolvidas durante este projeto de 
doutorado atendem as demandas das tecnologias atuais de vídeo, como a codificação 
de resoluções Ultra-High Definition (UHD) em alta velocidade e alta qualidade visual. 

Palavras-chave: Codificação de vídeo; predição intra; decisão de modo; AV1; 
arquitetura em hardware. 
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ABSTRACT 

CORRÊA, Marcel Moscarelli. Heuristic-based Algorithms and Hardware Designs 
for Fast Intra-picture Prediction in AV1 Video Coding. 2023. 126f. 
Thesis (Ph.D. in Computer Science) – Graduate Program in Computing. Federal 
University of Pelotas, Pelotas. 
 
Video coding for compression purposes is paramount for any application or service 
based on digital video. Without compression, modern digital content requires a 
prohibitively large amount of data. A video coding format defines the format for video 
content representation in a compressed form, to be used conveniently for storage or 
transmission. Video formats are, typically, standardized and have video encoders and 
decoders made for them, in both software and hardware. This thesis presents 
hardware-friendly algorithms capable of reducing the number of operations of the video 
encoder mode decision process in the intra-picture prediction module, one of its most 
time-consuming modules. Additionally, it also presents intra-picture prediction 
hardware designs, optimized for both low power and high energy efficiency, 
implementing the proposed algorithms. All software and hardware solutions described 
in this thesis target the AOMedia Video 1 (AV1) format, which is state-of-the-art in 
open-source and royalty-free video coding. All algorithms proposed were evaluated in 
the AV1 reference software using common test conditions, and all hardware designs 
were described in VHDL and synthesized to TSMC 40nm standard-cells technology. 
The encoding efficiency and encoding time results for the proposed algorithms, as well 
as the gate count and energy consumption results for the hardware designs, confirm 
that solutions developed during this Ph.D. project meet the requirements of current 
video technology, such as coding of Ultra-High Definition (UHD) resolutions at high 
speeds and high visual quality. 

 
Keywords: Video coding; intra prediction; mode decision; AV1; hardware design. 
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1 INTRODUCTION 

Internet-based video traffic has been pushing telecommunication infrastructures 

to their limit because of the ever-increasing demand for video-based services, such as 

social media, streaming, video conferencing, and cloud gaming. More recently, in 

2019, the world started facing the SARS-CoV-2 pandemic, which led people to heavily 

depend on video services for their work, educational and social routines more than 

ever before. 

According to Cisco Systems Inc. (2020), from 2017 to 2020, this type of traffic 

grew 29% annually and was expected to reach 325 exabytes per month by the end of 

2022, representing 82% of the global internet traffic. It was also expected that in 2022, 

of all video traffic, 22.3% would be in Ultra-High Definition (UHD) resolutions, 56.8% in 

High Definition (HD), and 20.9% in Standard Definition (SD) or lower. Furthermore, by 

2023, two-thirds of the installed television sets are expected to be UHD-capable, up 

from 33% in 2018. This will cause an even bigger impact on the infrastructure because 

the increase in video definition causes a multiplicative effect on the data volume. For 

example, a single UHD 4K (3640×2160 pixels) uncompressed frame has four times 

more data than a Full HD 1080p (FHD) (1920×1080 pixels) frame, and the increase in 

spatial resolution often comes paired with an increase in temporal resolution (frame 

refresh rate), which also leads to a linear increase in data. 

To address this, standardization bodies such as the Telecommunication 

Standardization Sector of the International Telecommunication Union (ITU-T) and the 

International Electrotechnical Commission (IEC) of the International Organization for 

Standardization (ISO), have been developing video coding standards for decades, with 

the Versatile Video Coding (H.266/VVC) (ITU-T, 2020; BROSS et al., 2021) being the 

most efficient video coding standard developed. The H.266/VVC standard was 

released in July 2020, coming from a long line of successful video coding standards 

defined by a joint effort of the ISO/IEC MPEG (Moving Picture Experts Group) and the 

ITU-T VCEG (Video Coding Experts Group) that includes the well-known High 

Efficiency Video Coding (H.265/HEVC) (ITU-T, 2013; SULLIVAN et al., 2012), 

Advanced Video Coding (H.264/AVC) (ITU-T, 2003; WIEGAND et al., 2003), and 

MPEG-2 (ITU-T, 1995). 

In recent years, the licensing for commercial use of such standards started to 

become prohibitively expensive and exceedingly bureaucratic due to a large number 
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of patent holders associated to each standard, affecting even the largest companies, 

as explained by Rosenberg (2015) on behalf of the Cisco Systems Inc.: 

Unfortunately, the patent licensing situation for H.265 has recently taken a 
turn for the worse. Two distinct patent licensing pools have formed so far, and 
many license holders are not represented in either. There is just one license 
pool for H.264. The total costs to license H.265 from these two pools is up to 
sixteen times more expensive than H.264, per unit. H.264 had an upper bound 
on yearly licensing costs, whereas H.265 has no such upper limit. 

Motivated by this, companies started to look for royalty-free alternatives to the 

standards. Indeed, the incredible growth of the internet is a consequence of its 

founding core technologies being open and freely implementable (MUKHERJEE et al., 

2013), such as the HyperText Transfer Protocol (HTTP), Transfer Control Protocol 

(TCP), and Internet Protocol (IP). Nowadays, however, digital video technology 

became undeniably a central pillar of the internet experience, making free solutions for 

video coding a subject of great relevance. 

A notable example was the start of the WebM project and the acquisition by 

Google Inc. of the company named On2 Technologies Inc., which originally developed 

the VP8 (BANKOSKI et al., 2011; BANKOSKI; WILKINS; XU, 2011) coder/decoder 

(codec), later releasing VP8 freely under the CC BY 3.0 license. The VP9 (GRANGE; 

RIVAZ; HUNT, 2016; MUKHERJEE et al., 2013) format was later developed by Google 

Inc., which is still used in various of Google’s own video services. In 2015, as Google 

Inc. was working on a successor for VP9, called VP10, other companies were 

developing their own royalty-free and open-source video codecs: Cisco Systems Inc. 

and Mozilla Corporation were involved in the creation of Thor (BJØNTEGAARD et al., 

2016) and Daala (VALIN et al., 2016), respectively. 

In the end, these three companies, together with eleven more companies, joined 

efforts and founded the Alliance for Open Media (AOMedia) industry consortium, later 

releasing the AOMedia Video 1 (AV1) (RIVAZ; HAUGHTON, 2019; HAN et al., 2021) 

in June 2018, to be the state-of-the-art royalty-free video format. The AV1 is highly 

based on features from all the unreleased VP10, Thor, and Daala codecs. 

Several new coding tools were developed and enhanced in the next-generation 

codecs (AV1 and H.266/VVC) to deal with the new requirements of video applications 

and to provide high coding efficiency. These improvements include larger block sizes, 

flexible block partitioning structures, a higher number of intra prediction modes,  

the support of affine modes for inter prediction, more transform sizes and types, 
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improved implementations of quantization and entropy coding, more in-loop filters, and 

many other novelties. 

Even though both the AV1 and H.266/VVC can achieve a satisfactory 

performance for current video content, this efficiency implicates a very high 

computational effort. As a consequence, video encoding is an unfeasible task for 

software solutions when real-time processing and high resolutions are desired, even 

for high-end devices. 

Moreover, in a world where most video-enabled devices are powered by 

batteries, an efficient combination of hardware-friendly algorithms and Application-

specific Integrated Circuit (ASIC) designs is mandatory to produce low-power devices 

and to allow for faster encoding and decoding speeds in video systems. Although 

solutions of this type have been proposed for previous codecs, these cannot be used 

directly in the current codecs without being redesigned to some extent. 

1.1 Research Hypothesis 

The current-generation video codecs, AV1 and H.266/VVC, outperform their 

predecessors by a significant margin. According to experiments conducted by Nguyen 

and Marpe (2018), AV1 shows an improvement of 23.4% when compared to VP9, and 

H.266/VVC shows an improvement of 31.6% when compared to H.264/HEVC, both 

measured in terms of Bjøntegaard Delta Bit Rate (BD-BR) (see Section 2.4). 

Such improvements are due to the increased number of block sizes supported 

by these codecs, and also due to the increased set of modes supported by different 

stages of the coder. However, this also led to the growth of the combinatorial space, 

making the encoder task of selecting the best modes drastically more complex. 

Separate studies made by Saldanha et al. (2020) and Bossen et al. (2021) suggest 

that the H.266/VVC reference software requires up to 27 times more computational 

effort than the H.265/HEVC reference software, whilst a study made by Nguyen and 

Marpe (2018) shows that the AV1 reference software requires up to 58 times more run 

time than the VP9 reference software. 

Regarding the intra-picture prediction stage of the AV1, which is the focus of 

this project, a study made by Chuang et al. (2022) evaluated the impact of each of the 

novel tools added to the AV1 intra-prediction (see Chapter 3) individually, in terms of 

encoding time difference and image distortion (see Section 2.4). Table 1 shows this 

impact in a test setup where each tool is enabled one at a time while the others are 
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disabled. It can be observed that some tools alone can increase the encoding runtime 

significantly and, when added together, these tools are expected to increase the 

runtime of the baseline intra prediction stage. Regardless of the encoding time impact, 

these tools must not be disabled, since it can also be observed in the same table that 

the reduction in image distortion is also very expressive. 

Table 1 Impact of individual intra prediction tools in an AV1 encoder 
(CHUANG et al., 2022). 

Tool PSNR-Y (%) Encoding Time (%) 

Intra Angle Delta −2.42 103.74 

Paeth Mode −0.14 101.95 

Smooth Modes −0.90 104.63 

Recursive-based-filtering Modes −0.77 109.62 

Filtering of Ref. Samples −0.36 102.47 

Chroma from Luma Mode −0.36 101.04 

Intra Block Copy Mode −4.81 102.75 

Palette Mode −6.47 100.77 

 

The AV1 was chosen as the focus of this work due to its very high commercial 

relevance, for being both open-source and royalty-free, and also due to its academic 

relevance, for adding many novel and complex tools never studied before. 

Furthermore, considering the high relevance of the AV1 intra prediction and the 

research opportunities related to it, as will be explained in Chapter 4, this stage of the 

encoder was chosen to be the target of this research project. 

Based on these facts, the question this research project sought to answer is: 

“Considering the very high computational effort required by the AV1 intra-picture 

prediction, is it possible to generate novel algorithms and hardware-based solutions 

able to support the processing of ultra-high-definition videos in real-time?”  

Justified by the large number of novel tools introduced to the intra-picture 

prediction stage, associated with the small number of works in the literature seeking to 

improve this stage of the encoder, two main research hypotheses were explored in this 

thesis. 

First hypothesis: 

“Information about the direction and smoothness of the input image texture, as 

well as the error distribution pattern of each prediction mode, can both be used to 

develop heuristics to reduce the number of AV1 intra-picture prediction modes 

processed and the number of operations executed in distortion metric calculation for 

block matching.” 
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Second hypothesis: 

"An efficiently designed hardware architecture for the original AV1 algorithms 

and the proposed heuristic-based algorithms is a promising solution to allow the 

processing of ultra-high-definition videos in real-time by the AV1 intra prediction.” 

Then, considering these hypotheses, the main thesis investigated in this work 

is: 

“It is possible to reduce the computational effort of the AV1 intra-picture 

prediction by developing hardware-friendly heuristic-based algorithms and, then, 

generating efficient hardware designs able to process ultra-high-definition videos in 

real-time.” 

1.2 Main Contributions 

The main contribution of this research project is the development of both 

software and hardware solutions for fast the intra prediction in AV1. 

Many works were published with specific contributions as the project developed: 

• Development of an AV1 intra-picture prediction hardware designs (CORRÊA 

et al., 2019a, 2019b, 2020a, 2020b; NETO et al., 2020, 2021a, 2021b, 2022); 

• Development of hardware-friendly heuristic-based algorithms capable of 

reducing the number of operations in intra prediction (CORRÊA et al., 2022a, 

2022b); 

• Development of intra-picture prediction hardware designs optimized with the 

proposed algorithms (CORRÊA et al. 2022b). 

1.3 Thesis Organization 

This thesis is organized as follows: 

Chapter 2 provides the basic video coding concepts needed for the 

understanding of the proposed solutions, and also provides information on different 

parts of an AV1 coder. 

Chapter 3 provides an in-depth technical view of the AV1 intra-picture prediction 

techniques. 

Chapter 4 presents a review of the related works that propose system-level 

solutions for complexity reduction in an AV1 encoder, as well as works that propose 
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dedicated hardware designs for modules of an AV1 encoder and decoder. It also 

discusses opportunities in the area of research. 

Chapter 5 presents heuristic-based algorithms for the intra prediction stage of 

the AV1 encoder. 

Chapter 6 presents hardware designs for the intra prediction stage of the AV1 

encoder. 

Chapter 7 presents the conclusions of this thesis, summarizing the major 

results, identifying possible extensions of the project, and pointing out future research 

directions in the area. 

Appendix A presents the test sequences and coding parameters used for all 

experiments during this Ph.D. project. 

Appendix B lists all the peer-reviewed published papers that were produced 

during the Ph.D. project. 
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2 VIDEO CODING BACKGROUND 

This chapter presents the basic concepts behind the video coding 

(compression) process. 

2.1 Representation of Digital Videos 

A video is made of a series of still images that, when displayed at a sufficiently 

high refresh rate, provides the viewer with the perception of smooth movement.  

Video sequences vary in spatial resolution, refresh rate, color space, and other 

characteristics. Contemporary videos tend to be fully digital through the entire process 

of production, distribution, and playback. 

Each still image in a digital video sequence is called a frame, organized as a 

matrix of pixels. In this context, a pixel is the smallest addressable element in a frame, 

and it is a combination of different samples of a color space. 

A color space is an arbitrary model for representing colors as tuples, e.g., triples 

in the Red, Green, Blue (RGB) model, and quadruples in the Cyan, Magenta, Yellow, 

Key (CMYK) model. The RGB color model is typically used in display devices of various 

technologies, and it is an additive color model in which the red, green, and blue primary 

colors of light are added to reproduce a broader array of colors. The CMYK model,  

on the other hand, is a subtractive color model that mixes the subtractive primaries 

cyan, magenta, and yellow to block light, rather than adding it, which is particularly 

convenient for color printers. 

For video coding, however, the Luminance, Blue-difference Chrominance, and 

Red-difference Chrominance (YCbCr) model is the most suitable. In this color model,  

the luminance information, which is closely related to the perception of brightness,  

is completely separated from chrominance information, allowing encoders to take 

advantage of the human visual system characteristic of being much more sensitive to 

luminance than to color information. One practical example of this is the color 

subsampling technique, which is used to decrease the resolution allocated to the 

chrominance channels, without significant loss of information being perceived by the 

human eye. The most common color sampling schemes are called 4:4:4, 4:2:2, 4:2:0, 

and 4:0:0. In the 4:4:4 sampling, the resolution of the luminance and both chrominance 

channels are kept intact and no color information is discarded, whereas in the 4:2:2 

and 4:2:0 subsampling, the resolution of both chrominance samples is reduced by 50% 
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and 75%, respectively. Finally, in the 4:0:0 scheme, only luminance information is 

carried. 

Figure 1 shows a picture in full color and the same picture with the three 

channels of the RGB color model separated (left), and the same for the YCbCr color 

model (right). It can be observed clearly that each channel of the RGB color model 

represents the intensity of each of the primary colors, and that there is a part of the 

luminance information shared among all three channels. Furthermore, it can also be 

observed that the luminance channel Y of the YCbCr color model has all the luminance 

information, seen as a grayscale image, whereas both the chrominance channels only 

have color information, making it impossible to perceive edges and depth information 

in detail due to the lack of light information. 

This way, the representation of digital videos in an uncompressed format 

demands a prohibitive amount of storage space or network bandwidth. For example,  

a UHD 4K video, displayed at a refresh rate of 30 fps (frames per second), with 8 bits 

per channel in the 4:2:0 sampling scheme, which are qualities of videos commonly 

used in internet streaming and digital television broadcasting nowadays, requires a 

bandwidth of approximately 3 Gbps (three billion bits per second). A video with these 

same qualities and 30 minutes of duration requires approximately 672 GB  

(672 billion bytes) of storage space. 
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Figure 1 Example of the RGB (left) and YCbCr (right) channels separated. Picture: John Moulton 
Barn (Public domain). 

2.2 Redundancies in Digital Videos 

Although digital videos demand a very high volume of data to be represented, 

much of this data can be compressed due to the strong correlation both between 

successive frames and within the frame content itself (GHANBARI, 2011). The goal of 

video compression is to eliminate irrelevant and redundant data present in the video 

representation. 

Irrelevant information in the video representation is always of a visual nature 

and is deemed irrelevant due to the limitations of the human visual system. For 
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example, the human eye is not sensible to high-frequency distortions (CORRÊA, 

2014),  

i.e., it can effectively perceive subtle variations of luminance over a relatively large area 

but struggles to perceive such variations in small areas (CORRÊA et al., 2016).  

Hence, for compression purposes, an encoder can discard information that the human 

eye is not sensible to. 

Redundant information in a digital video can be of a visual nature (spatial and 

temporal) or statistical nature (entropic). These types of redundancy can be defined as 

follows (AGOSTINI, 2007): 

• Spatial Redundancy: Also called intra-picture redundancy, it is the similarity 

between pixels spatially close to each other. This redundancy can be 

explored in the spatial domain by the intra-picture prediction stage of a video 

coder. 

• Temporal Redundancy: Also called inter-picture redundancy, it is the 

similarity between frames temporally close to each other. Because of the 

high refresh rate of a video, pixels tend to not change from one frame to 

another, and changes are likely to be small variations in pixel intensity (e.g., 

change in lighting) and position (e.g., the motion of an object or the entire 

background). This redundancy can be explored by the inter-picture 

prediction stage of a video coder. 

• Entropic Redundancy: In information theory, entropy is related to the 

occurrence frequency of symbols. In a scenario where all symbols have the 

same probability of occurring, the same number of bits must be used to 

represent these symbols. On the other hand, if some symbols have a higher 

probability of occurring, then this redundancy can be explored by assigning 

variable length codes to these symbols (i.e., codes with fewer bits assigned 

to more frequent symbols). The entropic redundancy is explored by the 

entropy coding stage of a video coder.  
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2.3 Compression of Digital Videos 

Irrelevant and redundant information can be explored by using lossless and 

lossy compression. The intra-picture prediction, inter-picture prediction, and entropy 

coding all aim at reducing redundancy without causing any loss of information. 

Compression techniques that do not cause loss of information are classified as lossless 

compression techniques (i.e., the decompressed data is identical to the original).  

On the other hand, compression techniques that aim at discarding information that is 

not relevant or is less relevant to the human visual system are classified as lossy 

compression techniques (i.e., the image can be reconstructed with a visual fidelity 

relative to the compression parameters, but never identical to the original). 

Video compression can be lossless throughout the entire process, which can be 

particularly useful for applications that cannot tolerate any loss of sensitive information 

and the addition of compression artifacts. However, for the majority of consumer 

applications, lossy techniques are used, as these are capable of adding substantial 

gains to the resulting compression rate. 

2.4 Distortion Metrics 

Lossy video compression causes distortion, and this distortion must be 

measured. Visual quality, however, is inherently subjective and, therefore, it is difficult 

to obtain a completely accurate measurement of it. There are standardized 

methodologies for the assessment of subjective image quality including, general 

testing methods, the grading scales used during assessments, and the viewing 

conditions recommended for carrying out assessments, which are well described in 

Recommendation ITU-R BT.500-14 (ITU-T, 2019). Quality can also be measured 

objectively with metrics that compare pixels of the original and the reconstructed 

image. 

The most commonly used objective distortion metric is the Peak Signal-to-noise 

Ratio (PSNR). The PSNR, measured in decibels (dB), of a test image T of size M×N, 

when compared to the original image O, is described in eq. (1), where the dividend 

MAX is the maximum value possible for an unsigned sample (e.g., 255 for an 8-bit 

sample) and the divisor is the Mean Squared Error (MSE) function, described in  

eq. (2), which is also a distortion metric by itself. 
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To measure the distortion in smaller regions of an image, like when comparing 

a predicted block against the original in inter- and intra-picture prediction (known as 

block matching), simpler metrics are used, such as the MSE, the Sum of Absolute 

Differences (SAD) and the Sum of Squared Errors (SSE), respectively described in 

eqs. (2), (3), and (4). 

𝑆𝐴𝐷(𝑂, 𝑇) = ∑ ∑|𝑇𝑖,𝑗 − 𝑂𝑖,𝑗|
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2
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𝑀−1

𝑖=0

 (4) 

Another metric for perceptual visual quality is the Video Multi-method 

Assessment Fusion (VMAF) (NETFLIX INC, 2022a; LIU et al., 2013; LIN et al., 2014), 

which attempts to predict subjective quality by combining multiple objective quality 

metrics. According to Netflix Inc. (2022b), the basic rationale is that each elementary 

metric may have its strengths and weaknesses, and by fusing elementary metrics into 

a final metric using a machine-learning algorithm, in this case, the Support Vector 

Machine (SVM) regressor, the final metric could preserve the strengths of the individual 

metrics, and deliver a more accurate final score. 

However, the measurement of compression efficiency should not rely on 

distortion alone, but also on the resulting bit rate, that is, a Rate-distortion (RD) metric.  

A notable example of such a method is the Bjøntegaard Model (BJØNTEGAARD, 

2011). In this model, PSNR is the metric of choice for distortion, because of its 

simplicity, and also because it reasonably matches subjective opinion scores. 

In the scope of this thesis, the metric used to evaluate the proposed algorithms 

is the Bjøntegaard Delta Bit Rate (BD-BR), which reports the average bit rate difference 

in percent for two videos (e.g.: original versus compressed) considering the same 

PSNR. 
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2.5 Hybrid Block-based Video Encoder 

Most of the contemporary encoders are based on the following signal and data 

processing operations: (i) inter- and intra-frame prediction, (ii) de-correlating transform 

(T module), (iii) quantization (Q module), and (iv) entropy coding, as shown in  

Figure 2. A reconstruction loop (complete decoder) with inverse quantization  

(IQ module) and inverse transform (IT module) is also included because the coder 

must use only reference frames available to the decoders, so decoders can replicate 

identical predictions (SALDANHA, 2021). Additionally, an optional in-loop filtering 

module (not shown in Figure 2) can also be included to improve the subjective image 

quality of reconstructed frames. Hybrid block-based encoders apply the 

abovementioned operations after partitioning frames into smaller blocks and use both 

motion- and still-picture coding techniques (SULLIVAN; WIEGAND, 1998). 

 

Figure 2 Diagram of a typical hybrid block-based video coder. 

The following subsections describe the different stages of video compression 

shown in Figure 2, while briefly explaining the AV1 implementation of these stages. 

2.5.1 Frame Partitioning 

Before any signal processing operation can happen, in block-based video 

coding, a frame must be divided into several blocks of pixels of the maximum size 

supported by the codec. These blocks can then be further subdivided into smaller 

blocks during the prediction process. Each video codec defines a variable range of 

block sizes it can use. 
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In AV1, a frame is initially partitioned in Superblocks (SBs), which is the biggest 

block size supported (128×128 or 64×64 pixels). To deliver an optimal prediction for 

each SB, the encoder can further divide each SB using a 10-way partition tree 

structure, as illustrated in Figure 3. In the figure, partitions filled in blue are final, but all 

four subpartitions of the unfilled partition (SPLIT) can be recursively divided based on 

the same 10-way tree structure, down to 4×4 pixels, which is the smallest supported 

block size (RIVAZ; HAUGHTON, 2019). This way, the 24 block sizes supported in AV1, 

including symmetrical and rectangular sizes, are the ones contained in the following 

set: {4×4, 8×8, 16×16, 32×32, 64×64, 128×128, 4×8, 8×4, 8×16, 16×8, 16×32, 32×16, 

32×64, 64×32, 64×128, 128×64, 4×16, 16×4, 8×32, 32×8, 16×64, 64×16, 32×128 e 

128×32} (HAN et al., 2021). 

 

Figure 3 AV1 10-way block partitioning tree. The numbers inside each final subpartition (in blue) 
indicate the order these will be processed by the following stages (raster scan). The name of each 
partition mode is shown below blocks. 

Figure 4 shows an example of frame partitioning (BEBENITA, 2017), generated 

using the AOM Analyzer tool (XIPH.ORG FOUNDATION, 2022). In the figure, it can 

be observed that the variable block size structure gives the coder freedom to explore 

less detailed portions of the image with large block sizes (reducing the overhead of 

signaling multiple smaller blocks), and more detailed portions of the image with small 

block sizes (prioritizing visual quality). 
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Figure 4 Example of frame partitioning of the test sequence Crosswalk (Property of Netflix Inc. 
and licensed under CC BY-NC-ND 4.0). 

2.5.2 Prediction Stage 

In inter-picture prediction, or simply inter prediction, the translational motion of 

areas of the frame can be estimated by searching for similar blocks in a reference 

frame around its original position, and by taking the difference of the best match,  

in what is called the Motion Estimation (ME) algorithm of a motion-compensated 

prediction. The ME reduces the temporal redundancy of a frame, and results in blocks 

of residual information (error) and Motion Vectors (MV) that are used to describe the 

displacement of predicted blocks. For static parts of the scene, residual differences 

can be zero, with no error to be coded, whereas for parts of the scene with motion, a 

significant error can exist, which needs to be coded. 

The AV1 motion-compensated prediction supports all 24 block sizes and may 

use up to seven reference frames, with four being frames that precede the current 

frame in terms of display order, and three coming after. AV1 brings a variety of novel 

solutions when compared to older codecs, such as: (i) Affine Motion Compensation, 

which uses affine transformations to capture non-translational object movements (e.g., 

rotation, translation, and scaling); (ii) Compound Prediction, which linearly combines 

two predictions from different reference frames in a single one; and others. 

In intra-picture prediction, or simply intra prediction, spatial redundancy can be 

explored in the spatial domain by predicting entire blocks using reconstructed samples 
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of previously encoded spatial neighbor blocks from the same frame. This type of 

prediction usually applies filters to the reference samples to generate different kinds of 

directional and smooth textures. Just like in the inter prediction, the objective is to 

obtain a predicted block that results in the lowest residual information when compared 

to the original block. 

AV1 intra prediction supports the 19 block sizes that are equal to or smaller than 

64×64 samples. For all mentioned block sizes, the codec supports 56 directional 

prediction algorithms (modes) to explore spatial redundancies in directional textures 

(e.g., samples belonging to the same edge of an object tend to be similar), and also 

supports various non-directional prediction modes, such as: (i) DC, similar to the mode 

used in many older codecs; (ii) Smooth, Smooth Vertical, and Smooth Horizontal, 

inspired in the H.265/HEVC Planar mode and H.264/AVC Plane mode; (iii) Paeth, 

evolved from the VP9 True Motion mode; (iv) five different Recursive-based-filtering 

(RBF) modes, which attempt to break data dependency by further dividing the intra 

block into smaller 4×2 patches; and (v) Chroma from Luma (CFL) mode, which predicts 

chrominance samples based on the information of the luminance prediction 

(TRUDEAU; EGGE; BARR, 2018). Two modes particularly efficient for Screen Content 

Coding (SCC) are also available: the Intra Block Copy (LI et al., 2018) and Color 

Palette (GUO et al., 2014) modes. Chapter 3 gives an in-depth view of the AV1 intra 

prediction module, as it is the focus of this work. 

As mentioned above, the goal of both inter and intra predictions is to minimize 

the residual information, which can be coded much more effectively than the original 

visual data. Figure 5 shows an original luminance of the Akiyo test sequence (left),  

an example of AV1 intra prediction, restricted to the 8×8 block size to give a better 

visualization of block boundaries (middle); and the resulting residual information 

(prediction error) that must be coded (right). The figure demonstrates the low-energy 

nature of the residual information that can be obtained when the predictions are done 

effectively, where white and black areas are of high-energy (negative and positive 

differences), and gray areas are closer to zero energy. 
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Original Predicted Residual Information 

Figure 5 Left: Luminance frame of the test sequence Akiyo (Property of Stadium Inc.). Middle: 
Same frame predicted with 8×8 AV1 intra prediction modes. Right: Residual information obtained. 

Finally, it is important to mention that by using the side information that tells how 

a block was coded (i.e., intra mode, reference frame, motion vector, etc), a decoder 

can always replicate the same prediction done by the coder, and by adding it to the 

residual block, the reconstructed block is obtained. 

2.5.3 Transform Coding 

The transform coding is another stage that allows the removal of spatial 

redundancies in images, but in the frequency domain, as natural images tend to 

concentrate most of their energy in low-frequency coefficients (GHANBARI, 2011).  

The transform itself, however, does not result in compression, because the signal 

energy in the pixel domain is equal to the energy in the frequency domain. Although, 

in the frequency domain, coefficients with irrelevant magnitude can be quantized 

(resulting in zero) and high-frequency coefficients can be quantized to a higher degree 

for not being very important to the human visual system. For this reason, a transform 

kernel must also be efficient in separating components with minimal inter-dependence 

(decorrelation) (RICHARDSON, 2010). 

The Two-dimensional (2-D) Discrete Cosine Transform II (DCT-II), as defined 

in eq. (5), is a widely used transform in image and video compression. When applied 

to an image matrix X of size N×M, it results in a matrix Y of coefficients of the same 

size, where Y0,0 is the zero-frequency coefficient called DC, whereas the remaining 

coefficients are called AC coefficients. 

𝑌𝑥,𝑦 = ∑ ∑ 𝑋𝑖,𝑗 cos [
𝜋

𝑁
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Figure 6 Top: Input image. Bottom: Residual information of the same image after AV1 intra 
prediction. 

Figure 6 illustrates the advantage of applying the DCT-II to the low-energy 

residual information. At the top, an input image of artist James Brown of 256×256 pixels 

in size is shown, whereas, in the bottom, the residual information resulting from 

applying AV1 intra prediction to the same frame is shown. Two things can be observed: 

(i) the residual information can be represented with much smaller transform 

coefficients, and (ii) most big coefficients (bright area) are concentrated in the top-left 

(shown in logarithmic scale for better visualization). 

AV1 defines transform kernels for the 19 symmetrical and rectangular sizes 

equal to or smaller than 64×64. A rich set of 2-D transform kernels is defined for both 

inter and intra predicted blocks consisting of 16 combinations of one-dimensional  

(1-D) vertical and horizontal DCT, Asymmetrical Discrete Sine Transform (ADST), 

flipped ADST, and Identity Transform (IDTX) (HAN et al., 2021). The DCT is used for 

being a good low-complexity approximation of the optimal Karhunen-Loeve Transform 

(KLT). For the intra predicted blocks, which tend to concentrate higher residual energy 

on the bottom and/or right corners, the asymmetrical transforms ADST and flipped 

ADST are particularly effective (PARKER et al., 2016). The IDTX, when combined with 



38 

the other 1-D transforms, provides 1-D transforms that can be useful for dominant 

horizontal and vertical patterns in texture (HAN et al., 2021). Furthermore, a 2-D IDTX 

is equivalent to a transform skip, and it can be effective for certain patterns found in 

SCC (PARKER et al., 2016). 

2.5.4 Quantization 

Quantization is the process of mapping a signal with a range of values to a 

quantized signal with a reduced range of values and, therefore, is a lossy process.  

Examples of the quantizer and inverse quantizer functions for image compression are 

described in eq. (6) and eq. (7), where step is directly associated with a Quantization 

Parameter (QP). It can be observed that the lossy aspect of the quantizer function Q(Y) 

is a consequence of the fractional part of the division being discarded, thus the inverse 

quantizer function IQ(Y) is not capable of recovering the original pre-quantized value. 

The QP plays an important role in the RD control of a video coder, as higher QPs will 

result in a smaller, and hence more compressible range of transform coefficients, 

whereas smaller QPs will result in a higher range of coefficients that best match the 

pre-quantized values. 

𝑄(𝑌) = ⌊
𝑌

𝑠𝑡𝑒𝑝
⌋ (6) 

𝐼𝑄(𝑌) = 𝑌 × 𝑠𝑡𝑒𝑝 (7) 

The QPs in AV1 range between 0 and 255, and each QP has associated with it 

two different step values, a smaller one to be applied exclusively to the DC coefficient, 

and a larger one to be applied to the AC coefficients (RIVAZ; HAUGHTON, 2019). 

Additionally, AV1 supports 15 sets of quantization weighting matrices that can further 

scale the quantization step differently for each frequency coefficient (HAN et al., 2021), 

allowing for a better exploration of the human visual system. 

2.5.5 Entropy Coding 

The entropy coding processes matrices of quantized coefficients, which can be 

reordered to group the coefficients from the region with multiple zeros,  

and lateral data, such as motion vectors, prediction modes, and a variety of bitstream 

headers, to reduce their statistical redundancy. Variable-length coding (such as 

Huffman coding) and arithmetic coding are the common methods of entropy coding 
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used in video compression. Since efficient entropy coding depends on accurate symbol 

probability models (RICHARDSON, 2010), video standards further improved these 

algorithms to be context-based, using local spatial and/or temporal characteristics of 

the signal to estimate the probability of symbols being encoded. Notable examples of 

entropy coding algorithms are Context-adaptive Variable-length Coding (CAVLC) and 

Context-adaptive Binary Arithmetic Coding (CABAC), the latter being significantly more 

efficient at cost of requiring more processing power from both the encoder and 

decoder. 

AV1 uses a context-adaptive multi-symbol arithmetic coder, with integer 

symbols ranging from 2 to 14, and the probability model is updated per symbol coding. 

Specifically, for transform coefficient coding, AV1 allows the coefficient matrix to be 

reordered (mapped to a 1-D array) in the following scan orders: (i) column scan for 1-

D vertical transforms, (ii) row scan for 1-D horizontal transforms, and (iii) zig-zag scan 

starting at the DC coefficient and moving towards the opposite corner for 2-D 

transforms, including the 2-D IDTX (HAN et al., 2021). 

2.5.6 In-loop Filtering 

The encoding process inevitably adds artifacts in the compressed videos, 

mainly because of the block partitioning and the quantization. Typical coding artifacts 

are blocking, ringing, and blurring. These artifacts decrease the video subjective quality 

and compromise the quality of prediction references. Thus, all modern codecs allow 

the use of in-loop filtering to reduce these artifacts. 

AV1 supports three optional in-loop filters: the Deblocking Filter (DBF), the 

Constrained Directional Enhancement Filter (CDEF) (MIDTSKOGEN; VALIN, 2018), 

and the Loop Restoration Filter (LRF) (MUKHERJEE et al., 2017). The improved 

filtered frames are used as reference frames for the prediction of subsequent frames. 

2.5.7 Mode Decision 

The RD efficiency of the compression is based on a complex interaction 

between various possibilities of coding parameters, like block sizes, prediction modes, 

transform types, quantization parameters, and others. Therefore, one of the biggest 

challenges in video compression is the control of an encoder. 
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The control of the encoder, or its mode decision, uses the Rate-distortion 

Optimization (RDO) technique for taking decisions of “What part of the image should 

be encoded using what tool?” by minimizing the distortion D, where the number of bits 

needed R is subject to a bit rate constraint Ri, as defined in eq. (8). The optimization 

task can be solved using Lagrangian optimization, where D is weighted against R,  

and the Lagrangian rate-distortion J is minimized for a particular value of the Lagrange 

multiplier λ, as read in eq. (9). Each solution to eq. (9) for a given value of the Lagrange 

multiplier λ corresponds to an optimal solution to eq. (8) (SULLIVAN; WIEGAND, 

1998). 

min{𝐷} , where 𝑅 <  𝑅𝑖 (8) 

min{𝐽} , where 𝐽 = 𝐷 + 𝜆𝑅 (9) 

As there are no simple models for estimating the RD cost J that will result from 

a given combination of coding parameters for a block, the RDO technique in a video 

encoder must pass the block through all the coding loop to obtain the real RD cost for 

that combination of parameters (CORRÊA et al., 2016). The RDO is optimal for mode 

decision, but the number of possible coding parameter combinations is so large that 

testing all possibilities is an unfeasible task. In practical applications, different modules 

of the encoder often implement suboptimal local mode decisions, known as fast mode 

decision algorithms, to reduce the set of parameters sent to the RDO for the more 

expensive evaluation. 
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3 AV1 INTRA-PICTURE PREDICTION 

This section gives an in-depth view of the AV1 intra prediction, which is the focus 

of the optimizations proposed in this thesis. 

The AV1 intra prediction process is invoked for intra blocks to predict a part of 

the block corresponding to a transform block. When the transform size used is smaller 

than the intra block itself, this process is invoked multiple times within the intra block, 

in raster order, using the same intra mode (RIVAZ; HAUGHTON, 2018). 

3.1 Reference Samples 

To predict a block, the intra prediction modes use reference samples from 

previously reconstructed blocks located to the left and above the current block.  

The number of reference samples needed from each side is the sum of the width and 

height of the block to be predicted, plus one sample. 

 

Figure 7 Block of size 8×4 to be predicted using reference arrays of size 13. 

Figure 7 illustrates this concept for a block of size 8×4 (white squares). From 

this point forward, reconstructed samples in the current frame will be referred to as a 

2-D array called CurrFrame, the current block to be predicted will be referred to as a 

2-D array called Pred, and the reference samples above and to the left of Pred will be 

referred as two 1-D arrays of samples called AboveRow and LeftCol, respectively. 

Additionally, the width and height of Pred will be referred to as W and H. 
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Since the reference samples must come from already reconstructed transform 

blocks, some of these may not be available and must be somehow replaced. This 

happens, for example, when the coder has to predict a block located at the left edge 

of the frame, which does not have any reference sample to its left. At the beginning of 

the prediction process, for a given block, both AboveRow[−1] and LeftCol[−1] are set 

according to Table 2, while the remaining positions of AboveRow and LeftCol are set 

according to Table 3 and Table 4, respectively. In these tables, variables X and Y point 

to the top-left position of Pred within CurrFrame. 

Table 2 Top-left reference sample derivation 

Above 
Available? 

Left 
Available? 

Procedure for AboveRow[−1] and LeftCol[−1] 

True True AboveRow[−1] and LeftCol[−1] are set to CurrFrame[Y−1][X−1]. 

True False AboveRow[−1] and LeftCol[−1] are set to CurrFrame[Y−1][X]. 

False True AboveRow[−1] and LeftCol[−1] are set to CurrFrame[Y][X−1]. 

False False 
AboveRow[−1] and LeftCol[−1] are set to 128, 512 or 2048, depending on the bit 
depth (8, 10 or 12). 

Table 3 Above reference samples derivation 

Above 
Available? 

Left 
Available? 

Above 
Right 

Available? 
Procedure for AboveRow[pos] for pos = 0...w+h−1 

True True True 
If pos<2*W, then AboveRow[pos] is set to 
CurrFrame[Y−1][X+pos]. 
Otherwise, AboveRow[pos] is set to CurrFrame[Y−1][X+2*W−1]. 

True True False 
If pos<W, then AboveRow[pos] is set to CurrFrame[Y−1][X+pos]. 
Otherwise, AboveRow[pos] is set to CurrFrame[Y−1][X+W−1]. 

False True - AboveRow[pos] is set to CurrFrame[Y][X−1]. 

False False - 
AboveRow[pos] is set to 127, 511 or 2047, depending on the bit 
depth (8, 10 or 12). 

Table 4 Left reference samples derivation 

Above 
Available? 

Left 
Available? 

Below Left 
Available? 

Procedure for LeftCol[pos] for pos = 0...w+h−1 

True True True 
If pos<2*H, then LeftCol[pos] is set to CurrFrame[Y+pos][X−pos]. 
Otherwise, LeftCol[pos] is set to CurrFrame[Y+2*H−1][X−1]. 

True True False 
If pos<H, then LeftCol[pos] is set to CurrFrame[Y+pos][X−1]. 
Otherwise, LeftCol[pos] is set to CurrFrame[Y+H−1][X−1]. 

True False - LeftCol[pos] is set to CurrFrame[Y−1][X]. 

False False - 
LeftCol[pos] is set to 129, 513 or 2049, depending on the bit 
depth (8, 10 or 12). 

After both arrays of reference samples are constructed, the prediction can be 

applied according to any of the modes described in the next section. 
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3.2 Intra Prediction Modes 

As mentioned briefly in Section 2.5.2, AV1 supports 56 directional prediction 

modes to exploit more varieties of spatial redundancy in directional textures, and 11 

non-directional modes to explore the spatial correlation of samples in smooth surfaces 

and the coherence of luminance and chrominance planes. It also supports two modes 

developed particularly for SCC. The intra prediction can be used for blocks of 64×64 

samples or smaller, down to the minimum size of 4×4, with a few restrictions that will 

be highlighted in the following sections. 

3.2.1 DC Mode 

The DC prediction mode appears in many other video codecs. The AV1 version, 

however, is based on the DC mode used in VP9 (GRANGE; RIVAZ; HUNT, 2016), 

which considers the availability of the reference samples. Although the construction of 

the reference arrays already deals with the availability issue, the DC mode uses a 

different method. 

As described in Figure 8, when both reference arrays are available, the DC 

mode produces a solid surface, that is, every sample is the arithmetic mean of the 

reference samples used. However, if only one of the reference arrays is available, then 

only the available array will be used in the arithmetic mean. Lastly, if none of the array 

references are available, the predicted sample is set according to the bit depth. 
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dc = 0 

FOR i in 0 to H − 1: 

  dc = dc + LeftCol[i] 

END FOR 

FOR j in 0 to W − 1: 

  dc = dc + AboveRow[j] 

END FOR 

dc = dc + (W + H) / 2 

dc = dc / (W + H) 

FOR i in 0 to H − 1: 

  FOR j in 0 to W − 1: 

    Pred[i][j] = dc 

  END FOR 

END FOR 

Figure 8 DC algorithm for when all reference samples are available. 

Figure 9 illustrates four examples of DC predictions for a luminance block of 

size 4×4, one for each DC case. In the figure, the omitted reference samples are not 

used by the algorithm. 
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Figure 9 Example of DC predictions for a block of size 4×4 when (a) all samples are available, 
(b) only left samples are available, (c) only top samples are available, and (d) no samples are available. 

3.2.2 Paeth Mode 

The Paeth prediction mode is a novelty of the AV1, inspired by the TM mode 

from VP9 (MUKHERJEE et al., 2013). This mode generates a fairly smooth surface by 

using only exact copies of reference samples. 

As described in Figure 10, for each predicted sample, a comparison is done 

among the top-left, vertically aligned, and horizontally aligned reference samples. The 

algorithm then selects as predicted sample the reference sample that will result in a 

smoother gradient. Figure 11 illustrates an example of Paeth prediction for an 8×4 

luminance block. 
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FOR i in 0 to H − 1: 

  FOR j in 0 to W − 1: 

    base = LeftCol[i] + AboveRow[j] – AboveRow[−1] 

    pLeft    = ABS(base − LeftCol[i]) 

    pTop     = ABS(base − AboveRow[j]) 

    pTopLeft = ABS(base − AboveRow[−1]) 

 

    IF pLeft <= pTop AND pLeft <= pTopLeft: 

      Pred[i][j] = LeftCol[i] 

    ELSE IF pTop <= pTopLeft: 

      Pred[i][j] = AboveRow[j] 

    ELSE 

      Pred[i][j] = AboveRow[-1] 

    END IF 

  END FOR 

END FOR 

Figure 10 Paeth algorithm. 
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Figure 11 Example of a Paeth prediction. 

3.2.3 Smooth, Smooth Vertical and Smooth Horizontal Modes 

The Smooth family of prediction modes uses linear interpolation, with a 

precision of 1/256 of a sample, to generate very smooth surfaces. These modes were 

inspired by the Plane mode from H.264/AVC (WIEGAND et al., 2003) and the Planar 

mode from H.265/HEVC (SULLIVAN et al., 2012). 

As described in Figure 12 and Figure 13, respectively, the Smooth Vertical 

mode interpolates samples using the LeftCol[H−1] sample and various samples from 

the AboveRow array, and the Smooth Horizontal mode interpolates samples using the 

AboveRow[W−1] samples and various samples from LeftCol. Each sample predicted 

by the generic mode is equivalent to the arithmetic mean of the samples predicted by 

the vertical and horizontal modes. In these algorithms, the SmoothCoefficients array 

stores a set of constants, which vary in size according to W (for the horizontal mode) 

or H (for the vertical mode), as listed in Table 5. Figure 9 illustrates examples of 

predictions using the Smooth family of modes. 
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FOR i in 0 to H − 1: 

  FOR j in 0 to W − 1: 

    a =  SmoothCoefficients[i] * AboveRow[j] 

    b = (256 − SmoothCoefficients[i]) * LeftCol[H−1] 

    Pred[i][j] = (a + b + 128) / 256 

  END FOR 

END FOR 

Figure 12 Smooth Vertical algorithm. 
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FOR i in 0 to H − 1: 

  FOR j in 0 to W − 1: 

    a =  SmoothCoefficients[j] * LeftCol[i] 

    b = (256 − SmoothCoefficients[j]) * AboveRow[W−1] 

    Pred[i][j] = (a + b + 128) / 256 

  END FOR 

END FOR 

Figure 13 Smooth Horizontal algorithm. 
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Table 5 Contents of the SmoothCoefficients array according to each size 

Size Coefficient Set 

4 {255, 149, 85, 64} 

8 {255, 197, 146, 105, 73, 50, 37, 32} 

16 {255, 225, 196, 170, 145, 123, 102, 84, 68, 54, 43, 33, 26, 20, 17, 16} 

32 
{255, 240, 225, 210, 196, 182, 169, 157, 145, 133, 122, 111, 101, 92, 83, 74, 66, 59, 52, 
45, 39, 34, 29, 25, 21, 17, 14, 12, 10, 9, 8, 8} 

64 
{255, 248, 240, 233, 225, 218, 210, 203, 196, 189, 182, 176, 169, 163, 156, 150, 144, 
138, 133, 127, 121, 116, 111, 106, 101, 96, 91, 86, 82, 77, 73, 69, 65, 61, 57, 54, 50, 47, 
44, 41, 38, 35, 32, 29, 27, 25, 22, 20, 18, 16, 15, 13, 12, 10, 9, 8, 7, 6, 6, 5, 5, 4, 4, 4} 

 

Figure 14 Example of predictions using the Smooth mode (left), Smooth Vertical mode (middle), 
and Smooth Horizontal mode (right). 

3.2.4 Recursive-based-filtering (RBF) Modes 

This group of modes is a novelty of the AV1 codec, available only for luminance 

blocks of size 32×32 or smaller and designed to mitigate the decaying spatial 

correlation as the distance between a predicted sample and the reference sample 

arrays increases. 

The RBF algorithm divides the block Pred, regardless of its size, into smaller 

patches of size 4×2, and predicts these in raster order within Pred. The prediction of a 

single patch is done with a set of eight 7-tap filters, with different coefficients used for 

each one of the eight samples inside the patch. There are a total of five RBF modes, 

which share the same algorithm, but differ in the coefficients that the filters use. 

Each patch uses as reference samples the seven adjacent samples. Therefore, 

some patches may use reference samples from the AboveRow (if it belongs to the first 

row of patches) and/or LeftCol (if it belongs to the first column of patches), or use 

samples from previously predicted 4×2 patches. Except for the first patch, every patch 

depends on the predicted samples from the ones predicted before, thus making it a 

recursive process with a considerable degree of data dependency. 
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The algorithm used in the prediction of a 4×2 patch is described in Figure 15, 

where: 

• B is a 1-D array that stores predicted samples in raster order within the 4×2 

patch; 

• L is a 1-D array containing the reference samples, where L[0] is the reference 

located above and to the left of the patch, L[1] to L[4] are references located 

above, and L[5] and L[6] are references located at the left; 

• RbfMode identifies the RBF mode (from 0 to 4); 

• IntraFilterTaps is a 3-D constant array of coefficients, as listed in Table 6. 

Figure 16 illustrates the four stages of an RBF prediction of an 8×4 block, 

highlighting in blue the reference samples used for the prediction of each 4×2 patch. 

1 

2 

3 

4 

5 

6 

7 

FOR i in 0 to 7: 

  aux = 0 

  FOR j in 0 to 6: 

    aux = aux + FilterCoefficients[RbfMode][i][j] * L[j] 

  END FOR 

  B[i] = (aux + 8) / 16 

END FOR 

Figure 15 RBF algorithm for a single 4×2 patch. 

 

Figure 16 Example of the four stages of an RBF prediction of an 8×4 block. 
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Table 6 Filter coefficients stored in the IntraFilterTaps array 

RbfMode B Coefficients 

0 

0 {−6, 10, 0, 0, 0, 12, 0} 

1 {−5, 2, 10, 0, 0, 9, 0} 

2 {−3, 1, 1, 10, 0, 7, 0} 

3 {−3, 1, 1, 2, 10, 5, 0} 

4 {−4, 6, 0, 0, 0, 2, 12} 

5 {−3, 2, 6, 0, 0, 2, 9} 

6 {−3, 2, 2, 6, 0, 2, 7} 

7 {−3, 1, 2, 2, 6, 3, 5} 

1 

0 {−10, 16, 0, 0, 0, 10, 0} 

1 {−6, 0, 16, 0, 0, 6, 0} 

2 {−4, 0, 0, 16, 0, 4, 0} 

3 {−2, 0, 0, 0, 16, 2, 0} 

4 {−10, 16, 0, 0, 0, 0, 10} 

5 {−6, 0, 16, 0, 0, 0, 6} 

6 {−4, 0, 0, 16, 0, 0, 4} 

7 {−2, 0, 0, 0, 16, 0, 2} 

2 

0 {−8, 8, 0, 0, 0, 16, 0} 

1 {−8, 0, 8, 0, 0, 16, 0} 

2 {−8, 0, 0, 8, 0, 16, 0} 

3 {−8, 0, 0, 0, 8, 16, 0} 

4 {−4, 4, 0, 0, 0, 0, 16} 

5 {−4, 0, 4, 0, 0, 0, 16} 

6 {−4, 0, 0, 4, 0, 0, 16} 

7 {−4, 0, 0, 0, 4, 0, 16} 

3 

0 {−2, 8, 0, 0, 0, 10, 0} 

1 {−1, 3, 8, 0, 0, 6, 0} 

2 {−1, 2, 3, 8, 0, 4, 0} 

3 {0, 1, 2, 3, 8, 2, 0} 

4 {−1, 4, 0, 0, 0, 3, 10} 

5 {−1, 3, 4, 0, 0, 4, 6} 

6 {−1, 2, 3, 4, 0, 4, 4} 

7 {−1, 2, 2, 3, 4, 3, 3} 

4 

0 {−12, 14, 0, 0, 0, 14, 0} 

1 {−10, 0, 14, 0, 0, 12, 0} 

2 {−9, 0, 0, 14, 0, 11, 0} 

3 {−8, 0, 0, 0, 14, 10, 0} 

4 {−10, 12, 0, 0, 0, 0, 14} 

5 {−9, 1, 12, 0, 0, 0, 12} 

6 {−8, 0, 0, 12, 0, 1, 11} 

7 {−7, 0, 0, 1, 12, 1, 9} 
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3.2.5 Chroma-from-Luma Mode 

The AV1 CFL mode (TRUDEAU; EGGE; BARR, 2018), allowed only for 

chrominance blocks, is inspired by the proposals made by Chen et al. (2011) and  

Pu et al. (2013). 

The stages of the CFL algorithm, as illustrated in Figure 17, are the following: 

1. The reconstructed luminance block is subsampled to match the size of the 

chrominance block (if needed); 

2. The arithmetic mean of all samples from the luminance block is calculated, 

and subtracted from each sample to generate a matrix called AC 

contributions; 

3. Two matrices of scaled AC contributions are generated, one for each 

chrominance plane, by multiplying the AC contributions by the scaling 

variables CflAlphaU and CflAlphaV, to which the coder can assign values 

from 0 to 2 in steps of 0.125. 

4. Finally, a regular DC prediction is done for each chrominance block, which 

are then added to the associated scaled AC contributions, to generate the 

final CFL prediction for both chrominance blocks. 

 

Figure 17 Stages of the CFL algorithm. 

In this mode, the encoder can explore 17 possibilities for each of the two scaling 

variables. Considering that applying a scaling coefficient to the AC contribution 

requires one multiplication and one sum per sample, plus a way of testing the resulting 

predicted block for distortion, then the CFL mode can be considered significantly more 

complex than most modes if the coder is given the freedom of testing multiple 

possibilities. 
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3.2.6 Directional Prediction Modes 

In AV1, there are eight directional prediction modes, called nominal modes, that 

were directly inherited from the VP9 (GRANGE; RIVAZ; HUNT, 2016). These modes 

are particularly efficient for predicting blocks that are located at heterogeneous parts 

of the image, e.g., where the edges of objects are located. 

From each nominal angle, six new modes are defined with small variations of 

−9, −6, −3, +3, +6, and +9 degrees (known as Intra Angle Delta), resulting in a total of 

56 directional modes. For blocks smaller than 8×8, however, only the eight nominal 

modes can be used. 

Table 7 lists the eight nominal angles and the derived angles associated with 

these. Figure 18 illustrates all the angles supported. 

Table 7 All the directional modes supported by AV1 and their associated angles 

Nominal Mode Nominal and Derived Angles 

D45_PRED 36 39 42 45 48 51 54 

D67_PRED 58 61 64 67 70 73 76 

V_PRED 81 84 87 90 93 96 99 

D113_PRED 104 107 110 113 116 119 121 

D135_PRED 126 129 132 135 138 141 144 

D157_PRED 148 151 154 157 160 163 166 

H_PRED 171 174 177 180 183 186 189 

D203_PRED 194 197 200 203 206 209 211 

 

Figure 18 Nominal angles (black) and derived angles (blue) supported in AV1. 
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FOR i in 0 to H−1: 

  FOR j in 0 to W−1: 

 

    IF pAngle < 90: 

      idx     = (i + 1) * dx 

      base    = (idx >> (6 − upsampleAbove)) + (j << upsampleAbove) 

      shift   = (idx << upsampleAbove) >> 1) & 31 

      maxBase = (W+H−1) << upsampleAbove 

      IF base < maxBase: 

        Pred[i][j] = AboveRow[base] * (32 – shift) + AboveRow[base+1] * shift 

        Pred[i][j] = (Pred[i][j] + 16) / 32 

      ELSE: 

        Pred[i][j] = AboveRow[maxBase] 

      END IF 

 

    ELSE IF pAngle > 90 AND pAngle < 180: 

      idx  = (j << 6) – (i + 1) * dx 

      base = idx >> (6 – upsampleAbove) 

      IF base >= –(1 << upsampleAbove): 

        shift = ((idx << upsampleAbove) >> 1) & 31 

        Pred[i][j] = AboveRow[base] * (32 – shift) + AboveRow[base + 1] * shift 

      ELSE: 

        idx   = (i << 6) – (j + 1) * dy 

        base  = idx >> (6 – upsampleLeft) 

        shift = ((idx << upsampleLeft) >> 1) & 31 

        Pred[i][j] = LeftCol[base] * (32 – shift) + LeftCol[base + 1] * shift 

      END IF 

      Pred[i][j] = (Pred[i][j] + 16) / 32 

 

    ELSE IF pAngle > 180: 

      idx     = (j + 1) * dy 

      base    = (idx >> (6 − upsampleLeft)) + (i << upsampleLeft) 

      shift   = (idx << upsampleLeft) >> 1) & 31 

      Pred[i][j] = LeftCol[base] * (32 – shift) + LeftCol[base + 1] * shift 

      Pred[i][j] = (Pred[i][j] + 16) / 32 

 

    ELSE IF pAngle == 90: 

      Pred[i][j] = AboveRow[j] 

 

    ELSE IF pAngle == 180: 

      Pred[i][j] = LeftCol[i] 

    END IF 

 

  END FOR 

END FOR 

Figure 19 Directional prediction algorithm for any prediction angle. 

As described in Figure 19, AV1 uses a universal directional algorithm that links 

each predicted sample to a fractional position in the AboveRow or LeftCol arrays and 

generates the predicted sample using bilinear interpolation with a precision of 1/32 of 

a sample. In this algorithm: (i) the variables upsampleAbove and upsampleLeft 

indicate, respectively, if the AboveRow and LeftCol arrays were upscaled to twice their 

original size by an optional filtering process; (ii) the variable pAngle refers to the angle 

associated with the directional mode being processed; and (iii) the dx and dy variables 
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are partially calculated based in eq. (10) and eq. (11), respectively, and then translated 

as listed in Table 8. 

𝑟𝑒𝑓𝐴𝑛𝑔𝑙𝑒𝑑𝑥 = {
𝑝𝐴𝑛𝑔𝑙𝑒, 𝑝𝐴𝑛𝑔𝑙𝑒 < 90

180 − 𝑝𝐴𝑛𝑔𝑙𝑒, 90 < 𝑝𝐴𝑛𝑔𝑙𝑒 < 180
 (10) 

𝑟𝑒𝑓𝐴𝑛𝑔𝑙𝑒𝑑𝑦 = {
𝑝𝐴𝑛𝑔𝑙𝑒 − 90, 90 < 𝑝𝐴𝑛𝑔𝑙𝑒 < 180
270 − 𝑝𝐴𝑛𝑔𝑙𝑒, 180 < 𝑝𝐴𝑛𝑔𝑙𝑒

 (11) 

Table 8 Possible values for the dx and dy variables in the directional prediction 

refAngle dx or dy 

3 1023 

6 547 

9 372 

14 273 

17 215 

20 178 

23 151 

26 132 

29 116 

32 102 

36 90 

39 80 

42 71 

45 64 

48 57 

51 51 

54 45 

58 40 

61 35 

64 31 

67 27 

70 23 

73 19 

76 15 

81 11 

84 7 

87 3 

 

If the optional upscaling (mentioned above) and smoothing filtering tool is 

activated for the coding of a sequence, the reference sample arrays can be pre-

processed in the scope of the directional prediction modes. A wide set of conditions 

must be met for determining if a specific type of filter will be used or not.  

These conditions are briefly explained below, and for a more detailed description, 

please refer to Rivaz and Haughton (2018). 

The smoothing filtering process may apply a 3-tap filter to AboveRow[−1] and 

LeftCol[−1], depending on the values of pAngle, W, and H. It may also apply a 5-tap 

filter on the remaining samples of AboveRow and LeftCol, depending if the reference 
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samples stored in these arrays were originally available (see Section 3.1). There are 

three different sets of weights (filter strengths) for the 5-tap filter, the right one is 

selected based on values of pAngle, W, H, and if the blocks located above and to the 

left of Pred were previously predicted using one of the three Smooth modes. 

The upscaling process for AboveRow can only happen for angles from 93 to 

129 degrees inclusive, and for LeftCol only for angles from 183 to 211 inclusive. For 

both AboveRow and LeftCol, the upscaling can only happen if the sum of W and H is 

less than or equal to 16, or 8 if one of the blocks located above and to the left of Pred 

were previously predicted using one of the three Smooth modes. When invoked, the 

upscaling process doubles the size of one or both arrays of reference samples, filling 

each position between the original reference samples with a half-sample interpolated 

by a 4-tap filter. 

Figure 20 illustrates the directional prediction of the eight nominal modes for a 

4×4 block. In this figure, the hypothetical reference samples, common to all modes, 

are shown at the top. 

 

Figure 20 Example of predictions using the nominal directional modes. 

31 31 31 31

31 31 31 31

31 31 31 31

31 31 31 31

V_PRED

63 63 63 63

63 63 63 63

63 63 63 63

63 63 63 63

H_PRED

31 31 31 127

31 31 127 127

31 127 127 127

127 127 127 127

D45_PRED

127 31 31 31

63 127 31 31

63 63 127 31

63 63 63 127

D135_PRED

73 31 31 31

112 31 31 31

63 58 31 31

63 97 31 31

D113_PRED

63 63 67 31

63 63 63 63

63 63 63 63

63 63 63 63

D157_PRED

63 63 63 63

63 63 63 63

63 63 47 20

37 10 0 0

D203_PRED

31 31 31 70

31 31 31 112

31 31 55 127

31 31 97 127

D67_PRED

31 31 31 31

63

63

63

63

127

0

0

0

0

127 127 127 127

Pred



54 

3.2.7 Screen Content Prediction Modes 

Xu and Liu (2022) define screen content as video content not captured by 

cameras, such as computer-generated text, graphics, and animation. AV1 supports 

two different prediction modes for SCC: The Color Palette mode and the Intra Block 

Copy mode. 

The Color Palette prediction mode is effective when blocks can be approximated 

by a small number of unique colors. This mode is allowed only for blocks of size 8×8 

or larger. The bitstream structure requires an array representing a color palette of two 

to eight colors and, also, a structure map, which is a 2-D array filled with the indexes 

of the colors (according to the palette) to be used in the prediction. The encoder can 

explore different sizes of palettes and different colors to optimize the resulting RD cost, 

making this mode more complex than most of the others, depending on the strategy 

adopted by the encoder. Figure 21 illustrates an 8×8 block predicted with a palette of 

five colors. 

 

Figure 21 Example of a prediction using the Color Palette mode for an 8×8 block. 

The Intra Block Copy mode allows the intra coder to refer back to previously 

coded samples in the same frame in the same way the inter-picture prediction refers 

back to previously coded samples in previously coded frames. It is very efficient in 

frames where many repeated textures and patterns are present. The location of the 

block used as reference is specified by a displacement vector in a way similar to motion 

vectors in motion compensation. Displacement vectors are limited to integer values for 

the luminance plane and may be fractional for chrominance planes, where bilinear 

filtering is used for interpolation. This mode is only allowed for intra-only frames, where 

conventional inter-picture coding cannot happen. 
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3.3 Compound Inter-intra Prediction 

In AV1, the encoder is allowed to combine an intra predicted block with an inter 

predicted block to form a compound prediction. The intra prediction modes allowed are 

DC, Smooth, Directional Vertical, and Smooth Vertical, whereas the only inter 

prediction allowed is translational. 

There are two forms of compound inter-intra prediction, one using wedge masks 

to split the block into two sections along with various oblique angles, and another using 

mode-specific masks. The use of masks is as defined in eq (12), where PIntra and 

PInter are respectively intra and inter predicted blocks, M is a mask in the form of a 

matrix with values in the [0, 1] range, and C is the resulting compound predicted block. 

𝐶𝑥,𝑦 = 𝑀𝑥,𝑦 × 𝑃𝐼𝑛𝑡𝑟𝑎𝑥,𝑦 + (1 −𝑀𝑥,𝑦) × 𝑃𝐼𝑛𝑡𝑒𝑟𝑥,𝑦 (12) 

Figure 22 illustrates the 16 wedge masks supported. In each mask, most of the 

Mx,y values are either 0 or 1, except near the transition edge, where there is a gradual 

change, with 0.5 values at the actual edge. 

 

Figure 22 Compound inter-intra prediction wedge masks. 

Figure 23 (HAN et al., 2021) illustrates the mode-specific masks. In this figure, 

it can be observed that for the Directional Vertical, Directional Horizontal, and Smooth 

modes, the mask weights are higher (i.e., prioritize the intra sample instead of the inter) 

for positions that are closer to the reference samples used by the mode in question. 

As the distance from the reference samples increase, the accuracy of the intra 

prediction decreases, and the mask weights prioritize the inter predicted samples 

instead. 



56 

 

Figure 23 Compound inter-intra prediction mode-specific masks. 

As described above, AV1 supports numerous possible compound inter-intra 

prediction. Therefore, an encoder that evaluates every possibility in the RDO loop may 

achieve satisfactory compression efficiency, at cost of a significant complexity added 

to the prediction of a single block. 
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4 RELATED WORKS 

Firstly, this chapter presents a review of the related works that propose system-

level solutions for computational effort reduction in an AV1 encoder and works that 

propose dedicated hardware designs for modules of an AV1 encoder and decoder. 

Works that were published as part of this Ph.D. project were also included in the 

discussion due to the small number of related works found in the literature. Finally, this 

chapter presents and discusses research opportunities that are aligned with the thesis 

of this Ph.D. project. 

4.1 AV1-related Algorithmic Optimization 

Most of the published papers that propose ways of reducing the complexity in 

the current-generation encoders, such as AV1, address the topic of block partitioning. 

Optimizations in this area generally consist of early termination of the block partitioning 

exploration, thus completely avoiding the cost of processing partitions from deeper 

levels of a tree branch. 

A common kind of optimization is to reduce the coding search space by 

exploiting certain features of a codec based on previous observations. However, 

different methods based on neural networks also exist. 

Since the release of the AV1 bitstream specification, a few works have been 

published covering heuristic-based and machine-learning solutions for the block 

partitioning stage, intra prediction stage, and inter prediction stage of the AV1 encoder. 

It is important to mention that system-level solutions for different stages of the encoder 

can and should be used together to allow for better results. Table 9 lists all these works, 

and the following paragraphs present them with further details. 
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Table 9 Summary of AV1-related algorithmic optimization 

Work Stage 
Software 
Version 

Time Saving 
(%) 

BD-BR  
(%) 

Chiang 
et al. (2019) 

Block Partitioning 
(Enc.) 

- 64.14 0.61 

Chen 
et al. (2019) 

Block Partitioning 
(Enc.) 

1.0.0 35.7 0.61 

Guo 
et al. (2018a) 

Block Partitioning 
(Enc.) 

- 33.4 0.14 

Guo 
et al. (2018b) 

Block Partitioning 
(Enc.) 

- 34.7 2.12 

Kim 
et al. (2019) 

Inter (Enc.) 1.0.0 57.7 1.59 

Jeong 
et al. (2019a) 

Intra (Enc.) - 8.67 0.04 

Jeong 
et al. (2019b) 

Intra (Enc.) - 15.86 0.44 

Corrêa 
et al. (2022a) * 

Intra (Enc.) 2.0.0 15.36 0.60 

Corrêa 
et al. (2022b) * 

Intra (Enc.) 2.0.0 22.56 1.26 

* Works developed as part this Ph.D. project. 

Chiang, Han, and Xu (2019) propose a two-pass method for evaluating the AV1 

block partitioning tree of an SB: (i) the first pass uses a binary tree that allows only the 

NONE and SPLIT partition modes, instead of the usual 10-way partition tree (see 

Figure 3), which is used only to estimate the probable depth of the tree branches, and 

(ii) the second pass tests all others partition modes (except the SPLIT), on tree nodes 

that were selected as NONE in the first pass. Each partition tested usually needs to go 

through the exhaustive RDO process, but the authors also propose a two-pass method 

for evaluating the RD cost of each partition, which consists of a simplified RD 

evaluation of the residual information of each prediction mode in the first pass, and the 

usual RDO evaluation for a subset of the best candidates selected in the first pass. 

Chen et al. (2019) propose a conditional Bayesian inference model to perform 

early termination in the AV1 block partitioning tree exploration, based on how the same 

input was previously encoded by an HEVC encoder. Although the AV1 specifies a 

wider set of block sizes than HEVC, the authors also propose a prior probability 

estimation for the depth of AV1 partition trees that can be updated during the encoding. 

Likewise, Guo et al. (2018a) also propose a Bayesian approach for early 

termination of the AV1 block partitioning tree exploration, but in the context of multi-

rate video encoding, where the encoding of a video sequence is done by a reference 

instance of the encoder, while N other instances encode the same input 

simultaneously, each consulting the reference instance to accelerate their own RD 



59 

decisions. In this work, however, the authors wrongly affirmed that in AV1 superblocks 

start at the size of 64×64 and that blocks can only be divided into four or two parts. 

Guo, Han, and Wen (2018b) propose an early termination scheme for the AV1 

block partitioning tree exploration, in the context of multiple resolutions encoding.  

In this solution, high-resolution encoding is accelerated by referring to decisions made 

in low-resolution encoding. In this work, however, the authors once again wrongly 

affirmed that the AV1 block partitioning is based on a 4-way partition tree. 

Kim et al. (2019) propose a machine learning-based solution to accelerate the 

AV1 inter prediction stage. The authors observed that not all video sequences benefit 

from compound prediction modes. Therefore, in this solution, a decision tree trained 

based on seven features extracted while encoding each block is used to decide 

whether to skip compound prediction modes or not. 

Jeong, Gankhuyag, and Kim (2019a) propose an optimization to the reference 

software mode decision by adding an adaptive margin for early termination based on 

the accuracy of the mode decision when compared to the RDO. 

Jeong, Gankhuyag, and Kim (2019b) propose a fast mode decision applied to 

blocks of chrominance samples only, based on how the same block of luminance was 

coded. 

Corrêa et al. (2022a) propose a mode-adaptive distortion metric subsampling 

technique to reduce the cost of the SAD/SSE operations of the intra prediction stage, 

allowing for faster encoding times on software encoders and for lower area and lower 

power dissipation on hardware encoders. This work is part of this Ph.D. project and is 

further described in Chapter 5. 

Corrêa et al. (2022b) propose a fast decision algorithm for the AV1 intra 

prediction, inspired by the direction detection algorithm used on the CDEF of the same 

codec. The main objective is to reduce the number of intra candidates with a low-cost 

heuristic, thus allowing a faster prediction time in software and also allowing a low-area 

and low-power intra prediction hardware design. This work is part of this Ph.D. project 

and is also further described in Chapter 5. 

4.2 AV1-related Hardware Designs 

Since the release of AV1, several hardware-related works have been published 

covering three areas: (i) intra-frame prediction, (ii) inter-frame prediction, (iii) in-loop 

filtering, and (iv) entropy coding. Most of these works were developed in the same 
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research group in which this project was carried out. It is important to mention that 

some of these works target the encoder, whereas others target the decoder, and the 

ones that target the former tend to be more complex due to the decisions that an 

encoder must take. Table 10 summarizes all these works, whereas the next sections 

present them in further detail. 

Table 10 Summary of AV1-related hardware designs 

Work Stage Technology 
Gate Count 
(2-NAND) 

Freq. 
(MHz) 

Power 
(mW) 

Throughput 

Corrêa 
et al. (2019a) * 

Intra 
(Enc.) 

TSMC 40nm 247.28 315 268.36 4K@120fps 

Corrêa 
et al. (2019b) * 

Intra 
(Enc.) 

TSMC 40nm 109.57 648 16.1 4K@30fps 

Corrêa 
et al. (2020a) * 

Intra 
(Enc.) 

TSMC 40nm 455.8 1,296 40.92 4K@60fps 

Corrêa 
et al. (2020b) * 

Intra 
(Enc.) 

TSMC 40nm 128.5 648 65.5 4K@30fps 

Neto 
et al. (2020) * 

Intra 
(Enc.) 

TSMC 40nm 821.835 1,902 1,613 4K@60fps 

Neto 
et al. (2021a) * 

Intra 
(Enc.) 

TSMC 40nm 584.845 1,296 4,110 4K@60fps 

Neto 
et al. (2021b) * 

Intra 
(Enc.) 

TSMC 40nm 2794 1,902 
82.76 

631.76 
4K@60fps 

Neto 
et al. (2022) * 

Intra 
(Enc.) 

TSMC 40nm 2504.715 1,902 
1,182 
9,468 

4K@60fps 

Goebel 
et al. (2019) 

Intra 
(Dec.) 

TSMC 40nm 89.39 132.1 7.96 4K@60fps 

Domanski 
et al. (2019) 

Inter 
(Dec.) 

TSMC 40nm 141.1 279.9 81.31 8K@30fps 

Domanski 
et al. (2021) 

Inter 
(Dec.) 

TSMC 40nm 72.64 686 26.79 8K@30fps 

Freitas 
et al. (2020) 

Inter 
(Dec.) 

TSMC 40nm 
106.17 
270.44 

448.43 
344.83 

56.37 
240.75 

8K@30fps 
8K@120fps 

Freitas 
et al. (2021) 

Inter 
(Dec.) 

ST 65nm 104.3 441 63.14 8K@120fps 

Freitas 
et al. (2022) 

Inter 
(Dec.) 

TSMC 40nm 324.79 1,000 51.15 8K@60fps 

Zummach 
et al. (2020a) 

Filtering 
(Dec.) 

TSMC 40nm 369 23 65 4K@60fps 

Zummach 
et al. (2020b) 

Filtering 
(Dec.) 

TSMC 40nm 185 93 43 4K@60fps 

Zummach 
et al. (2020c) 

Filtering 
(Dec.) 

TSMC 40nm 39.35 16.2 3.96 4K@60fps 

Palau 
et al. (2022a) 

Filtering 
(Dec.) 

TSMC 40nm 177.58 212.86 120.21 4K@60fps 

Palau 
et al. (2022b) 

Filtering 
(Dec.) 

TSMC 40nm 37.78 207.03 26.36 4K@60fps 

Bitencourt 
et al. (2022) 

Entropy 
(Enc.) 

ST 65nm 
11.7K 
11.2K 

581 
563 

7.801 
6.166 

8K@120fps 

Gomes 
et al. (2021) 

Entropy 
(Dec.) 

ST 65nm 34.3K 467 - 8K@60fps 

* Works developed as part this Ph.D. project. 
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4.2.1 Designs for Intra Prediction 

Corrêa et al. (2019a; 2019b; 2020a; 2020b) and Neto et al. (2020; 2021a; 

2021b; 2022) presented architectures for the intra prediction module at the encoder. 

These works are part of this Ph.D. project, and their results lead to the final designs 

described in Chapter 6. On the other hand, Goebel et al. (2019) presented an intra 

prediction architecture for the decoder side. All these architectures have in common 

the support for every possible block partition allowed by the AV1 specification. 

In the work by Corrêa et al. (2019a), a non-directional intra prediction module 

for the encoder side, limited to a single prediction mode (Paeth), and able to reach high 

throughput was presented. Massive parallelism is used to allow the processing of a 

whole 32x32 block (or any smaller block) in a single clock cycle. A throughput of 30 

frames per second (fps) for UHD 8K videos was reported. 

In Corrêa et al. (2019b), a non-directional intra prediction module for the 

encoder side, limited to four intra prediction modes, was presented. The authors 

optimized all multiplication blocks to keep the area and power within feasible limits. 

The parallelism strategy allowed the processing of one block row/column per clock 

cycle. Thus, the number of cycles depends on the width or height of the block, 

whichever is the largest. Similarly, in Corrêa et al. (2020a), a non-directional intra 

prediction module for the encoder side, capable of processing ten non-directional 

modes, was presented. A throughput of 30 fps for UHD 4K videos was reported for 

both architectures. 

In Corrêa et al. (2020b) and Neto et al. (2020), directional intra prediction 

designs for the encoder side that share many similarities were described. Both designs 

support all 56 directional prediction modes, however, only the design proposed by Neto 

et al. (2020) gives support to the four smoothing filtering processes of reference 

samples and the upscaling of reference samples. All 56 prediction modes are 

processed in parallel in both works, one row/column per clock cycle. Although the 

number of prediction modes being processed in parallel is quite large, a significant 

amount of redundant operations is reused in Corrêa et al. (2020b) because all 

predicted blocks share the same reference samples as input due to the lack of the 

smoothing filtering step. This, however, could not be done with the same degree of 

efficiency in the architecture proposed by Neto et al. (2020), because for each of the 

56 prediction modes, the encoder can use a different configuration of smoothing 
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filtering and upscaling of the reference samples. A throughput of 60 fps for UHD 4K 

was reported for both architectures. 

In Neto et al. (2021a), a study regarding the redundancy of operations in the 

directional intra prediction filters was presented, together with an architecture with 

operation sharing amongst different filters. The authors reported a decrease in power 

dissipation and gate count with the proposed optimization when compared to a naive 

solution, and also reported a throughput of 60 fps for UHD 4K. 

In Neto et al. (2021b; 2022), two different solutions for directional intra prediction 

were presented, both capable of operating in a high-quality or low-power setting. These 

architectures support the smooth filtering and upscaling process, although the low-

power setting disables these features to reduce energy consumption, at cost of 

compression efficiency losses. A throughput of 60 fps for UHD 4K was reported for 

both architectures. 

In Goebel et al. (2019), a non-directional intra prediction module for the decoder 

limited to the DC and CFL prediction modes was presented. The sample-level 

parallelism of the architecture allowed the processing of any block size as subblocks 

of size 4x4 (16 samples per cycle). In the decoding process, each block must be 

predicted only once using the prediction mode signaled in the bitstream, hence the 

CFL unit of this design is only used for CFL-coded blocks, but the DC unit is used for 

both modes because the DC algorithm is one of the steps of the CFL prediction. The 

authors reported a throughput of 60 fps for UHD 4K. 

4.2.2 Designs for Inter Prediction 

Domanski et al. (2019; 2021) and Freitas et al. (2020; 2021; 2022) presented 

architectures for the subpixel interpolation filter present in the inter prediction module 

of the decoder. 

In Domanski et al. (2019), the sample-level parallelism of the architecture allows 

the processing of any block size as subblocks of size 4x4 (16 samples per cycle), but 

since it is a decoder design, only one of the many supported filters is used per predicted 

block (the one signaled in the bitstream). In Domanski et al. (2021), a similar 

architecture is presented, but making use of approximate computing to generate more 

hardware-friendly filter coefficients. The authors reported a throughput of 30 fps for 

UHD 8K for both architectures and a power reduction of 80% in the approximate 

solution when compared to its precise counterpart. 
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In Freitas et al. (2020), an architecture for a subset of the interpolation filters, 

called Regular, is presented. Similarly, in Freitas et al. (2021), an architecture for a 

subset of the interpolation filters, called Sharp, is presented. In both designs, the level 

of parallelism is configurable, ranging from 4 to 128 samples per cycle, and because 

of this, the authors reported a very high throughput of 120 fps for UHD 8K. Finally, in 

Freitas et al. (2022), an architecture for the complete set of filters is presented, for 

which the authors reported a throughput of 60 fps for UHD 8K. 

4.2.3 Designs for In-loop Filtering 

Zummach et al. (2020a; 2020b; 2020c) and Palau et al. (2022a; 2022b) 

presented architectures for the CDEF, DBF, and LRF in-loop filters for the AV1 

decoder. 

In Zummach et al. (2020a), a CDEF architecture for the decoder was presented. 

The CDEF process is applied to each area of size 8×8 within a frame, and the 

architecture was designed with enough parallelism to process an 8×8 area every three 

clock cycles. The architecture is composed of a direction search unit, which classifies 

the input texture with one of eight directions, and a filtering core unit, which filters the 

input texture using 64 filter kernels based on the detected direction.  

In Zummach et al. (2020b), another version of the architecture with lower parallelism 

was presented, this one capable of processing an area of 8×1 of the frame every three 

cycles. The authors reported a throughput of 60 fps for UHD 4K for both designs. 

In Zummach et al. (2020c), a DBF architecture for the decoder was presented. 

The architecture implements a parallelism of 56 samples per cycle, which is enough to 

allow a very low frequency when processing high-resolution videos. The authors 

reported a throughput of 60 fps for UHD 4K. 

In Palau et al. (2022a), a Dual Self-Guided Filter (DSGF) architecture is 

presented, whereas in In Palau et al. (2022b), an architecture for the Separable 

Symmetric Normalized Wiener Filter (SSNWF) is presented. Together, both 

architectures form an LRF module, which is used for denoising and/or edge 

enhancement. The presented hardware designs target the decoder and, according to 

the authors, can process at 60 fps for UHD 4K videos. 
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4.2.4 Designs for Entropy Coding 

Bitencourt, Ramos, and Bampi (2021; 2022) presented two architectures for the 

arithmetic encoder of the AV1 entropy encoding stage, one being a straightforward 

design pipelined for high throughput, and another being an optimized version of the 

former with low-power techniques, such as clock gating and operand isolation.  

The authors reported a 20.9% power reduction in the optimized version, and that both 

designs can process at 120 fps for UHD 8K videos. 

Gomes and Ramos (2021) presented one architecture for the arithmetic 

decoder of the AV1 entropy decoder. This design is divided into two main modules, 

one to decode symbols from a binary alphabet, and another to decode symbols from 

the multi-symbol alphabet. The authors report a throughput of one symbol of any 

alphabet per cycle, resulting in an estimated performance of 60 fps for UHD 8K videos. 

4.3 Research Opportunities 

In Section 4.1, it was shown that there are a few algorithmic-based solutions for 

computational effort reduction of an AV1 encoder. If the works of Corrêa et al. (2022a; 

2022b) are not considered, which are both part of this Ph.D. project, then only two 

works focus on optimizing intra prediction, and all others target the task of simplifying 

the block partitioning decision, which is a global decision that affects the prediction 

stage of a given block, as well as all encoding stages that follow. However, there are 

many other decisions that an encoder must take locally in other stages, such as inter 

and intra prediction stages, transform coding, and entropy coding. These local 

decisions allow for optimization and, thus, this subject offer research opportunity. 

The works of Corrêa et al. (2022a; 2022b) propose optimizations for the intra 

prediction stage of an AV1 encoder. These optimizations do not compete with most of 

the related works listed in this chapter, but instead, it can be paired with those to form 

a highly optimized encoder. The proposed solutions are fully described in Chapter 5. 

In Section 4.2, several hardware architectures were described for the AV1 

encoder and decoder sides. However, all of these works only propose implementations 

of the original algorithms defined in the AV1 specification. Although this kind of work 

also contributes to its field of research, there is a clear absence of works that propose 

hardware designs for optimized algorithms. 
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To fill this gap, the work of Corrêa et al. (2022b), which is part of this Ph.D. 

project, proposes a fast mode decision algorithm for the intra prediction and also 

proposes a hardware design for it. Designs following this strategy are described in 

Chapter 6. 



66 

5 HEURISTIC-BASED ALGORITHMS FOR AV1 INTRA-PICTURE 

PREDICTION 

This chapter presents heuristic-based algorithms for the intra prediction stage 

of the AV1 encoder, which were published in Corrêa et al. (2022a; 2022b). 

 

5.1 Algorithm 1: Texture-based Fast Mode Decision (TbFMD) 

The main purpose of a fast mode decision algorithm is to mitigate the large 

combinatorial space of block sizes and prediction modes allowed in AV1. 

The proposed heuristic-based method (CORRÊA et al., 2022b) operates in two 

steps: (i) detection of the dominant direction of the input block texture, and (ii) creation 

of a list with a reduced number of prediction modes (RD-list), according to the dominant 

direction detected. 

5.1.1 Direction Detection Step 

The direction detection step proposed in this work is based on a solution first 

described in the Daala codec (VALIN et al., 2016), and later added as part of the AV1 

CDEF in-loop filtering stage (MIDTSKOGEN; VALIN, 2018). This algorithm has been 

proven efficient at detecting texture direction for the objectives of the in-loop filtering 

stage of the codec and, since this information can be valuable for an intra-frame 

prediction fast mode decision heuristic, it was adapted to define which prediction 

modes are more likely to be good candidates for an input block. 

In the CDEF, the direction detection algorithm finds, for each 8×8 input block, 

the direction d that matches the input block by comparing it to eight Perfectly 

Directional Blocks (PDB), one for each of eight directions d. The PDBs are matrices 

(blocks) where all samples belonging to line k have the same value, which is the 

average of the samples from that line. The SSE distortion metric is the one used in this 

comparison. 

At the in-loop filtering stage, the direction detection as used in the AV1 algorithm 

must have high accuracy, because errors at this stage can produce visible artifacts in 

the resulting image. On the other hand, a fast mode decision algorithm at the intra 

prediction stage has much more flexibility to explore a trade-off between accuracy and 

the use of computational resources. With the main objective of developing a fast 
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decision algorithm that is hardware-friendly, the direction detection algorithm from 

CDEF was adapted to work with PDBs of a reduced size of 4×4 samples, significantly 

reducing the number of operations required to compute the SSE between an input 

block and the eight PDBd, although also reducing the accuracy of the algorithm. 

Because the PDBd has a fixed 4×4 size, all sizes of input blocks must also be 

subsampled to 4×4 before undergoing the direction detection step, but their original 

size is used in the prediction itself. Figure 24 shows the eight PDBd, and also how 

samples are distributed in lines k. 

 

Figure 24 PDBs adapted to the reduced size of 4×4. Each direction d is named after an AV1 intra 
mode related to the same angle. The numbers inside each square identify to which line k a sample 
belongs. 

As first proposed by Midtskogen and Valin (2018), for each of the eight 

directions d, the average μd,k of the samples of a line k is defined as in eq. (13), where 

xp is the value of sample p in the input block, Pd,k is the set of samples in line k, and 

Nd,k is the number of samples in Pd,k. In the adapted algorithm proposed in this thesis, 

N ranges from 1 to 4. 

𝜇𝑑,𝑘 =
1

𝑁𝑑,𝑘
∑ 𝑥𝑝
𝑝∈𝑃𝑑,𝑘

 (13) 

The error between the input block and the PDBd, given by the SSE metric, is 

defined as in eq. (14). 

𝐸𝑑
2 =∑( ∑ (𝑥𝑝 − 𝜇𝑑,𝑘)

2

𝑝∈𝑃𝑑,𝑘

)

𝑘
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Substituting eq. (13) into eq. (14) leads to the simplified error, defined in eq. 

(15). 

𝐸𝑑
2 =∑𝑥𝑝

2

𝑝

−∑
1

𝑁𝑑,𝑘
( ∑ 𝑥𝑝
𝑝∈𝑃𝑑,𝑘

)

2

𝑘

 (15) 

Finally, because the first term of eq. (15) refers only to samples from the input 

block, it is not influenced by the variable d in any way. Hence, this constant can be 

removed from the equation and, instead of looking for the lowest error, the algorithm 

must look for the highest sum Sd, expressed as in eq. (16). The dominant direction is 

given by the highest of the eight Sd values. 

𝑆𝑑 =∑
1

𝑁𝑑,𝑘
( ∑ 𝑥𝑝
𝑝∈𝑃𝑑,𝑘

)

2

𝑘

 (16) 

Figure 25 and Figure 26 together illustrate the direction detection step.  

Figure 25 shows an example of an 8×8 input block being subsampled to 4×4, and 

Figure 26 shows the PDBs for this subsampled block and also the Sd values for these 

PDBs as if calculated using eq. (16). According to this example, the dominant direction 

of the input block texture follows a 45-degree angle, because S45 is the highest among 

all Sd values, meaning that the PDB45 is the most similar to the subsampled input block. 

In the figures, the color used for each sample, as well as their numerical label, 

represent their 8-bit luminance value. 

 

Figure 25 Example of an 8×8 to 4x4 subsampling. 
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Figure 26 Example of PDBs and calculation of the dominant direction, based on the input block of 
the previous figure. 

5.1.2 RD-list Creation Step 

For a given input block, the best decision can only be achieved by passing all 

the possible prediction candidates through the complete encoding loop and, then, by 

evaluating their RD costs to select the best prediction mode. However, since the RDO 

is a bottleneck of the encoding process due to its prohibitive computational effort,  

a fast mode decision is needed to mitigate this problem. 

The fast mode decision algorithm proposed creates reduced a RD-list (list of 

promising candidates) to be sent to the RDO by using only information from the 

direction detection step, i.e., based on a heuristic, prediction modes are discarded 

without ever being evaluated by the exhaustive RDO task. For a given input block, the 

decision algorithm works as follows: 

1. The algorithm classifies the input block as being a smooth or a sharp texture 

by subtracting the Sd of the dominant direction (Sdominant_d) from the Sd of its 

orthogonal direction (Sorthogonal_d) and then performing a right shift by a 

threshold Thr, as defined in eq. (17). If the contrast C results in a positive 

value, the block is classified as a sharp texture, otherwise, smooth. 

2. If the block is smooth, then a very small RD-list is created from the ND set, 

which is composed of non-directional modes only. 
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3. Otherwise, if the block is sharp, then a reduced RD-list is created from the 

union of the ND set and the directional mode that follows the exact detected 

direction. Then, it is also verified which of the two directions adjacent to the 

dominant direction has the highest Sd value. The three closest angle 

variations that follow the best adjacent direction are also appended to the 

final RD-list. 

𝐶𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡_𝑑 = (𝑆𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡_𝑑 − 𝑆𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙_𝑑) ≫ 𝑇ℎ𝑟 (17) 

Table 11 shows the reduced RD-list created for sharp blocks. It can be observed 

that the proposed fast mode decision reduces the set of possible directional prediction 

modes from 56 to just four, in the worst case, for sharp blocks. As previously discussed, 

no directional mode is evaluated when a block is classified as smooth. 

Table 11 RD-list created for sharp blocks according  
to the dominant and best adjacent directions 

Dominant 
direction (d) 

Best adjacent 
direction (d) 

Reduced RD-list 

45 
67 ND ∪ {45} ∪ {36, 39, 42} 
203 ND ∪ {45} ∪ {48, 51, 54} 

203 
45 ND ∪ {203} ∪ {206, 209, 211} 
180 ND ∪ {203} ∪ {194, 197, 200} 

180 
203 ND ∪ {180} ∪ {183, 186, 189} 
157 ND ∪ {180} ∪ {171, 174, 177} 

157 
180 ND ∪ {157} ∪ {160, 163, 166} 
135 ND ∪ {157} ∪ {148, 151, 154} 

135 
157 ND ∪ {135} ∪ {138, 141, 144} 
113 ND ∪ {135} ∪ {126, 129, 132} 

113 
135 ND ∪ {113} ∪ {116, 119, 122} 
90 ND ∪ {113} ∪ {104, 107, 110} 

90 
113 ND ∪ {90} ∪ {93, 96, 99} 
67 ND ∪ {90} ∪ {81, 84, 87} 

67 
90 ND ∪ {67} ∪ {70, 73, 76} 
45 ND ∪ {67} ∪ {58, 61, 64} 

 

Figure 27 shows two examples of RD-lists. On the left side, an RD-list composed 

of the prediction modes ND ∪ {99, 96, 93, 90} is presented, created from a dominant 

direction 90, and the best adjacent direction 113. On the right side, an RD-list  

ND ∪ {90, 87, 84, 81} is presented, created from the same dominant direction, but the 

opposite adjacent direction. For a full picture illustrating all prediction angles, refer to 

Figure 18. 
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Figure 27 Examples of RD-lists created from dominant direction 90, and best adjacent direction 
113 (left side) and 67 (right side). 

5.2 Algorithm 2: Mode-adaptive Subsampling in Block Matching (MaSBM) 

In the AV1 intra prediction, a single 64×64 superblock (SB) can be partitioned 

into 1,869 different intra subblocks according to a 10-way partition tree. As explained 

in Section 3.2, each block can be predicted by many different intra modes, resulting in 

a high number of predicted candidates that must be evaluated by the RDO. One way 

to mitigate this problem is to reduce the number of prediction modes computed,  

as proposed in Section 5.1, and another fairly common way is to evaluate the predicted 

blocks locally with a distortion metric, such as the SSE, and to create an RD-list 

composed of the N candidates with the lowest distortion. Selecting candidates locally 

using the SSE is a heuristic method, because it only considers the distortion between 

candidates and the input block, whereas the RDO also considers the bit rate impact of 

each decision. 

Still, as can be verified in eq. (4), the SSE operation for blocks of size M×N can 

be quite expensive, requiring M×N subtractions, M×N multiplications, and M×N−1 

sums of varying bit depths. Therefore, a more efficient heuristic should be able to not 

only select candidates locally with the SSE but also reduce the number of arithmetic 

operations required by each SSE. 
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5.2.1 Observation of SSE Error in Intra Prediction 

Because the intra prediction modes are limited to using only reference samples 

adjacent to the left and above the input block, as explained in Section 3.1, more 

accurate predicted samples are obtained in positions spatially closer to the reference 

samples, and less accurate predicted samples are obtained as the spatial distance 

from the reference arrays increases. 

To verify the extent of the loss of accuracy in intra predicted samples spatially 

located far away from the reference samples (e.g., in the bottom-right corner of a 

block), experiments were performed in the AV1 reference software libaom 2.0.0  

(AOMedia, 2022). The experiments consisted of recording the residual information of 

every intra predicted block and computing the average residue (error) for each 

combination of block size and prediction mode. 

Figure 28 shows, in the form of heat maps, the average error for non-directional 

modes, normalized to a 0 to 1 range, when applied to blocks of size 16×16. It can be 

noticed that prediction modes such as Smooth, Paeth, and DC, which make use of all 

reference samples from both the AboveRow and LeftCol arrays, show a clear pattern 

of lower error in the top-left region of the blocks and higher error in the bottom-right 

region. On the other hand, the Smooth Vertical mode, which uses all samples from 

AboveRow and only the last sample of LeftCol, shows a pattern of lower error in the 

whole top region and a small portion of the bottom-left corner. 

Figure 29 shows the average error for the eight nominal directional modes when 

applied to blocks of the same size. Directional 180 and 203 are modes that only use 

references from LeftCol and show a pattern of lower error in the left region of the block, 

whereas Directional 45, 67, and 90 are modes that only use references from 

AboveRow and show a pattern of lower error in the top region. On the other hand, 

Directional Modes 113, 135, and 157 use reference samples from both arrays and 

show a pattern of lower error around both the top and left edges of the block. 
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Figure 28 Heat maps showing the average error of non-directional intra modes when applied to 
blocks of size 16×16. 

 

 

Figure 29 Heat maps showing the average error of nominal directional intra modes when applied 
to blocks of size 16×16. 
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Based on this error pattern data, a heuristic-based method of subsampling the 

distortion metric used for block matching can be made. 

5.2.2 Mode-adaptive SSE Subsampling Masks 

The proposed mode-adaptive SSE subsampling algorithm  

(CORRÊA et al., 2022a) reduces the overall cost of the SSE computation by applying 

a non-uniform subsampling pattern, prioritizing the warm areas of the heat map 

associated with each prediction mode, whilst discarding samples from the cold areas. 

For each possible combination of prediction mode and block size, a subsampling mask 

is generated offline (not during encoding time) by the algorithm. 

To define an effective way of subsampling SSE operations based solely on the 

error patterns (heat maps) presented in Section 5.2.1, experiments were done in 

libaom 2.0.0 (AOMedia, 2022). Promising results were obtained for subsampling 

masks that eliminate up to three-quarters of the predicted samples during SSE 

computation. However, even though the warm areas are decisive in discarding bad 

prediction candidates, it was observed the cold areas must also be considered, but to 

a lesser extent. 

Therefore, for a given prediction mode and block size, the proposed 

subsampling mask generation algorithm is done in two steps, using as input the 

average error (heat maps) associated with the mode and size, and delivering as output 

a subsampling mask, which is simply a matrix of 0’s and 1’s telling which positions are 

to be ignored or considered, respectively, during the SSE computation. 

1. A parameter HEA (Higher Error Area) is used to determine the percentage of 

the highest error positions to be considered, e.g., HEA=25% will result in a 

loop that finds one-quarter of the positions in the heat map with the highest 

average error, and checks these positions in the mask, whilst the other three-

quarters of the mask will remain unchecked. 

2. A parameter LEA (Lower Error Area) is used to determine a percentage of 

the positions checked in the first step that will be unchecked uniformly, with 

the same number of positions checked uniformly in the empty area from the 

first step. 

Figure 30 shows the subsampling mask obtained by the proposed algorithm 

using as input the average error of the Directional 90 mode in blocks of size 32×32. 
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The parameters used in this example are HEA=25% and LEA=25%. In the first step 

(left side of Figure 30), a loop checks in the mask (green positions) the 256 positions 

with the highest error from the heat map used as input, i.e., 25% of the 1024 positions 

of a block of size 32×32, according to the HEA parameter. In the second step, another 

loop unchecks uniformly 64 of the green positions (positions with an X), one at every 

four, and then checks the same number of positions in the originally empty area, one 

at every twelve positions (blue positions), i.e, 25% of the 256 checked positions, 

according to the LEA parameter. 

With subsampling masks like the one from Figure 30 (right side), every time the 

encoder uses the Directional 90 mode in the prediction of a block of size 32×32, it will 

only use the green and blue positions in the distortion metric computation, while 

ignoring the rest of the block, thus saving a significant number of arithmetic operations. 

 

Figure 30 Left: 25% of the highest error positions are checked in the subsampling mask. Right: 
25% of the previously checked positions are unchecked uniformly and redistributed uniformly in the 
empty area. 

It is important to note that the set of subsampling masks generated by this 

algorithm depends on the heat maps provided, which in turn depend heavily on how 

the experiments were conducted. Different sets of test sequences and different sets of 

parameters will result in slightly different heat maps; however, the pattern of the 

prediction error of each mode is consistent. Furthermore, subsampling masks 

particularly efficient for a specific kind of content can be generated if the heat maps 
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were generated using the same content, e.g., heat maps showing the average error 

for digital screen content will lead to subsampling masks more adequate to SCC. 

5.3 Results and Discussion 

Sections 5.3.1 and 5.3.2 shows the results of the TbFMD and MaSBM 

algorithms, each one tested with different parameter combinations. Section 5.3.3 

shows the results for the two algorithms combined and discusses related works. 

All experiments were done with the AV1 reference software libaom 2.0.0 

(AOMedia, 2022), following the coding parameters recommended in the document 

CWG-B075o (ZHAO et al., 2021), and using the test sequences recommended in 

document JVET-W2017-v1 (KARCZEWICZ; YE, 2021). The results for encoding 

efficiency are presented in BD-BR, and for encoding time difference are presented in 

ΔT (eq. 18), where Tproposal and Treference are the execution time of the original software 

and the software modified with the proposed algorithms, respectively. More detailed 

information related to the software experiments can be read in Appendix A. 

∆𝑇 =
𝑇𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 − 𝑇𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑇𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
× 100 (18) 

5.3.1 Results for Algorithm 1: Texture-based Fast Mode Decision (TbFMD)  

In the CDEF (MIDTSKOGEN; VALIN, 2018), the direction detection is used in 

in-loop filtering and, in that context, Thr=10 is considered a good threshold point.  

In the intra prediction context, however, a higher than ideal Thr value classifies more 

blocks as smooth, disabling all directional intra modes even if the block has edges, 

whereas a lower than ideal Thr classifies more blocks as sharp, even if they are smooth 

surfaces, testing directional intra modes pointlessly. 

To find the ideal threshold for intra prediction, firstly the same threshold of CDEF 

was tested and found to be too conservative in this context, most of the time not 

disabling directional modes for smooth surfaces. Then, different thresholds from the 

interval 10≤Thr≤18 were evaluated. Figure 31 shows the compression efficiency and 

encoding time results for different threshold points. In the figure, it can be observed 

that the encoding time was reduced in an almost linear pattern as the threshold 

increased, with Thr=10 giving a reduction of 17.5% and Thr=18 giving a reduction of 

28.6%. On the other hand, the encoding efficiency curve kept stable from Thr=10 
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(1.18%) to Thr=15 (1.26%), but plummeted beyond that point, reaching 2.00%  

BD-BRYUV for Thr=18, indicating that the algorithm started classifying sharp blocks as 

smooth incorrectly as the threshold increased beyond 15. Therefore, for the AV1 intra 

prediction, the ideal Thr for the TbFMD algorithm was defined as 15, which provided a 

good trade-off between encoding time reduction and encoding efficiency loss, of 22.6% 

and 1.26%, respectively. 

 

Figure 31 Encoding efficiency loss and encoding time difference for different threshold values, 
with Thr=15 showing the best trade-off. 

5.3.2 Results for Algorithm 2: Mode-adaptive Subsampling in Block Matching 

(MaSBM) 

The subsampling masks can be generated with a variety of combinations of 

HEA and LEA parameters. To find the most efficient setup, experiments were 

conducted using all combinations between HEA={25%, 50%, 75%} and  

LEA={0%, 25%, 50%, 75%, 100%}. It is important to note that when LEA=0%, the mask 

generation algorithm stops in the first stage, and when LEA=100%, there is no longer 

a mode-adaptive subsampling, and instead, a simple uniform subsampling is used for 

every prediction mode. In these experiments, the fast mode decision lets the intra 

prediction generate all possible candidates and then creates a reduced RD-list with the 

four candidates with the lowest error according to the subsampled SSE operations. 

Table 12 shows the resulting BD-BRYUV and ΔT, and Figure 32 shows the 

behavior of the BD-BRYUV curves (in logarithmic scale) for all combinations of 

parameters. The algorithm tested used heat maps generated with experiments that 
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followed the parameters described in Appendix A, except that only the first 25 frames 

of each test sequence were used, instead of the whole sequence. 

Table 12 Encoding efficiency and encoding time difference results for different  
HEA and LEA combinations 

HEA 
(%) 

LEA 
(%) 

BD-BRYUV 
(%) 

ΔT (%) 

25 

0 1.85 

−12.01 

25 1.09 

50 0.76 

75 0.81 

100 1.14 

50 

0 0.64 

−3.75 

25 0.23 

50 0.05 

75 0.06 

100 0.10 

75 

0 0.45 

−2.51 

25 0.18 

50 0.04 

75 0.04 

100 0.08 

 

 

Figure 32 Encoding efficiency curves for 15 different parameter combinations. 

As can be observed in Table 12, in terms of encoding time reduction, only the 

HEA parameter matters, because it is the one that defines the degree of subsampling, 

directly affecting the number of operations skipped. A setting of HEA=25% provided 

12% of encoding time reduction, whereas the less aggressive settings of HEA=50% 

and 75% led to a much lower time saving of 3.8% and 2.5%, respectively. 
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Although HEA=25% provides significantly better time-saving results, it can be 

observed in Figure 32 (blue line) that this setting also results in a much higher impact 

on encoding efficiency. It can also be observed that the HEA=50% (orange line) and 

HEA=75% (green line) curves are very close to each other, and from a hardware-

friendly perspective, HEA=50% was found to be an ideal choice among the two, since 

the software results are similar, but HEA=50% allows more arithmetic operations to be 

skipped, hence allowing more area and/or power to be saved, depending on the 

hardware design itself. 

Regarding the LEA parameter, the same behavior can be observed in  

Figure 32 for all curves. The LEA=0% setting, which concentrates all the operations in 

the higher error area, provides the worst encoding quality results, showing that the 

lower error area cannot be completely ignored. Among the LEA=25%, LEA=50%, and 

LEA=75% settings, it can be observed that the uniform redistribution of 50% of the 

positions checked in the first stage of the mask generation, provides the best encoding 

quality results. It is also important to mention the specific case of the LEA=100% 

setting, which is similar to a naive non-adaptive uniform subsampling solution, that 

showed better results than the proposed mode-adaptive subsampling method in its 

LEA=0% and LEA=25% configurations. 

Therefore, the HEA=50% and LEA=50% setup was found to be the ideal 

solution when encoding efficiency is a priority over encoding time savings, providing a 

negligible BD-BRYUV impact of 0.05% and time-saving of 3.75%. Otherwise, if encoding 

time savings is the priority or a low-power design is desired, the HEA=25% and 

LEA=50% setup can be used, providing a BD-BRYUV impact of 0.76% and time savings 

of 12.01%. 

5.3.3 Results for Algorithms 1 and 2 Combined 

The previous sections presented the results for each algorithm when used 

individually. This section provides the results of both the TbFMD and MaSBM 

algorithms interacting with each other in the same AV1 encoder. 

TbFMD is executed before the prediction of intra modes, effectively reducing 

the number of modes computed from the maximum number of modes supported by 

the codec to only the set of non-directional modes (in case of a smooth input block),  

or the ND set plus four directional modes (in case of a sharp input block). On the other 

hand, MaSBM is only executed after the prediction of intra modes and, therefore,  
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its performance is directly affected by the output of TbFMD, because it will no longer 

apply subsampling to the full set of intra predicted blocks, but only to the reduced set 

of modes defined by TbFMD. With the integration of both algorithms, the optimized 

intra prediction module works with the following steps: 

1. Algorithm 1 creates a reduced RD-list of 11 up to a maximum of 15, although 

the number of modes can be lower if certain optional modes are disabled in 

the encoder, such as the RBF and SCC modes. 

2. The intra prediction module generates the candidates based on the RD-list. 

3. All candidates are evaluated according to the mode-adaptive subsampled 

SSE masks and only the four best candidates are kept in the RD-list. 

4. Finally, the modified RD-list with only four candidates is sent to the RDO. 

Experiments were conducted with the two algorithms combined, with Thr=15 as 

the parameter for the TbFMD algorithm, and HEA=50 and LEA=50% for MaSBM.  

Table 13 shows detailed results of these experiments. 

Table 13 Encoding efficiency and time difference results for the integration of TbFMD 
and MaSBM per sequence, per class and total 

Class Sequence 
BD-BRYUV 

(%) 
ΔT 
(%) 

A1 
(UHD 4K) 

Tango2 1.38 −35.44 

FoodMarket4 1.17 −40.13 

Campfire 111 −32.71 

A1 Average 1.22 −36.09 

A2 
(UHD 4K) 

CatRobot 0.85 −32.93 

DaylightRoad2 1.08 −29.66 

ParkRunning3 0.89 −26.39 

A2 Average 0.94 −29.66 

B 
(1080p) 

MarketPlace 3.15 −29.22 

RitualDance 0.63 −35.88 

Cactus 2.70 −25.30 

BasketballDrive −0.50 −29.77 

BQTerrace 0.66 −22.68 

B Average 1.33 −28.57 

C 
(480p) 

BasketballDrill 1.82 −22.57 

BQMall 0.97 −22.25 

PartyScene 1.45 −16.03 

RaceHorses 1.52 −23.66 

C Average 1.44 −21.13 

E 
(720p) 

FourPeople 1.32 −30.53 

Johnny 1.22 −35.77 

KristenAndSara 1.86 −34.35 

E Average 1.47 −33.55 

ABCE Average 1.28 −29.80 
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In this table, it can be observed that the ABCE average is lower than the sum of 

the impact caused by each algorithm when used individually. This is explained by the 

fact that MaSBM, when used individually, selects the four best candidates out of the 

full set of prediction modes relying only on a subsampled distortion metric. On the other 

hand, when paired with TbFMD, it selects the best candidates out of an already 

reduced set of prediction modes, and, therefore, errors related to the heuristic of 

subsampling are limited to a set of probable candidates. It is relevant to mention that, 

in this table, it can also be observed that the proposed algorithms perform better than 

the average for UHD 4K videos, showing that the selected parameters are suitable for 

very high-definition videos. 

Considering the low BD-BRYUV impact of 1.28%, the significant time saving of 

29.8%, and their hardware-friendly characteristics, it can be said that the proposed 

algorithms combined achieve the goals of this Ph.D. thesis. 

The algorithms in Jeong, Gankhuyag, and Kim (2019a; 2019b) can be directly 

compared to the one proposed in this section, as they also propose fast mode 

decisions for AV1 intra prediction. Jeong, Gankhuyag, and Kim (2019a) report a  

BD-BR impact of 0.44% and ΔT of −15.86%, which is a lower encoding efficiency 

impact, but also a lower time saving than the algorithm proposed in this section. Jeong, 

Gankhuyag, and Kim (2019b) report a BD-BR impact of 0.04% and a ΔT of −8.67%, 

which is a negligible impact, but also a modest time saving when compared to the 

algorithm proposed in this section. 

The works from Guo et al. (2018a; 2018b), Chen et al. (2019), and Chiang, Han, 

and Xu (2019) cannot be directly compared to the one presented in this section, 

because these works optimize the block partitioning stage of the encoder and leave 

the intra prediction module untouched. However, this means that the algorithms from 

this Ph.D. project could be paired with the algorithms of the abovementioned works to 

achieve further optimization of the encoder. 
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6 HARDWARE DESIGNS FOR AV1 INTRA-PICTURE PREDICTION 

This chapter presents hardware designs for the intra prediction stage of the AV1 

encoder. These designs are based on the already published contributions of Corrêa et 

al. (2019a; 2019b; 2020a; 2020b; 2022b) and Neto et al. (2020; 2021a; 2021b; 2022). 

The base design, before any optimization, is shown in Figure 33. This design is 

composed of a dedicated directional intra prediction design (Section 6.1),  

a dedicated non-directional intra prediction design (Section 6.2), a control unit shared 

by both designs (Section 6.3), and an SSE-based local decision design (Section 6.4). 

Optimizations on top of the base design using the algorithms proposed in 

Chapter 5 are presented in Section 6.5, and results are discussed in Section 6.6. 

 

Figure 33 Intra prediction base design. 
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6.1 AV1 Directional Intra Prediction Design 

The proposed design for the directional intra prediction (CORRÊA et al., 2020b, 

NETO et al., 2020; 2021a; 2021b; 2022) works at 64×64 SB level, which is the 

maximum block size allowed by the AV1 intra prediction modes. 

This module is mainly composed of two Reference Sample Filtering Units 

(RSFUs), two Reference Sample Upscaling Units (RSUUs), 78 Directional Mode 

Prediction Units (DMPU) working in parallel, and several buffers for holding each 

possibility of filtered and upscaled reference arrays. Figure 34 shows a register-

transfer level (RTL) diagram of this design. 

 

Figure 34 Directional intra prediction design. 
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6.1.1 Reference Sample Filtering Units 

There are one corner filter and three different types of array filters in the RSFUs. 

The corner filter is applied to a single reference sample, which is the top-left reference 

sample (see Figure 7). A three-tap filter for the corner samples is defined as a 

combinational circuit made entirely of shift-adds operations that produces the same 

results as eq. (19), where a and c are AboveRow[0] and LeftCol[0], and b is 

AboveRow[-1]. A filter selector is used to send the filtered corner sample only to MPUs 

with 90<pAngle<180 and only if the block size follows the rule height+width>=24. 

𝑐𝑓 =  (5𝑎 + 6𝑏 + 5𝑐 + 8) ÷ 16 (19) 

The array filters require up to three reference samples from each side of the 

sample being filtered. There are three different filter strengths, and all are needed 

because different DMPUs can use different filter strengths for a given reference 

sample, or no filter at all. The filters for strength levels one, two, and three are also 

combinational circuits made entirely of shift-adds operations that produce the same 

results as eqs. (20-22), respectively, where x is a sample from either AboveRow or 

LeftCol and i the index of the sample in the array. 

𝑓𝑠1 =  (4𝑥𝑖−1 + 8𝑥𝑖 + 4𝑥𝑖+1 + 8) ÷ 16 (20) 

𝑓𝑠2 =  (5𝑥𝑖−1 + 6𝑥𝑖 + 5𝑥𝑖+1 + 8) ÷ 16 (21) 

𝑓𝑠3 =  (2𝑥𝑖−2 + 4𝑥𝑖−1 + 4𝑥𝑖 + 4𝑥𝑖+1 + 2𝑥𝑖+2 + 8) ÷ 16 (22) 

There are six arrays of filters working in parallel, one of each strength for each 

array of reference samples. Each array of filters has 129 filters working in parallel, 

which is the size of the input reference sample arrays in the worst-case scenario, and 

is also the size of each buffer for filtered reference samples. The filter selector used to 

decide which filtered LeftCol and filtered AboveRow are sent to each DMPU follows 

rules based on the size of the input block and on how previous blocks were coded. 

Table 14 and Table 15 show the filter selector decisions for the nominal angles, where 

the first number of a pair is the filter strength if no adjacent neighbors were coded using 

one of the three Smooth modes, and the second number is if at least one was. 
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Table 14 Filter selector for AboveRow (only nominal modes are shown) 

Block Size 
DMPU 

45 67 113 135 157 203 

4×4 0, 1 0, 0 0, 0 0, 1 1, 2 1, 2 

4×8, 8×4, 8×8 1, 1 0, 1 0, 1 1, 1 1, 2 1, 2 

8×16, 16×8 3, 3 2, 3 2, 3 3, 3 3, 3 3, 3 

16×16 3, 3 2, 3 2, 3 3, 3 3, 3 3, 3 

> 16×16 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 

Table 15 Filter selector for LeftCol (only nominal modes are shown) 

Block Size 
DMPU 

45 67 113 135 157 203 

4×4 1, 2 1, 2 1, 2 0, 1 0, 0 0, 0 

4×8, 8×4, 8×8 1, 2 1, 2 1, 2 1, 1 0, 1 0, 1 

8×16, 16×8 3, 3 3, 3 3, 3 3, 3 2, 3 2, 3 

16×16 3, 3 3, 3 3, 3 3, 3 2, 3 2, 3 

> 16×16 3, 3  3, 3 3, 3 3, 3 3, 3 3, 3 

6.1.2 Reference Sample Upscaling Units 

The content of each of the buffers for filtered reference arrays can also be 

upscaled according to the following rules: If no adjacent neighbors were coded using 

one of the three Smooth modes, upscaling happens for blocks of size {4×4, 4×8, 8×4}, 

otherwise, upscaling happens only for blocks of size 4×4. Therefore, more buffers were 

needed to store the extra samples generated in the upscaling process, each holding 

33 samples needed in the worst-case scenario. 

Like the filters described in Section 6.1.1, the upscaling filters were implemented 

as shift-adds operations in a combinational form to produce the same results as  

eq. (23), where us is the sample interpolated between the positions i and i+1 of a 

reference sample array. The upscaling filter also has a clip operation applied at its 

output to keep the resulting upscaled sampled within the bit depth limits. 

𝑢𝑠 =  (−𝑥𝑖−1 + 9𝑥𝑖 + 9𝑥𝑖+1 − 𝑥𝑖+2 + 8) ÷ 16 (23) 

6.1.3 Directional Mode Prediction Units 

Each DMPU is responsible for one of the 56 directional prediction modes and is 

composed of various Directional Sample Prediction Units (DSPU) in parallel, each 

capable of generating one predicted sample according to lines 10, 21, 26, and 34 of 

the algorithm shown in Figure 19. 

The DSPU is illustrated in Figure 35. The inputs a and b are multiplied by 

coefficients ranging from 0 to 32 using only shift-add trees, each one designed for 
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minimum tree depth. This approach without the use of multipliers is relevant in an 

encoder solution because the high-throughput constraint can only be met with a low-

latency design. Moreover, it is important to mention that one coefficient complements 

the other, that is, when a coefficient is equal to 15 the other will necessarily be 17 and, 

because of that, only 16 different DSPUs models exist and were replicated multiple 

times according to the need of each DMPU. 

 

Figure 35 Directional sample prediction unit, responsible for generating one directional predicted 
sample from a pair of two reference samples. 
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AboveRow, but only two DSPUs connected to LeftCol, whereas the DMPU for 

pAngle=48 requires 64 DSPUs connected to AboveRow and 56 DSPUs connected to 

LeftCol. 

The number of reference samples used as input in each DMPU varies according 

to the angle associated do its prediction mode. For example, the DMPU for pAngle=87 

(closest to the vertical angle) uses only five reference samples to predict a column of 

size 64, repeating the same references for multiple DSPUs, whereas the DMPU for 

pAngle=36 (farthest from the vertical angle) uses 64 different reference samples to 

predict a column of size 64. 

Moreover, there are 22 DMPUs for the same modes already covered in the 

previous paragraphs, but adapted to deal with the coefficients used in the case of 

upscaled reference samples array. These DMPUs are much smaller, as 8×8 is the 

largest block size that admits upscaling. 

Samples predicted using AboveRow as the reference array have a unique base 

index along a column, responsible for defining which reference samples are used (see 

Figure 19). However, as the prediction moves to the next column, all base indexes are 

simply incremented by one. This is analog for samples predicted using LeftCol. The 

DMPUs are connected to the buffers considering the indexes needed for predicting the 

first column/row of a block, and as the prediction moves to the next column/row every 

cycle, the content of each register is moved towards the leftmost register. 

6.2 Non-directional Intra Prediction Module 

This design for non-directional modes (CORRÊA et al., 2019a; 2019b; 2020a) 

works at the 64×64 block level, which is the maximum size allowed by the AV1 intra 

prediction, and shares the same control unit of the directional design, meaning that 

both designs work in synchrony as one complete intra prediction architecture. The RTL 

diagram of the design is illustrated in Figure 36. 

Unlike the directional intra prediction algorithm, which is the same for all 56 

modes, the non-directional intra prediction uses very distinct algorithms for each of its 

modes. As can be observed in Figure 36, each mode has its own module operating in 

parallel with the others. 
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Figure 36 Non-directional intra prediction design. 
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Since there are five different coefficient sets based on each possible size of the 

column/row to be predicted (see Table 5), a Smooth Unit for Horizontal or Vertical 

modes has five independent subunits to deal with each block size. These subunits, 

named Smooth Prediction Multiplication Unit (SPMU), generate all multiplications 

needed for a given pair of samples, using only shift-add operations. This strategy 

allows the avoidance of high latency generic multipliers, which is important on an 

encoder.  

The shift-add trees that compose each SPMU were optimized for subexpression 

reuse and minimum tree depth, increasing the cost of each adder, but reducing the 

critical path of the tree. The algorithms used for generating such very optimized shift-

add trees were highly based on methods presented by Dempster and Macleod (1995), 

and Vorenenko and Püschel (2007). 

Figure 37 illustrates an SPMU responsible for the multiplications according to 

the array of coefficients of size 8. This figure also shows the next step, which is adding 

pairs of scaled samples, rounding, and dividing, finally resulting in eight predicted 

samples (each cycle). The SPMUs for sizes 4, 16, 32, and 64 are not shown in this 

figure. Figure 38 shows one of the two shift-add trees used in x-SPMU of size 8, which 

is composed of nine adders and has a depth of two. 

 

Figure 37 Smooth prediction multiplier unit or size 8. 
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Figure 38 One of the two shift-add trees used in the SPMU for size 8, highly optimized for 
subexpression reuse and minimum tree depth. 

 

Figure 39 Prediction order of Smooth Vertical, Smooth Horizontal and Smooth modes for blocks 
of size 4×4. In asymmetrical blocks, one of the modes will finish before the others. 
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Finally, the Smooth Unit is an array of sum, rounding and division operations 

responsible for computing the average between the Smooth Vertical and Smooth 

Horizontal predicted samples, as they become available. The prediction order for all 

three units, for blocks of size 4×4, is illustrated in Figure 39, where filled squares are 

predicted samples and question mark squares are samples yet to be predicted. 

6.2.2 Paeth Unit 

To predict an entire column of samples per cycle, the Paeth Unit has a single 

instance of a circuit (top half of Figure 40) that calculates (24) and (25), where sTop is 

the reference from AboveRow aligned with the column and sTopLeft is the reference 

from AboveRow[−1]. Both (24) and (25) are calculated only once per predicted column. 

𝑝𝐿𝑒𝑓𝑡 =  |𝑠𝑇𝑜𝑝 − 𝑠𝑇𝑜𝑝𝐿𝑒𝑓𝑡| (24) 

𝑝𝑇𝑜𝑝𝐿𝑒𝑓𝑡𝑡𝑒𝑚𝑝 = 𝑠𝑇𝑜𝑝 − (𝑠𝑇𝑜𝑝𝐿𝑒𝑓𝑡 ≪ 1) (25) 

It also has 64 instances of a circuit (bottom half of Figure 40) that calculates a 

total of height values of (26) and (27), all in parallel, where sLeftn is the reference 

horizontally aligned with the nth position from the current column (read from the LeftCol 

array). 

𝑝𝑇𝑜𝑝 =  |𝑠𝑇𝑜𝑝 − 𝑠𝐿𝑒𝑓𝑡𝑛| (26) 

𝑝𝑇𝑜𝑝𝐿𝑒𝑓𝑡𝑛 = 𝑝𝑇𝑜𝑝𝐿𝑒𝑓𝑡𝑡𝑒𝑚𝑝 + 𝑠𝐿𝑒𝑓𝑡𝑛 (27) 

Finally, it has 64 instances of a comparison circuit (Figure 41) for the final 

decision step, which compares a total of height 3-uples composed of pLeft, pTopn and 

pTopLeftn, and selects the appropriate reference samples as output. 

The Paeth Unit takes width cycles to predict an entire block, and it follows the 

same prediction order as the Smooth Unit (Vertical) (see Figure 39). 
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Figure 40 Paeth calculation circuit. Bottom part is replicated 64 times. 

 

Figure 41 Paeth comparison circuit. This is replicated 64 times. 
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AboveRow references. This way, the DC Unit takes height cycles to add all LeftCol 

references and width cycles to add all AboveRow references. For asymmetrical blocks, 

one side finishes first and waits for the other, which means the total number of cycles 

needed is the largest between height and width. 

The second part (bottom half of Figure 42) performs the following operations: (i) 

divides the left accumulator by height to obtain the average of LeftCol, (ii) divides the 

right accumulator by width to obtain the average of AboveRow, and (iii) adds the values 

stored in the accumulators and divides the result by width+height to obtain the overall 

average. The choice of which average to use as the DC Unit output (including the bit 

depth average) depends on the availability of adjacent reference samples, selected 

using the leftAvailable and aboveAvailable control flags. 

 

Figure 42 DC Unit. 
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6.2.4 Recursive-based-filtering Multifilter Unit 

This prediction unit is based on a Unified Multifilter Prediction Unit (UMPU), as 

illustrated in Figure 43, which can apply the five RBF modes to a single 4×2 subblock. 

The coefficients from Table 6 were rearranged in a way that allows maximum 

reuse of subexpressions for all coefficients applied to the same input. That is, the first 

coefficient of each set in Table 6 is applied to the first reference L[0], the second 

coefficient of each set is applied to the second reference L[1], and so on. The resulting 

sets of coefficients grouped in function of L are listed in Table 16. 

This way, the UMPU has seven Parallel Multiplierless Multiplication Units 

(PMMU), one for each set of coefficients associated with each of the seven references. 

The PMMUs are designed as shift-add trees, in a similar way as described SPMUs 

from the Smooth Units, but the resulting shift-add trees are much less complex in this 

case because the coefficient sets from Table 16 are composed of a small number of 

small integers. 

 

Figure 43 Unified multifilter prediction unit. 
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Table 16 List of coefficients used by the parallel multiplierless multiplication units 

PMMU 
for… 

Coefficients Set 
Size of 

Set 

L[0] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12} 11 

L[1] 

{1, 2, 3, 4, 6, 8, 10, 12, 14, 16} 10 L[2] 

L[3] 

L[4] {4, 6, 8, 10, 12, 14, 16} 7 

L[5] 
{1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 

16} 
13 

L[6] {2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 16} 12 

 

The seven outputs of each PMMUs are the scaled references L, which are then 

used as input by eight Filtering Units, each responsible for generating one predicted 

sample by applying a 7-tap filter to the scaled references. 

The Recursive-based-filtering Multifilter Unit has eight instances of UMPUs in a 

combinational setting. This long combinational path represents the critical path of the 

proposed architecture. This unit can process two rows of 32 samples per cycle, which 

means it finishes faster than the other predictions units, and then stays idle, for blocks 

with a width of 32 or less. The prediction order for this unit is illustrated in Figure 44. 

 

Figure 44 Prediction order of the Recursive-filtering-based multifilter unit for blocks of size 4×4. If 
the block width is less than 64, two entire rows will be processed per cycle, otherwise, two entire rows 
will be processed every two cycles. 

It is important to mention that the RBF modes are only allowed for luminance 

blocks, hence this prediction unit stays idle during the prediction of chrominance 

blocks, which represents 50% of the blocks for the 4:2:0 color subsampling considered 

in this work. 
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6.3 Shared Control Unit 

The control unit shared between the directional and non-directional prediction 

modules is a Finite State Machine (FSM), responsible for making all combinations of 

block partitions allowed by AV1, by exploring the partition tree (see Figure 3) using a  

Depth-first Search (DFS) approach, as described in Table 17. 

In this table, the variable N indicates the partition size, which can be one of the 

values from the set {4, 8, 16, 32, 64}. The variable ID[N] indicates if the sub-partition 

of size N×N is the first, second, third, or fourth from a parent partition of size 2N×2N 

(see SPLIT mode in Figure 3). 

In the first state, “64_START”, a new 64×64 SB is received and the prediction 

modules immediately execute all prediction modes on it. For clarity, all other states 

were named after the AV1 partition modes (see Figure 3), where the suffix N is a 

generic way to describe a set of states for different partition sizes. 

The state “N_SPLIT” controls the DFS traversal by doing the following: (i) if the 

current sub-partition is not the fourth within a SPLIT mode, switch to the next  

sub-partition after all lower branches of the current sub-partition have been explored, 

(ii) if the current sub-partition is the fourth and the size is not 32×32, backtrack to the 

upper level, (iii) if the current sub-partition is the fourth and the size is 32×32, reset the 

machine by going back to the state 64_START. The state “N_SPLIT” is also executed 

to explore a lower level of the tree after all prediction modes have been executed for a 

given partition bigger than 4×4. 

The remaining states are responsible for executing the intra prediction on blocks 

that compose a partition of size N×N. For example, the “8_HORZ_A” state operates 

on an 8×8 partition and executes the whole prediction process three times: twice for 

4×4 blocks and once for an 8×4 block. 

By following this control scheme, the directional and non-directional intra 

prediction modules can predict all 1,869 possible blocks inside one 64×64 SB in 7,108 

clock cycles. 
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Table 17 Finite state machine description of the shared control unit 

Current State Prediction Information and Next State 

64_START 
Receives a 64×64 superblock. 

Next state: 64_NONE. 

N_SPLIT 

If ID[N] < 4: 

    ID[N]: ID[N] + 1 

    Next State: N_NONE 

Otherwise, if N = 32 and ID[32] = 4: 

    Next State: 64_START 

Otherwise, if N < 32 and ID[N] = 4: 

    Next State: 2N_SPLIT 

N_NONE 

Predicts one N×N block. 

 

If N > 4: 

    Next State: N_VERT 

Otherwise, if N = 4: 

    Next State: 4_SPLIT 

N_VERT 
Predicts two N/2×N blocks. 

Next state: N_HORZ 

N_HORZ 
Predicts two N×N/2 blocks. 

Next state: N_VERT_A 

N_VERT_A 
Predicts two N/2×N/2 blocks and one N/2×N block. 

Next state: N_VERT_B 

N_VERT_B 
Predicts one N/2×N block and two N/2×N/2 blocks. 

Next state: N_HORZ_A 

N_HORZ_A 
Predicts two N/2×N/2 blocks and one N×N/2 block. 

Next state: N_HORZ_B 

N_HORZ_B 

Predicts one N×N/2 block and two N/2×N/2 blocks. 

 

If N > 8: 

    Next State: N_VERT_4 

Otherwise, if N = 8: 

    ID[4]: 0 

    Next State: 4_SPLIT 

N_VERT_4 
Predicts four N/4×N blocks. 

Next state: N×N_HORZ_4 

N_HORZ_4 

Predicts four N×N/4 blocks. 

ID[N/2]: 0 

Next state: N/2_SPLIT 

6.4 SSE-based Decision Design 

Considering that, together, the intra prediction designs produce 66 candidates, 

there must be a local decision to reduce the number of candidates to be sent to the 

RDO. In this work, an SSE-based decision, commonly found in many encoders, was 

implemented, which is composed by an array of SSE trees for each candidate working 

in parallel, followed by a comparator responsible for selecting the four best candidates. 

Figure 45 illustrates an example of an SSE tree of size four, composed of four 

subtractors, four multipliers, and three adders of varying bit widths. In this example, 

four samples from a candidate can be compared with four original samples, in parallel 

and the accumulator register in the end allows the circuit to be used for blocks of any 

size. For example, the block matching of a candidate of size 4×4 comparing four 
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samples per cycle would take four cycles. In this work, however, to keep up with the 

throughput of the intra prediction modules, SSE trees of size 64 are used instead. Each 

SSE tree of this size requires 64 subtractors, 64 multipliers, and 63 adders. 

 

Figure 45 Example of an SSE tree of size 4. 

The comparator used in the base design has to select the lowest four SSEs 

resulting from the SSE trees. This is done with a tree arrangement of 2:1 comparators, 

forming a 66:1 comparator that selects the lowest SSE among its inputs in one cycle. 

The inputs of the 66:1 comparator come from a buffer and, after each cycle,  

the selected lowest SSE is replaced in the buffer for a maximum SSE value, in a way 

that allows the next lowest to be selected in the following cycle, thus taking four cycles 

to select the four lowest SSE values. The comparator loop is called a 66:4 comparator. 

Figure 46 shows the structure of a 2:1 comparator (left) and a simpler notation for a 

2:1 comparator (right), where black lines are signals and colored lines are comparators. 

Figure 47 shows the tree arrangement for a 66:1 comparator illustrated in the 

abovementioned notation. 

 

 

Figure 46 Left: 2:1 comparator. Right: Simplified notation for the same circuit. 
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Figure 47 66:1 comparator with seven levels of depth. Each color represents a level of 2:1 
comparators. 

Block matching units in dedicated hardware designs can use a significant 

number of resources if not designed efficiently. In the HEVC intra prediction module 

proposed by Corrêa et al. (2017), the SAD trees were responsible for 37% of the gate 

count of the complete design. Therefore, this SSE-based design is also expected to 

consume an expressive number of resources, both in terms of area and power, unless 

optimized. 

6.5 Design Optimization with TdFDM and MaSBM Algorithms 

The following sections present design optimizations for the directional and non-

directional intra prediction modules, based on the algorithms proposed in  

Chapter 5. 

6.5.1 TdFDM Optimization 

For this work, the proposed fast mode decision algorithm was implemented in 

hardware in a purely combinational way. This means that the decision of which modes 

will be included in the RD-list is done in only one cycle. 

Figure 48 illustrates the proposed fast mode decision design (CORRÊA et al., 

2022b). It shows that to find the dominant direction d, all eight Sd values are computed 

in parallel by the green-colored processing units. Figure 24 shows that eight sums can 

be shared between d={203, 180, 157}, and eight sums can be shared between  

d={113, 90, 67}. Thus, to reduce the number of required adders, these redundant sums 

were named, respectively, h0 to h7 (horizontal pairs) and v0 to v7 (vertical pairs). 
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56 Non-directional 
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Figure 48 Texture-based fast mode decision design. 

Figure 49 illustrates the circuit of the processing unit for the Sd values of d=203, 

d=180, and d=157, using the redundant sums h0 to h7 as input. The same circuit is 

replicated for the processing of d=67, d=90, and d=113, respectively, but using the v0 

to v7 signals as input instead. The circuits for the processing of d=45 and d=135 (not 

shown) share the same design between them, but no redundant operations are shared 

in these circuits. 

It can be observed in Figure 49 that right after the square operators, to avoid 

the use of dividers that would be required for the non-power of 2 divisions, 

multiplications in the form of shift-adds are used instead. These multiplications use the 

least common multiple possible for 1 ≤Nd,k ≤4, which is 12. This way, instead of dividing 

by Nd,k, the proposed circuit multiplies the signal by 12/Nd,k (12, 6, 4, and 3). 
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Figure 49 Processing unit for d=203, d=180 and d=157. 

The computed 24-bit Sd values (Sd203, Sd180, Sd157, Sd67, Sd90, Sd113, 

Sd45, and Sd135) and their 3-bit id signals are sent to a comparator, which selects the 

highest value as the dominant direction. The output of the comparator is the id signal 

of the dominant direction (best_d_id), which is used as the selection signal for four 

different multiplexers. 

All the multiplexers receive the eight Sd values as input, but in different orders. 

This way, based on the same selection signal, the multiplexers select the Sd of the 

dominant direction (best_d), the orthogonal direction (orth_d), and the two adjacent 

directions (adj1_d and adj2_d). 

The orth_d value is subtracted from the best_d value, then the result is right 

shifted by 15 and, finally, a test is done to check if the result is zero using several 1-bit 
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OR gates and one NOT gate, resulting in the is_smooth output. The adj1_d is 

subtracted from adj2_d and the most significant bit is sent as the best_adj output. 

The TbFMD design is placed before the intra prediction modules themselves, 

and the outputs best_d_id (3 bits), best_adj (1 bit), and is_smooth (1 bit) are sufficient 

for disabling certain directional intra prediction units using operand isolation to prevent 

gate switching from arithmetic operations, and clock gating to prevent changing of the 

state of the associated registers, according to the RD-lists listed in Table 11. 

Since, in the worst-case scenario, the intra prediction module optimized with 

TbFMD produces 14 candidates, the SSE-based final decision can be heavily reduced. 

A TbFMD-optimized design does not use an array of 64 SSE trees and a 66:1 

comparator, as described in Section 6.4, but instead uses only 14 SSE trees and a 

much smaller 14:1 comparator, which is illustrated in Figure 50. 

 

Figure 50 14:1 comparator with four levels of depth. 

6.5.2 MaSBM Optimization 

This optimization adds an extra control unit exclusive to the SSE trees, which is 

responsible for applying the operand isolation low-power technique to the inputs of 

each tree. Since each tree is dedicated to a single prediction mode, each can be 

controlled according to the subsampling mask of that specific mode. 

Each position of a subsampling mask has only two states, on and off.  

For example, if an 8×8 block was to be compared with an SSE tree controlled by the 

subsampling mask shown in Figure 51: In cycle 1, only the first, sixth, and eighth 
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subtractor, and some operators from deeper levels of these branches would remain 

active, whilst the other five subtractors would receive zero as input. In cycle 2, only the 

fifth, seventh, and eighth subtractors would operate with real inputs. For the next six 

cycles, it can be observed that operations disabled in the mask are very likely to remain 

disabled, which makes the operand isolation effective in reducing dynamic switching, 

and in fact, in this example, two columns are never considered in the SSE calculation. 

 

Figure 51 Example of 8×8 subsampling mask to be applied to an SSE tree. 

It is also important to mention that for blocks smaller than 64 samples, the 

unused branches of an SSE tree also stay disabled using the same low-power 

technique. 

For maximum optimization in terms of power reduction, the MaSBM parameters 

adopted are HEA=25% and LEA=50%. Therefore, with this degree of subsampling, 

only 25% of the predicted samples of each candidate will be considered in block 

matching. 

An RTL diagram of the complete design, optimized with both TbFMD and 

MaSBM is illustrated in Figure 52. When compared to the base design shown in  

Figure 33, it can be observed that each of the 14 SSE trees is controlled individually 

by a MaSBM control unit, which also controls the comparison loop. This MaSBM unit 

receives the RD-list from TbFMD as input, which is important because: (i) although the 

first ten SSE trees are always used for the same non-directional modes, the last four 

SSE trees operate with varying subsets of the directional modes, and (ii) in case of 

smooth blocks, no directional candidates are generated and, in this case, the MaSBM 

control disables these trees completely. 

Cycle 1 →
Cycle 2 →
Cycle 3 →
Cycle 4 →
Cycle 5 →
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Figure 52 Intra prediction hardware design optimized with TdFMD and MaSBM. 

6.6 Synthesis Results and Discussion 

All hardware designs presented in the previous sections were fully described in 

Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) 

and synthesized to the Taiwan Semiconductor Manufacturing Company (TSMC) 40nm 

standard-cells library, simulating the inputs using a switching rate of 20%. 

The first intra prediction designs for the AV1 encoder in the literature were 

developed during this Ph.D. project, and to this date, there are no similar works in the 

literature. Thus, a fair comparison of the synthesis results with related works cannot 

be presented. However, intra prediction designs have been published in the past for 

older video coding formats. The works from Palomino et al. (2012), Zhou, Ding and Yu 

(2013), Pastuszak and Abramowski (2016), Fang, Chen and Chang (2016), Min, Xu, 

and Cheung (2017), and Corrêa et al. (2017) present intra prediction designs for the 

H.265 standard, whereas works from Huang et al. (2005), Jin, Jung and Lee (2007), 

Wang et al. (2007), Kuo and Lin (2008), Lin et al. (2009), Lin et al. (2010) present 

architectures for the H.264 standard. 
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It is important to mention that none of the architectures proposed for older 

formats can be used for an AV1 encoder since the algorithms and bitstream 

specifications are very different. Also, both the H.265 and H.264 intra prediction 

modules are much less complex than their AV1 counterpart. The H.265 intra prediction 

allows 35 modes (two of which are non-directional) and supports 4×4, 8×8, 16×16 and 

32×32 block sizes, whereas the H.264 intra prediction allows nine modes (one non-

directional) for the 4×4 block size and four modes (two non-directional) for the 16×16 

block size. 

Due to the abovementioned gap in complexity between AV1 and older codecs, 

and also because these designs use different technologies in the synthesis process,  

a fair comparison between these works is also not viable. 

6.6.1 Results for the Base Intra Prediction Design 

As mentioned in Section 6.3, the non-directional and directional intra prediction 

modules operating according to the shared control unit can predict all 1,869 possible 

subblocks inside a 64×64 SB in 7,108 clock cycles. 

To allow real-time processing, three target throughputs were considered in this 

work: UHD 4K at 30 fps, FHD 1080p at 60 and 30 fps. Thus, for each case the 

processing of 91,124; 45,560 and 22,780 blocks of 64×64 are required per second, 

respectively, leading to target frequencies of 648, 324, and 162 MHz, respectively. The 

abovementioned target frequencies were calculated using eq. (28), where the 

multiplication by the constant 1.5 is done to consider the additional chrominance 

samples in the 4:2:0 color subsampling scheme, and the constant 4,096 represents 

the number of samples belonging to a 64×64 SB. 

𝐹𝑟𝑒𝑞 =
𝐹𝑟𝑎𝑚𝑒𝑊𝑖𝑑𝑡ℎ × 𝐹𝑟𝑎𝑚𝑒𝐻𝑒𝑖𝑔ℎ𝑡 × 𝑓𝑝𝑠 × 7108 × 1.5

4096
 (28) 

Since this work focuses on the intra prediction module only, the delay of the 

other encoder modules cannot be estimated. Therefore, the presented target 

frequencies consider the intra prediction modules only. 

Furthermore, it is very important to mention that this means the proposed design 

implements a partition tree exploration that includes every single possibility, i.e., no 

fast decision for early termination is used, as this is not part of the scope of this work. 

Therefore, the following results are the worst-case scenario possible, since the use of 
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an early termination algorithm in block partitioning would, in average, result in a much 

lower number of cycles needed for each SB. There are no other known designs in the 

literature that implement a full exploration of the block partitioning tree. 

Table 18, Table 19, Table 20, and Table 21 list the power dissipation, energy 

use, and gate count results for the unoptimized versions of the non-directional intra 

prediction module, directional intra prediction module, SSE-based decision module, 

and integrated base design (total), respectively. 

Table 18 Synthesis results for the unoptimized non-directional intra prediction module 

Target 
Throughput 

Frequency 
(MHz) 

Power 
(mW) 

Energy 
(pJ/sample) 

Area 
(2NAND 
KGates) 

1080p at 30 fps 162 32.32 0.346 286.4 

1080p at 60 fps 324 50.03 0.268 287.0 

UHD 4K at 30 fps 648 75.33 0.202 348.5 

Table 19 Synthesis results for the unoptimized directional intra prediction module 

Target 
Throughput 

Frequency 
(MHz) 

Power 
(mW) 

Energy 
(pJ/sample) 

Area 
(2NAND 
KGates) 

1080p at 30 fps 162 21.65 0.232 510.5 

1080p at 60 fps 324 34.54 0.185 512.9 

UHD 4K at 30 fps 648 79.53 0.213 601.9 

Table 20 Synthesis results for the unoptimized SSE-based decision module 

Target 
Throughput 

Frequency 
(MHz) 

Power 
(mW) 

Energy 
(pJ/sample) 

Area 
(2NAND 
KGates) 

1080p at 30 fps 162 18.33 0.196 255.01 

1080p at 60 fps 324 30.42 0.163 279.97 

UHD 4K at 30 fps 648 51.08 0.137 323.14 

Table 21 Synthesis results for the unoptimized base design (total) 

Target 
Throughput 

Frequency 
(MHz) 

Power 
(mW) 

Energy 
(pJ/sample) 

Area 
(2NAND 
KGates) 

1080p at 30 fps 162 72.30 0.774 1,051.91 

1080p at 60 fps 324 114.99 0.616 1,079.87 

UHD 4K at 30 fps 648 205.94 0.552 1,273.54 

 

Table 18 and Table 19 show that, for the highest throughput target, the power 

dissipation and energy efficiency of the non-directional and directional prediction 

modes are roughly the same, although the directional intra prediction module required 

72% more gates in its design. 

Moreover, regarding the non-directional intra prediction module, it is relevant to 

observe that 69.2% of its power dissipation comes from the RBF Multifilter Unit alone. 

However, this result is acceptable, because this unit performs five of the ten non-
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directional modes. On the other hand, this unit’s gate count represents only 19% of the 

total, because of the massive subexpression reuse between different RBF modes. 

Furthermore, the RBF Multifilter Unit represents the critical path of the proposed 

design, due to its very high data dependency. The use of eight UMPUs connected 

serially results in a combinational critical path that is acceptable for the target 

throughput of UHD 4K at 30 fps, to increase the throughput even more, this unit would 

require UMPUs working in a pipelined manner, and the control unit would have to be 

redesigned to keep all units synchronized. 

Regarding the directional intra prediction module, the power dissipation, energy 

efficiency, and gate count of all DMPUs for normal-sized arrays are close to the 

average, except of course for modes with horizontal, vertical, and diagonal angles, 

which do not require any interpolation. This result was expected since all the directional 

intra prediction modes follow one universal algorithm. 

It can also be observed, in Table 21, that even though the power dissipation 

increases as the target frequency increases, the energy efficiency improves, since the 

energy use per predicted sample decreases. 

Finally, regarding the SSE-based decision module, it can be observed that its 

cost is very high when compared to the total results. For the highest throughput target, 

this decision module alone requires 25.37% of the total number of gates and is 

responsible for 24.8% of the total power. 

6.6.2 Results for the Optimized Intra Prediction Modules 

The results presented in this section are divided into two distinct versions: one 

optimized only with TbFMD, and the other optimized with both TbFMD and MaSBM. 

Table 22 lists the power dissipation, energy use, and gate count results for the 

directional intra prediction module optimized with TbFMD, to be compared directly 

against results from Table 19. It can be observed that, for the highest throughput target, 

the extra components of TbFMD increased the gate count by 17.1%, but reduced the 

power dissipated by this module by 88%, collaborating significantly with the energy 

efficiency of the whole design. Therefore, the TbFMD optimization offers an excellent 

trade-off of a small impact in gate count and an expressive gain in power reduction and 

energy efficiency. 
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Table 22 Synthesis results for the TbFMD-optimized directional intra prediction module 

Target 
Throughput 

Frequency 
(MHz) 

Power 
(mW) 

Energy 
(pJ/sample) 

Area 
(2NAND 
KGates) 

1080p at 30 fps 162 3.03 0.032 645.9 

1080p at 60 fps 324 4.49 0.024 632.9 

UHD 4K at 30 fps 648 9.54 0.026 734.9 

 

Table 23 lists the results for the SSE-based decision optimized by the TbFMD, 

to be compared directly against Table 20. The use of TbFMD reduces the number of 

total candidates from 66 to 14, in the worst-case scenario, allowing for a much smaller 

number of SSE trees and a simpler SSE comparator. It can be observed that, for the 

highest throughput target, the downsizing of this module resulted in a reduction of 78% 

in power dissipated and 71% in the number of gates, which makes this decision module 

more viable than its unoptimized counterpart. 

Table 23 Synthesis results for the TbFMD-optimized SSE-based decision module 

Target 
Throughput 

Frequency 
(MHz) 

Power 
(mW) 

Energy 
(pJ/sample) 

Area 
(2NAND 
KGates) 

1080p at 30 fps 162 3.84 0.041 64.75 

1080p at 60 fps 324 6.08 0.033 75.59 

UHD 4K at 30 fps 648 11.23 0.030 93.71 

 

Table 24 also lists the results for the SSE-based decision, but optimized with 

both TbFMD and MaSBM. The use of MaSBM adds extra control components to the 

array of SSE trees to reduce its power dissipated with the low-power operand isolation 

technique, based on subsampling masks. It can be observed that when compared to 

the TbFMD-optimized version (Table 23), a reduction of 60% in power dissipated was 

achieved at the cost of an increase of 21% in the number of gates. When compared to 

the unoptimized version (Table 20), it achieved a very expressive power reduction of 

91.2% and a reduction of 71% in the number of gates. 

Table 24 Synthesis results for the TbFMD-MaSBM-optimized  
SSE-based decision module 

Target 
Throughput 

Frequency 
(MHz) 

Power 
(mW) 

Energy 
(pJ/sample) 

Area 
(2NAND 
KGates) 

1080p at 30 fps 162 1.21 0.013 77.05 

1080p at 60 fps 324 2.55 0.014 89.95 

UHD 4K at 30 fps 648 4.49 0.012 113.39 
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Table 25 lists the synthesis results for the complete and fully-optimized intra 

prediction design developed during this Ph.D. project, to be directly compared against 

the unoptimized version from Table 21. For the highest throughput target, a modest 

reduction of 6% in the number of gates allowed for a very significant reduction of 56.6% 

in total power dissipated. In this final design, it is important to note that most of the 

power dissipated comes from the non-directional intra prediction design, which is not 

optimized in any way by any of the proposed algorithms. 

Table 25 Synthesis results for fully-optimized design (total) 

Target 
Throughput 

Frequency 
(MHz) 

Power 
(mW) 

Energy 
(pJ/sample) 

Area 
(2NAND 
KGates) 

1080p at 30 fps 162 36.56 0.392 1,009.35 

1080p at 60 fps 324 57.07 0.306 1,009.85 

UHD 4K at 30 fps 648 89.36 0.239 1,196.79 

 

And, finally, Table 26 compares the unoptimized base design from Table 21 and 

the fully optimized design from Table 25 in terms of total power, dynamic power, and 

leakage power. In this comparison, the highest target throughput (UHD 4K at 30 fps) 

was considered. In the unoptimized design, a leakage power of 3.52 mW was 

observed, representing 1.71% of the total power. In the fully-optimized design, 

however, after the removal of an expressive number of SSE trees and after the 

insertion of the TbFMD and MaSBM modules, a leakage power of 3.41 mW was 

observed, representing a total of 3.82% of the total power. By comparing the dynamic 

power of both designs, it can be seen that the optimization strategies significantly 

reduced the switching activity of the circuit. 

Table 26 Detailed power results for the unoptimized and fully optimized designs 

Design 
Total 

Power 
Dynamic 

Power 
Leakage 
Power 

Unoptimized base design 205.94 mW 
202.42 mW 
(98.29%) 

3.52 mW 
(1.71%) 

Fully optimized design 89.36 mW 
85.95 mW 
(96.18%) 

3.41 mW 
(3.82%) 
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7 CONCLUSIONS 

In this chapter, this thesis is concluded with a summary of the main 

achievements, as well as some directions for future research. 

The research work developed in the scope of this thesis contributed to novel 

solutions for reducing the number of operations in the intra prediction stage of modern 

video encoders. The study included extensive experiments using the AV1 video format, 

which was still under development when this Ph.D. project started. 

At the beginning of the research work presented in this thesis, there was no 

work published in the technical literature focusing on the new algorithms introduced in 

AV1 during its development, and studies of compression efficiency and computational 

complexity were not available either. This way, this project started with the extensive 

study of the reference software during its development, of draft documents and 

discussion boards, which led to a major contribution of this project: the first combined 

overview of the AV1 and VVC features, algorithmic solutions, and hardware designs 

(CORRÊA et al., 2021). 

As soon as the first release version of the AV1 specification was published, 

various contributions were made in the form of hardware implementations of the intra 

prediction algorithms (CORRÊA et al., 2019a; 2019b; 2020a; 2020b, NETO et al., 

2020; 2021a; 2021b; 2022). 

With enough parts of the intra prediction module of the encoder developed in 

hardware, the focus of this project shifted towards creating heuristic-based algorithms 

that could be used in either software or hardware solutions. This study led to the 

algorithmic contributions of this project, a fast mode decision algorithm that evaluates 

the characteristics of input block texture to reduce the number of intra prediction modes 

executed (CORRÊA et al., 2022b), and a mode-adaptive subsampling algorithm to 

reduce the number of arithmetic operations in block matching (CORRÊA et al., 2022a). 

After achieving very positive results in the algorithm development, the focus of 

this project shifted back to hardware development, and two designs for the heuristic-

based algorithms were made and integrated into the intra prediction modules that were 

developed in the early stages of this project (CORRÊA et al., 2022b). 

The software results were very satisfactory in terms of encoding efficiency and 

encoding time and, on average, the algorithms showed their best performance for UHD 

resolutions. The hardware results were also satisfactory in terms of area, power, and 
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energy efficiency, the latter being paramount in a world overwhelmed by battery-

powered devices. 

Considering all the positive results presented in this work, it is concluded that 

the thesis proposed in this project, “It is possible to reduce the computational effort of 

the AV1 intra-picture prediction by developing hardware-friendly heuristic-based 

algorithms and, then, generate efficient hardware designs able to process ultra-high-

definition videos in real-time.”, proved to be valid. 

In future works, there are two clear paths to be followed: 

1. The adaptation of the algorithms presented in this work to fit other state-of-

the-art video formats, such as VVC, which comprises algorithms that are 

very different from the ones in AV1, but still follows the same block-based 

prediction in the spatial domain. 

2. Further optimization of the MaSBM algorithm in the form of also applying the 

subsampling masks to the prediction process of candidates. In other words, 

if only a subset of the predicted samples is needed per candidate for block 

matching, that means that only that subset needs to be predicted, with a full 

prediction occurring only for the candidates selected to be passed forward 

to the RDO process. This should lead to massive gains in the intra prediction 

stage itself, as the number of arithmetic operations needed for the prediction 

of candidates would be reduced proportionally to the degree of subsampling 

used. 

3. The replacement of the SSE metric in the MaSBM in favor of the less 

demanding SAD metric. 

4. The development of a heuristic-based algorithm capable of optimizing the 

non-directional intra prediction stage of the encoder, which was not affected 

by any of the algorithms proposed in this work. 
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Appendix A – Experimental Setup 

When this research project started, the AV1 video format was still in stage of 

development, and there were no official guidelines on how to conduct experiments with 

it. On the other hand, common test conditions for experiments with the MPEG and 

VCEG standardized formats were available and in a very mature stage. 

Because of that, the experiments conducted in this research project used a set 

of test sequences recommended by the Joint Video Experts Team (JVET), in the JVET-

W2017-v1 document (KARCZEWICZ; YE, 2021), known as Common Test Conditions 

(CTC). According to the CTC, the Classes “D”, “F” and “Text and Graphics with Motion” 

(TGM) are not to be included by default in the test results, unless low resolutions are 

desired (class D with 240p videos) or digital screen content (classes F and TGM). 

Therefore, those three classes were left out of the experiments of this Ph.D. project. 

Table 27 lists the test sequences used. 

Table 27 Test sequences used in the experiments conducted 

Class Resolution Sequence 
Frame 
Count 

Frame 
Rate (fps) 

Bit Depth 

A1 
3840×2160 
(UHD 4K) 

Tango2 294 60 10 

FoodMarket4 300 60 10 

Campfire 300 30 10 

A2 
3840×2160 
(UHD 4K) 

CatRobot 300 60 10 

DaylightRoad2 300 60 10 

ParkRunning3 300 50 10 

B 
1920×1080 

(1080p) 

MarketPlace 600 60 10 

RitualDance 600 60 10 

Cactus 500 50 8 

BasketballDrive 500 50 8 

BQTerrace 500 60 8 

C 
832×480 
(480p) 

BasketballDrill 500 50 8 

BQMall 600 60 8 

PartyScene 500 50 8 

RaceHorses 300 30 8 

E 
1280×720 

(720p) 

FourPeople 600 60 8 

Johnny 600 60 8 

KristenAndSara 600 60 8 

 

When a CTC document got released by AOMedia (ZHAO, 2021), the 

parameters used in libaom 2.0.0 for the intra prediction experiments became: 

• --cpu-used=0    (Slowest speed setting) 

• --passes=1    (Single pass) 

• --end-usage=q    (Rate-control based in QP) 

• --cq=x     (Sets the QP as x) 
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• --kf-min-dist=0    (Disables inter prediction) 

• --kf-max-dist=0    (Disables inter prediction) 

• --enable-tpl-model=0   (Disables this feature) 

• --enable-keyframe-filtering=0  (Disables this feature) 

• --deltaq-mode=0    (Disables this feature) 

Also, according to the AOMedia CTC, all the encoding quality results presented 

in the form of BD-BRYUV in this thesis are computed using the frame-averaged 

PSNRYUV, where the PSNR for each channel is computed separately and are then 

combined according to eq. (29). 

𝑃𝑆𝑁𝑅𝑌𝑈𝑉 =
14 × 𝑃𝑆𝑁𝑅𝑌 + 𝑃𝑆𝑁𝑅𝑈 + 𝑃𝑆𝑁𝑅𝑉

16
 (29) 
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The Ph.D. project presented in this thesis resulted in 16 peer-reviewed 

publications, which are listed below. Publications in small regional conferences were 

omitted purposely. 
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