
UNIVERSIDADE FEDERAL DE PELOTAS
Technology Development Center

Postgraduate Program in Computing

Thesis

A Graph Grammar Formalism for Software Transactional Memory Correctness

Diogo João Cardoso

Pelotas, 2023

Diogo João Cardoso

A Graph Grammar Formalism for Software Transactional Memory Correctness

Thesis presented to the Postgraduate Program
in Computing at the Technology Development Cen-
ter of the Federal University of Pelotas, as a par-
tial requirement to achieve the PhD degree in
Computer Science.

Advisor: Prof. Dr. Luciana Foss
Coadvisor: Prof. Dr. André Rauber Du Bois

Pelotas, 2023

Universidade Federal de Pelotas / Sistema de Bibliotecas
Catalogação na Publicação

C268g Cardoso, Diogo João
CarA graph grammar formalism for software transactional
memory correctness / Diogo João Cardoso ; Luciana Foss,
orientadora ; André Rauber Du_Bois, coorientador. —
Pelotas, 2023.
Car138 f. : il.

CarTese (Doutorado) — Programa de Pós-Graduação em
Computação, Centro de Desenvolvimento Tecnológico,
Universidade Federal de Pelotas, 2023.

Car1. Graph grammar. 2. Formalism. 3. Software
transactional memory. 4. Correctness. I. Foss, Luciana,
orient. II. Du_Bois, André Rauber, coorient. III. Título.

CDD : 005

Elaborada por Simone Godinho Maisonave CRB: 10/1733

Diogo João Cardoso

A Graph Grammar Formalism for Software Transactional Memory Correctness

Thesis approved, as a partial requirement, to achieve the PhD degree in Computer
Science, Postgraduate Program in Computing, Technology Development Center,
Federal University of Pelotas.

Defense Date: April 6th, 2023

Examining Committee:
Prof. Dr. Luciana Foss (advisor)
Phd in Computer Science at Federal University of Rio Grande do Sul, Brazil.

Prof. Dr. Gerson Geraldo Homrich Cavalheiro
PhD in IT Systems and Communications at Grenoble Institute of Technology, France.

Prof. Dra. Juliana Kaizer Vizzotto
Phd in Computer Science at Federal University of Rio Grande do Sul, Brazil.

Prof. Dr. Rodrigo Geraldo Ribeiro
Phd in Computer Science at Federal University of Ouro Preto, Brazil.

ABSTRACT

CARDOSO, Diogo João. A Graph Grammar Formalism for Software Transactional
Memory Correctness. Advisor: Luciana Foss. 2023. 138 f. Thesis (Doctorate in
Computer Science) – Technology Development Center, Federal University of Pelotas,
Pelotas, 2023.

With the rising demand of multi-core systems, the usage of concurrent program-
ming has seen a growth lately. However, the development of correct and efficient
concurrent programs is notoriously challenging. A Software Transactional Memory
system (STM) provides a convenient programming interface for the programmer to
access shared memory without worrying about concurrency issues. STM allows
developing programs and reasoning about their correctness as if each transaction
executed atomically and without interleaving. In order to check the correctness of any
STM system, a formal description of the implementation’s guarantees is necessary.
There are many correctness conditions for transactional memory, many of them
involve the notion of a history of operations to the shared memory, some of which
use graphs as tools to help formalize the correctness process. The use of graphs in
STM formalism usually involves a depiction of dependencies and relations between
transactions and their operations. One correctness condition in particular, called
Opacity, uses a graph to represent conflicts between transactions in a history, and a
method that extrapolates whether or not that history execution is considered correct.

Graphs and graph transformations play a central role in the modeling of software
systems. These models are specified via a formalism that uses a high-level abstraction
that is independent of the platform, so the focus can be on the concepts rather than the
implementation of the system being formalized. In Graph Grammars (GGs), the modifi-
cation of graphs is specified via graph transformation rules, which schematically define
how a state of the system may be transformed into a new state. When formalizing
complex systems, GGs can take into account object-orientation, concurrency, mobility,
distribution, etc.

This thesis presents methodology to formalize STM algorithms using graph trans-
formations that includes a verification of the correctness of the executions. The goal
is not only to describe the algorithm procedures using production rules, but also in-
clude the steps necessary to apply the graph characterization of certain correctness
criteria. The methodology includes three main steps: a translation of the algorithm into
graph grammar, the method to generate histories and the test for correctness. Some
case studies are presented, such as the CaPR+ algorithm, which deals with partial
rollbacks. Another case study is the STM Haskell algorithm, which is more well known
and is used to compare the behavior between different correctness criteria applica-

tion. Finally, an alternative to the tool GROOVE, used for correctness verification, is
presented in the form of an Event-B model that includes the same graph formalism of
STM, but differs when dealing with the state space and proof of correctness test. Differ-
ently from other work that focuses on formalization of TM algorithms, the methodology
proposed deals with graphs in every step, not just in the correctness verification. This
results in a methodology that can take advantage of tools and features that focuses on
graph transformation and possibly be part of a more automated process for future TM
formalization.

Keywords: Graph Grammar. Formalism. Software Transactional Memory. Correctness.

RESUMO

CARDOSO, Diogo João. Um Formalismo de Gramática de Grafos para Corretude
de Memória Transacional de Software. Orientador: Luciana Foss. 2023. 138 f. Tese
(Doutorado em Computer Science) – Technology Development Center, Universidade
Federal de Pelotas, Pelotas, 2023.

Com a crescente demanda de sistemas multi-core, programação concorrente
tem visto um aumento em uso. Porém, desenvolver programas concorrentes que
sejam corretos e eficientes é algo notoriamente desafiador. Um sistema de Memória
Transacional de Software (MTS) provém uma interface de programação conveniente
para o programador acessar a memória compartilhada sem se preocupar com
problemas de concorrência. Um MTS permite desenvolver programas e raciocinar
sobre sua corretude como se cada transação fosse executada atomicamente e sem
intercalação. Para verificar a corretude de qualquer sistema MTS, uma descrição
formal das garantias de implementação é necessária. Existem diversas condições de
corretude para memória transacional, muitas delas envolvem a noção de história de
operações sobre a memória compartilhada, além disso, algumas usam grafos como
ferramentas para ajudar a formalizar o processo de correção. O uso de grafos no
formalismo MTS geralmente envolve uma representação de dependências e relações
entre transações e suas operações. Uma condição de corretude em particular,
chamada Opacidade, usa um grafo para representar conflitos entre transações em
uma história, e um método que extrapola se a execução da história é considerada
correta ou não.

Grafos e transformações de grafos desempenham um papel central na modelagem
de sistemas de software. Esses modelos são especificados usando um formalismo
que utiliza abstrações de alto nível independente da plataforma, de modo que o foco
pode estar nos conceitos e não na implementação do sistema que está sendo forma-
lizado. Nas Gramáticas de Grafos (GGs), a modificação de grafos é especificada por
meio de regras de transformação de grafos, que definem esquematicamente como um
estado do sistema pode ser transformado em um novo estado. Ao formalizar sistemas
complexos, os GGs podem levar em consideração orientação a objetos, concorrência,
mobilidade, distribuição etc.

Esta tese apresenta uma metodologia para formalizar algoritmos de memória tran-
sacional utilizando gramática de grafos e demonstrar a corretude de suas execuções.
O objetivo não é apenas descrever os procedimentos do algoritmo usando regras de
produção, mas também incluir os passos necessários para aplicar a caracterização
do grafo de certos critérios de corretude. A metodologia inclui três passos principais:
uma tradução do algoritmo para uma gramática de grafo, o método para gerar his-

tórias e o teste de corretude. Alguns estudos de caso são apresentados, como o
algoritmo CaPR+, que trata de rollbacks parciais. Outro estudo de caso é o algoritmo
STM Haskell, que é mais conhecido e é usado para comparar o comportamento entre
diferentes aplicações de critérios de corretude. Por fim, uma alternativa à ferramenta
GROOVE, utilizada para verificação de correção, é apresentada na forma de um mo-
delo Event-B que inclui o mesmo formalismo gráfico do MTS, mas difere ao lidar com o
espaço de estados e prova de corretude. Diferente de outros trabalhos que focam em
formalização de algoritmos de MT, a metodologia proposta lida com grafos em todos
os passos e não só durante o passao de verificação de corretude. Isso resulta em
uma metodologia que pode tirar vantagem de ferramentas e características que focam
em transformação de grafo e podem possivelmente fazer parte de um processo mais
automatizado para para formalizações de MT futuras.

Palavras-chave: Gramática de Grafos. Formalismo. Memória Transacional de Soft-
ware. Corretude.

LIST OF FIGURES

Figure 1 A history and its OPG graph. 25
Figure 2 A non-opaque history and its OPG graph. 26

Figure 3 Example of graph and its respective type graph. 31
Figure 4 Graph transformation rule with NACs. 34
Figure 5 Example of rule application. 36
Figure 6 Example of graph and transformation rule using GROOVE. 37
Figure 7 Example of transformation rule using GROOVE. 38

Figure 8 Local workspace data structures for a TM algorithm. 41
Figure 9 Global workspace data structures for a TM algorithm. 42
Figure 10 Log: list of snapshots of the shared memory. 45
Figure 11 Conflict Graph: list of Tran-objects. 46
Figure 12 Example of transaction code. 46
Figure 13 Graph representation of transactions used as input for the GG. . . . 47
Figure 14 Graph representation of global objects in the initial state of the GG. 47
Figure 15 Example of Type Graph of the GG. 48
Figure 16 Example of graph representation of a history. 49
Figure 17 Example of production rules for a Read Operation. 49
Figure 18 Example of production rules for a Write Operation. 50
Figure 19 Example of production rules for a Begin Operation. 51
Figure 20 Example of production rules for a Commit Operation. 51
Figure 21 Example of production rule for a lazy-versioning Commit Operation

divided in steps. 52
Figure 22 Example of production rules for a Commit and Abort with lazy ver-

sioning and eager conflict detection. 53
Figure 23 Labelled Transition System Simulation in the GROOVE tool. 54
Figure 24 Example of opaque history. 56
Figure 25 Conflict graph for an opaque history. 56
Figure 26 Example of production rules for the Conflict Graph Commit, Begin

and Read operation. 57
Figure 27 Production rules for the test of acyclicity in a conflict graph. 58

Figure 28 Event-B syntax example (Camille editor). 62
Figure 29 Type graph. 65
Figure 30 Initial state graph. 66
Figure 31 Begin operation in a single step. 66
Figure 32 Read production rule. 67

Figure 33 Write production rule. 68
Figure 34 Commit operation in a single step. 68
Figure 35 Abort production rule. 69
Figure 36 LoopStart rule: starts the Conflict Graph pathing process. 70
Figure 37 LoopStep rule: marks the path of the Conflict Graph. 70

Figure 38 Local workspace for CaPR+ algorithm. 85
Figure 39 Global List of Active Transactions (Actrans) 86
Figure 40 Type graph of CaPR+ algorithm. 86
Figure 41 Read from Shared Memory operation of CaPR+ algorithm. 87
Figure 42 Read from local copy operation of CaPR+ algorithm. 88
Figure 43 Rollback operation for one checkpoint of CaPR+ algorithm. 89
Figure 44 Example of transaction code and opaque history. 90
Figure 45 Conflict Graph for opaque history. 90
Figure 46 Initial state of two transactions, empty history and shared memory

for the GG. 91
Figure 47 Type Graph for the STM Haskell GG. 92
Figure 48 Production rules for a Begin operation. 93
Figure 49 Production rules for a Read operation. 94
Figure 50 Production rules for a Write operation. 94
Figure 51 Commit for the STM Haskell GG. 95
Figure 52 Abort for the STM Haskell GG. 96
Figure 53 Begin operation when a retry is triggered by an update. 96
Figure 54 History H1 generated by STM Haskell. 98
Figure 55 Conflict graphs resulted from execution of H1. 99

Figure 56 First step of Begin rule. 120
Figure 57 Second step of Begin rule. 120
Figure 58 Third step of Begin rule. 121
Figure 59 Fourth step of Begin rule. 121
Figure 60 Fifth and last step of Begin rule. 122
Figure 61 First step of Commit rule. 122
Figure 62 Second step of Commit rule. 123
Figure 63 Third step of Commit rule. 123
Figure 64 Fourth step of Commit rule. 124
Figure 65 Fifth and last step of Commit rule. 124

LIST OF ABBREVIATIONS AND ACRONYMS

TM Transactional Memory

STM Software Transactional Memory

TSO Total Store Order

CG Conflict Graph

GG Graph Grammars

GTS Graph Transformation System

LHS Left-Hand Side

RHS Right-Hand Side

SPO Single Pushout

DPO Double Pushout

NAC Negative Application Condition

LTS Labelled Transition System

CTL Computation Tree Logic

CONTENTS

1 INTRODUCTION . 15
1.1 Methodology . 16
1.2 Scientific contributions . 17
1.3 Structure . 18

2 TRANSACTIONAL MEMORY . 20
2.1 Transactions and Histories . 21
2.2 Properties of Transactional Memory . 22
2.3 Correctness Criteria . 22
2.3.1 Opacity . 23
2.3.2 Graph Characterization of Opacity . 24
2.4 Related works on TM correctness . 26
2.5 Final Remarks . 28

3 GRAPH TRANSFORMATION . 29
3.1 Algebraic Foundations of Graph Grammars 30
3.2 Visual representation . 37
3.3 Final Remarks . 38

4 TRANSLATING AN STM ALGORITHM INTO GG 40
4.1 STM Algorithm . 40
4.2 Graph Grammar . 46
4.2.1 Initial State and Type Graph . 47
4.2.2 Production Rules . 48
4.3 Generating Histories . 53
4.4 Correctness Criteria . 54
4.5 Computation Tree Logic . 57
4.6 Final Remarks . 58

5 EVENT-B ALTERNATIVE FOR CORRECTNESS VERIFICATION 60
5.1 Event-B Modeling . 61
5.2 GG for Transactional Memory . 65
5.2.1 Transactional operations . 65
5.2.2 LoopStart and LoopStep rules . 69
5.3 Event-B for Transactional Memory . 70
5.3.1 GG Type Graph and Initial State . 70
5.3.2 Begin Operation . 73
5.3.3 Read Operation . 75

5.3.4 Write Operation . 77
5.3.5 Commit Operation . 78
5.3.6 Abort Operation . 79
5.3.7 Conflict Graph . 80
5.4 Discussion . 81

6 APPLICATIONS FOR THE GG APPROACH 84
6.1 CaPR+ algorithm . 84
6.2 STM Haskell algorithm . 91
6.2.1 Type Graph . 92
6.2.2 Production Rules . 93
6.2.3 Retry Functionality . 95
6.2.4 Correctness Criterion . 96
6.2.5 Correctness Analysis . 98
6.3 Final Remarks . 100

7 CONCLUSION . 102

REFERENCES . 107

APPENDIX A SOFTWARE TRANSACTIONAL MEMORY ALGORITHMS . . . 115
A.1 Checkpointing and Partial Rollback . 115
A.2 Software Transactional Memory Haskell library 116
A.3 Transactional Locking 2 . 117

APPENDIX B TRANSLATION OF STM TO GG 119
B.1 Begin operation . 120
B.1.1 BeginLock rule . 120
B.1.2 BeginLoop1 rule . 120
B.1.3 BeginLoop1_Release rule . 121
B.1.4 BeginLoop2 rule . 121
B.1.5 BeginLoop2_Release rule . 121
B.2 Commit operation . 122
B.2.1 CommitLock rule . 122
B.2.2 CommitLoop1 rule . 123
B.2.3 CommitLoop1_Release rule . 123
B.2.4 CommitLoop2 rule . 124
B.2.5 CommitLoop2_Release rule . 124

APPENDIX C TRANSLATION OF GG TO EVENT-B 125
C.1 Begin operation . 126
C.1.1 BeginLock rule . 126
C.1.2 BeginLoop1 rule . 127
C.1.3 BeginLoop1_Release rule . 128
C.1.4 BeginLoop2 rule . 129
C.1.5 BeginLoop2_Release rule . 130
C.2 Commit operation . 132
C.2.1 CommitLock rule . 132
C.2.2 CommitLoop1 rule . 133
C.2.3 CommitLoop1_Release rule . 134
C.2.4 CommitLoop2 rule . 135

C.2.5 CommitLoop2_Release rule . 137

1 INTRODUCTION

To this day, the research and development of advances in multiprocessor program-
ming still try to leverage processing power of multi-core systems. The synchronization
of shared memory accesses such that safety and liveness properties are preserved is
an inherent challenge associated with multiprocessor algorithms. Safety ensures that
an algorithm is correct with respect to a defined correctness condition while liveness
ensures that the program threads terminate according to a defined progress guaran-
tee (PETERSON; DECHEV, 2017).

Transactional Memory (TM) provides a high level concurrency control abstraction
for executions of regions of code that access a shared memory. At language level,
TM allows programmers to define certain blocks of code to run atomically (HERLIHY;
MOSS, 1993), without having to define how to make them atomic. Also, at imple-
mentation level, TM assumes that all transactions are mutually independent, there-
fore it only retries an execution in the case of conflicts. There are benefits of using
TM over lock based systems, such as, composability (HARRIS et al., 2005), scalabil-
ity, robustness (WAMHOFF et al., 2010) and increase in productivity (PANKRATIUS;
ADL-TABATABAI, 2011). There are several proposals of implementations of TM: ex-
clusively Software (SHAVIT; TOUITOU, 1997), supported by Hardware (HERLIHY;
MOSS, 1993), or even hybrid approaches (DAMRON et al., 2006; MATVEEV; SHAVIT,
2015).

TM allows developing programs and reasoning about their correctness as if each
atomic block executes a transaction atomically and without interleaving with other
blocks, even though in reality the blocks can be executed concurrently. The TM runtime
is responsible to ensure correct management of shared state, therefore, correctness
of TM clients depends on a correct implementation of TM algorithms (KHYZHA et al.,
2018). A definition of what correctness is for TM becomes necessary when defining
a correct implementation of TM algorithms. Intuitively, a correct TM algorithm should
guarantee that every execution of an arbitrary set of transactions is indistinguishable
from a sequential run of the same set. Several correctness criteria were proposed in
the literature (GUERRAOUI; KAPALKA, 2008; DOHERTY et al., 2009; IMBS; RAYNAL,

16

2012; DOHERTY et al., 2013; LESANI; PALSBERG, 2014) and they rely on the concept
of transactional histories. Recent works on formal definitions for TM focuses on con-
sistency conditions (SIEK; WOJCIECHOWSKI, 2014; DZIUMA; FATOUROU; KANEL-
LOU, 2015; KHYZHA et al., 2018; BUSHKOV et al., 2018), fault-tolerance (HIRVE;
PALMIERI; RAVINDRAN, 2017; MARIĆ, 2017), and scalability (PELUSO et al., 2015;
CLEMENTS et al., 2017).

Of the several correctness criteria proposed for TM, opacity is very well defined
and known. As a correctness criterion, it requires all transactions including aborting
ones to agree on a single sequential global ordering of transactions. The definition
of opacity by Guerraoui; Kapalka (2008) even allows for some sub-classes: Conflict
Opacity (CO-Opacity) (KUZNETSOV; PERI, 2017), which only deals with committed
transactions; and Multi-version Conflict Opacity (MVC-Opacity) (KUMAR; PERI, 2015;
KUMAR; PERI; VIDYASANKAR, 2014) that introduces the notion of multi-versioned
variables to the shared memory.

Graphs are usually used in the context of transactional memory as a representation
of a happens-before relation during validation or model checking of correctness (AN-
JANA et al., 2019; DICKERSON et al., 2017; KUMARI; PERI, 2019; PETERSON;
DECHEV, 2017), or a graph characterization of logical dependencies that transactions
develop by accessing shared variables (LITZ et al., 2014; ZENG, 2020). Opacity and
its sub-classes use a graph characterization composed of a conflict graph that rep-
resents how the transactions relate to each other by some defined notion of conflict.
This conflict can be derived from operations in the total set of events occurred dur-
ing the transactions execution, or a more restrict set (only committed transactions, for
example). Most conflicts are defined in the context of correctness, so they are often
defined as the occurrence of two or more transactions that executed a combination at
least one read and one write to the same variable that resulted in inconsistencies in
the shared memory. A history, a sequence of transactional events that have access to
a shared memory, is considered correct if the conflict graph of its transactions presents
no cycles.

1.1 Methodology

This thesis proposes a methodology to define a Graph Grammar (GG) that repre-
sents a TM algorithm and demonstrates that, considering the notion of conflict intro-
duced by Guerraoui; Kapalka (2008), the algorithm only generates “correct” histories.
As an initial model and proof of concept, a GG was constructed and demonstrated that
from a single history execution it is possible to generate its conflict graph and evaluate
the correctness of the history. Then, this graph grammar was expanded to support an
entire TM algorithm that generates a set of histories and perform the same correctness

17

test. This thesis presents a methodology to translate an STM algorithm into a graph
grammar, which includes the correctness test, and some case studies of algorithms to
show the capabilities of the methodology. The aim of the graph grammar formalism is
to show that every execution of the algorithm observes a correct state of the shared
memory. Covering every execution means that it includes every possible sequence of
combinations of operations from the set of transactions. This is achieved by using a well
known tool for visual representation of graph grammars called GROOVE (RENSINK;
DE MOL; ZAMBON, 2023), that allows for a powerful logic to aid in the creation of
productions (set of rules that transform the state of the graph) with the help of generic
labels and quantifiers. Without the use of GROOVE such grammar would be repre-
sented by a much more extensive definition. Another feature of GROOVE is the use
of computation tree logic to test properties of the graph grammar’s states, this feature
is used to demonstrate the correctness test over the state space generated by the
grammar.

Besides the state space exploration by the tool GROOVE, this thesis also presents
an alternative for correctness verification via an Event-B model (ABRIAL; HALLERST-
EDE, 2007). Event-B is a modelling method for formalising and developing systems
whose components can be modelled as discrete transition systems. Models are com-
posed of states, (sets of variables) and events that specify possible changes of values
of state variables. The encoding of graph grammars in event-B can be seen as an
equivalent to the single-pushout approach to graph grammars (EHRIG et al., 1997),
and have taken inspirations on research about logic and graphs (COURCELLE, 1997).
Properties about the reachable states of the system can be stated as invariants, us-
ing First-Order Logic with Set Theory, and proven using theorem provers available for
event-B specifications (RIBEIRO et al., 2010). In this thesis, a model for the correct-
ness verification of STM using the graph grammar encoding in event-B is presented as
an alternative to the one using the tool GROOVE. The correctness criterion is applied
to each history and the acyclicity of its conflict graph is tested. It’s worth noting that the
event-B model is just an alternative for the property verification of the tool GROOVE,
both still use the graph grammar constructions for histories present in the methodology
for the algorithm formalization.

1.2 Scientific contributions

The main contributions of this thesis are:

• A methodology to formalize TM algorithms using a graph grammar. This method-
ology is capable of dealing with different characteristics of TM algorithms in terms
of versioning and conflict detection and can used to generate a state space that
contains different order of executions of operations to the shared memory.

18

• The extension of the proposed graph grammar to allow the use of different cor-
rectness criteria. The two criteria used are Opacity and CO-Opacity, however
any correctness criteria that has a graph characterization can be adapted to this
methodology.

• The formalization of more well known TM algorithms STM Haskell and TL2, that
can be used to analyze how the decision making of the algorithm influences the
resulting correctness of the executions.

• The formalization of the TM algorithm CaPR+ that deals with partial rollbacks.
Demonstrating that given a set initial state, the graph grammar formalization of
the algorithm can deal with partial rollbacks and generate correct histories.

• A Computation Tree Logic (CTL) approach to applying the correctness test on the
algorithms, a feature included in the tool GROOVE.

• An Event-B approach to applying the correctness test on the algorithms as an
alternative to using CTL.

1.3 Structure

The remainder of this text is organized as follows:

• Chapter 2 presents the background knowledge about transactional memory, in-
cluding basic definitions of a transactional memory system, its properties and how
the correctness criteria is defined and applied to the system’s executions. These
definitions will be implemented in the proposed methodology of this thesis.

• Chapter 3 describes the algebraic foundations for graph transformations and
graph grammars. This includes the definition of graphs as states that can be
transformed with production rules, the type graph that guarantees the correct-
ness of the transformations, the support for attributes and negative application
conditions to improve the expressive power of the graph grammar, and finally,
a brief description of the tool GROOVE used to aid in the visualization of the
created graphs.

• Chapter 4 presents the methodology of formalization for transactional memory al-
gorithms using graph grammars, the main proposition in this thesis. The method-
ology includes the steps of: first, translating the algorithm into graph notations;
second, generating a set of histories; third, testing the correctness of the histories
using computation tree logic, a feature of GROOVE.

19

• Chapter 5 presents an alternative for the correctness test that uses an event-B
model, where instead of relying on the state exploration that CTL requires, event-
B uses induction proof to reason about properties of reachable states.

• Chapter 6 includes two applications of the graph formalism and correctness test
of the algorithms, using the CTL approach.

• Chapter 7 concludes this thesis, presenting final remarks and enumerating future
works.

2 TRANSACTIONAL MEMORY

High level programming languages relieve programmers of the need to work directly
with assembly, the same way automated garbage collectors remove the concern of
dynamic memory management. With abstraction in mind, transactional memory can
be seen as a step towards effortless concurrent programming.

Transactional Memory (TM) borrows the abstraction of atomic transaction from the
data base literature and uses it as a first-class abstraction in the context of generic
parallel programs. TM only requires of the programmer the identification of which
blocks of code must be executed in an atomic way, but not how the atomicity must
be achieved. TM has been shown as an efficient way of simplifying concurrent applica-
tion development. Besides being a simple abstraction, TM also demonstrates an equal
performance (or even better) than lock mechanisms.

Transactional memory enables processes to communicate and synchronize by exe-
cuting transactions. A transaction is a sequence of actions that appears indivisible and
instantaneous to an outside observer. Any number of operations on transactional ob-
jects (t-objects) can be issued, and the transaction can either commit or abort. When
a transaction T commits, all its operations appear as if they were executed instanta-
neously (atomically). However, when T aborts, all its operations are rolled back, and
their effects are not visible to any other transactions (GUERRAOUI; KAPAŁKA, 2010).

A TM can be implemented as a shared object with operations that allow processes
to control transactions. The transactions, as well as t-objects, are then “hidden” inside
the TM. Conflict detection between concurrent transactions may be eager, if a conflict
is detected the first time a transaction accesses a t-object, or lazy when the detection
only occurs at commit time. When using eager conflict detection, a transaction must
acquire ownership of the value to use it, hence preventing other transactions to access
it, which is also called pessimistic concurrency control. With optimistic concurrency
control, ownership acquisition and validation only occurs when committing.

The next sections present the fundamentals of transactional memory. Section 2.1
presents the definition of transactions and histories. Section 2.2 describes the basic
properties of TM and Section 2.3 the main correctness criterion used in this thesis.

21

Finally, Section 2.4 presents a summary of some related work on TM correctness ver-
ification with some examples of other methods and tools. Section 2.5 presents some
final remarks for this chapter.

2.1 Transactions and Histories

A process can only access t-object via operations of the TM. Transactions and t-
objects are referred to via their identifiers from the infinite sets Trans = {T1, T2, . . . }
and TObj = {x1, x2, . . . }. For clarity of representation, lowercase symbols such as x

and y denote some arbitrary t-object identifiers from set TObj. These t-objects are also
considered as though they only allow read and write operations and are referred to as
variables.

Let p1, . . . , pn be n processes (or threads) that have access to a collection of shared
objects via transactions. To realize operations in these objects the TM algorithm pro-
vides implementations of read, write, commit and abort procedures. These procedures
are called transactional operations. A history H of a transactional memory contains a
sequence of transactional operations calls.

A transactional operation starts its execution when a live process emits an invoca-
tion, and the operation ends its execution when the process receives a response. The
responses of each procedure of a transaction T are the following:

• a successful commit returns CT , otherwise if it fails it returns AT , meaning trans-
action T aborted;

• an abort operation always returns AT ;

• a successful read returns the value requested from the shared memory, or AT ;

• a successful write operation returns ok, or AT .

The values associated to CT and AT will depend on how the TM implementation
deals with invocations and responses, semantically these values are only used to in-
dicate the success or failure of the execution of that operation. An invocation and the
response of a transactional operation can be seen and treated as separate instances,
for the sake of simplicity the remainder of this text will treat the response as if it hap-
pened immediately after the invocation. This way the representation of a read operation
read1(x, 1), of transaction T1, contains both the invocation read(x) and the response,
value 1. A write is represented as write1(x, 2)→ ok.

Definition 1 (Well-formed History). Let H be any history, T be any transaction in H and
H|T be the set that contains only operations of T in H. A history H is well-formed if for
every transaction T, the following conditions are valid:

22

• the first event of event of H|T is an invocation;

• every invocation in H|T, that is not the last operation, is immediately followed by
a corresponding response;

• every response in H|T, that is not the last operation, is immediately followed by
an invocation;

• no event in H|T happens after CT or AT ;

• if T’ is a transaction in H executed by the same process that executes T, then the
last event of H|T precedes the first event of H|T’ in H, or the last event of H|T’
precedes the first of H|T. This includes the case of a re-execution of T in case it
aborted.

2.2 Properties of Transactional Memory

A given TM history is said to preserve the real time ordering of execution if any
transaction Ti that commits and updates a variable x before Tj starts, this way Tj cannot
observe the old state of x. Guerraoui; Kapalka (2008) provide a formal definition of
opacity and provide a graph-based characterization of such property in a way that a
history is opaque only if the graph structure built from it is acyclic.

Sequential histories. A well-formed history H is sequential if no two transactions
in H are concurrent (executions interleave). The correctness of sequential histories is
trivial to verify, given a precise semantics of the shared objects and their operations.

Complete histories. A well-formed history H is complete if H does not contain any
live transaction. This means that is possible to transform it to a complete history H’ by
committing or aborting the live transactions. For every history H, all complete histories
H’ is contained in the set Complete(H).

Legal histories and transactions. Let S be any sequential history, such that every
transaction in S, except possibly the last one, is committed. A history S is said to be
legal if it respects the sequential specifications of all the shared objects.

2.3 Correctness Criteria

For an application, all operations of a committed transaction appear as if they were
executed instantaneously at some single point in time. All operations of an aborted
transaction, however, appear as if they never took place. From a programmer’s per-
spective, transactions are similar to critical sections protected by a global lock: a TM
provides an illusion that all transactions are executed sequentially, one by one, and
aborted transactions are entirely rolled back.

23

However, hardly any TM implementation runs transactions sequentially. Instead,
a TM is supposed to make use of the parallelism provided by the underlying multi-
processor architecture, and so it should not limit the parallelism of transactions exe-
cuted by different processes. A real TM history thus often contains sequences of inter-
leaved events from many concurrent transactions. Some of those transactions might
be aborted because aborting a transaction is sometimes a necessity for optimistic TM
protocols.

Several safety conditions for TM were proposed in the literature, such as opac-
ity (GUERRAOUI; KAPALKA, 2008), Virtual World Consistency (IMBS; RAYNAL,
2012), TMS1 and TMS2 (DOHERTY et al., 2009) and Markability (LESANI; PALS-
BERG, 2014). There are also Serializability and Strict-Serializability (PAPADIM-
ITRIOU, 1979), Causal Consistency and Causal Serializability (RAYNAL; THIA-KIME;
AHAMAD, 1997), and Snapshot Isolation (BUSHKOV et al., 2013). All these conditions
define indistinguishably criteria and set correct histories generated by the execution of
TM. The safety property (ALPERN; SCHNEIDER, 1985; LYNCH, 1996) for a concur-
rent implementation informally requires that nothing “bad” happens at any point in any
execution. If it does happen, there is no way to fix it in the future, which implies that
a safety property must be prefix-closed : every prefix of a safe execution must also be
safe.

A correctness criterion is a set of histories prefix-closed, in other words, the prefixes
of every history are also correct, satisfying the criterion. An implementation, however,
satisfies a correctness criterion P if all of its histories also satisfy criterion P.

2.3.1 Opacity

There are two important characteristics of the safety property for TM implementa-
tions: (1) transactions that commit must result in a total order consistent with a se-
quential execution; (2) it is desired that even transactions that abort have access to a
consistent state of the system (resulted from a sequential execution).

The opacity correctness criterion was firstly introduced by Guerraoui; Kapalka
(2008) with the purpose of dealing with these two characteristics. In an informal way,
opacity requires the existence of a total order for all transactions (that committed or
aborted). This total order is equivalent to a sequential execution where only committed
transactions make updates. For every TM history H, there is also a partial order ≺H

that represents the real-time order of transactions in H. For all transactions Tk and Tm

in H, if Tk is completed and the last event of Tk precedes the first event of Tm in H, then
Tk ≺H Tm.

It is worth noting that the original opacity definition (GUERRAOUI; KAPALKA, 2008)
is not considered a safety property, because it is not prefix-closed. This was later re-
fined in (GUERRAOUI; KAPAŁKA, 2010) filtering non prefix-closed histories and mak-

24

ing opacity in fact a safety property.

Definition 2 (Final-state Opacity (GUERRAOUI; KAPAŁKA, 2010)). A finite TM history
H is final-state opaque if there exists a sequential TM history S equivalent to any H’ ∈
Complete(H), such that

• S preserves ≺H , and

• every transaction Ti ∈ S is legal in S.

Definition 3 (Opacity (GUERRAOUI; KAPAŁKA, 2010)). A TM history H is opaque if
every finite prefix of H (including H itself if H is finite) is final-state opaque.

By requiring that the sequential history S, of every prefix, be equivalent to a history
H’ ∈ Complete(H), means that opacity treats every transaction T ̸∈ Complete(H) as
aborted. It is possible to call S as an opaque serialization of H. This definition of opacity
is similar to du-opacity (SAFETY AND DEFERRED UPDATE IN TRANSACTIONAL
MEMORY, 2015).

2.3.2 Graph Characterization of Opacity

Guerraoui; Kapałka (2010) introduced a graph-based characterization of opacity
with the purpose of proving correctness of TM systems. From a history H, with only
read and write operations, a graph is constructed representing the conflict dependen-
cies between transactions in H. The history H with consistent reads and unique writes
is proven opaque if, and only if, the graph is acyclic.

Let x be any variable in any history H, the transactions in H that write to x create
a version of x. Because two transactions can write to x concurrently, determining the
order between versions in H is not obvious. However, this order can be determined
by the implementation history of a given TM algorithm. An implementation history
is made of the same operations in a normal history, but it also includes additional
internal operations to the variables, i.e, the history includes what happens between
the invocation and response of an operation. When building a graph representing
dependencies between transactions in H, it is assumed that the version order of x in H
is known.

The version order of a variable x in H is a total order≪x over the set of transactions
in H that:

• are committed or commit-pending, and

• write to x,

such that T0 is the least element according to≪x. A version order function in H is any
function that maps every variable x to a version order of x in H.

25

Definition 4 (Graph characterization of Opacity). Let H be any TM history with unique
writes and V≪ any version order function in H. Denote V≪(x) by ≪x. The directed,
labelled graph OPG(H, V≪) is constructed in the following way:

1. For every transaction Ti in H (including T0) there is a vertex Ti in graph OPG(H,
V≪). Vertex Ti is labelled as follows: vis if Ti is committed in H or if some transac-
tion performs a read operation on a variable written by Ti in H, and loc, otherwise.

2. For all vertices Ti and Tk in graph OPG(H, V≪), i ̸= k, there is an edge from Ti to
Tk (denoted Ti → Tk) in any of the following cases:

(a) If Ti ≺H Tk (i.e., Ti precedes Tk in H); then the edge is labelled rt (from
“real-time”) and denoted Ti

rt−→ Tk;

(b) If Tk reads from Ti, meaning that Ti writes to the variable before Tk reads it;
then the edge is labelled rf and denoted Ti

rf−→ Tk;

(c) If, for some variable x, Ti ≪x Tk; then the edge is labelled ww (from “write
before write”) and denoted Ti

ww−−→ Tk;

(d) If vertex Tk is labelled vis, and there is a transaction Tm in H and a variable
x, such that: (i) Tm ≪x Tk, and (ii) Ti reads x from Tm; then the edge is
labelled rw (from “read before write”) and denoted Ti

rw−→ Tk;

Figure 1 shows an example of a history H and its graph characterization
OPG(H,V≪). Note that transaction T0, that writes the initial values in all variables of
the TM, is not depicted in H because it is considered a default transaction to all histo-
ries. Transaction T0 also finishes its execution before the first transactional operation
of H.

T1
write(x, 1)→ ok •commit

T2
read(x, 1)

T3
read(x, 1) write(x, 2)→ ok ◦abort

(a) A history H.

(b) Graph Characterization of history H.
Figure 1 – A history (a) and its graph OPG(H,V≪) (b), where V≪(x) = {(T0, T1)}.
Source: (GUERRAOUI; KAPAŁKA, 2010).

26

Theorem 1 (Graph characterization of Opacity (GUERRAOUI; KAPAŁKA, 2010)). Any
history H with unique writes is final-state opaque if, and only if, exists a version order
function V≪ in H such that the graph OPG(H,V≪) is acyclic.

Proof. Proof can be found in Guerraoui; Kapałka (2010).

Having this definition of acyclicity of the conflict graph to demonstrate opacity of
the history, it is possible to observe that history H in Figure 1 is opaque. An example
where the correctness is not satisfied can be seen in history H’ in Figure 2(a), where
two transactions manipulate t-variables x and y. H’ does not have a sequential history
that satisfy Definitions 2 and 3, because neither T0T1T2 nor T0T2T1 have legal read
operations. The graph characterization of H’ can be seen in Figure 2(b), where a cycle
happens between T1 and T2.

T1
write(y, 1)→ ok write(x, 1)→ ok •commit

T2
read(y, 0) read(x, 1) ◦abort

(a) A history H’.

T0

T1

T2

ww

rf

rf

rw

(b) Graph Characterization of history H’.
Figure 2 – A non-opaque history (a) and its graph OPG(H’,V≪) (b).

2.4 Related works on TM correctness

Several research work has been done on the correctness verification of transac-
tional memory, some approaches (EMMI; MAJUMDAR; MANEVICH, 2010; FLANA-
GAN; FREUND; YI, 2008; LITZ; DIAS; CHERITON, 2015) propose automatic tech-
niques to verify correctness of transactional memory systems. Flanagan; Freund; Yi
(2008) present the dynamic analysis tool Velodrome that performs atomicity verification
that is both sound and complete. Velodrome analyzes operation dependencies within
atomic blocks and infers the transactional happens-before relations of an observed
execution trace. Serializability (PAPADIMITRIOU, 1979) of the execution trace is de-
termined by verifying that the transactional happens-before graph is acyclic. Emmi;
Majumdar; Manevich (2010) present an automatic verification method to check that
transactional memories meet the correctness property strict-serializability (PAPADIM-
ITRIOU, 1979). Their technique takes into consideration the number of threads and

27

shared locations of the TM implementation and construct a family of simulation rela-
tions that demonstrate that the implementation refines the strict serializability specifi-
cation. Litz; Dias; Cheriton (2015) present a tool that automatically corrects snapshot
isolation (BUSHKOV et al., 2013) anomalies in transactional memory programs. The
tool promotes dangerous read operations in the conflict detection phase of the snap-
shot isolation TM implementation and forces one of the affected transactions to abort.
The authors reduce the problem of choosing the read operation to be promoted to a
graph coverage problem for a dependency graph focusing on read operations. Since
these techniques verify correctness based on the low-level read/write histories of the
transactions, they are not directly applicable to transactional data structures that utilize
high-level semantic conflict detection.

Formal logic has also been proposed to verify correctness of transactional mem-
ory systems as seen in (BLUNDELL; LEWIS; MARTIN, 2006; COHEN et al., 2007;
MANOVIT et al., 2006). Blundell; Lewis; Martin (2006) demonstrate that a direct con-
version of lock-based critical sections into transactions can cause deadlock even if the
lock-based program is correct. Their observations highlight safety violations that may
be introduced in transactional programs but does not provide a methodology for detect-
ing the resulting faulty behavior. Cohen et al. (2007) present an abstract model for spec-
ifying transactional memory semantics, a proof rule for verifying that the transactional
memory implementation satisfies the specification, and a technique for verifying seri-
alizability and strict serializability for a transactional sequence. Since conflicts consid-
ered in the abstract model are defined at the read/write level, the approach is limited to
transactional memory systems that synchronize at low-level reads and writes. Manovit
et al. (2006) present a framework of formal axioms for specifying legal operations of a
transactional memory system. The dynamic sequence of program instructions called
in the test are converted to a sequence of nodes in a graph, where an edge in the
graph represents constraints on the memory order. The analysis algorithm constructs
the graph based on the Total Store Order (TSO) memory model ordering requirements
and checks for cycles to determine order violations. The graph construction is based
on TSO ordering requirements, so the framework cannot be directly used to verify
transactional correctness conditions that utilize high-level semantic conflict detection.

Peterson; Dechev (2017) present the first tool that can check the correctness of
transactional data structures. The evaluation of correctness is based on an abstract
data type, making the approach applicable to transactional data structures that use a
high-level semantic conflict detection. The technique used for representing a trans-
actional correctness condition is a happens-before relation. The main advantage of
this technique is that it enables a diverse assortment of correctness conditions to be
checked automatically by generating and analyzing a transactional happens-before
graph during model checking. Their work also present a strategy for checking the

28

correctness of a transactional data structure when the designed correctness condition
does not enforce a total order on a history. Serializability, strict serializability, and opac-
ity require a total order on the history such that all threads observe the transactions in
the same order. However, causal consistency requires only a partial order on a history,
allowing threads to observe transactions in a different order.

2.5 Final Remarks

Transactional memory provides to the programmer a high level abstraction for con-
currency control in executions of critical blocks of code. This abstraction is imple-
mented in the form of transactions that enable processes to communicate and syn-
chronize their actions as if they happened in an indivisible and instantaneous point of
execution. The executions performed to the shared memory can be logged in what is
called a history. Histories generated by a TM algorithm may be evaluated to have prop-
erties that reflect the behavior of the algorithm, these properties are usually related to
the sequence of operations, the completion or not of transactions, and the legality of
reads performed during the execution the history represents.

A correctness criteria is an important aspect of transactional memories as it relates
to the consistency of state between the shared memory and the transactions being exe-
cuted. From the programmer’s perspective, transactions look similar to critical sections
protected by a global lock where transactions seem to execute sequentially and any
aborted transaction is entirely rolled back. The use of a correctness criteria helps with
such requirements. Of the several correctness criteria proposed, opacity is highlighted
for this thesis. When an execution satisfies opacity, the property guarantees that every
transaction observes a consistent state of the shared memory, including aborted ones.
The definition of opacity includes a graph characterization that can be used to evaluate
the correctness of a given history. This graph, called conflict graph, represents the
conflict relations between transactions and its acyclicity represents the satisfaction of
the correctness criterion.

This thesis presents a methodology for correctness verification of TM different from
previous approaches in the sense that graphs are not just a small part of the formaliza-
tion, but used instead in the whole process of verification. By developing a formalization
that is based on graph transformation, different levels of correctness can be used in the
verification of an TM algorithm, based on graph characterization of opacity. This is spe-
cially promising for new algorithms that want to include correctness in their definition,
or even existing algorithms with new features that need to tested on how they influence
correctness of executions. A methodology that uses graphs in the correctness verifi-
cation of transactional memory executions can potentially be expanded into a tool that
automates the whole process, which is something that has yet to be explored in depth.

3 GRAPH TRANSFORMATION

Graphs and graph transformations represent the core of most visual lan-
guages (BARDOHL R.AND MINAS; TAENTZER; SCHURR, 1999). In fact, graphs
can be naturally used to provide a structured representation of the states of a system,
which highlights their subcomponents and their logical or physical interconnections. In
Graph Grammars (GGs) and Graph Transformation Systems (GTSs), the modification
of graphs is specified via graph transformation rules, also known as graph produc-
tions (CORRADINI et al., 1997). Each rule consists of a pair of graphs, called left-hand
side (LHS) and right-hand side (RHS), which schematically define how a graph may be
transformed into a new graph. Applying a graph transformation rule to a graph can be
seen as replacing a subgraph corresponding to the rule’s LHS with a copy of its RHS.
The events occurring in the system, which are responsible for the evolution from one
state to another, are modelled as the application of these transformation rules. Such
a representation is not only precise enough to allow the formal analysis of the system
under scrutiny, but it is also amenable of an intuitive, visual representation, which can
be easily understood also by a non-expert audience (BALDAN et al., 2008).

Graph transformation is a flexible formalism for the specification of complex sys-
tems, that may take into account aspects such as object-orientation, concurrency, mo-
bility and distribution (EHRIG; ROZENBERG; KREOWSKI, 1999). GGs are specially
well-suited for the formal specification of applications in which states involves not only
many types of elements, but also different types of relations between them. Also, ap-
plications in which behavior is essentially data-driven, that is, events are triggered by
particular configurations of the state.

There exist various approaches to realize graph transformations. The two notable
algebraic approaches are double pushout (DPO) (CORRADINI et al., 1997) and single
pushout (SPO) (EHRIG et al., 1997). Both approaches are based on category theory
and the categorical term of a pushout. In DPO, a transformation is formalized via two
pushouts in the category of graphs and (total) graphs morphisms. One of the pushouts
realizes the deletion of elements and the other one realizes their addition. In SPO, only
a single pushout is used, which is a pushout in the category of graphs and partial graph

30

morphisms. In this work, the SPO approach is adopted, therefore all the definitions
presented follow this approach.

The next sections present the fundamentals of graph transformations. Section 3.1
lays the algebraic foundation. It introduces the notions of graphs, morphisms and trans-
formation. In the context of this thesis, the standard definition of graphs are not enough
to express the complexities that will be required, so this section also introduces the no-
tion of attributes in graphs and negative application conditions in the transformation
rules. Section 3.2 shows the basis for visual representation of graphs used in this
thesis. Section 3.3 presents some final remarks for this chapter.

3.1 Algebraic Foundations of Graph Grammars

This section presents the basic concepts of the algebraic single pushout approach
as described by (EHRIG et al., 1997). A graph is a structure that represents a set of
objects along with relations between them. For the remainder of the text, only directed
graphs are considered.

Definition 5 (Graph). A (directed) graph G = (VG, EG, srcG, tgtG) consists of a set of
nodes VG, a set of edges EG, and source and target functions srcG, tgtG : EG → VG.

Relations between graphs can be expressed through graph morphisms. A graph
morphism is a mapping of nodes and edges of one graph to nodes and edges of
another graph, respectively. Such that the source and target nodes of edges are pre-
served.

Definition 6 (Total Graph Morphism). A total graph morphism f : G→ H between two
graphs is a pair of total functions f = (fE, fV) with fE : EG → EH and fV : VG → VH

that commutes with the source and target functions, i.e., fV ◦ srcG = srcH ◦ fE and fV ◦
tgtG = tgtH ◦ fE. A graph morphism is called injective if fE and fV are injective and
called isomorphic if fE and fV are bijective.

Definition 7 (Subgraph). A subgraph S of G, written S ⊆ G or S ↪→ G, is a graph where
VS ⊆ VG, ES ⊆ EG, srcS = srcG|ES and tgtS = tgtG|ES. Such that srcG|ES (tgtG|ES) is a set
of edges contained in the mapping srcG (tgtG) but restricted to ES.

Definition 8 ((Partial) Graph Morphism). A (partial) graph morphism g from G to H is
a total graph morphism from some subgraph dom(g) of G to H. The subgraph dom(g)
is called the restricted domain of g. The range of a graph morphism g′ : G→ H, written
ran(g′), is a subgraph S’ of H where VS′ is the image set of g′V and ES′ is the image set
of g′E.

The graphs over a fixed labeling alphabet and the partial morphisms among them
form a category denoted by GraphP.

31

A typed graph is defined by two graphs together with a typing morphism. A typed
graph morphism between graphs typed over the same graph is a graph morphism.

Definition 9 (Typed Graph). Let TG be a distinguished graph, called type graph. A
typed graph GT = (G, type) consists of a graph G = (V, E, src, tgt) and a total graph
morphism type : G→ TG.

Definition 10 ((Partial) Typed Graph Morphism). Given a type graph T. Let GT = (G,
tG) and HT = (H, tH) be typed graphs, where tG and tH are typing morphisms from
G and H to T. A (partial) typed graph morphism from GT to HT is defined by a
graph morphism g = (gV , gE) from G to H, such that the typed morphism compatibility
condition is satisfied:
∀v ∈ dom(gV) · tGV (v) = tHV (gV (v)) and
∀e ∈ dom(gE) · tGE(e) = tHE(gE(e))

The category of typed graphs and partial typed graph morphisms is denoted by
TGraphP(T), where composition and identities are defined componentwise. The full
subcategory containing all typed graphs and total morphisms is called TGraph(T).

Figure 3 shows an example of a graph and its respective type graph. In this exam-
ple, the A, B and C-nodes may be connected by child-edges, always in one specific
direction (BAC), the node D may have a parent-edge connected from A or C, which
are the only nodes that may have an id connected to an integer value. This id is in fact
an attribute which will be introduced in the following part of this chapter.

B

A

C

A

D

0

parentchild

child

parent

id

(a) Graph G.

C A

int

D B

parent

child

id

childparent

id

(b) Type Graph TG.
Figure 3 – Example of graph and its respective type graph.

When dealing with typed attributed graphs, the following definitions are used.
Algebraic specifications may be used to define abstract data types, and algebras

to describe the values that may be used as attributes. To include these attributes in a
graph the following basic concepts are needed. A signature SIG = (S, OP) consists

32

of a set S of sorts and a set OP of constants and operations symbols. Given a set
of variables X (of sorts in S), the set of terms over SIG is denoted by TOP (X) (this is
defined inductively by stating that all variables and constants are terms, and then all
possible applications of operation symbols in OP to existing terms are also terms). An
equation is a pair of terms (t1, t2), and is usually denoted by t1 = t2. A specification is
a pair SPEC = (SIG, Eqns) consisting of a signature and a set of equations over this
signature. An algebra for specification SPEC, or SPEC-algebra, consists of one set for
each sort symbol of SIG, called carrier set, and one function for each operation symbol
of SIG such that all equations in Eqns are satisfied (satisfaction of one equation is
checked by substituting all variables in the equation by values of corresponding carrier
sets and verifying whether the equality holds, for all possible substitutions). Given
two SPEC-algebras, a homomorphism between them is a set of functions mapping
corresponding carrier sets that are compatible with all functions of the algebras. The
set obtained by the disjoint union of all carrier sets of algebra A is denoted by U(A).

Definition 11 (Attributed Graph). Given a specification SPEC, an attributed graph is
a tuple AG = (G, A, AttrG, valG, attrvG) where G = (VG, EG, srcG, tgtG) is a directed
graph, A is a SPEC-algebra, AttrG is a set, called set of attributes, and

valG : AttrG→ U(A), attrvG : attrG→ VG

are total functions. Elements of AttrG are called attribute edges, or just attributes.

Definition 12 ((Partial) Attributed Graph Morphism). A (partial) attributed graph mor-
phism g between attributed graphs AG and AH is a triple g = (gG, gAlg, gA) consisting of
a graph morphism gG = (gV , gE), an algebra homomorphism gAlg and a partial function
gA : AttrG → AttrH between the corresponding components that are compatible with
the attribution:
∀a ∈ dom(gA) · gAlg(valG(a)) = valH(gA(a)) and
gV (attrvG(a)) = attrvH(gA(a))
An attributed graph morphism g is called total or injective if all components are total

or injective, respectively.

Definition 13 (Attributed type graph, typed attributed graphs, typed attributed graph
morphism). Given a specification SPEC, an attributed type graph is an attributed
graph AT = (T, A, AttrT, valT, attrvT) in which all carrier sets of A are singletons.

A typed attributed graph is a tuple AGAT = (AG, tAG, AT), where AG is an at-
tributed graph, AT is an attributed type graph and tAG : AG → AT is a total attributed
graph morphism called attributed typing morphism.

A typed attributed graph morphism between graphs AGAT and AHAT with at-
tributed type graph AT is an attributed graph morphism g between AG and AH such
that g only relates elements of the same type, that is
∀a ∈ dom(gA) · tAGA(a) = tGHA(gA(a))

33

In the following definitions only typed attributed graphs will be used, so the word
“typed” will be omitted.

The possibility of applying a graph transformation rule to a host graph underlies the
condition that a subgraph corresponding to the rule’s LHS can be found. Furthermore,
it is also possible that multiple matching subgraphs exist in a host graph. In such a
case, multiple rule applications of the same rule can be performed. These rule appli-
cations are not necessarily independent. It might be the case that a choice has to be
made at which match to transform the host graph, e.g., when different matches over-
lap and each their respective graph transformation modifies element contained in the
other match. A set of graph transformation rules together with an initial graph spans a
transition system. In this transition system, states represent the reachable state graphs
from the initial state, and transitions between states represent the application of trans-
formation rules, that change the state graph from one to another. It is important to
realize that the nondeterminism indicated by multiple outgoing transitions of a state
has two sources: multiple rules may be applicable to a graph and they may potentially
be applied at multiple matches.

In the single pushout approach, graph transformation rules are defined by only one
morphism, this morphism directly maps from the LHS to the RHS. To allow the deletion
of elements, this morphism is partial instead of total. Intuitively, elements of the LHS
that are outside of the morphism’s restricted domain are deleted, and elements of the
RHS that are outside of the morphism’s range are created. Items that are mapped in
both the LHS and RHS are preserved.

Definition 14 (Attributed Graph Transformation Rule). Given a specification SPEC =
(SIG, Eqns). An attributed graph transformation rule over SPEC with type AT is a tuple
p = (L, R, r, X, RuleEqns, N), where

• L and R are typed attributed graphs, called left-hand side and right-hand side;

• r : L→ R is a partial injective graph morphism called rule morphism;

• X is a set of variables over the sorts of SPEC;

• RuleEqns is a set of (conditional) equations using terms of TOP (X);

• N is a set of Negative Application Conditions (NACs), which are tuples (N, n)
where N is a graph and n : L→ N a total injective morphism.

Figure 4 shows an example of an attributed graph transformation rule p′. In this
example, the left-hand side graph L has an A-node connected to a D-node by a parent-
edge and has an attribute id with value of 0. The right-hand side graph R also has an
A-node with a parent-edge to a D-node, it does not have an attribute but has a new

34

C-node connected to A by a child-edge. The morphism r : L → R represents the
transformation, where the attribute is deleted an the C-node is created, along with their
respective edges. The NAC of this rule is represented by the graph N and morphism n,
and it denotes that besides the same elements present in L, the A-node must not have
a C-node connected by a child-edge.

D

A

C

0

parent

child

id

N

n←−−

D

A 0

parent

id

L

r−−→

D

A

C

parent

child

R
Figure 4 – Graph transformation rule with NACs.

The application of graph transformation rules is based on the concept of “gluing”
graphs together. Two different graphs sharing a common subgraph can be glued to-
gether by adding the uncommon nodes and edges of both graphs to the common sub-
graph. This is formalized by the categorical notion of a pushout. In the SPO approach,
rules are defined as partial morphism to specify both addition and deletion. Therefore,
in addition to the concept of gluing, it has to realize deletion. To restrict the applicability
of a rule, a negative application condition (NAC) can be used, which forbids specific
graph structures from being present in the host graph. Deletion is realized by “equal-
izing” two partial morphisms that are defined on the same domain of definition but on
different restricted domains. This is done by removing all elements from their range
that have different preimages under both morphisms. This concept is formalized by
the categorical notion of a co-equalizer (EHRIG et al., 1997). The SPO approach con-
structs a specific co-equalizer (HARTMANIS et al., 2006). Its construction assumes
that, for each element that is contained in the restricted domains of both morphisms,
both morphisms map to the same image.

A graph grammar is composed of a type graph, an initial graph and a set of rules.
To apply a rule in a graph G there must be an insurance that G contains an image of
the LHS of the rule and does not contain an image of the forbidden context (described
by the NACs of the rule).

Definition 15 (Attributed Graph Grammar). Given a specification SPEC and a SPEC-
algebra A. A (typed) attributed graph grammar is a tuple AGG = (AT, G0, R), such
that AT (type graph of the grammar) is an attributed type graph over SPEC, AG0 (initial

35

graph of the grammar) is an attributed graph typed over AT using algebra A, and R is a
set of rules over SPEC with negative application conditions with type AT.

In order to define a match, it becomes necessary to relate, besides the graph mor-
phism, the variables of the rule to the actual values of carrier sets of the algebra in
which the rule will be applied. The match construction must ensure that all equations
of the specification and the rule equations are satisfied by the chosen assignment of
values to variables. This is achieved by first, lifting the rule to a corresponding one
having a quotient term algebra as attribute algebra. This is a standard construction in
algebraic specification. Then, the actual match will include an algebra homomorphism
from this quotient term algebra to the actual algebra used in the graph to which the rule
is being applied. The existence of this homomorphism guarantees that all necessary
equations are satisfied.

Definition 16 (Attributed match, NAC satisfaction). Let a specification SPEC = (SIG,
Eqns), a rule with NACs over SPEC r = (AL, AR, r, X, RuleEqns, N) with type AT,
where AL = (L, TOP (X), AttrL, valL, attrvL), and a SPEC attributed graph AG typed over
AT be given. An attributed match m : AL→ AG is a total attributed graph morphism m

= (mGraph, mAlg, mA) such that AL = (L, Teq(X), AttrL, valL, attrvL), where Teq(X) is the
algebra obtained by constructing the quotient term algebra of the specification (SIG,
Eqns ∪ RuleEqns) using the set of variables X, and, for all elements a ∈ AttrlL, valL(a)
= [valL(a)]. An attributed match satisfies a NAC lj : AL→ ALNACj , if there is no total
attributed graph morphism n : ALNACj ↣ AG that is injective on forbidden items such
that n ◦ lj = m. An attributed match satisfies all NACs of a rule if it satisfies each
individual NAC of the rule.

In practice, given a set of variables X, an algebra A and defining an evaluation func-
tion eval : X → U(A), there is an unique way to construct the algebra homomorphism
(in case it exists). First, all the equations in Eqns ∪ RuleEqns are checked on whether
they are satisfied by the assignment. If not, the assignment of values to variables can
not lead to an algebra homomorphism, and thus no match can exist using this eval
function. Otherwise, the extension of eval is built to (equivalence classes of) terms,
denoted by eval : T eq(X)→ U(A).

Definition 17 (Deleted, preserved, created items). Let r = (L, R, X, RuleEqns, N) be a
(typed) attributed rule with left-hand side AL, right-hand side AR and m be a match m

= (mV , mE, mAlg, mA) : AL→ AG. The following sets are defined:
Deleted attributes of AG: DelmA = mA[RuleDelA]
Dangling attributes of AG: DanglingA = deom(attrvG ▷ DelmV) \ DelmA
New attributes of AR: Newm

A = { a ∈ RuleCreateA | mV (attrvR(a)) ∈ Preservm
V ∨

attrvR(a) ∈ Newm
V }

36

Definition 18 ((Attributed) Rule application). Given a specification SPEC, a rule over
SPEC with type T p = (AL, AR, r, X, RuleEqns, N) be a graph transformation rule,
where AL = (L, TOP (X), AttrL, valL, attrvL) and AR = (R, TOP (X), AttrR, valR, attrvR)
such that AL 7↣ AR, and the total morphism m : (L, Teq(X), AttrL, valL, attrvL) → (G,
AlgG, AttrG, valG, attrvG) a match of its LHS L to a graph G that satisfies N . The
application of rule p at match m results in the typed attributed graph AH = (H, AlgH,
AttrH, valH, attrvH), where

L R

G H

m′ (PO)

H is the resulting graph of applying rule r′ = (L, R, N) to graph G, defined by the
pushout (PO) over r′ and m′ = (mV , mE) in TGraphP(T);

AlgH = AlgG;
AttrH = (AttrG \ (DelmA∪ Danglingm

A)) ⊎ Newm
A

valH = ((DelmA∪ Danglingm
A) ◁−valG) ∪ { a 7→ valR(a) | a ∈ New m

A }
attrvH = ((DelmA∪ Danglingm

A) ◁−attrvG) ∪
{ a 7→ mv(attrvR(a)) | a ∈ Newm

A∧ attrvR(a) ∈ RulePreservV } ∪
{ a 7→ attrvR(a) | a ∈ Newm

A∧ attrvR(a) ∈ Newm
V }

Figure 5 shows an example of rule application using graph G (Figure 3(a)) and the
attributed transformation rule p′ (Figure 4). The only possible result from this example
is shown in graph H, where an A-node with an attribute but no child-edge to a C-node
has its attribute deleted and a C-node is created to connect to it using a child-edge.

B

A

C

A

D

0

parentchild

child

parent

id

(a) Graph G.

p′−−→

B

A

C

A

D

C

parentchild

child

parent

child

(b) Graph H.
Figure 5 – Example of rule application.

37

3.2 Visual representation

In this thesis, graph transformation is used on the basis of one particular tool that is
capable of providing fast, hands-on experience named GROOVE (RENSINK; DE MOL;
ZAMBON, 2023). Graphs in GROOVE consist of labelled nodes and edges. An edge
is an arrow between two nodes. Node labels can be either node types or flags; the
latter can be used to model boolean conditions, which is true for a node if the flag is
present and false if not. GROOVE can work either in an untyped or typed mode. In
untyped mode there are no constraints on the allowed combinations of node types,
flags and edges. For the remainder of this work, typed mode is used: all graphs and
rules must be well-typed, meaning that they can be mapped into a special type graph.
This is checked statically for the start graph and rules (GHAMARIAN et al., 2012).

Figure 6 shows the GROOVE representation of graph G and transformation rule p′

defined previously. The biggest difference when using GROOVE is in transformation
rules, the graph now includes the left and right-hand side and any NAC graph all to-
gether. As can be seen in Figure 6(b), the differentiation between the parts of the rule
is done via the color and the drawing of the lines. Any element that is to be deleted
(present in L but not in R) is drawn in blue dashed lines. Elements that are created
(present only in R) are drawn in green. Finally, elements that compose the NACs are
drawn in thicker red dashed lines.

B

A

C

A

D

0

parentchild

child

parent

id

(a) Graph G.

D

A

CC

0

parent

childchild

id

(b) Transformation rule p′.
Figure 6 – Example of graph and transformation rule using GROOVE.

Figure 7 shows a production rule for a transactional begin operation used in this
thesis. This rule specifies part of the process of correctness verification that will be
described in later chapters. The main goal is to delete the Begin-node and at the same
time create a Tran-node connected to all other preexisting Tran-nodes that have an
identifier different than zero. Another feature of GROOVE can be seen in this rule,
called flags. Flags can be interpreted as edges that have source and target as the
same vertex. In Figure 7, one Tran-node has a flag called “done” (which represents
that this specific transaction finished executing), and the other node T being created

38

has a flag of “loc” (meaning the transaction is not visible).

History

Begin TOp

int

CG Tran
loc

Tran
done

∀

0

has

has

@

next

has

id

id

id

rt

has

Figure 7 – Example of transformation rule using GROOVE.

The creation of multiple edges is possible due to a feature of GROOVE called quan-
tifiers. In this case, the universal quantifier “for all” (∀) node indicates that an edge rt
is created with a source for every Tran-node with an id ̸= 0, and the target is always
the new Tran-node being created. This quantifier can result in an empty set, meaning
that even with no Tran-nodes with id ̸= 0 the match can still occur, no rf -edges are
created as result. Other examples of quantifiers are: the existential quantifier (∃), for
a mandatory graph pattern; the non-vacuous universal quantifier (∀>0), that ensures
the match for all occurrences of the graph pattern provided there is at least one; the
optional existential quantifier (∃?) that tests for an optional existence of a graph pattern.
To connect a vertex to quantifiers, GROOVE uses an special edge “at” (@). Quantifiers
can even be nested by using the “in” edge, allowing for more complex logic for the
pattern match and consequences of the rule application.

3.3 Final Remarks

Graph transformation can be seen as the core of most visual languages, and be
naturally used to provide a structured representation of a complex system. A graph is
a structure that represents a set of objects and the relations between them. If a graph
represents a state of a system, transforming this graph (with production rules) can be
seen as transforming the state of said system, creating new states. If a type graph is
used, there is a guarantee of correctness in the objects being manipulated in the states,
and their relations. A typed graph can also be enhanced with the notion of attributes,
allowing the states of the system to not only have vertices representing objects but

39

these vertices may also have attributes that can be typed as integers, strings or even
boolean values.

A typed and attributed graph that can be transformed into new graphs has a very
high expressive power compared to a standard graph with only vertices and edges.
This is most desirable to formalize complex systems that can be seen as multiple ob-
jects of different types associated with different values and attributes. In the case of
this thesis, a Transactional Memory system. The visual representation of such com-
plex graphs can be aided with the help of a tool like GROOVE that draws objects in a
specific way to signify how they behave in the graph transformation.

4 TRANSLATING AN STM ALGORITHM INTO GG

This chapter describes the methodology to formalize a transactional memory algo-
rithm using graph transformation. The approach includes three main steps: first the
translation of the logic of the algorithm to production rules, this step is made manually
by analysing the procedures defined in the algorithm to create the state graphs de-
sired; the second step is to generate all histories through a Labelled Transition System
(LTS), this can be done with the help of GROOVE; and third, using a graph charac-
terization of a correctness criteria it is possible to use Computation Tree Logic (CTL)
model checking to verify that all histories in the LTS satisfy the criterion.

4.1 STM Algorithm

Software Transactional Memory (STM) is a concurrency control mechanism that
resolves data conflicts at the software level, as opposed to hardware. STM implemen-
tations can be classified using metrics:

• Shared object update (version management): the decision of when a transaction
update its shared objects during its lifetime;

• Conflict detection: the decision of when transactions detect a conflict with other
transactions in the system;

• Eager or lazy acquisition of objects: a transaction can commit only when all the
objects updated by it have been acquired. In this scenario, the acquisition can
take place either at the time the object is first accessed (eager), or at commit time
(lazy).

Other example of metrics are granularity, visible or invisible reads, lock-based or
obstruction-free mechanisms. For this thesis the aspect of versioning and conflict de-
tection were the two metrics taken into consideration. Lock acquisition can also fit in
the scope of the model constructed, but because the goal is to evaluate correctness of
execution based on conflict, it is assumed that all locks are always acquired success-
fully. Another reason is the fact that transactional operations are treated as atomic:

41

the invocation and response always happen subsequently. Therefore, because lock
acquisition is part of the internal steps of the operation and in the case of atomic trans-
actional operations would never happens in concurrency with other lock acquisitions,
the process is skipped in the graph notation.

The data structures used in the base STM algorithm can be categorized into a local
workspace and global workspace. The categorization depends on whether the data
structure is visible only to the transaction or to every transaction.

The data structures in the local workspace are:

• Local Variable (LocalVar): each entry represents a local buffer to a variable ac-
cessed by the transaction (Figure 8(a)), storing the targeted variable’s name, the
local value, and two flags for when the local object has been read or written;

• Conflict Checker (Conflict): a list of objects (Figure 8(b)) with information related
to the local variables and are used to assist in checking for conflict with the shared
memory, each entry stores the targeted variable’s name and the value read from
the shared memory.

The data structures in the global workspace are:

• Shared Memory (SM): each entry on the shared memory (Figure 9(a)) stores a
shared object (transactional variable, TVar) and its value;

• Transactions (T): each transaction (Figure 9(b)) has an unique identifier (ID), a
flag for when it is active or not, a list of Conflict objects, and a list of Local Variable
objects;

• History: represents the sequence of actions executed to the shared memory,
each entry (Figure 9(c)) stores the type of operation, the ID of the transaction
that executed it, and some extra information depending on the type of operation;

Target Value Read Written

(a) Local Variables: list of LocalVar-objects, variables local to a single transaction.

Target Value Read (ValRead)

(b) Conflict Checker: list of Conflict-objects used to detect possible read conflicts.

Figure 8 – Local workspace data structures for a TM algorithm.

The description for the various procedures of an lazy versioning and eager con-
flict detection STM algorithm are:

42

Object Value

(a) Shared Memory: contains a list of TVar-objects, transactional variables in the shared
memory.

ID Active Conflict List (CList) Local Variables (LVList)

(b) Transactions: list of T-objects representing transactions.

Operation Transaction ID From Target Value

(c) History: sequence of operations representing a history.

Figure 9 – Global workspace data structures for a TM algorithm.

• ConflictChecker: the conflict check is an auxiliary function that looks at every ac-
tive transaction’s conflict list to see if any value read is different from the shared
memory. Any inconsistent value indicates a conflict between different transac-
tions.

• Read: when reading the object labelled var the transaction T first checks for
conflicts (by evoking ConflictChecker), if any are found the transaction is flagged
as “inactive”, a new entry (Abort) is added to the history and the read operation
aborts. If no conflicts are found, the transaction looks for var in the local variable
list (LVList), if found the local variable is flagged as “read” and its value is returned.
If var is not local, the transaction looks for it in the shared memory. If found, a new
local variable object, a new conflict object are created to add to T. The new local
object is flagged as “read” but not “written” and a new operation object is added
to the history. If var is neither a local nor shared variable, an error is returned.

• Write: when writing to var, the same conflict check is executed. If no conflict
exists, the transaction looks for var in the local variables to rewrite it and flag it as
“written”. If var is not local and is found in the shared memory, a new local object
is created with the value being written. This local variable is flagged as “written”
but not “read”. Lastly, a new operation is added to the history.

• Commit: to execute a commit there should be no conflicts with the shared objects’
values. With no conflicts, for each local variable that the transaction executed a
write, their respective shared object is updated with the new value. A new object
is added to the history, completing the operation.

For Algorithm 1, seen below, data structures are used in the form of a method call.
For example, SM.TVar(var) is to be interpreted as finding the TVar object in SM that

43

has a object name equals to var. In this case, object is used as the key to find the
object (Figure 9(a)), however other data structures may use other keys, the highlighted
keyword in the object describing the data structures represents their respective key. In
the case of the data structure for the history, no key is needed because the algorithm
will never perform a search for a specific object in it. The only operations allowed
on histories are enqueue and dequeue. The main reason to use such form in the
operations for an algorithm is because this object oriented-like notation is very easily
translated into graph notations. An object SM that has many child-objects TVar where
each TVar have an unique key that can be used for a search operation resembles a
case where a pattern match is used with vertices with specific edges and attributes.

In summary, the eager conflict detection feature of the algorithm will determine that
when an operation is invoked, the first thing that is executed is a verification of any
conflict with the shared memory (lines 2, 25 and 45). If a conflict exists the algorithm
aborts that current operation that was called, adds a new entry to the history and
finishes the execution of that procedure in specific. The lazy versioning side of the
algorithm will ensure that a local copy of any transactional variable is created when
first accessed (line 11). This local copy takes precedence over the shared memory
counterpart for any future access, in a read operation the conditional in line 7 happens
before the condition in line 10, same for the write operation in lines 30 and 33.

STM Algorithm 1 - Lazy Versioning and Eager Conflict Detection
1: procedure Read(var, T)
2: if ConflictChecker() = TRUE then
3: newOperation← {op: Abort, tranID: T.ID};
4: History.enqueue(newOperation);
5: T.active← FALSE;
6: return Abort;
7: else if var is in T’s local variables then
8: T.LVList.LocalVar(var).reads← TRUE;
9: return T.LVList.LocalVar(var).val;
10: else if var is in shared memory then
11: newLocalVar← {target: var, val: SM.TVar(var).val};
12: newConflict← {target: var, valRead: SM.TVar(var).val};
13: newOperation← {op: Read, tranID: T.ID,

from: SM.TVar(var).writtenBy, value: SM.TVar(var).val};
14: T.LVList.LocalVar(var).reads← TRUE;
15: T.LVList.LocalVar(var).writes← FALSE;
16: T.CList.push(newConflict);
17: T.LVList.push(newLocalVar);
18: History.enqueue(newOperation);
19: return SM.TVar(var).val;

44

20: else
21: return Error;
22: end if
23: end procedure
24: procedure Write(var, value, T)
25: if ConflictChecker() = TRUE then
26: newOperation← {op: Abort, tranID: T.ID}
27: History.enqueue(newOperation)
28: T.active← FALSE;
29: return Abort;
30: else if var is in T’s local variables then
31: T.LVList.LocalVar(var).writes← TRUE;
32: T.LVList.LocalVar(var).val← value;
33: else if var is in shared memory then
34: newLocalVar← {target: var, val: value};
35: newOperation← {op: Write, tranID: T.ID,

from: SM.TVar(var).writtenBy, value: SM.TVar(var).val};
36: T.LVList.LocalVar(var).reads← FALSE;
37: T.LVList.LocalVar(var).writes← TRUE;
38: T.LVList.push(newLocalVar);
39: History.enqueue(newOperation);
40: else
41: return Error;
42: end if
43: end procedure
44: procedure Commit(T)
45: if ConflictChecker() = TRUE then
46: newOperation← {op: Abort, tranID: T.ID};
47: History.enqueue(newOperation);
48: T.active← FALSE;
49: return Abort;
50: end if
51: for each LocalVar object in T.LVList do
52: for each TVar object in SM do
53: if LocalVar.target = TVar.object and LocalVar.writes = TRUE then
54: TVar.val← LocalVar.val
55: TVar.writtenBy← T.ID
56: end if
57: end for
58: end for
59: newOperation← {op: Commit, tranID: T.ID}

45

60: History.enqueue(newOperation);
61: end procedure
62: procedure ConflictChecker()
63: for each active transactions T do
64: for each Conflict object in T.CList do
65: if Conflict.valRead ̸= SM.TVar(Conflict.target).val then
66: return TRUE;
67: end if
68: end for
69: end for
70: return FALSE;
71: end procedure

For the eager versioning algorithm, reads and writes operate directly to the shared
memory. To ensure correctness of the execution, the possibility of a rollback in the case
of a conflict is required. The implementation of a rollback can be done with an extra
data structure (Figure 10) for a log that stores snapshots of the shared memory to roll-
back to, and an extra procedure to execute the rollback (Algorithm 1). This procedure
should not only replace the current shared objects with a correct snapshot, but also
make sure to flag any transaction that is aborted as result of the rollback. One way
to implement this is to save a snapshot every time a commit is executed successfully,
and always keep track of transactions that have actively read variables from the shared
memory from that point forwards.

ID List of TVars Active Readers

Figure 10 – Log: list of snapshots of the shared memory.

STM Algorithm 2 - Eager Versioning’s rollback procedure
1: procedure Rollback()
2: snapshot← Logs.pop()
3: for each tID in snapshot.activeReaders then
4: flag T(tID) for abort
5: end for
6: for each TVar in SM then
7: override TVar with snapshot.TVar
8: end for
11: end procedure

To modify this algorithm into one with lazy conflict detection, changing the invo-
cation of the conflict checker to only happen at commit time is enough.

46

The methodology of translating an STM algorithm into a GG also describes how to
execute a correctness verification on histories generated by the algorithm. A conflict
graph is used as the data structure to analyse the presence of cycles. Figure 11
shows an example of the data structure for the conflict graph, storing a Tran-object for
each transaction in the history. The manipulation of these objects and the verification
using the values in “Loop Step” and “Loop Token” is what comprises the correctness
verification.

ID Vis Loc Done Loop Step Loop Token Reads Writes

Figure 11 – Conflict Graph: list of Tran-objects.

The entire process of correctness verification is made of extra operations that pro-
cess each operation in a history to build a conflict graph.

4.2 Graph Grammar

First, a representation of sequential operations is needed. This representation will
compose transactions and histories used in the remainder of the text. Figure 12 shows
an example of two transactions with some conflicting operations, a code like this is the
input for the system being evaluated.

T1

1: begin
2: read(x)
3: write(x,1)
4: tryCommit

T2

1: begin
2: read(x)
3: write(x,2)
4: tryCommit

Figure 12 – Example of transaction code.

In Figure 13 it is demonstrated how the code from Figure 12 is represented in a
graph manner. This is the initial state as an input to the GG. Each operation (begin,
read, write and tryCommit) is represented by a node with relevant information to the
operation itself, the main node T represents the identifier for the transaction with an
unique id. Note that the sequential operations are connected by a directed edge next
that represents the order in which these operations must execute. The edge op points
to the current operation to be executed, in an approach like this every transactional
operation is considered to be atomic: the response of the operation happens immedi-
ately after the invocation. These operations represent the invocation order that each
transaction requires, moreover, as this is just an evaluation scenario, the tryCommit
operation represents an attempt to commit the transaction. The result of the attempt is
not known at this point, hence “try”, and will appear only in the history of each execution

47

that reaches that point of the transaction. In early iterations of the graph formalism de-
scribed in this chapter, that only dealt with single histories, invocations and responses
were processed separately. However, because some of the correctness criteria for the
TM algorithms use atomic operations, it was decided that for the full algorithm formal-
ism it is best to keep the atomic notion, which in turns decreases the number of nodes
in a transaction or history, making it more readable.

T
id = 1

Begin
Write

target = "x"
value = 1

Read
target = "x"

TryCommit

T
id = 2

Begin
Write

target = "x"
value = 2

Read
target = "x"

TryCommit

nextnext

op

next next

op

next

next

Figure 13 – Graph representation of transactions used as input for the GG.

4.2.1 Initial State and Type Graph

The initial state of the graph grammar includes the transactions (as seen in Fig-
ure 13) and some global objects like the shared memory, global clock, list of active
transactions and so on. Which objects are treated globally or locally will depend on
the algorithm itself. Figure 14 shows some examples of global objects that the algo-
rithm logic will allow to be accessed at any moment. The object SM represents the
shared memory that has a list of transactional variables (TVar), the conflict graph is
represented by CG and has a list of transactions (Tran objects) based on the current
execution, and the history starts with a flag of “empty”. This restriction of access to
each of these objects is enforced by the transformation rules.

SM

TVar
object = "x"
value = 0

TVar
object = "y"
value = 0

History
empty

has has

CG

Tran
vis

done
id = 0

writes = "x"
writes = "y"

has

Figure 14 – Graph representation of global objects in the initial state of the GG.

Another important aspect of the graph grammar formalism is the type graph. This
special graph will determine what nodes and edges can exist in the system, this results
in a controlled behavior by the production rules. Figure 15 shows an example of a

48

type graph for the global objects and initial state seen previously. In this example a
feature of GROOVE called inheritance relation between nodes is used: the node TOp
(Transactional Operation) is a supertype of Begin, Read, Write, TryCommit, Commit
and Abort. This is used mostly to simplify the relation that all of the transactional
operation have with the nodes History and T (via edges has and op respectively).
The TOp node also has a recursive next-edge that points to the next transactional
operation, this is used for the sequential operations in the initial state and history.

History
empty TOp

last

Read
target: string

Begin

Write
target: string

value: int

TryCommit

Abort

Commit

T
active
id: int

SM

TVar
object: string

value: int
Tran
vis
loc

done
loop_s
loop_t
id: int

reads: string
writes: string

CG

LocalVar
target: string

value: int

Conflict
target: string
valRead: int

next
op

has

has
has

locallocal

rf
rt
rw
ww

Figure 15 – Example of Type Graph of the GG.

The next step is to define how the execution of these transactions will generate a
history. For simplicity it was only considered the four operations mentioned above (be-
gin, read, write and try-commit) and each operation is considered atomic. It is up to
the algorithm as to what the side effects of each operations are, but for the sake of the
goal of evaluating all histories, every operation is seen as a step to create a new entry
to the history. Similar to how a transaction was represented in Figure 13, a history is a
sequence of operations connected by a next-edge with the corresponding transaction
id and necessary information of that operation (targeted variable and values that were
read or written). Figure 16 shows an example of a history after some transactional op-
erations have been executed. In this history two transaction (with ids 1 and 2) execute
a sequence of operations to the shared memory and transaction 1 commits whereas
transaction 2 aborts.

4.2.2 Production Rules

GROOVE builds a state space in the form of an LTS representing every sequence of
application of transformation rules. This LTS is usually represented by a graph where
the “root” is the initial state (Figure 13 for example) and each connected node is the
state resulted from a rule application. When dealing with STM algorithms, the order of

49

History

Begin
id = 1

Begin
id = 2

Read
id = 1

target = "x"
value = 0

Write
id = 1

target = "x"
value = 1

Read
id = 2

target = "x"
value = 0

Commit
id = 1

Abort
id = 2

has

next next next next next

next

Figure 16 – Example of graph representation of a history.

applications for production rules result in an LTS with the form of a tree-like graph. The
final state in the LTS is a state where no rules can be applied via pattern match and
therefore they are the leaves of this tree.

Rules ideally consume/process each transactional operation in a single step. At
each step, the operation is added to the history and changes are applied to the shared
memory accordingly. This means that every final state contains a full history execution
of all operations in the initial state. Therefore, because the LTS contains all possible
rule application orders, it essentially contains a graph representation of every history
of a given set of transactions.

The first operation described is a read operation. In Figure 17 it is showcased
two different approaches of a read to the shared memory: an eager versioning in Fig-
ure 17(a) and a lazy versioning in Figure 17(b).

TOp
− last

Read
last

int
T

active

Read TOp

SMTVar

stringint

id

next

next

op op

id

has

object

target

value

value target

(a) Eager versioning

TOp
− last

Read
last

int
T

active

LocalVar LocalVar
Read

TOp

SMTVar

int

string

id

next

nextop

opid

has

value
object

target

local local

target target
target

value

(b) Lazy versioning
Figure 17 – Example of production rules for a Read Operation.

These two examples manipulate the values of the shared memory (reading a spe-
cific variable) and create a new object in the last position of the history. Note that in the
production rule for the lazy versioning read, a NAC is used for the local variable that will

50

store the value read (and possibly written later). This ensures that this rule will only be
executed if it is the first time this variable is being read from the shared memory. Any
future read to the same variable will be done locally, with a modified production rule.

The write operations are treated in a similar way. Figure 18 shows an eager
and a lazy versioning approach to a production rule that executes a write. In same
situation of the rules seen above, the lazy versioning write operation also needs an
extra production rule to execute the write locally if the local copy already exists.

TOp
− last

Write
last

int
T

active

Write

TOp

SMTVar

string
int

int

id

op

value

next

target

value

op

object

next

id

target

has

value

value

(a) Eager versioning

TOp
− last

Write
last

int T
active

Write

TOp

LocalVar

string
int

LocalVar

value

local

id op

next targetvalue

id

target

op nextlocal

targettarget

(b) Lazy versioning

Figure 18 – Example of production rules for a Write Operation.

Some similarities can be seen between the production rules shown in Figures 17
and 18: an object is added at the end of the sequence representing the history (TOp
loses the last-flag and points to a newly created Read /Write node with the flag instead);
the T node that was pointing to the current operation with a op-edge (operation) now
points to the next one in the sequence of next-edges; and lastly, the transactional
operations (node that T points to with an op-edge) are not deleted for the possibility of
being re-executed later.

The begin operation, that starts a transaction has two situations where it occurs:
either it is the first operation of the entire system, therefore the history is empty; or
the transaction is starting in the middle of the execution where the history is no longer
empty. To accommodate for both situations two separate production rules are needed,
as shown in Figure 19(a) and 19(b), and these two are the only rules required to deal
with starting transactions.

The last two operations are commit and abort operations. Similarly to the begin
operation these two need more context to be created, more specifically the logic behind
the actual algorithm being translated into a graph grammar. The decision to commit
a transaction, or not, usually includes conflict detection with other transactions and

51

History
− empty

Begin
last

int T
+ active

Begin TOp

next

id

op

next

id

op

(a) Empty History

TOp
− last

Begin
last

int T
+ active

Begin TOp

next

id

op

next

id

op

(b) Non-empty History
Figure 19 – Example of production rules for a Begin Operation.

how to deal with it. A simple example would be a TM algorithm that reads and writes
directly to the shared memory but keeps a log of previous values for each t-variable and
rolls back any changes if it detects conflicts at any time (eager versioning and eager
conflict detection). Another example would be that transactions keep a local copy of
the t-variables they read/write and only at the commit operation they verify conflicts and
deal with them (lazy versioning and lazy conflict detection). The choice between lazy or
eager conflict detection has been found to influence schedulability when implementing
real-time TM systems (BELWAL; CHENG, 2011). Both can be translated into the rules
of the GG.

Figure 20 shows an eager versioning commit and a lazy versioning commit rule.

TOp
− last

Commit
last

int T
- active

TryCommit

next

id id

op

(a) Eager versioning

TOp
− last

Commit
last

int
T

- active

TryCommit

LocalVar

SMTVar

string int

int

∀

value

op

object

@

next

has

id

@

value

@

local

valueobjectid

@

@

(a) Lazy versioning
Figure 20 – Example of production rules for a Commit Operation.

These rules are executed only when the transaction can in fact commit, otherwise
an abort production rule would execute and deal with rollback, which can be difficult in
an eager versioning algorithm. This example shows the use of a universal quantifier
(∀), this makes it so that for every LocalVar node in the transaction committing, their
values will be written to the corresponding TVar node in the shared memory. This is
a feature of GROOVE, so if a choice is made to not use it, the solution would be to
split the operation in three production rules as seen in Figure 21. Instead of a single

52

step to deal with a lazy versioning commit, it would require at least two or three, but
possibly more. The first step is to lock the transaction in a commit (Figure 21(a), which
executes only once), the next step is to apply the local changes to the shared memory
(Figure 21(b), executes as many times as there are local variables), lastly is to finish
the commit and unlock the transaction (Figure 21(c), which executes only once when
there are no more local variables).

TOp
− last

Commit
last

int

T
! lock
+ lock

TryCommit

op
next

idid

(a) First step

Commit
last

int

T
lock

TryCommit

LocalVar

SM

TVar

string int

int

value

op

object

has

id

value

local

valueobject

id

(b) Repeatable step

Commit
last

int
T

− lock

TryCommit

item

op

id has

id

(c) Last step

Figure 21 – Example of production rule for a lazy-versioning Commit Operation divided in steps.

Note that so far only versioning was covered in the production rules, but conflict
detection is also an important characteristic to take into consideration when designing
a TM algorithm and it will be reflected in the graph representation of the operations. In
an algorithm with eager conflict detection, some transaction is likely to be aborted at
any point if a conflict happens. This can approached by always checking the version of
a variable read by the transaction. As shown in Figure 22, a local node conflict stores
the value read of each variable the transaction performed a read operation on, this
can be used as validation that the transaction has read a stable state of the system.
Figure 22(a) shows a commit operation but the same verification happens in all other
operations as well. This verification can be read as: for all local nodes conflict that
store a value read (valRead-edge), their respective objects in the shared memory (TVar
node in the SM) must not have a different value.

While the verification of conflict in a commit, read or write operation ensures that all
values read are stable, in the abort operation seen in Figure 22(b), with at least one
conflict the rule can be triggered by using the quantifier exists (∃). Both instances of
verification are mutually exclusive, a transaction cannot choose to commit (or read or
write for that matter) and abort at the same time.

53

TOp
− last

Commit
last

int

T
− active

TryCommit

LocalVar

SM TVar

string int

int

∀

int

Conflict

int

∃

SM

TVar

string

∀

target

local

value

id

value

@@

op

@
@

@

value

valRead

has

@

target

has

next

local

@

in

id

object

@ object

!=
@

@

value

(a) Commit Operation

TOp
− last

Abort
last

int
T

− active TOp

SMTVar

stringint

Conflictint

∃

id

next

id

@

op

target

has

@

@
!=

value

@

@

object

local

valRead

(b) Abort Operation

Figure 22 – Example of production rules for a Commit and Abort with lazy versioning and eager
conflict detection.

In the case of lazy conflict detection, instead of having an abort operation that can
be called at any point, the production rules that finish the execution of a transaction
(either to commit or abort) have opposing matching conditions when a TryCommit is
called: the production rule for a commit only matches if there are no conflicts, on the
other hand, the production rule for an abort only matches if at least one conflict is
found.

4.3 Generating Histories

After translating the algorithm to production rules that correctly modify the state of
the system and makes the decision of committing or aborting a transaction, the next
step is deal with all possible sequences of operations that generate different histories.
Because production rules are being used as a one-step operation that state of the
graph, it is possible to use the LTS Simulation tool that GROOVE offers. Given the
initial state seen in Figure 13 (in addition of the global nodes such as History and SM)
the simulation of a lazy-versioning and eager-conflict algorithm will generate a LTS
with 231 states where 70 of those are called “final”. In GROOVE, the LTS is visualized
with a tree-like graph that can be partially seen in Figure 23.

Each node in the LTS can be expanded (by clicking on it) to visualize the current
state of the system resulted from the sequence of production rules applied to that
particular state up to that point. At the top of the LTS the initial state labelled start can

54

Figure 23 – Labelled Transition System Simulation in the GROOVE tool.

be seen, and at the bottom the final states as green nodes labelled result. A final state
just means that no more production rules can be applied to that state, in the case for
the STM system this means that there are no more transactional operations are left to
be executed and the history generated by that sequence of operations is complete.

Those green final nodes are the target of the LTS in this work. The LTS demon-
strated in Figure 23 shows that this particular initial state of two conflicting transactions
generated 70 unique histories. Another feature of GROOVE that can be applied to the
generated LTS is the use of Computation Tree Logic (CTL). CTL allows for the verifica-
tion of a properties in the graphs states in the LTS by using a special production rule
called graph condition. This will be elaborated further in this chapter.

4.4 Correctness Criteria

Having defined the basic rules that will create the state space containing all histories
of a TM algorithm, the next step is to verify their correctness. This verification will
be based on a graph characterization by Guerraoui; Kapałka (2010), where a conflict
graph is built by analysing the operations in a given history. In this approach the conflict

55

graph is created at the same time as the history. This is accomplished by augmenting
the production rules with the verification for conflicts.

The properties discussed in Chapter 2.2 and Chapter 2.3 are the main focus for
the correctness criteria test. A history can be sequential if no two transactions are
concurrent. It can also be complete if there are no live transactions, meaning that all
transactions finish with an abort or commit operation. And finally, histories and trans-
actions can be legal, if all transactions in a sequential history respect the sequential
specifications of all shared objects.

In the graph grammar representing an algorithm, T is used as the main vertex for a
transaction and its operations, whereas Tran is the vertex representing the transaction
in the conflict graph. To keep a consistent nomenclature, the conditions described in in
Chapter 2.3.2 to create the opaque graph OPG are applied over Tran vertices instead.
Rewriting the definitions to fit the current context result in the following. According
to Guerraoui; Kapałka (2010), to avoid dealing with the initial values of TVars separately
from the values written to those TVars by transactions, a “virtual” committed initializing
transaction Tran0 needs to be introduced. Tran0 writes value 0 to every TVar (in every
TM history). Let H be any TM history. Let V≪ be any version order function in H. Denote
V≪(x) by≪x. An opaque graph OPG(H, V≪) is a directed, labelled graph constructed
by following the rules:

1. For every transaction Trani in H (including Tran0) there is a vertex Trani in graph
OPG(H,V≪). Vertex Trani is labelled as follows: vis if Trani is committed in H

or if some transaction performs a read operation on a TVar written by Trani in H,
and loc, otherwise.

2. For all vertices Trani and Trank in graph OPG(H,V≪), i ̸= k, there is an edge
from Trani to Trank (denoted Trani → Trank) in any of the following cases:

(a) If Trani ≺H Trank (i.e., Trani precedes Trank in H); then the edge is la-
belled rt (from “real-time”) and denoted Trani

rt−→ Trank;

(b) If Trank reads x from Trani, meaning that Trani writes to the variable x

before Trank reads it; then the edge is labelled rf and denoted Trani
rf−→

Trank;

(c) If, for some variable x, Trani ≪x Trank; then the edge is labelled ww (from
“write before write”) and denoted Trani

ww−−→ Trank;

(d) If vertex Trank is labelled vis, and there is a transaction Tranm in H and
a variable x, such that: (a) Tranm ≪x Trank, and (b) Trani reads x from
Tranm; then the edge is labelled rw (from “read before write”) and denoted
Trani

rw−→ Trank;

56

Consistency in a TM means that every time a transaction Trani reads a TVar x,
the value returned is either the latest value written by Trani in x, or any value written
by another committed or commit-pending transaction. In (GUERRAOUI; KAPAŁKA,
2010), the authors define that a consistent TM history H that has unique writes is
opaque (GUERRAOUI; KAPALKA, 2008) if, and only if, there exists a version order
function V≪ in H such that graph OPG(H,V≪) is acyclic. The proof can be found
in (GUERRAOUI; KAPAŁKA, 2010). Figure 24 shows an example of an opaque history,
the corresponding conflict graph can be seen in Figure 25.

(H1)

T1
w(x, 11) w(y, 12) •c

T2
r(y, 0) w(y, 21) •c

T3
w(z, 0) w(y, 31) •c

Figure 24 – Example of opaque history.

Tran
vis

id = 0
writes = "x"
writes = "y"
writes = "z"

Tran
vis

id = 2
reads = "y"
writes = "y"

Tran
vis

id = 1
writes = "x"
writes = "y"

Tran
vis

id = 3
reads = "z"
writes = "y"

rf
ww

rf
ww

rt
ww

rt
ww

ww

ww

Figure 25 – Conflict graph for an opaque history.

The proposed methodology to formalize STM algorithms into graph grammars is
able to analyse the entire LTS constructed above and verify correctness of each history.
It was observed that the process of creating a conflict graph can be separated from the
creation of the history itself. Moreover, because it deals with already existing data it
only needs to observe the set of conflicts and modify edges between Tran-nodes, that
represent each transaction, which results in very simple production rules.

Figure 26 shows the production rules for a commit and a begin operation for the
conflict graph of the history being evaluated. Note that, before, a node T with an op-
edge was used to identify the current operation of the various parallel transactions,
but now because a history is evaluated individually, the node History itself is used
to path through the sequence. The has-edge on the node History always starts by
pointing to the first element of the history. The operations in Figure 26 cover all four
conflicts defined by Guerraoui; Kapałka (2010): Figure 26(a) shows a commit operation

57

that creates read before write (rw) and write before write (ww) relations; Figure 26(b)
shows a begin operation that creates real-time (rt) relations. Figure 26(c) shows a read
operation that creates reads from (rf) relations.

History

Commit TOp

int

Tran
− loc

+ done
+ vis

∃?

∀

Tran
vis

string

intTran
loc

int

∀

next

writes

in

!=

!=

id

@

writes

has

rf
@

ww

@

id

rw

@

@

id

id

@

!=

has

(a) Commit Operation

History

Begin TOp

int

CG Tran
loc

Tran
done

∀

0

has

has

@

next

has

id

id

id

rt

has

(b) Begin Operation

History

Read TOp

int

CG

Tran
loc

int

Tran

has

has

next

has

rf

id

fromid

id

(c) Read Operation

Figure 26 – Example of production rules for the Conflict Graph Commit, Begin and Read oper-
ation.

4.5 Computation Tree Logic

Computation Tree Logic (CTL) is a branching-time logic that has proved to be
a useful and versatile framework for reasoning about properties of distributed sys-
tems (EMERSON; CLARKE, 1982; EMERSON; HALPERN, 1986). Temporal logics,
such as CTL, offer facilities for the specification of properties that the behavior of the
system must fulfill (CLARKE; EMERSON; SISTLA, 1986).

The CTL verification tool on GROOVE is used to check if any final state of the
evaluation has a cyclic conflict graph or not, this is achieved by using a graph condition
rule: a rule that does not create or delete objects. At the end of the history generation
some auxiliary production rules are used to path through the conflict graph and mark
each node it passes, creating a spanning tree by following directed edges starting on
Tran0. The graph condition cyclic simply looks for a match on a path that crossed an
already marked node, forming a cycle.

The verification is made by the CTL formula AG !cyclic. This formula states that for
every path following the current state, the entire path holds the property of not pattern

58

matching the graph condition cyclic. Figure 27 shows the production rule that marks
the CG looking for cycles and the graph condition used in the CTL. In this figure a
feature of GROOVE is used, called “wildcard”, in the form of a “?” edge connecting two
vertices. This edge means that any possible labelled edge can be used in the patter
match for the rule, in this case they are rf, rt, rw and ww.

The entire process of analysing the correctness of an STM algorithm using graph
grammar is composed of: first, generating histories; then a conflict graph is extracted
for each history, overlaps may occur where multiple histories result in the same CG;
then each CG is marked via the production rule in Figure 27(a); finally, the CTL is
formula is executed using the production rule in Figure 27(b). If no matches occur, no
conflict graphs had cycles.

Tran
− loop_s
+ loop_t
! loop_t

int

Tran
+ loop_s

int

History

!=

id
id

?

(a) Loop pathing in the CG

Tran
loop_s
loop_t

int

Tran

int

id

?

!=

id

(b) Cyclic test

Figure 27 – Production rules for the test of acyclicity in a conflict graph.

4.6 Final Remarks

This chapter described the methodology to verifying opacity as a correctness crite-
rion for Transactional Memory (TM) algorithms via a translation to a Graph Grammar
(GG). The graph characterization of opacity is well known in the literature and it was
used to demonstrate opacity of every history the algorithm generates for a given entry
program. A graph representation of sequential operations guides how the system is
transformed in the approach described in this chapter, composing concurrent transac-
tions of the initial state and the series of operations in histories. Production rules were
used to “execute” a full transactional operation in a single step, transforming the state
of the system accordingly. Because the initial state includes more than one transac-
tion, the non-determinism of which transaction operation to execute creates multiple
orders of operations. The labelled transition system generated by the tool GROOVE

59

represents all possible sequences of rule applications, and at each step, it adds to the
history which operation was executed. Any leaf of this tree contains a full history, thus
the set of all histories is equal to the set of all possible rule application orders. It is
worth noting that this set of histories is directly dependent on the set of transactions
given in the initial state.

Given that a set of histories can be generated from a TM algorithm, evaluating their
correctness can be equivalent to evaluating the correctness of the algorithm. The graph
characterization of opacity was used for this purpose. When translating the algorithm
into a graph grammar, extra steps can be added after the histories are generated to
apply the opacity verification. These steps create a conflict graph for each history and
apply a logic of flagging nodes to look for loops in the conflict graph. In the same sense
that an input of transactions results in non-determinism for the order of execution of op-
erations, adding flags to the conflict graph also results in different paths being followed.
If any of those paths results in a cycle means that at least one of the reachable states
will match on the acyclicity test. In the tool GROOVE, this was done using computation
tree logic. The first iteration of graph grammars as a method to extract conflict graph of
a single history resulted in the peer reviewed paper seen in (CARDOSO; FOSS; BOIS,
2019). As for the methodology described in this chapter, that applies the concept of
this first iteration for an entire set of histories, resulted in the peer reviewed paper seen
in (CARDOSO; FOSS; BOIS, 2021). An alternative to using the tool GROOVE to apply
this correctness test is the event-B model that will be described in the next chapter.
The main reason to present an alternative solution to this step of the formalism is the
fact that GROOVE needs to create the entire state space based on the production rules
before the acyclicity test can be applied. For this reason, event-B can be a useful al-
ternative that uses proof by induction on reachable states of the system and does not
create the full state space to evaluate cycles in the conflict graphs.

5 EVENT-B ALTERNATIVE FOR CORRECTNESS VERIFICA-
TION

The vast majority of existing approaches for verifying graph transformation systems
follows the model checking paradigm. It explores, which configurations are reached
when transformation rules are applied to a given start graph. Typical properties under
investigation are therefore whether particular invariants are maintained during graph
rewriting, or whether certain configurations are reachable. Model checking is attractive
because it offers a high degree of automation and is therefore accessible also to unini-
tiated users. The work of (DA COSTA; RIBEIRO, 2009, 2012) presents a logical model
for reasoning about graph transformations. This approach has been implemented in
Event-B (RIBEIRO et al., 2010), a state-based formalism, by coding individual rules as
event-B machine events and then profiting from the proof support for this platform to
prove the correctness of rules. Further work has also been made to introduce negative
application conditions and attributes (COSTA CAVALHEIRO; FOSS; RIBEIRO, 2017).

The methodology to formalize Transactional Memory (TM) algorithms using graph
grammar includes a step of generating a state space that contains different order of
executions of operations to the shared memory, and a step of applying a correctness
test to these executions. The result of this test is the extraction of a conflict graph and
the verification of its cycles. If there are no cycles in the conflict graph, the correctness
criteria used deems the execution as correct.

In the formalization described in Chapter 4 and the study cases presented in Chap-
ter 6, the tool GROOVE is used to create the state space via a Labelled Transition
System (LTS), extract the conflict graph and use the Computation Tree Logic (CTL)
feature to check for cycles. However, because GROOVE is a primarily visual tool,
the state space created includes the visual data for each reachable state. This can
result in unnecessary processing power being used for these graphs when in reality
the goal is to check for a pattern match (graph condition) in all of them without actu-
ally needing to access them individually. Another point that can be made about using
GROOVE’s state space generator is that depending on the size of the starting graph,
the non-determinism nature of TM executions can generate more and more variations

61

of execution orders, which only increase the size of the state space, making the opti-
mization of this step of the methodology very important.

This chapter presents an alternative to using the CTL feature of GROOVE to check
for cycles in conflict graphs by modelling the evaluation of a history in Event-B. This
does not include the entire state space generation as that would require the TM algo-
rithm to also be modelled in Event-B, that is envisioned for future works. The graph
grammar presented in this chapter only contains a history, a sequential set of opera-
tions to the shared memory, and the transformation that production rules apply is used
to create the conflict graph and analyse its acyclicity. Section 5.1 describes the neces-
sary definitions of an even-B model. Section 5.2 presents the modified graph grammar
used in the correctness verification in this chapter. Section 5.3 presents the event-B
translation of the new GG and the verification process developed.

5.1 Event-B Modeling

Event-B (ABRIAL; HALLERSTEDE, 2007; ABRIAL, 2010) is a state-based formal-
ism that is related to Classical B (ABRIAL; HOARE, 1996) and Action Systems (BACK;
SERE, 1989). This section presents the definition of this formalism, symbols and op-
erations presented that will be used in the remainder of this text. Table 1 shows these
symbols and their meanings, corresponding to the standard event-B mathematical no-
tation.

Table 1 – Definition of symbols and operations (Source: (COSTA CAVALHEIRO; FOSS;
RIBEIRO, 2017)).

Symbol/operation Meaning
7→ Partial functions or morphisms
→ Total functions or morphisms
7↣ Partial and injective functions or morphisms
↣ Total and injective functions or morphisms
f ◦ g Composition of functions or morphisms f and g
f−1 Inverse function
7→ Mapping relation
⊎ Disjoint union
N Set of natural numbers
P Set of all subsets (power set)
\ or − Set difference
rng(r) Range of a binary relation r
dom(r) Domain of a binary relation r
card(A) Number of elements of set A
r[A] {y|∃x · x ∈ A and x 7→ y ∈ A} (relational image)
◁− A ◁− r

def
= {(a, b) ∈ r|a ̸∈ A} (domain subtraction)

◁− r ◁− s
def
= (dom(s) ◁− r) ∪ s (relation overriding)

▷ r ▷ B
def
= {(a, b) ∈ r|b ∈ B} (range restriction)

62

An event-B model consists of two parts: a static part called context and a dynamic
part called machine. Event-B is based on First-Order Logic with Set Theory.

Definition 19 (Event-B model, event). An event-B model E B Model = (C, M) is de-
fined by a context C = (c, s, A) and a machineM = (v, I, init, E), where c and s are sets
of constant and set names, respectively; A(c, s) is a collection of axioms constraining c
and s; v is a set of state variables; I(v) is a model invariant limiting the possible assign-
ments to v, ∃ c, s, v · A(c, s) ∧ I(v) - i.e. A and I characterize a non-empty set of model
states; init(v’) is an initialization action assigning initial values to the model variables;
and E is a set of model events. An event is a tuple e = (G, BA) where G(v) is a formula,
called the guard, and BA(v, v’) is a before-after predicate Types of constants must be
defined as axioms in A, whereas types of variables must be defined as invariants in I.

The concrete syntax of the event-B Camille editor (from the Rodin platform), as
shown in Figure 28, will be used as representation of the event-B model. In the context,
sets and constant names are defined, and arbitrary axioms may be used, the only
requirement is that types of constants must be defined as axioms. In the machine,
variables can be declared and must have a type defined by an invariant. Invariants are
also used to describe the desired properties of reachable states of a system.

context ctx_name machine mch_name sees ctx_name

s


sets

v


variables

Set_name1 variable_name1
//. . . //. . .
Set_namen variable_namen

c


constants

I


invariants

constant_name1 @inv1 variable_name1 ∈ Set_name1
//. . . //. . .
@invn variable_namen @invn variable_namen ∈ Set_name1 7→ N

//. . .

A


axioms

@ax1 constant_name1 ∈ Set_name1 events 

E

//. . .

init


event INITIALISATION

@axm Set_namen = {constant_namen} then
//. . . @act1 variable_name1 = constant_name1

//. . .
end @act1 variable_namen = {constant_name1 7→ 0}

end

event event_name
any

var_name1
//. . .
var_namen

where
@grd1 var_name1 ∈ Set_name1
//. . .
@grdp variable_name1 ̸= var_name1

then
@act1 variable_name1 = var_name1
//. . .

end
end

Figure 28 – Event-B syntax example (Camille editor).

Besides variables and invariants, events are also included in the machine, they
have the ability to transform the state of the system. The initialization event does not

63

have guards (requirements to trigger its execution), and must assign a value for each
variable of the machine. These assignments may be non-deterministic, but this feature
is not used in this work since a concrete initial graph is used in the graph grammar.
To define the other events that describe the behavior of the system, auxiliary variables
can be used (in the any block), that must be typed in the guards of the event (where
block). The guards are also used to specify the conditions that must hold in a state for
the event to be enabled. Finally, the then block implements the before-after predicate:
it is used to assign the new values to variables. Not all variables must be changed in
an event, the values of the ones that are not listed remain unchanged.

Model correctness is demonstrated by generating and discharging a collection of
proof obligations that ensure that the initial state is feasible and satisfies all invariants
of the model. If any event can be executed at a state that satisfies all invariants, it will
result in a state that also satisfies all invariants.

Definition 20 (Model correctness). Given an event-B model E B Model = (C,M), with
M = (v, I, init, E), and an event ev = (G,BA) ∈ E or ev = init. The event ev is correct if
the following conditions are satisfied:

• Feasibility (FIS):

{
I(v) ∧G(v) =⇒ ∃v′ ·BA(v, v′), if ev ∈ E
∃v′ · init(v′), if ev = init

• Invariant Satisfaction (INV):

{
I(v) ∧G(v) ∧BA(v, v′) =⇒ I(v′), if ev ∈ E
I(v′), if ev = init

An event-B model is correct if all its events are correct.

The feasibility condition (FIS) states that whenever the invariants and the guard
of an event are true in some state v, it is possible to obtain a state v′ that satisfies
the before-after predicate of this event. To ensure the feasibility of the system, all
sets in a context are assumed to be non-empty in an event-B model (sets represent
types, and thus empty types are not allowed). The invariant satisfaction condition (INV)
ensures that if the event occurs, it brings the system to a state v′ that satisfies all model
invariants. Properties that a model should exhibit are described as invariants, and thus
proving that a model is correct means proving that each event does not bring a system
to a state in which the desired properties do not hold. Given a model that is correct, the
behavior of an event-B model is defined by a transition system, as described below.

Definition 21 (Event-B model behavior). Given a correct model E B Model = (C, M),
with C = (c, s, A) and M = (v, I, init, E), its behavior is given by a transition system BST
= (BState, BS0, →) where: BState = {⟨v⟩} | v are state variables and ⟨v⟩ is a valuation
of v} ∪ {Undef}, BS0 = Undef, and→⊆ BState × BState is the transition relation given

64

by the rules:

(start)
init(v′)

Undef→ ⟨v′⟩
(transition)

∃(G, BA) ∈ E · I(v) ∧G(v) ∧ BA(v, v′)
⟨v⟩ → ⟨v′⟩

The model is initialized (rule start) to a state described by init(v′) and then, as long
as there is an enabled event (rule transition), the model may evolve by firing this event
and computing the next state according to the event’s before-after predicate. Events
are atomic. In case more than one event is enabled at a certain state, demonic choice
semantics applies (BACKHOUSE; WOUDE, 1993; BERGHAMMER; SCHMIDT, 1993).
Note that model correctness implies that all reachable states satisfy the invariants of
the model.

In an event-B model, refinement is a fundamental concept since the idea is to con-
struct a model for a system in steps. The construction starts with a very abstract model
which is refined until it includes requirements and is at the desired level of abstraction.
The refinement of an abstract modelMA is a concrete modelMC that is behaviorally
related to the abstract one. In event-B, relating the models is achieved by constructing
a refinement mapping between MC and MA and by discharging a number of refine-
ment proof obligations. These proof obligations ensure that all computations that are
possible at the concrete level were also possible at the abstract level, meaning that no
new behavior with respect to the variables that compose the abstract state was intro-
duced in the concrete model. When a concrete model is constructed as a refinement of
an abstract model, it is not necessary to redo any proof to guarantee that the concrete
model satisfies the properties stated as invariants of the abstract model.

A refinement CC of a context CA is obtained by adding new sets, constants and
axioms. A concrete machine, which sees a concrete context CC , can use all concrete
sets and constants, as well as the abstract ones (in CA). In a machine refinement, the
set of variables of a concrete machine MC must be completely disjoint from the col-
lection variables of the corresponding abstract machineMA. In this work, refinement
was not used because the level of abstraction needed did not require it, however, for
further improvements on the approach described here, it is expected to be necessary
a resource.

An extensive tool support through the Rodin Platform makes event-B especially at-
tractive (DEPLOY; RODIN, 2023). An integrated Eclipse-based development environ-
ment is actively developed, and open to third-party extensions in the form of Eclipse
plug-ins. The main verification technique is theorem proving supported by a collection
of theorem provers, but there is also some support for model checking.

65

5.2 GG for Transactional Memory

The type graph represents the correct structure each state must adhere to in the
system, an example can be seen in Figure 29. In this notation a supertype TOp
(Transactional Operation) is used to represent the multiple operation nodes in one.
The node History points to the current operation, that can be in a normal state (OP),
or in a lock/release state. If the node History points to End, it will be processed as the
end of the execution. A CGNode has flags to denote its state: done, visible or local. If
a transaction commits or aborts, it will be considered done. Moreover only committed
transactions are flagged as visible, they are local otherwise. The CGNode stores which
variables the transaction wrote to, and which relations to other nodes it has (RF, RT,
RW and WW). Lastly, the node CG is used to lock or free CGNodes when committing
or starting transactions.

TOp

Begin

CGNode

N

N

History

Read

CG

End

N

Write

NN

Abort

Commit

Next

Done
Vis
Loc

LoopStep
LoopToken

RF
RT
RW
WW

Target
ID

Lock
OP

Release

Free
LockC

LockRT

From

ID

Writes

Figure 29 – Type graph.

The initial state includes a full history and an empty conflict graph. Processing each
operation will populate the conflict graph to be evaluated later. An operation node can
have attributes and a next-edge pointing to the next operation to be processed. At the
end of the history a node End is used to tell the system the history processing is over,
and the conflict graph can be looked at. Figure 30 shows and example of initial state.
From this graph onwards, nodes, edges and attributes have a label attached to them,
this is used in the event-B translation later.

5.2.1 Transactional operations

A begin operation is divided in 5 total production rules, each one represents an
internal step the operation needs. These steps represent a combination of: locking
the system, to only allow this operation to execute; dealing with any “loop” necessary,
transforming multiple nodes one at a time; and any unlocking needed to transition be-
tween steps. The reason this operation had to be divided in 5 steps is mostly because

66

T0_2
Begin

T0_3
Write

T0_1
History

T0_12
CGNode

0

1

T0_11
CG

1 101

T0_4
Begin

T0_5
Read

2 2 0

T0_6
Write

1 102

T0_7
Commit

1

T0_8
Read

2 1

T0_9
Abort

2

T0_10
End

101

102

e0_5
Next

atr0_12
ID

atr0_10
From

atr0_13
ID

e0_4
Next

e0_9
Next

e0_2
Next

atr0_5
ID

atr0_8
Target

atr0_4
ID

atr0_6
From

atr0_7
ID

e0_6
Next

e0_1
OP

atr0_11
ID

atr0_3
Target

atr0_1
ID

atr0_9
ID

e0_7
Next

e0_8
Next

e0_3
Next

atr0_2
ID

e0_10
Free

atr0_14
Writes

atr0_15
Writes

e0_11
Done

e0_12
Vis

Figure 30 – Initial state graph.

a loop cannot be represented without more complex operators. The tool GROOVE can
allow this notion with the use of quantifiers “for all” and “exists” (∀ and ∃), which makes
all 5 steps be executed with one production rule. To save some space, Figure 31 shows
the GROOVE version of the begin operation, but in Appendix B all 5 production rules
can be seen.

History

Begin TOp

N

CG

CGNode

CGNode ∀@

RT

OPOP

Free

ID

ID

Next

Free

Done

Loc

Figure 31 – Begin operation in a single step.

The 5 steps of a begin operation are divided in the following production rules:

• BeginLock rule (Figure 56): Locks the history into a begin operation (nothing
else can execute), and creates a CGNode for the corresponding new transaction.

• BeginLoop1 rule (Figure 57): Loops through any free and finished transaction
that does not have a real-time relation (RT -edge) with the new transaction and
creates the new edge signifying the relation.

• BeginLoop1_Release rule (Figure 58): When there are no more transactions to

67

mark with real-time relations, marks the history for the second loop. This prepares
to release of the execution for other transactions.

• BeginLoop2 rule (Figure 59): Loops through any locked CGNodes that had a
new edge added, and frees them.

• BeginLoop2_Release rule (Figure 60): When there are no more CGNodes to
free (or none to begin with), releases the lock on the history and move the OP-
edge to resume the execution of other operations.

The read operation creates a reads-from edge (RF) from the CGNode of the trans-
action that wrote the value to the one executing the operation. The operation can be
done in one production rule, so it only takes one step. Figure 32 shows the production
rule that processes a read operation.

T6_3
Read

T6_2
TOp

T6_1
History

N

T6_4
CGNode

N

T6_5
CGNode

atr6_1 From

e6_1
OP

atr6_4
ID

atr6_2
ID

atr6_3
ID

e6_2
Next

e6_3
Loc

L6

α6−−→
T6_8
Read

T6_7
TOp

T6_6
History

N

T6_9
CGNode

N

T6_10
CGNode

atr6_5 From

atr6_8
ID

atr6_6
ID

atr6_7
ID

e6_5
Next

e6_7
RF

e6_4
OP

e6_6
Loc

R6
Figure 32 – Read production rule.

The write operation creates a Writes-edge in the CGNode of the transaction that
executed the operation. This edge can be used as a flag for write-before-write conflicts
when a transaction commits. The operation can be done in one production rule, so
it only takes one step. Figure 33 shows the production rule that processes a write
operation.

The commit operation is the one that finalizes the execution of a single transaction,
making its changes visible to other transactions. Because of the nature of the changes
it has to make, it needs to analyze multiple nodes of the conflict graph. The solution for
this is to use a loop, in a similar way as the begin operation, so for the full operation to
execute 5 steps are needed. The graph in Figure 34 shows the full operation using the
for all (∀) quantifier, this graph represents the full operation. The two nested quantifiers
used here can be read as: for all CGNodes that write to the same variable as the main
transaction, a WW -edge is created; at the same time, for all CGNodes that read any

68

T7_3
Write

T7_2
TOp

T7_1
History

N

N

T7_4
CGNode

e7_2
Next

atr7_2
ID

e7_1
OP

atr7_3
ID

atr7_1
Target

e7_3
Loc

L7

α7−−→

T7_7
Write

T7_6
TOp

T7_5
History

N

N

T7_8
CGNode

atr7_6
Writes

e7_5
Next

atr7_5
ID

atr7_7
ID

atr7_4
Target

e7_4
OP

e7_7
Loc

R7
Figure 33 – Write production rule.

of these variables (that were overwritten by the main transaction), a new RW -edge is
created.

HistoryCommit

TOp

N

CGNode

∀

CGNode

N

N
CGNode

N

∀

Next
!=

OP

@

@
@

@

OP

Writes

ID

ID

@
WW
RW

in

!=

ID

RF
Writes

!=

ID

Loc

Vis

VisDone

Loc

Figure 34 – Commit operation in a single step.

The logic behind a commit operation divide in 5 steps is as follows:

• CommitLock rule: Locks the history into a commit operation, no other operation
can execute.

• CommitLoop1 rule: Loops through visible transactions that wrote to the same
variables as the transaction executing the commit. Add the new edge WW, de-
noting write-before-write relation between them.

• CommitLoop1_Release rule: As soon as there are no more WW -relations to
be added, prepare the operation for the second loop.

• CommitLoop2 rule: Loop through any transaction that read a value overwrit-
ten by the main trasaction (has a WW -relation). Adds the RW -edge between

69

the transaction that read the variable and the main one. This denotes the read-
before-write relation, where a value was read and overwritten afterwards, making
it inconsistent.

• CommitLoop2_Release rule: Lastly, if there are no more RW -edges to add,
finishes the execution and unlocks the history for other operations to execute.

The abort operation terminates the execution of a transaction, flagging it as “done”.
However, because it aborted, its changes are not visible to other transactions. It is
important to flag even aborted transactions because the begin operation creates the
real-time relation with these as well. Figure 35 shows the production rule responsible
for an abort operation, where the OP-edge is moved along to the next one in line, and
a new edge is added to the CGNode to flag it as “done”.

T13_3
Abort

T13_2
TOp

T13_1
History

N

T13_4
CGNode

e13_2
Next

atr13_1
ID

e13_1
OP

atr13_2
ID

e13_3
Loc

L13

α13−−→
T13_7
Abort

T13_6
TOp

T13_5
History

N

T13_8
CGNode

e13_5
Next

atr13_3
ID

e13_4
OP

atr13_4
ID

e13_6
Done

e13_7
Loc

R13
Figure 35 – Abort production rule.

5.2.2 LoopStart and LoopStep rules

Last step of transformations the system does. The objective is to path through the
generated Conflict Graph to find cycles. The main logic of the pathing is to use a marker
to choose the next step (edge loopStep, can be seen as a flag), and leave behind a
token to mark a path already visited (edge loopToken). The production rule that marks
the CG can only be applied if a CGNode has a loopStep, but not a loopToken. So the
idea is to path through the CG leaving behind marks, and if at any point the pathing
encounters a mark that was left behind, this signifies a loop in the CG. The production
rule LoopStart (Figure 36) starts this process, and LoopStep (Figure 37) executes the
remainder of it.

70

T14_1
History

T14_2
End

T14_3
CGNode 0

atr14_1
ID

e14_1
OP

L14

α14−−→

T14_4
History

T14_5
End

T14_6
CGNode 0

atr14_2
ID

e14_2
LoopStep

R14
Figure 36 – LoopStart rule: starts the Conflict Graph pathing process.

T15_5
CGNode

T15_6
CGNode

N N

e15_8
RF|RW|RT|WW

e15_6
LoopToken

e15_7
LoopStep

atr15_5
id

atr15_6
id

̸=

L15NAC

l15←−−

T15_1
CGNode

T15_2
CGNode

e15_2
RF|RW|RT|WW

e15_1
LoopStep

N N

atr15_1
id

atr15_2
id

̸=

L15

α15−−→

T15_3
CGNode

T15_4
CGNode

e15_4
RF|RW|RT|WW

e15_5
LoopStep

e15_3
LoopToken

N N

atr15_3
id

atr15_4
id

̸=

R15
Figure 37 – LoopStep rule: marks the path of the Conflict Graph.

5.3 Event-B for Transactional Memory

This section presents the event-B translation of the GG described previously. An
event-B model includes two parts: a context and a machine. The context includes the
global type graph of the system and a type definition for each production rule. The
machine part includes the initial graph and the main body of the production rules (the
condition for pattern matching and changes to be made when executed).

5.3.1 GG Type Graph and Initial State

When translating the type graph for the GG into an event-B model, three sets are
used: a set of vertices, a set of edges and a set of attributes. Vertices have edges
and attributes pointing to and from them. The only difference between edges and
attributes is that edges connect two vertices, meanwhile attributes connect a vertex
to a natural number. The context elements below represent a type graph as seen in
Figure 29. The three main sets vertT, edgeT and attrT, which are defined as partitions
with their respective constants. To deal with edges, sourceT and targetT are functions
that define where each edge can point to. In a similar way as edges, attributes use the
functions attrN (attribute’s node) and attrV (attribute’s value) to show their mapping in
the type graph. In this case all attributes use natural numbers as their value.

71

sets
vertT
edgeT
attrT

constants
CG CGNode History End Begin Read Write Commit Abort
RF RT RW WW
Vis Done Loc LoopStep LoopToken
Free LockRT LockC
OP Release Lock Next
ID Writes Target From

axioms
@axm_vertT: partition(vertT, {CGNode}, {CG}, {Begin}, {Read}, {Write}, {Commit}, {Abort},

{History}, {End})
@axm_edgeT: partition(edgeT, {RF}, {WW}, {RW}, {RT}, {LoopStep}, {LoopToken}, {Next}, {OP},

{Done}, {Vis}, {Free}, {LockC}, {LockRT}, {Loc}, {Lock}, {Release})
@axm_attrT: partition(attrT, {ID}, {Writes})
@axm_sourceT: sourceT ∈ edgeT → vertT
@axm_sourceT_def: partition(sourceT, {Lock 7→ History}, {Release 7→ History}, {LockC 7→ CG},

{LockRT 7→ CG}, {Loc 7→ CGNode}, {Free 7→ CG}, {Done 7→ CGNode},
{Vis 7→ CGNode}, {RF 7→ CGNode}, {WW 7→ CGNode}, {RW 7→ CGNode},
{RT 7→ CGNode}, {LoopStep 7→ CGNode}, {LoopToken 7→ CGNode},
{OP 7→ History})

@axm_targetT: targetT ∈ edgeT → vertT
@axm_targetT_def: partition(targetT, {Lock 7→ Begin}, {Lock 7→ Commit}, {Release 7→ Begin},

{Release 7→ Commit}, {LockC 7→ CGNode}, {LockRT 7→ CGNode},
{Loc 7→ CGNode}, {Free 7→ CGNode}, {Done 7→ CGNode}, {Vis 7→ CGNode},
{RF 7→ CGNode}, {WW 7→ CGNode}, {RW 7→ CGNode}, {RT 7→ CGNode},
{LoopStep 7→ CGNode}, {LoopToken 7→ CGNode}, {OP 7→ Begin},
{OP 7→ Read}, {OP 7→ Write}, {OP 7→ Commit}, {OP 7→ Abort}, {OP 7→ End})

@axm_attrN: attrN ∈ attrT → vertT
@axm_attrN_def: partition(attrN, {ID 7→ CGNode}, {Writes 7→ CGNode}, {Target 7→ Write}, {From 7→ Read})
@axm_attrV: attrV ∈ attrT → P(N)
@axm_attrV_def: partition(attrV, {ID 7→ N}, {Writes 7→ N}, {Target 7→ N}, {From 7→ N})

The initial state graph, as seen in Figure 30, includes a history (sequence of oper-
ations) and an empty conflict graph. The translation into an event-B model will include
global variables that define the state of the system, all production rules can see and
modify these variables, therefore modifying the current state of the system. In the code
below, invariants are used to give a type to variables. These variables are defined as
sets and functions, in a similar way as the type graph. In addition, some properties for
the system can be added here, by the nature of event-B modeling, these properties
are applied to every reachable state of the system. This example includes properties
that evaluate the vertices, edges and attributes’ sets as finite; and the property that
describes the acyclicity of the conflict graph. Now, for the contents of the initial graph
itself, this is defined in the event named INITIALISATION that instantiates the sets and
functions to be used by the production rules later.

As seen in previous figures, the nodes, edges and attributes in the production rules
have a unique label attached to them. This label is used in the event-B translation as
each element has to be typed in the context section of the model. The nomenclature of
labels follows the pattern of: a prefix to indicate which rule the element belongs to (T1,

72

e1 and attr1 for the first production rule, T2, e2 and attr2 for the second, and so on);
followed by a number counting each element (T1_1, T1_2, T1_3 are three vertices in
the first production rule). For the initial state, the label prefix is not used, however the
number counting each element still serves as an identifier for the vertices, edges and
attributes.

variables
vertG
edgeG
attrG
sourceG
targetG
attrNG
attrVG
tG_V
tG_E
tG_A

invariants
@inv_vertG: vertG ∈ P(N)
@inv_edgeG: edgeG ∈ P(N)
@inv_attrG: attrG ∈ P(N)
@inv_sourceG: sourceG ∈ edgeG → vertG
@inv_targetG: targetG ∈ edgeG → vertG
@inv_attrNG: attrNG ∈ attrG → vertG
@inv_attrVG: attrVG ∈ attrG → N
@inv_tG_V: tG_V ∈ vertG → vertT
@inv_tG_E: tG_E ∈ edgeG → edgeT
@inv_tG_A: tG_A ∈ attrG → attrT
@inv_finV: finite(vertG)
@inv_finE: finite(edgeG)
@inv_finA: finite(attrG)
@inv_propAcyclic: ∀e1,e2· e1 ∈ edgeG ∧ tG_E(e1) = LoopToken ∧

e2 ∈ edgeG ∧ tG_E(e2) = LoopStep =⇒ sourceG(e1) ̸= sourceG(e2)
events
event INITIALISATION

then
@act_vertG: vertG := {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
@act_edgeG: edgeG := {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
@act_attrG: attrG := {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
@act_attrNG: attrNG := {1 7→ 2, 2 7→ 3, 3 7→ 3, 4 7→ 4, 5 7→ 5, 6 7→ 5, 7 7→ 6, 8 7→ 6, 9 7→ 7, 10 7→ 8, 11 7→ 8,

12 7→ 9, 13 7→ 12, 14 7→ 12, 15 7→ 12}
@act_attrVG: attrVG := {1 7→ 1, 2 7→ 1, 3 7→ 101, 4 7→ 2, 5 7→ 2, 6 7→ 0, 7 7→ 1, 8 7→ 102, 9 7→ 1, 10 7→ 1,

11 7→ 2, 12 7→ 2, 13 7→ 0, 14 7→ 101, 15 7→ 102}
@act_sourceG: sourceG := {1 7→ 1, 2 7→ 2, 3 7→ 3, 4 7→ 4, 5 7→ 5, 6 7→ 6, 7 7→ 7, 8 7→ 8, 9 7→ 9, 10 7→ 11,

11 7→ 12, 12 7→ 12}
@act_targetG: targetG := {1 7→ 2, 2 7→ 3, 3 7→ 4, 4 7→ 5, 5 7→ 6, 6 7→ 7, 7 7→ 8, 8 7→ 9, 9 7→ 10, 10 7→ 12,

11 7→ 12, 12 7→ 12}
@act_tG_V: tG_V := {1 7→ History, 2 7→ Begin, 3 7→ Write, 4 7→ Begin, 5 7→ Read, 6 7→ Write, 7 7→ Commit,

8 7→ Read, 9 7→ Abort, 10 7→ End, 11 7→ CG, 12 7→ CGNode}
@act_tG_E: tG_E := {1 7→ OP, 2 7→ Next, 3 7→ Next, 4 7→ Next, 5 7→ Next, 6 7→ Next, 7 7→ Next, 8 7→ Next,

9 7→ Next, 10 7→ Free, 11 7→ Done, 12 7→ Vis}
@act_tG_A: tG_A := {1 7→ ID, 2 7→ ID, 3 7→ Target, 4 7→ ID, 5 7→ ID, 6 7→ From, 7 7→ ID, 8 7→ Target, 9 7→ ID,

10 7→ From, 11 7→ ID, 12 7→ ID, 13 7→ ID, 14 7→ Writes, 15 7→ Writes}
end

73

5.3.2 Begin Operation

Any given production rules translation to event-B is composed of two parts: the
context’s typing as axioms and constants; and the machine’s event as guards and
acts. The following code shows the context side of the first production rule that the
system executes, a BeginLock. As seen before, the begin operation is divided in five
steps, this is the first. The goal of these definitions in the context is to define all the sets
used by the pattern match when executing the events later. The axioms here describe
exactly the state seen in the L1 graph of Figure 56, as this is the pattern match for this
production rule.

sets
vertL1
edgeL1
attrL1

constants
T1_1 T1_2 T1_3
e1_1
atr1_1
sourceL1
targetL1
attrNL1
attrVL1
tL1_V
tL1_E
tL1_A

axioms
@axm_vertL1 partition(vertL1, {T1_1}, {T1_2}, {T1_3})
@axm_edgeL1 partition(edgeL1, {e1_1})
@axm_attrL1 partition(attrL1, {atr1_1})
@axm_sourceL1_type sourceL1 ∈ edgeL1 → vertL1
@axm_sourceL1_def partition(sourceL1, {e1_1 7→ T1_2})
@axm_targetL1_type targetL1 ∈ edgeL1 → vertL1
@axm_targetL1_def partition(targetL1, {e1_1 7→ T1_1})
@axm_attrNL1_type attrNL1 ∈ attrL1 → vertL1
@axm_attrNL1_def partition(attrNL1, {atr1_1 7→ T1_1})
@axm_attrVL1_type attrVL1 ∈ attrL1 → P(N)
@axm_attrVL1_def partition(attrVL1, {atr1_1 7→ N})
@axm_tL1_V tL1_V ∈ vertL1 → vertT
@axm_tL1_V_def partition(tL1_V, {T1_1 7→ Begin}, {T1_2 7→ History}, {T1_3 7→ CG})
@axm_tL1_E tL1_E ∈ edgeL1 → edgeT
@axm_tL1_E_def partition(tL1_E, {e1_1 7→ OP})
@axm_tL1_A tL1_A ∈ attrL1 → attrT
@axm_tL1_A_def partition(tL1_A, {atr1_1 7→ ID})

The changes to the state are defined in the machine, as an event. The code below
demonstrates how the same production rule BeginLock would look as an event that
deletes and creates elements. In the case of a BeginLock, the consequences of its
execution is to delete the OP-edge (e1_1), creating a new Lock -edge (e1_2) in its
place. Furthermore, to create a new CGNode-vertex (T1_7) with its Free-edge (e1_3)
and ID-attribute (attr1_3). The deleted edge is added to the delE set, and any new
elements have an identifier represented by a natural number that is not already in each

74

respective set from the initial state (vertG, edgeG and attrG). They are also different
from each other. All these definitions can be seen in the guards of the event BeginLock.
Besides the definitions used to change the state of the system, some extra guards
define the compatibility for the correct pattern match of the system (vertices, edges,
attributes and their respective auxiliary functions). The actions that events take are
defined after the guards, in this case all the sets defined in the initial state receive some
level of changes (deletion or insertion). Vertices, edges and attributes are deleted or
inserted from vertG, edgeG and attrG, respectively. Adding or deleting any element,
also adds or deletes their type in their respective sets (tG_V, tG_E and tG_A). If any
changes occur to edgeG, the same level of changes have to be made to the auxiliary
functions sourceG and targetG. In a similar way, if any changes occur to attrG, the
same level of changes occur to attrNG (attribute nodes) and attrV (attribute values).

event BeginLock
any

mV
mE
mA
T1_7
e1_2
e1_3
e1_4
atr1_3
delE

where
@grd_mV mV ∈ vertL1 → vertG
@grd_mE mE ∈ edgeL1 → edgeG
@grd_mA mA ∈ attrL1 → attrG
@grd_delE delE = [{e1_1}]
@grd_newT1_7 T1_7 ∈ N\vertG
@grd_newe1_2 e1_2 ∈ N\edgeG
@grd_newe1_3 e1_3 ∈ N\edgeG
@grd_newe1_4 e1_4 ∈ N\edgeG
@grd_newatr1_3 atr1_3 ∈ N\attrG
@grd_e1_2_e1_3 e1_2 ̸= e1_3
@grd_e1_2_e1_4 e1_2 ̸= e1_4
@grd_e1_3_e1_4 e1_3 ̸= e1_4
@grd_vertices ∀v · v ∈ vertL1 ⇒ tL1_V(v) = tG_V(mV(v))
@grd_edges ∀e · e ∈ edgeL1 ⇒ tL1_E(e) = tG_E(mE(e))
@grd_attrs ∀a · a ∈ attrL1 ⇒ tL1_A(a) = tG_A(mA(a))
@grd_srctgt ∀e · e ∈ edgeL1 ⇒ mV(sourceL1(e)) = sourceG(mE(e)) ∧ mV(targetL1(e)) = targetG(mE(e))
@grd_attrComp ∀a · a ∈ attrL1 ⇒ mV(attrNL1(a))=attrNG(mA(a)) ∧ attrVG(mA(a)) ∈ N

then
@act_vertG vertG := vertG ∪ {T1_7}
@act_edgeG edgeG := (edgeG \ delE) ∪ {e1_2, e1_3, e1_4}
@act_attrG attrG := attrG ∪ {atr1_3}
@act_sourceG sourceG := (delE ◁−sourceG) ∪ {e1_2 7→ mV(T1_2), e1_3 7→ mV(T1_3), e1_4 7→ T1_7}
@act_targetG targetG := (delE ◁− targetG) ∪ {e1_2 7→ mV(T1_1), e1_3 7→ T1_7, e1_4 7→ T1_7}
@act_attrNG attrNG := attrNG ∪ {atr1_3 7→ T1_7}
@act_attrVG attrVG := attrVG ∪ {atr1_3 7→ attrVG(mA(atr1_1))}
@act_tG_V tG_V := tG_V ∪ {T1_7 7→ CGNode}
@act_tG_E tG_E := (delE ◁− tG_E) ∪ {e1_2 7→ Lock, e1_3 7→ Free, e1_4 7→ Loc}
@act_tG_A tG_A := tG_A ∪ {atr1_3 7→ ID}

75

end

The second step of a begin operation is to loop through free and finished transac-
tions in the conflict node and add a real-time relation to the transaction being created.
This production rule in this step is called BeginLoop1 (there are two possible loops in
a begin operation), and can be seen in Figure 57. The same principles of deleting and
creating edges by modifying the edgesG, sourceG and targetG sets happens here.
However a new condition is added to the guards of the event to act as a negative ap-
plication condition (NAC). In this case, the NAC is the RT -edge between the free and
finished node and the main transaction, to add the RT -edge there must not be already
a real-time relation between the transactions.

event BeginLoop1
any

mV
mE
mA
e2_8
e2_7
delE

where
@grd_mV mV ∈ vertL2 → vertG
@grd_mE mE ∈ edgeL2 → edgeG
@grd_mA mA ∈ attrL2 → attrG
@grd_delE delE = [{e2_3}]
@grd_newe2_8 e2_8 ∈ N\edgeG
@grd_newe2_7 e2_7 ∈ N\edgeG
@grd_e2_8_e2_7 e2_8 ̸= e2_7
@grd_vertices ∀v · v ∈ vertL2 ⇒ tL2_V(v) = tG_V(mV(v))
@grd_edges ∀e · e ∈ edgeL2 ⇒ tL2_E(e) = tG_E(mE(e))
@grd_attrs ∀a · a ∈ attrL2 ⇒ tL2_A(a) = tG_A(mA(a))
@grd_srctgt ∀e · e ∈ edgeL2 ⇒ mV(sourceL2(e)) = sourceG(mE(e)) ∧ mV(targetL2(e)) = targetG(mE(e))
@grd_attrComp ∀a · a ∈ attrL2 ⇒ mV(attrNL2(a))=attrNG(mA(a)) ∧ attrVG(mA(a)) ∈ N
@grd_NAC_E1 ¬(∃forbRT·

forbRT ⊆ edgeG \ mE[edgeL2] ∧ tG_E(forbRT) = RT ∧
sourceG(forbRT) = mV(T2_5) ∧ targetG(forbRT) = mV(T2_3))

then
@act_edgeG edgeG := (edgeG \ delE) ∪ {e2_8, e2_7}
@act_sourceG sourceG := (delE ◁−sourceG) ∪ {e2_8 7→ mV(T2_4), e2_7 7→ mV(T2_5)}
@act_targetG targetG := (delE ◁− targetG) ∪ {e2_8 7→ mV(T2_5), e2_7 7→ mV(T2_3)}
@act_tG_E tG_E := (delE ◁− tG_E) ∪ {e2_8 7→ LockRT, e2_7 7→ RT}

end

The events labelled as 1 through 5 cover the five steps of a begin operation, they
can be found in Appendix C.1.

5.3.3 Read Operation

The following context and event represents a read operation, as seen in Figure 32.
The context part for this rule describes the L6 graph used for the pattern match, and
one interesting definition of this rule is the possibility to adapt the TOp-node’s inher-
itance. This can be seen in the axiom @axm_tL6_V_def that contains the partition

76

definition of L6’s vertices. In this partition, the vertex labelled as T6_2 has multiple
possibilities for types, so when the pattern match occurs, any of the mappings can
satisfy as a correct type.

sets
vertL6
edgeL6
attrL6

constants
T6_1 T6_2 T6_3 T6_4 T6_5
e6_1 e6_2 e6_3
atr6_1 atr6_2 atr6_3 atr6_4
sourceL6
targetL6
attrNL6
attrVL6
tL6_V
tL6_E
tL6_A

axioms
@axm_vertL6 partition(vertL6, {T6_1}, {T6_2}, {T6_3}, {T6_4}, {T6_5})
@axm_edgeL6 partition(edgeL6, {e6_1}, {e6_2}, {e6_3})
@axm_attrL6 partition(attrL6, {atr6_1}, {atr6_2}, {atr6_3}, {atr6_4})
@axm_sourceL6_type sourceL6 ∈ edgeL6 → vertL6
@axm_sourceL6_def partition(sourceL6, {e6_1 7→ T6_1}, {e6_2 7→ T6_3}, {e6_3 7→ T6_4})
@axm_targetL6_type targetL6 ∈ edgeL6 → vertL6
@axm_targetL6_def partition(targetL6, {e6_1 7→ T6_3}, {e6_2 7→ T6_2}, {e6_3 7→ T6_4})
@axm_attrNL6_type attrNL6 ∈ attrL6 → vertL6
@axm_attrNL6_def partition(attrNL6, {atr6_1 7→ T6_4}, {atr6_2 7→ T6_3}, {atr6_3 7→ T6_5}, {atr6_4 7→ T6_4})
@axm_attrVL6_type attrVL6 ∈ attrL6 → P(N)
@axm_attrVL6_def partition(attrVL6, {atr6_1 7→ N}, {atr6_2 7→ N}, {atr6_3 7→ N}, {atr6_4 7→ N})
@axm_tL6_V tL6_V ∈ vertL6 → vertT
@axm_tL6_V_def partition(tL6_V, {T6_1 7→ History}, {T6_2 7→ Begin}, {T6_2 7→ Read}, {T6_2 7→ Write}, {T6_2 7→ Commit},

{T6_2 7→ Abort}, {T6_2 7→ End}, {T6_3 7→ Read}, {T6_4 7→ CGNode}, {T6_5 7→ CGNode})
@axm_tL6_E tL6_E ∈ edgeL6 → edgeT
@axm_tL6_E_def partition(tL6_E, {e6_1 7→ OP}, {e6_2 7→ Next}, {e6_3 7→ Loc})
@axm_tL6_A tL6_A ∈ attrL6 → attrT
@axm_tL6_A_def partition(tL6_A, {atr6_1 7→ From}, {atr6_2 7→ ID}, {atr6_3 7→ ID}, {atr6_4 7→ ID})

The event for a read operation can be seen below. Not many transformations are
needed for this operation, as it only needs to deal with edges. The OP-edge repre-
senting the current operation to be executed is “moved” to the next operation, pointing
from T6_3 to T6_2. This happens by deleting e6_1 and creating e6_4. Lastly, a new
RF -edge (e6_7) is created and added to the conflict graph nodes of the corresponding
transactions.

event Read
any

mV
mE
mA
e6_4
e6_7
delE

where

77

@grd_mV mV ∈ vertL6 → vertG
@grd_mE mE ∈ edgeL6 → edgeG
@grd_mA mA ∈ attrL6 → attrG
@grd_delE delE = [{e6_1}]
@grd_newe6_4 e6_4 ∈ N\edgeG
@grd_newe6_7 e6_7 ∈ N\edgeG
@grd_e6_4_e6_7 e6_4 ̸= e6_7
@grd_vertices ∀v · v ∈ vertL6 ⇒ tL6_V(v) = tG_V(mV(v))
@grd_edges ∀e · e ∈ edgeL6 ⇒ tL6_E(e) = tG_E(mE(e))
@grd_attrs ∀a · a ∈ attrL6 ⇒ tL6_A(a) = tG_A(mA(a))
@grd_srctgt ∀e · e ∈ edgeL6 ⇒ mV(sourceL6(e)) = sourceG(mE(e)) ∧ mV(targetL6(e)) = targetG(mE(e))
@grd_attrComp ∀a · a ∈ attrL6 ⇒ mV(attrNL6(a))=attrNG(mA(a)) ∧ attrVG(mA(a)) ∈ N

then
@act_edgeG edgeG := (edgeG \ delE) ∪ {e6_4, e6_7}
@act_sourceG sourceG := (delE ◁−sourceG) ∪ {e6_4 7→ mV(T6_1), e6_7 7→ mV(T6_5)}
@act_targetG targetG := (delE ◁− targetG) ∪ {e6_4 7→ mV(T6_2), e6_7 7→ mV(T6_4)}
@act_tG_E tG_E := (delE ◁− tG_E) ∪ {e6_4 7→ OP, e6_7 7→ RF}

end

5.3.4 Write Operation

As for the write operation seen in Figure 33, the context and event follow a similar
definition as the read operation. A pattern match using the TOp-node, and only deals
with some edges and attributes when transforming the state. The event is set as fol-
lows. The same OP-edge is “moved” from T7_3 to T7_2, by deleting e7_1 and creating
e7_4. As for the conflict graph’s node, a new attribute atr7_6 is created to represent
which variable this transaction wrote to. This is used later to analyse writing conflicts
during commit time. The value assigned to the new attribute uses the auxiliary function
attrVG and the current matching mA to find the value of the already existing attribute
attr7_1. This can be seen in action @act_attrVG.

event Write
any

mV
mE
mA
e7_4
atr7_6
delE

where
@grd_mV mV ∈ vertL7 → vertG
@grd_mE mE ∈ edgeL7 → edgeG
@grd_mA mA ∈ attrL7 → attrG
@grd_delE delE = [{e7_1}]
@grd_newe7_4 e7_4 ∈ N\edgeG
@grd_newatr7_6 atr7_6 ∈ N\attrG
@grd_vertices ∀v · v ∈ vertL7 ⇒ tL7_V(v) = tG_V(mV(v))
@grd_edges ∀e · e ∈ edgeL7 ⇒ tL7_E(e) = tG_E(mE(e))
@grd_attrs ∀a · a ∈ attrL7 ⇒ tL7_A(a) = tG_A(mA(a))
@grd_srctgt ∀e · e ∈ edgeL7 ⇒ mV(sourceL7(e)) = sourceG(mE(e)) ∧ mV(targetL7(e)) = targetG(mE(e))
@grd_attrComp ∀a · a ∈ attrL7 ⇒ mV(attrNL7(a))=attrNG(mA(a)) ∧ attrVG(mA(a)) ∈ N

then
@act_edgeG edgeG := (edgeG \ delE) ∪ {e7_4}
@act_attrG attrG := attrG ∪ {atr7_6}

78

@act_sourceG sourceG := (delE ◁−sourceG) ∪ {e7_4 7→ mV(T7_1)}
@act_targetG targetG := (delE ◁− targetG) ∪ {e7_4 7→ mV(T7_2)}
@act_attrNG attrNG := attrNG ∪ {atr7_6 7→ mV(T7_4)}
@act_attrVG attrVG := attrVG ∪ {atr7_6 7→ attrVG(mA(atr7_1))}
@act_tG_E tG_E := (delE ◁− tG_E) ∪ {e7_4 7→ OP}
@act_tG_A tG_A := tG_A ∪ {atr7_6 7→ Writes}

end

5.3.5 Commit Operation

The first production rule, out of five, for a commit operation is called CommitLock
and its can be seen below. This event represents the graph transformation seen in
Figure 61. In this case, the only change made is to the OP-edge of the history, deleting
it and creating a Lock -edge in its place.

event CommitLock
any

mV
mE
mA
e8_4
delE

where
@grd_mV mV ∈ vertL8 → vertG
@grd_mE mE ∈ edgeL8 → edgeG
@grd_mA mA ∈ attrL8 → attrG
@grd_delE delE = [{e8_1}]
@grd_newe8_4 e8_4 ∈ N\edgeG
@grd_vertices ∀v · v ∈ vertL8 ⇒ tL8_V(v) = tG_V(mV(v))
@grd_edges ∀e · e ∈ edgeL8 ⇒ tL8_E(e) = tG_E(mE(e))
@grd_attrs ∀a · a ∈ attrL8 ⇒ tL8_A(a) = tG_A(mA(a))
@grd_srctgt ∀e · e ∈ edgeL8 ⇒ mV(sourceL8(e)) = sourceG(mE(e)) ∧ mV(targetL8(e)) = targetG(mE(e))
@grd_attrComp ∀a · a ∈ attrL8 ⇒ mV(attrNL8(a))=attrNG(mA(a)) ∧ attrVG(mA(a)) ∈ N

then
@act_edgeG edgeG := (edgeG \ delE) ∪ {e8_4}
@act_sourceG sourceG := (delE ◁−sourceG) ∪ {e8_4 7→ mV(T8_1)}
@act_targetG targetG := (delE ◁− targetG) ∪ {e8_4 7→ mV(T8_2)}
@act_tG_E tG_E := (delE ◁− tG_E) ∪ {e8_4 7→ Lock}

end

The second step of a commit is the production rule called CommitLoop1, and the
event for this rule can be seen below. As shown in the graph transformation in Fig-
ure 62, this rule serves as a loop through visible transactions that wrote to the same
variable as the main transaction. The transformation of the state includes deleting
the Free-edge (e9_3), creating a LockC-edge (e9_8) in its place. Also, creating a
WW -edge between the visible transaction’s conflict graph node and the main one. As
a NAC, the write-before-write relation cannot already exist between the two conflict
graph nodes, this is denoted in the guard @grd_NAC_E1.

event CommitLock_Loop1
any

mV
mE

79

mA
e9_7
e9_8
delE

where
@grd_mV mV ∈ vertL9 → vertG
@grd_mE mE ∈ edgeL9 → edgeG
@grd_mA mA ∈ attrL9 → attrG
@grd_delE delE = [{e9_3}]
@grd_newe9_7 e9_7 ∈ N\edgeG
@grd_newe9_8 e9_8 ∈ N\edgeG
@grd_e9_7_e9_8 e9_7 ̸= e9_8
@grd_vertices ∀v · v ∈ vertL9 ⇒ tL9_V(v) = tG_V(mV(v))
@grd_edges ∀e · e ∈ edgeL9 ⇒ tL9_E(e) = tG_E(mE(e))
@grd_attrs ∀a · a ∈ attrL9 ⇒ tL9_A(a) = tG_A(mA(a))
@grd_srctgt ∀e · e ∈ edgeL9 ⇒ mV(sourceL9(e)) = sourceG(mE(e)) ∧ mV(targetL9(e)) = targetG(mE(e))
@grd_attrComp ∀a · a ∈ attrL9 ⇒ mV(attrNL9(a))=attrNG(mA(a)) ∧ attrVG(mA(a)) ∈ N
@grd_NAC_E1 ¬(∃forbWW·

forbWW ⊆ edgeG \ mE[edgeL9] ∧ tG_E(forbWW) = WW ∧
sourceG(forbWW) = mV(T9_5) ∧ targetG(forbWW) = mV(T9_3))

then
@act_edgeG edgeG := (edgeG \ delE) ∪ {e9_7, e9_8}
@act_sourceG sourceG := (delE ◁−sourceG) ∪ {e9_7 7→ mV(T9_5), e9_8 7→ mV(T9_4)}
@act_targetG targetG := (delE ◁− targetG) ∪ {e9_7 7→ mV(T9_3), e9_8 7→ mV(T9_5)}
@act_tG_E tG_E := (delE ◁− tG_E) ∪ {e9_7 7→ WW, e9_8 7→ LockC}

end

The events labelled as 8 through 12 cover the five steps of a commit operation, they
can be found in Appendix C.2.

5.3.6 Abort Operation

The last transactional operation is an abort operation. As seen in Figure 35, an
abort adds a Done-edge (e13_6) to the conflict graph node for this transaction, denot-
ing that it finished but it’s not visible to other transactions. Moreover, it also “moves” the
OP-edge to the next operation by deleting e13_1 and creating e13_4.

event Abort
any

mV
mE
mA
e13_4
e13_6
delE

where
@grd_mV mV ∈ vertL13 → vertG
@grd_mE mE ∈ edgeL13 → edgeG
@grd_mA mA ∈ attrL13 → attrG
@grd_delE delE = [{e13_1}]
@grd_newe13_4 e13_4 ∈ N\edgeG
@grd_newe13_6 e13_6 ∈ N\edgeG
@grd_e13_4_e13_6 e13_4 ̸= e13_6
@grd_vertices ∀v · v ∈ vertL13 ⇒ tL13_V(v) = tG_V(mV(v))
@grd_edges ∀e · e ∈ edgeL13 ⇒ tL13_E(e) = tG_E(mE(e))
@grd_attrs ∀a · a ∈ attrL13 ⇒ tL13_A(a) = tG_A(mA(a))

80

@grd_srctgt ∀e · e ∈ edgeL13 ⇒ mV(sourceL13(e)) = sourceG(mE(e)) ∧ mV(targetL13(e)) = targetG(mE(e))
@grd_attrComp ∀a · a ∈ attrL13 ⇒ mV(attrNL13(a))=attrNG(mA(a)) ∧ attrVG(mA(a)) ∈ N

then
@act_edgeG edgeG := (edgeG \ delE) ∪ {e13_4, e13_6}
@act_sourceG sourceG := (delE ◁−sourceG) ∪ {e13_4 7→ mV(T13_1), e13_6 7→ mV(T13_4)}
@act_targetG targetG := (delE ◁− targetG) ∪ {e13_4 7→ mV(T13_2), e13_6 7→ mV(T13_4)}
@act_tG_E tG_E := (delE ◁− tG_E) ∪ {e13_4 7→ OP, e13_6 7→ Done}

end

5.3.7 Conflict Graph

After executing all the transactional operations, all that is left is to evaluate the con-
flict graph. The main goal of the evaluation is to look for any loop in the conflict graph,
and this is achieved via a simple path marking of visited nodes. The methodology is
to start from the transaction with an attribute ID of 0 and take steps following every
directed edge, leaving tokens behind marking the nodes as “already visited”. A step
cannot be taken only if there are no more directed edges to follow, or there is already
a token in the same place. This serves as a stopping point no matter how large the
conflict node may be. If the situation happens where there is a “step” and a “token” in
the same node, this denotes a cycle in the conflict graph.

To implement this evaluation of cycles, two production rules are needed. The first,
to start this pathing is named LoopStart, as seen in Figure 36. This transformation
deletes the OP-edge from the history, therefore no more transactional operations can
execute, and adds a LoopStep-edge to the conflict node with an attribute of ID = 0.

event LoopStart
any

mV
mE
mA
e14_2
delE

where
@grd_mV mV ∈ vertL14 → vertG
@grd_mE mE ∈ edgeL14 → edgeG
@grd_mA mA ∈ attrL14 → attrG
@grd_delE delE = [{e14_1}]
@grd_newe14_2 e14_2 ∈ N\edgeG
@grd_vertices ∀v · v ∈ vertL14 ⇒ tL14_V(v) = tG_V(mV(v))
@grd_edges ∀e · e ∈ edgeL14 ⇒ tL14_E(e) = tG_E(mE(e))
@grd_attrs ∀a · a ∈ attrL14 ⇒ tL14_A(a) = tG_A(mA(a))
@grd_srctgt ∀e · e ∈ edgeL14 ⇒ mV(sourceL14(e)) = sourceG(mE(e)) ∧ mV(targetL14(e)) = targetG(mE(e))
@grd_attrComp ∀a · a ∈ attrL14 ⇒ mV(attrNL14(a))=attrNG(mA(a)) ∧ attrVG(mA(a)) ∈ N

then
@act_edgeG edgeG := (edgeG \ delE) ∪ {e14_2}
@act_sourceG sourceG := (delE ◁−sourceG) ∪ {e14_2 7→ mV(T14_3)}
@act_targetG targetG := (delE ◁− targetG) ∪ {e14_2 7→ mV(T14_3)}
@act_tG_E tG_E := (delE ◁− tG_E) ∪ {e14_2 7→ LoopStep}

end

The second production rule needed is the one that does all the marking, and its
called LoopStep, as seen in Figure 37. The graph transformation includes deleting the

81

current LoopStep-edge (e15_1) and creating a new one e15_5. At the same time it
also creates the LoopToken-edge (e15_3) in the first CGNode. The NAC used for the
pattern match is that there should not be already a LoopToken-edge (e15_6) in the first
conflict graph node.

event LoopStep
any

mV
mE
mA
e15_3
e15_5
delE

where
@grd_mV mV ∈ vertL15 → vertG
@grd_mE mE ∈ edgeL15 → edgeG
@grd_mA mA ∈ attrL15 → attrG
@grd_delE delE = [{e15_1}]
@grd_newe15_3 e15_3 ∈ N\edgeG
@grd_newe15_5 e15_5 ∈ N\edgeG
@grd_e15_3_e15_5 e15_3 ̸= e15_5
@grd_vertices ∀v · v ∈ vertL15 ⇒ tL15_V(v) = tG_V(mV(v))
@grd_edges ∀e · e ∈ edgeL15 ⇒ tL15_E(e) = tG_E(mE(e))
@grd_attrs ∀a · a ∈ attrL15 ⇒ tL15_A(a) = tG_A(mA(a))
@grd_srctgt ∀e · e ∈ edgeL15 ⇒ mV(sourceL15(e)) = sourceG(mE(e)) ∧ mV(targetL15(e)) = targetG(mE(e))
@grd_attrComp ∀a · a ∈ attrL15 ⇒ mV(attrNL15(a))=attrNG(mA(a)) ∧ attrVG(mA(a)) ∈ N
@grd_NAC_E1 ¬(∃forbLoopToken·

forbLoopToken ⊆ edgeG \ mE[edgeL15] ∧ tG_E(forbLoopToken) = LoopToken ∧
sourceG(forbLoopToken) = mV(T15_1) ∧ targetG(forbLoopToken) = mV(T15_1))

then
@act_edgeG edgeG := (edgeG \ delE) ∪ {e15_3, e15_5}
@act_sourceG sourceG := (delE ◁−sourceG) ∪ {e15_3 7→ mV(T15_1), e15_5 7→ mV(T15_2)}
@act_targetG targetG := (delE ◁− targetG) ∪ {e15_3 7→ mV(T15_1), e15_5 7→ mV(T15_2)}
@act_tG_E tG_E := (delE ◁− tG_E) ∪ {e15_3 7→ LoopToken, e15_5 7→ LoopStep}

end

With this, the invariant seen in the initial state can be applied to the system and if at
all reachable states of the system no cycles are found, the history indeed does satisfy
the correctness criterion of opacity.

5.4 Discussion

The event-B model of a Graph Grammar (GG) includes mainly a type graph, an
initial state and a set of transformation rules. This defines how the state of the system
can behave based on the initial state and whether or not the events can find their
respective pattern match. This pattern match is already a form of restriction for when
to transform states, meaning that the set of conditions in an event could potentially end
the execution prematurely. Therefore, in this application of the event-B translation of a
GG model, where a software transactional memory (STM) system is implemented, the
main properties of the system are not present in an event’s guards but instead in the
initial state’s invariants. Thus, these properties can be tested and potentially proved for

82

every reachable state of the system, which should always include the entire history of
transactional memory operations.

When translating the states of a graph grammar into the event-B model, the result
is a finite number of sets that contain unique elements, and functions on how the con-
nections between elements are mapped. To analyse any properties of the system, is to
analyse how these sets are composed and which elements and relations are present
or not. For this work, where a correctness criterion test of an STM history is the goal,
it becomes necessary the construction and analysis of a conflict graph that represents
how each transaction interact with each others operations. These interactions can be
a read of a variable, an overwrite, a combination of the two resulting in an inconsis-
tency, or even just the fact that the first operation of a transaction happens after all
other operations of another transaction. In the case of a conflict graph, the acyclicity
property can be easily derived from the use of the production rule LoopStep that marks
the conflict graph nodes with self-edges that represent a path taken by following the
directed edges.

As seen before, the goal of the LoopStep production rule is to follow the directed
edges and mark the conflict graph nodes with LoopStep-edges, at the same time leav-
ing LoopToken-edges behind. So if the situation where a LoopStep and LoopToken-
edge ever happen, it means that there is cycle in the conflict graph. In the event-B
model, the test for this particular situation is to use an invariant declared in the initial
state, this way any reachable state will be tested for this condition. The code below
shows the invariant for this property of acyclicity. Essentially what it does is to look at
every two edges e1, e2 in the set of edges (edgeG), if their type are of step and to-
ken (tG_E) as the property requires, the mapping for their source vertex (in sourceG)
cannot be the equal.

@inv_propAcyclic: ∀e1,e2· e1 ∈ edgeG ∧ tG_E(e1) = LoopToken ∧
e2 ∈ edgeG ∧ tG_E(e2) = LoopStep =⇒ sourceG(e1) ̸= sourceG(e2)

Besides the acyclicity property that reasons about an external condition of logical
correctness of the system, invariants can also be used to enhance the guarantee of
structural correctness of the system as it is transformed by events. The same idea
of looking into the sets of elements, mappings and types defined in the initial state
can be applied to set extra conditions that the type graph may not be able enforce.
For example, the type graph only denotes that a Next-edge can be used between
transactional operation vertices (begin, read, write, etc). What the type graph does
not enforce is, if a Next-edge has to map to two distinct vertices of the “correct type”,
technically there could be a Next-edge whose source and target map to the same
vertex. The invariant shown below could be used to prevent this, and because it is set
up at the initial state, every reachable state guarantees this correctness.

@inv_propNext: ∀e· e ∈ edgeG ∧ tG_E(e) = Next =⇒ sourceG(e) ̸= targetG(e)

83

Some of the edges used in this work always have their source and target as equal
values (Vis, Done, LoopStep, LoopToken, etc), because they are used as flags for
conditions of a specific element and never to connect two vertices. It is also for the
benefit of the system that they keep this property, and this can be implemented in the
same way as acyclicity by using invariants. Other properties of the structure of the
system are: the edges representing transactional relations (RW, RF, RT and WW)
never have equal source and target; a “single file” history, where there are only one
Next-edge in and out of each operation node; transactions have unique identifiers as
attributes; every write operation uses unique values, and more.

By the nature of an event-B model and its invariants, the system can be made to
guarantee properties at each step, this is interesting for a full implementation of an
algorithm. In this work, only a single history was evaluated as an initial state, but as
demonstrated in Chapter 6 the graph transformation approach on software transac-
tional memory algorithms can generate histories dynamically. An event-B model of
the full algorithm could be used as a more concrete proof of correctness, because it
deals with all reachable states and is less limited by the initial state as these previous
approaches.

Lastly, although the complexity of a transactional operation can be a challenge that
the graph transformation portion of the approach has to overcome, if it is possible to
create the proper production rules, the event-B translation is rather direct. Besides us-
ing natural numbers as identifiers for nodes, edges, and attributes, all functionalities of
a production rule can be described using axioms and events. Even negative application
conditions are easily translated as guards inside events, because most elements of the
NAC graph is actually part of the pattern matched L side of the production rule, only a
few extra guards are enough to add these negative conditions. Any extra condition on
the logical and structural side of the system can be added as invariants, to be tested
for every state, or as a guard, to be tested for a specific event/production rule.

6 APPLICATIONS FOR THE GG APPROACH

This chapter describes the two transactional memory algorithms used as case stud-
ies for the graph transformation formalism described in this thesis. The first algorithm is
the CaPR+ (ANAND; SHYAMASUNDAR; PERI, 2016), it presents a balance between
novelty and complexity as it deals with checkpoints and partial rollbacks. The original
definition also includes the same graph characterization of opacity tackled in this thesis,
which is used as proof of correctness. The second algorithm described in this chapter
is the STM library for Haskell (HARRIS et al., 2005), a more well known algorithm that
does not satisfy the property of opacity. Section 6.1 presents the CaPR+ algorithm
and how the graph transformation approach deals with its complexity and correctness
proof. Section 6.2 presents the STM Haskell algorithm, its retry functionality and some
analysis on the correctness test of the algorithm.

6.1 CaPR+ algorithm

The TM algorithm chosen for this case study is called CaPR+, proposed by Anand;
Shyamasundar; Peri (2016), and this section describes the approach to translate the al-
gorithm into a Graph Grammar.1 The choice is supported by the fact that this algorithm
has a more complex logic than other traditional TM algorithms such as TL2 (DICE;
SHALEV; SHAVIT, 2006) and SwissTM (DRAGOJEVIĆ; GUERRAOUI; KAPALKA,
2009), which shows that the approach can deal with more specific and optimized TM
algorithms. CaPR+ is an Automatic Checkpoint and Partial Rollback algorithm for soft-
ware TM based on continuous conflict detection, lazy versioning with automatic check-
pointing and partial rollback. In their work, the authors provide a proof of correctness
for CaPR+, in particular, Opacity. The algorithm provides a natural way to realize a
hybrid system of pure aborts and partial rollbacks.

The data structures used in the CaPR+ algorithm are categorized into local
workspace and global workspace, depending on whether the data structure is visi-
ble to the local transaction or every transaction. The data structures used in the local

1Full code available in https://github.com/diogocrds/Thesis

https://github.com/diogocrds/Thesis

85

workspace are as follows:

• Local Data Block (LDB, Figure 38(a)): Each entry consists of the local object and
its current value in the transaction;

• Shared Object Store (SOS, Figure 38(b)): Each entry stores the address of the
shared object, its value, a read flag and write flag. Both read and write flags have
false as initial value. Value true in read/write flag indicates the object has been
read/written.

• Checkpoint Log (Cplog, Figure 38(c)): Used to partially rollback a transaction,
where each entry stores, a) the shared object whose read initiated the log en-
try (this entry is made every time a shared object is read for the first time by a
transaction), b) program location from where a transaction should proceed after
a rollback, and c) the current snapshot of the transaction’s local data block and
the shared object store.

Object Value

(a) Local Data Block (LDB)

Object Current Value Read Flag Write Flag

(b) Shared object Store (SOS)

Victim Shared Object Program Location Local Snapshot

(c) Checkpoint Log (Cplog)

Figure 38 – Local workspace for CaPR+ algorithm.

The data structures in the global workspace are:

• Global List of Active Transactions (Actrans, Figure 39): Each entry in this list con-
tains a) a unique transaction identifier, b) a status flag that indicates the status of
the transaction, as to whether the transaction is in conflict with any of the com-
mitted transactions, and c) a list of all the objects in conflict with the transaction.
This list is updated by the committed transactions.

• Shared Memory (SM): Each entry in the shared memory stores a) a shared ob-
ject, b) its value, and c) an active readers list that stores the transaction IDs of all
the transactions reading the shared object.

86

Transaction ID Status Flag Conflict Objects

Figure 39 – Global List of Active Transactions (Actrans)

The full CaPR+ algorithm can be seen Appendix A.1.
Figure 40 shows the type graph defined for the CaPR+ algorithm. Technically all

objects are global and the production rules will define what can be modified or not,
but for clarity a node GLOBAL was used to express the objects that every transaction
has access at any point. On the left side, the three global objects are the list of active
transactions AcTrans, the conflict graph CG and the shared memory SM. The right side
has the transactional operations TOp with the inheritance relationship, the transaction
node T and its local objects SOS and Cplog. It was decided to omit the LDB object
from the algorithm because that would imply extra operations on local variables that
have no impact in dealing with conflict of the shared memory, which is the main goal of
the graph grammar.

T
id: int

status: string

SOS

Cplog
count: int

AcTrans

SM

SOSVar
currValue: int
object: string

read: bool
write: bool

log
id: int

target: string

item
conflict: string

id: int

TVar
object: string

value: int
writtenBy: int

activeReaders
has: int

GLOBAL

History
empty
lock

Read
target: string

value: int

Write
target: string

value: int

CommitBegin

TOp
last

id : int

Rollback
next: int

Tran
aborted

committed
loc

loop_s
loop_t

vis
id: int

reads: string
writes: string

CG
count: int

has

has
has

rf
rt
rw
ww

has

has

next

has

has

has
has

snapshot

has

has

location

conflict has

op

Figure 40 – Type graph of CaPR+ algorithm.

In the CaPR+ algorithm a read operation can be used in two situations: reading a
t-variable from the shared memory for the first time (creating a local copy), and reading
it from the local copy if the transaction has one. Figure 41 shows a production rule for
a read operation directly to the shared memory, the result of this rule is: the creation
of the local copy (SOSVar that stores the current value from TVar); a checkpoint for a
possible partial rollback in the future (Cplog now has an edge location to the current
Read operation); a snapshot of the current state of the transaction to rollback to (Cplog
now has a log that stores a copy of the SOS and which variable triggered the check-

87

point). In this same rule a node Read is added on the last position of the history with
the variable name as target and its value from the shared memory. The conflict graph
is also modified, with the addition of a “reads-from” relation between the transaction
that wrote the value being read and the one executing this read operation.

TOp

Read
T

status = "green"

TOp
− last

int

SOS

string

SOSVar

SM

string int

activeReaders

SOSVar
read = true
write = false

Read
last

TVar int

CGTran

Tran

Cplog

log

SOS

SOSVar

∀

SOSVar

stringboolbool int

int

π1 = 1intHistory
! lock

has

object

write

@

π0

has

value

op

reads

value

write

count

target

has

op

rf

read

@

id

object

target

@
has

@

location

has

id

object

object

object

id

has

currValuehas

snapshot

has

next

@

writtenBy

add

has

=

@

id

next
count

read

has

target

currValue

id

currValue

has

has

Figure 41 – Read from Shared Memory operation of CaPR+ algorithm.

Another production rule is used to read a variable on a local access via the SOS
object, this is shown in Figure 42. Because the SOSVar already exists, a local read only
needs to use its stored current value. The op edge moves to the next operation and a
new object is created at the last position of the history (Read with the flag last). Any
write operation is always done locally, so write operations only manipulate SOSVar -
nodes and never deal directly with the shared memory. There is also the case where
the local copy does not exist yet but a write operation is called, this is dealt the same
way as a read operation: two separate rules, one for when the local copy does not
exist and one for when it does. In the original definition by Anand; Shyamasundar;
Peri (2016), the algorithm does not have an abort operation, every transaction that
tries to commit is either successful or has to rollback to the safest checkpoint (earliest
conflicting read operation to the SM). Because the algorithm has a lazy versioning
characteristic, a few steps need to be taken at commit time. To minimize complexity,
the commit production rule was split in different cases, which are mutually exclusive.
A commit can originate from: a read only transaction (has no conflicts); a write only
transaction (has no conflicts); a write only transaction that has conflicts; and a mix of

88

reads and writes that can have conflict.

TOpRead

T

TOp
− last

int

Read
last

SOS

SOSVar

int

item

string

AcTrans

History
! lock

op

id

id

id

currValue

has

target

value

has
op

has
next

object

next

Figure 42 – Read from local copy operation of CaPR+ algorithm.

The way the algorithm deals with conflicts at commit time is by always keeping
track of active readers for every variable in the shared memory and, in case of conflict,
flagging the respective transaction to be rolled-back later. A simpler algorithm would
simply abort the active reader transactions to maintain the correctness of the execution,
but CaPR+ tries to always commit all transactions. The result is that some executions
will go on for longer where some transactions can even partially rollback multiple times.
Correctness is dealt with via the conflict graph of every history, in case of a rollback the
transaction is renamed with a new id and a new node in the conflict graph is created
for the new operations that will be executed.

Figure 43 shows one of the cases for the rollback operation, when there is only one
checkpoint so the rollback is direct. In the case of multiple checkpoints more conditions
are used to ensure the correct state to rollback to (which variable generated the conflict
versus which one is safe). In the case of a single checkpoint, the Cplog shows a
counter of 1 and an location edge to the correct read operation used as the next inline.
The current transaction (T node) is flagged as “green” again, its old identifier is deleted
and replaced with a new one, the old SOS is deleted and replaced with the one stored
on the log’s snapshot. The transaction being rolled back cannot be an active reader or
have any active conflicts anymore so any of those notations are also deleted. Finally, a
new Tran node is added to the CG with the new identifier, while the old one is flagged
as “aborted”.

In this methodology, the conflict based decision making does not care for how many
conflicts were detected. During the lifespan of the transaction, every conflict is pro-
cessed individually, accumulating until the point of the abort/rollback (in CaPR+: either
a new read to the TM, or a TryCommit). The existence of a single conflict is enough
to flag a transaction as “red”, meaning it needs to be aborted/rolled back. The result

89

int

TOp
− last

Rollback
last

AcTrans

string

item

int

Tran
loc

Tran
loc

+ aborted

int

CG

π1 = 1

int

Read

TOpSOS

log

string

SOS SOSVar

string

T
− status = "red"

+ status = "green"

Commit

activeReaders

int

∀>0

Cplog
count = 1

∀>0

∀>0

History
! lock

TVar

@

id
id

add

π0

@

has

@

has

has

@

location

@

target

snapshot

conflict

count

=

op

target

@

id

id

next

has

id

@

=

count

@

object

op

@
next

has

id

id

@

has

@

id

has
@

has

next

=

has

has

Figure 43 – Rollback operation for one checkpoint of CaPR+ algorithm.

is that any subsequent TM operations will either have no side effects on the conflicts
already detected or create more possibilities for the abort operation to happen. In the
case of CaPR+, if a transaction Ti commits successfully and flags Tk as “red”, only lo-
cal reads and writes (which are always local) from Tk would actually execute normally,
because any extra read to the TM would trigger the rollback function.

Figure 44 shows an example of transaction code with two conflicting transactions
and history H2 resulted from an execution of this code. Transaction T2 performs a roll-
back when the second read operation was supposed to be called, at that point the
system recognizes the inconsistent values that were read from a previous operation.
A new transaction T3 is created and executes the operations from T2 with a consistent
state of the shared memory. The conflict graph for this execution can be seen in Fig-
ure 45. It can be noticed that if the inconsistent state had not been dealt with at second
read operation on T2, and instead at commit time, it would be reflect on the CG via an
edge of reads-from “rf” from T1 to T2 (node Tran with id 1 and 2, respectively) resulting
in a cycle and reflecting that opacity is satisfied in this execution.

The experiments with different input transactions revealed a relevant point for the
demonstration of the algorithm correctness: the ability to observe every type of con-
flict the criterion defines. The graph characterization of opacity uses mainly conflicts
between reads and writes to the same t-variable, but also has the real-time relation be-
tween transactions. It was observed that with three transactions that read and write to

90

T1

1: begin
2: write(y,11)
3: write(x,12)
4: tryCommit

T2

1: begin
2: read(y)
3: read(x)
4: tryCommit

(H2)

T1
w(y, 11) w(x, 12) •c

T2
r(y, 0) ◦rollback

T3
r(y, 11) r(x, 12) •c

Figure 44 – Example of transaction code and opaque history.

Tran
committed

id = 0

Tran
committed

id = 1

Tran
id = 2

Tran
committed

id = 3

ww

rf
rt

rw

rt

rf

Figure 45 – Conflict Graph for opaque history.

the same t-variable (similar to Figure 13), it is possible to simulate every conflict in the
same LTS. This is relevant because a bigger input would certainly generate more con-
flicts, which only results in more combinations of TM operations that generate conflicts
and a bigger conflict graph. A conclusion that can be extracted from this is the number
of conflicts has no influence on ability to deal with them, because as said before the
decision making of how the rules are executed will process every conflict individually
but deals with them all at once when the conditions to a rollback are met. Thus, the
correctness result of the histories generated by the algorithm remains unchanged and
an input with three conflicting transactions is a minimal amount to express a combina-
tion of conflicts (from read, write and real-time relations) that is complete enough that
any bigger input would just result in some redundant computations.

Using this approach, the translation of the CaPR+ algorithm to a graph grammar
managed to generate only acyclic conflict graphs, proving that the algorithm only gen-
erates opaque histories. This is formalized by the GG of the algorithm, which includes
a group of production rules and an initial state, and the CTL formula used to check for
acyclicity of the conflict graph. The results of the CaPR+ state space indicated that
optimization of the LTS can be relevant, in its current state the graph grammar can

91

generate over 700.000 unique histories with an input of three transactions. Consider-
ing each history has to generate a few more states for the acyclicity test, it can result
in a large number of states. However, with some modifications to the production rules
it is possible to take advantage of the fact that different histories may generate the
same conflict graph, so the paths of the LTS converge, lowering the number of states
generated.

6.2 STM Haskell algorithm

This section describes the graph grammar developed to evaluate correctness of
the STM library for Haskell (HARRIS et al., 2005). One of the characteristics of STM
Haskell is that it allows for transactions to read inconsistent values from the shared
memory, this can lead to an undesirable situation of indefinite loops. To avoid this,
every time the scheduler is called to switch to a thread that is engaged in a transaction,
the scheduler first calls a validation method to check that the transaction is not already
doomed (HARRIS et al., 2005; MARLOW; PEYTON JONES; SINGH, 2009).

The formalization using graph grammar2 includes an initial state, a type graph, a
set of production rules that transform the state to generate histories and the graph
conditions for the correctness evaluation. The STM Haskell algorithm used can be
found in Appendix A.2. Later in this section, a second algorithm is used for comparison
in how decision making influences correctness, called TL2 (DICE; SHALEV; SHAVIT,
2006), and the algorithm code can be found in Appendix A.3.

The initial state consists of a set of two transactions that will purposefully generate
inconsistent states for the correctness test to deal with, the empty history list, and the
shared memory where transactional variables are already initiated. Figure 46 shows
these components in more detail.

T

Begin
Write

target = "x"
value = 1

GLOBAL
id = 1

Write
target = "y"
value = 1

TVar
object = "x"
value = 0

writtenBy = 0

TVar
object = "y"
value = 0

writtenBy = 0

History
empty

SM

TryCommit

Read
target = "x"Begin

T

TryCommitRead
target = "y"

next

next

nextnext

op

has

next

op

has

next

has has

Figure 46 – Initial state of two transactions, empty history and shared memory for the GG.

2Full code available in https://github.com/diogocrds/Thesis

https://github.com/diogocrds/Thesis

92

From this initial state the production rules now have to evaluate each transactional
action and modify the shared memory accordingly. In the case of STM Haskell, all the
modifications are first made in a local copy of the targeted variable. After that, should
the commit operation be successful, the changes will only then be made in the shared
memory objects that are visible to other transactions.

6.2.1 Type Graph

A type graph is used to not only guarantee the correct evolution of the system’s
states, but also to facilitate some of the definitions in the production rules. More specif-
ically the inheritance relation between nodes that the GROOVE tool provides. In this
GG, a Transactional Operations (TOp) is separated from History Operations (HOp)
using this inheritance functionality.

Figure 47 shows the complete proposed type graph for the STM Haskell GG.

History
empty

TOp

Read
from: int

target: string

Begin

Write
target: string

value: int

TryCommit

T
retry
id: int

SM

TVar
object: string

value: int
writtenBy: int

GLOBAL
count: int

LVar
retry

from: int
newValue: int
object: string
oldValue: int

retryValue: int

CG
Tran

comm
done
loc

loop_s
loop_t

vis
id: int

reads: string
writes: string HOp

last
id : int

ReadH
from: int

target: string

BeginH

WriteH
target: string

AbortH CommitH

EndH

has

next

rf
rt
rw
ww

has

retry

has

has

op

has

local

next

Figure 47 – Type Graph for the STM Haskell GG.

The type graph includes the transactional operations (TOp-nodes), that are always
linked to an identified transaction node (T -node). The execution of these transactional
operations modify the transactional log of its parent transaction, represented in the
form a “local buffer” LVar that stores the old value of the targeted variable, and any
new ones resulted from executing the operations. The history operations (HOp-node)
are created as the transactional operations are executed, and they record information
regarding the relations between transactions (which variable is being written or from
which transaction a variable was read). Lastly, the type graph also ensures that the

93

Conflict Graph (CG) is also well constructed during the correctness verification.

6.2.2 Production Rules

The four main transactional operations that the proposed grammar presents are:
Begin, Read, Write and TryCommit. In an ideal scenario, a grammar portraying the
STM Haskell algorithm will have one production rule for each desired operation, how-
ever some of the logic in these operations can be complex and it is actually easier to
split it into separate production rules. An example can be seen in Figure 48.

History
− empty

BeginH
last

int

T

Begin TOp

retry

id

has

id

op op

next

(a) History is empty.

HOp
− last

BeginH
last

int

T
! retry

Begin TOp

id

next

next

op

id

opretry

(b) Pre-existing operations in history.
Figure 48 – Production rules for a Begin operation.

A Begin operation can happen in two instances: at the start of the history (when it
is empty), or in the middle of an already existing history. The production rule shown in
Figure 48(a) demonstrates the Begin operation at the start of the history (top left node
is a History -node flagged as “empty”), and in Figure 48(b) is the production rule for
when the history is already initiated (top left node is a generic HOp-node flagged as
“last”). In both production rules the result is the creation of a new BeginH-node flagged
as the new “last”, and the attribution of an id to the transaction in question. The “retry”
flag and edge shown here will be discussed in Section 6.2.3.

For every transaction, the first Read operation in STM Haskell creates a transac-
tional log to be managed for the sake of correctness. The structure of the log is given by
a collection of LVar -nodes connected to the transaction T -node via local-edges. The
log stores the original value for each variable (oldValue-edge) and any subsequent
values read or written (both happen locally after the first read, stored via the newValue-
edge). Figure 49 shows the two production rules for a read operation. Figure 49(a)
shows a production rule that executes when a transaction is reading from a variable
for the first time, so it creates an LVar -node for the transaction storing the value read
as both “old” and “new”. Figure 49(b) shows a production rule that executes when the
LVar -node of the variable already exists, implying that the variable was already read or
written beforehand.

The Write operation is set up in a similar way as a Read operation, Figure 50 shows
both production rules for writing a value in a transactional variable. The first instance
of a write operation uses the production rule shown in Figure 50(a), it requires that a

94

HOp
− last

ReadH
last

int T

Read

TOp

SM TVar

string

int

LVar

int

LVar

op

next
object

from

has

id

writtenBy

id

next
local

local

op

value

objectobject
from

newValue
oldValue

target

target

(a) Reading a value for the first time.

HOp
− last

ReadH
last

int T

Read

TOp

string

LVar

int

op

target
target

id

object

from

next

nextlocal op

id

from

(b) Reading a local written value.

Figure 49 – Production rules for a Read operation.

local buffer (transactional log) for that variable does not exist, so it can create it. For
the case that a local buffer already exists, Figure 50(b) is used. In both executions, the
target value is stored locally and a new entry to the history is created.

HOp
− last

WriteH
last

int T

Write

TOp

LVar

string

int

LVar

SMTVar

value

op

from

next

id

local

target

object

object

id

object

op

target

newValue

next

has

local

(a) Writing a value for the first time.

HOp
− last

WriteH
last

int T

Write

TOp

LVar

string

int

int

int

next

value

next

newValue

op

newValue

id

from

op

local

object

id from

target

target

(b) Writing a local value.

Figure 50 – Production rules for a Write operation.

So far, the allowed operations can initiate a transaction, read, and write variables
from the shared memory. The last step is to make a decision as to whether the transac-
tion can commit or not. The production rules responsible for this decision, in the case
of STM Haskell, use the “old value” from each transactional variable that was read,
to make a comparison to the current value in the shared memory. If the values of at
least one variable is inconsistent, the transaction aborts. If no inconsistencies exist,
the transaction commits. Figure 51 shows a production rule for a successful validation

95

and commit of a transaction. In the case of a failed verification, the production rule in
Figure 52 is used instead, aborting the transaction. Some of the main differences in
the case of an abort operation are: no manipulation of the shared memory is needed,
because the log is local and is simply discarded; there must be at least one variable
that was read and has an inconsistent state with the shared memory; and instead of
just finalizing the execution, the transaction is flagged to “retry”.

It is worth noting that Figure 51 shows the use of quantifiers to ensure that no
inconsistencies appear in the shared memory (node item in SM). The notation can
be read as: for all local LVars in the current transaction (T local−−→ LVar) there exists
a correspondent TVar in the shared memory (SM has−−→ TVar) with the same object
attribute. In that list of variables, there must not exist any local variable with and edge
oldValue storing a different integer from the value stored in the shared memory.

HOp
− last

CommitH
last

int

T

TryCommit

LVar

string

SM TVar

∀

int

∃

int

SM

TVar

LVar

string

int

int

int

int
int

Begin

∀>0

∀

op

local

@

@

value

in

object

id

from

object
object

@

@

newValue

@

@

has

@

@

@

local

writtenBy

!=

has

@

retry

oldValue

value

@

next

@

writtenBy

object

id

value

in

@

!=

oldValue

Figure 51 – Commit for the STM Haskell GG.

6.2.3 Retry Functionality

The retry functionality in the STM Haskell library does not behave in the expected
way: to simply start the transaction from the beginning with a blank state when an abort
occurs. When the verification fails and a transaction is flagged to restart, it does not
immediately start executing again. Instead, the transaction waits for an update in a
variable it performed a conflicting read operation.

Figure 53 shows the production rule that is executed when a transaction is triggered
to restart by an update to a variable the transaction has read, generating an inconsis-
tent state. This operation is very similar to a Begin operation shown in Figure 48(a).
However, this time it requires the transaction to be flagged as “retry”, and already ex-
isting local items (log) to compare incoming updates. The result of this production rule

96

HOp
− last

AbortH
last

int

T
+ retry

TryCommit

LVar
+ retry

string

SM TVar

∀>0

int

int

Begin

value

retryValue

object

@
has

oldValue

@

@

id

op

!=

@

op

id

@

object

local

retry
next

Figure 52 – Abort for the STM Haskell GG.

is the restart of the transaction with a new id and an empty log.

HOp
− last

BeginH
last

int

T
− retry

Begin TOp

SMGLOBAL

π1 = 1

int

int

LVar

∀>0

LVar

TVar

intstring

int

local

has

π0

id

object
next

count

op
local

@

op

value

!=object

next

id
@

retry

add

@

count

id
@

has

@

@

retryValue

Figure 53 – Begin operation when a retry is triggered by an update.

6.2.4 Correctness Criterion

For an application, all operations of a committed transaction appear as if they were
executed instantaneously at some single point in time. All operations of an aborted
transaction, however, appear as if they never took place. From a programmer’s per-
spective, transactions are similar to critical sections protected by a global lock: a TM
provides an illusion that all transactions are executed sequentially, one by one, and
aborted transactions are entirely rolled back.

However, hardly any TM implementation runs transactions sequentially. Instead,
a TM is supposed to make use of the parallelism provided by the underlying multi-

97

processor architecture, and so it should not limit the parallelism of transactions exe-
cuted by different processes. A TM history thus often contains sequences of inter-
leaved events from many concurrent transactions. Some of those transactions might
be aborted because aborting a transaction is sometimes a necessity for optimistic TM
protocols (a TM where conflict is only checked at commit time).

Several safety conditions for TM were proposed in the literature, such as opac-
ity (GUERRAOUI; KAPALKA, 2008), Virtual World Consistency (IMBS; RAYNAL,
2012), TMS1 and TMS2 (DOHERTY et al., 2009) and Markability (LESANI; PALS-
BERG, 2014). There are also Serializability and Strict-Serializability (PAPADIM-
ITRIOU, 1979), Causal Consistency and Causal Serializability (RAYNAL; THIA-KIME;
AHAMAD, 1997), and Snapshot Isolation (BUSHKOV et al., 2013). All these conditions
define indistinguishably criteria and set correct histories generated by the execution of
TM. The safety property (ALPERN; SCHNEIDER, 1985; LYNCH, 1996) for a concur-
rent implementation informally requires that nothing “bad” happens at any point in any
execution. If it does happen, there is no way to fix it in the future, which implies that
a safety property must be prefix-closed : every prefix of a safe execution must also be
safe.

The work of Guerraoui; Kapałka (2010) introduced a graph-based characteriza-
tion of opacity with the purpose of being used to prove correctness of TM systems.
From a history H, with only read and write operations, a graph is constructed represent-
ing the conflict dependencies between transactions in H. The history H with consistent
reads and unique writes is proven opaque if, and only if, the graph is acyclic.

As a subclass of Opacity, Conflict Opacity (CO-Opacity) ensures that every seri-
alization respects the conflict order (WEIKUM; VOSSEN, 2001, Ch. 3). Let Rset(T)

and Wset(T) be the sets of read and write operations of transaction T. For two trans-
actions Tk and Tm in history H, it is said that Tk precedes Tm in conflict order, denoted
Tk ≺CO

H Tm, if:

• (w-w order) Commitk <H Commitm and Wset(Tk) ∩Wset(Tm) ̸= ∅

• (w-r order) Commitk <H Readm(x, v), x ∈ Wset(Tk) and v ̸= Abort

• (r-w order) Readk(x, v) <H Commitm and x ∈ Wset(Tm) and v ̸= Abort

CO-Opacity differs from Opacity because it only deals with committed transac-
tions (as opposed to including commit-pending transactions), so any conflict in aborted
transactions is ignored in the conflict graph.

Definition 22. A history H is said to be conflict opaque or co-opaque if H is valid and
there exists a sequential legal history S such that (1) S is equivalent to Complete(H)
and (2) S respects ≺RT

H and ≺CO
H .

98

Given a history H, a conflict graph CG(H) = (V, E) is constructed as follows: (1)
V contains the set of transactions in H; (2) an edge (Ti, Tj) is added to E whenever
Ti ≺RT

H Tj or Ti ≺CO
H Tj.

Theorem 2. A legal history H is co-opaque iff CG(H) is acyclic.

Proof. Proof can be found in Kuznetsov; Peri (2017).

6.2.5 Correctness Analysis

The correctness analysis performed on the proposed graph grammars involve gen-
erating a set of histories and comparing the conflict graphs based on two correctness
criteria: Opacity (GUERRAOUI; KAPAŁKA, 2010) and CO-Opacity (KUZNETSOV;
PERI, 2017). An auxiliary implementation a GG for the TL2 algorithm was used to
compare the number of states generated, how conflict is detected and possible differ-
ences reflected in the conflict graph. Figure 54 shows an example of history that can
be achieved from the initial state viewed in Figure 46 using the proposed STM Haskell
GG. The history shows that STM Haskell aborts transaction T2 and re-executes it as T3

with correct read operations.

Figure 54 – History H1 generated by STM Haskell.

From the definition of Opacity, history H1 is not opaque because the aborted trans-
action T2 performs read operations with inconsistent values. Neither T1T2T3 nor T2T1T3

are valid serializations of H1. When evaluating for CO-Opacity, the consistency is taken
from the point of view of each transaction locally. Meaning that the conflict graph is cre-
ated using only prior committed transactions. In the case of H1, the STM Haskell does
not satisfy the correctness criteria. The problem derives from the same transaction T2

reading inconsistent values, because T1T2 and T2T1 are both not valid serialization of
local histories of T2 in H1.

Figure 55 shows the conflict graph generated by STM Haskell and TL2 following the
execution that resulted in H1. It is notable that in the case of TL2, the second read of
T2 (r(x, 1)) would not execute, and abort immediately instead. The prevention of this
execution is reflected in the conflict graph, as the read operation would create a “reads
from” edge (rf) between transactions T1 and T2. This additional edge closes a cycle in
the conflict graph, representing the absence of opacity or co-opacity.

In addition to applying the graph characterization of CO-Opacity in the STM Haskell
and comparing it to the graph characterization of Opacity from TL2, an analysis of

99

Tran
comm
id = 0

Tran
comm
id = 1

Tran
id = 2

Tran
comm
id = 3

rf
rt

rw

rt

rfww

rf

(a) CG from STM Haskell.

Tran
vis

id = 0

Tran
vis

id = 1

Tran
loc

id = 2

Tran
vis

id = 3

ww

rf
rt

rw

rt

rf

(b) CG from TL2.
Figure 55 – Conflict graphs resulted from execution of H1.

what changes could be made to achieve this correctness that STM Haskell does not
satisfy. The main difference between the conflict detection in both algorithms boils
down to which operations can abort the transactions. STM Haskell is defined as a lazy
conflict detection algorithm, meaning that it leaves everything to when a TryCommit is
called. TL2 looks for conflicts at commit time in the same manner, but also whenever
a read operation is called. It was observed that, if this verification of inconsistencies
is also applied to a read operation on STM Haskell, it does fundamentally change
the algorithm from a lazy conflict detection to an eager one. But, it results in less
inconsistent states being generated, therefore more correct histories.

With just a few changes to the production rules of the STM Haskell graph grammar,
it is possible achieve this apparent correctness from the executions studied. One way
to achieve this is, when a read operation is called, the old values in local buffers are
also compared to the shared memory, aborting the transaction if inconsistent. This is
the same logic used by TL2, and allows for the Opacity property to include aborted
transactions in the history. Another way to achieve this is, when evaluating the history,
the flags on the conflict graph node (Tran) to be used to change the requirements for
rule applications. For Opacity, where any transaction could be used to add new conflict
relations, CO-Opacity requires them to be flagged as committed (comm). This means
that when a transaction commits, any aborted transactions and other live transactions
with inconsistent reads are not considered for read before write relations.

Looking at history H1, the second read on T2, that previously would be executed by
STM Haskell, is aborted instead and thus demonstrating Opacity (and CO-Opacity).
Adding this verification to a read operation is not enough to make the conflict graphs of
both STM Haskell and TL2 to be equal. Mostly for the fact that TL2 starts its verification
when a transaction begins (snapshot of the clock), whereas this supposed modified
STM Haskell waits for a read operation to do it. But, it is enough to eliminate possible

100

cycles in the conflict graphs of the histories generated.

6.3 Final Remarks

This chapter described the Graph Grammar (GG) formalism for some study cases of
Software Transactional Memory (STM) algorithms. The first algorithm is called CaPR+,
that deals with checkpointing and partial rollbacks, making it more complex than stan-
dard STM algorithms such as TL2 and SwissTM. The original definition of CaPR+
utilizes data structures to create a local and a global workspace, these workspaces
were successfully translated into graph notations by treating them as objects with local
information (as vertices with attributes) and pointers to other objects (as edges to other
vertices). Similarly as it was described in Chapter 4. All that is left is the logic the algo-
rithm employs on how to manipulate data in these structures, the algorithm defines this
in its procedures and that is directly translated into production rules. When translating
the procedures to production rules, the biggest complexity issue comes from the vari-
ous conditional operations (if-else) that each carry a specific set of consequences for
the system state. The simplest solution to implement and ease some of that complex-
ity is to split the transactional operation into mutually exclusive production rules. This
way, the graph grammar formalization using GROOVE can keep the atomicity level for
the execution of the operations (each one is processed in one step), and not have to
overcomplicate the pattern match trying to fit every graph transformation the operation
requires in one rule. In the traditional graph notation that does not include inheritance,
quantifiers and wildcards, the use of multiple steps to process the entire transactional
operation is unavoidable. The graph grammar generated from translating the CaPR+
algorithm resulted in a paper publication found in Cardoso; Foss; Du bois (2021).

Another case study presented in this chapter is the graph grammar for the STM
library for Haskell library. The main characteristic explored for algorithm is the fact that
STM Haskell does not satisfy the opacity correctness criterion, as it allows inconsistent
reads to happen. The graph grammar translation is able to simulate STM Haskell’s
functionality of saving a local buffer for transactional variables accessed and using the
buffer to check for conflicts (at commit time). For this case study, an analysis can be
made to connect the consequences of the decision making in terms of how and what
the transactions are allowed to execute, and how that impacts the correctness of the
history being generated. In the case of STM Haskell, if changes could be made to not
allow inconsistent reads, the algorithm would possibly generate more correct histories.
The graph grammar reflects this via the “reads from” and “read before write” relations
in the conflict graph. If changes are made to the production rules to abort read oper-
ations before creating inconsistent states, these two relations are the ones that would
stop appearing in the conflict graph for that execution. To compare any experimenting

101

changes made to the STM Haskell graph grammar, a graph grammar formalism for the
TL2 algorithm was used, as this algorithm does only generates opaque histories. The
histories and conflict graphs generated by an eager conflict detection STM Haskell,
although not entirely equivalent to the TL2 counterpart, demonstrated to avoid some
of the previous inconsistent states. No further changes were explored in terms of STM
algorithms, as it was out of the scope of this thesis. The STM Haskell formalization de-
scribed here also resulted in a publication that can be found in Cardoso; Foss; Du bois
(2022).

7 CONCLUSION

Correctness of Transactional Memory (TM) is an important aspect in the design of
TM systems and algorithms. The choice of criteria used may present different lev-
els of strictness, conflict-opacity is more strict than multi-version conflict opacity, and
both are more strict than Opacity itself. Previous work on correctness verification have
presented automatic ways to verify the correctness of TM systems. Besides opacity,
serializability and strict-serializability are also examples of correctness criteria used in
these approaches. Existing frameworks and abstract models that formalize transac-
tional memory systems focus on safety verification and often use the aforementioned
correctness criteria. More recently, a tool that can automatic check correctness of
transactional data structure was proposed (PETERSON; DECHEV, 2017). This shows
that correctness verification of transactional memory is a topic of interest, even more if
the process can be automated and include various levels of correctness evaluation.

One thing in common in TM correctness verification approaches is the use of a
graph to represent some relation between transactions (FLANAGAN; FREUND; YI,
2008; LITZ; DIAS; CHERITON, 2015; PETERSON; DECHEV, 2017). This relation is
usually a dependency of variables used or a representation of order between trans-
actional operations, also called happens-before relation. This graph representation of
transactional relations can be explored for correctness verification, and one result of
this is a graph characterization of opacity presented by Guerraoui; Kapałka (2010).
Using a combination of variable dependency and transactional order, the graph char-
acterization of opacity demonstrates the correctness of a history via a simple test of
acyclicity in the graph representing the transactions relations. With the ability of prov-
ing a correctness criterion via a graph, it seems natural to use a Graph Grammar (GG)
to automate part of the verification process.

The first proof of concept developed for this thesis was a GG that focused on a
single history as input to generate a conflict graph and test for cycles. The operations
in a transactional memory history can be represented using an atomic way, where
each operation represents a single step in the system. Or they can be separated
in call and response steps, which was the representation used in this first grammar

103

developed. However, the atomic representation is used in all later iterations because
the TM formalism targeted is only at the read/write level and the operations are not
complex enough to need multiple steps. The correctness verification developed for
this first iteration is close to the final version used in every subsequent transactional
memory related GG. This showed that the correctness verification process is rather
simple and any variation in the production rules is tied to optimization of when to create
conflict graphs.

With the working prototype of verifying correctness of a single history, the next
phase of the graph grammar formalism of TM is to deal with full algorithms that gen-
erate histories. This introduced a dynamic way to simulate conflict via a system that
actually demonstrates decision making and how each action to the shared memory
impacts the correctness of the system. A more generic set or production rules were
the focus of the study on formalizing an algorithm, these rules mainly focused on rep-
resenting which type of versioning and conflict detection are used. The possible types
are lazy or eager for both versioning and conflict detection. It was observed that in
terms of complexity of the methodology, it is simpler to deal with a lazy versioning algo-
rithm rather than an eager one, mainly because rollbacks may require more complex
logic as to what to store and how/when to perform the rollback. For conflict detection,
both eager and lazy approaches are rather simple to deal with because the complex-
ity comes with resolving the conflict, and not necessarily detecting it. This resolutions
often is part of the commit or abort operation.

Using the more generic methodology of a GG for a TM algorithm as basis, some
case studies were developed to further understand the graph formalism’s capabilities in
terms of dealing with complexity and the actual correctness verification. The first one is
the CaPR+ algorithm, which excels in the fact that allows partial rollbacks for transac-
tions, instead of restarting the transaction in its entirety. When translating that feature
into production rules an approach of mutually exclusive rules was necessary. Instead
of using a single rule to enact an entire transactional operation, multiple production
rules act as different scenarios of the system’s state. The same logic happens in the
generic GG, but for the CaPR+ algorithm some rules are more complex than others,
most notably anything related to the checkpoint and rollback feature. The graph repre-
sentation using the tool GROOVE provided a major assistance in compressing multiple
actions in each production rule, the downside of using it is sacrificing readability and
the complexity of actually creating the production rule.

For the second case study, the STM Haskell library was chosen to create a GG
and evaluate its correctness. Differently from the CaPR+ algorithm, the STM Haskell
library does not satisfy the correctness criterion opacity. So a GG formalism was used
to investigate how this behavior is reflected in the graph characterization of a correct-
ness criterion. In the default STM Haskell algorithm, cycles in the conflict graph are

104

inevitable, but it was observed that the lazy nature of conflict detection of the STM
Haskell library is what produces these cycles. Using a grammar for the TL2 algorithm,
which has been proven to be opaque, it was possible to compare the difference in de-
cision making of when to abort in order to avoid inconsistencies. For this case study,
making changes to the GG to accommodate a more strict conflict detection resulted
in executions, by the modified STM Haskell, that avoid inconsistent states. However,
modifying the decision making progress may be considered a fundamental change on
the STM Haskell algorithm that would result in an entirely new version being introduced,
and that is out of the scope of this thesis and was not pursued any further.

One of the main obstacles found in the methodology of formalizing a STM algorithm
using GG is the input of transactions that will generate histories. Not only because an
input has to set which operations the system can execute dictating what type of histo-
ries will be generated (balance between reads and writes may result in different cases
of inconsistencies), but also because too many transactions or too many operations
will make the state space too large. This is mainly a concern when using the tool
GROOVE that requires a full state space exploration before testing a graph condition,
in this case acyclicity. A promising alternative found for this is the use of an event-B
model to check for correctness. The theorem prover tool for event-B does not include
a visual component to represent states, so it is expected to be capable of dealing with
heavier loads than GROOVE.

The event-B model for graph transformation developed for this thesis is based on
the first iteration of transactional memory graph grammar. It uses a single history as
input and evaluates the acyclicity of its conflict graph. The main difference between
using GROOVE and event-B is that event-B does not allow the same complex features
in the production rules, mainly quantifier operators (for all, exists, etc). This means
that for any operation that could deal with multiple vertices or edges in a single step,
now has to use 3 or more. This changes the structure of the grammar in the sense
that there are more production rules to execute, and some of them lock the system to
a fixed chain of events (if a begin operation starts, nothing else can execute before it
finishes). Ultimately the event-B model has the same expression capabilities to emulate
the transactional memory operations, it just needs more steps to get there. One benefit
of using an event-B model is the capabilities that invariants as state properties bring.
The acyclicity property is set up using invariants and they work in the same way as
graph conditions in GROOVE, but in event-B each production rule is required to not
violate the property for the theorem prover. Other properties for logical and structural
correctness can be expressed using invariants, these can be seen as improvements
for the type graph or just characteristics of the system as it evolves when production
rules are applied.

In conclusion, a graph transformation approach can be used to demonstrate cor-

105

rectness verification of transactional memory. The methodology can applied directly to
TM algorithms which may be useful for new features being introduced to TM that need
assistance with proof of correctness.

With the results of the development of this thesis, the following work is highlighted:

• CARDOSO, D. J.; FOSS, L.; DU BOIS, A. R. A Graph Transformation System for-
malism for Software Transactional Memory Opacity. In: XXIII BRAZILIAN SYM-
POSIUM ON PROGRAMMING LANGUAGES, 2019. p.3–10.

– In this work, the first prototype of the graph transformation approach was
developed. Using GROOVE, this prototype was capable of processing one
history at a time and extract its conflict graph to test for acyclicity.

• CARDOSO, D. J.; FOSS, L.; DU BOIS, A. R. A Methodology for Opacity verifi-
cation for Transactional Memory algorithms using Graph Transformation System.
In: VI WORKSHOP-ESCOLA DE INFORMÁTICA TEÓRICA, 2021. p.9–16.

– The methodology for translating a transactional memory algorithm into graph
notations was developed for this work, and this can be seen in Chapter 4 of
this thesis.

• CARDOSO, D. J.; FOSS, L.; DU BOIS, A. R. A Graph Transformation System for-
malism for correctness of Transactional Memory algorithms. In: XXV BRAZILIAN
SYMPOSIUM ON PROGRAMMING LANGUAGES, 2021. p.49–57.

– This work presents the results of the methodology being applied to the
CaPR+ algorithm as a case study of a complex TM algorithm, as described
in Chapter 6.1.

• CARDOSO, D. J.; FOSS, L.; DU BOIS, A. R. Exploring Opacity of Software Trans-
actional Memory in Haskell through Graph Transformation. In: XXVI BRAZILIAN
SYMPOSIUM ON PROGRAMMING LANGUAGES, 2022. p.15–23.

– In this paper the methodology is further improved and a new graph charac-
terization is added, the CO-Opacity correctness criterion. The STM Haskell
library and the TL2 algorithm are used as a case study to show how de-
cision making by the algorithm influences the outcome of correctness, as
described in Chapter 6.2.

For future work, the topic of optimization of the translation step is important to keep
in mind, seeing as it is still a fully manual step, any level of automation would be an
improvement. The choice of correctness criteria for this thesis focused on opacity and
its variations, exploring any new or different correctness criterion is also an aim for

106

future work. In terms of using GROOVE or event-B to apply the correctness crite-
rion, it would be interesting to explore more in depth both tools to really compare pros
and cons. An extension for the event-B model to also incorporate the TM algorithm is
another topic to explore. A full implementation of the formalization methodology using
event-B requires some work on the production rules, as many features of GROOVE are
not directly translated (inheritance, quantifiers, wildcards, etc). With the possibility of
support for various graph characterizations of correctness, a tool that uses this formal-
ization and tests for more than one and possibly demonstrates what level of strictness
the algorithm in question allows is also something to strive for.

REFERENCES

ABRIAL, J.-R. Modeling in Event-B: system and software engineering. [S.l.]: Cam-
bridge University Press, 2010.

ABRIAL, J.-R.; HALLERSTEDE, S. Refinement, decomposition, and instantiation of
discrete models: Application to Event-B. Fundamenta Informaticae, [S.l.], v.77, n.1-2,
p.1–28, 2007.

ABRIAL, J.-R.; HOARE, A. The B-book: assigning programs to meanings. [S.l.]: Cam-
bridge university press Cambridge, 1996. v.1.

ALPERN, B.; SCHNEIDER, F. B. Defining liveness. Information Processing Letters,
[S.l.], v.21, n.4, p.181–185, 1985.

ANAND, A. S.; SHYAMASUNDAR, R. K.; PERI, S. Opacity Proof for CaPR+ Algo-
rithm. In: INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING AND
NETWORKING, 17., 2016, New York, NY, USA. Proceedings. . . Association for Com-
puting Machinery, 2016. (ICDCN ’16).

ANJANA, P. S. et al. An Efficient Framework for Optimistic Concurrent Execution of
Smart Contracts. In: EUROMICRO INTERNATIONAL CONFERENCE ON PARALLEL,
DISTRIBUTED AND NETWORK-BASED PROCESSING (PDP), 2019., 2019. Anais. . .
[S.l.: s.n.], 2019. p.83–92.

BACK, R.; SERE, K. Stepwise refinement of action systems. In: INTERNA-
TIONAL CONFERENCE ON MATHEMATICS OF PROGRAM CONSTRUCTION,
1989. Anais. . . [S.l.: s.n.], 1989. p.115–138.

BACKHOUSE, R.; WOUDE, J. van der. Demonic operators and monotype factors.
Mathematical Structures in Computer Science, [S.l.], v.3, n.4, p.417–433, 1993.

BALDAN, P. et al. Towards a Notion of Transaction in Graph Rewriting. Electronic
Notes in Theoretical Computer Science, [S.l.], v.211, p.39–50, 2008. Proceedings of
the Fifth International Workshop on Graph Transformation and Visual Modeling Tech-
niques (GT-VMT 2006).

108

BARDOHL R.AND MINAS, M.; TAENTZER, G.; SCHURR, A. Application of graph
transformation to visual languages. Handbook of graph grammars and computing
by graph transformation, [S.l.], v.2, p.105, 1999.

BELWAL, C.; CHENG, A. M. K. Lazy Versus Eager Conflict Detection in Software
Transactional Memory: A Real-Time Schedulability Perspective. IEEE Embedded
Systems Letters, [S.l.], v.3, n.1, p.37–41, 2011.

BERGHAMMER, R.; SCHMIDT, G. Relational specifications. Algebraic Logic, [S.l.],
v.28, p.1993, 1993.

BLUNDELL, C.; LEWIS, E. C.; MARTIN, M. M. Subtleties of transactional memory
atomicity semantics. IEEE Computer Architecture Letters, [S.l.], v.5, n.2, p.17–17,
2006.

BUSHKOV, V.; DZIUMA, D.; FATOUROU, P.; GUERRAOUI, R. Snapshot isolation
does not scale either. [S.l.]: Technical Report TR-437, Foundation of Research and
Technology–Hellas (FORTH), 2013.

BUSHKOV, V.; DZIUMA, D.; FATOUROU, P.; GUERRAOUI, R. The PCL Theorem:
Transactions Cannot Be Parallel, Consistent, and Live. J. ACM, New York, NY, USA,
v.66, n.1, dec 2018.

CARDOSO, D.; FOSS, L.; DU BOIS, A. A Graph Transformation System Formalism
for Correctness of Transactional Memory Algorithms. In: BRAZILIAN SYMPOSIUM
ON PROGRAMMING LANGUAGES, 25., 2021, New York, NY, USA. Proceedings. . .
Association for Computing Machinery, 2021. p.49–57. (SBLP ’21).

CARDOSO, D. J.; FOSS, L.; BOIS, A. R. D. A Graph Transformation System Formal-
ism for Software Transactional Memory Opacity. In: XXIII BRAZILIAN SYMPOSIUM
ON PROGRAMMING LANGUAGES, 2019, New York, NY, USA. Proceedings. . . As-
sociation for Computing Machinery, 2019. p.3–10. (SBLP ’19).

CARDOSO, D. J.; FOSS, L.; BOIS, A. R. D. A Methodology for Opacity verifica-
tion for Transactional Memory algorithms using Graph Transformation System. In: VI
WORKSHOP-ESCOLA DE INFORMáTICA TEóRICA, 2021, Porto Alegre, RS, Brasil.
Anais. . . SBC, 2021. p.9–16.

CARDOSO, D. J.; FOSS, L.; DU BOIS, A. R. Exploring Opacity Software Transactional
Memory in Haskell through Graph Transformation. In: XXVI BRAZILIAN SYMPOSIUM
ON PROGRAMMING LANGUAGES, 2022, New York, NY, USA. Proceedings. . . As-
sociation for Computing Machinery, 2022. p.15–23. (SBLP ’22).

109

CLARKE, E. M.; EMERSON, E. A.; SISTLA, A. P. Automatic Verification of Finite-
State Concurrent Systems Using Temporal Logic Specifications. ACM Trans. Pro-
gram. Lang. Syst., New York, NY, USA, v.8, n.2, p.244–263, apr 1986.

CLEMENTS, A. T. et al. The Scalable Commutativity Rule: Designing Scalable Soft-
ware for Multicore Processors. Commun. ACM, New York, NY, USA, v.60, n.8,
p.83–90, jul 2017.

COHEN, A. et al. Verifying Correctness of Transactional Memories. In: FORMAL
METHODS IN COMPUTER AIDED DESIGN (FMCAD’07), 2007. Anais. . . [S.l.: s.n.],
2007. p.37–44.

CORRADINI, A. et al. Algebraic approaches to graph transformation–part i: Basic con-
cepts and double pushout approach. In: Handbook Of Graph Grammars And Com-
puting By Graph Transformation: Volume 1: Foundations. [S.l.]: World Scientific,
1997. p.163–245.

COSTA CAVALHEIRO, S. A. da; FOSS, L.; RIBEIRO, L. Theorem proving graph gram-
mars with attributes and negative application conditions. Theoretical Computer Sci-
ence, [S.l.], v.686, p.25–77, 2017.

COURCELLE, B. The expression of graph properties and graph transformations in
monadic second-order logic. In: Handbook Of Graph Grammars And Computing
By Graph Transformation: Volume 1: Foundations. [S.l.]: World Scientific, 1997.
p.313–400.

da Costa, S. A.; RIBEIRO, L. Formal Verification of Graph Grammars using Mathe-
matical Induction. Electronic Notes in Theoretical Computer Science, [S.l.], v.240,
p.43–60, 2009. Proceedings of the Eleventh Brazilian Symposium on Formal Methods
(SBMF 2008).

da Costa, S. A.; RIBEIRO, L. Verification of graph grammars using a logical approach.
Science of Computer Programming, [S.l.], v.77, n.4, p.480–504, 2012. Brazilian
Symposium on Formal Methods (SBMF 2008).

DAMRON, P. et al. Hybrid Transactional Memory. SIGPLAN Notices, [S.l.], v.41, n.11,
p.336–346, 2006.

DEPLOY, E. U. I. P.; RODIN. Event-B and the Rodin platform. Disponível em:
<http://www.event-b.org/>.

DICE, D.; SHALEV, O.; SHAVIT, N. Transactional Locking II. In: DISTRIBUTED COM-
PUTING, 2006, Berlin, Heidelberg. Anais. . . Springer Berlin Heidelberg, 2006. p.194–
208.

110

DICKERSON, T.; GAZZILLO, P.; HERLIHY, M.; KOSKINEN, E. Adding Concurrency to
Smart Contracts. In: ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COM-
PUTING, 2017, New York, NY, USA. Proceedings. . . Association for Computing Ma-
chinery, 2017. p.303–312. (PODC ’17).

DOHERTY, S.; GROVES, L.; LUCHANGCO, V.; MOIR, M. Towards Formally Specifying
and Verifying Transactional Memory. Electronic Notes in Theoretical Computer Sci-
ence, [S.l.], v.259, p.245–261, 2009. Proceedings of the 14th BCS-FACS Refinement
Workshop (REFINE 2009).

DOHERTY, S.; GROVES, L.; LUCHANGCO, V.; MOIR, M. Towards formally specifying
and verifying transactional memory. Formal Aspects of Computing, [S.l.], v.25, n.5,
p.769–799, 2013.

DRAGOJEVIć, A.; GUERRAOUI, R.; KAPALKA, M. Stretching Transactional Memory.
SIGPLAN Not., New York, NY, USA, v.44, n.6, p.155–165, jun 2009.

DZIUMA, D.; FATOUROU, P.; KANELLOU, E. Consistency for Transactional Mem-
ory Computing. In: GUERRAOUI, R.; ROMANO, P. (Ed.). Transactional Memory.
Foundations, Algorithms, Tools, and Applications: COST Action Euro-TM IC1001.
Cham: Springer International Publishing, 2015. p.3–31.

EHRIG, H. et al. Algebraic approaches to graph transformation–part II: Single pushout
approach and comparison with double pushout approach. In: Handbook Of Graph
Grammars And Computing By Graph Transformation: Volume 1: Foundations.
[S.l.]: World Scientific, 1997. p.247–312.

EHRIG, H.; ROZENBERG, G.; KREOWSKI, H.-J. rg. Handbook of Graph Grammars
and Computing by Graph Transformation. [S.l.]: world Scientific, 1999. v.3.

EMERSON, E.; CLARKE, E. M. Using branching time temporal logic to synthesize syn-
chronization skeletons. Science of Computer Programming, [S.l.], v.2, n.3, p.241–
266, 1982.

EMERSON, E.; HALPERN, J. On branching versus linear time temporal logic. Journal
of the ACM, [S.l.], v.33, n.1, p.151–178, 1986.

EMMI, M.; MAJUMDAR, R.; MANEVICH, R. Parameterized Verification of Transac-
tional Memories. SIGPLAN Not., New York, NY, USA, v.45, n.6, p.134–145, jun 2010.

FLANAGAN, C.; FREUND, S. N.; YI, J. Velodrome: A Sound and Complete Dynamic
Atomicity Checker for Multithreaded Programs. SIGPLAN Not., New York, NY, USA,
v.43, n.6, p.293–303, jun 2008.

111

GHAMARIAN, A. H. et al. Modelling and analysis using GROOVE. International jour-
nal on software tools for technology transfer, [S.l.], v.14, n.1, p.15–40, 2012.

GUERRAOUI, R.; KAPALKA, M. On the Correctness of Transactional Memory. In:
ACM SIGPLAN SYMPOSIUM ON PRINCIPLES AND PRACTICE OF PARALLEL PRO-
GRAMMING, 13., 2008, New York, NY, USA. Proceedings. . . Association for Comput-
ing Machinery, 2008. p.175–184. (PPoPP ’08).

GUERRAOUI, R.; KAPAŁKA, M. Principles of transactional memory. Synthesis Lec-
tures on Distributed Computing, [S.l.], v.1, n.1, p.1–193, 2010.

HARRIS, T.; MARLOW, S.; PEYTON-JONES, S.; HERLIHY, M. Composable Mem-
ory Transactions. In: TENTH ACM SIGPLAN SYMPOSIUM ON PRINCIPLES AND
PRACTICE OF PARALLEL PROGRAMMING, 2005. Proceedings. . . Association for
Computing Machinery, 2005. p.48–60. (PPoPP ’05).

HARTMANIS, A. C. D. H. J.; HENZINGER, T.; LEIGHTON, J. H. N. J. T.; NIVAT, M.
Monographs in Theoretical Computer Science An EATCS Series. [S.l.]: Springer,
2006.

HERLIHY, M.; MOSS, J. E. B. Transactional Memory: Architectural Support for Lock-
Free Data Structures. SIGARCH Computer Architecture News, [S.l.], v.21, n.2,
p.289–300, 1993.

HIRVE, S.; PALMIERI, R.; RAVINDRAN, B. HiperTM: High performance, fault-tolerant
transactional memory. Theoretical Computer Science, [S.l.], v.688, p.86–102, 2017.
Distributed Computing and Networking.

IMBS, D.; RAYNAL, M. Virtual world consistency: A condition for STM systems (with
a versatile protocol with invisible read operations). Theoretical Computer Science,
[S.l.], v.444, p.113–127, 2012. Structural Information and Communication Complexity
– SIROCCO 2009.

KHYZHA, A.; ATTIYA, H.; GOTSMAN, A.; RINETZKY, N. Safe Privatization in Transac-
tional Memory. SIGPLAN Not., New York, NY, USA, v.53, n.1, p.233–245, feb 2018.

KUMAR, P.; PERI, S. Multiversion Conflict Notion for Transactional Memory Systems.
CoRR, [S.l.], v.abs/1509.04048, 2015.

KUMAR, P.; PERI, S.; VIDYASANKAR, K. A TimeStamp Based Multi-version STM Al-
gorithm. In: DISTRIBUTED COMPUTING AND NETWORKING, 2014, Berlin, Heidel-
berg. Anais. . . Springer Berlin Heidelberg, 2014. p.212–226.

112

KUMARI, S.; PERI, S. Exploring Progress Guarantees in Multi-Version Soft-
ware Transactional Memory Systems. 2019. Tese (Doutorado em Ciência da Com-
putação) — Indian Institute of Technology Hyderabad.

KUZNETSOV, P.; PERI, S. Non-interference and local correctness in transactional
memory. Theoretical Computer Science, [S.l.], v.688, p.103–116, 2017. Distributed
Computing and Networking.

LESANI, M.; PALSBERG, J. Decomposing Opacity. In: DISTRIBUTED COMPUTING,
2014, Berlin, Heidelberg. Anais. . . Springer Berlin Heidelberg, 2014. p.391–405.

LITZ, H.; DIAS, R. J.; CHERITON, D. R. Efficient Correction of Anomalies in Snapshot
Isolation Transactions. ACM Trans. Archit. Code Optim., New York, NY, USA, v.11,
n.4, jan 2015.

LITZ, H. et al. SI-TM: Reducing Transactional Memory Abort Rates through Snap-
shot Isolation. In: INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUP-
PORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS, 19., 2014,
New York, NY, USA. Proceedings. . . Association for Computing Machinery, 2014.
p.383–398. (ASPLOS ’14).

LYNCH, N. A. Distributed algorithms. [S.l.]: Elsevier, 1996.

MANOVIT, C. et al. Testing Implementations of Transactional Memory. In: INTER-
NATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION
TECHNIQUES, 15., 2006, New York, NY, USA. Proceedings. . . Association for Com-
puting Machinery, 2006. p.134–143. (PACT ’06).

MARIĆ, O. Formal Verification of Fault-Tolerant Systems. 2017. Tese (Doutorado
em Ciência da Computação) — ETH Zurich.

MARLOW, S.; PEYTON JONES, S.; SINGH, S. Runtime Support for Multicore Haskell.
In: ACM SIGPLAN INTERNATIONAL CONFERENCE ON FUNCTIONAL PROGRAM-
MING, 14., 2009. Anais. . . Association for Computing Machinery, 2009. p.65–78.
(ICFP ’09).

MATVEEV, A.; SHAVIT, N. Reduced Hardware NOrec: A Safe and Scalable Hy-
brid Transactional Memory. SIGPLAN Not., New York, NY, USA, v.50, n.4, p.59–71,
mar 2015.

PANKRATIUS, V.; ADL-TABATABAI, A.-R. A Study of Transactional Memory vs. Locks
in Practice. In: TWENTY-THIRD ANNUAL ACM SYMPOSIUM ON PARALLELISM IN
ALGORITHMS AND ARCHITECTURES, 2011. Anais. . . Association for Computing
Machinery, 2011. p.43–52. (SPAA ’11).

113

PAPADIMITRIOU, C. H. The Serializability of Concurrent Database Updates. J. ACM,
New York, NY, USA, v.26, n.4, p.631–653, oct 1979.

PELUSO, S. et al. Disjoint-Access Parallelism: Impossibility, Possibility, and Cost of
Transactional Memory Implementations. In: ACM SYMPOSIUM ON PRINCIPLES OF
DISTRIBUTED COMPUTING, 2015., 2015, New York, NY, USA. Proceedings. . . As-
sociation for Computing Machinery, 2015. p.217–226. (PODC ’15).

PETERSON, C.; DECHEV, D. A Transactional Correctness Tool for Abstract Data
Types. ACM Trans. Archit. Code Optim., New York, NY, USA, v.14, n.4, nov 2017.

RAYNAL, M.; THIA-KIME, G.; AHAMAD, M. From serializable to causal transactions for
collaborative applications. In: EUROMICRO 97. PROCEEDINGS OF THE 23RD EU-
ROMICRO CONFERENCE: NEW FRONTIERS OF INFORMATION TECHNOLOGY
(CAT. NO.97TB100167), 1997. Anais. . . [S.l.: s.n.], 1997. p.314–321.

RENSINK, A.; DE MOL, M.; ZAMBON, E. GROOVE GRaphs for Object-Oriented
VErification (Version 5.7.4). Disponível em: <https://groove.cs.utwente.nl/>.

RIBEIRO, L.; DOTTI, F. L.; COSTA, S. A. da; DILLENBURG, F. C. Towards theorem
proving graph grammars using Event-B. Electronic Communications of the EASST,
[S.l.], v.30, 2010.

GUERRAOUI, R.; ROMANO, P. (Ed.). Safety and Deferred Update in Transactional
Memory. Cham: Springer International Publishing, 2015. p.50–71.

SHAVIT, N.; TOUITOU, D. Software transactional memory. Distributed Computing,
[S.l.], v.10, n.2, p.99–116, 1997.

SIEK, K.; WOJCIECHOWSKI, P. T. Zen and the art of concurrency control: an explo-
ration of TM safety property space with early release in mind. Proc. WTTM, [S.l.], v.14,
2014.

WAMHOFF, J.-T.; RIEGEL, T.; FETZER, C.; FELBER, P. RobuSTM: A Robust Soft-
ware Transactional Memory. In: STABILIZATION, SAFETY, AND SECURITY OF DIS-
TRIBUTED SYSTEMS, 2010. Anais. . . Springer, 2010. p.388–404.

WEIKUM, G.; VOSSEN, G. Transactional information systems: theory, algorithms,
and the practice of concurrency control and recovery. [S.l.]: Elsevier, 2001.

ZENG, J. Augmenting Transactional Memory with the Future Abstraction. 2020.
Tese (Doutorado em Ciência da Computação) — KTH Royal Institute of Technology.

Apendices

115

APPENDIX A – Software Transactional Memory algorithms

A.1 Checkpointing and Partial Rollback

Checkpointing and Partial Rollback algorithm (CaPR+)
1: procedure ReadTx(t, o, pc)
2: if o is in t’s shared object store then
3: str.val← o.val from SOS
4: return l← 1(Success);
5: else if o is in shared memory then
6: if t.status_flag = RED then
7: PL = Partially_Rollback(t);
8: update str.PL = PL
9: return l← 0(Rollback);
10: end if
11: create checkpoint entry in checkpoint log for o;
12: str.val← o.val from Shared Memory
13: add t to o’s readers’ list
14: add o into SOS and set its read flag to 1;
15: return l← 1(Success);
16: else
17: return l← 2(Error);
18: end if
19: end procedure
20: procedure WriteTx(o,t)
21: if o is a shared object then
22: if o is in shared object store then
23: update o in SOS and set its write flag to 1;
24: else
25: insert o in SOS and set its write flag to 1;
26: end if
27: end if
28: end procedure
29: procedure CommitTx(t)
30: Assign t’s write-set, t.WS = { o | o is in SOS and o’s write flag = 1 }
31: Initialize A = {t};

116

32: for each object o in the t.WS
33: A = A ∪ active readers of o;
34: end for
35: if t.status_flag = RED then
36: PL = Partially_Rollback(t);
37: return PL;
38: end if
39: for each object wo in t’s write-set, t.WS
40: update wo.value in SM from the local copy of wo;
41: for each transaction rt in wo’s active reader’s list
42: add the objects in t.WS to transaction rt’s conflict objects’ list;
43: set transaction rt’s status flag to RED;
44: end for
45: end for
46: delete t form actrans;
47: for each object ro in t’s readers-list
48: delete t from ro’s active readers list;
49: end for
50: return 0;
51: end procedure
52: procedure Partially_Rollback(t)
53: identify safest checkpoint - earliest conflicting object;
54: apply selected checkpoint;
55: delete t from active reader’s list of all object rolled back;
56: reset status flag to GREEN;
57: return PL(the new program location);
58: end procedure

A.2 Software Transactional Memory Haskell library

Software Transactional Memory Haskell algorithm (STM Haskell)
1: procedure Read(o)
2: if o is in local store then
3: return value of local var(o);
4: else if o is in shared memory then
5: create local copy of o;
6: local var(o)’s new value← value of SM.TVar(o);
7: local var(o)’s old value← value of SM.TVar(o);
8: return value of local var(o);
9: else
10: return Error;

117

11: end if
12: end procedure
13: procedure Write(o,v)
14: if o is in local store then
15: write v in local var(o);
16: return Success;
17: else if o is in shared memory then
18: create local copy of o;
19: local var(o)’s new value← v;
20: local var(o)’s old value← v;
21: return Success;
22: else
23: return Error;
24: end if
25: end procedure
26: procedure Commit()
27: for each local var x do
28: if x.old value ̸= value of SM.TVar(x) then
29: add x to transaction’s watchlist;
30: transaction is flagged for retry;
31: end if
32: end for
33: obtain all locks from write set;
34: for each local var x do
35: writes x.new value to SM.TVar(x);
36: end for
37: release all locks from write set;
38: end procedure
39: procedure Retry()
40: if any variable in watchlist receives a change in SM then
41: erase all local store
42: restarts transaction
43: end if
44: end procedure

A.3 Transactional Locking 2

Transactional Locking 2 algorithm (TL2)
1: procedure Read(o)
2: if transaction’s read stamp > SM(o)’s write stamp then
3: erase read set and write set;

118

4: transaction aborts and restarts;
5: else if o is in write set then
6: return value of WS(o);
7: else if o is in read set then
8: RS(o)← SM.TVar(o);
9: return value of RS(o);
10: else
11: create new RS(o);
12: RS(o)← SM.TVar(o);
13: return value of RS(o);
14: end if
15: end procedure
16: procedure Write(o,v)
17: if o is in write set then
18: return Success;
19: else
20: create new WS(o);
21: WS(o)← v;
22: return Success;
23: end if
24: end procedure
25: procedure Commit()
26: for each o in transaction’s read set do
27: if transaction’s read stamp > SM(o)’s write stamp then
28: erase read set and write set;
29: transaction aborts and restarts;
30: end if
31: end for
32: global clock← global clock + 2;
33: obtain all locks from write set
34: for each o in transaction’s write set do
35: SM(o).write stamp← global clock;
36: SM(o).value←WS(o).value;
37: end for
38: obtain all locks from write set
39: end procedure

119

APPENDIX B – Translation of STM to GG

120

B.1 Begin operation

A begin operation is divided in 5 total production rules, each one represents an
internal step the operation needs. These steps represent a combination of: locking
the system, to only allow this operation to execute; dealing with any “loop” necessary,
transforming multiple nodes one at a time; and any unlocking needed to transition
between steps.

B.1.1 BeginLock rule

Locks the history into a begin operation (nothing else can execute), and creates a
CGNode for the corresponding new transaction.

T1_1
Begin

N

T1_2
History

T1_3
CG

atr1_1
ID

e1_1
OP

L1

α1−−→
T1_7

CGNode

T1_4
Begin

N

T1_5
History

T1_6
CG

atr1_2
ID

atr1_3 ID

e1_2
Lock

e1_3 Free

e1_4
Loc

R1
Figure 56 – First step of Begin rule.

B.1.2 BeginLoop1 rule

Loops through any free and finished transaction that does not have a real-time
relation (RT -edge) with the new transaction and creates the new edge signifying the
relation.

T2_13

CGNode

T2_11

Begin

N

T2_12

History

T2_15

CGNode

T2_14

CG

atr2_5

ID

atr2_6

ID

e2_10

Lock

e2_13

Free

e2_12 RT

e2_14 Done

e2_11

Loc

L2NAC

l2←−−
T2_3

CGNode

T2_1

Begin

N

T2_2

History

T2_5

CGNode

T2_4

CG

atr2_1

ID

atr2_2

ID

e2_1

Lock

e2_3

Free

e2_4 Done

e2_2

Loc

L2

α2−−→
T2_8

CGNode

T2_6

Begin

N

T2_7

History

T2_10

CGNode

T2_9

CG

atr2_3

ID

atr2_4

ID

e2_5

Lock

e2_8

LockRT

e2_7 RT

e2_9 Done

e2_6

Loc

R2
Figure 57 – Second step of Begin rule.

121

B.1.3 BeginLoop1_Release rule

When there are no more transactions to mark with real-time relations, marks the
history for the second loop. This prepares to release of the execution for other trans-
actions.

T3_16

CGNode

T3_14

CGNode

T3_12

Begin

N

T3_11

History

T3_13

TOp

T3_15

CG

e3_10

Free

atr3_5

ID

atr3_6

ID

e3_7 Lock

e3_8 Next

e3_9 Loc

e3_11 Done

L3NAC

l3←−−
T3_4

CGNode

T3_2

Begin

N

T3_1

History

T3_3

TOp

T3_5

CG

atr3_1

ID

atr3_2

ID

e3_1 Lock

e3_2 Next

e3_3 Loc

L3

α3−−→
T3_9

CGNode

T3_7

Begin

N

T3_6

History

T3_8

TOp

T3_10

CG

atr3_3

ID

atr3_4

ID

e3_4 Release

e3_5 Next

e3_6 Loc

R3

Figure 58 – Third step of Begin rule.

B.1.4 BeginLoop2 rule

Loops through any locked CGNodes that had a new edge added, and frees them.

T4_3

CGNode

T4_1

Begin

N

T4_2

History

T4_5

CGNode

T4_4

CG

atr4_1

ID

atr4_2

ID

e4_1

Release

e4_3

LockRT

e4_4 Done

e4_2 Loc

L4

α4−−→

T4_8

CGNode

T4_6

Begin

N

T4_7

History

T4_10

CGNode

T4_9

CG

atr4_3

ID

atr4_4

ID

e4_5

Release

e4_7

Free

e4_8 Done

e4_6 Loc

R4
Figure 59 – Fourth step of Begin rule.

B.1.5 BeginLoop2_Release rule

When there are no more CGNodes to free (or none to begin with), releases the lock
on the history and move the OP-edge to resume the execution of other operations.

122

T5_16

CGNode

T5_14

CGNode

T5_12

Begin

N

T5_11

History

T5_13

TOp

T5_15

CG

e5_10

LockRT

atr5_5

ID

atr5_6

ID

e5_7 Release

e5_8 Next

e5_9 Loc

e5_11 Done

L1NAC

l5←−−
T5_4

CGNode

T5_2

Begin

N

T5_1

History

T5_3

TOp

T5_5

CG

atr5_1

ID

atr5_2

ID

e5_1 Release

e5_2 Next

e5_3 Loc

L5

α5−−→
T5_9

CGNode

T5_7

Begin

N

T5_6

History

T5_8

TOp

T5_10

CG

atr5_3

ID

atr5_4

ID

e5_4 OP

e5_5

Next

e5_6 Loc

R5

Figure 60 – Fifth and last step of Begin rule.

B.2 Commit operation

In the same way as the begin operation, a commit operation has 5 steps divided
into separate production rules. The main goal is to mark any WW and RW -edges
based on the other transactions’ CGNodes.

B.2.1 CommitLock rule

Locks the history into a commit operation, no other operation can execute.

T8_3

CGNode
T8_2

Commit

N

T8_1

History

T8_4

CG

atr8_1

ID

e8_3 Free
atr8_2

ID

e8_1

OP

e8_2 Loc

L8

α8−−→

T8_7

CGNode
T8_6

Commit

N

T8_5

History

T8_8

CG

atr8_3

ID

e8_6 Free
atr8_4

ID

e8_4

Lock

e8_5 Loc

R8
Figure 61 – First step of Commit rule.

123

B.2.2 CommitLoop1 rule

Loops through visible transactions that wrote to the same variables as the transac-
tion executing the commit. Add the new edge WW, denoting write-before-write relation
between them.

T9_13

CGNode

T9_12

Commit

N
T9_11

History

T9_15

CGNode

T9_14

CG

N
e9_12

WW

e9_10

Lock

atr9_12

Writes

atr9_11

Writes

atr9_10

ID

atr9_9

ID

e9_13

Free

e9_11

Loc

e9_14

Vis

L9NAC

l9←−−

T9_3

CGNode

T9_2

Commit

N
T9_1

History

T9_5

CGNode

T9_4

CG

N

e9_1

Lock

e9_3

Free

atr9_4

Writes

atr9_3

Writes

atr9_2

ID

atr9_1

ID
e9_2

Loc

e9_4

Vis

L9

α9−−→

T9_8

CGNode

T9_7

Commit

N
T9_6

History

T9_10

CGNode

T9_9

CG

N

e9_5

Lock

atr9_8

Writes

atr9_7

Writes

atr9_6

ID

atr9_5

ID

e9_8

LockC

e9_7

WW

e9_6

Loc

e9_9

Vis

R9
Figure 62 – Second step of Commit rule.

B.2.3 CommitLoop1_Release rule

As soon as there are no more WW -relations to be added, prepare the operation for
the second loop.

T10_11

CGNode

T10_10

Commit

NT10_9

History

T10_9

CGNode

T10_12

CG

N

atr10_7

ID

e10_8

Free

e10_5

Lock

atr10_10

Writes

atr10_9

Writes

atr10_8

ID

e10_6 Loc

e10_7 Vis

L10NAC

l10←−−

T10_3

CGNode

T10_2

Commit

NT10_1

History

T10_4

CG

atr10_1

ID
e10_1

Lock

atr10_2

ID

N

atr10_3

Writes
e10_2 Loc

L10

α10−−→

T10_7

CGNode

T10_6

Commit

NT10_5

History

T10_8

CG

atr10_4

ID
e10_3

Release

atr10_5

ID

atr10_6

Writes

N

e10_4 Loc

R10

Figure 63 – Third step of Commit rule.

124

B.2.4 CommitLoop2 rule

Loop through any transaction that read a value overwritten by the main transaction
(has a WW -relation). Adds the RW -edge between the transaction that read the vari-
able and the main one. This denotes the read-before-write relation, where a value was
read and overwritten afterwards, making it inconsistent.

T11_3

CGNode
T11_2

Commit

N
T11_1

History

T11_4

CGNode

T11_6

CG

T11_5

CGNode

e11_5

RF

atr11_1

ID

atr11_2

ID

e11_4

WW

e11_1

Release

e11_6

LockC

e11_2

Loc

e11_3

Vis

e11_7

Loc

L11

α11−−→

T11_9

CGNode
T11_8

Commit

N
T11_7

History

T11_10

CGNode

T11_12

CG

T11_11

CGNode

e11_13

RF

e11_12

RW

atr11_3

ID

atr11_4

ID

e11_11

WW

e11_8

History

e11_14

Free

e11_9

Loc

e11_10

Vis

e11_6

Loc

R11
Figure 64 – Fourth step of Commit rule.

B.2.5 CommitLoop2_Release rule

Lastly, if there are no more RW -edges to add, finishes the execution and unlocks
the history for other operations to execute.

T12_16

CGNode

T12_13

Commit
N

T12_11

History
T12_12

TOp

T12_14

CGNode

T12_15

CG

e12_11

LockC

e12_8

Release

e12_9

Next

atr12_6

ID

atr12_5

ID

e12_12

Loc

e12_10

Vis

L12NAC

l12←−−

T12_5

CGNode

T12_3

Commit
N

T12_1

History
T12_2

TOp

T12_4

CG

e12_1

Release

e12_2

Next

atr12_2

ID

atr12_1

ID

e12_3

Loc

L12

α12−−→

T12_10

CGNode

T12_8

Commit
N

T12_6

History
T12_7

TOp

T12_9

CG

e12_5

Next

atr12_4

ID

atr12_3

ID

e12_4

OP

e12_7

Vis

e12_6

Done

R12

Figure 65 – Fifth and last step of Commit rule.

125

APPENDIX C – Translation of GG to Event-B

126

C.1 Begin operation

C.1.1 BeginLock rule

See Fig. 56 for graph notation.

sets
vertL1
edgeL1
attrL1

constants
T1_1 T1_2 T1_3
e1_1
atr1_1
sourceL1
targetL1
attrNL1
attrVL1
tL1_V
tL1_E
tL1_A

axioms
@axm_vertL1 partition(vertL1, {T1_1}, {T1_2}, {T1_3})
@axm_edgeL1 partition(edgeL1, {e1_1})
@axm_attrL1 partition(attrL1, {atr1_1})
@axm_sourceL1_type sourceL1 ∈ edgeL1 → vertL1
@axm_sourceL1_def partition(sourceL1, {e1_1 7→ T1_2})
@axm_targetL1_type targetL1 ∈ edgeL1 → vertL1
@axm_targetL1_def partition(targetL1, {e1_1 7→ T1_1})
@axm_attrNL1_type attrNL1 ∈ attrL1 → vertL1
@axm_attrNL1_def partition(attrNL1, {atr1_1 7→ T1_1})
@axm_attrVL1_type attrVL1 ∈ attrL1 → P(N)
@axm_attrVL1_def partition(attrVL1, {atr1_1 7→ N})
@axm_tL1_V tL1_V ∈ vertL1 → vertT
@axm_tL1_V_def partition(tL1_V, {T1_1 7→ Begin}, {T1_2 7→ History}, {T1_3 7→ CG})
@axm_tL1_E tL1_E ∈ edgeL1 → edgeT
@axm_tL1_E_def partition(tL1_E, {e1_1 7→ OP})
@axm_tL1_A tL1_A ∈ attrL1 → attrT
@axm_tL1_A_def partition(tL1_A, {atr1_1 7→ ID})

event BeginLock
any

mV
mE
mA
T1_7
e1_2
e1_3
e1_4
atr1_3
delE

where
@grd_mV mV ∈ vertL1 → vertG
@grd_mE mE ∈ edgeL1 → edgeG
@grd_mA mA ∈ attrL1 → attrG
@grd_delE delE = [{e1_1}]
@grd_newT1_7 T1_7 ∈ N\vertG
@grd_newe1_2 e1_2 ∈ N\edgeG

127

@grd_newe1_3 e1_3 ∈ N\edgeG
@grd_newe1_4 e1_4 ∈ N\edgeG
@grd_newatr1_3 atr1_3 ∈ N\attrG
@grd_e1_2_e1_3 e1_2 ̸= e1_3
@grd_e1_2_e1_4 e1_2 ̸= e1_4
@grd_e1_3_e1_4 e1_3 ̸= e1_4
@grd_vertices ∀v · v ∈ vertL1 ⇒ tL1_V(v) = tG_V(mV(v))
@grd_edges ∀e · e ∈ edgeL1 ⇒ tL1_E(e) = tG_E(mE(e))
@grd_attrs ∀a · a ∈ attrL1 ⇒ tL1_A(a) = tG_A(mA(a))
@grd_srctgt ∀e · e ∈ edgeL1 ⇒ mV(sourceL1(e)) = sourceG(mE(e)) ∧ mV(targetL1(e)) = targetG(mE(e))
@grd_attrComp ∀a · a ∈ attrL1 ⇒ mV(attrNL1(a))=attrNG(mA(a)) ∧ attrVG(mA(a)) ∈ N

then
@act_vertG vertG := vertG ∪ {T1_7}
@act_edgeG edgeG := (edgeG \ delE) ∪ {e1_2, e1_3, e1_4}
@act_attrG attrG := attrG ∪ {atr1_3}
@act_sourceG sourceG := (delE ◁−sourceG) ∪ {e1_2 7→ mV(T1_2), e1_3 7→ mV(T1_3), e1_4 7→ T1_7}
@act_targetG targetG := (delE ◁− targetG) ∪ {e1_2 7→ mV(T1_1), e1_3 7→ T1_7, e1_4 7→ T1_7}
@act_attrNG attrNG := attrNG ∪ {atr1_3 7→ T1_7}
@act_attrVG attrVG := attrVG ∪ {atr1_3 7→ attrVG(mA(atr1_1))}
@act_tG_V tG_V := tG_V ∪ {T1_7 7→ CGNode}
@act_tG_E tG_E := (delE ◁− tG_E) ∪ {e1_2 7→ Lock, e1_3 7→ Free, e1_4 7→ Loc}
@act_tG_A tG_A := tG_A ∪ {atr1_3 7→ ID}

end

C.1.2 BeginLoop1 rule

See Fig. 57 for graph notation.

sets
vertL2
edgeL2
attrL2

constants
T2_1 T2_2 T2_3 T2_4 T2_5
e2_1 e2_2 e2_3 e2_4
atr2_1 atr2_2
sourceL2
targetL2
attrNL2
attrVL2
tL2_V
tL2_E
tL2_A

axioms
@axm_vertL2 partition(vertL2, {T2_1}, {T2_2}, {T2_3}, {T2_4}, {T2_5})
@axm_edgeL2 partition(edgeL2, {e2_1}, {e2_2}, {e2_3}, {e2_4})
@axm_attrL2 partition(attrL2, {atr2_1}, {atr2_2})
@axm_sourceL2_type sourceL2 ∈ edgeL2 → vertL2
@axm_sourceL2_def partition(sourceL2, {e2_1 7→ T2_2}, {e2_2 7→ T2_3}, {e2_3 7→ T2_4}, {e2_4 7→ T2_5})
@axm_targetL2_type targetL2 ∈ edgeL2 → vertL2
@axm_targetL2_def partition(targetL2, {e2_1 7→ T2_1}, {e2_2 7→ T2_3}, {e2_3 7→ T2_5}, {e2_4 7→ T2_5})
@axm_attrNL2_type attrNL2 ∈ attrL2 → vertL2
@axm_attrNL2_def partition(attrNL2, {atr2_1 7→ T2_1}, {atr2_2 7→ T2_3})
@axm_attrVL2_type attrVL2 ∈ attrL2 → P(N)
@axm_attrVL2_def partition(attrVL2, {atr2_1 7→ N}, {atr2_2 7→ N})
@axm_tL2_V tL2_V ∈ vertL2 → vertT
@axm_tL2_V_def partition(tL2_V, {T2_1 7→ Begin}, {T2_2 7→ History}, {T2_3 7→ CGNode}, {T2_4 7→ CG}, {T2_5 7→ CGNode})
@axm_tL2_E tL2_E ∈ edgeL2 → edgeT

128

@axm_tL2_E_def partition(tL2_E, {e2_1 7→ Lock}, {e2_2 7→ Loc}, {e2_3 7→ Free}, {e2_4 7→ Done})
@axm_tL2_A tL2_A ∈ attrL2 → attrT
@axm_tL2_A_def partition(tL2_A, {atr2_1 7→ ID}, {atr2_2 7→ ID})

event BeginLoop1
any

mV
mE
mA
e2_8
e2_7
delE

where
@grd_mV mV ∈ vertL2 → vertG
@grd_mE mE ∈ edgeL2 → edgeG
@grd_mA mA ∈ attrL2 → attrG
@grd_delE delE = [{e2_3}]
@grd_newe2_8 e2_8 ∈ N\edgeG
@grd_newe2_7 e2_7 ∈ N\edgeG
@grd_e2_8_e2_7 e2_8 ̸= e2_7
@grd_vertices ∀v · v ∈ vertL2 ⇒ tL2_V(v) = tG_V(mV(v))
@grd_edges ∀e · e ∈ edgeL2 ⇒ tL2_E(e) = tG_E(mE(e))
@grd_attrs ∀a · a ∈ attrL2 ⇒ tL2_A(a) = tG_A(mA(a))
@grd_srctgt ∀e · e ∈ edgeL2 ⇒ mV(sourceL2(e)) = sourceG(mE(e)) ∧ mV(targetL2(e)) = targetG(mE(e))
@grd_attrComp ∀a · a ∈ attrL2 ⇒ mV(attrNL2(a))=attrNG(mA(a)) ∧ attrVG(mA(a)) ∈ N
@grd_NAC_E1 ¬(∃forbRT·

forbRT ⊆ edgeG \ mE[edgeL2] ∧ tG_E(forbRT) = RT ∧
sourceG(forbRT) = mV(T2_5) ∧ targetG(forbRT) = mV(T2_3))

then
@act_edgeG edgeG := (edgeG \ delE) ∪ {e2_8, e2_7}
@act_sourceG sourceG := (delE ◁−sourceG) ∪ {e2_8 7→ mV(T2_4), e2_7 7→ mV(T2_5)}
@act_targetG targetG := (delE ◁− targetG) ∪ {e2_8 7→ mV(T2_5), e2_7 7→ mV(T2_3)}
@act_tG_E tG_E := (delE ◁− tG_E) ∪ {e2_8 7→ LockRT, e2_7 7→ RT}

end

C.1.3 BeginLoop1_Release rule

See Fig. 58 for graph notation.

sets
vertL3
edgeL3
attrL3

constants
T3_1 T3_2 T3_3 T3_4 T3_5
e3_1 e3_2 e3_3
atr3_1 atr3_2
sourceL3
targetL3
attrNL3
attrVL3
tL3_V
tL3_E
tL3_A

axioms
@axm_vertL3 partition(vertL3, {T3_1}, {T3_2}, {T3_3}, {T3_4}, {T3_5})
@axm_edgeL3 partition(edgeL3, {e3_1}, {e3_2}, {e3_3})

129

@axm_attrL3 partition(attrL3, {atr3_1}, {atr3_2})
@axm_sourceL3_type sourceL3 ∈ edgeL3 → vertL3
@axm_sourceL3_def partition(sourceL3, {e3_1 7→ T3_1}, {e3_2 7→ T3_2}, {e3_3 7→ T3_4})
@axm_targetL3_type targetL3 ∈ edgeL3 → vertL3
@axm_targetL3_def partition(targetL3, {e3_1 7→ T3_2}, {e3_2 7→ T3_3}, {e3_3 7→ T3_4})
@axm_attrNL3_type attrNL3 ∈ attrL3 → vertL3
@axm_attrNL3_def partition(attrNL3, {atr3_1 7→ T3_2}, {atr3_2 7→ T3_4})
@axm_attrVL3_type attrVL3 ∈ attrL3 → P(N)
@axm_attrVL3_def partition(attrVL3, {atr3_1 7→ N}, {atr3_2 7→ N})
@axm_tL3_V tL3_V ∈ vertL3 → vertT
@axm_tL3_V_def partition(tL3_V, {T3_1 7→ History}, {T3_2 7→ Begin}, {T3_3 7→ Begin}, {T3_4 7→ CGNode}, {T3_5 7→ CG})
@axm_tL3_E tL3_E ∈ edgeL3 → edgeT
@axm_tL3_E_def partition(tL3_E, {e3_1 7→ Lock}, {e3_2 7→ Next}, {e3_3 7→ Loc})
@axm_tL3_A tL3_A ∈ attrL3 → attrT
@axm_tL3_A_def partition(tL3_A, {atr3_1 7→ ID}, {atr3_2 7→ ID})

event BeginLoop1_Release
any

mV
mE
mA
e3_4
delE

where
@grd_mV mV ∈ vertL3 → vertG
@grd_mE mE ∈ edgeL3 → edgeG
@grd_mA mA ∈ attrL3 → attrG
@grd_delE delE = [{e3_1}]
@grd_newe3_4 e3_4 ∈ N\edgeG
@grd_vertices ∀v · v ∈ vertL3 ⇒ tL3_V(v) = tG_V(mV(v))
@grd_edges ∀e · e ∈ edgeL3 ⇒ tL3_E(e) = tG_E(mE(e))
@grd_attrs ∀a · a ∈ attrL3 ⇒ tL3_A(a) = tG_A(mA(a))
@grd_srctgt ∀e · e ∈ edgeL3 ⇒ mV(sourceL3(e)) = sourceG(mE(e)) ∧ mV(targetL3(e)) = targetG(mE(e))
@grd_attrComp ∀a · a ∈ attrL3 ⇒ mV(attrNL3(a))=attrNG(mA(a)) ∧ attrVG(mA(a)) ∈ N
@grd_NAC_V1 ¬(∃forbT3_16·

forbT3_16 ⊆ vertG \ mV[vertL3] ∧ tG_V(forbT3_16) = CGNode ∧
(∃forbe3_10·

forbe3_10 ⊆ edgeG \ mE[edgeL3] ∧ tG_E(forbe3_10) = Free ∧
sourceG(forbe3_10) = mV(mV(T3_5)) ∧ targetG(forbe3_10) = mV(forbT3_16)

(∃forbe3_11·
forbe3_11 ⊆ edgeG \ mE[edgeL3] ∧ tG_E(forbe3_11) = Done ∧
sourceG(forbe3_11) = mV(forbT3_16) ∧ targetG(forbe3_11) = mV(forbT3_16))

then
@act_edgeG edgeG := (edgeG \ delE) ∪ {e3_4}
@act_sourceG sourceG := (delE ◁−sourceG) ∪ {e3_4 7→ mV(T3_1)}
@act_targetG targetG := (delE ◁− targetG) ∪ {e3_4 7→ mV(T3_2)}
@act_tG_E tG_E := (delE ◁− tG_E) ∪ {e3_4 7→ Release}

end

C.1.4 BeginLoop2 rule

See Fig. 59 for graph notation.

sets
vertL4
edgeL4
attrL4

130

constants
T4_1 T4_2 T4_3 T4_4 T4_5
e4_1 e4_2 e4_3 e4_4
atr4_1 atr4_2
sourceL4
targetL4
attrNL4
attrVL4
tL4_V
tL4_E
tL4_A

axioms
@axm_vertL4 partition(vertL4, {T4_1}, {T4_2}, {T4_3}, {T4_4}, {T4_5})
@axm_edgeL4 partition(edgeL4, {e4_1}, {e4_2}, {e4_3}, {e4_4})
@axm_attrL4 partition(attrL4, {atr4_1}, {atr4_2})
@axm_sourceL4_type sourceL4 ∈ edgeL4 → vertL4
@axm_sourceL4_def partition(sourceL4, {e4_1 7→ T4_2}, {e4_2 7→ T4_3}, {e4_3 7→ T4_4}, {e4_4 7→ T4_5})
@axm_targetL4_type targetL4 ∈ edgeL4 → vertL4
@axm_targetL4_def partition(targetL4, {e4_1 7→ T4_1}, {e4_2 7→ T4_3}, {e4_3 7→ T4_5}, {e4_4 7→ T4_5})
@axm_attrNL4_type attrNL4 ∈ attrL4 → vertL4
@axm_attrNL4_def partition(attrNL4, {atr4_1 7→ T4_1}, {atr4_2 7→ T4_3})
@axm_attrVL4_type attrVL4 ∈ attrL4 → P(N)
@axm_attrVL4_def partition(attrVL4, {atr4_1 7→ N}, {atr4_2 7→ N})
@axm_tL4_V tL4_V ∈ vertL4 → vertT
@axm_tL4_V_def partition(tL4_V, {T4_1 7→ Begin}, {T4_2 7→ History}, {T4_3 7→ CGNode}, {T4_4 7→ CG}, {T4_5 7→ CGNode})
@axm_tL4_E tL4_E ∈ edgeL4 → edgeT
@axm_tL4_E_def partition(tL4_E, {e4_1 7→ Release}, {e4_2 7→ Loc}, {e4_3 7→ LockRT}, {e4_4 7→ Done})
@axm_tL4_A tL4_A ∈ attrL4 → attrT
@axm_tL4_A_def partition(tL4_A, {atr4_1 7→ ID}, {atr4_2 7→ ID})

event BeginLoop2
any

mV
mE
mA
e4_7
delE

where
@grd_mV mV ∈ vertL4 → vertG
@grd_mE mE ∈ edgeL4 → edgeG
@grd_mA mA ∈ attrL4 → attrG
@grd_delE delE = [{e4_3}]
@grd_newe4_7 e4_7 ∈ N\edgeG
@grd_vertices ∀v · v ∈ vertL4 ⇒ tL4_V(v) = tG_V(mV(v))
@grd_edges ∀e · e ∈ edgeL4 ⇒ tL4_E(e) = tG_E(mE(e))
@grd_attrs ∀a · a ∈ attrL4 ⇒ tL4_A(a) = tG_A(mA(a))
@grd_srctgt ∀e · e ∈ edgeL4 ⇒ mV(sourceL4(e)) = sourceG(mE(e)) ∧ mV(targetL4(e)) = targetG(mE(e))
@grd_attrComp ∀a · a ∈ attrL4 ⇒ mV(attrNL4(a))=attrNG(mA(a)) ∧ attrVG(mA(a)) ∈ N

then
@act_edgeG edgeG := (edgeG \ delE) ∪ {e4_7}
@act_sourceG sourceG := (delE ◁−sourceG) ∪ {e4_7 7→ mV(T4_4)}
@act_targetG targetG := (delE ◁− targetG) ∪ {e4_7 7→ mV(T4_5)}
@act_tG_E tG_E := (delE ◁− tG_E) ∪ {e4_7 7→ Free}

end

C.1.5 BeginLoop2_Release rule

See Fig. 60 for graph notation.

131

sets
vertL5
edgeL5
attrL5

constants
T5_1 T5_2 T5_3 T5_4 T5_5
e5_1 e5_2 e5_3
atr5_1 atr5_2
sourceL5
targetL5
attrNL5
attrVL5
tL5_V
tL5_E
tL5_A

axioms
@axm_vertL5 partition(vertL5, {T5_1}, {T5_2}, {T5_3}, {T5_4}, {T5_5})
@axm_edgeL5 partition(edgeL5, {e5_1}, {e5_2}, {e5_3})
@axm_attrL5 partition(attrL5, {atr5_1}, {atr5_2})
@axm_sourceL5_type sourceL5 ∈ edgeL5 → vertL5
@axm_sourceL5_def partition(sourceL5, {e5_1 7→ T5_1}, {e5_2 7→ T5_2}, {e5_3 7→ T5_4})
@axm_targetL5_type targetL5 ∈ edgeL5 → vertL5
@axm_targetL5_def partition(targetL5, {e5_1 7→ T5_2}, {e5_2 7→ T5_3}, {e5_3 7→ T5_4})
@axm_attrNL5_type attrNL5 ∈ attrL5 → vertL5
@axm_attrNL5_def partition(attrNL5, {atr5_1 7→ T5_2}, {atr5_2 7→ T5_4})
@axm_attrVL5_type attrVL5 ∈ attrL5 → P(N)
@axm_attrVL5_def partition(attrVL5, {atr5_1 7→ N}, {atr5_2 7→ N})
@axm_tL5_V tL5_V ∈ vertL5 → vertT
@axm_tL5_V_def partition(tL5_V, {T5_1 7→ History}, {T5_2 7→ Begin}, {T5_3 7→ Begin}, {T5_4 7→ CGNode}, {T5_5 7→ CG})
@axm_tL5_E tL5_E ∈ edgeL5 → edgeT
@axm_tL5_E_def partition(tL5_E, {e5_1 7→ Release}, {e5_2 7→ Next}, {e5_3 7→ Loc})
@axm_tL5_A tL5_A ∈ attrL5 → attrT
@axm_tL5_A_def partition(tL5_A, {atr5_1 7→ ID}, {atr5_2 7→ ID})

event BeginLoop2_Release
any

mV
mE
mA
e5_4
delE

where
@grd_mV mV ∈ vertL5 → vertG
@grd_mE mE ∈ edgeL5 → edgeG
@grd_mA mA ∈ attrL5 → attrG
@grd_delE delE = [{e5_1}]
@grd_newe5_4 e5_4 ∈ N\edgeG
@grd_vertices ∀v · v ∈ vertL5 ⇒ tL5_V(v) = tG_V(mV(v))
@grd_edges ∀e · e ∈ edgeL5 ⇒ tL5_E(e) = tG_E(mE(e))
@grd_attrs ∀a · a ∈ attrL5 ⇒ tL5_A(a) = tG_A(mA(a))
@grd_srctgt ∀e · e ∈ edgeL5 ⇒ mV(sourceL5(e)) = sourceG(mE(e)) ∧ mV(targetL5(e)) = targetG(mE(e))
@grd_attrComp ∀a · a ∈ attrL5 ⇒ mV(attrNL5(a))=attrNG(mA(a)) ∧ attrVG(mA(a)) ∈ N
@grd_NAC_V1 ¬(∃forbT5_16·

forbT5_16 ⊆ vertG \ mV[vertL5] ∧ tG_V(forbT5_16) = CGNode ∧
(∃forbe5_10·

forbe5_10 ⊆ edgeG \ mE[edgeL5] ∧ tG_E(forbe5_10) = LockRT ∧
sourceG(forbe5_10) = mV(mV(T5_5)) ∧ targetG(forbe5_10) = mV(forbT5_16)

(∃forbe5_11·

132

forbe5_11 ⊆ edgeG \ mE[edgeL5] ∧ tG_E(forbe5_11) = Done ∧
sourceG(forbe5_11) = mV(mV(T5_5)) ∧ targetG(forbe5_11) = mV(forbT5_16))

then
@act_edgeG edgeG := (edgeG \ delE) ∪ {e5_4}
@act_sourceG sourceG := (delE ◁−sourceG) ∪ {e5_4 7→ mV(T5_1)}
@act_targetG targetG := (delE ◁− targetG) ∪ {e5_4 7→ mV(T5_3)}
@act_tG_E tG_E := (delE ◁− tG_E) ∪ {e5_4 7→ OP}

end

C.2 Commit operation

C.2.1 CommitLock rule

See Fig. 61 for graph notation.

sets
vertL8
edgeL8
attrL8

constants
T8_1 T8_2 T8_3 T8_4
e8_1 e8_2 e8_3
atr8_1 atr8_2
sourceL8
targetL8
attrNL8
attrVL8
tL8_V
tL8_E
tL8_A

axioms
@axm_vertL8 partition(vertL8, {T8_1}, {T8_2}, {T8_3}, {T8_4})
@axm_edgeL8 partition(edgeL8, {e8_1}, {e8_2}, {e8_3})
@axm_attrL8 partition(attrL8, {atr8_1}, {atr8_2})
@axm_sourceL8_type sourceL8 ∈ edgeL8 → vertL8
@axm_sourceL8_def partition(sourceL8, {e8_1 7→ T8_1}, {e8_2 7→ T8_3}, {e8_3 7→ T8_4})
@axm_targetL8_type targetL8 ∈ edgeL8 → vertL8
@axm_targetL8_def partition(targetL8, {e8_1 7→ T8_2}, {e8_2 7→ T8_3}, {e8_3 7→ T8_3})
@axm_attrNL8_type attrNL8 ∈ attrL8 → vertL8
@axm_attrNL8_def partition(attrNL8, {atr8_1 7→ T8_2}, {atr8_2 7→ T8_3})
@axm_attrVL8_type attrVL8 ∈ attrL8 → P(N)
@axm_attrVL8_def partition(attrVL8, {atr8_1 7→ N}, {atr8_2 7→ N})
@axm_tL8_V tL8_V ∈ vertL8 → vertT
@axm_tL8_V_def partition(tL8_V, {T8_1 7→ History}, {T8_2 7→ Commit}, {T8_3 7→ CGNode}, {T8_4 7→ CG})
@axm_tL8_E tL8_E ∈ edgeL8 → edgeT
@axm_tL8_E_def partition(tL8_E, {e8_1 7→ OP}, {e8_2 7→ Loc}, {e8_3 7→ Free})
@axm_tL8_A tL8_A ∈ attrL8 → attrT
@axm_tL8_A_def partition(tL8_A, {atr8_1 7→ ID}, {atr8_2 7→ ID})

event CommitLock
any

mV
mE
mA
e8_4
delE

133

where
@grd_mV mV ∈ vertL8 → vertG
@grd_mE mE ∈ edgeL8 → edgeG
@grd_mA mA ∈ attrL8 → attrG
@grd_delE delE = [{e8_1}]
@grd_newe8_4 e8_4 ∈ N\edgeG
@grd_vertices ∀v · v ∈ vertL8 ⇒ tL8_V(v) = tG_V(mV(v))
@grd_edges ∀e · e ∈ edgeL8 ⇒ tL8_E(e) = tG_E(mE(e))
@grd_attrs ∀a · a ∈ attrL8 ⇒ tL8_A(a) = tG_A(mA(a))
@grd_srctgt ∀e · e ∈ edgeL8 ⇒ mV(sourceL8(e)) = sourceG(mE(e)) ∧ mV(targetL8(e)) = targetG(mE(e))
@grd_attrComp ∀a · a ∈ attrL8 ⇒ mV(attrNL8(a))=attrNG(mA(a)) ∧ attrVG(mA(a)) ∈ N

then
@act_edgeG edgeG := (edgeG \ delE) ∪ {e8_4}
@act_sourceG sourceG := (delE ◁−sourceG) ∪ {e8_4 7→ mV(T8_1)}
@act_targetG targetG := (delE ◁− targetG) ∪ {e8_4 7→ mV(T8_2)}
@act_tG_E tG_E := (delE ◁− tG_E) ∪ {e8_4 7→ Lock}

end

C.2.2 CommitLoop1 rule

See Fig. 62 for graph notation.

sets
vertL9
edgeL9
attrL9

constants
T9_1 T9_2 T9_3 T9_4 T9_5
e9_1 e9_2 e9_3 e9_4
atr9_1 atr9_2 atr9_3 atr9_4
sourceL9
targetL9
attrNL9
attrVL9
tL9_V
tL9_E
tL9_A

axioms
@axm_vertL9 partition(vertL9, {T9_1}, {T9_2}, {T9_3}, {T9_4}, {T9_5})
@axm_edgeL9 partition(edgeL9, {e9_1}, {e9_2}, {e9_3}, {e9_4})
@axm_attrL9 partition(attrL9, {atr9_1}, {atr9_2}, {atr9_3}, {atr9_4})
@axm_sourceL9_type sourceL9 ∈ edgeL9 → vertL9
@axm_sourceL9_def partition(sourceL9, {e9_1 7→ T9_1}, {e9_2 7→ T9_3}, {e9_3 7→ T9_4}, {e9_4 7→ T9_5})
@axm_targetL9_type targetL9 ∈ edgeL9 → vertL9
@axm_targetL9_def partition(targetL9, {e9_1 7→ T9_2}, {e9_2 7→ T9_3}, {e9_3 7→ T9_5}, {e9_4 7→ T9_5})
@axm_attrNL9_type attrNL9 ∈ attrL9 → vertL9
@axm_attrNL9_def partition(attrNL9, {atr9_1 7→ T9_2}, {atr9_2 7→ T9_3}, {atr9_3 7→ T9_3}, {atr9_4 7→ T9_5})
@axm_attrVL9_type attrVL9 ∈ attrL9 → P(N)
@axm_attrVL9_def partition(attrVL9, {atr9_1 7→ N}, {atr9_2 7→ N}, {atr9_3 7→ N}, {atr9_4 7→ N})
@axm_tL9_V tL9_V ∈ vertL9 → vertT
@axm_tL9_V_def partition(tL9_V, {T9_1 7→ History}, {T9_2 7→ Commit}, {T9_3 7→ CGNode}, {T9_4 7→ CG}, {T9_5 7→ CGNode})
@axm_tL9_E tL9_E ∈ edgeL9 → edgeT
@axm_tL9_E_def partition(tL9_E, {e9_1 7→ Lock}, {e9_2 7→ Loc}, {e9_3 7→ Free}, {e9_4 7→ Vis})
@axm_tL9_A tL9_A ∈ attrL9 → attrT
@axm_tL9_A_def partition(tL9_A, {atr9_1 7→ ID}, {atr9_2 7→ ID}, {atr9_3 7→ Writes}, {atr9_4 7→ Writes})

event CommitLock_Loop1

134

any
mV
mE
mA
e9_7
e9_8
delE

where
@grd_mV mV ∈ vertL9 → vertG
@grd_mE mE ∈ edgeL9 → edgeG
@grd_mA mA ∈ attrL9 → attrG
@grd_delE delE = [{e9_3}]
@grd_newe9_7 e9_7 ∈ N\edgeG
@grd_newe9_8 e9_8 ∈ N\edgeG
@grd_e9_7_e9_8 e9_7 ̸= e9_8
@grd_vertices ∀v · v ∈ vertL9 ⇒ tL9_V(v) = tG_V(mV(v))
@grd_edges ∀e · e ∈ edgeL9 ⇒ tL9_E(e) = tG_E(mE(e))
@grd_attrs ∀a · a ∈ attrL9 ⇒ tL9_A(a) = tG_A(mA(a))
@grd_srctgt ∀e · e ∈ edgeL9 ⇒ mV(sourceL9(e)) = sourceG(mE(e)) ∧ mV(targetL9(e)) = targetG(mE(e))
@grd_attrComp ∀a · a ∈ attrL9 ⇒ mV(attrNL9(a))=attrNG(mA(a)) ∧ attrVG(mA(a)) ∈ N
@grd_NAC_E1 ¬(∃forbWW·

forbWW ⊆ edgeG \ mE[edgeL9] ∧ tG_E(forbWW) = WW ∧
sourceG(forbWW) = mV(T9_5) ∧ targetG(forbWW) = mV(T9_3))

then
@act_edgeG edgeG := (edgeG \ delE) ∪ {e9_7, e9_8}
@act_sourceG sourceG := (delE ◁−sourceG) ∪ {e9_7 7→ mV(T9_5), e9_8 7→ mV(T9_4)}
@act_targetG targetG := (delE ◁− targetG) ∪ {e9_7 7→ mV(T9_3), e9_8 7→ mV(T9_5)}
@act_tG_E tG_E := (delE ◁− tG_E) ∪ {e9_7 7→ WW, e9_8 7→ LockC}

end

C.2.3 CommitLoop1_Release rule

See Fig. 63 for graph notation.

sets
vertL10
edgeL10
attrL10

constants
T10_1 T10_2 T10_3 T10_4
e10_1 e10_2
atr10_1 atr10_2 atr10_3
sourceL10
targetL10
attrNL10
attrVL10
tL10_V
tL10_E
tL10_A

axioms
@axm_vertL10 partition(vertL10, {T10_1}, {T10_2}, {T10_3}, {T10_4})
@axm_edgeL10 partition(edgeL10, {e10_1}, {e10_2})
@axm_attrL10 partition(attrL10, {atr10_1}, {atr10_2}, {atr10_3})
@axm_sourceL10_type sourceL10 ∈ edgeL10 → vertL10
@axm_sourceL10_def partition(sourceL10, {e10_1 7→ T10_1}, {e10_2 7→ T10_3})
@axm_targetL10_type targetL10 ∈ edgeL10 → vertL10
@axm_targetL10_def partition(targetL10, {e10_1 7→ T10_2}, {e10_2 7→ T10_3})
@axm_attrNL10_type attrNL10 ∈ attrL10 → vertL10

135

@axm_attrNL10_def partition(attrNL10, {atr10_1 7→ T10_2}, {atr10_2 7→ T10_3}, {atr10_3 7→ T10_3})
@axm_attrVL10_type attrVL10 ∈ attrL10 → P(N)
@axm_attrVL10_def partition(attrVL10, {atr10_1 7→ N}, {atr10_2 7→ N}, {atr10_3 7→ N})
@axm_tL10_V tL10_V ∈ vertL10 → vertT
@axm_tL10_V_def partition(tL10_V, {T10_1 7→ History}, {T10_2 7→ Commit}, {T10_3 7→ CGNode}, {T10_4 7→ CG})
@axm_tL10_E tL10_E ∈ edgeL10 → edgeT
@axm_tL10_E_def partition(tL10_E, {e10_1 7→ Lock}, {e10_2 7→ Loc})
@axm_tL10_A tL10_A ∈ attrL10 → attrT
@axm_tL10_A_def partition(tL10_A, {atr10_1 7→ ID}, {atr10_2 7→ ID}, {atr10_3 7→ Writes})

event CommitLoop1_Release
any

mV
mE
mA
e10_3
delE

where
@grd_mV mV ∈ vertL10 → vertG
@grd_mE mE ∈ edgeL10 → edgeG
@grd_mA mA ∈ attrL10 → attrG
@grd_delE delE = [{e10_1}]
@grd_newe10_3 e10_3 ∈ N\edgeG
@grd_vertices ∀v · v ∈ vertL10 ⇒ tL10_V(v) = tG_V(mV(v))
@grd_edges ∀e · e ∈ edgeL10 ⇒ tL10_E(e) = tG_E(mE(e))
@grd_attrs ∀a · a ∈ attrL10 ⇒ tL10_A(a) = tG_A(mA(a))
@grd_srctgt ∀e · e ∈ edgeL10 ⇒ mV(sourceL10(e)) = sourceG(mE(e)) ∧ mV(targetL10(e)) = targetG(mE(e))
@grd_attrComp ∀a · a ∈ attrL10 ⇒ mV(attrNL10(a))=attrNG(mA(a)) ∧ attrVG(mA(a)) ∈ N
@grd_NAC_V1 ¬(∃forbT10_9·

forbT10_9 ⊆ vertG \ mV[vertL10] ∧ tG_V(forbT10_9) = CGNode ∧
(∃forbe10_7·

forbe10_7 ⊆ edgeG \ mE[edgeL10] ∧ tG_E(forbe10_7) = Loc ∧
sourceG(forbe10_7) = mV(forbT10_9) ∧ targetG(forbe10_7) = mV(forbT10_9)

(∃forbe10_8·
forbe10_8 ⊆ edgeG \ mE[edgeL10] ∧ tG_E(forbe10_8) = Free ∧
sourceG(forbe10_8) = mV(mV(T10_4)) ∧ targetG(forbe10_8) = mV(forbT10_9))

then
@act_edgeG edgeG := (edgeG \ delE) ∪ {e10_3}
@act_sourceG sourceG := (delE ◁−sourceG) ∪ {e10_3 7→ mV(T10_1)}
@act_targetG targetG := (delE ◁− targetG) ∪ {e10_3 7→ mV(T10_2)}
@act_tG_E tG_E := (delE ◁− tG_E) ∪ {e10_3 7→ Release}

end

C.2.4 CommitLoop2 rule

See Fig. 64 for graph notation.

sets
vertL11
edgeL11
attrL11

constants
T11_1 T11_2 T11_3 T11_4 T11_5 T11_6
e11_1 e11_2 e11_3 e11_4 e11_5 e11_6 e11_7
atr11_1 atr11_2
sourceL11
targetL11

136

attrNL11
attrVL11
tL11_V
tL11_E
tL11_A

axioms
@axm_vertL11 partition(vertL11, {T11_1}, {T11_2}, {T11_3}, {T11_4}, {T11_5}, {T11_6})
@axm_edgeL11 partition(edgeL11, {e11_1}, {e11_2}, {e11_3}, {e11_4}, {e11_5}, {e11_6}, {e11_7})
@axm_attrL11 partition(attrL11, {atr11_1}, {atr11_2})
@axm_sourceL11_type sourceL11 ∈ edgeL11 → vertL11
@axm_sourceL11_def partition(sourceL11, {e11_1 7→ T11_1}, {e11_2 7→ T11_3}, {e11_3 7→ T11_4}, {e11_4 7→ T11_4},

{e11_5 7→ T11_4}, {e11_6 7→ T11_6}, {e11_7 7→ T11_5})
@axm_targetL11_type targetL11 ∈ edgeL11 → vertL11
@axm_targetL11_def partition(targetL11, {e11_1 7→ T11_2}, {e11_2 7→ T11_3}, {e11_3 7→ T11_4}, {e11_4 7→ T11_3},

{e11_5 7→ T11_5}, {e11_6 7→ T11_4}, {e11_7 7→ T11_5})
@axm_attrNL11_type attrNL11 ∈ attrL11 → vertL11
@axm_attrNL11_def partition(attrNL11, {atr11_1 7→ T11_2}, {atr11_2 7→ T11_3})
@axm_attrVL11_type attrVL11 ∈ attrL11 → P(N)
@axm_attrVL11_def partition(attrVL11, {atr11_1 7→ N}, {atr11_2 7→ N})
@axm_tL11_V tL11_V ∈ vertL11 → vertT
@axm_tL11_V_def partition(tL11_V, {T11_1 7→ History}, {T11_2 7→ Commit}, {T11_3 7→ CGNode}, {T11_4 7→ CGNode},

{T11_5 7→ CGNode}, {T11_6 7→ CG})
@axm_tL11_E tL11_E ∈ edgeL11 → edgeT
@axm_tL11_E_def partition(tL11_E, {e11_1 7→ Release}, {e11_2 7→ Loc}, {e11_3 7→ Vis}, {e11_4 7→ WW}, {e11_5 7→ RF},

{e11_6 7→ LockC}, {e11_7 7→ Loc})
@axm_tL11_A tL11_A ∈ attrL11 → attrT
@axm_tL11_A_def partition(tL11_A, {atr11_1 7→ ID}, {atr11_2 7→ ID})

event CommitLoop2
any

mV
mE
mA
e11_12
e11_14
delE

where
@grd_mV mV ∈ vertL11 → vertG
@grd_mE mE ∈ edgeL11 → edgeG
@grd_mA mA ∈ attrL11 → attrG
@grd_delE delE = [{e11_6}]
@grd_newe11_12 e11_12 ∈ N\edgeG
@grd_newe11_14 e11_14 ∈ N\edgeG
@grd_e11_12_e11_14 e11_12 ̸= e11_14
@grd_vertices ∀v · v ∈ vertL11 ⇒ tL11_V(v) = tG_V(mV(v))
@grd_edges ∀e · e ∈ edgeL11 ⇒ tL11_E(e) = tG_E(mE(e))
@grd_attrs ∀a · a ∈ attrL11 ⇒ tL11_A(a) = tG_A(mA(a))
@grd_srctgt ∀e · e ∈ edgeL11 ⇒ mV(sourceL11(e)) = sourceG(mE(e)) ∧ mV(targetL11(e)) = targetG(mE(e))
@grd_attrComp ∀a · a ∈ attrL11 ⇒ mV(attrNL11(a))=attrNG(mA(a)) ∧ attrVG(mA(a)) ∈ N

then
@act_edgeG edgeG := (edgeG \ delE) ∪ {e11_12, e11_14}
@act_sourceG sourceG := (delE ◁−sourceG) ∪ {e11_12 7→ mV(T11_5), e11_14 7→ mV(T11_6)}
@act_targetG targetG := (delE ◁− targetG) ∪ {e11_12 7→ mV(T11_3), e11_14 7→ mV(T11_4)}
@act_tG_E tG_E := (delE ◁− tG_E) ∪ {e11_12 7→ RW, e11_14 7→ Free}

end

137

C.2.5 CommitLoop2_Release rule

See Fig. 65 for graph notation.

sets
vertL12
edgeL12
attrL12

constants
T12_1 T12_2 T12_3 T12_4 T12_5
e12_1 e12_2 e12_3
atr12_1 atr12_2
sourceL12
targetL12
attrNL12
attrVL12
tL12_V
tL12_E
tL12_A

axioms
@axm_vertL12 partition(vertL12, {T12_1}, {T12_2}, {T12_3}, {T12_4}, {T12_5})
@axm_edgeL12 partition(edgeL12, {e12_1}, {e12_2}, {e12_3})
@axm_attrL12 partition(attrL12, {atr12_1}, {atr12_2})
@axm_sourceL12_type sourceL12 ∈ edgeL12 → vertL12
@axm_sourceL12_def partition(sourceL12, {e12_1 7→ T12_1}, {e12_2 7→ T12_3}, {e12_3 7→ T12_5})
@axm_targetL12_type targetL12 ∈ edgeL12 → vertL12
@axm_targetL12_def partition(targetL12, {e12_1 7→ T12_3}, {e12_2 7→ T12_2}, {e12_3 7→ T12_5})
@axm_attrNL12_type attrNL12 ∈ attrL12 → vertL12
@axm_attrNL12_def partition(attrNL12, {atr12_1 7→ T12_3}, {atr12_2 7→ T12_5})
@axm_attrVL12_type attrVL12 ∈ attrL12 → P(N)
@axm_attrVL12_def partition(attrVL12, {atr12_1 7→ N}, {atr12_2 7→ N})
@axm_tL12_V tL12_V ∈ vertL12 → vertT
@axm_tL12_V_def partition(tL12_V, {T12_1 7→ History}, {T12_2 7→ Begin}, {T12_3 7→ Commit}, {T12_4 7→ CG}, {T12_5 7→ CGNode})
@axm_tL12_E tL12_E ∈ edgeL12 → edgeT
@axm_tL12_E_def partition(tL12_E, {e12_1 7→ Release}, {e12_2 7→ Next}, {e12_3 7→ Loc})
@axm_tL12_A tL12_A ∈ attrL12 → attrT
@axm_tL12_A_def partition(tL12_A, {atr12_1 7→ ID}, {atr12_2 7→ ID})

event CommitLoop2_Release
any

mV
mE
mA
e12_4
e12_6
e12_7
delE

where
@grd_mV mV ∈ vertL12 → vertG
@grd_mE mE ∈ edgeL12 → edgeG
@grd_mA mA ∈ attrL12 → attrG
@grd_delE delE = [{e12_1, e12_3}]
@grd_newe12_4 e12_4 ∈ N\edgeG
@grd_newe12_6 e12_6 ∈ N\edgeG
@grd_newe12_7 e12_7 ∈ N\edgeG
@grd_e12_4_e12_6 e12_4 ̸= e12_6
@grd_e12_4_e12_7 e12_4 ̸= e12_7
@grd_e12_6_e12_7 e12_6 ̸= e12_7

138

@grd_vertices ∀v · v ∈ vertL12 ⇒ tL12_V(v) = tG_V(mV(v))
@grd_edges ∀e · e ∈ edgeL12 ⇒ tL12_E(e) = tG_E(mE(e))
@grd_attrs ∀a · a ∈ attrL12 ⇒ tL12_A(a) = tG_A(mA(a))
@grd_srctgt ∀e · e ∈ edgeL12 ⇒ mV(sourceL12(e)) = sourceG(mE(e)) ∧ mV(targetL12(e)) = targetG(mE(e))
@grd_attrComp ∀a · a ∈ attrL12 ⇒ mV(attrNL12(a))=attrNG(mA(a)) ∧ attrVG(mA(a)) ∈ N

then
@act_edgeG edgeG := (edgeG \ delE) ∪ {e12_4, e12_6, e12_7}
@act_sourceG sourceG := (delE ◁−sourceG) ∪ {e12_4 7→ mV(T12_1), e12_6 7→ mV(T12_5), e12_7 7→ mV(T12_5)}
@act_targetG targetG := (delE ◁− targetG) ∪ {e12_4 7→ mV(T12_2), e12_6 7→ mV(T12_5), e12_7 7→ mV(T12_5)}
@act_tG_E tG_E := (delE ◁− tG_E) ∪ {e12_4 7→ OP, e12_6 7→ Done, e12_7 7→ Vis}

end

	Introduction
	Methodology
	Scientific contributions
	Structure

	Transactional Memory
	Transactions and Histories
	Properties of Transactional Memory
	Correctness Criteria
	Opacity
	Graph Characterization of Opacity

	Related works on TM correctness
	Final Remarks

	Graph Transformation
	Algebraic Foundations of Graph Grammars
	Visual representation
	Final Remarks

	Translating an STM algorithm into GG
	STM Algorithm
	Graph Grammar
	Initial State and Type Graph
	Production Rules

	Generating Histories
	Correctness Criteria
	Computation Tree Logic
	Final Remarks

	Event-B alternative for correctness verification
	Event-B Modeling
	GG for Transactional Memory
	Transactional operations
	LoopStart and LoopStep rules

	Event-B for Transactional Memory
	GG Type Graph and Initial State
	Begin Operation
	Read Operation
	Write Operation
	Commit Operation
	Abort Operation
	Conflict Graph

	Discussion

	Applications for the GG approach
	CaPR+ algorithm
	STM Haskell algorithm
	Type Graph
	Production Rules
	Retry Functionality
	Correctness Criterion
	Correctness Analysis

	Final Remarks

	Conclusion
	References
	Software Transactional Memory algorithms
	Translation of STM to GG
	Translation of GG to Event-B

