

VALORES DOS PARÂMETROS RELEVANTES PARA CON-VERGÊNCIA DA INVERSÃO NUMÉRICA DA TRANSFOR-MADA DE LAPLACE POR TALBOT FIXO

IAGO H. TEIXEIRA MARCOLINO¹; LESLIE D. PEREZ-FERNANDEZ²; CAMILA PINTO DA COSTA ³

¹ Universidade Federal de Pelotas – <u>iago.mat@hotmail.com</u>
² Universidade Federal de Pelotas – <u>leslie.fernandez@ufpel.edu.br</u>
³ Universidade Federal de Pelotas – camila.costa@ufpel.edu.br

1. INTRODUÇÃO

A resolução de equações diferenciais via transformada de Laplace precisa, como último passo, da aplicação da transformada inversa. Contudo, a inversão analítica da transformada de Laplace, dependendo da função particular que precisa ser invertida, pode se tornar muito trabalhosa. Portanto, na prática, muitas vezes é necessário empregar algum método de inversão numérica. Mais detalhes sobre a teoria da transformada de Laplace podem ser encontrados em SCHIFF (1999) ou SPIEGEL (1965).

Existem muitos métodos de inversão numérica da Transformada de Laplace como Talbot Fixo, Dubner-Abate, Durbin, Graver-Stehfest e Euler (LEMOS et al. 2021). Na nossa experiência, o algoritmo Talbot Fixo (ABATE; VALKÓ, 2004) é o que tem melhor desempenho tanto em precisão como em tempo computacional (LEMOS et al. 2021). Entretanto, para algumas funções, pode ser difícil encontrar os valores para os parâmetros M e N do algoritmo de Talbot Fixo (ver, Metodologia), que garantam a sua convergência.

Após alguns experimentos computacionais realizados para várias funçõesteste com a alteração dos parâmetros M e N chegou-se a seguinte pergunta: existe um valor da razão M/N que determina melhor convergência do método de inversão da transformada de Laplace por Talbot Fixo?

O objetivo deste trabalho é encontrar os valores mais adequados dos parâmetros M e N para garantir a convergência do método de Talbot Fixo. Especificamente, conjectura-se uma condição suficiente para os valores dos parâmetros M e N que garantem a convergência do método de Talbot Fixo pelo menos para as funções testadas.

2. METODOLOGIA

Talbot em 1979 foi quem iniciou o movimento de abordagem da inversão da Transformada de Laplace por métodos numéricos deformando o contorno padrão *B* da integral de Bromwich

$$f(t) = \frac{1}{2\pi i} \int_{R} e^{ts} \hat{f}(s) ds,$$

em que $\hat{f}(s)$ é a Transformada de Laplace da função f(t), B é uma linha vertical definida por s = r + iy, $-\infty < y < \infty$, e r tem valor fixo escolhido da forma que toda singularidade da transformada estão à esquerda de B.

Assim, Talbot chega na seguinte formula para inversão aproximada da transformada por método numérico:

$$f_{TF}(t) = \frac{r}{M} \left\{ \frac{1}{2} \hat{f}(r) e^{rt} + \sum_{k=1}^{M-1} Re \left[e^{ts(\theta_k)} \hat{f}(s(\theta_k)) (1 + i\sigma(\theta_k)) \right] \right\},$$

em que $\theta_k = \frac{k\pi}{M}$, $\sigma(\theta) = \theta + (\theta\cot{(\theta)} - 1)\cot{(\theta)}$, $r = \frac{2M}{Nt}$ (com N = 5), sendo M o número de termos a serem somados e que impacta diretamente na precisão do algoritmo segundo ABATE e VALKÓ (2004). Mais detalhes sobre todo o procedimento até chegar a formula acima também podem ser encontrados em ABATE e VALKÓ (2004).

Através da metodologia experimental foram realizados vários testes computacionais e observou-se que parece existir um intervalo para a razão M/N no qual tem-se a convergência para esse método numérico de inversão de transformada de Laplace. A qualidade da convergência foi medida utilizando o máximo erro absoluto entre o resultado fornecido pelo algoritmo de Talbot fixo e o valor exato da função correspondente:

$$Erro = \max_{t \in [a,b]} |f(t) - f_{TF}(t)|.$$

3. RESULTADOS E DISCUSSÃO

Os testes foram realizados para as seguintes funções com suas respectivas transformadas de Laplace, avaliadas no intervalo $0 < t \le 10$:

Tabela 1. Funções-teste e suas transformadas de Laplace

		3				0.0 -0.0.0	
f(t)	1	t	e^t	sin(t)	cos(t)	sinh(t)	$\cosh(t)$
ĉ()	1	1	1	1	S	1	S
f(s)	S	$\overline{s^2}$	$\overline{s-1}$	$\frac{1}{s^2 + 1}$	$s^{2} + 1$	$\frac{1}{s^2 - 1}$	$s^2 - 1$

A experimentação inicial com o algoritmo produziu resultados que sugeriram a existência de um intervalo de variação da razão entre a quantidade M de termos do somatório e o parâmetro N que aparece na definição do parâmetro fixo r.

Para investigarmos a validade de tal conjectura foram realizados vários testes organizados da maneira a seguir. Primeiro com M=40 e N variando, e segundamente foi mantido N=7 e M variando.

Por exemplo, para a função $f(t) = e^t$ com transformada de Laplace $\hat{f}(s) = \frac{1}{s-1}$, invertendo a função $\hat{f}(s)$ pelo método numérico de Talbot Fixo com M fixo e N variando encontramos os seguintes dados da Tabela 2.

Tabela 2. Erro de Talbot Fixo para $f(t) = e^t \operatorname{com} M = 40 \operatorname{e} N$ variando.

М	N	M/N	Erro	Tempo
40	1	40	3,442E+33	
40	3	13,33333	1,305E-4	0,2536782
40	5	8	1,586E-09	0,2530987
40	7	5,714286	0,6345161	0,2595801
40	35	1,142857	22,026	
40	175	0,228571	22,026	
40	875	0,045714	22,026	
40	4375	0,009143	22,026	

Invertendo a pelo método numérico a mesma função, agora com M variando e N=7, encontramos os seguintes resultados da Tabela 3.

Tabela 3. Erro de Talbot Fixo para $f(t) = e^t$ com M variando	$f(t) = e^{\epsilon} com M variando e N = /.$
--	---

М	N	M/N	Erro	Tempo	
10	7	1,428571	22,026		
20	7	2,857143	22,026		
30	7	4,285714	31,898		
40	7	5,714286	0.6345161	0,2595801	
100	7	14,28571	4,891E-4	0,6346679	
200	7	28,57143	951500000		
1000	7	142,8571	3,02E+108		

Após realizar mesmo teste para todas as funções da Tabela 1, a afirmativa da conjectura foi reforçada. Os resultados das outras funções não foram apresentados devido ao espaço ocupado.

Agora passamos a variar a razão a fim de encontrar quando o erro passa a ser maior que 1, o qual consideramos como sendo o maior erro aceitável.

Por exemplo, para a função $f(t) = \sinh(t)$ com transformada de Laplace $\hat{f}(s) = \frac{1}{s^2 - 1}$ foram obtidos os resultados da Tabela 4. Para obter erros abaixo de 1 é recomendado utilizar $M/N \le 18$ (ocorre o mesmo com a função $f(t) = \sin(t)$).

Tabela 4. Erro de Talbot Fixo para $f(t) = \sinh(t)$, com M/N variando.

Tabela 4. End de Taibet i ixo para $f(t) = \sinh(t)$, com M/N variande.					
М	M N		Erro	Tempo	
48	3	16	0,0031456	0,3231514	
80	5	16	0,0034274	0,5343156	
112	7	16	0,0017004	0,7766912	
51	3	17	0,0378876	0,3257361	
85	5	17	0,0340786	0,5873630	
119	7	17	0,0162398	0,755531	
54	3	18	0,1852326	0,3462534	
90	5	18	0,1675772	0,5957213	
126	7	18	0,1563340	0,8327127	
57	3	19	1,53	0,3711752	
95	5	19	0,9124668	0,6491525	
133	7	19	0,8591083	0,9076268	
60	3	20	10		
100	5	20	10		
140	7	20	8		

Após análise da Tabela 4, ficou claro que ao aumentar a razão M/N o erro também aumenta. O erro passa a ser maior ou igual a 1 para razão $M/N \ge 19$, deixando evidente erro menor que 1 para M/N < 19. Os resultados das outras funções não foram apresentados devido ao espaço ocupado.

4. CONCLUSÕES

Neste trabalho apresentamos de forma bem resumida o estudo que foi feito e nos levou a uma conjectura de condição suficiente para convergência do método de Talbot Fixo.

O método numérico converge quando a razão M/N é tal que 5 < M/N < 19 para as funções testadas, considerando um máximo erro absoluto menor que 1, no intervalo (0,10], desde que se utilize o pelo menos N=5, como adotado por ABATE e VALKÓ (2004). Isso sugere um critério de escolha dos parâmetros.

A tentativa de demonstração e amplitude do intervalo testado seria objeto de trabalhos futuros.

5. REFERÊNCIAS BIBLIOGRÁFICAS

ABATE, J.; VALKÓ, P. P. Multi-precision Laplace transform inversion, International Journal for Numerical Methods in Engineering: Vol. 60, p. 979-993, 2004.

LEMOS, C. H. CAMILA P. DA COSTA, P. C, PEREZ-FERNANDEZ, L. D. FERREIRA, A. M. SILVA, E. C. **Analise do Desempenho de Métodos Numéricos de Inversão da Transformada de Laplace.** Intermaths: Vol. 2, N. 2, Jul - Dez 2021, p. 75 – 90.

SCHIFF, J. L. **The Laplace Transform: Theory and Applications**. Springer-Verlag New York Berlin Heidelberg, 1999.

SPIEGEL, M. R. Theory and Problems of Laplace Transforms. McGRAW-HILL New York, 1965.