

UNIVERSIDADE FEDERAL DE PELOTAS

Programa de Pós-Graduação em Biotecnologia

Dissertação

**Mecanismos moleculares de resposta ao estresse
por excesso de ferro em arroz**

Artur Teixeira de Araujo Junior

Pelotas, 2016

Artur Teixeira de Araujo Junior

**Mecanismos moleculares de resposta ao estresse por excesso de ferro em
arroz**

Dissertação apresentada ao Programa de Pós-Graduação em Biotecnologia da Universidade Federal de Pelotas, como requisito parcial à obtenção do título de Mestre em Ciências (área do Conhecimento: Biotecnologia e Melhoramento Genético de Plantas).

Orientador: Antonio Costa de Oliveira (UFPel)

Coorientador: Luciano Carlos Maia (UFPel)

Pelotas, 2016

Dados de catalogação na fonte:
Maria Beatriz Vaghetti Vieira – CRB-10/1032
Biblioteca de Ciência & Tecnologia - UFPel

A658m

Araujo Junior, Artur Teixeira

Mecanismos moleculares de respostas ao estresse por excesso de ferro em arroz / Artur Teixeira Araujo Junior. – 167f. : il. – Dissertação (Mestrado). Programa de Pós-Graduação em Biotecnologia. Área de concentração: Biotecnologia e Melhoramento de Plantas. Universidade Federal de Pelotas. Centro de Desenvolvimento Tecnológico. Pelotas, 2016. – Orientador Antonio Costa de Oliveira; co-orientador Luciano Carlos Maia.

1.Biotecnologia. 2. Arroz. 3. Transcriptoma. 4. Toxicidade de ferro. 5. Estresse abiótico. I.Oliveira, Antonio Costa de. II. Maia, Luciano Carlos. III. Título.

CDD: 633.18

BANCA EXAMINADORA

Prof. Dr. Antonio Costa de Oliveira (Orientador, UFPel, Departamento de Fitotecnia)

Prof. Dr. Luciano Carlos Maia (Coorientador, UFPel, Departamento de Fitotecnia)

Prof.^a Dr.^a Camila Pegoraro (UFPel, Departamento de Fitotecnia)

Prof. Dr. Cesar Valmor Rombaldi (UFPel, Departamento de Ciência e Tecnologia Agroindustrial)

Aos desafios que enfrentei durante minha trajetória.

Dedico.

Agradecimentos

Primeiramente, gostaria de agradecer ao “acaso”, devido o grande êxito que tive ao trilhar meus caminhos. Saber que minhas ações, mesmo as pequenas, foram capazes de me colocar ao encontro de pessoas encantadoras, me faz perceber quanta sorte tive. Desta forma, obrigado “coincidências da vida” por juntar as peças do acaso e fazer da minha vida um dos melhores jogos de dados casualizados que já existiram.

Agradeço meus pais pelo exemplo, dedicação e carinho. Vocês não só foram capazes de me dar o dom da vida, como também de me ensinar grandes virtudes, tão escassas na sociedade de hoje. Mamãe, obrigado por fazer parte da minha história. Nenhum tempo seria o suficiente para estar do seu lado, mas este curto espaço de tempo que tivemos foi, e ainda é, capaz de me iluminar por toda minha existência. Papai, obrigado por me mostrar o jogo da vida, sendo responsável não só pelo meu suporte e por grandes ensinamentos, mas também por colocar pessoas fundamentais no meu caminho.

Obrigado minha família do dia-a-dia (Railson Schreinert dos Santos, Daniel da Rosa Farias, Danyela de Cássia Oliveira, Solange Ferreira da Silveira Silveira, Camila Pegoraro, Luciano Carlos da Maia e Antonio Costa de Oliveira) pela orientação, comprometimento e, acima de tudo, pela amizade proporcionada. Obrigado grupo CGF, sou imensamente grato pela oportunidade de trabalhar com essa equipe, por cada voto de confiança, incentivo e, mais do que isso, pela preciosa aprendizagem.

Obrigado minha família (Ramon Matheus Rockenbach, Camila Fernanda de Oliveira Junkes, Mosiah José da Silva Matos, Noberto Niclotti Catuci e Jonas Xavier) por me proporcionarem inúmeros momentos de alegria e de companheirismo.

Obrigado Universidade Federal de Pelotas (UFPel) e PPGB pela oportunidade de estudar, crescer e por me ajudarem sempre que possível. Neste sentido, agradeço as agências financeiras, que permitiram a realização desse trabalho e concederam a minha bolsa.

Por fim, gostaria de agradecer a todas as pessoas que contribuíram direta ou indiretamente para a realização do meu mestrado.

Muito obrigado.

Meu filho é assim que
sempre vou te ver...

"O aço mais resistente
é aquele que é forjado
na mais alta temperatura
e, em seguida, resfriado
severamente.

Tente ser como o aço.

Sempre que tentarem me
submeter a situações
extremas, estarão me
fazendo mais forte.
Forte é como...

Mãe

01/02/05

"Meu filho é assim que sempre vou te ver...
O aço mais resistente é aquele que é
forjado na mais alta temperatura e, em
seguida, resfriado severamente. Tente ser
como o aço. Sempre que tentarem me
submeter a situações extremas, estarão me
fazendo mais forte.

Eu te amo...

Mãe

04/02/2005

Dulcinea Gonçalves Teixeira

Resumo

Araujo Junior, Artur Teixeira de. **Mecanismos moleculares de resposta ao estresse por excesso de ferro em arroz**. 2016. 167f. Dissertação (Mestrado) - Programa de Pós-Graduação em Biotecnologia. Universidade Federal de Pelotas, Pelotas.

O ferro (Fe) é um nutriente essencial para o crescimento e desenvolvimento das plantas. Contudo, a disponibilidade deste elemento varia devido às condições do solo e sistema de cultivo. Tanto a absorção excessiva quanto a deficiência deste elemento pode afetar as plantas ocasionando a perda da produtividade. No Rio Grande do Sul, problemas provenientes do excesso de ferro já foram relatados, sendo que o uso de cultivares tolerantes torna-se uma importante estratégia para solucionar este problema. Desta forma, quanto mais informações a respeito dos mecanismos que conferem essa tolerância nas plantas forem adquiridos, mais fácil fica sua aplicação nos programas de melhoramento. O objetivo desta dissertação foi estudar o transcriptoma de uma cultivar brasileira de arroz caracterizada como tolerante ao excesso de ferro (BRS Querência). Para isso, as plantas foram submetida à condição de estresse ($300 \text{ mg L}^{-1} \text{ Fe}^{+2}$) no estádio V3 por 24 horas, o RNA das folhas foram extraídos e sequenciados pelo tecnologia de RNA-Seq. Tal estudo foi dividido nos seguintes capítulos: I) Lidando com o metabolismo de ferro no arroz: a partir do melhoramento visando a tolerância ao estresse até a biofortificação (Artigo de revisão submetido à revista *Genetics and Molecular Biology*); II) Perfil transcracional do amplo-genoma de arroz revela novos genes envolvidos na tolerância ao excesso de ferro (Artigo com provável submissão à revista *The Plant Genome*); III) Resposta ao estresse de plantas: o papel de *splicing* alternativo (Artigo com provável submissão à revista *Genome*); IV) A busca por arroz mais tolerante: como altas concentrações de ferro afetam o *splicing* alternativo? (Artigo aceito na revista *Transcriptomics: Open Access*). O estudo possibilitou a identificação de vários genes diferencialmente expressos, dentre esses pode-se destacar a ativação de genes que codificam para as proteínas responsáveis pela homeostase de ferro (transporte e armazenagem), para as proteínas de choque térmico e as proteínas do fotossistema II. Além disso, temos em destaque a repressão dos genes que codificam proteínas do metabolismo hormonal e de sinalização. A análise do *splicing* alternativo proporcionou a identificação da mudança do perfil de *splicing* na célula sobre a condição de estresse, tendo uma redução tanto da quantidade dos sítios de junção quanto do número de eventos. Os resultados obtidos representam um importante passo para o entendimento das estratégias de tolerância desempenhada por esta cultivar, auxiliando na identificação de possíveis genes alvos para serem utilizados pelos programas de melhoramento genético.

Palavras-chave: transcriptoma, toxicidade de ferro, estresse abiótico.

Abstract

Araujo Junior, Artur Teixeira de. **Molecular mechanisms of stress response under excess of iron in rice**. 2016. 167f. Dissertação (Mestrado) - Programa de Pós-Graduação em Biotecnologia. Universidade Federal de Pelotas, Pelotas.

Iron (Fe) is an essential nutrient for the growth and development of plants. However, the availability of this element varies due to ground conditions and cropping system. Either the excessive absorption or the deficiency of this element may cause toxicity in plants leading to a loss of the productivity. In Rio Grande do Sul, problems from the excess of iron have been reported, and the use of tolerant cultivars becomes an important strategy to address this issue. Thus, the more information regarding the mechanisms that confer this tolerance in plants is known, the easier their application in breeding programs becomes. The aim of this work was to study the transcriptome of a Brazilian rice cultivar characterized as tolerant to excess of iron (BRS Querência). For this, the plants were submitted to stress conditions ($300 \text{ mg L}^{-1} \text{ Fe}^{+2}$) in the V3 stage for 24 hours, the RNA of the leaves was extracted and sequenced by RNA-Seq technology. Such a study was divided into the following chapters: I) Dealing with iron metabolism in rice: from breeding aiming at stress tolerance to biofortification (Review article submitted to the Genetics and Molecular Biology); II) Genome-wide transcriptional profile of rice reveals new genes involved in tolerance to iron (Article probable submission to the The Plant Genome); III) Stress response of plants: the role of alternative splicing (Review article probable submission to the Genome); IV) The search for more tolerant rice: how high concentrations of iron affect the alternative splicing? (Article accepted by Transcriptomics: Open Access). The study enabled the identification of several differentially expressed genes. Among these, we highlight the activation of genes encoding proteins responsible for iron homeostasis (transport and storage) the heat shock proteins and proteins of photosystem II. Furthermore, we have highlighted the repression of genes encoding the hormone metabolism and signaling proteins. The alternative splicing analysis provided the identification of a profile change in the cell on stress condition, having reduction in the quantity of the junction sites as well as in the number of events. The results represent an important step in the understanding of tolerance strategies performed by this cultivar, assisting in the identification of potential target genes for use by breeding programs.

Keywords: transcriptomics, iron toxicity, abiotic stress.

Lista de Figuras

Figura 1. Fotografia demonstrando 12 espécies do gênero <i>Oryza</i> todas no mesmo estádio de desenvolvimento.....	16
Figura 2. Evolução da quantidade de publicações ao longo do tempo dos principais cereais.....	18
Figura 3. Panorama da cultura do arroz ao longo dos anos.....	19

Lista de Abreviaturas

- 3'UTRs – 3' *untranslated regions* (regiões não traduzida na extremidade 3')
- 5'UTRs – 5' *untranslated regions* (regiões não traduzida na extremidade 5')
- CONAB – Companhia Nacional de Abastecimento
- CDSs – *Coding Sequences* (sequências de codificação)
- DDBJ – DNA *Data Bank of Japan* (Banco de Dados de DNA do Japão)
- DNA – *Deoxyribonucleic acid* (ácido desoxirribonucleico)
- DRA – DDBJ *Sequence Read Archive* (Arquivo de Sequências de Leitura)
- EBI – *European Bioinformatics Institute* (Instituto Europeu de Bioinformática)
- EMBL – *European Molecular Biology Laboratory* (Laboratório de Biologia Molecular Europeu)
- Embrapa – Empresa Brasileira de Pesquisa Agropecuária
- ENA – *European Nucleotide Archive* (Arquivo de Nucleotídeo Europeu)
- FAO – *Food and Agriculture Organization* (Organização da agricultura e alimento)
- Fe – Ferro
- Fe(II) – Ferro na forma de íon férrico
- FRD3 – *Ferric reductase defective 3* (Redutase férrica com defeito 3)
- GO – *Gene Ontology* (Ontologia do gene)
- HSPs – *Heat shock proteins* (Proteínas de choque térmico)
- INSDC – *International Nucleotide Sequence Database Collaboration* (Colaboração Internacional de Banco de Dados de Nucleotídeo)
- IRGSP – *International Rice Genome Sequencing Project* (Projeto Internacional de Sequenciamento do Genoma do Arroz)
- L – Litros
- Mb – Megabases
- mg – Miligramas
- MTN – *Methylthioadenosine nucleosidase* (Metiltioadenosina nucleosidase)
- NCBI – *National Center for Biotechnology Information* (Centro Nacional de Informações sobre Biotecnologia)
- PSII – *Photosystem II* (Fotossistema II)
- RAP-DB – *Rice Annotation Project Database* (Bando de Dados de Projetos de Anotação de Arroz)
- RNA – *Ribonucleic acid* (ácido ribonucleico)

RNA-Seq – RNA *sequencing* (sequenciamento de RNA)

ROS – *Reactive oxygen species* (Espécies reativas de oxigênio)

SA – *Splicing* Alternativo

SNG – Sequenciamento de Nova Geração (*Next-Generation Sequencing*)

SNPs – *Single Nucleotide Polymorphisms* (Polimorfismos de Nucleotídeo Único)

TAIR – *The Arabidopsis Information Resource* (Recurso de Informações de *Arabidopsis*)

V3 – Estádio vegetativo no terceiro nó

VIT1 – *Vacuolar Iron Transporter 1* (Transportador de ferro vacuolar 1)

Sumário

1 INTRODUÇÃO GERAL	14
2 REVISÃO BIBLIOGRÁFICA	16
2.1 A cultura do arroz	16
2.2 Importância do arroz	17
2.3 Toxidez de ferro em arroz	19
2.4 Uso da bioinformática no melhoramento genético	20
2.5 Uso da tecnologia de RNA-Seq	22
3 HIPÓTESE E OBJETIVOS	23
3.1 Hipótese	23
3.2 Objetivo Geral	23
3.3 Objetivos Específicos	23
4 CAPÍTULOS	25
4.1 Artigo 1 – Dealing with iron metabolism in rice: from breeding for stress tolerance to biofortification	25
4.2 Artigo 2 – Genome-wide transcriptional profiling of rice unveils novel genes involved in tolerance to iron excess	55
4.3 Artigo 3 – Stress response of plants: the role of alternative splicing	78
4.4 Artigo 4 – The quest for more tolerant rice: how high concentrations of iron affect alternative splicing?	99
5 DISCUSSÃO GERAL E PERSPECTIVAS	116
6 CONCLUSÃO GERAL	121
7 REFERÊNCIAS	122
8 ANEXOS	128
Anexo A – Additional file 1 (Artigo 2)	128
Anexo B – Additional file 2 (Artigo 2)	143
Anexo C – Additional file 3 (Artigo 2)	157

Anexo D – Additional file 4 (Artigo 2) 161

1 INTRODUÇÃO GERAL

No decorrer dos últimos anos, os avanços na bioinformática e na biologia molecular vêm promovendo o aparecimento de novas tecnologias. Dentre essas tecnologias temos o aprimoramento e o surgimento de novas técnicas de análise, no qual, possuem um amplo potencial de aplicação, incluindo, por exemplo, a análise de expressão gênica, a predição de estrutura proteica, a interação proteína-proteína, entre outros, promovendo assim, grandes descobertas a respeito de vários mecanismos que os organismos realizam (Masulli & Tagliaferri, 2010).

Entre os fatores que prejudicam a produtividade e a qualidade da produção agrícola temos a presença dos estresses bióticos e abióticos, sendo considerado um dos grandes responsáveis por essa diminuição. Desta forma, tem ocorrido um empenho no mundo científico para elucidar os mecanismos envolvidos na resposta de tolerância das plantas, possibilitando a identificação de importantes genes responsivos às condições adversas.

Dentre as tecnologias desenvolvidas que auxiliam na identificação destes mecanismos de tolerância temos o RNA sequencing (RNA-Seq), capaz de caracterizar todo o transcriptoma e quantificar os diferentes níveis de expressão gênica provenientes de distintos tecidos do organismo que se deseja analisar (Levin et al., 2010).

Com os resultados obtidos dessa tecnologia pode-se analisar mais facilmente a taxa de *splicing* alternativo (SA), fenômeno que está envolvido em muitos processos fisiológicos da planta, inclusive nas respostas aos diversos estresses bióticos e abióticos (Barbazuk et al., 2008; Reddy, 2001). Sendo considerado um mecanismo de regulação de expressão da célula, podendo promover uma maior plasticidade e versatilidade no genoma (Staiger & Brown, 2013). Deste modo, entender as mudanças no perfil de SA pode contribuir para uma maior compreensão da resposta da planta ao estresse.

O ferro (Fe) é um importante micronutriente para grande parte dos organismos, participando de vários processos metabólicos (Rout & Sahoo, 2015). Contudo, tanto sua deficiência quanto o seu excesso podem acarretar em condições de estresse (Connolly & Guerinot, 2002). Elevados níveis de Fe na forma de íon férrico Fe(II) no solo podem promover toxidez nas plantas (Mongan et al., 2014), podendo afetar seu desenvolvimento e crescimento, ocasionando em grandes

35 perdas na safra (Sahrawat, 2004; Zhang et al., 2014). Nos solos alagados existe
36 uma maior probabilidade de se encontrar elevados níveis de Fe(II) (Mongon et al.,
37 2014).

38 Uma das culturas afetadas por este estresse é o arroz (*Oryza sativa* L.),
39 principalmente os de ecossistema de cultivo irrigado. O arroz é considerado uma das
40 espécies mais importantes para a sociedade, tendo uma grande relevância no setor
41 social, econômico e científico (Yu et al., 2002; Finatto et al., 2015). O Brasil é o nono
42 maior produtor mundial e coloca-se como o maior produtor fora do continente
43 asiático. O estado do Rio Grande do Sul é o principal produtor, sendo responsável
44 por mais de dois terços da produção nacional (CONAB, 2016). Contudo, estima-se
45 que no Rio Grande do Sul, em locais onde a toxidez por ferro é acentuada, a perda
46 na produção pode chegar a 20%, sendo os casos mais extremos relatados em
47 localidades da África, com perdas de até 100% (Sahrawat, 2005).

48 A intensidade do efeito do estresse na planta depende de vários
49 componentes (tipo da cultivar, época de plantio, manejo da água, entre outros)
50 (Sahrawat, 2005). Para minimizar os efeitos, tem se adotado a utilização de
51 genótipos resistentes, sendo uma forma mais econômica e eficiente para contornar o
52 problema (Sahrawat et al., 1996). A cultivar BRS Querência é caracterizada por
53 possuir bons níveis de tolerâncias aos estresses abióticos (tolerância ao Fe,
54 tolerante ao frio nos estádios iniciais e moderadamente tolerante ao estresse salino),
55 possuindo também uma elevada produtividade, se tornando assim, uma cultivar
56 interessante para analisar as estratégias de tolerância (Benitez et al., 2011).

57 A compreensão dos mecanismos de homeostase do ferro em plantas possui
58 uma elevada significância tanto do ponto de vista agronômico quanto científico. Este
59 conhecimento auxiliaria na identificação de importantes genes que contribuem para
60 a sobrevivência da planta em condições adversas, possibilitando o desenvolvimento
61 de plantas mais tolerantes e de alimentos biofortificados com Fe (Gura, 1999; Grotz
62 & Guerinot, 2002).

63 **2 REVISÃO BIBLIOGRÁFICA**

64

65 **2.1 A cultura do arroz**

66

67 Certas características da produção, consumo e constituição genética torna o
 68 arroz uma das culturas mais importantes do mundo (Nayar, 2014). O arroz é
 69 cultivado em aproximadamente 177 países do mundo, estando presente desde
 70 latitudes que vão de 53° Norte a 35° Sul (Lu & Chang, 1980).

71 O gênero *Oryza* provavelmente teve sua origem por volta de pelo menos 130
 72 milhões de anos atrás (Chang, 1976), tendo como centro de origem na China
 73 (Bautista et al., 2001). Este gênero é composto de duas espécies domesticadas
 74 (*Oryza sativa* L. e *Oryza glaberrima* Steud.) e 22 espécies selvagens (Vaughan,
 75 1994), possuindo uma ampla gama de características morfológicas (altura,
 76 perfilhamento, floração, hábito de crescimento, panícula, folha, entre outras) (Figura
 77 1), além de diferentes níveis de adaptação aos habitats (Ali et al., 2010).

78

79

80 **Figura 1.** Fotografia demonstrando 12 espécies do gênero *Oryza* todas no mesmo estádio de
 81 desenvolvimento. Adaptado de Zhang et al. (2013).

82

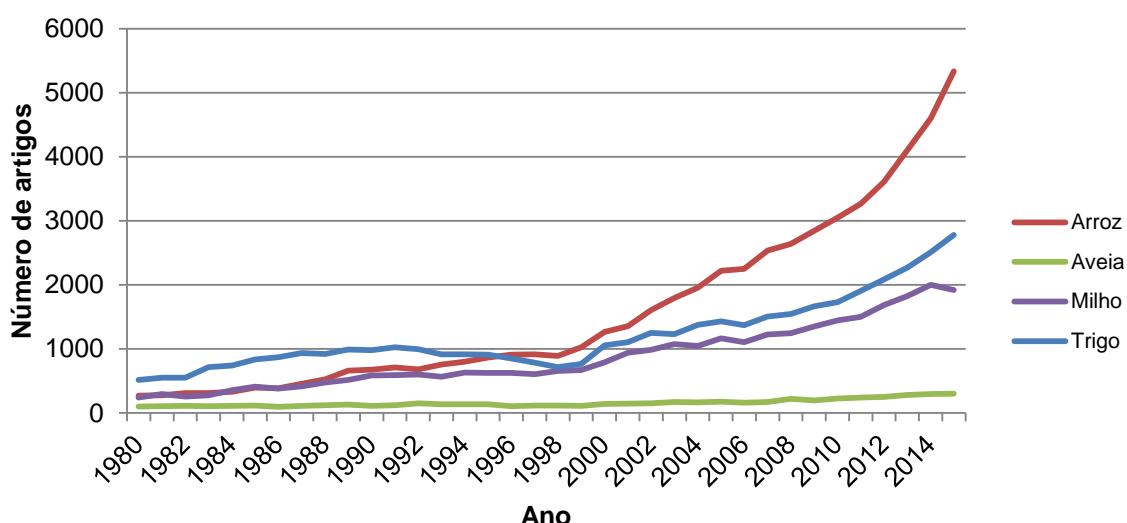
83 Apesar das espécies selvagens serem consideradas reservatórios de muitos
 84 genes importantes, principalmente genes associados à resistência a estresses
 85 bióticos e abióticos, elas possuem um conjunto de características agronômicas não
 86 desejáveis, como por exemplo, baixa produção de sementes, quebra de grãos, entre

87 outras. Assim, a transferência de genes úteis de espécies selvagens para espécies
88 cultivadas é dificultada (Brar & Khush, 1986; Brar & Khush, 1997). Desta forma,
89 encontrar genes importantes dentro das espécies domesticadas se torna uma boa
90 alternativa para os programas de melhoramento genético.

91 A espécie *O. sativa* é amplamente cultivada em regiões tropicais e
92 temperadas, sendo dividida em três outras subespécies (*indica*, *japonica* e
93 *javanica*), enquanto que a *O. glaberrima* é endêmica do leste da África possuindo
94 duas subespécies (*nivara* e *rufipogon*) (Vaughan et al., 2003; Londo et al., 2006).

95 No Brasil, o arroz foi introduzido no início do século 16 pelos portugueses se
96 tornando ao passar do tempo um dos principais alimentos de consumo interno
97 (Mantovani et al., 2008).

98

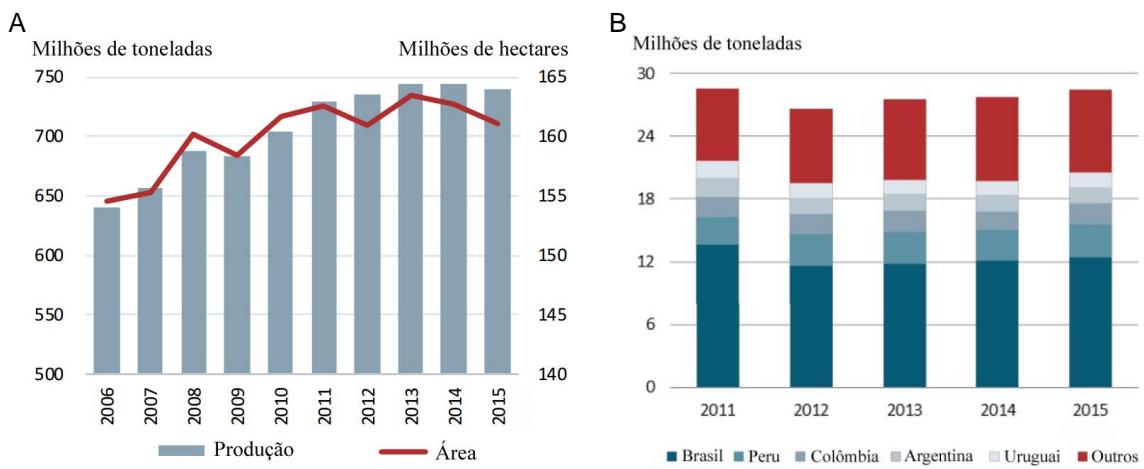

99 **2.2 Importância do arroz**

100

101 O arroz é considerado uma fonte primária de alimento para a metade da
102 população do mundo. Sua importância na dieta varia entre os países. Contudo,
103 aproximadamente um quarto das calorias consumidas por toda a população mundial
104 provém do arroz. Sendo que em alguns países pode chegar a 70% da ingestão de
105 calorias diárias (Kole, 2014).

106 Em algumas regiões, temos a grande presença do arroz no meio social,
107 sendo utilizado nas práticas religiosas e nas tradições culturais (Carney & Rosomoff,
108 2009). O arroz é considerado uma espécie modelo dentro da família Poaceae, tendo
109 um elevado número de estudos em comparação com outros cereais (Figura 2). Isso
110 ocorre devido a uma série de características, entre elas temos o tamanho do seu
111 genoma (389 Mb), classificado como pequeno quando comparado com outros
112 cereais de importância econômica (milho - 2.500 Mb, cevada - 4.900 Mb e trigo -
113 16.000 Mb). Além disso, o arroz possui uma alta sintenia e colinearidade com os
114 demais cereais, sendo utilizado para o entendimento da estrutura e função do
115 genoma (Zhang et al., 2013). Outra característica é em relação ao completo
116 sequenciamento do genoma da subespécie *japonica* cultivar Nipponbare em 2005,
117 proveniente do Projeto Internacional de Sequenciamento do Genoma do Arroz
118 (IRGSP- *International Rice Genome Sequencing Project*) (Bennetzen & Freeling,

119 1993; Devos, 2005). Promovendo assim, uma grande evolução nos estudos de arroz
 120 voltados para as análises moleculares e genéticas (Tyagi et al., 2004).
 121


122
 123 **Figura 2.** Evolução da quantidade de publicações ao longo do tempo dos principais cereais. Número
 124 de artigos encontrados no banco de dados do PubMed (<http://www.ncbi.nlm.nih.gov/pubmed>)
 125 utilizando as palavras 'rice', 'oat', 'maize' e 'wheat'.

126
 127 Considerando sua importância em relação ao cultivo, temos que o arroz
 128 ocupa a posição de segundo cereal mais cultivado no mundo. Sua produção mundial
 129 foi de aproximadamente 740 milhões de toneladas em 2015, ocupando uma área de
 130 plantio de 161 milhões de hectares por ano. Contudo, comparando os dados obtidos
 131 em 2014, nota-se uma diminuição tanto na produção quanto na área plantada
 132 (Figura 3A), o principal motivo dessa redução foi devido às condições climáticas
 133 desfavoráveis em 2015, tendo a ocorrência de um forte *El Niño* (FAO, 2015).

134 Grande parte do cultivo e consumo decorre do continente Asiático, tendo
 135 como destaque a Índia que possui a maior área cultivada de arroz (45 milhões de
 136 hectares) e a China que é o maior produtor de arroz (207,5 milhões de toneladas). O
 137 Brasil também ocupa uma posição de destaque sendo o nono maior produtor
 138 mundial e o primeiro país fora da Ásia em produção e consumo, produzindo em torno
 139 de 12,4 milhões de toneladas (Figura 3B). O Rio Grande do Sul tem uma relevância
 140 fundamental nessa produção, sendo responsável por mais de dois terços da
 141 produção de arroz do Brasil. Obtendo rendimentos de até 7,7 toneladas por hectare
 142 (FAO, 2015).

143

144

145

146 **Figura 3.** Panorama da cultura do arroz ao longo dos anos. **(A)** Evolução global da produção e da
147 área plantada de arroz de 2006 a 2015. **(B)** Evolução da produção de arroz na América Latina e
148 Caribe de 2011 a 2015. Adaptado de FAO (2015).

149

150 O uso de cultivares modernas proporcionou ao estado do Rio Grande do Sul
151 um aumento no rendimento da produção de aproximadamente 35%. Visando esta
152 melhoria, teve-se uma crescente busca para desenvolver novas cultivares que
153 possibilitariam uma maior produtividade, um aumento na resistência aos principais
154 estresses ambientais e um menor uso de insumos agrícolas. Das cultivares
155 modernas lançadas, destaca-se a BRS Querência, pertencente à espécie *O. sativa*
156 ssp. *indica*, sendo lançada pela Empresa Brasileira de Pesquisa Agropecuária
157 (Embrapa) em 2004, derivada de um cruzamento controlado entre a linhagem CL
158 246 e a cultivar Zho Fee N° 10 (Fagundes et al., 2005). Uma das suas principais
159 características provém de sua reação aos estresses abióticos, caracterizada como
160 possuindo um bom nível tolerância ao Fe, tolerante ao frio nos estádios iniciais e
161 moderadamente tolerante ao estresse salino (Benitez et al., 2011). Tornando-se uma
162 cultivar importante para se estudar as estratégias de tolerância, identificando genes
163 diferencialmente expressos e analisando os principais processos metabólicos que
164 são afetados na resposta ao estresse.

165

166 2.3 Toxidez de ferro em arroz

167

168 Nos estados do Rio Grande do Sul e Santa Catarina, temos o cultivo de
169 arroz irrigado, encontrado, principalmente, nos ecossistemas de terras baixas. Uma
170 das características que este ecossistema apresenta é a deficiência de drenagem,

171 acarretando na inundação do solo e podendo promover uma elevação dos teores de
172 Fe(II), que pode chegar a ser tóxico para as plantas (Becana et al., 1998; Embrapa,
173 2005).

174 A toxidez por excesso de ferro é um importante estresse abiótico, limitando a
175 produção do arroz irrigado de vários países, podendo ter perdas de até 100% da
176 produção (Dobermann & Fairhurst, 1977). Sob condições adversas a planta
177 desenvolve um mecanismo resposta, realizando uma expressão diferenciada de uma
178 série de genes cujos produtos são responsáveis por promover uma resposta de
179 tolerância ou sensibilidade ao estresse. Desta forma, realizar estudos que visam à
180 identificação de genes que estão envolvidos na tolerância da planta ao excesso de
181 ferro auxiliaria nos programas de melhoramento genético a desenvolver novas
182 cultivares com esta característica.

183

184 **2.4 Uso da bioinformática no melhoramento genético**

185

186 Para realizar um melhor estudo dos vários elementos biológicos
187 mensuráveis teve-se a formação de um modelo conceitual denominado '*omic space*',
188 no qual, é subdividido em várias camadas, incluindo transcritômica, proteômica,
189 metabolômica, entre outros (Toyoda & Wada, 2004). Os estudos em cada área de
190 investigação podem gerar um grande conjunto de dados, sendo necessário um
191 recurso que ajude no manuseo de toda a informação. Com isso, a bioinformática foi
192 se tornando cada vez mais importante, auxiliando na mineração de dados e
193 vinculando esse conhecimento com o seu significado biológico (Mochida et al.,
194 2010).

195 A bioinformática pode ser definida como o estudo da informação existente
196 nos seres vivos, sendo tanto uma ferramenta operacional, quanto a aplicação direta
197 da Tecnologia da Informação no manejo de dados, desenvolvendo ferramentas
198 computacionais responsáveis por adquirir, armazenar, organizar, analisar e visualizar
199 os dados biológicos (Gibas & Jambeck, 2002).

200 Um dos conjuntos de dados gerados provém do sequenciamento, no qual,
201 são armazenados e distribuídos pelo *International Nucleotide Sequence Database
202 Collaboration* (INSDC) que consiste no NCBI Sequence Read Archive (Wheeler et
203 al., 2007), no European Nucleotide Archive (ENA) proveniente do EMBL-EBI
204 (Leinonen et al., 2011) e no DDBJ Sequence Read Archive (DRA) (Kodama et al.,

205 2012). Sendo que os dados de sequências de DNA genômico utilizados como
206 genomas de referência ficam disponíveis em bancos de dados da web, tais como:
207 *The Arabidopsis Information Resource* (TAIR) para *Arabidopsis* (Lamesch et al.,
208 2012) e *Rice Annotation Project Database* (RAP-DB) para o arroz (Sakai et al.,
209 2013).

210 Os recursos de bioinformática juntamente com as bases de dados da web
211 exercem uma grande relevância para a utilização mais eficaz dos dados de
212 pesquisa, sendo consideradas importantes estratégias para identificar os sistemas
213 moleculares e as propriedades biológicas de diferentes espécies, além de acelerar a
214 descoberta de genes e análises funcionais, contribuindo significativamente para o
215 uso desta informação nos programas de melhoramento de plantas (Hakeem et al.,
216 2013).

217 As plantas são organismos sésseis e sob condições ambientais adversas
218 precisam adaptar os seus processos biológicos a essas novas condições,
219 desenvolvendo diferentes mecanismos de respostas (Kalisz & Kramer, 2008). Essas
220 respostas ambientais desencadeiam uma expressão diferenciada dos genes
221 (Bossdorf et al., 2007; Sani et al., 2013). Entre as abordagens de identificação desta
222 alteração tem sido utilizado o sequenciamento de nova geração (SNG). Nos últimos
223 anos, tem-se observado um aumento na utilização desta tecnologia, ocorrendo
224 também, uma diminuição de seus custos. A análise da expressão através do SNG é
225 realizada em vários passos, tendo o grande uso da bioinformática na manipulação
226 desses dados (Sablok et al., 2015).

227 O arroz foi uma das primeiras culturas a ter uma sequência de genoma de
228 referência e foi utilizado como uma espécie modelo para o uso de SNG. O
229 resequenciamento do arroz permitiu a identificação de genes domesticados
230 presentes em áreas de baixa diversidade do genoma, provenientes de um possível
231 resultado da seleção humana. Além disso, possibilitou observar que o arroz *japonica*
232 e *indica* compartilham áreas comuns de baixa diversidade, possivelmente devido a
233 introgressão de uma população para outra após a seleção (Jha et al., 2015). Através
234 das informações presentes nas sequências do genoma foi possível auxiliar na
235 compreensão da estrutura do genoma do arroz e suas evoluções, bem como
236 descobrir novos genes, incluindo genes associados às características complexas de
237 elevada importância na agricultura.

238

239 **2.5 Uso da tecnologia de RNA-Seq**

240

241 O sequenciamento dos diferentes níveis de expressão do RNA através da
242 tecnologia do RNA-Seq vem crescendo e se popularizando rapidamente. Isso ocorre
243 principalmente devido a redução do custo no sequenciamento, o aumento da
244 confiabilidade e na reproduzibilidade dos resultados, e na detecção de transcritos de
245 organismos que não possuem um genoma ou um transcriptoma de referência (Liu et
246 al., 2012). Além de quantificar os níveis de expressão gênica o RNA-Seq possibilita a
247 identificação de diferenças presentes nas regiões 3'UTRs/5'UTRs, nas regiões de
248 *splicing*, nos SNPs e nos CDSs (Trapnell et al., 2011). Desta forma, a utilização
249 dessa tecnologia para fins de entender a resposta da BRS Querência nas condições
250 de estresse por excesso de ferro se torna uma estratégia interessante e viável,
251 podendo auxiliar no descobrimento e na identificação de um possível mecanismo de
252 tolerância.

253 **3 HIPÓTESE E OBJETIVOS**

254

255 **3.1 Hipótese**

256

257 O estresse por excesso de ferro pode provocar mudanças na expressão dos
258 genes das folhas de arroz, demonstrando como a planta responde a este estresse.259 A análise do perfil de expressão deve auxiliar na identificação de genes que
260 codificam proteínas relacionadas com a homeostase de ferro.

261

262 **3.2 Objetivo Geral**

263

264 Identificar genes candidatos relacionados à resposta ao excesso de ferro em
265 uma cultivar brasileira de arroz (BRS Querência) caracterizada como tolerante a este
266 estresse.

267

268 **3.3 Objetivos Específicos**

269

- 270 • Obter sequências do transcriptoma de plantas de arroz via técnica de RNA-
271 seq;
- 272 • Identificar os genes diferencialmente expressos entre o tratamento de
273 excesso de ferro e tratamento-controle (condições normais de nutrição);
- 274 • Proceder à anotação dos genes diferencialmente expressos utilizando como
275 referência os bancos de dados de sequência públicos de arroz;
- 276 • Fazer análise de enriquecimento e a classificação do *gene ontology* (GO) das
277 sequências obtidas, além de detectar e identificar os metabolismos dos genes
278 que tiveram sua expressão alterada;
- 279 • Identificar as possíveis interações proteínas-proteínas dos genes com
280 expressão diferenciada nos bancos de dados;

- 281 • Analisar e identificar alterações nos padrões de *splicing* alternativo
282 relacionados aos sítios de junções e nos diferentes tipos de eventos de
283 *splicing*.

284 4 CAPÍTULOS

285

286 **4.1 Artigo 1 – Dealing with iron metabolism in rice: from breeding for stress**
287 **tolerance to biofortification**

288

289 Artigo submetido à revista *Genetics and Molecular Biology*

290

291 **Authors:** Railson Schreinert dos Santos^{1,2}, Artur Teixeira de Araujo Júnior^{1,2}, Camila
292 Pegoraro¹, Antonio Costa de Oliveira^{1,2*}

293

294 ¹ Plant Genomics and Breeding Center (CGF), Universidade Federal de Pelotas; Pelotas, RS,
295 Brazil.

296 ² Technology Development Center (CDTec), Universidade Federal de Pelotas; Pelotas, RS,
297 Brazil.

298

299 *To whom correspondence should be addressed. Antonio Costa de Oliveira; Plant Genomics
300 and Breeding Center, Universidade Federal de Pelotas; PO Box 354, Campus Universitário,
301 S/N - CEP 96160-000, Capão do Leão, RS, Brazil.

302 E-mail: acostol@cgfufpel.org

303

304 **Running title:** Iron metabolism in rice

305

306 **Key words:** iron toxicity, mineral malnutrition, Fe-enrichment, Quantitative Trait Loci.

307

308 **Abstract**

309 Iron is a well-known metal. Used since ancient times in many different ways this element is
310 not less present in biology, where, unfortunately, it represents a two-way problem. Being an
311 essential block in the composition of different proteins and metabolic pathways, iron is a vital
312 component for animals and plants. That is why iron malnutrition represents a big problem
313 with severe impact on the lives of different organisms, including humans, becoming a major
314 concern, especially in developing countries. Ironically this metal is also capable of causing
315 damage due to its excessive presence in certain places, being toxic to cells and affecting the
316 whole organism. Because of its importance, much has been studied about the methods of iron
317 absorption, transport and storage in order to design alternatives that may solve this problem.
318 Here we will discuss how different strategies are used to circumvent the problem of lack and
319 excess of iron in plants and possible impacts on human health and economy.

320

321 **Introduction**

322 Iron is the fourth most abundant element in the earth's crust, where ferric iron [Fe(III)] and
323 ferrous iron [Fe(II)] are the most common forms (Hori *et al.*, 2015). While Fe(III) is insoluble
324 and difficult to be absorbed by the roots, Fe(II) is soluble and readily available to plants.
325 When the soil is aerated and in alkaline pH, Fe is oxidized into insoluble iron oxides, but in
326 flooded soils, which are in anaerobic conditions, the pH decrease and there is a reduction of
327 Fe(III) to Fe(II) (Morrissey and Guerinot 2009). This event is responsible for the low
328 availability of Fe in upland soils and for its high availability in flooded soils.

329 Fe is an essential micronutrient for both animals and for plants. In mammals iron is part of the
330 structure of a diversity of proteins (hemoglobin, myoglobin, cytochromes, flavoproteins,
331 heme-flavoproteins, transferrin, lactoferrin, ferritin, hemosiderin, sulfur, non-heme enzymes)
332 (Russel *et al.*, 2001). In plants Fe acts in photosynthesis, respiration and other important
333 metabolic pathways (Briat and Lobreaux 1997; Kobayashi and Nishizawa 2012). Conversely,
334 it also participates in the Fenton reaction, catalyzing the generation of hydroxyl radicals (OH),
335 and reactive oxygen species (ROS) that can cause irreversible damage to the cell (Wu *et al.*,
336 2014). Thus, Fe stress can be caused by either deficiency and excess (Connolly and Guerinot
337 2002).

338 Iron deficiency can alter root morphology (Morrissey and Guerinot 2009), cause chlorosis of
339 young leaves and reduce productivity (Kobayashi and Nishizawa 2014). To prevent the
340 shortage of this element plants have developed two different absorption strategies: the
341 Strategy I is used by higher plants, except for the family Poaceae. In this strategy the enzyme
342 H⁺ ATPase (AHA) mediates the release of hydrons and phenolic compounds from the roots to
343 the rhizosphere, increasing the solubility of Fe(III). Also, in Strategy I, FERRIC
344 REDUCTASE OXIDASE (FRO2) mediates the reduction of Fe(III) to Fe(II) and IRON
345 REGULATED TRANSPORTER 1 (ITR1) is responsible for absorption of Fe(II) in the roots
346 (Connolly and Guerinot 2002; Kobayashi and Nishizawa 2012).

347 The Strategy II, which is specific of grasses, is based on biosynthesis and secretion of
348 compounds of the family of mugineic acids (MAs) called PHYTOSIDEROPHORES (PS),
349 which are result of the action of NICOTIANAMINE SYNTHASE (NAS),
350 NICOTIANAMINE AMINOTRANSFERASE (NAAT) and DEOXYMUGINEIC ACID
351 SYNTHASE (DMAS). Due to the properties of the mugineic acid phytosiderophores and to
352 the role of TOM1 as a transporter, MAs can bind to Fe(III) forming the soluble complex
353 Fe(III)-MA. This complex is then transported into the cell by YELLOW STRIPE 1 (YS1) and
354 YELLOW STRIPE1-LIKE (YSL) (Curie and Briat 2003; Nozoye *et al.*, 2011; Ricachenevsky
355 *et al.*, 2011; Kobayashi and Nishizawa 2012). Rice (*Oryza sativa* L.) uses the Strategy II, but
356 also presents the Strategy I, being able to absorb Fe (II) directly from the rhizosphere
357 (Ishimaru *et al.*, 2006; Kobayashi and Nishizawa 2014).

358 The high level of Fe(II) found in some flooded soils can be toxic to plants (Mongon *et al.*,
359 2014). The toxicity caused by excessive Fe can occur directly and indirectly. The direct
360 toxicity occurs when there is high uptake and excessive accumulation of this element in
361 tissues followed by the appearance of brown-dark spots in the leaves (leaf-bronzing) (Becker
362 and Asch 2005; Morrissey and Guerinot 2009). The indirect damage is caused by the
363 prevention of the uptake, transport and utilization of other nutrients (eg.: P, K, Ca, Mg, Mn,
364 and Zn) due to an accumulation of iron over the roots, a phenomenon known as ferric cover
365 (Sahrawat 2004; Zhang *et al.*, 2014). Both situations affect plant growth, development and
366 productivity, leading to significant yield losses. To adapt to this condition, rice plants have
367 developed different mechanisms of tolerance (Type I, Type II and Type III) which are based
368 on specific forms of use, exclusion and storage of iron (Figure 1). In Type I there is an
369 oxidation and precipitation of Fe(II) on the root surface, while in Type II the absorption Fe
370 (II), and storage occurs in a less reactive form in ferritin protein. Type III mechanism is based

371 in the tolerance to ROS formed in Fenton reaction (Wu *et al.*, 2014). An annulment of the
372 uptaken Fe(II) through its storage in old or less active leaves or exclusion via symplast can
373 also occur (Becker and Asch 2005).

374 Physiological disorders caused by the excess of Fe are common in cultivated rice in the
375 regions of Africa, Asia and South America (Shahid *et al.*, 2014). However, despite the high
376 amount of Fe in the soil, which can even be toxic to the plant, little is accumulated in rice
377 grains. In addition, the accumulation of iron in the grain occurs in the outermost layers being
378 lost during the industrial processing (Sperotto *et al.*, 2012). Thus, rice contributes very little to
379 meet the need of Fe intake in the human diet, not being an effective way of preventing
380 anemia.

381 More than two billion people worldwide suffer from anemia, and more than 50% of these
382 cases are caused by Fe deficiency (Arcanjo *et al.*, 2013). The iron-deficiency anemia (IDA)
383 affects more dramatically the continents of Africa and Asia, where IDA is a major public
384 health problem, prevalent in young women and children (Moretti *et al.*, 2006; Visser and
385 Herselmann 2013). Since it causes the death of almost one million people per year (Aung *et*
386 *al.*, 2013).

387 Biofortification is an interesting strategy to solve the problem of IDA, especially for people
388 who cannot change their eating habits due to financial, cultural or religious issues. In this
389 sense we can not only increase the amount of iron in grains, but also decrease the content of
390 inhibitors of Fe absorption commonly found in plants (Lucca *et al.*, 2001; Raboy 2002;
391 Schuler and Bauer, 2011). In addition, biofortification is a sustainable strategy for the
392 government. In this sense, rice can be the ideal species for biofortification, since it is a staple
393 food that is especially important for developing countries, where IDA is even more severe.
394 Also rice is grown in flooded soils, where Fe availability is higher (Becker and Asch 2005);
395 and has its mechanisms of Fe uptake, translocation and homeostasis better understood than
396 most of the species (Masuda *et al.*, 2012).

397 Global rice production is 741 million tons in approximately 165 million hectares. Rice is not
398 only the second most cultivated cereal in the world, with important social and economic
399 function, but is also an ideal model for functional genomics studies in monocots (FAOSTAT
400 2015; Yao *et al.*, 2015). The availability of different rice genomes of different subspecies has
401 enabled the study of many genes and metabolic pathways.

402 Considering the importance of rice in nutrition and economy as well as the impact of iron
403 deficiency and excess in the life of plants and animals in this review we will discuss the
404 highlights of the uptake pathways, translocation, homeostasis and Fe accumulation in the
405 grain to establish a link between Fe-toxicity and Fe-biofortification.

406

407 **Identifying regulatory pathways**

408 According to the availability of Fe in the soil, plants have developed mechanisms to control
409 and regulate the absorption, translocation and subcellular storage of this mineral. Classical
410 studies associated with the emergence of modern and advanced tools of genomics,
411 transcriptomics and proteomics have enabled in-depth understanding of homeostasis of Fe in
412 plants (Kobayashi and Nishizawa 2012). The uptake of Fe in plants occurs by using the
413 Strategy I or reduction strategy (non Poaceae), the Strategy II or chelation strategy (Poaceae)
414 and the combination of strategies I and II (rice) (Figure 2) (Ishimaru *et al.*, 2006; Zhang *et al.*,
415 2012; Yang *et al.*, 2013; Ricachenevsky and Sperotto 2014; Finatto *et al.*, 2015). The key
416 genes involved in Strategy I are *AHA2* (protonation of the rhizosphere) *FRO2* [reduction of
417 Fe(III) to Fe(II)] and *IRT1* (Fe(II) transport to inside the root) (Kim and Guerinot 2007; Hindt
418 and Guerinot 2012).

419 In *Arabidopsis thaliana* (L.) Heynh there are eight homologues of *FRO* (*AtFRO1* to *AtFRO8*)
420 while in *O. sativa* there are only two (*OsFRO1* and *OsFRO2*) (Victoria *et al.*, 2012). The gene
421 *IRT* presents 15 homologues in *A. thaliana*, (*AtIRT1*, *AtIRT2*, *AtIRT3*, *AtZIP1* to *AtZIP12*) and
422 12 in *O. sativa* (*OsIRT1* to *OsIRT12*) (Ishimaru 2005; Kim and Guerinot 2007). *A. thaliana*
423 presents 12 homologues of the gene *AHA* (*AtAHA1* to *AtAHA12*) (Santi and Schmidt 2009)
424 and *O. sativa* ten (*OsA1* to *OsA10*) (Zhu *et al.*, 2009; Li *et al.*, 2015). Not all members of
425 *FRO*, *IRT*, *AHA* families are directly involved with the capture of Fe.

426 In conditions of Fe deficiency there is an induction of the genes *AHA*, *FRO* e *IRT* (Hindt and
427 Guerinot 2012). Studies conducted in *A. thaliana* demonstrate that the low availability of Fe
428 leads to the induction of transcription factor (TF) FER-LIKE IRON DEFICIENCY-
429 INDUCED TRANSCRIPTION FACTOR 1 (FIT1), which regulates *AtFRO2* at the level of
430 mRNA accumulation and *AtIRT1* at the level of protein accumulation (Colangelo 2004). The
431 co-expression of FIT with other TFs of the family *Basic helix-loop-helix* (*AtbHLH38/39*)
432 directly regulate the expression of *IRT1* and *FRO2*, which causes an increase in iron
433 accumulation (Yuan *et al.*, 2008; Hindt and Guerinot 2012). There are no orthologs of FIT in

434 rice, but *AtbHLH38/39* are similar to *OsIRO2* (Hindt and Guerinot 2012) that regulates genes
435 related to transport of Fe(III)-MA, but does not regulate *OsIRT1* (Ogo *et al.*, 2007).

436 The *FIT* gene is regulated by signaling molecules as auxin and ethylene, synthesized in
437 conditions of iron deficiency. In *Arabidopsis* the lack of Fe induces an increase in auxin
438 synthesis, resulting in increased expression of the genes *FIT* and *FRO2* (Chen *et al.*, 2010).
439 Similarly to what happens to auxin, an increase in ethylene synthesis is also noticed under
440 these conditions, an event that causes the up regulation of *FIT* (Lucena *et al.*, 2006) and
441 therefore of *FRO* and *IRT*. The product of *FIT* gene reacts with the TFs ETHYLENE
442 INSENSITIVE 3 (*AtEIN3*) and ETHYLENE INSENSITIVE 3-LIKE1 (*AtEIL1*) emphasizing
443 the importance of ethylene signaling in response to Fe deficiency (Lingam *et al.*, 2011).
444 Ethylene mediated response to iron excess may also play a role in the differential regulation
445 of TFs of the ERFs family, which can also be modulated when rice plants are subjected to this
446 stressful condition (Santos *et al.*, 2013).

447 Just as auxin and ethylene, nitric oxide (NO) has its synthesis increased in conditions of Fe
448 deficiency. NO acts as a positive regulator of genes whose products act on Fe uptake (Hindt
449 and Guerinot 2012). Conversely, under conditions of Fe excess the three *IRT* genes and
450 *OsFRO2* are induced in rice (Finatto *et al.*, 2015).

451 In *A. thaliana* the POPEYE (*AtPYE*) and BRUTUS (*AtBTS*) TFs also participate in the
452 regulation of genes associated with Fe absorption. These TFs act in sensitivity and root
453 response to the availability of Fe and the interaction of these TFs with other regulatory
454 proteins involved in regulating the homeostasis of Fe (Long *et al.*, 2010). In rice the genes
455 *OsIRO3* (Zheng *et al.*, 2010) and *OsHRZ1/OsHRZ2* (Kobayashi *et al.*, 2013), have been
456 identified. *IRO3* is an ortholog of *AtPYE*, and *HZR1* e *HZR2* are orthologs of *AtBTS*.

457 The Strategy II (Figure 2) includes the participation of genes that act in the cycle of MAs
458 precursors - METHIONINE and S-ADENOSYL-L-METHIONINE (5'-
459 *METHYLTHIOADENOSINE NUCLEOSIDASE* - *MTN*, *METHYLTHIORIBOSE KINASE* -
460 *MTK*, *METHYLTHIORIBOSE-1-PHOSPHATE ISOMERASE* - *IDI2* and *DEHYDRASE*
461 *ENOLASE PHOSPHATASE* - *DEP*, *S-ADENOSYL-L-METHIONINE SYNTHETASE* - *SAMS*)
462 (Kobayashi *et al.*, 2005; Suzuki *et al.*, 2006), in the synthesis of MAs (*NAS*, *NAAT*, *DMAS*,
463 *Dioxygenases* - *IDS2/IDS3*) (Nakanishi *et al.*, 2000; Kobayashi and Nishizawa 2012), binding
464 of MAs to Fe(III) (*TRANSPORTER OF MUGINEIC ACID PHYTOSIDEROPHORES 1* -
465 *TOM1*) (Nozoye *et al.*, 2011), and in the transport of the complex Fe(III)-MAs into the root

466 (*YS1* e *YSL*) (Curie *et al.*, 2001; Inoue *et al.*, 2009; Kobayashi and Nishizawa 2012). Four
467 homologues of the gene *NAS* are present in the genome of *A. thaliana* (*AtNAS1*, *AtNAS2*,
468 *AtNAS3* and *AtNAS4*) and three in the rice genome (*OsNAS1*, *OsNAS2* and *OsNAS3*) (Victoria
469 *et al.*, 2012). Six homologues of the *NAAT* gene (*OsNAAT1* to *OsNAAT6*), and only one
470 *DMAS* gene (*OsDMAS1*) are present in rice (Bashir *et al.*, 2006; Broadley *et al.*, 2010). For
471 *YSL*, eight homologues were identified in *A. thaliana* (*AtYSL1* to *AtYSL8*) and 18 in rice
472 (*OsYSL1* to *YSL18*) (Victoria *et al.*, 2012).

473 As well as the genes involved in Strategy I, genes associated with Strategy II are induced in
474 iron deficiency (Ricachenevsky and Sperotto 2014). The TFs IRON DEFICIENCY
475 RESPONSIVE ELEMENT BINDING FACTOR 1 (IDEF1 e IDEF2) and IRON
476 REGULATED BASIC HELIX-LOOP-HELIX (IRO2) have been identified as regulators of
477 key genes which control Fe uptake, including the synthesis of MAs in rice (Itai *et al.*, 2013).
478 Fe deficiency the OsIDEF1 up regulates genes whose products act in capture and use of Fe in
479 rice, as *OsIRO2*, *OsYSL15*, *OsYSL2*, *OsIRT1*, *OsNAS1*, *OsNAS2* and *OsNAS3* (Kobayashi *et*
480 *al.*, 2009). The TF IDEF1 binds to iron deficiency-responsive elements (IDE1 and IDE2),
481 which are present in the promoter region of genes associated with Fe deficiency (Kobayashi *et*
482 *al.*, 2007). Moreover, *OsIRO3* is induced in Fe deficiency and acts as a negative regulator of
483 genes related to this condition in rice (*OsNAS1*, *OsNAS2*, *OsIRO2*, *OsIRT1*, *OsYSL15* and
484 *OsNRAMP1*) (Zheng *et al.*, 2010).

485 In conditions of Fe toxicity the genes *OsNAS1*, *OsNAS2*, *OsYSL15*, *OsYSL16* and
486 *OsNRAMP1* were repressed in rice roots (Quinet *et al.*, 2012). In a similar study, Finatto *et*
487 *al.*, (2015) reported the induction of the genes *OsNAAT1*, *OsYSL1* and *OsYSL17* in rice plants
488 grown under excessive Fe.

489 After Fe capture by the roots, the element is transported to other organs, a process that
490 involves several steps, passing through symplast, xylem (transpiration stream) and phloem
491 (Kim and Guerinot 2007). When Fe enters the symplast it is oxidized and ligated to chelating
492 molecules. Chelators that Fe can bind to are citrate, NICOTIANAMINE (NA) (Figure 3) and
493 MAs (Kobayashi and Nishizawa 2012), being citrate the most important one (Curie and Briat
494 2003). In *A. thaliana* the gene *FERRIC REDUCTASE DEFECTIVE 3* (*AtFDR3*) encodes a
495 transmembrane protein belonging to the family of Multidrug and toxin efflux transporters
496 (MATE) that facilitates the transport of citrate in the xylem (Durrett *et al.*, 2007).

497 In rice, *OsFRDL1* is required for efficient translocation of Fe-citrate complex (Yokosho *et al.*,
498 2009). In rice plants under conditions of Fe excess, the induction of three genes belonging to
499 MATE family, which may be involved in reducing ROS production in mitochondria, was
500 observed (Finatto *et al.*, 2015). Genes belonging to *YSL* and *IRT* families, as well are not only
501 involved in iron uptake, but also in the transport of this element trough the plant. Different
502 *YSL* genes carry different complexes. In rice for example, *OsYSL2* carries Fe(II)NA (Koike *et*
503 *al.*, 2004) while *OsYSL15* product carries Fe(III)-DMA (Lee *et al.*, 2009). *OsIRT1* was
504 present not only in roots, but also in rice leaves and stems, indicating its participation in the
505 Fe transport over long distances (Narayanan *et al.*, 2007).

506 To be assimilated by the leaves, Fe(III) is reduced trough the action of FRO enzymes.
507 *LeFRO1* in *Lycopersicum esculentum* Mill. (Waters *et al.*, 2002), *PsFRO1* in *Pisum sativum*
508 L. (Li *et al.*, 2004) and *AtFRO6* in *A. thaliana* are expressed in the aerial part of the plant
509 (Feng *et al.*, 2006) indicating their participation in the reduction of Fe(III). After reduction, Fe
510 is transported to other organs of the plant. This transport is made via the phloem
511 NICOTIANAMINE carrier (Takahashi *et al.*, 2003), which is synthesized through the enzyme
512 NICOTIANAMINE SYNTHASE (NAS). The Fe transport also occurs trough family
513 members of the Natural Resistance-Associated Macrophage Protein (NRAMP) (Nevo and
514 Nelson 2006). NRAMP carriers are related to subcellular transport of Fe and its segmentation
515 in vacuoles and/or plastids (Curie *et al.*, 2000). Six counterparts NRAMP were detected in
516 *A. thaliana* and eight in rice (*OsNRAMP1-OsNRAMP8*) (Victoria *et al.*, 2012).

517 In rice, *OsNRAMP1* is expressed mainly in roots, *OsNRAMP2* in leaves and *OsNRAMP3* is
518 expressed in both tissues (Belouchi *et al.*, 1997). In conditions of Fe excess, Quinet *et al.*,
519 (2012) noticed the repression of the gene *OsNRAMP1* while Finatto *et al.*, (2015) observed
520 the induction of another NRAMP gene, *OsNRAMP6*.

521 Inside the cell, Fe can be incorporated into proteins or stored in plastids and mitochondria,
522 where it is found associated with ferritin (Duy *et al.*, 2011; Vigani *et al.*, 2013), or even in the
523 cell vacuole (Gollhofer *et al.*, 2014) (Figure 2). This compartmentalization is performed
524 aiming the homeostasis of Fe, especially in conditions of excess of this element. Ferritin is an
525 iron storage protein, whose main function is to provide Fe for protein synthesis and avoid
526 damage caused by free radicals produced by the interaction iron/dioxygen (Goto *et al.*, 1999).
527 This protein has the ability to store more than 4500 Fe atoms in a soluble, non-toxic and
528 bioavailable form (Briat and Lobreaux, 1997). In *Oryza glaberrima* Steud. and *O. sativa* the

tolerance to Fe toxicity seems to be associated with ferritin synthesis (Majerus *et al.*, 2007; Silveira *et al.*, 2009). However, ferritin stores only a small portion of Fe, being the vacuole the main compartment for accumulation of this element (Gollhofer *et al.*, 2014). *A. thaliana* has four homologues of ferritin encoding genes (*AtFER1* to *AtFER4*) while in *O. sativa* two of these can be found (*OsFER1* and *OsFER2*) (Silveira *et al.*, 2009). The Fe-dependent regulation of *AtFER1* and *ZmFER1* gene depends on the presence of a *cis*-element called Iron-dependent Regulatory Sequence (IDRS) in their promoter regions. The IDRS element is involved in the repression of FER genes in plants that are under low concentrations of Fe (Petit *et al.*, 2001). In Fe excess the genes *OsFER1* and *OsFER2* show increased amount of these transcripts, being *OsFER2* preferably up regulated (Stein *et al.*, 2009). Similar results were found by Quinet *et al.*, (2012), which also observed the induction of *OsFER1* and *OsFER2* genes in stress by excess of Fe in the soil. In other species it has also been observed the induction of genes FER in toxic amounts of Fe.

Vacuoles are multifunctional organelles dynamically adjusted according to environmental conditions. This organelle has buffering capacity serving as a reservoir of metabolites, minerals, nutrients and also as a deposit for toxic compounds, being crucial for the process of detoxification and for cellular homeostasis (Marty, 1999; Peng and Gong, 2014). The uptake of Fe by the vacuole is mediated by FERROPORTIN (FPN) (Morrissey and Guerinot, 2009) and by members of a family of Vacuolar Iron Transporters (VIT) (Zhang *et al.*, 2012). In *A. thaliana* three homologues of FPN (*AtFPN1/AtIREG1*, *AtFPN2/AtIREG2* and *AtFPN3/AtIREG3*) were found (Curie and Briat, 2003; Morrissey and Guerinot, 2009; Merlot *et al.*, 2014), while in *O. sativa* only two of these genes (*OsFPN1/OsFerroportin*; *OsFPN2/IREG3*) were detected (Bashir *et al.*, 2011; Merlot *et al.*, 2014). In *A. thaliana* the iron accumulation in the vacuole of seed cells depends on *AtVIT1* (Kim *et al.*, 2006). In rice the membrane transporters encoded by *OsVIT1* and *OsVIT2* genes are involved in the translocation of Fe between flag leaf and seeds, and inhibition of those result in increase of Fe in the seed, suggesting that new mechanisms are activated under this condition (Zhang *et al.*, 2012), and under conditions of excess Fe, *OsVIT1* had to be increased (Finatto *et al.*, 2015). Fe remobilization from the vacuole to the cytoplasm is mediated by NRAMP3 and NRAMP4 (Peng and Gong, 2014).

559

560

561 **Quantitative Trait Loci**

562 In anaerobic conditions high amounts of Fe(II) are absorbed by plants, resulting in the
563 accumulation of this element in the cell (Santos and de Oliveira 1994). In rice, there is a
564 differential response between cultivars to stress by Fe excess. When both susceptible and
565 tolerant cultivars, BR-IRGA 409 and EPAGRI 108 respectively, are subjected to high
566 concentrations of Fe there was less accumulation of this element and greater accumulation of
567 the protein ferritin in the tolerant cultivar, suggesting that ferritin protein may be involved in
568 this mechanism of tolerance (Silveira *et al.*, 2009). However, it was found that when there is
569 Fe accumulation, the activity of aconitase enzyme and protein ferritin levels are higher in a
570 genotype that accumulates higher concentrations of Fe when compared to a lower
571 accumulator genotype (Panda *et al.*, 2014). Conversely, a previous study showed that the
572 accumulation of iron is not parallel to the level of ferritin expression in rice seeds
573 overexpressing the *SoyFER* gene (of soybean ferritin), suggesting that the Fe accumulation
574 may be limited by uptake and transport of this element (Qu *et al.*, 2005). According to these
575 studies it was found that the mechanisms associated with tolerance to toxicity and
576 accumulation of Fe is not well understood. However, studies related to the identification of
577 Quantitative Trait Loci (QTLs) and genes whose products are responsible for the homeostasis
578 of Fe and the accumulation of this mineral in the grain have been conducted (Figure 4) and
579 the results of these surveys can assist breeding programs for toxicity and biofortification for
580 Fe content (Wu *et al.*, 1998; Wan *et al.*, 2003; Dufey *et al.*, 2009; Shimizu A. 2009; Wu *et al.*,
581 2014). For this feature, three loci were located on chromosomes 7, 8 and 9 rice explaining
582 around 19-30% of the difference in the concentration of Fe in the grains (Gregorio *et al.*,
583 2000). The higher concentrations of Fe in the grain were positively correlated with the
584 expression of genes *OsYSL14*, *OsNAC5* and negatively correlated with *OsNRAMP7*,
585 *OsNRAMP8* and *OsFRO1* expression (Sperotto *et al.*, 2010). On the other hand, *OsFER1*,
586 *OsNRAMP4*, *OsNRAMP5*, *OsNRAMP6*, *OsYSL6*, *OsYSL12*, *OsYSL4*, *OsZIP8*, *OsZIP10*
587 expression was correlated with higher concentrations of Fe in the grain (Banerjee and
588 Chandel, 2011). The functional characterization of these genes can help in getting biofortified
589 rice genotypes with higher concentrations of Fe in the grains. In QTL analysis for tolerance to
590 bronzing, using a F3 population from the cross between cv. Gimbozu (*japonica* genotype
591 which is tolerant to Fe excess) and cv. Kasalath (*indica* genotype which is susceptible to Fe
592 excess) seven QTLs associated with this feature were detected. These QTLs which are located
593 on chromosomes 1, 2, 7, 8 and 12, explain 99% of the phenotypic variation for bronzing and

594 showed no detectable epistatic effect (Shimizu, 2009). In a population generated from the
595 cross between cv. Azucena (tolerant *japonica*) and cv. IR64 (susceptible *indica*), a QTL on
596 chromosome 1 that is associated with leaf bronzing index was detected (Dufey *et al.*, 2009).
597 The association of this region with bronzing index had already been detected earlier by Wan
598 *et al.*, (2003) and Wu *et al.*, (1998). Also in a QTL analysis in a population obtained from the
599 cross between cv. Kasalath (susceptible *indica*) and cv. Koshihikari (tolerant *japonica*)
600 researchers found a QTL on chromosome 3 associated with Fe concentration in the shoot
601 (Fukuda *et al.*, 2012). In a study conducted by Wu *et al.* (2014), populations from the crosses
602 IR29 (susceptible *indica*) x Pokkali (tolerant *indica*) and Nipponbare (moderately tolerant
603 *japonica*) x Kasalath (highly susceptible *japonica*) were used for identification of QTLs
604 associated with tolerance to Fe excess. In the population IR29/Pokkali, seven QTLs for leaf
605 bronzing were identified, located on chromosomes 1, 2, 4, 7 and 12, explaining 9.2 to 18.7%
606 of the phenotypic variation. In a Nipponbare/Kasalath/Nipponbare backcross inbreed
607 population three QTLs were mapped on chromosomes 1, 3 and 8, and these QTLs explain
608 11.6 to 18.6% of the phenotypic variation. Additional studies demonstrated that the QTL on
609 chromosome 1 was associated with shoot tolerance and the QTL on chromosome 3 was
610 associated with exclusion of Fe in roots. Similarly to the QTL studies for stress tolerance to
611 Fe much effort has been made in identifying QTLs associated with Fe content in grains. Four
612 QTLs for Fe accumulation (*qFe1*, *qFe3*, *qFe4* and *qFe7*) located on chromosomes 1, 3, 4 and
613 7, accounting, respectively, for 16.2%, 21.4%, 9.7% and 15.5% of the phenotypic variation,
614 were found in a F6 population from the cross cv. Bala (*indica*) x Azucena (*japonica*) (Norton
615 *et al.*, 2010). Using Composite Interval Mapping on an F6 population from the cross
616 Madhukar × Swarna it was possible to identify 7 QTLs associated with iron accumulation
617 (*qFe1.1*, *qFe1.2*, *qFe5.1*, *qFe7.1*, *qFe7.2*, *qFe12.1* and *qFe12.2*), which are located on
618 chromosomes 1, 5, 7 and 12 (Anuradha *et al.*, 2012). The candidate genes for QTLs are:
619 *OsYSL1* (LOC_Os01g13710) which are located within the *qFe1.2*; *OsMTP1*
620 (LOC_Os05g03780) located within the *qFe5.1*; *OsNAS3* (LOC_Os07g48980) located within
621 the *qFe7.1* and *qFe7.2*; *OsNRAMP1* (LOC_Os07g15460) located within the *qFe7.2*; and
622 *OsZIP8* (LOC_Os07g12890) located 0.3 Mb right of *qFe12.1*. Most phenotypic variance was
623 explained by the QTL on chromosome 12 (71%) (Anuradha *et al.*, 2012).
624 Mapping of a population derived from the cross Chunjiang 06 (*japonica*) x TN1 (*indica*)
625 detected 3 QTLs for Fe accumulation in grains. The QTLs are located on chromosomes 1, 6
626 and 8, explaining, respectively 15.7, 10.6 and 22.3% of the phenotypic variation for Fe

627 accumulation in the grains (Du *et al.*, 2013). A QTL for Fe concentration on chromosome 8,
628 was detected in a population from the cross cv. Lemont (*japonica*) x cv. TeQing (*indica*)
629 (Zhang *et al.*, 2014). A collection of Dale Bumpers National Rice Research Center, USDA
630 ARS, Stuttgart, AR, USA composed by 221 accesses of *O. sativa*, 5 accesses of
631 *O. glaberrima*, 2 accesses of *O. rufipogon* and 1 of *O. nivara* have been mapped aiming the
632 identification of QTLs for contents of different minerals in the grain (Nawaz *et al.*, 2015). In
633 this study, the authors identified 11 genetic regions responsible for binding and transport of
634 Fe, comprising the genes *OsZIP1* (Os01g0972200), *OsHMA4* (Os02g0196600), *OsACA2*
635 (Os02g0176700), *OsZIP2* (Os03g0411800), *OsCNGC* (Os03g0758300), *OsZIP3*
636 (Os04g0613000), *OsZIP5* (Os05g0472700), *OsZIP9* (Os05g0472400), *OsHMA2*
637 (Os06g0700700), *ABC TRANSPORTER* (Os06g0607700), *OsNAS3* (Os07g0677300), *HEAVY*
638 *METAL TRANSPORTER* (Os07g0671400), *CHY ZINC FINGER* (Os10g0456800) and
639 *OsACA9* (Os12g0136900). In *A. thaliana*, two QTLs were identified in a region on
640 chromosomes 1 and 5 in which genes (*ZIP10* and *NASI*) are associated with the Fe
641 metabolism, playing a role in cation translocation (Vreugdenhil *et al.*, 2004). Although further
642 studies are required for the elucidation of mechanisms and genes related with the increase of
643 iron concentration in seeds and stress tolerance to Fe excess, much work has already been
644 developed in QTL mapping and its association with other metabolic pathways (Wan *et al.*,
645 2003; Shimizu *et al.*, 2009).

646

647 **Phylogeny**

648 A phylogenetic study on members of gene families related to homeostasis of Fe (NAS
649 NRAMP, YSL, FRO and IRT) was conducted in *O. sativa*, *A. thaliana*, *Physcomitrella patens*
650 (Hedw.) Bruch & Schimp. and other monocots and dicots (Victoria *et al.*, 2012). In this study,
651 the authors found that the FRO genes can be grouped into two clusters, but these do not
652 separate monocots, dicots and bryophytes, a first clue indicating that the divergence of these
653 genes occurred even before the diversification of land plants. Conversely, for NAS genes it
654 was observed the formation of a group with monocots and dicots. In the IRT family the genes
655 were grouped into different clusters that separates monocots, dicots and bryophytes. For
656 NRAMP genes, no evidence for divergence between groups of plants was observed, since
657 genes from monocots and dicots were together in different clusters. Finally, the authors found

658 that *YSL* genes possibly went through two duplication events, which probably occurred before
659 the divergence of monocots and dicots.

660 Phylogenetic analyzes were also performed by Gross *et al.*, (2003). In this study they
661 analyzed a total of 43 genes belonging to five families: YS, FRO, ZIP, NRAMP, and ferritin
662 proteins. The analysis of the YS family shows a relationship between predicted members of
663 rice, *Arabidopsis* and *Zea mays* L., indicating that the putative new genes were homologous to
664 maize YS, indicating that these may also have a role in Fe transport. The proteins from family
665 FRO were separated from the burst oxidases, having a subdivision of FRO sequences, having
666 *OsFRO1* in a group and the *OsFRO2* in another group. Members of the ZIP family were
667 grouped in a single tree, with the *OsZIP1* and *OsZIP6* more distantly related. The NRAMP
668 family was divided into two classes, one most similar with *AtNRAMP1* and another with
669 *AtNRAMP2*, in which the number of exons is determinative in grouping these sequences. The
670 ferritin family had a separation between each of the species analyzed, where mammalian
671 ferritins were separated from their respective homologues. The separation was also noticed
672 between monocots and dicots, first we can observe the divergence of *Arabidopsis* genes and
673 just then genes from maize and rice diverge one from each other.

674

675 **Strategies for Fe biofortification in rice**

676 Biofortification is a process that increases the bioavailability of essential elements in the
677 edible part of plants (White and Broadley, 2005; Zielińska-Dawidziak, 2015). Although Fe is
678 the fourth most abundant element in the earth's crust, little of this element is available for
679 human nutrition through grains (Kim and Guerinot, 2007), something that contributes to rank
680 iron deficiency as the sixth risk factor for death and disability (WHO, 2015).

681 Although rice is a widely consumed food, it is not a rich source of iron, furthermore most of
682 the Fe content of rice grains is accumulated in the aleurone and in the embryo, two parts that
683 are lost during milling. After that, grains consist almost in its entirety by the endosperm,
684 losing up to 80% of the iron content and constituting a poor source of Fe for the human diet.
685 This makes the evaluation of iron content in polished and unpolished grains an important
686 information when studying biofortification (Brinch-Pedersen *et al.*, 2007; Paul *et al.*, 2012;
687 Bashir *et al.*, 2013b).

688 Among the plant breeding methods, transgenesis has high potential for Fe biofortification
689 since this is a fast and efficient technique which is already being used for this purpose.
690 Studies on rice biofortification by Fe using transgenics were conducted using five different
691 strategies. In the first strategy, the increase in the amount of Fe in the grain was achieved
692 through the expression of the soybean *FERRITIN* gene coding (*SoyFERH1*) under the control
693 of *GLUTELIN* gene promoter from rice (*OsGluB1*), which is specific for the endosperm. The
694 higher expression of *FERRITIN* in the endosperm resulted in at least 2-fold increase of Fe in
695 *japonica* cv. Kitaake (Goto *et al.*, 1999), and in *japonica* cv. Taipei 309 (Lucca *et al.*, 2001).
696 The increase was of 3.7-fold in the *indica* cv. IR68144 (Vasconcelos *et al.*, 2003) and 2.1-fold
697 in the *indica* cv. Pusa Sugandhi II (Paul *et al.*, 2012).
698 In the second strategy, the increase in the amount of Fe in the grain was due to the
699 overexpression of genes involved in the synthesis of mugineic acid. When overexpressing
700 *NICOTIANAMINE SYNTHASE* (*NAS*) it was possible to notice an increase of even more than
701 3-fold in Fe content of polished grains of the *japonica* cultivars Tsukinohikari (Masuda *et al.*,
702 2009), Dongjin (Lee *et al.*, 2009), and Nipponbare (Johnson *et al.*, 2011). When
703 *DIOXIGENASE* (*IDS3*) was overexpressed it caused an increase of 1.4-fold in Fe content of
704 polished grains of the *japonica* rice Tsukinohikari (Masuda *et al.*, 2008).
705 In the third strategy the gene *OsYSL2* was inserted under the control of the promoter of
706 *SUCROSE TRANSPORTER* (*OsSUT1*), resulting in increased expression of this gene in
707 panicle and grains. This transformation increased in 4.4-fold the concentration of Fe in
708 polished grains of the *japonica* cultivar Tsukinohikari (Ishimaru *et al.*, 2010). In the fourth
709 strategy there is a combination of the first three strategies, generating the rice "Fer-NAS-
710 *YSL2*", which presented a 4 to 6-fold increase in Fe content of polished grains in the *japonica*
711 cv. Tsukinohikari (Masuda *et al.*, 2012) and 3.4-fold increase in the other *japonica* cv. Paw
712 Yin San (Aung *et al.*, 2013).
713 In the fifth strategy, besides increasing the Fe content in the grain, it was sought to increase
714 tolerance to Fe deficiency as well. In this case, a concurrent insertion of *SoyFERH2* gene was
715 used, under the control of promoters of *OsGluB1* and *OsGlb*, and also the *HvNAS1* genes
716 *NICOTIANAMINE AMINOTRANSFERASE* (*HvNAAT-A* and *HvNAAT-B*) and *MUGINEIC*
717 *ACID SYNTHASE* (*IDS3*) of barley, which encode enzymes of the biosynthesis of MAs. Here
718 the transformed plants showed to be tolerant to Fe deficiency and also to be capable of
719 accumulating 2.5 to 4-fold of this mineral in polished grains (Masuda *et al.*, 2013).

720 Also the overexpression of the gene *OsIRT1* using a constitutive promoter (maize ubiquitin),
721 resulted in higher concentration of iron and zinc in shoots and roots and an increase in
722 tolerance to iron deficiency at the seedling stage. It was also possible to detect an increase in
723 the concentration of these metals in mature grains with 13% more iron and 12% more zinc
724 (Lee and An, 2009).

725 Similar data was found in plants overexpressing *OsIRO2*. These plants showed to be more
726 tolerant to iron deficiency and presented an increase in Fe content in shoots (2-fold increase)
727 and grains (more than twice) to grown in calcareous soil (Ogo *et al.*, 2011).

728 In addition, another strategy used is through the knockdown of the gene *OsVIT2*. Bashir *et al.*
729 (2013b) showed that transgenic plants *OsVIT2-knockdown* had an increase in the
730 concentration of iron in polished grains 1.8-fold. This suggests that the disruption of this gene
731 helps in increasing the amount of iron in the grains, constituting a possible strategy for
732 producing biofortified rice.

733 Although the strategies using transgenics resulted in an increase in grain Fe content, it is
734 known that the polishing process is still responsible for major losses of this mineral. However,
735 we should not forget that, according to the genotype, the location of Fe in the grain may vary
736 (Sperotto *et al.*, 2010). Thus, further studies should be conducted aiming to develop new
737 strategies for internalization of Fe in the grain, something that can be combined with other
738 strategies.

739 The flag leaves are the main source of photoassimilates for the development of seeds in rice.
740 The Fe concentration of the flag leaf decreased during the reproductive development in rice
741 whereas the iron content of the grains increased. An interesting fact is that the cultivar with
742 lower Fe accumulation in the grains showed higher Fe accumulation in flag leaf. This study
743 demonstrates that there is an iron remobilization from the flag leaf to the grains, and
744 increasing this remobilization can help us in obtaining biofortified grains (Sperotto *et al.*,
745 2010).

746 Another biofortification alternative to decrease the content of inhibitors of Fe absorption, such
747 as phytic acid (Raboy, 2002), or to increase the activity of phytase (Lucca *et al.*, 2001). The
748 antisense repression of *1D-MYO-INOSITOL-3-PHOSPHATE SYNTHASE* gene, encoding a
749 key enzyme in the synthesis of phytic acid, resulted in 68% reduction of phytic acid content
750 (Kuwano *et al.*, 2009).

751 The commercialization of genetically modified Fe biofortified crops has some limitations,
752 either by farmers (changes in the appearance of the product) and consumers (high cost and
753 acceptance of genetically modified organisms). In this sense, methods based on the selection
754 of genotypes that are rich in Fe, followed by hybridization, can be better accepted (Zielińska-
755 Dawidziak, 2015).

756 Rice Germplasm banks can be screened to identify genotypes that can absorb and store Fe
757 more efficiently, so more QTLs related to these characteristics can be mapped and
758 introgressed into elite varieties. In this case, it is taken into account the natural variation that
759 occurred during evolution, taking advantage of the effects of specific interactions between
760 different genes and alleles (Schuler and Bauer, 2011). As an example of the potential for
761 exploitation of these banks we can cite the four-fold difference found when comparing the
762 iron content of aromatic and traditional varieties (Mulualem, 2015).

763 The natural variation related to Fe accumulation in rice grains that has been already detected
764 is quite low, in addition, grinding and polishing the grains results in a loss of up to 80% of
765 this element, since Fe is stored primarily in the embryo and aleurone layer and not in the
766 endosperm (Brinch-Pedersen *et al.*, 2007). Furthermore, the Fe concentration is deeply
767 influenced by the interaction between genotype and environment (Graham *et al.*, 1999).
768 However, despite these limitations, the International Rice Research Institute (IRRI) has
769 developed the cultivar IR68144, which has about twice the concentration of Fe of other local
770 varieties (Gregorio *et al.*, 2000).

771 The development of cultivars with increased iron content in the grains, even at relatively low
772 levels, associated with results of the characterization of 1138 genotypes, that identified a
773 variation of 6.3 to 24.4 $\mu\text{g.g}^{-1}$ of Fe in grains, suggests that there is genetic potential for
774 development of other new varieties with high amounts of Fe (Gregorio *et al.*, 2000;
775 Mulualem, 2015). Furthermore, the genetic variability for the content of phytic acid can also
776 be exploited. These possibilities make the future of genetic progress seem really optimistic
777 (Liu, 2005).

778

779 **Conclusions**

780 Being essential in the composition of different proteins and metabolic pathways, iron is vital
781 for animal and plant health. Actually it is really ironic that an element capable of generating

782 toxic effects due to its high bioavailability in certain places is also a problem due to its low
783 availability in others. To solve this problem, studies aiming the identification and
784 understanding of pathways related to the regulation of iron metabolism are being conducted,
785 combined with molecular markers in the identification of QTLs that may act on these
786 pathways, and the use of phylogeny to better understand the evolution of these, aiming to
787 decrease the sensitivity of rice to the lack and to the excess of iron in the soil, as well as to
788 help in the generation of biofortified plants with higher iron content in the grains.

789 Throughout these studies we can see that we have succeeded not only in the description of the
790 regulatory pathways, but also in breeding for improved varieties. Advances continue to be
791 made and obstacles being overcome. In the future we should, besides pyramiding QTLs
792 related to iron tolerance and increased iron content in grains, also focus on the exploration of
793 the existing variation for genes that have proven to be important in experiments involving
794 transgenic analysis, this should enable us to achieve greater market acceptance and to reduce
795 bureaucratic obstacles, which greatly hinder the release of genetically modified organisms.

796 Although the genetic progress may seem difficult at certain times, our ability to deal with iron
797 metabolism in rice has increased, and soon we should obtain cultivars that will be highly
798 tolerant to iron stress, both by excess and a lack of this mineral. Allied to this, we should also
799 be able to develop biofortified plants with higher content of iron in their grains, helping the
800 fight against anemia and providing better quality of life especially for those who are not
801 favored by our political system.

802

803 **Acknowledgments**

804 This work was supported by the Brazilian Ministry of Science and Technology, National
805 Counsel of Technological and Scientific Development (CNPq); Coordination for the
806 Improvement of Higher Education Personnel (Capes) and RS State Foundation for Research
807 Support (FAPERGS).

808

809 **References**

810 Anuradha K, Agarwal S, Rao YV, Rao KV, Viraktamath BC and Sarla N (2012) Mapping
811 QTLs and candidate genes for iron and zinc concentrations in unpolished rice of
812 Madhukar×Swarna RILs. *Gene* 508:233–240.

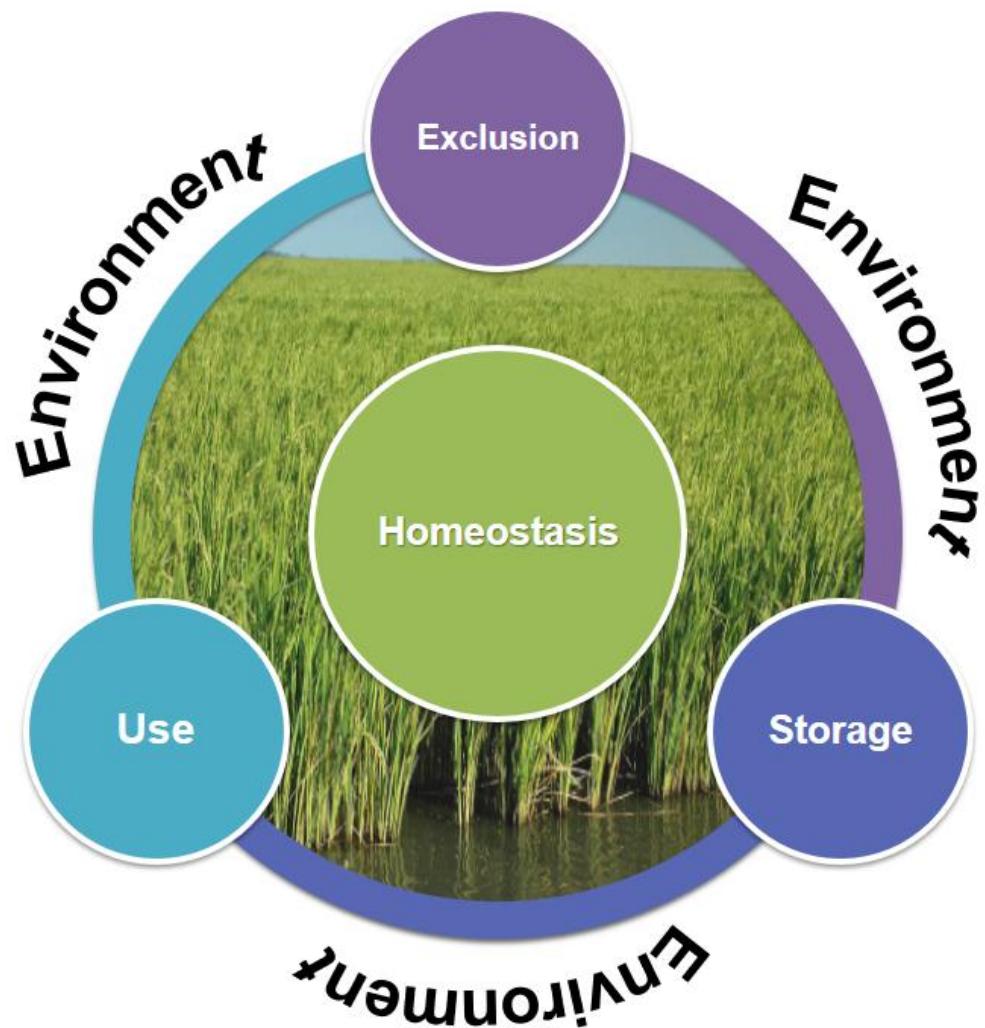
- 813 Aung MS, Masuda H, Kobayashi T, Nakanishi H, Yamakawa T and Nishizawa NK (2013)
814 Iron biofortification of myanmar rice. *Front Plant Sci* 4:158.
- 815 Banerjee S and Chandel G (2011) Understanding the role of metal homeostasis related
816 candidate genes in Fe/Zn uptake, transport and redistribution in rice using semi-
817 quantitative RT-PCR. *J Plant Mol Biol Biotechnol* 2:33–46.
- 818 Bashir K, Inoue H, Nagasaka S, Takahashi M, Nakanishi H, Mori S and Nishizawa NK
819 (2006) Cloning and Characterization of Deoxymugineic Acid Synthase Genes from
820 Graminaceous Plants. *J Biol Chem* 281:32395–32402.
- 821 Bashir K, Ishimaru Y, Shimo H, Nagasaka S, Fujimoto M, Takanashi H, Tsutsumi N, An G,
822 Nakanishi H and Nishizawa NK (2011) The rice mitochondrial iron transporter is
823 essential for plant growth. *Nat Commun* 2:322.
- 824 Bashir K, Nozoye T, Ishimaru Y, Nakanishi H and Nishizawa NK (2013a) Exploiting new
825 tools for iron bio-fortification of rice. *Biotechnol Adv* 31:1624–1633
- 826 Bashir K, Takahashi R, Akhtar S, Ishimaru Y, Nakanishi H and Nishizawa N (2013b) The
827 knockdown of OsVIT2 and MIT affects iron localization in rice seed. *Rice* 6:31–37.
- 828 Becker M and Asch F (2005) Iron toxicity in rice - Conditions and management concepts. *J*
829 *Plant Nutr Soil Sci* 168:558–573.
- 830 Belouchi A, Kwan T and Gros P (1997) Cloning and characterization of the OsNramp family
831 from *Oryza sativa*, a new family of membrane proteins possibly implicated in the
832 transport of metal ions. *Plant Mol Biol* 33:1085–92.
- 833 Briat JF and Lobreaux S (1997) Iron transport and storage in plants. *Trends Plant Sci* 2:187–
834 193.
- 835 Brinch-Pedersen H, Borg S, Tauris B and Holm PB (2007) Molecular genetic approaches to
836 increasing mineral availability and vitamin content of cereals. *J Cereal Sci* 46:308–326.
- 837 Chen WW, Yang JL, Qin C, Jin CW, Mo JH, Ye T and Zheng SJ (2010) Nitric Oxide Acts
838 Downstream of Auxin to Trigger Root Ferric-Chelate Reductase Activity in Response
839 to Iron Deficiency in *Arabidopsis*. *Plant Physiol* 154:810–819.
- 840 Colangelo EP (2004) The Essential Basic Helix-Loop-Helix Protein FIT1 Is Required for the
841 Iron Deficiency Response. *Plant Cell Online* 16:3400–3412.
- 842 Companhia Nacional de Abastecimento (CONAB), <http://www.conab.gov.br/> (August 10,
843 2015).
- 844 Connolly EL and Guerinot M (2002) Iron stress in plants. *Genome Biol* 3: 1024.1–1024.4.
- 845 Curie C, Alonso JM, Le Jean M, Ecker JR and Briat JF (2000) Involvement of NRAMP1
846 from *Arabidopsis thaliana* in iron transport. *Biochem J* 347:749–755.

- 847 Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF and Walker EL (2001) Maize
848 yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. *Nature*
849 409:346–349.
- 850 Curie C and Briat J-F (2003) Iron transport and signaling in plants. *Annu Rev Plant Biol*
851 54:183–206.
- 852 Du J, Zeng D, Wang B, Qian Q, Zheng S and Ling HQ (2013) Environmental effects on
853 mineral accumulation in rice grains and identification of ecological specific QTLs.
854 *Environ Geochem Health* 35:161–170.
- 855 Dufey I, Hakizimana P, Draye X, Lutts S and Bertin P (2009) QTL mapping for biomass and
856 physiological parameters linked to resistance mechanisms to ferrous iron toxicity in
857 rice. *Euphytica* 167:143–160.
- 858 Durrett TP, Gassmann W and Rogers EE (2007) The FRD3-Mediated Efflux of Citrate into
859 the Root Vasculature Is Necessary for Efficient Iron Translocation. *Plant Physiol*
860 144:197–205.
- 861 Duy D, Stube R, Wanner G and Philipp K (2011) The Chloroplast Permease PIC1
862 Regulates Plant Growth and Development by Directing Homeostasis and Transport of
863 Iron. *Plant Physiol* 155:1709–1722.
- 864 Feng H, An F, Zhang S, Ji Z, Ling H and Zuo J (2006) Light-regulated, tissue-specific, and
865 cell differentiation-specific expression of the *Arabidopsis* Fe(III)-Chelate Reductase
866 gene AtFRO6. *Plant Physiology* 140:1345–1354.
- 867 Finatto T *et al.*, (2015) Abiotic stress and genome dynamics: specific genes and transposable
868 elements response to iron excess in rice. *Rice* 8:13.
- 869 Food and Agriculture Organization of The United Nations - Statistics Division (FAOSTAT),
870 <http://faostat3.fao.org/download/Q/QC/E> (August 31, 2015).
- 871 Fukuda A, Shiratsuchi H, Fukushima A, Yamaguchi H, Mochida H, Terao T and Ogiwara H
872 (2012) Detection of Chromosomal Regions Affecting Iron Concentration in Rice Shoots
873 Subjected to Excess Ferrous Iron Using Chromosomal Segment Substitution Lines
874 between Japonica and Indica. *Plant Prod Sci* 15:183–191.
- 875 Gollhofer J, Timofeev R, Lan P, Schmidt W and Buckhout TJ (2014) Vacuolar-iron-
876 transporter1-like proteins mediate iron homeostasis in *Arabidopsis*. *PLoS One*
877 9:e110468.
- 878 Goto F, Yoshihara T, Shigemoto N, Toki S and Takaiwa F (1999) Iron fortification of rice
879 seed by the soybean ferritin gene. *Nat Biotechnol* 17:282–286.
- 880 Graham R, Senadhira D, Beebe S, Iglesias C and Monasterio I (1999) Breeding for

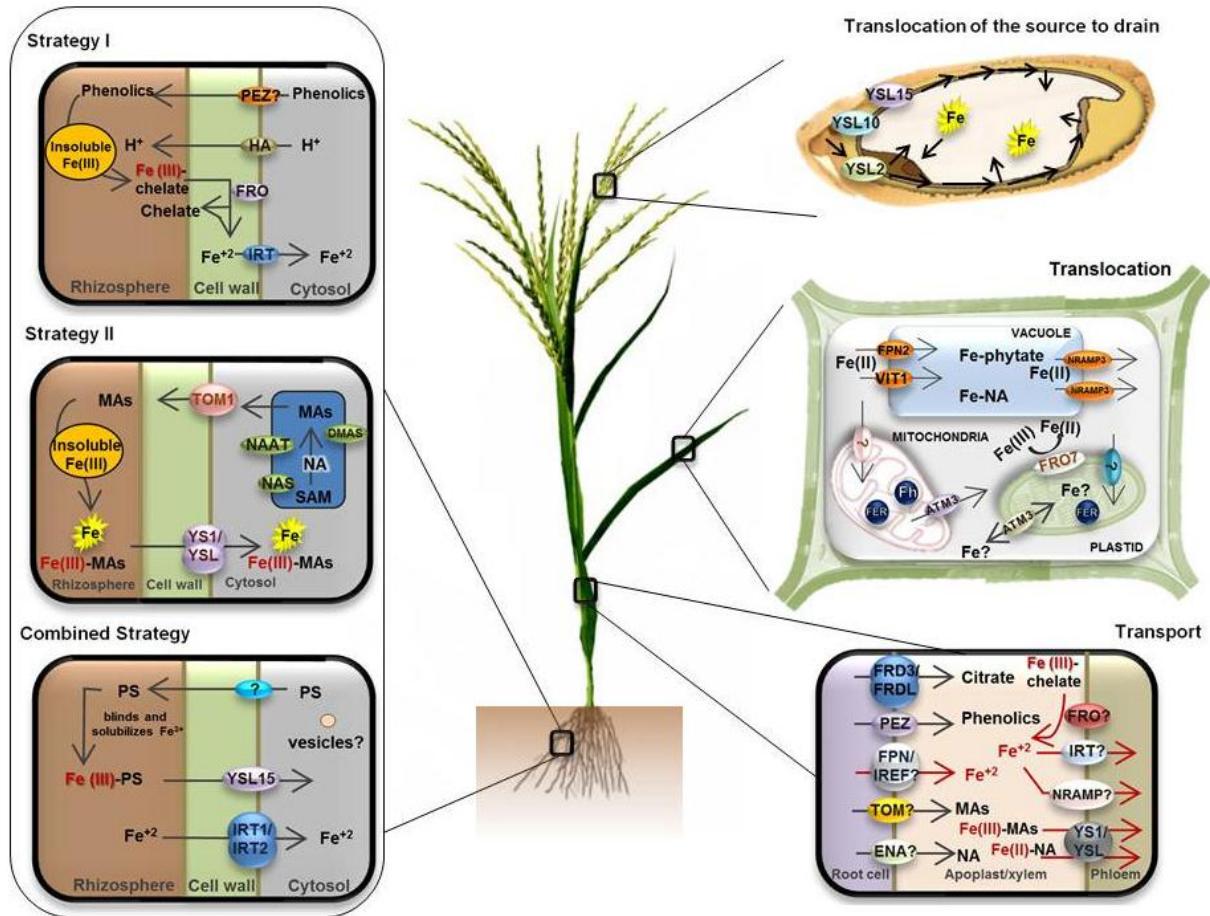
- 881 micronutrient density in edible portions of staple food crops: Conventional approaches.
882 *F Crop Res* 60:57–80.
- 883 Gregorio G, Senadhira D, Htut H and Graham RR (2000) Breeding for trace mineral density
884 in rice. *Food Nutr Bull* 21:382–386.
- 885 Gross J, Stein RJ, Fett-Neto AG and Fett JP (2003) Iron homeostasis related genes in rice.
886 *Genet Mol Biol* 26:477–497.
- 887 Hell R and Stephan UW (2003) Iron uptake, trafficking and homeostasis in plants. *Planta*
888 216:541–551.
- 889 Hindt MN and Guerinot M Lou (2012) Getting a sense for signals: regulation of the plant iron
890 deficiency response. *Biochim Biophys Acta* 1823:1521–30.
- 891 Hori T, Aoyagi T, Itoh H, Narihiro T, Oikawa A, Suzuki K, Ogata A, Friedrich MW, Conrad
892 R and Kamagata Y (2015) Isolation of microorganisms involved in reduction of
893 crystalline iron(III) oxides in natural environments. *Front Microbiol* 6:386.
- 894 Inoue H, Kobayashi T, Nozoye T, Takahashi M, Kakei Y, Suzuki K, Nakazono M, Nakanishi
895 H, Mori S and Nishizawa NK (2009) Rice OsYSL15 Is an Iron-regulated Iron(III)-
896 Deoxymugineic Acid Transporter Expressed in the Roots and Is Essential for Iron
897 Uptake in Early Growth of the Seedlings. *J Biol Chem* 284:3470–3479.
- 898 Ishimaru Y (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. *J Exp Bot*
899 56:3207–3214.
- 900 Ishimaru Y *et al.*, (2006) Rice plants take up iron as an Fe^{3+} -phytosiderophore and as Fe^{2+} .
901 *Plant J* 45:335–346.
- 902 Ishimaru Y *et al.*, (2010) Rice metal-nicotianamine transporter, OsYSL2, is required for the
903 long-distance transport of iron and manganese. *Plant J* 62:379–390.
- 904 Itai RN, Ogo Y, Kobayashi T, Nakanishi H and Nishizawa NK (2013) Rice genes involved in
905 phytosiderophore biosynthesis are synchronously regulated during the early stages of
906 iron deficiency in roots. *Rice* 6:16.
- 907 Johnson AAT, Kyriacou B, Callahan DL, Carruthers L, Stangoulis J, Lombi E and Tester M
908 (2011) Constitutive Overexpression of the OsNAS Gene Family Reveals Single-Gene
909 Strategies for Effective Iron- and Zinc-Biofortification of Rice Endosperm. *PLoS One*
910 6:e24476.
- 911 Kim SA and Guerinot M Lou (2007) Mining iron: Iron uptake and transport in plants. *FEBS*
912 *Lett* 581:2273–2280.
- 913 Kim SA, Punshon T, Lanzirotti A, Li L, Alonso JM, Ecker JR, Kaplan J and Guerinot M Lou
914 (2006) Localization of iron in *Arabidopsis* seed requires the vacuolar membrane

- 915 transporter VIT1. *Science* 314:1295–8.
- 916 Kobayashi T, Suzuki M, Inoue H, Itai RN, Takahashi M, Nakanishi H, Mori S and Nishizawa
917 NK (2005) Expression of iron-acquisition-related genes in iron-deficient rice is co-
918 ordinatorily induced by partially conserved iron-deficiency-responsive elements. *J Exp
919 Bot* 56:1305–1316.
- 920 Kobayashi T, Ogo Y, Itai RN, Nakanishi H, Takahashi M, Mori S and Nishizawa NK (2007)
921 The transcription factor IDEF1 regulates the response to and tolerance of iron
922 deficiency in plants. *Proc Natl Acad Sci U S A* 104:19150–19155.
- 923 Kobayashi T, Itai RN, Ogo Y, Kakei Y, Nakanishi H, Takahashi M and Nishizawa NK (2009)
924 The rice transcription factor IDEF1 is essential for the early response to iron deficiency,
925 and induces vegetative expression of late embryogenesis abundant genes. *Plant J*
926 60:948–961.
- 927 Kobayashi T and Nishizawa NK (2012) Iron Uptake, Translocation, and Regulation in Higher
928 Plants. *Annu Rev Plant Biol* 63:131–152.
- 929 Kobayashi T, Nagasaka S, Senoura T, Itai RN, Nakanishi H and Nishizawa NK (2013) Iron-
930 binding haemerythrin RING ubiquitin ligases regulate plant iron responses and
931 accumulation. *Nat Commun* 4:1–12.
- 932 Kobayashi T and Nishizawa NK (2014) Iron sensors and signals in response to iron
933 deficiency. *Plant Sci* 224:36–43.
- 934 Kuwano M, Mimura T, Takaiwa F and Yoshida KT (2009) Generation of stable “low phytic
935 acid” transgenic rice through antisense repression of the 1D-myo-inositol 3-phosphate
936 synthase gene (RINO1) using the 18-kDa oleosin promoter. *Plant Biotechnol J* 7:96–
937 105.
- 938 Lee S and An G (2009) Over-expression of OsIRT1 leads to increased iron and zinc
939 accumulations in rice. *Plant, Cell Environ* 32:408–416.
- 940 Lee S *et al.*, (2009) Iron fortification of rice seeds through activation of the nicotianamine
941 synthase gene. *Proc Natl Acad Sci USA* 106:22014–22019.
- 942 Li L, Cheng X and Ling H (2004) Isolation and characterization of Fe (III) -chelate reductase
943 gene LeFRO1 in tomato. *Plant Molecular Biology* 125–136.
- 944 Li S *et al.*, (2015) OsSEC24, a functional SEC24-like protein in rice, improves tolerance to
945 iron deficiency and high pH by enhancing H⁺ secretion mediated by PM-H⁺-ATPase.
946 *Plant Sci* 233:61–71.
- 947 Lingam S, Mohrbacher J, Brumbarova T, Potuschak T, Fink-Straube C, Blondet E, Genschik
948 P and Bauer P (2011) Interaction between the bHLH Transcription Factor FIT and

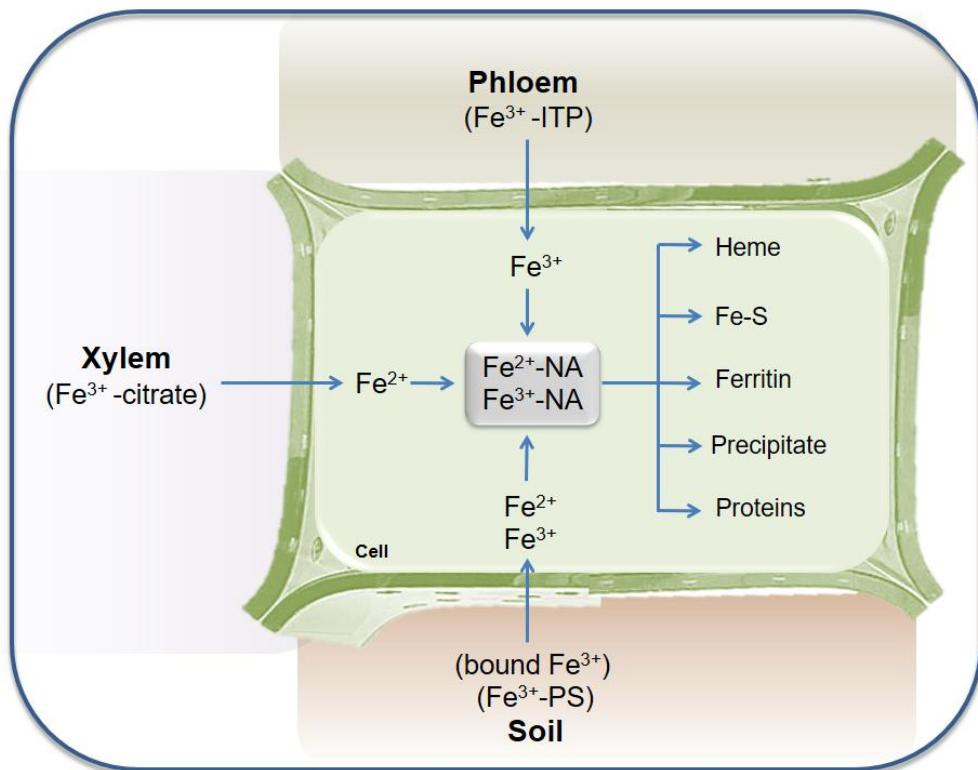
- 949 Ethylene Insensitive3/Ethylene Insensitive3-Like1 Reveals Molecular Linkage between
950 the Regulation of Iron Acquisition and Ethylene Signaling in Arabidopsis. *Plant Cell*
951 23:1815–1829.
- 952 Liu Z (2005) Grain phytic acid content in japonica rice as affected by cultivar and
953 environment and its relation to protein content. *Food Chem* 89:49–52.
- 954 Long TA, Tsukagoshi H, Busch W, Lahner B, Salt DE and Benfey PN (2010) The bHLH
955 Transcription Factor POPEYE Regulates Response to Iron Deficiency in Arabidopsis
956 Roots. *Plant Cell Online* 22:2219–2236.
- 957 Lucca P, Hurrell R and Potrykus I (2001) Genetic engineering approaches to improve the
958 bioavailability and the level of iron in rice grains. *Theor Appl Genet* 102:392–397.
- 959 Lucena C, Waters BM, Romera FJ, García MJ, Morales M, Alcántara E and Pérez-Vicente R
960 (2006) Ethylene could influence ferric reductase, iron transporter, and H⁺-ATPase gene
961 expression by affecting FER (or FER-like) gene activity. *J Exp Bot* 57:4145–4154.
- 962 Majerus V, Bertin P, Swenden V, Fortemps a., Lobréaux S and Lutts S (2007) Organ-
963 dependent responses of the african rice to short-term iron toxicity: Ferritin regulation
964 and antioxidative responses. *Biol Plant* 51:303–312.
- 965 Marty F (1999) Plant vacuoles. *Plant Cell* 11:587–599.
- 966 Masuda H, Suzuki M, Morikawa KC, Kobayashi T, Nakanishi H, Takahashi M, Saigusa M,
967 Mori S and Nishizawa NK (2008) Increase in Iron and zinc concentrations in rice grains
968 via the introduction of barley genes involved in phytosiderophore synthesis. *Rice*
969 1:100–108.
- 970 Masuda H, Usuda K, Kobayashi T, Ishimaru Y, Kakei Y, Takahashi M, Higuchi K, Nakanishi
971 H, Mori S and Nishizawa NK (2009) Overexpression of the barley nicotianamine
972 synthase gene HvNAS1 increases iron and zinc concentrations in rice grains. *Rice*
973 2:155–166.
- 974 Masuda H, Ishimaru Y, Aung MS, Kobayashi T, Kakei Y, Takahashi M, Higuchi K,
975 Nakanishi H and Nishizawa NK (2012) Iron biofortification in rice by the introduction
976 of multiple genes involved in iron nutrition. *Sci Rep* 2:1–7.
- 977 Masuda H, Kobayashi T, Ishimaru Y, Takahashi M, Aung MS, Nakanishi H, Mori S and
978 Nishizawa NK (2013) Iron-biofortification in rice by the introduction of three barley
979 genes participated in mugineic acid biosynthesis with soybean ferritin gene. *Front Plant
980 Sci* 4:132.
- 981 Merlot S, Hannibal L, Martins S, Martinelli L, Amir H, Lebrun M and Thomine S (2014) The
982 metal transporter PgIREG1 from the hyperaccumulator *Psychotria gabriellae* is a


- 983 candidate gene for nickel tolerance and accumulation. *J Exp Bot* 65:1551–1564.
- 984 Mongon J, Konnerup D, Colmer TD and Rerkasem B (2014) Responses of rice to Fe²⁺ in
985 aerated and stagnant conditions: growth, root porosity and radial oxygen loss barrier.
986 *Funct Plant Biol* 41:922–929.
- 987 Moretti D, Zimmermann MB, Muthayya S, Thankachan P, Lee TC, Kurpad A V. and Hurrell
988 RF (2006) Extruded rice fortified with micronized ground ferric pyrophosphate reduces
989 iron deficiency in Indian schoolchildren: A double-blind randomized controlled trial1-3.
990 *Am J Clin Nutr* 84:822–829.
- 991 Morrissey J and Guerinot ML (2009) Iron uptake and transport in plants: The good, the bad,
992 and the ionome. *Chem Rev* 109:4553–4567.
- 993 Mulualem T (2015) Application of Bio-fortification through Plant Breeding to Improve the
994 Value of Staple Crops. *Biomedicine and Biotechnology* 3:11–19.
- 995 Nakanishi H, Yamaguchi H, Sasakuma T, Nishizawa NK and Mori S (2000) Two
996 dioxygenase genes, IDS3 and IDS2, from *Hordeum vulgare* are involved in the
997 biosynthesis of mugineic acid family phytosiderophores. *Plant Mol Biol* 44:199–207.
- 998 Narayanan NN, Vasconcelos MW and Grusak MA. (2007) Expression profiling of *Oryza*
999 *sativa* metal homeostasis genes in different rice cultivars using a cDNA macroarray.
1000 *Plant Physiol Biochem* 45:277–286.
- 1001 Nawaz Z, Kakar KU, Li X, Li S, Zhang B, Shou H and Shu Q (2015) Genome-wide
1002 Association Mapping of Quantitative Trait Loci (QTLs) for Contents of Eight Elements
1003 in Brown Rice (*Oryza sativa* L.). *J Agric Food Chem* 63:8008–8016.
- 1004 Nevo Y and Nelson N (2006) The NRAMP family of metal-ion transporters. *Biochim
1005 Biophys Acta - Mol Cell Res* 1763:609–620.
- 1006 Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Sato Y, Uozumi N, Nakanishi H
1007 and Nishizawa NK (2011) Phytosiderophore Efflux Transporters Are Crucial for Iron
1008 Acquisition in Graminaceous Plants. *J Biol Chem* 286:5446–5454.
- 1009 Ogo Y, Nakanishi Itai R, Nakanishi H, Kobayashi T, Takahashi M, Mori S and Nishizawa
1010 NK (2007) The rice bHLH protein OsIRO2 is an essential regulator of the genes
1011 involved in Fe uptake under Fe-deficient conditions. *Plant J* 51:366–377.
- 1012 Ogo Y, Itai RN, Kobayashi T, Aung MS, Nakanishi H and Nishizawa NK (2011) OsIRO2 is
1013 responsible for iron utilization in rice and improves growth and yield in calcareous soil.
1014 *Plant Mol Biol* 75:593–605.
- 1015 Palmer CM and Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in
1016 plants. *Nat Chem Biol* 5:333–340.

- 1017 Panda BB, Sharma S, Mohapatra PK and Das A (2014) Iron Nutrition vis-à-vis Aconitase
1018 Activity and Ferritin Accumulation in Tropical Indica Rice Cultivars Differing in Grain
1019 Iron Concentration. *Am J Plant Sci* 5:2829–2841.
- 1020 Paul S, Ali N, Gayen D, Datta SK and Datta K (2012) Molecular breeding of Osfer 2 gene to
1021 increase iron nutrition in rice grain. *GM Crops Food* 3:310–6.
- 1022 Peng J-S and Gong J-M (2014) Vacuolar sequestration capacity and long-distance metal
1023 transport in plants. *Front Plant Sci* 5:1–5.
- 1024 Perdiguero E and Muñoz-Cánoves P (2008) Transcriptional regulation by the p38 MAPK
1025 signaling pathway in mammalian cells. *Stress Protein Kinases* 20:51–79.
- 1026 Petit JM, Van Wuytswinkel O, Briat JF and Lobréaux S (2001) Characterization of an Iron-
1027 dependent Regulatory Sequence Involved in the Transcriptional Control of AtFer1 and
1028 ZmFer1 Plant Ferritin Genes by Iron. *J Biol Chem* 276:5584–5590.
- 1029 Placido F, Arcanjo N, Santos PR and Segall SD (2013) Ferric Pyrophosphate-fortified Rice
1030 Given Once Weekly Does not Increase Hemoglobin Levels in Preschoolers. *Rice*
1031 Research : Open Access 1:1–5.
- 1032 Qu LQ, Yoshihara T, Ooyama A, Goto F and Takaiwa F (2005) Iron accumulation does not
1033 parallel the high expression level of ferritin in transgenic rice seeds. *Planta* 222:225–33.
- 1034 Quinet M, Vromman D, Clippe A, Bertin P, Lequeux H, Dufey I, Lutts S and Lefèvre I
1035 (2012) Combined transcriptomic and physiological approaches reveal strong differences
1036 between short- and long-term response of rice (*Oryza sativa*) to iron toxicity. *Plant Cell*
1037 *Environ* 35:1837–1859.
- 1038 Raboy V (2002) Progress in Breeding Low Phytate Crops. *J Nutr* 503-505.
- 1039 Ricachenevsky FK, Sperotto RA, Menguer PK, Sperb ER, Lopes KL and Fett JP (2011) Zinc-
1040 Induced Facilitator-Like family in plants: lineage-specific expansion in monocotyledons
1041 and conserved genomic and expression features among rice (*Oryza sativa*) paralogs.
1042 *BMC Plant Biol* 11:20.
- 1043 Ricachenevsky FK and Sperotto R a (2014) There and back again, or always there? The
1044 evolution of rice combined strategy for Fe uptake. *Front Plant Sci* 5:189.
- 1045 Russel R *et al.*, (2001). Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron,
1046 Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium
1047 and Zinc. National Academy Press, Washington, 773pp.
- 1048 Sahrawat KL (2004) Managing iron toxicity in lowland rice : the role of tolerant genotypes
1049 and plant nutrients. *Rice is life: scientific perspectives for the 21st century* 1:452–454.
- 1050 Santi S and Schmidt W (2009) Dissecting iron deficiency-induced proton extrusion in


- 1085 (2012) Phylogenetic relationships and selective pressure on gene families related to iron
1086 homeostasis in land plants. *Genome* 55:883–900.
- 1087 Vigani G, Tarantino D and Murgia I (2013) Mitochondrial ferritin is a functional iron-storage
1088 protein in cucumber (*Cucumis sativus*) roots. *Front Plant Sci* 4:316.
- 1089 Visser J and Herselman, M (2013) Anaemia in South Africa: the past, the present and the
1090 future. *S Afr J Clin Nutr* 26:166–167.
- 1091 Vreugdenhil D, Aarts MGM, Koornneef M, Nelissen H and Ernst WHO (2004) Natural
1092 variation and QTL analysis for cationic mineral content in seeds of *Arabidopsis*
1093 *thaliana*. *Plant Cell Environ* 27:828–839.
- 1094 Wan JL, Zhai HQ and Ikehashi H (2003) Detection and analysis of QTLs for ferrous iron
1095 toxicity tolerance in rice, *Oryza sativa* L. *Euphytica* 131:201–206.
- 1096 Wan JL, Zhai HQ, Wan JM, Yasuiu H and Yoshimura A (2003) Mapping QTL for traits
1097 associated with resistance to ferrous iron toxicity in rice (*Oryza sativa* L.), using
1098 japonica chromosome segment substitution lines. *Yi Chuan Xue Bao* 30:893–898.
- 1099 White P and Broadley M (2005) Biofortifying crops with essential mineral elements. *Trends*
1100 *Plant Sci* 10:586–593.
- 1101 Widodo MRB *et al.*, (2010) Response to zinc deficiency of two rice lines with contrasting
1102 tolerance is determined by root growth maintenance and organic acid exudation rates ,
1103 and not by zinc-transporter activity. *New Phytologist* 400–414.
- 1104 World Healf Organization (WHO),
1105 http://www.who.int/nutrition/publications/en/ida_assessment_prevention_control.pdf
1106 (December 05, 2015).
- 1107 Wu L, Shhadi MY, Gregorio G, Matthus E, Becker M and Frei M (2014) Genetic and
1108 physiological analysis of tolerance to acute iron toxicity in rice. *Rice* 1–12.
- 1109 Wu P, Hu B, Liao CY, Zhu JM, Wu YR, Senadhira D and Paterson AH (1998)
1110 Characterization of tissue tolerance to iron by molecular markers in different lines of
1111 rice. *Plant and Soil* 217–226.
- 1112 Yang X, Song J, Campbell-Palmer L, Fillmore S and Zhang Z (2013) Effect of ethylene and
1113 1-MCP on expression of genes involved in ethylene biosynthesis and perception during
1114 ripening of apple fruit. *Postharvest Biol Technol* 78:55–66.
- 1115 Yao W, Li G, Zhao H, Wang G, Lian X and Xie W (2015) Exploring the rice dispensable
1116 genome using a metagenome-like assembly strategy. *Genome Biol* 16:187.
- 1117 Yokosho K, Yamaji N, Ueno D, Mitani N and Ma JF (2009) OsFRDL1 Is a Citrate
1118 Transporter Required for Efficient Translocation of Iron in Rice. *Plant Physiol*

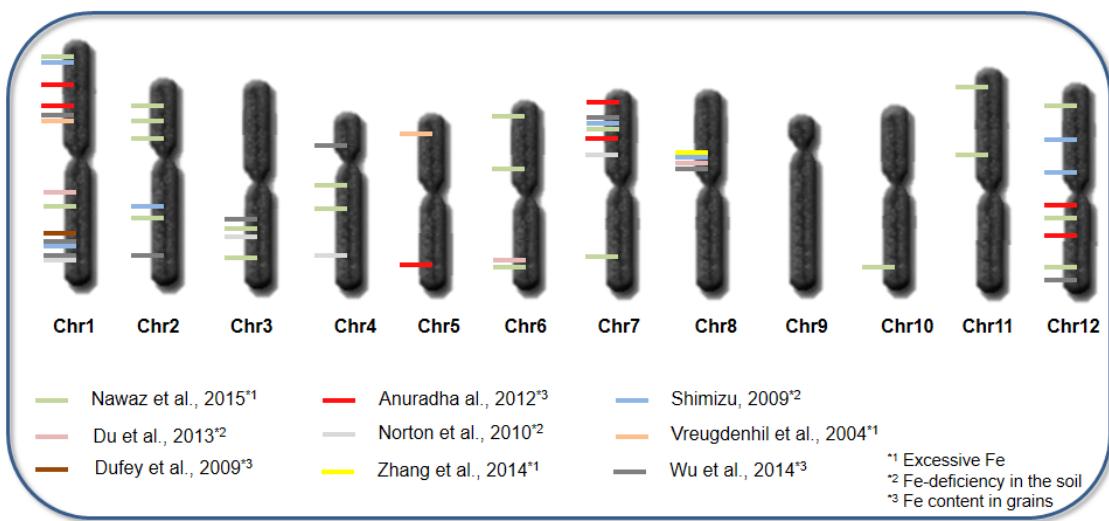
- 1119 149:297–305.
- 1120 Yuan Y, Wu H, Wang N, Li J, Zhao W, Du J, Wang D and Ling H-Q (2008) FIT interacts
1121 with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron
1122 homeostasis in *Arabidopsis*. *Cell Res* 18:385–397.
- 1123 Zhang M, Pinson SRM, Tarpley L, Huang XY, Lahner B, Yakubova E, Baxter I, Guerinot M
1124 Lou and Salt DE (2014) Mapping and validation of quantitative trait loci associated
1125 with concentrations of 16 elements in unmilled rice grain. *Theor Appl Genet* 127:137–
1126 165.
- 1127 Zhang Y, Xu YH, Yi HY and Gong JM (2012) Vacuolar membrane transporters OsVIT1 and
1128 OsVIT2 modulate iron translocation between flag leaves and seeds in rice. *Plant J*
1129 72:400–410.
- 1130 Zheng L, Ying Y, Wang L, Wang F, Whelan J and Shou H (2010) Identification of a novel
1131 iron regulated basic helix-loop-helix protein involved in Fe homeostasis in *Oryza sativa*.
1132 *BMC Plant Biol* 10:166.
- 1133 Zhu Y, Di T, Xu G, Chen X, Zeng H, Yan F and Shen Q (2009) Adaptation of plasma
1134 membrane H⁺-ATPase of rice roots to low pH as related to ammonium nutrition. *Plant,*
1135 *Cell Environ* 32:1428–1440.
- 1136 Zielińska-Dawidziak M (2015) Plant Ferritin - A Source of Iron to Prevent Its Deficiency.
1137 *Nutrients* 7:1184–1201.


1138

1139 **Figure 1. Mechanisms of iron homeostasis in plants.** Survival under conditions of iron excess depends on the
1140 ability to use, exclude and/or store this element. These are deeply dependent on both genetic and environmental
1141 factors. Adapted from Perdiguero and Muñoz-Cánoves (2008).

1142

1143 **Figure 2. Absorption and translocation of iron in rice.** Adapted from Palmer and Guerinot (2009); Kobayashi
 1144 and Nishizawa (2012); Bashir *et al.* (2013a).


1145

1146 **Figure 3. Role of nicotianamine (NA) in iron metabolism in plant cells.** Iron can enter the plant cell through
 1147 various strategies depending on the nature of the iron source. In this context NA is an important chelator that is
 1148 able to provide iron in a functional form, avoiding precipitation and catalysis. Adapted from Hell and Stephan
 1149 (2003).

1150

1151

1152

1153

1154 **Figure 4. QTLs related to Fe metabolism.** Map with the location of different QTLs related to tolerance to low
 1155 and/or excessive amounts of Fe in the soil, and/or related to the variation of Fe content in grains.

1156 **4.2 Artigo 2 – Genome-wide transcriptional profiling of rice unveils novel**
1157 **genes involved in tolerance to iron excess**

1158

1159 Artigo com provável submissão à revista *The Plant Genome*

1160

1161 Artur Teixeira de Araujo Junior^{1,2}; Daniel da Rosa Farias²; Railson Schreinert dos Santos^{1,2}; Luis Willian
1162 Pacheco Arge²; Danyela de Cássia da Silva Oliveira²; Solange Ferreira da Silveira Silveira²; Camila Pegoraro²;
1163 Eugenia Jacyra Bolacel Braga³; Luciano Carlos da Maia²; Antonio Costa de Oliveira^{1,2}

1164

1165 ¹ Technology Development Center (CDTec), Universidade Federal de Pelotas; Pelotas, RS, Brazil.

1166 ² Plant Genomics and Breeding Center, Universidade Federal de Pelotas, Campus Capão do Leão, 96010-900
1167 Capão do Leão, Brazil. Phone: 0555332757263, Fax: 0555332759031, acostol@terra.com.br

1168 ³ Department of Botany, Federal University of Pelotas, Campus Capão do Leão, 96010-900 Capão do Leão,
1169 Brazil

1170

1171 **Abstract**

1172 Iron (Fe) is essential for plant growth and development. However, high concentrations of
1173 Fe(II) in the soil can be toxic for plants. Fe homeostasis is not completely understood and
1174 there is little information about molecular responses to excessive amounts of Fe. Rice
1175 (*Oryza sativa* L) is a model species for functional genomics and an important crop for human
1176 nutrition. Due to the little information available on this subject, this study aimed to investigate
1177 iron homeostasis in rice analyzing its expression profile under high concentrations of iron.
1178 Here, a tolerant cultivar (BRS Querência), was exposed to high a concentration of iron (300
1179 mg L⁻¹ Fe⁺²). The response of this genotype includes a large increase in the expression of
1180 genes, responsible for transport and storage of iron, heat shock proteins and genes related to
1181 photosystem II. Conversely, genes associated with synthesis-degradation of ethylene and
1182 kinases receptor was down regulated. These results provide novel information about the
1183 regulation of genes in an iron tolerant genotype.

1184

1185 **Keywords:** transcriptomics; iron toxicity; abiotic stress; homeostasis; RNAseq.

1186

1187 **1 Introduction**

1188 Abiotic and biotic stresses can deeply impact yield. In order to minimize the harmful effects
1189 that these stresses can promote plants developed a series of physiological responses (Ohta et
1190 al., 2006). Iron (Fe) is considered an essential element for plant growth, however high
1191 concentrations of this element can promote toxicity causing severe damage (Mongan et al.,
1192 2014; Finatto et al., 2015).

1193 Substantial progress has been made in understanding the molecular aspects of tolerance to
1194 iron excess. Three mechanisms are the most important: I) in the root surface through
1195 oxidation and precipitation of Fe(II); II) inside the cell through the absorbing of Fe(II) of the
1196 extracellular environment and storing in a less reactive form; and III) triggering a tolerance to
1197 products formed of reactive oxygen species (ROS) by the Fenton's reaction (Wu et al., 2014).
1198 Still most information about iron homeostasis is associated with Fe deficiency and not with its
1199 excess (Kobayashi & Nishizawa, 2012).

1200 Rice (*Oryza sativa* L.) is one of the most important staple crops, having a significant
1201 importance at economic, social and scientific levels (Finatto et al., 2015). At the economic
1202 level, the rice stands out as being the second most widely grown cereal. At the social level,
1203 rice is a staple food, present in more than two thirds of the world's population (Finatto et al.,
1204 2015). Besides this, rice has a great importance at the scientific level, being considered a
1205 model plant among the monocots (Yu et al., 2002).

1206 The process of plant adaptation in stressful situations engage in trigger a series of responses
1207 that allows changes in the cell and in the organism so as to maintain optimal cell activities.
1208 Understanding how plant cells monitor and respond to external signals in these processes is
1209 fundamentally important. The aim of this study was to observe the transcriptional profile of a
1210 variety previously described as tolerant to excess iron stress and identify possible stress-
1211 responsive genes.

1212 **2 Materials and Methods**1213 **2.1 Data analysis**

1214 The RNA-Seq technique was used to compare the transcriptional profile of rice leaves of a
1215 tolerant cultivar (BRS Querênci), in stage V3, exposed to iron stresses ($300 \text{ mg L}^{-1} \text{ Fe}^{+2}$) for
1216 24 hours. Data analysis was performed according to Amaral et al. (2016 - Submitted).

1217 The identification of differentially expressed genes (DEGs) was performed using edge R Ver.
1218 3.8.5 (Rensink et al., 2005). The expression levels were normalized by Reads Per Kilobase
1219 per Million mapped reads (RPKM) method, with $p\text{-value} < 0.01$. For the enrichment analysis
1220 and classification of gene ontology (GO) the BLAST2GO Ver. 2.7.2 was used, the terms of
1221 overrepresented GOs were identified by Fisher's exact test ($p < 0.01$), corrected by the method
1222 FDR (false discovery rate) at $p < 0.05$ (Conesa & Götz, 2008). The annotation was
1223 complemented with the database from the Rice Annotation Project Database (RAP-DB:
1224 <http://rapdb.dna.affrc.go.jp/>) (Sakai et al., 2013). After, MapMan Ver. 3.5.1.R2 (Thimm et al.,
1225 2004) was used to detect changes in metabolism and the Search Tool for the Retrieval of
1226 Interacting Genes/Proteins (STRING: <http://string-db.org/>) to detect the protein-protein
1227 interactions with medium confidence (0.4) (Szklarczyk et al., 2015). The representation of the
1228 intensity of differential expression was presented in heatmap form by the MultiExperiment
1229 Viewer (MeV) Ver. 4.9 (Saeed et al., 2003).

1230

1231 **3 Results and Discussion**1232 **Differentially expressed genes from RNA-seq data**

1233 The transcriptomic profile reports a set of 630 differentially expressed rice genes (DEGs)
1234 under iron overload (Additional file 1). These genes represent a small genic fraction (1.37%)
1235 of rice genome. Among these DEGs, 334 were up-regulated (53%) and 296 down regulated
1236 (47%) (Figure 1A).

1237 Most of these genes (90%) are in range from -1 to 1 $\text{Log}_2 \text{ FC}$ (Fold Change) (Figure 1B).
1238 Outside this range, we have a higher number of down regulated genes. The highest fold-
1239 changes were found to be -2.67 for Os08g0520000 and 3.594 for Os09g0396900.

1240 The low number of DEGs may be due to the most dramatic changes in transcriptome
1241 happening in root epidermis since it is in direct contact with the stress. On the other hand, the

1242 responses were analyzed in a short time under stress, resulting in an initial response front the
1243 stress and in the initial transport of the iron for the shoot. Wherein each cell type can be
1244 affected in a different form, due the accumulation capacity of the metal in the cell (Morrissey
1245 & Guerinot, 2009). Similar data were found by Quinet et al. (2012) that found different
1246 response at short- (three days) or long-term (three weeks) and in roots or shoots under iron
1247 stress.

1248 The small variation between up and down regulated and the number of DEGs were also found
1249 in Quinet et al. (2012). They studied gene expression in cultivar I Kong Pao (*indica* rice), in
1250 response to 125 mg L^{-1} FeSO_4 for two different times. They obtained 799 different express
1251 genes, among them, 64.95% were induced and 35.05% were repressed. The I Kong Pao
1252 cultivar was classified as tolerant to iron toxicity just like the BRS Querênciâ.

1253 In opposition, Finatto et al. (2015) found 2525 different express genes, being them 97% were
1254 up-regulated. The study used in leaves of 14-day-old rice seedlings (*Oryza sativa* ssp.
1255 *japonica* cv. Nipponbare) after put over four days of iron excess exposure (390 mg L^{-1} of
1256 Fe^{2+}). This cultivar of rice was considered susceptible (Finatto et al., 2015). This can be
1257 suggest that maybe tolerant cultivar can have a more specific response by activating and
1258 repressing specific genes associated with tolerance mechanism, whereas in the susceptible
1259 plants different metabolisms are altered in an attempt survival.

1260

1261 **Gene ontology**

1262 Classification of differentially expressed genes for cellular component (Additional file 2)
1263 shows great importance of gene products located in mitochondria (96 assignments: 57 up and
1264 39 down regulated), followed by products related to plastids (93 assignments: 54 up and 39
1265 down regulated) and finally to cytoplasmic membrane-bounded vesicle (71 assignments: 23
1266 up and 48 down regulated).

1267 Fe is essential for the reactions present in mitochondria and chloroplasts. The data available in
1268 literature indicate that mitochondria are one of the major cellular components affected by
1269 some types of stress, mainly because the mitochondria are an important ROS sources and may
1270 have a possible role for metal-reductases (Zykova & Kolesnichenko, 2002; Vigani et al.,
1271 2013). Some enzymes responsible for antioxidant defenses are present in mitochondria and
1272 chloroplasts, having high correlation with the level of Fe. Moreover, Fe may be involved in

1273 the oxidative damage of lipids and proteins (Iturbe-Ormaetxe et al., 1995; Becana et al.,
1274 1998).

1275 Concerning the molecular functions, the structural constituent of ribosome, protein binding
1276 and ATP binding are the most highly represented in DEGs, with respectively, 30, 16 and 14
1277 assignments. Wherein structural constituent of ribosome, only up regulated genes are
1278 observed under iron excess. For down regulated genes we have that the most molecular
1279 function are protein binding (seven assignments) and ATP binding (six assignments).
1280 Regarding the classification for biological processes, the most frequent differentially
1281 expressed genes are related to translation and ribosome biogenesis, where in both cases, we
1282 have only up regulated genes, with 27 and 25 assignments, respectively.

1283 The cell's initial response to a stressful stimulus is geared towards helping the cell to defend
1284 against and recover from the damage (Fulda, Gorman, Hori, & Samali, 2010). To trigger a
1285 response mechanism in the plant mostly need to increase the expression of certain genes,
1286 having thus, a higher activation of the transcription and translation machinery.

1287

1288 **Metabolisms affected by stress iron**

1289 Among the different metabolisms affected by stress, we have in featured the iron homeostasis
1290 metabolism with a large increase in the expression of genes encoding proteins responsible for
1291 transporter and storage of iron (Figure 2), the stress response metabolism with activation of
1292 genes that encoding specific heat shock proteins (Figure 3), metabolism of the photosynthesis
1293 with a differentiated expression of genes related to photosynthesis (Figure 4), hormone
1294 metabolism with the repression of genes associated with ethylene (Figure 5) and the signaling
1295 metabolism with repression of genes encoding kinases receptor proteins (Figure 6).

1296

1297 **Expression profiles of genes encoding proteins involved in iron homeostasis**

1298 Comparing our results with data related to iron metabolism available in literature (Gross et al.,
1299 2003; Kobayashi & Nishizawa, 2012; Quinet et al., 2012; Darbani et al., 2013; Bashir et al.,
1300 2014; Finatto et al., 2015), we found that 111 genes present in this study are also differentially
1301 expressed in others experiments (Additional file 3), may be part of a similar plant response to
1302 stress by iron.

1303 Four genes, found in our experiment, are in direct relationship with the central genes
1304 responsible for Fe homeostasis and had an increase in the expression (Table 1) (Kobayashi &
1305 Nishizawa, 2012). The Os06g0112200 encode a METHYLTHIOADENOSINE
1306 NUCLEOSIDASE (MTN) protein that takes part in cysteine and methionine metabolism,
1307 present as a regulated enzyme in the methionine (Met) cycle (Bürstenbinder et al., 2010). In
1308 dicot plants, the Met cycle produces NICOTIANAMINE (NA) that can have a relationship
1309 with metal cation homeostasis (Higuchi et al., 2001; Bürstenbinder et al., 2010). Moreover,
1310 this pathway operate NICOTIANAMINE SYNTHASE (NAS), NICOTIANAMINE
1311 AMINOTRANSFERASE (NAAT), and DEOXYMUGINEIC ACID SYNTHASE (DMAS)
1312 whose products act in the Strategy II of Fe acquisition that is specific to graminaceous plants
1313 (Kobayashi & Nishizawa, 2012). The increase of the MTN transcript level is associated with
1314 the up regulated ethylene biosynthesis, an important hormone that affects a variety of
1315 processes, including the stress response (Bürstenbinder et al., 2010; Wang, Cui, Sun, & Dong,
1316 2013).

1317 The gene Os02g0833100 coding to FERRIC REDUCTASE DEFECTIVE 3 (FRD3), involved
1318 in xylem and phloem Fe loading, delivering iron to the shoot in a usable form (Rogers &
1319 Guerinot, 2002). Studies suggesting that FRD3 is a transporter of the multidrug and toxin
1320 efflux family (Rogers & Guerinot, 2002; Durrett et al., 2007). In rice, most of the data
1321 reported the expression of this gene in root pericycle cell, being responsible to regulate citrate
1322 effluxes required for efficient Fe translocation (Yokosho et al., 2009). No reports were found
1323 on the real function of FRD3 in the leaf. However, the increase of expression in this gene may
1324 play an important role as an iron chelator, contributing to iron homeostasis (Rogers &
1325 Guerinot, 2002; Durrett, Gassmann, & Rogers, 2007).

1326 We found strong expression of FERRITIN (Os12g0106000), an iron storage protein that acts
1327 as an iron buffer being responsible by storing this ion in a soluble, non-toxic and bioavailable
1328 form (Petit, Briat, & Lobréaux, 2001). Similar data was found in rice exposed to iron excess
1329 showing an increase of the expression of this gene in roots after 3 days of stress under 125 mg
1330 L⁻¹ FeSO₄ (Quinet et al., 2012) and in flag leaves and panicles at different reproductive stages
1331 under 9 mM Fe²⁺ (Stein, Ricachenevsky, & Fett, 2009). This gene is associated to plant
1332 response to Fe overload, preventing oxidative stress (Petit et al., 2001). The *FERRITIN* was
1333 used to biofortification, being that overexpression of this gene results in three fold increases in
1334 leaf and seed Fe content, being responsible for storing iron in different tissues (Goto et al.,

1335 1999; Wuyts, V. et al, 1999). This elevation in the expression indicates the
1336 participation of this gene in the homeostasis of Fe.

1337 Under the conditions used the gene Os09g0396900, a *VACUOLAR IRON TRANSPORTER*
1338 (*VIT*) gene was induced. Similar data was found in root and shoot rice under iron excess stress
1339 (Quinet et al., 2012; Finatto et al., 2015). This gene localizes to the vacuolar membrane and
1340 has the function of transporting ions (Fe and Zn) into the vacuole, storing metals under excess
1341 conditions and providing in deficiency conditions (Zhang, Y. et al., 2012), being an important
1342 mechanism in regulating iron homeostasis (Finatto et al., 2015). Studies suggesting that this
1343 gene can be a strategy for producing Fe-biofortified rice, where knockout genes *OsVIT1* or
1344 *OsVIT2* can increase the Fe concentration of seeds and decrease in leaves (Zhang, Y. et al.,
1345 2012; Bashir et al., 2013). Beyond this gene, we found other metal transporter genes,
1346 Os05g0198400, which had its expression affected by stress. Os05g0198400 coding an IRON-
1347 REGULATED TRANSPORTER-LIKE PROTEIN 4 (ZIP4) been involved in metal uptake
1348 and transport in plants (Ishimaru, 2005). Rice ZIP4 can transport Zn, but no data about
1349 transporting other metals, as Fe or Mn have been found (Ramesh et al., 2003; Y. Ishimaru,
1350 2005). However, its increase may be associated with a response to not having a Zn nutritional
1351 deficiency in the plant due preventing the uptake, transport and use that iron excess can cause
1352 a Fe accumulation on the roots (M. Zhang et al., 2014).

1353 Analyzing the expression profile by Genevestigator (Figure 2A) we found that the *MTN* and
1354 *FRD3* have not big differentiation in the expression under nutrient deficiency or submergence
1355 condition. However, *FERRITIN* and *VIT1* show a low expression in Fe deficiency condition
1356 and with high expression under submergence condition. These data demonstrate that these
1357 genes have a higher probability of being expressed in high concentrations of metals to
1358 develop a response in cell homeostasis.

1359 The iron homeostasis genes found don't show data of co-expression with the other genes
1360 expressed in this experiment. However, products these four genes have co-expression with
1361 other proteins (Figure 2B, complete information in Additional file 4). The MTN was the only
1362 protein that has data in rice, having a co-expression with a METHYLTHIORIBOSE KINASE
1363 (MTK), 0.113, and with ACIREDUCTONE DIOXYGENASE (ARD), 0.142, being that these
1364 two proteins make part of Met cycle. The other proteins have co-expression of homologous in
1365 different species. The FRD3 has co-expression with an uncharacterized protein, FERRITIN
1366 with a 60S ribosomal protein L19 in *Arabidopsis thaliana* and VIT with a transmembrane 9

1367 superfamily member. These data can suggest a possible influence of the iron homeostasis
1368 genes in others process of the plant, helping in understand how the stress response can affect
1369 the cell.

1370

1371 **Specific types of Heat Shock proteins are induced**

1372 Genes encode to heat shock proteins (HSPs) exhibited a complex response pattern to iron
1373 excess. HSPs are characterized as molecular chaperons (Hu, Hu, & Han, 2009). Studies
1374 suggest that the increases of the concentration of HSPs are closely related to resistance to
1375 stress (Ray, 1999; Iba, 2002), having an important role in abiotic stress response in plants
1376 (Pegoraro et al., 2011). We found nine proteins classified as HSPs, being five up regulated
1377 and four down regulated (Figure 3A). Between the HSPs up regulated, two are HSP70, two
1378 HSP40 e one is a GrpE. The HSP70 are present in many cellular process, being responsible to
1379 protect cells by different types of stress (Samali & Cotter, 1996; Jäättelä et al., 1998), can also
1380 make complex with cochaperones, including DnaJ/HSP40 that have too an increase in
1381 expression (Takayama, 1997; Qiu et al., 2006). Similar data was found in two *HSPs*,
1382 Os12g0569700 and Os03g0271400, that were too down regulated by Fe excess in shoots
1383 (Bashir et al., 2014). As can be seen in Figure 3B the expression pattern of these genes are
1384 more down regulated under submergence stress conditions, while under nutrient stress, these
1385 genes have a higher tendency to be up regulated. These data suggest a more specific response
1386 of those genes under different stress conditions, being the expression pattern obtained in this
1387 experiment had differences of other conditions analyzed.

1388 As shown in Figure 3C (and Additional file 4), we can observe the network of protein-protein
1389 interactions of the HSPs (present in the box denominated 'biotic and abiotic stress') found in
1390 this experiment with the other different express genes. These data demonstrate the large
1391 amount of positive co-expression data that the HSPs have with other metabolisms induced in
1392 this experiment, including mainly oxidases, RNA processing and ribosomal protein synthesis.
1393 Similar data were obtained in others studies demonstrating the diverse activities that these
1394 proteins may possess, including protein import into organelles (Shi & Theg, 2010), gene
1395 regulation by interaction with heat shock transcription factor (HSF) (Kim & Schöffl,
1396 2002), degradation of highly accumulated non-localized proteins (Lee et al., 2009) and
1397 protein-folding of de novo-synthesized polypeptides (Hartl, 1996), affecting various
1398 metabolisms. Although the functions of HSPs are comprehensively characterized, the

1399 association of the their role in iron excess tolerance has not been investigated thoroughly.
1400 Thus, the results obtained in this experiment can help in this process of understanding of plant
1401 tolerance response and how these genes are associated with Fe homeostasis

1402

1403 **Effects of iron excess on photosynthesis genes**

1404 The great majority of genes associated to photosynthesis light reactions were induced in rice
1405 under excess iron (Figure 4A and complete information in Additional file 1). Among them
1406 highlight the sequences coding for photosystem II (PSII) polypeptide subunits, electron
1407 carrier, rubisco large subunit and phosphoglycerate kinase. However, a group of genes of
1408 *LIGHT-HARVESTING COMPLEX II (LHC-II)* were down regulated (Figure 4A).

1409 In higher plants, LHC-II proteins are mostly associated with PSII, being responsible for
1410 absorb photons, effectively deliver and regulate the excitation energy to the reaction centers
1411 (Lokstein, Betke, Krikunova, Teuchner, & Voigt, 2012). Between the *LHC-II* genes, we
1412 found three genes down regulated related to CHLOROPHYLL A/B-BINDING protein,
1413 Os09g0346500 (*OsLhcb1*), Os03g0592500 (*LHCB/LHCP II*) and Os01g0600900 (*OsLhcp*).
1414 In contrast, one *Lhcb* gene, *OsLhcb1.3* (Os01g0720500), under excess Fe in rice was up
1415 regulated in shoots (Bashir et al., 2014). Although in experiments under Fe deficiency *Lhcb*
1416 genes up and down regulated were found (Bashir et al., 2014), demonstrating that the two
1417 have different forms of expression may be present. Furthermore, studies suggest that a DnaJ
1418 protein, *OsDjA7/8*, has an effect on the expression of *Lhcb* genes in rice (Zhu et al., 2015).
1419 Thus, the differential expression of Hsp40 family (Figure 4A and Additional file 1) may
1420 contribute for the decrease in the expression of LHC proteins.

1421 Six sequences that code for PSII polypeptide subunits had their highest expressions (Figure
1422 4A). Similar results were found in Bashir et al. (2014) where genes related to PSII were also
1423 up regulated while under Fe deficiency these genes were down regulated, suggesting that
1424 these genes have an elevated expression, due to increase in rate of photosynthesis provided by
1425 the high availability of Fe (Bashir et al., 2014). In addition, changes in the expression of these
1426 genes have been found in other studies under the stress condition (Pegoraro et al., 2015),
1427 despite that, according to the analysis in Genevestigator (Figure 4B), we until have a little
1428 data on this expression, being specific to some genes of this family. Besides this, we also
1429 found in the literature other genes associated with light reaction that also were increased

1430 under iron excess (Figure 4A). These genes may be associated with a response similar of the
1431 plant to this stress condition (Bashir et al., 2014; Finatto et al., 2015).

1432 The co-expression data in rice shows that the genes differentially expressed associated to
1433 photosynthesis has interactions with nine metabolisms (Figure 4C). Although it has few
1434 proteins associated with some metabolism (redox and regulation of transcription), these may
1435 contribute to important associations. The interaction with redox metabolism is due the gene
1436 encoding the ascorbate, an antioxidant and a co-factor of many metal-containing enzymes,
1437 that has multiple roles in stress tolerance and in plant development (Davey et al., 2000). In the
1438 photosynthesis, ascorbate can have different functions as an alternative electron donor for PSI
1439 and PSII, and can be an antioxidant in chloroplasts (Mano, Hideg, & Asada, 2004; Höller et
1440 al., 2015). In the regulation of transcription we have a Heat-shock transcription factor family,
1441 whereupon, already mentioned the great importance of this class in the stress response.

1442

1443 **The majority of the genes associated with hormone response are down regulated**

1444 We found changes in expression of genes that are involved in the biosynthesis of plant
1445 hormones (Additional file 1). Between these genes, five are associates to synthesis-
1446 degradation of ethylene (Figure 5A), six to abscisic acid (ABA) signaling pathway and four to
1447 auxin response.

1448 All the genes relative to synthesis-degradation of ethylene were down regulated, this may be
1449 due to decreased expression of two ethylene responsive factors, Os09g0287000 (*OsERF63*)
1450 and Os09g0434500 (*OsERF72*). The AP2/ETHYLENE RESPONSE FACTOR (ERF) can act
1451 as a transcriptional activator and as repressor activity, being that these genes can generate
1452 tolerance (Thirugnanasambantham et al., 2015). As can be seen in Figure 5B, these sequences
1453 that code for synthesis-degradation of ethylene have been identified having changes in their
1454 expression profile of stress. Finatto et al. (2015) found up regulation in genes associated to
1455 ethylene response in rice under iron excess. However, their cultivar was characterized having
1456 a sensitivity to stress, moreover it has not found the same set of genes associated with the
1457 ethylene response.

1458 The expression of others genes associated with the plant hormones also were down regulated.
1459 The genes relatives to abscisic acid had a decrease in expression, this can be explained due the
1460 also descrease in ABA-activated protein kinase, Os02g0551100 and Os04g0691100. Besides

1461 this, the majority of the auxin genes were down regulated. These hormone response
1462 suggesting that the associated to ethylene response, ABA signaling and auxin response may
1463 be involved in Fe excess stress responses, resulting in a wide reprogramming development
1464 mediated by hormones in response to stress.

1465 The co-expression data show a few numbers of interactions presents in three metabolisms and
1466 a group of unknown (Figure 5C). Hormone metabolism have interactions with genes
1467 associated with auxin and ethylene, moreover, have interactions with different class of factor
1468 family in the metabolism related with regulation of transcription, suggesting that the hormone
1469 metabolism may have a complex regulation or contribute to the expression of several factors.
1470 These results may contribute to the understanding of the hormonal mechanism and how this
1471 mechanism may act developing a response to stress.

1472

1473 **Receptor kinases are down regulated in conditions of iron excess**

1474 The plant receptor protein kinase consists of transmembrane proteins that perceive stimuli
1475 extracellular and transmits response signals to these stimuli, being associated with trigger to
1476 abiotic and biotic stress response (Shiu & Bleecker, 2001; Morris & Walker, 2003). All the
1477 differential express sequences that coding to receptor protein kinase were down regulated
1478 under iron excess (Figure 6A).

1479 This may trigger a specific type of response to this stress, being characteristic of this cultivar.
1480 The expression profile of these genes on different stresses (Figure 6B) indicates that many of
1481 these genes do not have a differential expression in the conditions analyzed. However two
1482 genes, Os07g0628900 and Os07g0628700, have an expression in up and down regulated.
1483 These observations suggest that the decrease on the expression of these genes may directly
1484 effect on generation of compounds and thus may promoting a differentiated response.

1485 Analyzing the co-expression of this metabolism we have the interaction of a few numbers of
1486 proteins that make part of six known metabolisms (Figure 6C). Among those metabolisms we
1487 have in highlighted the oxidases, glycolysis, photosynthesis and hormone metabolism, being
1488 that all these interactions were with sequences down regulated in this study. This result may
1489 suggest that differential expression of these signaling genes can be strongly associated with
1490 the expression of different groups of proteins, indicating a reprogramming in different cell
1491 metabolism in response to stress.

1492 **4 Conclusion**

1493 Plants have evolved a myriad of adaptive mechanisms based on a number of genes to deal
1494 with the different toxic metals they encounter in soils worldwide. In this paper, we identified a
1495 large number of up regulated genes involved in iron homeostasis, specific heat shock proteins
1496 and photosystem II polypeptide subunits. Furthermore, we found a group of genes associates
1497 to ethylene kinases receptor and light-harvesting complex II that were down regulated. These
1498 results clarified some response of iron stress in rice plants.

1499

1500 **Acknowledgements**

1501 This study was funded by the Brazilian Ministry of Science and Technology, National
1502 Counsel of Technological and Scientific Development (CNPq); Coordination for the
1503 Improvement of Higher Education Personnel (CAPES) and State Foundation for Research
1504 Support of Rio Grande do Sul (FAPERGS).

1505

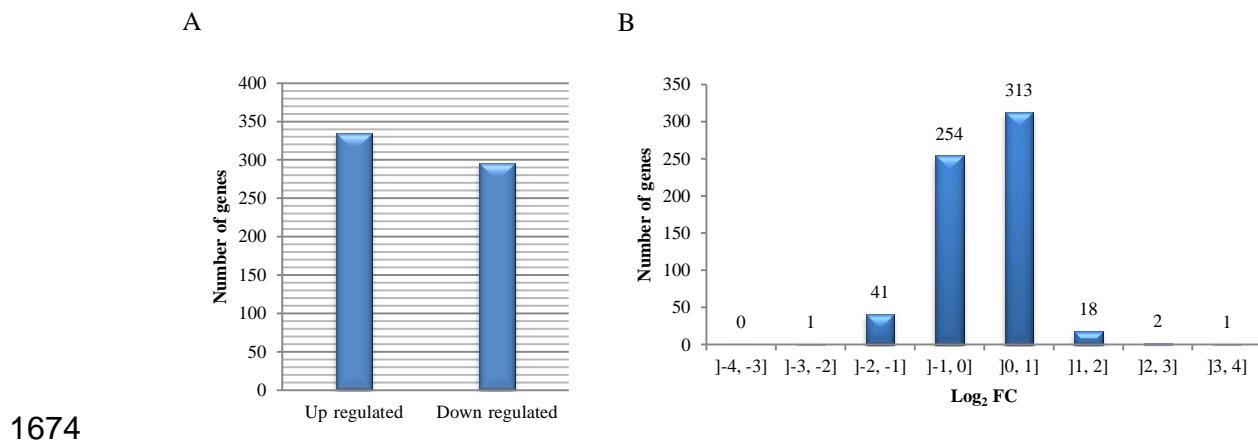
1506 **Additional files**

1507 The additional files of this article are present in the Annexes of the dissertation.

1508

1509 **5 References**

- 1510 Amaral, M. N., Arge, L. W. P., Benitez, L. C., Danielowski, R., Silveira, S. F. S., Farias, D.
1511 R., Oliveira, A. C., Braga, E. J. B., & Maia, L. C. (2016 – Submitted). Comparative
1512 transcriptomics of rice plants under abiotic stresses reveals different genetic complexity
1513 degrees.
- 1514 Bashir, K., Hanada, K., Shimizu, M., Seki, M., Nakanishi, H., & Nishizawa, N. K. (2014).
1515 Transcriptomic analysis of rice in response to iron deficiency and excess. *Rice*, 7(1), 18.
- 1516 Bashir, K., Takahashi, R., Akhtar, S., Ishimaru, Y., Nakanishi, H., & Nishizawa, N. (2013).
1517 The knockdown of *OsVIT2* and *MIT* affects iron localization in rice seed. *Rice*, 6, 31–37.
- 1518 Becana, M., Moran, J. F., & Iturbe-Ormaetxe, I. (1998). Iron-dependent oxygen free radical
1519 generation in plants subjected to environmental stress: toxicity and antioxidant
1520 protection. *Plant and Soil*, 201(1), 137–147.


- 1521 Bürstenbinder, K., Waduwara, I., Schoor, S., Moffatt, B. A., Wirtz, M., Minocha, S. C., &
1522 Sauter, M. (2010). Inhibition of 5'-methylthioadenosine metabolism in the Yang cycle
1523 alters polyamine levels, and impairs seedling growth and reproduction in *Arabidopsis*.
1524 *Plant Journal*, 62, 977–988.
- 1525 Conesa, A., & Götz, S. (2008). Blast2GO: A Comprehensive Suite for Functional Analysis in
1526 Plant Genomics. *International Journal of Plant Genomics*, 2008, 1–12.
- 1527 Darbani, B., Briat, J.F., Holm, P. B., Husted, S., Noeparvar, S., & Borg, S. (2013). Dissecting
1528 plant iron homeostasis under short and long-term iron fluctuations. *Biotechnology
1529 Advances*, 31(8), 1292–1307.
- 1530 Davey, M. W., Montagu, M. Van, Inz, D., Sanmartin, M., Kanellis, A., Smirnoff, N., &
1531 Fletcher, J. (2000). PlantL-ascorbic acid: chemistry, function, metabolism,
1532 bioavailability and effects of processing. *Journal of the Science of Food and Agriculture*,
1533 80(7), 825–860.
- 1534 Durrett, T. P., Gassmann, W., & Rogers, E. E. (2007). The FRD3-Mediated Efflux of Citrate
1535 into the Root Vasculature Is Necessary for Efficient Iron Translocation. *Plant
1536 physiology*, 144(1), 197–205.
- 1537 Finatto, T., de Oliveira, A. C., Chaparro, C., da Maia, L. C., Farias, D. R., Woyann, L. G., &
1538 Picault, N. (2015). Abiotic stress and genome dynamics: specific genes and transposable
1539 elements response to iron excess in rice. *Rice*, 8(1), 13.
- 1540 Fulda, S., Gorman, A. M., Hori, O., & Samali, A. (2010). Cellular Stress Responses: Cell
1541 Survival and Cell Death. *International Journal of Cell Biology*, 2010, 1–23.
- 1542 Goto, F., Yoshihara, T., Shigemoto, N., Toki, S., & Takaiwa, F. (1999). Iron fortification of
1543 rice seed by the soybean ferritin gene. *Nature Biotechnology*, 17(3), 282–286.
- 1544 Gross, J., Stein, R. J., Fett-Neto, A. G., & Fett, J. P. (2003). Iron homeostasis related genes in
1545 rice. *Genetics and Molecular Biology*, 26, 477–497.
- 1546 Hartl, F. U. (1996). Molecular chaperones in cellular protein folding. *Nature*, 381(6583),
1547 571–580.
- 1548 Höller, S., Ueda, Y., Wu, L., Wang, Y., Hajirezaei, M.R., Ghaffari, M.R., & Frei, M. (2015).
1549 Ascorbate biosynthesis and its involvement in stress tolerance and plant development in
1550 rice (*Oryza sativa* L.). *Plant Molecular Biology*.
- 1551 Hu, W., Hu, G., & Han, B. (2009). Genome-wide survey and expression profiling of heat
1552 shock proteins and heat shock factors revealed overlapped and stress specific response
1553 under abiotic stresses in rice. *Plant Science*, 176(4), 583–590.

- 1554 Iba, K. (2002). Acclimative response to temperature stress in higher plants: Approaches of
1555 Gene Engineering for Temperature Tolerance. *Annual Review of Plant Biology*, 53(1),
1556 225–245.
- 1557 Ishimaru, Y. (2005). *OsZIP4*, a novel zinc-regulated zinc transporter in rice. *Journal of*
1558 *Experimental Botany*, 56(422), 3207–3214.
- 1559 Iturbe-Ormaetxe, I., Moran, J. F., Arrese-Igor, C., Gogorcena, Y., Klucas, R. V., & Becana,
1560 M. (1995). Activated oxygen and antioxidant defences in iron-deficient pea plants. *Plant,*
1561 *Cell and Environment*, 18(4), 421–429.
- 1562 Jäättelä, M., Wissing, D., Kokholm, K., Kallunki, T., & Egeblad, M. (1998). Hsp70 exerts its
1563 anti-apoptotic function downstream of caspase-3-like proteases. *The EMBO Journal*,
1564 17(21), 6124–34.
- 1565 Kim, B.-H., & Schöffl, F. (2002). Interaction between *Arabidopsis* heat shock transcription
1566 factor 1 and 70 kDa heat shock proteins. *Journal of Experimental Botany*, 53(367), 371–
1567 375.
- 1568 Kobayashi, T., & Nishizawa, N. K. (2012). Iron Uptake, Translocation, and Regulation in
1569 Higher Plants. *Annual Review of Plant Biology*, 63(1), 131–152.
- 1570 Lee, S., Lee, D. W., Lee, Y., Mayer, U., Stierhof, Y.D., Lee, S., & Hwang, I. (2009). Heat
1571 Shock Protein Cognate 70-4 and an E3 Ubiquitin Ligase, CHIP, Mediate Plastid-
1572 Destined Precursor Degradation through the Ubiquitin-26S Proteasome System in
1573 *Arabidopsis*. *The Plant Cell*, 21(12), 3984–4001.
- 1574 Lokstein, H., Betke, A., Krikunova, M., Teuchner, K., & Voigt, B. (2012). Elucidation of
1575 structure–function relationships in plant major light-harvesting complex (LHC II) by
1576 nonlinear spectroscopy. *Photosynthesis Research*, 111(1-2), 227–235.
- 1577 Mano, J., Hideg, E., & Asada, K. (2004). Ascorbate in thylakoid lumen functions as an
1578 alternative electron donor to photosystem II and photosystem I. *Archives of Biochemistry*
1579 *and Biophysics*, 429(1), 71–80.
- 1580 Mongon, J., Konnerup, D., Colmer, T. D., & Rerkasem, B. (2014). Responses of rice to Fe^{2+}
1581 in aerated and stagnant conditions: growth, root porosity and radial oxygen loss barrier.
1582 *Functional Plant Biology*, 41(9), 922–929.
- 1583 Morris, E. R., & Walker, J. C. (2003). Receptor-like protein kinases: the keys to response.
1584 *Current Opinion in Plant Biology*, 6(4), 339–342.
- 1585 Morrissey, J., & Guerinot, M. L. (2009). Iron Uptake and Transport in Plants: The Good, the
1586 Bad, and the Ionome. *Chemical Reviews*, 109(10), 4553–4567.

- 1587 Ohta, M., Schumaker, K. S., & Zhu, J.K. (2006). Mechanisms Underlying Plant Tolerance to
1588 Abiotic Stresses. In *Multigenic and Induced Systemic Resistance in Plants* (pp. 360–
1589 385). Springer US.
- 1590 Pegoraro, C., Mertz, L. M., Maia, L. C., Rombaldi, C. V., & Oliveira, A. C. (2011).
1591 Importance of heat shock proteins in maize. *Journal of Crop Science and Biotechnology*,
1592 14(2), 85–95.
- 1593 Pegoraro, C., Tadiello, A., Girardi, C. L., Chaves, F. C., Quecini, V., Costa de Oliveira, A., &
1594 Rombaldi, C. V. (2015). Transcriptional regulatory networks controlling woolliness in
1595 peach in response to preharvest gibberellin application and cold storage. *BMC Plant
1596 Biology*, 15(1), 279.
- 1597 Petit, J. M., Briat, J. F., & Lobréaux, S. (2001). Structure and differential expression of the
1598 four members of the *Arabidopsis thaliana ferritin* gene family. *Biochemical Journal*,
1599 359(3), 575.
- 1600 Qiu, X. B., Shao, Y. M., Miao, S., & Wang, L. (2006). The diversity of the DnaJ/Hsp40
1601 family, the crucial partners for Hsp70 chaperones. *Cellular and Molecular Life Sciences*,
1602 63(22), 2560–2570.
- 1603 Quinet, M., Vromman, D., Clippe, A., Bertin, P., Lequeux, H., Dufey, I., & Lefèvre, I. (2012).
1604 Combined transcriptomic and physiological approaches reveal strong differences
1605 between short- and long-term response of rice (*Oryza sativa*) to iron toxicity. *Plant, Cell
1606 & Environment*, 35(10), 1837–1859.
- 1607 Ramesh, S. A., Shin, R., Eide, D. J., & Schachtman, D. P. (2003). Differential Metal
1608 Selectivity and Gene Expression of Two Zinc Transporters from Rice. American Society
1609 of Plant Biologists (ASPB), *Plant Physiology*, Vol. 133, No. 1.
- 1610 Ray, P. K. (1999). Stress genes and species survival. *Molecular and Cellular Biochemistry*,
1611 196(1/2), 117–123.
- 1612 Rensink, W., Hart, A., Liu, J., Ouyang, S., Zismann, V., & Buell, C. R. (2005). Analyzing the
1613 potato abiotic stress transcriptome using expressed sequence tags. *Genome / National
1614 Research Council Canada*, 48(4), 598–605.
- 1615 Rogers, E. E., & Guerinot, M. L. (2002). FRD3, a Member of the Multidrug and Toxin Efflux
1616 Family, Controls Iron Deficiency Responses in *Arabidopsis*. *The plant cell online*, 14(8),
1617 1787–1799.
- 1618 Saeed, A. I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N., & Quackenbush, J.
1619 (2003). TM4: a free, open-source system for microarray data management and analysis.
1620 *BioTechniques*. 34(2), 374–377.

- 1621 Sakai, H., Lee, S. S., Tanaka, T., Numa, H., Kim, J., Kawahara, Y., & Itoh, T. (2013). Rice
1622 Annotation Project Database (RAP-DB): An Integrative and Interactive. *Plant and Cell*
1623 *Physiology*. 54 (2): e6 (1-11).
- 1624 Samali, A., & Cotter, T. G. (1996). Heat Shock Proteins Increase Resistance to Apoptosis.
1625 *Experimental Cell Research*, 223(1), 163–170.
- 1626 Shi, L. X., & Theg, S. M. (2010). A Stromal Heat Shock Protein 70 System Functions in
1627 Protein Import into Chloroplasts in the Moss *Physcomitrella patens*. *The Plant Cell*,
1628 22(1), 205–220.
- 1629 Shiu, S. H., & Bleecker, A. B. (2001). Receptor-like kinases from *Arabidopsis* form a
1630 monophyletic gene family related to animal receptor kinases. *Proceedings of the*
1631 *National Academy of Sciences of the United States of America*, 98(19), 10763–8.
- 1632 Stein, R. J., Ricachenevsky, F. K., & Fett, J. P. (2009). Differential regulation of the two rice
1633 *ferritin* genes (*OsFER1* and *OsFER2*). *Plant Science*, 177(6), 563–569.
- 1634 Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., &
1635 Von Mering, C. (2015). STRING v10: protein-protein interaction networks, integrated
1636 over the tree of life. *Nucleic Acids Research*, 43(D1), D447–D452.
- 1637 Takayama, S. (1997). BAG-1 modulates the chaperone activity of Hsp70/Hsc70. *The EMBO*
1638 *Journal*, 16(16), 4887–4896.
- 1639 Thimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P., & Stitt, M. (2004).
1640 mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic
1641 pathways and other biological processes. *The Plant Journal*, 37(6), 914–939.
- 1642 Thirugnanasambantham, K., Durairaj, S., Saravanan, S., Karikalan, K., Muralidaran, S., &
1643 Islam, V. I. H. (2015). Role of Ethylene Response Transcription Factor (ERF) and Its
1644 Regulation in Response to Stress Encountered by Plants. *Plant Molecular Biology*
1645 *Reporter*, 33(3), 347–357.
- 1646 Van Wuyts, O., Vansuyt, G., Grignon, N., Fourcroy, P., & Briat, J. F. (1999). Iron
1647 homeostasis alteration in transgenic tobacco overexpressing ferritin. *The Plant Journal*,
1648 17(1), 93–97.
- 1649 Vigani, G., Zocchi, G., Bashir, K., Philipp, K., & Briat, J. F. (2013). Cellular iron
1650 homeostasis and metabolism in plant. *Frontiers in Plant Science*, 4, 32-28.
- 1651 Wang, F., Cui, X., Sun, Y., & Dong, C.-H. (2013). Ethylene signaling and regulation in plant
1652 growth and stress responses. *Plant Cell Reports*, 32(7), 1099–1109.
- 1653 Wu, L., Shhadi, M. Y., Gregorio, G., Matthus, E., Becker, M., & Frei, M. (2014). Genetic and
1654 physiological analysis of tolerance to acute iron toxicity in rice. *Rice*, 7(1), 1-18.

- 1655 Yokosho, K., Yamaji, N., Ueno, D., Mitani, N., & Ma, J. F. (2009). *OsFRDL1* Is a Citrate
1656 Transporter Required for Efficient Translocation of Iron in Rice. *Plant physiology*,
1657 149(1), 297–305.
- 1658 Yu, J., Hu, S., Wang, J., Wong, G. K.-S., Li, S., Liu, B., & Yang, H. (2002). A draft sequence
1659 of the rice genome (*Oryza sativa* L. ssp. *indica*). *Science (New York, N.Y.)*, 296(5565),
1660 79–92.
- 1661 Zhang, M., Pinson, S. R. M., Tarpley, L., Huang, X. Y., Lahner, B., Yakubova, E., & Salt, D.
1662 E. (2014). Mapping and validation of quantitative trait loci associated with
1663 concentrations of 16 elements in unmilled rice grain. *Theoretical and Applied Genetics*,
1664 127(1), 137–165.
- 1665 Zhang, Y., Xu, Y. H., Yi, H. Y., & Gong, J. M. (2012). Vacuolar membrane transporters
1666 *OsVIT1* and *OsVIT2* modulate iron translocation between flag leaves and seeds in rice.
1667 *Plant Journal*, 72(3), 400–410.
- 1668 Zhu, X., Liang, S., Yin, J., Yuan, C., Wang, J., Li, W., & Chen, X. (2015). The DnaJ
1669 *OsDjA7/8* is essential for chloroplast development in rice (*Oryza sativa*). *Gene*, 574(1),
1670 11–19.
- 1671 Zykova, V., & Kolesnichenko, A. (2002). Involvement of reactive oxygen species in plant
1672 mitochondrial response to low-temperature stress. *Russian Journal of Plant*, 49(2), 269–
1673 276.

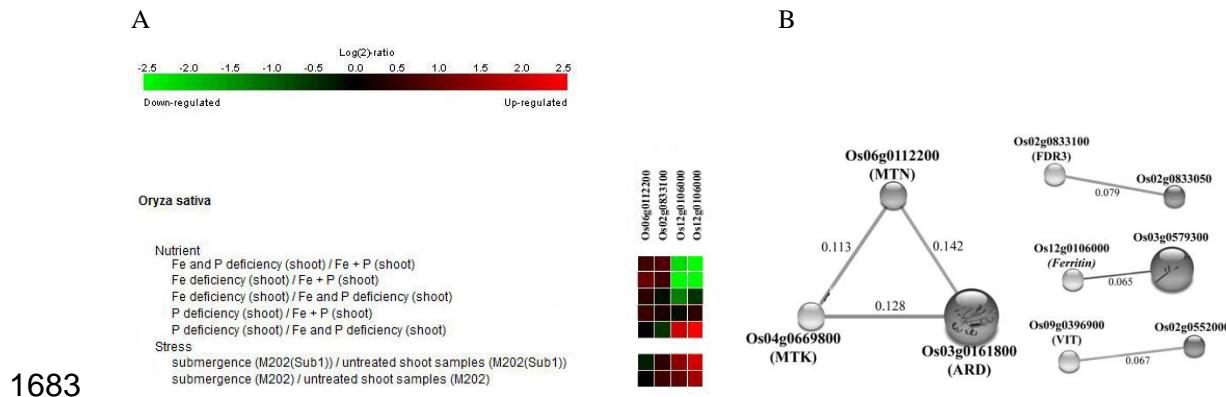
1674

1675 **Figure 1. Differentially expressed genes in rice (*Oryza sativa* ssp. *indica* cultivar BRS Querência) under**

1676 iron excess. A) Number of up and down regulated genes; B) Distribution of frequencies (p-value ≤ 0.01).

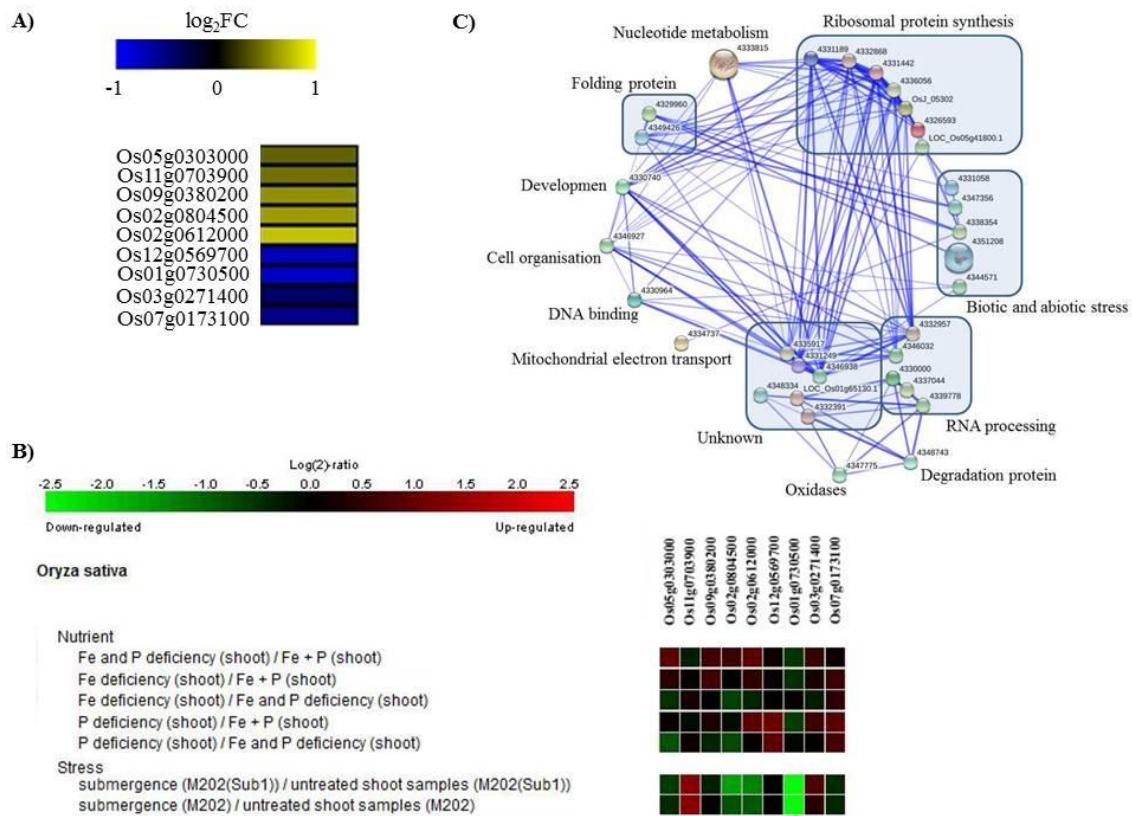
1677

1678


1679

1680

1681 **Table 1.** List of differentially genes express found in the experiment responsible for Fe homeostasis.


Gene-ID	Name	Function	log ₂ FC
Strategy II Fe uptake			
Os06g0112200	<i>MTN</i>	Methylthioadenosine/S-adenosyl homocysteine nucleosidase	0.403
Fe translocation			
Os02g0833100	<i>FRD3</i>	Citrate efflux transporter	0.461
Fe storage			
Os12g0106000	<i>FERRITIN 2</i>	High-capacity Fe storage and sequestration	2.174
Fe compartmentalization			
Os09g0396900	<i>VIT1</i>	Fe transporter into vacuole	3.594

1682

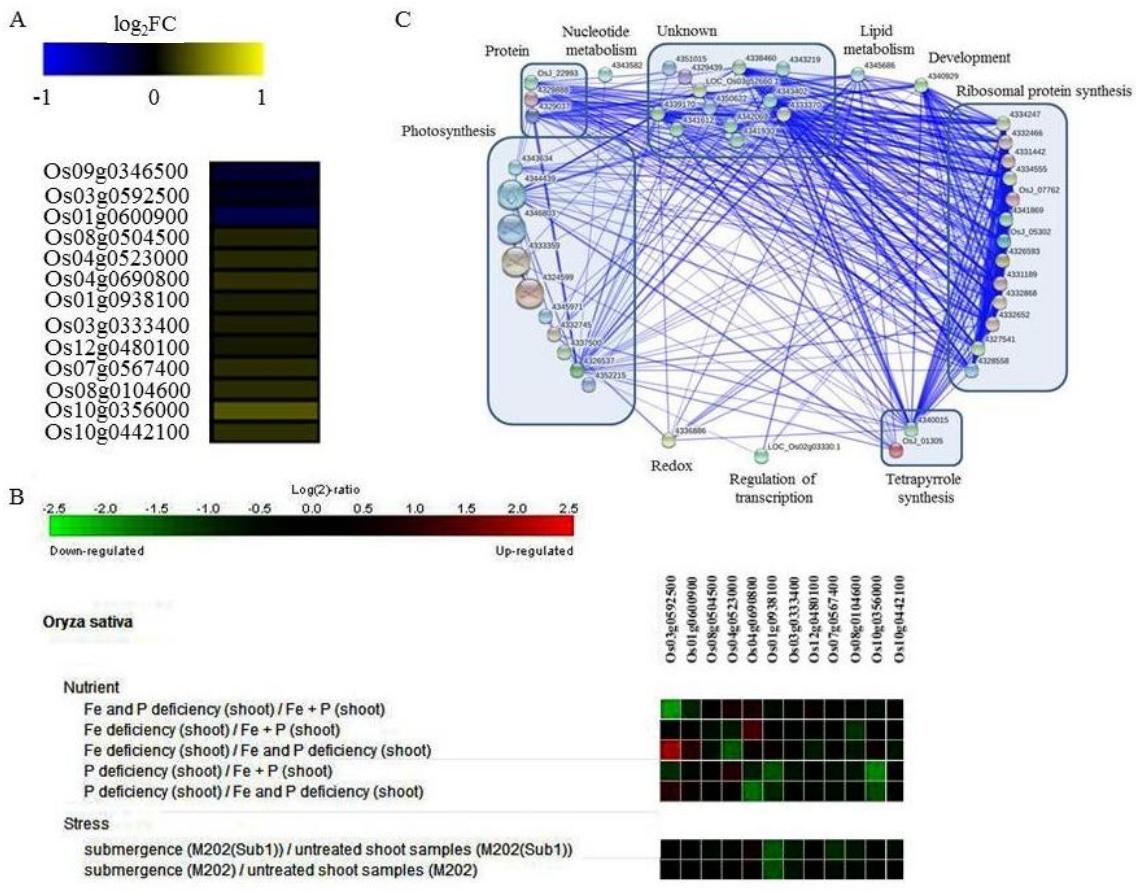
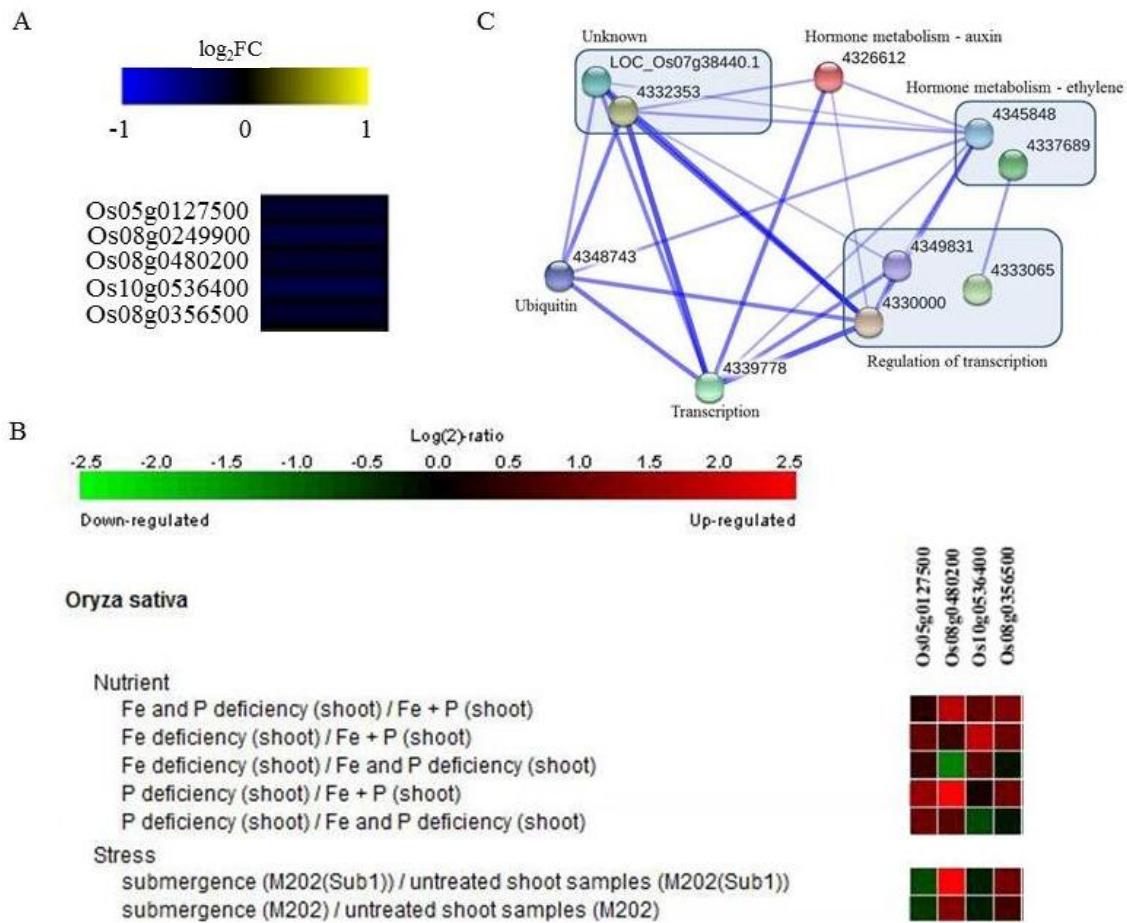
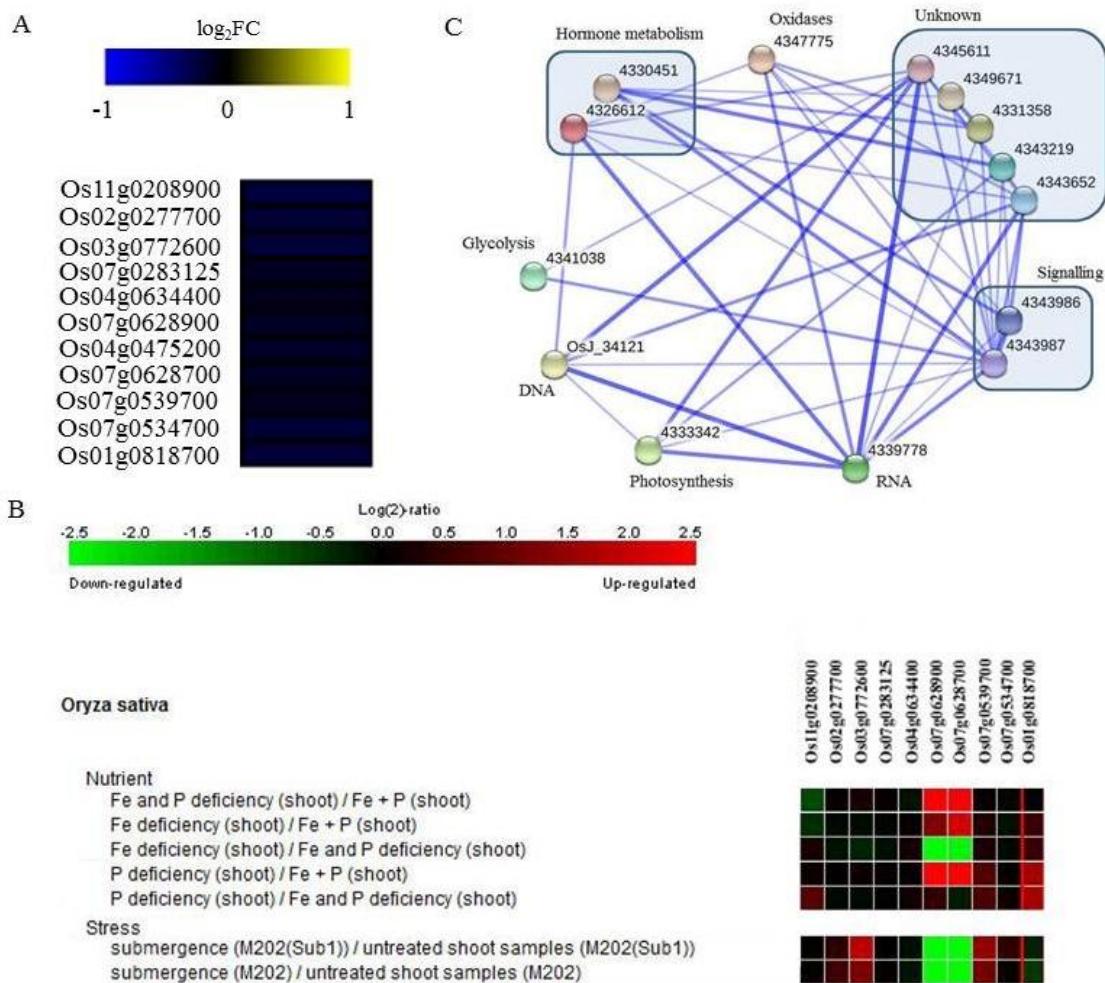

1683

Figure 2. Analysis in the database of differentially expressed genes involved in iron homeostasis. A) Expression analysis in shoot under different stress conditions, nutritional deficiency (iron (Fe) and/or phosphorus (P)) and submergence, provided by Genevestigator. **B)** Representation of the Protein-Protein Interactions (PPI) network provided by STRING. Have not data about PPI of these four genes with the differentially expressed in this experiment. These being interactions with genes not found in the experiment, where the intensity of the co-expression is demonstrate between the proteins. ACIREDUCTONE DIOXYGENASE (ARD); METHYLTHIORIBOSE KINASE (MTK); 5'-METHYLTHIOADENOSINE NUCLEOSIDASE (MTN); FERRIC REDUCTASE DEFECTIVE 3 (FRD3) AND VACUOLAR IRON TRANSPORTER (VIT).


1692


1693 **Figure 3. Effects of iron excess on genes expression associate Heat Shock proteins (HSPs).** A) Pattern of
 1694 expression of HSPs genes differentially express under iron excess, data are expressed as a heat map showing the
 1695 signal intensity. B) Expression analysis in shoot under different stress conditions, nutritional deficiency (iron
 1696 (Fe) and/or phosphorus (P)) and submergence, provided by Genevestigator. C) Representation of the Protein-
 1697 Protein Interactions (PPI) network provided by STRING.

1698

1699 **Figure 4. Effects of iron excess on photosynthesis.** A) Pattern of expression of genes related to photosynthesis, data are expressed as a heat map showing the signal intensity. B) Expression analysis in shoot under different 1700 stress conditions, nutritional deficiency (iron (Fe) and/or phosphorus (P)) and submergence, provided by 1701 Genevestigator. C) Representation of the Protein-Protein Interactions (PPI) network provided by STRING. 1702

1715 **4.3 Artigo 3 – Stress response of plants: the role of alternative splicing**

1716

1717 Artigo com provável submissão à revista *Genome*

1718

1719 Artur Teixeira de Araujo Junior^{1,2}; Railson Schreinert dos Santos^{1,2}; Daniel da Rosa Farias²;

1720 Danyela de Cássia da Silva Oliveira²; Solange Ferreira da Silveira Silveira²; Camila

1721 Pegoraro²; Luciano Carlos da Maia²; Antonio Costa de Oliveira^{1,2*}

1722

1723 ¹Technology Development Center (CDTec), Federal University of Pelotas; Pelotas, RS, Brazil

1724

1725 ²Plant Genomics and Breeding Center, Federal University of Pelotas, Campus Capão do Leão,

1726 96010-900 Capão do Leão, Brazil.

1727

1728 * Corresponding author: Antonio Costa de Oliveira; Plant Genomics and Breeding Center,

1729 Universidade Federal de Pelotas; PO Box 354, Campus Universitário, S/N - CEP 96160-000,

1730 Capão do Leão, RS, Brazil.

1731 E-mail: acostol@cgfufpel.org

1732 **Abstract**

1733 In course of time, plants have developed mechanisms to cope and adapt to different types of
1734 stresses (abiotic and biotic) frequently imposed by the adverse environment. These conditions
1735 can induce a range of morphological, physiological, biochemical and molecular responses in
1736 plants. Advances in molecular analyses showed new evidence that alternative splicing (AS) is
1737 a major mechanism responsible for the enhancement of transcriptomic and proteomic
1738 diversity, having different roles in plant development and stress tolerance. In this review, we
1739 discuss regulation, types and consequences of alternative splicing and the relationship
1740 between changes in the AS and the stress tolerance in plants.

1741

1742 **Keywords:** biotic stress, abiotic stress, resistance

1743

1744 **Introduction**

1745 Recent studies show that the condition of biotic (insects, pathogens, weed competition) and
1746 abiotic stresses (heat, cold, heavy metals and others) can affect the alternative splicing (AS) of
1747 pre-mRNAs in plants (Dinesh-Kumar & Baker 2000; Reddy 2001; Jordan et al. 2002). These
1748 findings suggest that splice variants are affected by stresses conditions (Reddy 2007). This
1749 raised many questions about the relationship between AS and stress tolerance in plants.

1750 AS is prevalent in eukaryotic organisms, affecting nearly 95% of mammalian genes (Pan et al.
1751 2008; Barash et al. 2010), however, some cases of splicing have been reported in bacteria
1752 (Edgell et al. 2000) and archaea (Watanabe et al. 2002; Yokobori et al. 2009). AS is capable of
1753 creating multiple mRNA transcripts from a single gene (Barbazuk et al. 2008). These new
1754 proteins isoforms can lose or gain new functions and alter their cellular localization, stability
1755 and activity (Kelemen et al. 2013). Being important for regulation of the levels and tissue
1756 specificity of gene expression (Wang & Cooper 2007; Tazi et al. 2009).

1757 In plants, it has been discovered that at least 30% of the genes undergo AS, which evidences
1758 its significance to transcriptome and proteome complexity (Wang & Brendel 2006; Compans
1759 & Cooper 2008).

1760 The interest in the relationship between AS and the different types of stress has increased
1761 (Bassett 1989). New data has helped the understanding about how new isoforms can influence

1762 the survival of the organism and how the regulation of AS is performed. Thus, we need to
1763 group these new results to better understand how these increases in diversity of proteins helps
1764 to maintain the complexity of life under different stress conditions.

1765 In this Review, regulation, types and consequences of AS and the relationship between AS
1766 and the possible increase of tolerance in plants is discussed, focused on understanding the role
1767 of alternative splicing in plant responses to environmental stresses. We start by discussing
1768 mechanisms of AS. After, we evaluated the changes that are observed when plants are under
1769 stress and how these affect AS.

1770

1771 **Regulation, types and consequences of alternative splicing**

1772 In 1977, the first noncoding sequences in the Adenovirus *hexon* gene was discovered, after
1773 that, others studies found that most eukaryotic genes contain noncoding intervening sequences
1774 (introns), promoting new research to understand the role of these sequences in the genomes
1775 (Berget et al. 1977; Chow et al. 1977). In the mid 80s, we started to use the terminology
1776 “alternative splicing” to describe multiple mRNAs produced by the human growth hormone
1777 (hgH) gene, demonstrating that introns can expand the diversity of proteins (Denoto et al.
1778 1981). Since then, the number of papers involving AS increased over time (Figure 1).

1779 In bacteria and archea, AS is considered to be rare, with just a few examples, as in genes
1780 encoding a homolog of eukaryotic Cbf5p in some species of archea and in bacteria with
1781 different groups of introns of *thymidylate synthase (td)* gene (Edgell et al. 2000; Watanabe et
1782 al. 2002; Yokobori et al. 2009). Eukaryotes have a much higher frequency of AS in
1783 multicellular than in unicellular organisms (Liang et al. 2003), being reported in three genes
1784 of the budding yeast *Saccharomyces cerevisiae* (Davis et al. 2000; Graveley 2001),
1785 hemiascomycete *Yarrowia lipolytica* (Neuvéglise et al. 2005), *Schizosaccharomyces pombe*
1786 (Okazaki & Niwa 2000) and the malaria parasite *Plasmodium falciparum* (Muhia et al. 2003).
1787 Among the multicellular organisms, AS seems to be especially important for vertebrates, due
1788 to the high complexity of these organisms (Kornblihtt et al. 2013).

1789 The percentage of studies about plant AS is very low when compared to the whole data on
1790 this topic (Figure 1). However, recent research on plant genomes (Feng et al. 2002; Sasaki et
1791 al. 2002) and characterization of spliceosomal proteins (Reddy 2001), has enabled an increase

1792 in the number of articles on this topic, thus being able to explore AS events that happen in a
1793 particular plant and compare with existing data (Wang & Brendel 2006).

1794 There are different types of AS, including exon skipping (ExonS), alternative donor (AltD) or
1795 acceptor (AltA) site, intron retention (IntronR), and others (Wang & Brendel 2006). These
1796 different types can be regulated at many different levels (Keren et al. 2010), transform this
1797 event in an important role in development and differentiation of multicellular organisms and
1798 in producing structurally and functionally different proteins from a single gene (Smith &
1799 Valcárcel 2000; Jorcano & Río 2011).

1800 **Insights in regulation of the AS**

1801 One of the challenges to the splicing machinery (spliceosome) is to recognize and distinct
1802 RNA sequences across the transcriptome and appropriately regulate AS to meet the
1803 physiological requirements of cells and tissues. Part of these challenges consist in several
1804 intercommunicating layers of *cis*-acting elements that auxiliary the AS events and serve as
1805 binding sites for auxiliary factors that regulate alternative splicing (Wang & Cooper 2007).
1806 This regulation suggests the existence of a ‘splicing code’ and its understanding should be
1807 important to comprehend and predict the mechanism of response of the organism under some
1808 conditions (Fu & Ares 2014).

1809 Recent studies have demonstrated that there is an elaborate crosstalk among multiple layers of
1810 posttranscriptional regulation and between transcription and chromatin. This evidence suggest
1811 that the AS can be regulated by the interaction between chromatin landscape changes, such as
1812 nucleosome positioning, histone marks, and DNA methylation, together with RNA structural
1813 features and splicing regulatory elements (SREs) (Reddy et al. 2013).

1814 An important part of the regulation is promoted by some specific sequences and factors
1815 (Kornblihtt et al. 2013). These short (5 to 10 nucleotides) conserved sequences are
1816 denominated as *cis*-acting elements present in exons and introns, and often occur in clusters
1817 (Blencowe 2006; Chen & Manley 2009). These *cis*-regulatory sequences include exonic
1818 splicing enhancers (ESEs), exonic splicing silencers (ESSs), intronic splicing enhancers
1819 (ISEs) and intronic splicing silencers (ISSs) (Figure 2), being important for the correct
1820 recognition of pairs of splice sites (Chen & Manley 2009; Mcmanus & Graveley 2011).

1821 Studies show that the sequences flanking the splice sites are less conserved in some
1822 organisms, requiring additional regulatory sequences adjacent, generally called splicing
1823 enhancers/repressors (Graveley 2000; Reddy 2004).

1824 The factors that act in regulating are called *trans*-acting factors and include two main families
1825 of AS regulatory proteins, Ser/Arg-rich proteins (SRs) and heterogeneous nuclear
1826 ribonucleoprotein (hnRNP), besides, it can include other tissue-specific factors such as neural
1827 polypyrimidine tract binding proteins (nPTB) and polypyrimidine tract binding proteins
1828 (PTB) (Kafasla et al. 2012), neuro-oncological ventral antigen (NOVA) (Jelen et al. 2007)
1829 and forkhead box (FOX) (Lee et al. 2009). These splicing regulatory proteins act by binding
1830 with the *cis*-acting elements recruiting/stabilizing spliceosomal components and/or
1831 antagonizing other splicing inhibitory proteins, thereby regulating the constitutive splicing
1832 (CS) and AS (Reddy et al. 2013).

1833 The hnRNP is characterized for blocking the binding site for splicing factors (Wang &
1834 Brendel 2004), being responsible for regulators of diverse processing events including mRNA
1835 splicing, transport and stability. Due the multiple functions the same protein can effect
1836 regulated RNA processing at more than one level (Krecic & Swanson 1999). These proteins
1837 are widely studied, more than 20 abundant hnRNPs were found in human cells (Krecic &
1838 Swanson 1999), 12 major proteins in *Drosophila melanogaster* (Haynes et al. 1990; Haynes
1839 et al. 1991; Matunis et al. 1993) and 35 potential hnRNP proteins possibly related to splicing
1840 was found in *Arabidopsis* (Lambermon et al. 2000).

1841 In plants, the numbers of SR genes are higher than in other organisms, while the sequences
1842 are highly conserved. Studies suggesting that there are 11 genes encoding SR proteins in
1843 human and seven in *Caenorhabditis elegans*, although, there are 19 in *Arabidopsis* and 24 in
1844 rice (Kalyna & Barta 2004; Lida et al. 2004; Isshiki et al. 2006; Reddy 2007). SR protein
1845 kinase modulates both constitutive and alternative splicing (Stojdl & Bell 1999), being that
1846 different SR proteins can bind to distinct enhancer/silencer sequences and the preference of
1847 one may be responsible for causing changes in the morphology of the plant (Savaldi-
1848 Goldstein 2003).

1849 Evidences have demonstrated that another part of the regulation can be promoted by
1850 chromatin, having a key role in AS through the effects of both histone modifications and
1851 nucleosome positioning (Allo et al. 2010; Luco et al. 2011). This could be due the nature of
1852 histone marks that are deposited on the chromatin around a gene affected the AS decisions

1853 (Kornblihtt et al. 2013). Between the mechanisms, chromatin can influence alternative
1854 splicing by two major ways: neuron depolarization and neuron differentiation, whereupon,
1855 can promoted the skipping or inclusion of determinates exons due the increase or reduction in
1856 RNA polymerase II (Pol II)-mediated elongation. The modifications that histone can promote
1857 are due to the recruitment coupling mechanism (Luco et al. 2010).

1858 Although, the mechanism that control the AS has not been elucidated, this mechanism can be
1859 more complex having marked exon-intron boundaries due to DNA modifications, such as
1860 cytosine methylation, chromatin changes, histone modifications and nucleosome occupancy
1861 (Braunschweig et al. 2013).

1862 In addition, many other factors may affect splicing, either directly or indirectly. Hormones,
1863 such as abscisic acid (ABA) and indole-3-acetic acid (IAA), can change the alternative
1864 splicing pattern in three SR genes in *Arabidopsis* (Palusa et al. 2007). Ethylene can induce the
1865 expression of SR protein kinase PK12 in tobacco (Savaldi-Goldstein et al. 2000).
1866 Furthermore, environmental factors, such as temperature, and salinity, have dramatic effects
1867 on the alternative splicing pattern of several SR genes (Palusa et al. 2007).

1868 **Types of Alternative splicing events**

1869 A multiexon gene can produce different mature mRNAs due the multiple possible
1870 combinations of these (Reddy et al. 2013). Splicing events can be grouped into four types:
1871 exon skipping, alternative 3' splice site (3'SS) and 5' splice site (5'SS) selection, and intron
1872 retention (Figure 3). Also there are complex types of AS events, which are less frequent, these
1873 events include mutually exclusive exons, alternative promoter usage and alternative
1874 polyadenylation (Black 2003; Ast 2004; Kim et al. 2008).

1875 In higher eukaryotes, approximately 40% of the AS events are due to exon skipping, followed
1876 by alternative 3'SS selection (18.4%) and alternative 5'SS selection (7.9%) (Sugnet et al.
1877 2004; Alekseyenko et al. 2007). Intron retention is relatively rare in vertebrates and
1878 invertebrates, constituting less than 5% of the AS events, but in plants, fungi and protozoa this
1879 event is the most prevalent, with approximately 30% in plants (Alekseyenko et al. 2007; Kim
1880 et al. 2008). These studies suggest that the frequency of each type of AS extremely dependent
1881 on the species, organ, type of tissue, cell, and on environmental conditions (Figure 4) (Pan et
1882 al. 2008; Wang et al. 2008; Merkin et al. 2012).

1883 The different kinds of AS events can make changes in the functionality of the transcription
1884 product, being that part of the exon skipping and alternative 5' or alternative 3' splice sites can
1885 produce easier changes in the subcellular localization, binding properties, and activity or
1886 stability, while part of the intron retention can result in the production of truncated proteins
1887 (Barbazuk et al. 2008; Mastrangelo et al. 2012).

1888 This difference in the proportion of AS types suggests a possible difference in the mechanism
1889 of splice site recognition. Studies demonstrated that the splicing mechanisms are closely tied
1890 to gene structure (Mcguire et al. 2008). Moreover, the differences in splicing regulatory
1891 components also influence the splicing mechanisms (Barbazuk et al. 2008).

1892 **Consequences of the AS**

1893 The possible effects of alternative splicing on proteins can include distinct protein isoforms
1894 with altered (related, distinct, or opposing) functions or can even determine the fate of the
1895 transcript through the regulation of mRNA stability by nonsense-mediated decay (NMD) - and
1896 microRNA (miRNA) - mediated mechanisms, or influencing mRNA transport, localization,
1897 and translational efficiency (Reddy et al. 2013).

1898 The creation of distinct protein isoforms can increase the proteome diversity. Some AS events
1899 can produce truncated protein isoforms. These proteins might still have functional modules,
1900 might lack certain functional domains, or lose/gain sites for posttranslational modifications
1901 (Reddy et al. 2013). Several splicing variants produce small interfering peptides, which can
1902 compete with functional dimers, resulting in dominant-negative regulations (Staudt & Wenkel
1903 2011; Seo et al. 2013).

1904 NMD is a cytoplasmic RNA degradation system, responsible for recruiting mRNA decay
1905 enzymes that prematurely terminate the mRNAs. AS can introduce or change the features of
1906 NMD substrates altering the stability of a transcript and consequently affecting the transcript
1907 abundance. Besides this, AS can modulate miRNA-mediated regulation of gene expression,
1908 producing proteins isoforms that contain or lack target sites for miRNA. Furthermore, it is
1909 responsible for modulating the levels of miRNA, whereupon is accomplished by regulation
1910 the splicing pattern of pri-miRNAs or pre-mRNAs encoding enzymes (Reddy et al. 2013).

1911 Another observation is in the evolution and divergence of the species. Recent studies suggest
1912 that AS is important for of organ divergence, and that it may have contributed to speciation
1913 (Barbosa-Morais et al. 2012; Merkin et al. 2012). Moreover, studies found identical exon

1914 skipping events in species that diverged more than one billion years ago (Awan et al. 2013).
1915 Therewith, tissue-specific gene expression is mostly conserved, whereas AS diverged
1916 (Merkin et al. 2012) and the split gene organization could accelerate evolution (Gilbert,
1917 1978).

1918

1919 **Changes in alternative splicing by stress**

1920 To survive, plants need to adapt and respond to different environmental conditions due to
1921 their sessile condition (Kornblihtt et al. 2013), wherein AS is one of the regulatory
1922 mechanisms responsible for this response (Barbazuk et al. 2008). The first AS in plants was
1923 identified in spinach and *Arabidopsis* in the characterization of *ribulose bisphosphate*
1924 *carboxylase/oxygenase* (rubisco) activase (Reddy 2001). After that, studies regarding AS in
1925 plants increased, part of this studies indicate that several biotic and abiotic stresses influence
1926 splicing decisions (Zhang & Gassmann 2007; Nakaminami et al. 2012), being considerable an
1927 important part of gene regulation in stress responses (Compans & Cooper 2008).

1928 **Alternative Splicing in abiotic stress**

1929 Abiotic stresses such as drought, salinity and extreme temperatures can limit agricultural
1930 productivity. Significant progresses have been done to understand the mechanisms of abiotic
1931 stress tolerance in plants (Zhang & Gassmann 2007; Compans & Cooper 2008; Nakaminami
1932 et al. 2012). These studies show that abiotic stress promotes changes in gene expression, part
1933 of this due to the transcription factors and potential signaling components, that show the
1934 occurrence of alternative splicing (Zhu 2002; Yamaguchi-Shinozaki & Shinozaki 2006).

1935 Different stresses can affect the AS of different genes and it is interesting to highlight that
1936 some of these genes are affected by multiple stresses (Compans & Cooper 2008). Part of these
1937 genes are characterized as post-transcriptional regulation, transcriptional regulation, protein
1938 involved in lipid and sugar metabolism and reactive oxygen species (ROS) control.

1939 The concentration of different SR proteins may be altered, being able to change the AS of
1940 downstream target genes (Compans & Cooper 2008). *Arabidopsis* submitted to conditions of
1941 cold and heat showed a change in the AS patterns, having distinct changes of SR proteins
1942 concentration in each type of stress generating different plant responses (Lazar & Goodman
1943 2000; Palusa et al. 2007).

1944 Yeast cells and transgenic *Arabidopsis* showed tolerance to salt when began to express the RS
1945 domain of two different SR-like proteins (Forment et al. 2002). Besides, in others studies
1946 changes promoted by higher salt levels altered the expression of some SR proteins (SR34b,
1947 SR33, and SR30) (Palusa et al. 2007; Tanabe et al. 2007).

1948 The same retention of the fourth intron in RING (Really Interesting New Gene) - finger (6G2)
1949 gene was found in *Arabidopsis* under drought and cold stress condition. This may suggest that
1950 there is a common mechanism in both stresses, that can regulate this process (Mastrangelo et
1951 al. 2005). Others stresses that caused the same changes were intense light stress that altered
1952 the splicing pattern of SR30 (Tanabe et al. 2007).

1953 The dehydration responsive element-binding factor 2 (DREB2) is characterized as a
1954 transcription factor. This gene in wheat produces three isoforms due the inclusion/exclusion
1955 of exons (Xue & Loveridge 2004; Egawa et al. 2006). Studies show that when wheat is
1956 subjected to prolonged cold treatment, all of its isoforms have an increase of expression
1957 (Compans & Cooper 2008). Similar data was found for salt stress, while in drought stress two
1958 isoforms increased the expression, whereas the other isoform remained constant (Xue &
1959 Loveridge 2004; Egawa et al. 2006). In maize this gene has only two isoforms, *ZmDREB2A-L*
1960 and *ZmDREB2A-S*, that have a preferentially induced by cold and repressed by heat stress
1961 (Qin et al. 2007).

1962 The mitogen-activated protein kinase (MAPK) is characterized as universal signaling
1963 modules, being involved in many plant processes, including in environmental stress response
1964 (Jonak 2002). Studies found five splice variants of MAPK in *Arabidopsis* (Lin et al. 2010).
1965 Between these proteins, was identified that the MAPK 13 gene can generate at least three
1966 different variants. Wherein, two of these proteins although do not show kinase activity and
1967 neither interacted with upstream MAPKs, one variant protein showed an enhanced the
1968 MKK6-dependent activation (Lin et al. 2010). In rice also was found change in one member
1969 of the MAPK family, OsBWMK1, that under stress conditions was able to produce splice
1970 variants with different subcellular localizations (Koo et al. 2007).

1971 Studies with cold stress have demonstrated a differential ensemble of protein isoforms. In
1972 lipid metabolism, the gene β -hydroxyacyl ACP dehydratase, which is an enzyme involved in
1973 fatty acid biosynthesis, was alternatively spliced in *Picea mariana* (Tai et al. 2006). Another
1974 gene, acetyl CoA carboxylase (ACC), which is involved in this metabolism also display an

1975 AS and promoter initiation in both metazoans and plants (Podkowinski 2003; Barber et al.
1976 2005).

1977 Furthermore, in the cold stress, studies have shown a different regulation under this
1978 conditions for sugar metabolism, suggesting that these genes can play an essential role. Two
1979 early cold-regulated (e-cor) genes that code for a ribokinase (7H8) and a RING-finger protein
1980 (6G2) have an increase in isoforms that retained alternative introns, which can result in a
1981 nonfunctional truncated protein and in a decrease of the functional proteins (Mastrangelo et
1982 al. 2005).

1983 In maize (*Zea mays* L.) two transcription isoforms of *ZmrbohB*, a gene involved in ROS
1984 control (Lin et al. 2009). The ROS have an important role in biotic interactions and abiotic
1985 stress (Sagi & Fluhr 2006). These splice variants have the expression dependent of the tissue
1986 and the development stages, having an increase of expression under biotic and abiotic stress
1987 (Lin et al. 2009).

1988 In summary, an increasing number of genes that generate splice variants as a response to
1989 environmental stress have been identified. These new data have provided new discoveries
1990 about the effect of AS and the expression regulation of plant gene under abiotic stress, helping
1991 in understanding the consequences that the change of the pattern AS can cause the plant.

1992 **Alternative splicing in biotic stress**

1993 An important resource for plant defense against pathogens is the capacity of changing the
1994 expression profile of different genes (Wang & Brendel 2006). Studies show that AS has a
1995 relevant role in this process, being responsible for the creation of different isoforms of
1996 resistance genes (Compans & Cooper 2008).

1997 Among these genes, the highly specific resistance (*R*) genes perform a significant role in plant
1998 defense perception of pathogen avirulence (*avr*) genes (Flor 1971). Several reports describe
1999 that AS in pre-mRNAs of *R* genes is dynamic during the defense response, therefore,
2000 responsible for accomplish an important response of the plant against the pathogens. As a
2001 consequence the alternative transcripts can change the expression level of *R* proteins and
2002 produce truncated *R* proteins (Compans & Cooper 2008).

2003 The CC-NBS-LRR (CNL) *R* genes are characterized for having diverse gene structures.
2004 Differences in the regulation of AS is reported in different plant species. In maize it was
2005 detected that transcript variants with an intronless open reading frame (ORF) of the *Rp1D*

2006 gene. However, in *Arabidopsis* no report of this type of AS event has been made (Ayliffe et
2007 al. 2004).

2008 The CNL genes have been much studied in barley *Mla* genes that control ETI to the barley
2009 powdery mildew fungus *Blumeria graminis* f. sp. *hordei* (Bgh). The *Mla13* can produce five
2010 transcription variants. Studies suggest that this difference could be responsible for
2011 determining its efficiency of translation (Haltermann 2003).

2012 Another classes of *R* genes are the members of the TIR-NBS-LRR (TNL) family. Whereupon,
2013 diverse cases of AS have been described, including alternative exons, alternative 5' or 3' splice
2014 site selection and intron retention. The splicing variants are characterized as being similar
2015 proteins and consist of truncated TIR-NBS (TN) proteins (Whitham et al. 1994). Studies
2016 suggest that these truncated proteins perform an important function in defense response
2017 (Compans & Cooper 2008).

2018 These truncated proteins were reported in the tobacco *N* gene, which specifies resistance to
2019 tobacco mosaic virus (TMV). In order to demonstrate full resistance to TMV the presence of
2020 only full-length N protein is not enough (Whitham et al. 1994). In *Arabidopsis*, it was found
2021 that only one transcription variant of the Resistance to the *Pseudomonas Syringae4* (*RPS4*)
2022 gene was up regulated during the defense response, the multiple products of these transcripts
2023 may have distinct functions in plant response (Zhang & Gassmann 2007).

2024 Combining the information available for these genes can help to elucidate part of the role of
2025 alternative splicing under stress conditions (Figure 5). Although, a complete understand of the
2026 signaling pathways which are related to stress is still needed.

2027 As shown, stress can regulate splicing, changing multiple mechanisms, including splicing
2028 factors, the level of expression of SR proteins or phosphorylation. However, a continued
2029 investigation to elucidate the mechanisms of stress response in plants is still necessary,
2030 helping in breeding programs.

2031

2032 Conclusion

2033 Studies of alternative splicing in plants have an important contribution for the understanding
2034 of the mechanisms of regulation of these process and consequently plant response under
2035 different stress conditions. These studies have helped to elucidate the transcriptome and
2036 proteome complexity and how the tolerance response is achieved, being an important step in

2037 obtaining improved varieties. Here we showed how the alternative splicing occur, their main
2038 means of regulation and some of its consequences. Demonstration, how the alternative
2039 splicing is a powerful mechanism that can be used for selection of specific events associated
2040 to some splice variants that can increase stress resistance. However, more studies on the
2041 consequences of these new variants to become a good strategy, particularly for their actual
2042 usage in scenario of climate change are necessary.

2043

2044 **Acknowledgements**

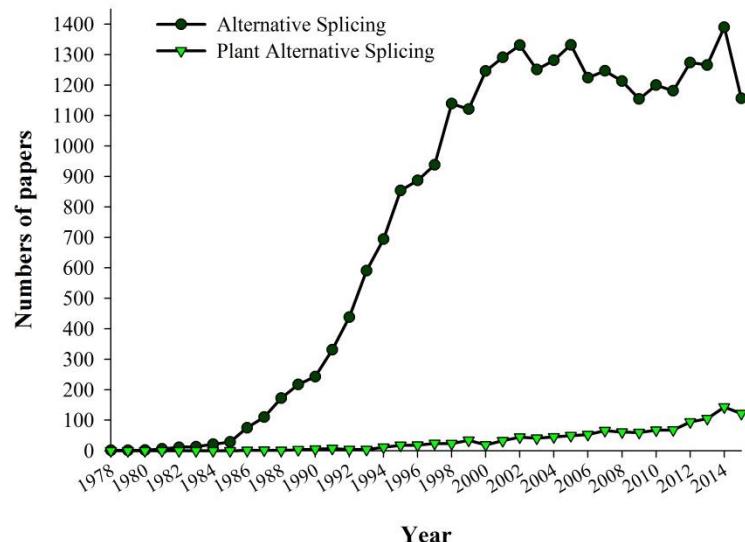
2045 Research supported by the following Brazilian funding agencies: Coordenação de
2046 Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de
2047 Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do
2048 Rio Grande do Sul (FAPERGS).

2049

2050 **References**

- 2051 Alekseyenko, A. V; Kim, N.; Lee, C. J. Global analysis of exon creation versus loss and the role of
2052 alternative splicing in 17 vertebrate genomes. **RNA**, v. 13, n. 5, p. 661–70, 2007.
- 2053 Allo, M.; Schor, I. E.; Munoz, M. J.; et al. Chromatin and Alternative Splicing. **Cold Spring Harbor**
2054 **Symposia on Quantitative Biology**, v. 75, p. 103–111, 2010.
- 2055 Ast, G. How did alternative splicing evolve? **Nature Reviews Genetics**, v. 5, n. 10, p. 773–782, 2004.
- 2056 Awan, A. R.; Manfredo, A.; Pleiss, J. A. Lariat sequencing in a unicellular yeast identifies regulated
2057 alternative splicing of exons that are evolutionarily conserved with humans. **Proceedings of the**
2058 **National Academy of Sciences**, v. 110, n. 31, p. 12762–12767, 2013.
- 2059 Ayliffe, M. A; Steinau, M.; Park, R. F.; et al. Aberrant mRNA Processing of the Maize Rp1-D Rust
2060 Resistance Gene in Wheat and Barley. **Molecular Plant-Microbe Interactions**, v. 17, n. 8, p.
2061 853–864, 2004.
- 2062 Barash, Y.; Calarco, J. A.; Gao, W.; et al. Deciphering the splicing code. **Nature**, v. 465, n. 7294, p.
2063 53–59, 2010. Nature Publishing Group.
- 2064 Barbazuk, W. B.; Fu, Y.; McGinnis, K. M. Genome-wide analyses of alternative splicing in plants:
2065 Opportunities and challenges. **Genome Research**, v. 18, n. 9, p. 1381–1392, 2008.
- 2066 Barber, M. C.; Price, N. T.; Travers, M. T. Structure and regulation of acetyl-CoA carboxylase genes
2067 of metazoa. **Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids**, v.
2068 1733, n. 1, p. 1–28, 2005.
- 2069 Barbosa-Morais, N. L.; Irimia, M.; Pan, Q.; et al. The Evolutionary Landscape of Alternative Splicing
2070 in Vertebrate Species. **Science**, v. 338, n. 6114, p. 1587–1593, 2012.

- 2071 Bassett, C. L. **Regulation of gene expression in plants**. Springer Science. 1989.
- 2072 Black, D. L. Mechanisms of alternative pre-messenger rna splicing. **Annual Review of Biochemistry**,
2073 v. 72, n. 1, p. 291–336, 2003.
- 2074 Blencowe, B. J. Alternative Splicing: New Insights from Global Analyses. **Cell**, v. 126, n. 1, p. 37–47,
2075 2006.
- 2076 Braunschweig, U.; Gueroussov, S.; Plocik, A. M.; Graveley, B. R.; Blencowe, B. J. Dynamic
2077 Integration of Splicing within Gene Regulatory Pathways. **Cell**, v. 152, n. 6, p. 1252–1269,
2078 2013. Elsevier Inc.
- 2079 Cartegni, L.; Chew, S. L.; Krainer, A. R. Listening To Silence and Understanding Nonsense: Exonic
2080 Mutations That Affect Splicing. **Nature Reviews Genetics**, v. 3, n. 4, p. 285–298, 2002.
- 2081 Chen, M.; Manley, J. L. Mechanisms of alternative splicing regulation: insights from molecular and
2082 genomics approaches. **Nature Reviews Molecular Cell Biology**, v. 10, n. 11, p. 741–754, 2009.
2083 Nature Publishing Group.
- 2084 Compans, R. W.; Cooper, M. D. **Nuclear pre-mRNA Processing in Plants**. Berlin, Heidelberg:
2085 Springer Berlin Heidelberg, 2008.
- 2086 Davis, C. A; Grate, L.; Spingola, M.; Ares, M. Test of intron predictions reveals novel splice sites,
2087 alternatively spliced mRNAs and new introns in meiotically regulated genes of yeast. **Nucleic
2088 acids research**, v. 28, n. 8, p. 1700–6, 2000.
- 2089 Denoto, F. M.; Moore, D. D.; Goodman, H. M. Human growth hormone DNA sequence and mRNA
2090 structure: possible alternative splicing. **Nucleic acids research**, v. 9, n. 15, p. 3719–30, 1981.
- 2091 Dinesh-Kumar, S. P.; Baker, B. J. Alternatively spliced N resistance gene transcripts: Their possible
2092 role in tobacco mosaic virus resistance. **Proceedings of the National Academy of Sciences**, v.
2093 97, n. 4, p. 1908–1913, 2000.
- 2094 Dreyfuss, G.; Matunis, M. J.; Piñol-Roma, S.; Burd, C. G. hnRNP proteins and the biogenesis of
2095 mRNA. **Annual review of biochemistry**, v. 62, p. 289–321, 1993.
- 2096 Edgell, D. R.; Belfort, M.; Shub, D. A. Barriers to Intron Promiscuity in Bacteria. **Journal of
2097 Bacteriology**, v. 182, n. 19, p. 5281–5289, 2000.
- 2098 Egawa, C.; Kobayashi, F.; Ishibashi, M.; et al. Differential regulation of transcript accumulation and
2099 alternative splicing of a *DREB2* homolog under abiotic stress conditions in common wheat.
2100 **Genes & Genetic Systems**, v. 81, n. 2, p. 77–91, 2006.
- 2101 Feng, Q.; Zhang, Y.; Hao, P.; et al. Sequence and analysis of rice chromosome 4. **Nature**, v. 420, n.
2102 6913, p. 316–320, 2002.
- 2103 Flor, H. H. Current Status of the Gene-For-Gene Concept. **Annual Review of Phytopathology**, v. 9,
2104 n. 1, p. 275–296, 1971.
- 2105 Forment, J.; Naranjo, M. A.; Roldan, M.; Serrano, R.; Vicente, O. Expression of *Arabidopsis* SR-like
2106 splicing proteins confers salt tolerance to yeast and transgenic plants. **The Plant Journal**, v. 30,
2107 n. 5, p. 511–519, 2002.


- 2108 Fu, X. D.; Ares, M. Context-dependent control of alternative splicing by RNA-binding proteins.
2109 **Nature Reviews Genetics**, v. 15, n. 10, p. 689–701, 2014. Nature Publishing Group.
- 2110 Gilbert, W. Why genes in pieces? **Nature**, v. 271, n. 5645, p. 501–501, 1978.
- 2111 Graveley, B. R. Sorting out the complexity of SR protein functions. **RNA**, v. 6, n. 9, p. 60, 2000.
- 2112 Graveley, B. R. Alternative splicing: Increasing diversity in the proteomic world. **Trends in Genetics**,
2113 v. 17, n. 2, p. 100–107, 2001.
- 2114 Halterman, D. A. Powdery Mildew-Induced Mla mRNAs Are Alternatively Spliced and Contain
2115 Multiple Upstream Open Reading Frames. **Plant physiology**, v. 131, n. 2, p. 558–567, 2003.
- 2116 Haynes, S. R.; Johnson, D.; Raychaudhuri, G.; Beyer, A L. The Drosophila Hrb87F gene encodes a
2117 new member of the A and B hnRNP protein group. **Nucleic acids research**, v. 19, n. 1, p. 25–
2118 31, 1991.
- 2119 Haynes, S. R.; Raychaudhuri, G.; Beyer, A L. The Drosophila Hrb98de Locus Encodes 4 Protein
2120 Isoforms Homologous to the A1 Protein of Mammalian Heterogeneous Nuclear
2121 Ribonucleoprotein Complexes. **Molecular and Cellular Biology**, v. 10, n. 1, p. 316–323, 1990.
- 2122 Iida, K. Genome-wide analysis of alternative pre-mRNA splicing in *Arabidopsis thaliana* based on
2123 full-length cDNA sequences. **Nucleic Acids Research**, v. 32, n. 17, p. 5096–5103, 2004.
- 2124 Isshiki, M. The Serine/Arginine-Rich Protein Family in Rice Plays Important Roles in Constitutive
2125 and Alternative Splicing of Pre-mRNA. **The plant cell online**, v. 18, n. 1, p. 146–158, 2006.
- 2126 Jelen, N.; Ule, J.; ŽIvin, M.; Darnell, R. B. Evolution of Nova-Dependent Splicing Regulation in the
2127 Brain. **PLoS Genetics**, v. 3, n. 10, p. e173, 2007.
- 2128 Jonak, C. Complexity, Cross Talk and Integration of Plant MAP Kinase Signalling. **Current Opinion
2129 in Plant Biology**, v. 5, n. 5, p. 415–424, 2002.
- 2130 Jorcano, J. L.; Río, M. Del. Control of gene expression Control of gene expression. **Cloning**, 2011.
- 2131 Jordan, T.; Schornack, S.; Lahaye, T. Alternative splicing of transcripts encoding Toll-like plant
2132 resistance proteins – what's the functional relevance to innate immunity? **Trends in Plant
2133 Science**, v. 7, n. 9, p. 392–398, 2002.
- 2134 Kafasla, P.; Mickleburgh, I.; Llorian, M.; et al. Defining the roles and interactions of PTB.
2135 **Biochemical Society Transactions**, v. 40, n. 4, p. 815–820, 2012.
- 2136 Kalyna, M.; Barta, A. A plethora of plant serine/arginine-rich proteins: redundancy or evolution of
2137 novel gene functions? **Biochemical Society Transactions**, v. 32, n. 4, p. 561–564, 2004.
- 2138 Kelemen, O.; Convertini, P.; Zhang, Z.; et al. Function of alternative splicing. **Gene**, v. 514, n. 1, p. 1–
2139 30, 2013. Elsevier B.V.
- 2140 Keren, H.; Lev-Maor, G.; Ast, G. Alternative splicing and evolution: diversification, exon definition
2141 and function. **Nature Reviews Genetics**, v. 11, n. 5, p. 345–355, 2010a. Nature Publishing
2142 Group.
- 2143 Kim, E.; Goren, A.; Ast, G. Alternative splicing: current perspectives. **BioEssays**, v. 30, n. 1, p. 38–
2144 47, 2008.

- 2145 Koo, S. C.; Yoon, H. W.; Kim, C. Y.; et al. Alternative splicing of the *OsBWMK1* gene generates three
2146 transcript variants showing differential subcellular localizations. **Biochemical and Biophysical**
2147 **Research Communications**, v. 360, n. 1, p. 188–193, 2007.
- 2148 Kornblihtt, A. R.; Schor, I. E.; Alló, M.; et al. Alternative splicing: a pivotal step between eukaryotic
2149 transcription and translation. **Nature reviews**, v. 14, n. 3, p. 153–65, 2013.
- 2150 Krecic, A. M.; Swanson, M. S. hnRNP complexes: composition, structure, and function. **Current**
2151 **Opinion in Cell Biology**, v. 11, n. 3, p. 363–371, 1999.
- 2152 Lambermon, M. H.; Simpson, G. G.; Wieczorek Kirk, D. A; et al. UBP1, a novel hnRNP-like protein
2153 that functions at multiple steps of higher plant nuclear pre-mRNA maturation. **EMBO Journal**,
2154 v. 19, n. 7, p. 1638–1649, 2000.
- 2155 Lazar, G.; Goodman, H. M. The *Arabidopsis* splicing factor SR1 is regulated by alternative splicing.
2156 **Plant Molecular Biology**, v. 42, n. 4, p. 571–581, 2000.
- 2157 Lee, J. A.; Tang, Z. Z.; Black, D. L. An inducible change in Fox-1/A2BP1 splicing modulates the
2158 alternative splicing of downstream neuronal target exons. **Genes & Development**, v. 23, n. 19,
2159 p. 2284–2293, 2009.
- 2160 Li, Q.; Xiao, G.; Zhu, Y. X. Single-Nucleotide Resolution Mapping of the *Gossypium raimondii*
2161 Transcriptome Reveals a New Mechanism for Alternative Splicing of Introns. **Molecular Plant**,
2162 v. 7, n. 5, p. 829–840, 2014.
- 2163 Liang, X. H.; Haritan, A.; Uliel, S.; Michaeli, S. trans and cis splicing in trypanosomatids:
2164 Mechanism, factors, and regulation. **Eukaryotic Cell**, v. 2, n. 5, p. 830–840, 2003.
- 2165 Lin, F.; Zhang, Y.; Jiang, M. Y. Alternative Splicing and Differential Expression of Two Transcripts
2166 of Nicotine Adenine Dinucleotide Phosphate Oxidase B Gene from *Zea mays*. **Journal of**
2167 **Integrative Plant Biology**, v. 51, n. 3, p. 287–298, 2009.
- 2168 Lin, W. Y.; Matsuoka, D.; Sasayama, D.; Nanmori, T. A splice variant of *Arabidopsis* mitogen-
2169 activated protein kinase and its regulatory function in the MKK6–MPK13 pathway. **Plant**
2170 **Science**, v. 178, n. 3, p. 245–250, 2010. Elsevier Ireland Ltd.
- 2171 Luco, R. F.; Allo, M.; Schor, I. E.; Kornblihtt, A. R.; Misteli, T. Epigenetics in Alternative Pre-mRNA
2172 Splicing. **Cell**, v. 144, n. 1, p. 16–26, 2011. Elsevier Inc.
- 2173 Luco, R. F.; Pan, Q.; Tominaga, K.; et al. Regulation of Alternative Splicing by Histone
2174 Modifications. **Science**, v. 327, n. 5968, p. 996–1000, 2010.
- 2175 Macknight, R. Functional Significance of the Alternative Transcript Processing of the *Arabidopsis*
2176 Floral Promoter FCA. **the Plant Cell Online**, v. 14, n. 4, p. 877–888, 2002.
- 2177 Mastrangelo, A. M.; Belloni, S.; Barilli, S.; et al. Low temperature promotes intron retention in two e-
2178 cor genes of durum wheat. **Planta**, v. 221, n. 5, p. 705–715, 2005.
- 2179 Mastrangelo, A. M.; Marone, D.; Laidò, G.; Leonardi, A. M. De; Vita, P. D. E. Alternative splicing:
2180 Enhancing ability to cope with stress via transcriptome plasticity. **Plant Science**, v. 185-186, p.
2181 40–49, 2012. Elsevier Ireland Ltd.

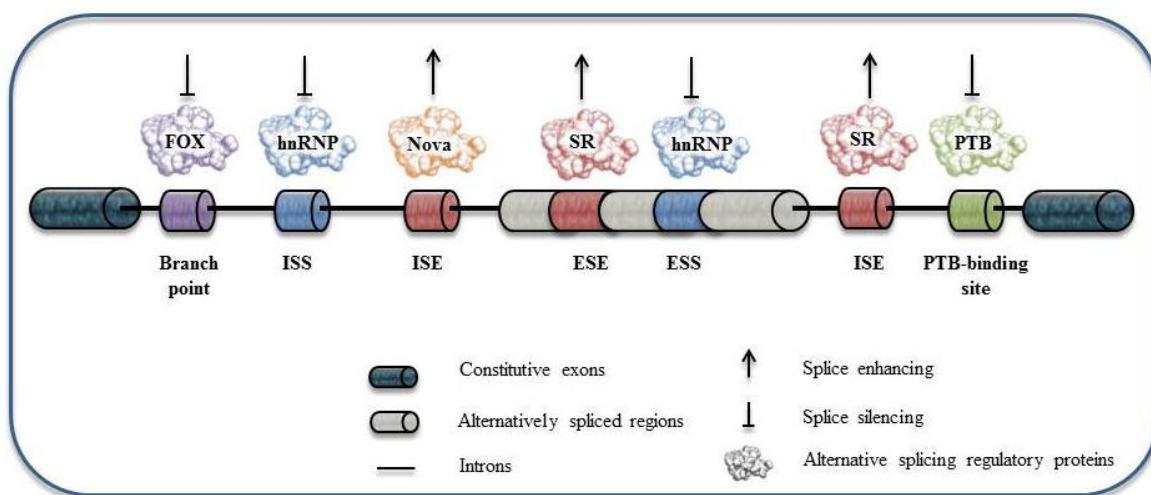
- 2182 Matunis, E. L.; Matunis, M. J.; Dreyfuss, G. Association of individual hnRNP proteins and snRNPs
2183 with nascent transcripts. **Journal of Cell Biology**, v. 121, n. 2, p. 219–228, 1993.
- 2184 McGuire, A. M.; Pearson, M. D.; Neafsey, D. E.; Galagan, J. E. Cross-kingdom patterns of alternative
2185 splicing and splice recognition. **Genome Biology**, v. 9, n. 3, p. R50, 2008.
- 2186 Mcmanus, C. J.; Graveley, B. R. RNA structure and the mechanisms of alternative splicing. **Current
2187 opinion in genetics & development**, v. 21, n. 4, p. 373–379, 2011.
- 2188 Merkin, J.; Russell, C.; Chen, P.; Burge, C. B. Evolutionary Dynamics of Gene and Isoform
2189 Regulation in Mammalian Tissues. **Science**, v. 338, n. 6114, p. 1593–1599, 2012.
- 2190 Muhi, D. K.; Swales, C. A; Eckstein-Ludwig, U.; et al. Multiple splice variants encode a novel
2191 adenylyl cyclase of possible plastid origin expressed in the sexual stage of the malaria parasite
2192 *Plasmodium falciparum*. **The Journal of biological chemistry**, v. 278, n. 24, p. 22014–22,
2193 2003.
- 2194 Nakaminami, K.; Matsui, A.; Shinozaki, K.; Seki, M. RNA regulation in plant abiotic stress responses.
2195 **Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms**, v. 1819, n. 2, p. 149–
2196 153, 2012. Elsevier B.V.
- 2197 Neuvéglise, C.; Chalvet, F.; Wincker, P.; Gaillardin, C.; Casaregola, S. Mutator -Like Element in the
2198 Yeast *Yarrowia lipolytica* Displays Multiple Alternative Splicings. **Eukaryotic Cell**. v. 4, n. 3,
2199 p. 615–624, 2005.
- 2200 Okazaki, K.; Niwa, O. rRNAs Encoding Zinc Finger Protein Isoforms are Expressed by Alternative
2201 Splicing of an In-frame Intron in Fission Yeast, **DNA Research** , v. 30, p. 27–30, 2000.
- 2202 Palusa, S. G.; Ali, G. S.; Reddy, A. S. N. Alternative splicing of pre-mRNAs of *Arabidopsis*
2203 serine/arginine-rich proteins: regulation by hormones and stresses. **The Plant Journal**, v. 49, n.
2204 6, p. 1091–1107, 2007.
- 2205 Pan, Q.; Shai, O.; Lee, L. J.; Frey, B. J.; Blencowe, B. J. Deep surveying of alternative splicing
2206 complexity in the human transcriptome by high-throughput sequencing. **Nature genetics**, v. 40,
2207 n. 12, p. 1413–5, 2008.
- 2208 Podkowinski, J. Expression of Cytosolic and Plastid Acetyl-Coenzyme A Carboxylase Genes in
2209 Young Wheat Plants. **Plant physiology**, v. 131, n. 2, p. 763–772, 2003.
- 2210 Qin, F.; Kakimoto, M.; Sakuma, Y.; et al. Regulation and functional analysis of *ZmDREB2A* in
2211 response to drought and heat stresses in *Zea mays* L. **The Plant Journal**, v. 50, n. 1, p. 54–69,
2212 2007.
- 2213 Reddy, A. S. N. Nuclear Pre-mRNA Splicing in Plants. **Critical Reviews in Plant Sciences**, v. 20, n.
2214 6, p. 523–571, 2001.
- 2215 Reddy, A. S. N. Plant serine/arginine-rich proteins and their role in pre-mRNA splicing. **Trends in
2216 Plant Science**, v. 9, n. 11, p. 541–547, 2004.
- 2217 Reddy, A. S. N. Alternative Splicing of Pre-Messenger RNAs in Plants in the Genomic Era. **Annual
2218 Review of Plant Biology**, v. 58, n. 1, p. 267–294, 2007.

- 2219 Reddy, A. S. N.; Marquez, Y.; Kalyna, M.; Barta, A. Complexity of the Alternative Splicing
2220 Landscape in Plants. **The Plant Cell**, v. 25, n. 10, p. 3657–3683, 2013.
- 2221 Sagi, M.; Fluhr, R. Production of reactive oxygen species by plant NADPH oxidases. **Plant**
2222 **physiology**, v. 141, n. 2, p. 336–340, 2006.
- 2223 Sasaki, T.; Matsumoto, T.; Yamamoto, K.; et al. The genome sequence and structure of rice
2224 chromosome 1. **Nature**, v. 420, n. 6913, p. 312–316, 2002.
- 2225 Savaldi-Goldstein, S. Alternative Splicing Modulation by a LAMMER Kinase Impinges on
2226 Developmental and Transcriptome Expression. **The plant cell online**, v. 15, n. 4, p. 926–938,
2227 2003.
- 2228 Savaldi-Goldstein, S.; Sessa, G.; Fluhr, R. The ethylene-inducible PK12 kinase mediates the
2229 phosphorylation of SR splicing factors. **The Plant Journal**, v. 21, n. 1, p. 91–96, 2000.
- 2230 Seo, P. J.; Park, M. J.; Park, C. M. Alternative splicing of transcription factors in plant responses to
2231 low temperature stress: mechanisms and functions. **Planta**, v. 237, n. 6, p. 1415–1424, 2013.
- 2232 Sharp, P. A. Split genes and RNA splicing. **Science**, v. 77, n. 4390, p. 805–815, 1994.
- 2233 Smith, C. W. J.; Valcárcel, J. Alternative pre-mRNA splicing: the logic of combinatorial control.
2234 **Trends in Biochemical Sciences**, v. 25, n. 8, p. 381–388, 2000.
- 2235 Staudt, A. C.; Wenkel, S. Regulation of protein function by “microProteins.” **EMBO reports**, v. 12, n.
2236 1, p. 35–42, 2011.
- 2237 Stojdl, D. F.; Bell, J. C. SR protein kinases: the splice of life. **Biochemistry and Cell Biology**, v. 77,
2238 n. 4, p. 293–298, 1999.
- 2239 Sugnet, C. W.; Kent, W. J.; Ares, M.; Haussler, D. Transcriptome and genome conservation of
2240 alternative splicing events in humans and mice. **Pacific Symposium on Biocomputing. Pacific**
2241 **Symposium on Biocomputing**, v. 77, p. 66–77, 2004.
- 2242 Syed, N. H.; Kalyna, M.; Marquez, Y.; Barta, A.; Brown, J. W. S. Alternative splicing in plants –
2243 coming of age. **Trends in Plant Science**, v. 17, n. 10, p. 616–623, 2012. Elsevier Ltd.
- 2244 Tai, H. H.; Williams, M.; Iyengar, A.; Yeates, J.; Beardmore, T. Regulation of the β -hydroxyacyl ACP
2245 dehydratase gene of *Picea mariana* by alternative splicing. **Plant Cell Reports**, v. 26, n. 1, p.
2246 105–113, 2006.
- 2247 Tanabe, N.; Yoshimura, K.; Kimura, A.; Yabuta, Y.; Shigeoka, S. Differential Expression of
2248 Alternatively Spliced mRNAs of *Arabidopsis* SR Protein Homologs, atSR30 and atSR45a, in
2249 Response to Environmental Stress. **Plant and Cell Physiology**, v. 48, n. 7, p. 1036–1049, 2007.
- 2250 Tazi, J.; Bakkour, N.; Stamm, S. Alternative splicing and disease. **Biochimica et Biophysica Acta**
2251 **(BBA) - Molecular Basis of Disease**, v. 1792, n. 1, p. 14–26, 2009. Elsevier B.V.
- 2252 Venables, J. P. Aberrant and Alternative Splicing in Cancer Aberrant and Alternative Splicing in
2253 Cancer. **Cancer Research**, p. 7647–7654, 2004.
- 2254 Wang, B. B.; Brendel, V. The ASRG database: identification and survey of *Arabidopsis thaliana*
2255 genes involved in pre-mRNA splicing. **Genome Biology**, v. 5, n. 12, p. R102, 2004.

- 2256 Wang, B. B.; Brendel, V. Genomewide comparative analysis of alternative splicing in plants.
2257 **Proceedings of the National Academy of Sciences**, v. 103, n. 18, p. 7175–7180, 2006.
- 2258 Wang, E. T.; Sandberg, R.; Luo, S.; et al. Alternative isoform regulation in human tissue
2259 transcriptomes. **Nature**, v. 456, n. 7221, p. 470–476, 2008.
- 2260 Wang, G. S.; Cooper, T. A. Splicing in disease: disruption of the splicing code and the decoding
2261 machinery. **Nature Reviews Genetics**, v. 8, n. 10, p. 749–761, 2007.
- 2262 Watanabe, Y.; Yokobori, S.; Inaba, T.; et al. Introns in protein-coding genes in Archaea. **FEBS**
2263 **Letters**, v. 510, n. 1-2, p. 27–30, 2002.
- 2264 Whitham, S.; Dinesh-Kumar, S. P.; Choi, D.; et al. The product of the tobacco mosaic virus resistance
2265 gene N: Similarity to toll and the interleukin-1 receptor. **Cell**, v. 78, n. 6, p. 1101–1115, 1994.
- 2266 Xue, G. P.; Loveridge, C. W. HvDRF1 is involved in abscisic acid-mediated gene regulation in barley
2267 and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich
2268 element. **The Plant Journal**, v. 37, n. 3, p. 326–339, 2004.
- 2269 Yamaguchi-Shinozaki, K.; Shinozaki, K. Transcriptional regulatory networks in cellular responses and
2270 tolerance to dehydration and cold stresses. **Annual Review of Plant Biology**, v. 57, n. 1, p.
2271 781–803, 2006.
- 2272 Yokobori, S.; Itoh, T.; Yoshinari, S.; et al. Gain and loss of an intron in a protein-coding gene in
2273 Archaea: the case of an archaeal RNA pseudouridine synthase gene. **BMC Evolutionary**
2274 **Biology**, v. 9, n. 1, p. 198, 2009.
- 2275 Zhang, X. C.; Gassmann, W. Alternative Splicing and mRNA Levels of the Disease Resistance Gene
2276 RPS4 Are Induced during Defense Responses. **Plant physiology**, v. 145, n. 4, p. 1577–1587,
2277 2007.
- 2278 Zhu, J. K. Salt anddrought stress signal transduction. **Annual Review of Plant Biology**, v. 53, n. 1, p.
2279 247–273, 2002.

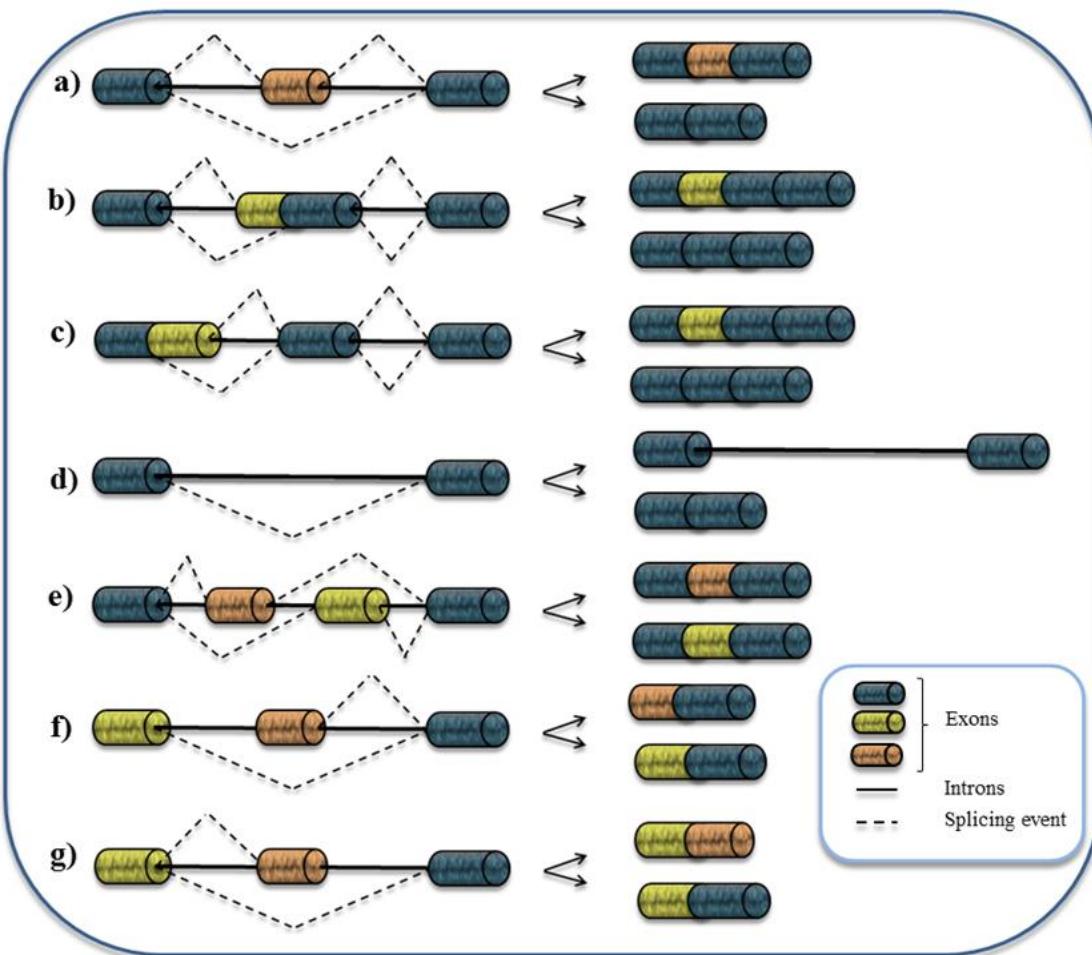
2280

2281 **Figure 1. Publications about alternative splicing and its evolution between 1978 and 2015.** Number of
 2282 abstracts in PubMed with the word combination “alternative splicing” and “plant alternative splicing”.


2283

2284

2285


2286

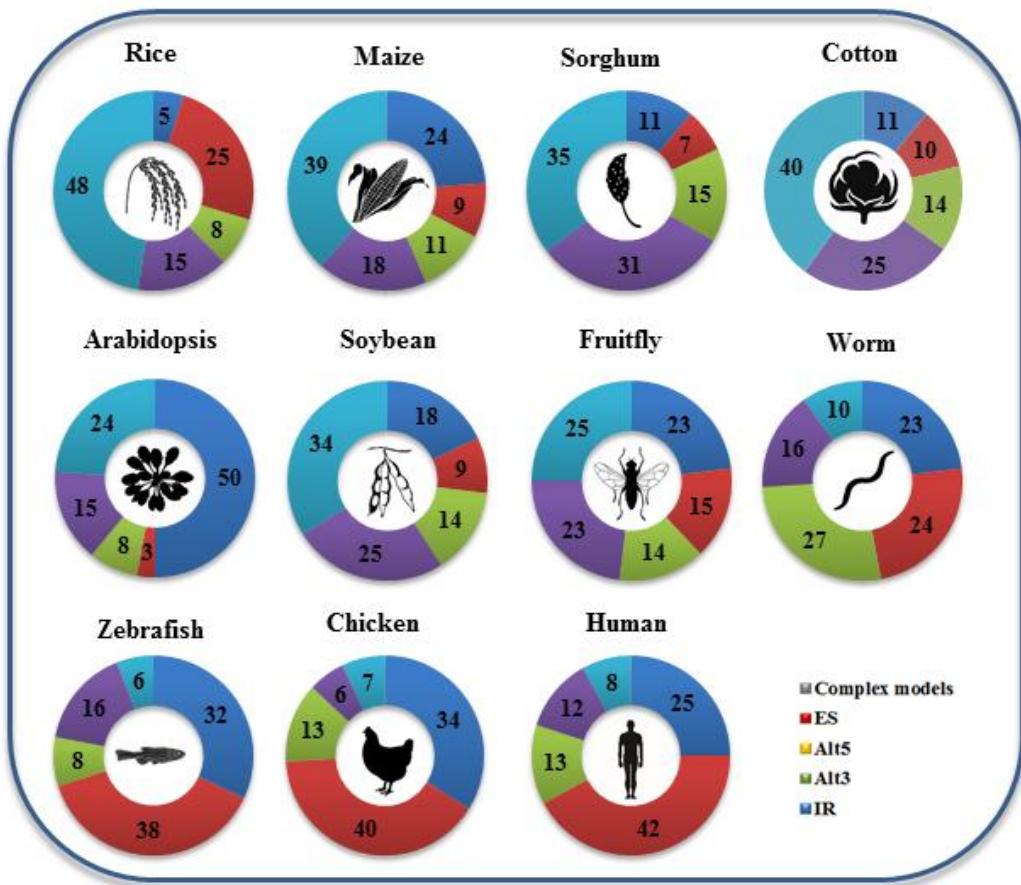
2287

2288

2289 **Figure 2. Alternative splicing regulation.** Part of the alternative splicing regulation is promoted by *cis*-
 2290 regulatory sequences called intronic silencing silencers (ISSs), intronic splicing enhancers (ISEs), exonic
 2291 splicing enhancers (ESEs) and exonic splicing silencers (ESSs), besides some specific sites as branch point and
 2292 PTB-binding site. These sites are binding by alternative splicing regulatory proteins as Ser/Arg-rich proteins
 2293 (SRs), heterogeneous nuclear ribonucleoproteins (hnRNPs), polypyrimidine tract-binding (PTB) proteins, FOX
 2294 proteins and NOVA proteins. Adapted from Kornblihtt et al. (2013) and Keren et al. (2010).

2295

2296


Figure 3. Types of Alternative splicing (AS) events. a) Exon skipping. B) Alternative 3'splice site (3'SS)

2297

selection. c) Alternative 5'splice site (5'SS) selection. d) Intron retention. e) Mutually exclusive exons. f)

2298

Alternative promoter. g) Alternative polyadenylation. Adapted from Keren et al. (2010).

2299

2300 **Figure 4. Proportion of alternative splicing types in different organisms.** The four major AS types (Exon
 2301 skipping (ES), alternative 5'splice site selection (Alt5), alternative 3'splice site selection (Alt3) and intron
 2302 retention (IR)) and the complex AS models. Adapted from Li et al. (2014).

4.4 Artigo 4 – The quest for more tolerant rice: how high concentrations of iron affect alternative splicing?

2305

2306 Artigo publicado à revista *Transcriptomics: Open Access*

2307

2308 Artur Teixeira de Araujo Junior¹; Daniel da Rosa Farias¹; Railson Schreinert dos Santos¹; Marcelo Nogueira do
2309 Amaral³; Luis Willian Pacheco Arge¹; Danyela de Cássia Oliveira¹; Solange Ferreira da Silveira Silveira¹;
2310 Rogério Oliveira de Sousa²; Eugenia Jacira Bolacel Braga³; Luciano Carlos da Maia¹; Antonio Costa de
2311 Oliveira¹

2312

2313 ¹Plant Genomics and Breeding Center, Universidade Federal de Pelotas, Campus Capão do Leão, 96010-900
2314 Capão do Leão, Brazil. Phone: 0555332757263, Fax: 0555332759031, acostol@terra.com.br

² Department of Soils, Universidade Federal de Pelotas, Campus Capão do Leão, 96010-900 Capão do Leão, Brazil

³ Department of Botany, Universidade Federal de Pelotas, Campus Capão do Leão, 96010-900 Capão do Leão, Brazil

2319

2320 Abstract

Rice (*Oryza sativa* L.) is a global staple food crop and an important model organism for plant studies. Recent researches have shown that alternative splicing of different genes is affected by many stressful conditions, suggesting that this phenomenon can be an important way to adapt to adverse environments. Due to the little information on this subject, this study aimed to explore changes in splicing patterns that occur in response high concentration of iron in nutrient solution. Here we quantified different kind of junctions and splicing events in the transcriptome of a relatively tolerant rice cultivar BRS Querência, under iron excess with concentration of 300 mg L⁻¹ Fe⁺². Plants kept under standard conditions (control) presented 127,781 different splicing junctions, while stressed plants had 123,682 different junctions. Canonical junctions accounted for 98.85% of the sites found in control plants while 98.91% of stressed, semi-canonical (0.73% for control and 0.70% for stressed) and non-canonical junctions (0.42% for control and 0.40% for stressed). Intron retention was the most frequent event in both situations (with 10,281 or 44.1% for control and 3,909 or 47.4% for stressed

2334 plants), followed by 3' splice site (5,261 or 22.6% and 1,802 or 21.9%), exon skipping (4,413
2335 or 18.9% and 1,429 or 17.3%) and alternative 5' splice site (3,352 or 14.4% and 1,104 or
2336 13.4%). We also found 25 differentially expressed genes (five up and 20 down-regulated) that
2337 are related to post-translational modifications. These results represent an important step in the
2338 understanding of how plant stress responses occur in an iron tolerant genotype, with
2339 information that has not yet been published.

2340

2341 **Keywords:** transcriptomics; iron toxicity; abiotic stress

2342

2343 **Introduction**

2344 Rice (*Oryza sativa* L.) is the second most widely grown cereal and one of the most
2345 important food sources for human nutrition. Most of rice production is concentrated in Asia.
2346 However, Brazil is the major producer outside this continent [1,2]. It is also important to
2347 notice that, apart from its social and economic importance, rice has been widely used as a
2348 model organism to investigate many aspects of plant biology, thus, much of the knowledge
2349 acquired from this species can also be applied to other monocots.

2350 Several minerals are essential for plant growth and most of these are usually taken up by
2351 roots, directly from the soil solution. Among these minerals, iron (Fe, from the Latin word
2352 "ferrum"), is a vital element for plant and animal life [3,4]. However, iron can be harmful
2353 when present at high concentrations [5], reason why its content is subjected to a precise
2354 control by the cells [6,7]. Iron excess is one of the most important constraints to rice
2355 production on soils irrigated by flooding. The low oxygen environment favors the reduction
2356 of this mineral, resulting in ferrous iron (Fe^{+2}) [5], a quite soluble form present in higher
2357 concentrations in the soil solution. This excessive iron can be easily absorbed and transported
2358 along the xylem, carried by the transpiration stream, leading to the generation of reactive
2359 oxygen species (ROS) in leaves, where the first symptoms are observed. Different
2360 physiological disorders caused by this toxicity culminate with big losses in crop production
2361 [8,9].

2362 To survive unfavorable conditions, plants actively employ pre-mRNA splicing as a
2363 mechanism to regulate expression of stress-responsive genes, reprogramming intracellular
2364 regulatory networks [10]. RNA splicing is a biological process responsible for removing

2365 introns from pre-mRNA, and joining exons. Splicing can lead to the generation of multiple
2366 protein isoforms from a single gene due to alternate use of 5' and/or 3' splice sites by the
2367 spliceosome, a phenomenon called alternative splicing (AS) [11,12]. In this sense, it is
2368 important to highlight the role of the splicing sites, the nucleotide sequences surrounding
2369 exon-intron boundaries that determine the action of the spliceosome [13].

2370 AS is an important post-transcriptional regulatory mechanism that modulates gene
2371 expression and, eventually, protein forms and functions [8,9]. This process consists in a post-
2372 transcriptional modification responsible for increasing the diversity of proteins generating two
2373 or more mRNA variants of a single gene causing the inclusion or exclusion of peptide
2374 sequences, and modulation of gene expression by producing mRNA variants [14].

2375 Plant AS events have not been characterized in many different conditions, but there is
2376 strong evidence indicating that these can promote fast changes that can contribute to species-
2377 specific differences and adaptation, performing important roles in many events, including
2378 stress response [15-18]. Recent studies suggest that environmental stresses can induce AS or
2379 alter its efficiency and fidelity in a number of genes playing a role in plant stress response and
2380 tolerance [19-22].

2381 The progress achieved in rice transcriptome analysis has enabled researchers to
2382 understand expression patterns and their relation to function and regulation, as well as the
2383 relationship between global transcription and chromosome features [23]. Recent studies
2384 pointed out the extensive diffusion of these phenomena in plants and its importance in gene
2385 expression and stress response [24]. RNAseq technique has been used to achieve different
2386 objectives, including gene prediction [25,26], isoform identification and quantification [19,27-
2387 30], as well as discovery of non-coding transcripts [31-33].

2388 Therefore, understanding transcriptome dynamics is essential for unveiling functional
2389 elements of the genome and interpreting phenotypic variation produced by combinations of
2390 genotypic and environmental factors [28]. Due to the little information available on this
2391 subject, in this study, we explore changes in splicing patterns that occur in response to iron
2392 excess, aiming to evaluate and quantify different kinds of junctions and alternative splicing
2393 events in the transcriptome of an iron-tolerant rice indica cultivar (BRS Querência) under high
2394 concentrations of iron.

2395

2396 **Materials and Methods**

2397

2398 **Plant material**

2399 Seeds of rice (cv. BRS Querência) were germinated in a growth chamber for 7 days
2400 with a photoperiod of 16 hours and a temperature of $25 \pm 2^{\circ}\text{C}$. After this period, seedlings
2401 were transferred to plastic trays (3 L) containing pre-washed sand, and kept in a greenhouse
2402 where irrigation, with water and nutrient solution [34], was maintained. Plants were subjected
2403 to iron treatment at the seedling stage [35], adding $300 \text{ mg L}^{-1} \text{ Fe}^{+2}$ to the nutrient solution
2404 [36], while untreated plants remained in normal nutrient solution (control). Plant material was
2405 collected 24 hours after iron treatment, frozen in liquid nitrogen and stored at -80°C for later
2406 RNA extraction.

2407

2408 **Preparation of cDNA and sequencing**

2409 The total RNA was extracted from 100 mg of leaves, using Purelink[®] Plant RNA
2410 Reagent. TruSeq RNA Sample Preparation v2 (Illumina[®]) kit was used for the preparation of
2411 libraries, following manufacturer's recommendations. RNA-Seq analysis was performed using
2412 Illumina HiSeq 2500 platform (Illumina[®]) with paired-end 2 x 100 reads.

2413

2414 **Data analysis**

2415 In order to evaluate read quality, the software FastQC Ver. 0.11.2 [37] was used. The
2416 Trimmomatic Ver. 0.32 [38] software was used to remove the adapters and low quality base
2417 reads of each library. Then, reads were mapped against the reference genome of *Oryza sativa*
2418 cv. Nipponbare (IRGSP build 1.0) from The Rice Annotation Project Database (RAP-DB)
2419 [39], by software TopHat Ver. 2.0.11 [40] with the argument “--report-secondary-alignments”
2420 to output additional or secondary alignments. TopHat uses software Bowtie Ver. 0.12.7 [41]
2421 to map the reads. To discover splice junction we mapped reads in the reference with
2422 MapSplice program [42] with default arguments, this software detected novel canonical,
2423 semi-canonical and non-canonical splice junctions. After, The Python package SpliceGrapher
2424 [43] was used to predict alternative splicing patterns by loci, for this analysis first we reduced
2425 gene models and filtered alignments to reduce the false-positive (with sam_filter.py), after we

2426 predicted splice graphs for all transcripts (with predict_graphs.py). Finally we compared the
2427 predicted with complete gene models to see how closely the predicted graphs match the
2428 complete gene models (with gene_model_to_spliceograph.py). Finishing the analysis,
2429 MapMan Ver. 3.5.1.R2 [45] and the Predicted Rice Interactome Network - PRIN [46] were
2430 used to detect changes in metabolism, and in protein-protein interactions respectively. The
2431 identification of differentially expressed genes (DEGs) was performed using edge R Ver.
2432 3.8.5 [46,47,48]. The expression levels were normalized by reads per kilobase per million
2433 reads (RPKM) method, with p-value < 0.01.

2434

2435 **Results and Discussion**

2436 Here 127,781 junction sites were found in plants under normal conditions (control),
2437 and 123,682 were found in plants under stressful conditions. Significant difference in the
2438 proportion of these junction sites are found when these are classified into the three main
2439 described categories (Figure 1A). As expected the most sites are classified as canonical
2440 (98.85% for control plants and 98.91% for stressed), followed by the semi-canonical (0.73%
2441 for control and 0.70% for stressed) and non-canonical junctions sites (0.42% in control and
2442 0.40% in stressed).

2443 The lower number of junction sites found in iron stressed rice can be explained mainly
2444 by the high tolerance of the genotype used in this study. The AS is predominant in some gene
2445 families, while absent in others [49], in this sense we can have a larger number of genes
2446 expressed in plants under stressful conditions that must belong to families that did not present
2447 AS.

2448 The analysis of 5' and 3' splice sites in all introns of *Arabidopsis* and rice indicates that
2449 these are very similar to human, with just some subtle differences in the frequencies of
2450 specific nucleotides at specific positions. In *Arabidopsis*, non-canonical splicing sites occur in
2451 only 0.7% of all splicing sites [13]. Other reports demonstrated that 97.5% are canonical GT-
2452 AG pairs, while 1% is GC-AG and 1.5% a combination of less frequent non-canonical sites
2453 [24].

2454 Non-canonical AS comprised “variations affecting multiple exons”, which refer to
2455 deletions of large coding sequences spanning several exons, intraexonic deletions and
2456 generation of chimeric mRNAs. These join together portions of two separate mRNA

2457 molecules frameshifting, which was caused by an intron excision, therefore a lower number of
2458 non-canonical sites junctions can be a defense strategy against the stress in this cultivar [10].

2459 The four major kinds of alternative splicing (intron retention, exon skipping, alternative
2460 5' splicing site, and alternative 3' splicing site), that cover the vast majority of the alternative
2461 splicing events [50], were investigated in control and Fe overload plants. A deeper alternative
2462 splicing analysis showed that the control plants presented a higher number of events (23,307)
2463 when compared to the treated ones (8,244). The AS events were organ-specific, indicating a
2464 strong association of AS events with organ- specific regulation and a major role for AS in the
2465 functional complexity of plants [28], being this one of the possible reasons that for having a
2466 low number of events in the treated samples. Furthermore, it is interesting to note that intron
2467 retention was the most frequent event in both situations, with 10,281 (44.1%) for control and
2468 3,909 (47.4%) for stressed (Figure 1B). Similar results were also detected in others studies,
2469 demonstrating that intron retention is the most frequent type of AS in plants [34,36,51]. The
2470 second major event is alternative 3' splice site (5,261/22.6% and 1,802/21.9%), followed by
2471 exon skipping (4,413/18.9% and 1,429/17.3%) and alternative 5' splice site (3,352/14.4% and
2472 1,104/13.4%).

2473 The increasing of the percentage of intron retention may be a reflect of the underlying
2474 mechanism to create novel function acting on many other genes in plants. The stress condition
2475 can affect the plant mechanisms, even with low effect, regulating splicing by multiple
2476 mechanisms, including alteration of the population or distribution of splicing factors, or
2477 induction of changes in phosphorylation status or expression of serine-arginine-rich protein
2478 [49].

2479 The intron retention is the AS events observed with a presence of ~40% in *Arabidopsis*
2480 and rice, while only 9% is observed in human [52]. The most abundant splicing event in
2481 human is exon-skipping (42%) whereas in plants this event considered relatively rare, as also
2482 observed in experiment data in our study. This suggests that the splice regulatory components
2483 can influence the splicing mechanisms making difference between plant and animals. This
2484 data can be related to the hypothesis that organisms that typically have small introns use an
2485 intron-definition splicing mechanism, performing most of the AS events the intron retention,
2486 in contrast the organisms that have large introns use an exon definition mechanism, being thus
2487 the most used the exon skipping [53].

2488 Similar results were already found in which intron retention represents 47% of all
2489 splicing events in rice [28]. Other reports also found that the most common event is intron
2490 retention, involving 77% of the alternatively spliced genes in grape [24]. The results obtained
2491 are consistent with other studies [19,27,28,51] supporting the idea that intron retention is a
2492 common event in plants.

2493 The intron retention events and alternative 5' and 3' splice sites can produce more
2494 mRNAs with premature termination codons (PTCs). The presence of PTCs may result in
2495 mRNA degradation via the nonsense-mediated mRNA decay (NMD), and translation of
2496 truncated proteins [22,54,55]. Truncated proteins can have important roles in plant stress
2497 adaptation, once that truncated proteins derived from the PTC containing mRNAs are not
2498 necessarily functionless compared to the full-length protein [37,56,57].

2499 The AS also affects a range of regulatory genes that are presumed to have important
2500 roles in abiotic stress adaptation [10]. Its influences are present in almost all aspects of protein
2501 functions, making it a central part of gene expression regulation. Recent studies suggest that
2502 epigenetic regulation not only determines which parts of the genome are expressed, but also
2503 how they are spliced. ROS and reactive nitrogen species (RNS) at an increased rate during
2504 stress, participating in signal transduction, modify cellular components and cause damage,
2505 being an important group of genes to analyze [58]. In this case, changes promoted by AS in
2506 the expression of proteins related to post-translational modifications were analyzed. These
2507 proteins are responsible for diversifying the functions of others proteins and for the dynamic
2508 coordination of signaling networks [40].

2509 A total of 25 differentially expressed genes were found to be related to post-
2510 translational modifications (Table 1), of these, the first five genes (*Os01g0631700*,
2511 *Os04g0660500*, *Os02g0777800*, *Os07g0693000*, *Os03g0125600*) are up-regulated, while the
2512 remaining 20 are down-regulated. When these proteins were analyzed, kinases and
2513 phosphatases were found to be the most common classes, where 14 assignments were found.
2514 These proteins are responsible for two important biological processes: phosphorylation with
2515 14.29% of the assignments (with a total of three down-regulated genes) and
2516 dephosphorylation with 85.71% of the assignments (where 14 genes were down-regulated and
2517 four were up-regulated). The most common molecular functions were transferase activity and
2518 ATP binding. In both cases, 16 down-regulated and four up-regulated assignments were
2519 observed. A change of scenario in genes responsible for post-translational modifications can
2520 be seen when plants are subjected to stress. This change is perceived by decreasing the

2521 expression of most of these genes and by the activation of some other post- translational
2522 genes. These changes can be a differentiated response of plants to stress.

2523 The activated post-translational modification genes are distributed into two main
2524 groups: protein kinases (*Os01g0631700*, *Os04g0660500* and *Os03g0125600*) and receptor-
2525 like cytoplasmic kinases (*Os02g0777800* and *Os07g0693000*). Protein kinases play key roles
2526 in most cellular activities, performing the phosphorylation in protein side chains, a process
2527 that usually results in a functional change of the target protein by changing enzyme activity,
2528 cellular location, or association with other proteins [59,60]. Receptor-like cytoplasmic kinases
2529 (RLCKs) have important roles in plant development and stress responses, where differential
2530 expression patterns suggest their involvement in diverse functions in rice [61]. These reports
2531 aid the understanding and confirmation of results obtained.

2532 Plants respond to adverse conditions through a series of signaling processes that often
2533 involves diverse protein kinases. We found calcineurin B-like protein-interacting protein
2534 kinases (CIPKs), mitogen-activated protein kinases (MAPKs), stress-activated protein kinase
2535 and receptor-like cytoplasmic kinases were down-regulated. Differential expression of these
2536 genes had already been detected for stresses like drought, salinity, cold, polyethylene glycol,
2537 or abscisic acid treatment [62-65].

2538 Just one locus (LOC_Os02g34600) showed interactions with other differentially
2539 expressed genes. Correlations with other six loci (Figure 3A), five negative (co-expression
2540 values between -0.1879 and -0.0210), and one positive correlation (0.1756) were found.
2541 Metabolomic correlation networks, indicated negative co-expression between folding protein
2542 and post-translational modification proteins (Figure 3B). Post-translational modifications had
2543 positive co-expression with proteins of RNA processing also had negative co-expression with
2544 ribosomal protein synthesis and some proteins with metabolism non-assigned.

2545

2546 Conclusion

2547 Rice plants of cv. BRS Querência under stress with concentration 300 mg L⁻¹ Fe⁺²
2548 during 24 hours change the pattern of alternative splicing in leaves. Also, changes in the
2549 expression of post-translational modification genes occur. Changes of AS events may indicate
2550 a new tolerance strategy of plants. This work represents an important step for understand how
2551 the rice plant respond to stress and how this response can increase tolerance in this species.

2552 More studies are necessary in order to elucidate the influence of these up-regulated genes on
2553 plant tolerance responses under stress by iron overload. Alternative transcripts identified here
2554 constitute important targets for molecular breeding through genetic engineering and marker
2555 development.

2556

2557 **Acknowledgements**

2558 Research supported by the following Brazilian funding agencies: Coordenação de
2559 Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de
2560 Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do
2561 Rio Grande do Sul (FAPERGS).

2562

2563 **Competing interests**

2564 The authors have no potential competing interests to declare.

2565

2566 **References**

2567 [1] <http://www.fao.org/ag/agl/agll/spush>

2568 [2] Finatto T, de Oliveira AC, Chaparro C, da Maia LC, Farias DR, et al. (2015) Abiotic stress and
2569 genome dynamics: specific genes and transposable elements response to iron excess in rice. *Rice* 8:13-
2570 31.

2571 [3] Black MM, Quigg AM, Hurley K, Pepper M R (2011) Iron deficiency and iron-deficiency anemia
2572 in the first two years of life: Strategies to prevent loss of developmental potential. *Nutrition Reviews*
2573 69: 64-70.

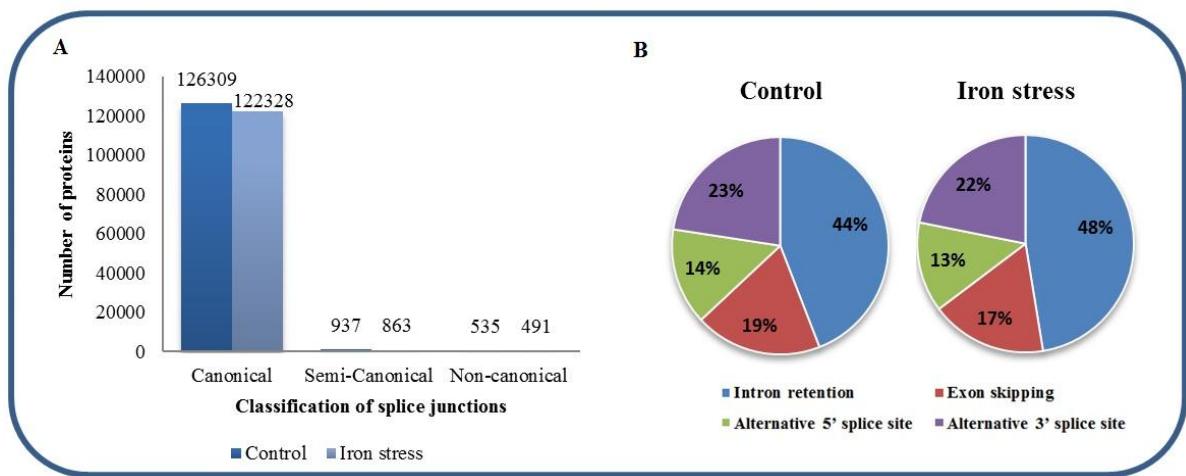
2574 [4] Kobayashi T, Nishizawa NK (2012) Iron Uptake, Translocation, and Regulation in Higher Plants.
2575 *Annual Review of Plant Biology* 63: 131-152.

2576 [5] Stein RJ, Duarte GL, Spohr MG, Lopes SIG, Fett JP (2009) Distinct physiological responses of
2577 two rice cultivars subjected to iron toxicity under field conditions. *Ann Appl Biol* 154:269-277.

2578 [6] Hindt MN, Guerinot ML (2012) Getting a sense for signals: regulation of the plant iron deficiency
2579 response. *Biochimica et Biophysica Acta (BBA) – Molecular Cell Research* 1823: 1521-1530.

2580 [7] Connolly EL, Guerinot M (2002) Iron stress in plants. *Genome Biology* 3:1-4.

- 2581 [8] Wan JL, Zhai HQ, Wan JM, Yasui H, Yoshimura A (2004) Detection and analysis of QTLs
2582 associated with resistance to ferrous iron toxicity in rice (*Oryza sativa* L.), using recombinant inbred
2583 lines. *Acta Agronomica Sinica* 30:329-333.
- 2584 [9] Thongbai P, Goodman BA (2000) Free radical generation and post anoxic injury in an iron toxic
2585 soil. *J Plant Physiol* 23:1887-1990.
- 2586 [10] Dubrovina AS, Kiselev KV, Zhuravlev YN (2012) The role of canonical and noncanonical pre-
2587 mRNA splicing in plant stress responses. *BioMed Research International* 2013: 1-14.
- 2588 [11] Zhiguo E, Wang L, Zhou J (2013) Splicing and alternative splicing in rice and humans. *BMB*
2589 *Reports*, 46: 439-447.
- 2590 [12] Zhou J, Zheng X, Shen H (2012) Targeting RNA-splicing for SMA treatment. *Molecules and*
2591 *Cells* 33: 223-228.
- 2592 [13] Reddy ASN (2007) Alternative splicing of pre-messenger RNAs in plants in the genomic era.
2593 *Annual Review of Plant Biology* 58: 267-294.
- 2594 [14] Yoshimura K, Mori T, Yokoyama K, Koike Y, Tanabe N, Sato N, Takahashi H, Maruta T,
2595 Shigeoka, S (2011) Identification of Alternative Splicing Events Regulated by an *Arabidopsis*
2596 Serine/Arginine-Like Protein, atSR45a, in Response to High-Light Stress using a Tiling Array. *Plant*
2597 and *Cell Physiology* 52:1786-1805.
- 2598 [15] Irimia M, Rukov JL, Roy SW (2009) Evolution of alternative splicing regulation: changes in
2599 predicted exonic splicing regulators are not associated with changes in alternative splicing levels in
2600 primates. *PLoS ONE* 4: e5800.
- 2601 [16] Barbosa-Moraes NL, Irimia M, Pan Q, Xiong HY, Gueroussov S, Lee LJ, Slobodeniuc V, Kutter
2602 C, Watt S, Colak R, et al. (2012) The evolutionary landscape of alternative splicing in vertebrate
2603 species. *Science* 338: 1587-1593.
- 2604 [17] Merkin J, Russell C, Chen P, Burge CB (2012) Evolutionary dynamics of gene and isoform
2605 regulation in mammalian tissues. *Science* 338: 1593-1599.
- 2606 [18] Reddy ASN, Marquez Y, Kalyna M, Barta A (2013) Complexity of the alternative splicing
2607 landscape in plants. *Plant Cell Online* 25:3657-3683.
- 2608 [19] Filichkin SA, Priest HD, Givan SA, et al. (2010) Genome- wide mapping of alternative splicing
2609 in *Arabidopsis thaliana*. *Genome Research* 20: 45-58.
- 2610 [20] Iida K, Seki M, Sakurai T, et al. (2004) Genome-wide analysis of alternative pre-mRNA splicing
2611 in *Arabidopsis thaliana* based on full-length cDNA sequences. *Nucleic Acids Research* 32: 5096-
2612 5103.

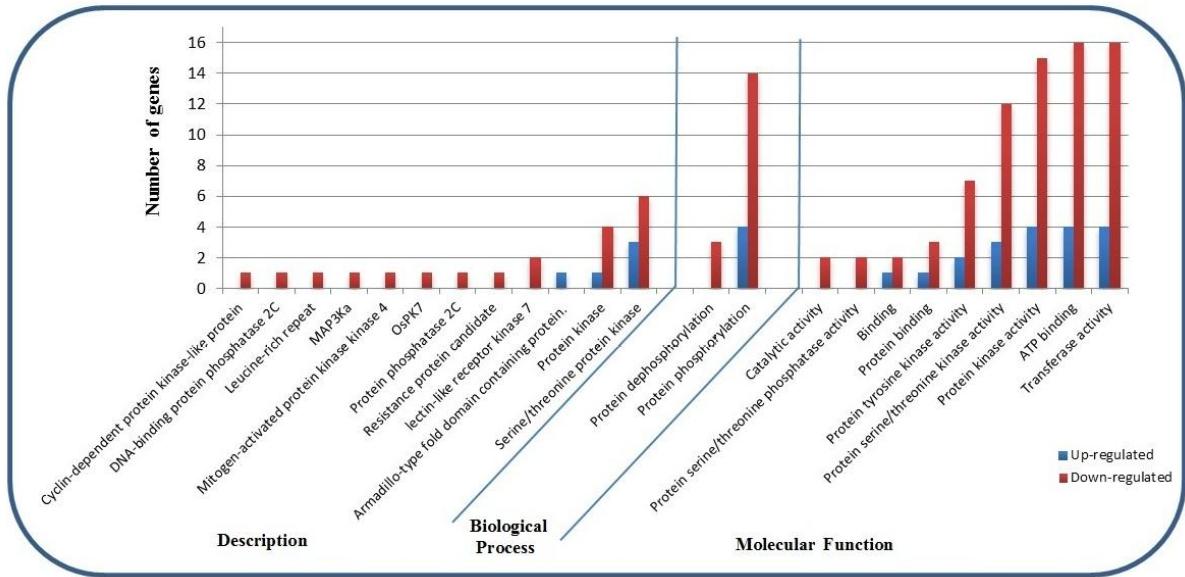

- 2613 [21] Ali GS, Reddy ASN (2008) Regulation of alternative splicing of pre-mRNAs by stresses. *Current*
2614 *Topics in Microbiology and Immunology* 326: 257–275.
- 2615 [22] Mastrangelo AM, Marone D, Laidò G, et al. (2012) Alternative splicing: enhancing ability to
2616 cope with stress via transcriptome plasticity. *Plant Science* 185: 40–49.
- 2617 [23] Lu T, Lu G, Fan D, Zhu C, Li W, Zhao Q, Feng Q, Zhao Y, Guo Y, Li W, Huang X, Han B
2618 (2010) Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq.
2619 *Genome Research* 20: 1238–1249.
- 2620 [24] Vitulo N, Forcato C, Carpinelli EC, Telatin A, Campagna D, D’Angelo M (2014) A deep survey
2621 of alternative splicing in grape reveals changes in the splicing machinery related to tissue, stress
2622 condition and genotype. *BMC Plant Biology*, 14: 99–115.
- 2623 [25] Li Z, Zhang Z, Yan P, Huang S, Fei Z, Lin K (2011) RNA-seq improves annotation of protein-
2624 coding genes in the cucumber genome. *BMC Genomics* 12:540.
- 2625 [26] Zhao C, Waalwijk C, de Wit PJGM, Tang D, van der Lee T (2013) RNA-Seq analysis reveals
2626 new gene models and alternative splicing in the fungal pathogen *Fusarium graminearum*. *BMC*
2627 *Genomics* 14:21.
- 2628 [27] Marquez Y, Brown JWS, Simpson C, Barta A, Kalyna M (2012) Transcriptome survey reveals
2629 increased complexity of the alternative splicing landscape in *Arabidopsis*. *Genome Res* 22:1184–1195.
- 2630 [28] Zhang G, Guo G, Hu X, Zhang Y, Li Q, Li R, Zhuang R, Lu Z, He Z, Fang X, Chen L, Tian W,
2631 Tao Y, Kristiansen K, Zhang X, Li S, Yang H, Wang J, Wang J (2010) Deep RNA sequencing at
2632 single base-pair resolution reveals high complexity of the rice transcriptome. *Genome Res* 20:646–
2633 654.
- 2634 [29] Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying
2635 mammalian transcriptomes by RNA-seq. *Nat Methods* 5:621–628.
- 2636 [30] Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold
2637 BJ, Pachter L (2010) Transcript assembly and quantification by RNA-seq reveals unannotated
2638 transcripts and isoform switching during cell differentiation. *Nat Biotechnol* 28:511–515.
- 2639 [31] Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative
2640 annotation of human large intergenic noncoding RNAs reveals global properties and specific
2641 subclasses. *Genes Dev* 25:1915–1927.
- 2642 [32] Pauli A, Valen E, Lin MF, Garber M, Vastenhoud NL, Levin JZ, Fan L, Sandelin A, Rinn JL,
2643 Regev A, Schier AF (2012) Systematic identification of long noncoding RNAs expressed during zebra
2644 fish embryogenesis. *Genome Res* 22:577–591.

- 2645 [33] Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X, Fan L, Koziol MJ,
2646 Gnirke A, Nusbaum C, Rinn JL, Lander ES, Regev A (2010) Ab initio reconstruction of cell type-
2647 specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. *Nat*
2648 *Biotechnol* 28:503–510.
- 2649 [34] Yoshida S, Forno DA, Cock JH, Gomez KA (1972) Laboratory manual for physiological studies
2650 of rice. The Philippines: International Rice Research Institute (IRRI) Third Edition. Los Baños,
2651 Laguna, Philippines.
- 2652 [35] McLean J, Hardy B, Hettel G (2013) Rice Almanac, 4th edition. IRRI, Los Baños, Philippines.
- 2653 [36] Elec V, Quimio CA, Mendoza R, Sajise AGC, Beebout SEJ, Gregorio GB, Singh RK (2013)
2654 Maintaining elevated Fe^{2+} concentration in solution culture for the development of a rapid and
2655 repeatable screening technique for iron toxicity tolerance in rice (*Oryza sativa* L.). *Plant Soil*.
2656 372:253-64.
- 2657 [37] <http://www.bioinformatics.babraham.ac.uk/projects/fastqc>
- 2658 [38] Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence
2659 data. *Bioinformatics*.30: 2114-2120.
- 2660 [39] Database, R.A.P.: Rice Annotation Project Database. <http://rapdb.lab.nig.ac.jp>.
- 2661 [40] Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq.
2662 *Bioinformatics* 25: 1105-1111.
- 2663 [41] Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. *Nat Methods* 9:
2664 357-9.
- 2665 [42] Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, He X, Mieczkowski P, Grimm
2666 SA, Perou CM, Macleod JN, Chiang DY, Prins JF, Liu J (2010) MapSplice: Accurate mapping of
2667 RNA-seq reads for splice junction discovery. *Nucleic Acids Research* 38: 1-14.
- 2668 [43] Rogers MF, Thomas J, Reddy ASN, Ben-Hur A (2012) SpliceGrapher: Detecting patterns of
2669 alternative splicing from RNA-seq data in the context of gene models and EST data. *Genome Biology*,
2670 13: 1-17.
- 2671 [44] Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt
2672 M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic
2673 pathways and other biological processes. *Plant J* 37:914-39.
- 2674 [45] Gu HB, Zhu PC; Chen M (2011) PRIN: a predicted rice interactome network. *BMC*
2675 *Bioinformatics* 12:161.

- 2676 [46] R Core Development Team (2014) R: a language and environment for statistical computing. R
2677 Foundation for Statistical Computing: Vienna.
- 2678 [47] Robinson MD, McCarthy DJ, Smyth GK (2008) edgeR: a Bioconductor package for
2679 differential expression analysis of digital gene expression data. *Bioinformatics* 26:139-40.
- 2680 [48] Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. (2004)
2681 Bioconductor: open software development for computational biology and bioinformatics. *Genome
2682 Biol.* 5:R80.
- 2683 [49] Barbazuk WB, Fu Y, Mcginnis KM (2008). Genome-wide analyses of alternative splicing in
2684 plants : Opportunities and challenges. *Genome Research* 18:1381–1392.
- 2685 [50] Keren H, Lev-Maor G, Ast G (2010) Alternative splicing and evolution: diversification, exon
2686 definition and function. *Nature Reviews. Genetics* 11: 345–355.
- 2687 [51] Wang BB, Brendel V (2006) Genome wide comparative analysis of alternative splicing in plants.
2688 *Proceedings of the National Academy of Sciences of the United States of America* 103: 7175–7180.
- 2689 [52] Kim E, Magen A, Ast G (2007) Different levels of alternative splicing among eukaryotes. *Nucleic
2690 Acids Res.* 35: 125–131.
- 2691 [53] Nakai K, Sakamoto H (1994) Construction of a novel database containing aberrant splicing
2692 mutations of mammalian genes. *Gene* 141: 171–177.
- 2693 [54] Kalyna M, Simpson CG, Syed NH, et al. (2012) Alternative splicing and nonsense-mediated
2694 decay modulate expression of important regulatory genes in *Arabidopsis*,” *Nucleic Acids Resources*
2695 40: 2454–2469.
- 2696 [55] Lareau LF, Brooks AN, Soergel DA, Meng Q, Brenner SE (2007) The coupling of alternative
2697 splicing and nonsense- mediated mRNA decay. *Advances in Experimental Medicine and Biology* 623:
2698 190–211.
- 2699 [56] Zhang XC, Gassmann W (2007) Alternative splicing and mRNA levels of the disease resistance
2700 gene RPS4 are induced during defense responses. *Plant Physiology* 145: 1577–1587.
- 2701 [57] Matsukura S, Mizoi J, Yoshida T, et al. (2010) Comprehensive analysis of rice DREB2-type
2702 genes that encode transcription factors involved in the expression of abiotic stress-responsive genes.
2703 *Molecular Genetics and Genomics* 283: 185–196.
- 2704 [58] Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in
2705 plants. *Annual Review of Plant Biology* 58: 459–481;

- 2706 [59] Hanks SK, Quinn M, Hunter T (1988) The protein kinase family: conserved features and deduced
2707 phylogeny of the catalytic domains. *Science* 241: 42–52.
- 2708 [60] Chaiwongsar S, Otegui MS, Jester PJ, Monson SS, Krysan PJ (2006) The protein kinase genes
2709 MAP3K epsilon 1 and MAP3K epsilon 2 are required for pollen viability in *Arabidopsis thaliana*. *The
2710 Plant Journal : For Cell and Molecular Biology* 48: 193–205.
- 2711 [61] Vij S, Giri J, Dansana PK, Kapoor S, Tyagi A K (2008) The receptor-like cytoplasmic kinase
2712 (OsRLCK) gene family in rice: Organization, phylogenetic relationship, and expression during
2713 development and stress. *Molecular Plant* 1: 732–750.
- 2714 [62] Kanwar P, Sanyal SK, Tokas I, Yadav AK, Pandey A, Kapoor S, Pandey GK (2014)
2715 Comprehensive structural, interaction and expression analysis of CBL and CIPK complement during
2716 abiotic stresses and development in rice. *Cell Calcium* 56: 81–95.
- 2717 [63] Szponarski W, Sommerer N, Boyer JC, Rossignol M, Gibrat R (2004) Large-scale
2718 characterization of integral proteins from *Arabidopsis* vacuolar membrane by two-dimensional liquid
2719 chromatography. *Proteomics* 4: 397–406.
- 2720 [64] Zhou X, Ma Y, Sugiura R, Kobayashi D, Suzuki M, Deng L, Kuno T (2010) MAP kinase kinase
2721 kinase (MAPKKK)-dependent and -independent activation of Sty1 stress MAPK in fission yeast.
2722 *Journal of Biological Chemistry* 285: 32818–32823.
- 2723 [65] Chaiwongsar S, Otegui MS, Jester PJ, Monson SS, Krysan PJ (2006) The protein kinase genes
2724 MAP3K epsilon 1 and MAP3K epsilon 2 are required for pollen viability in *Arabidopsis thaliana*. *The
2725 Plant Journal : For Cell and Molecular*.

2726

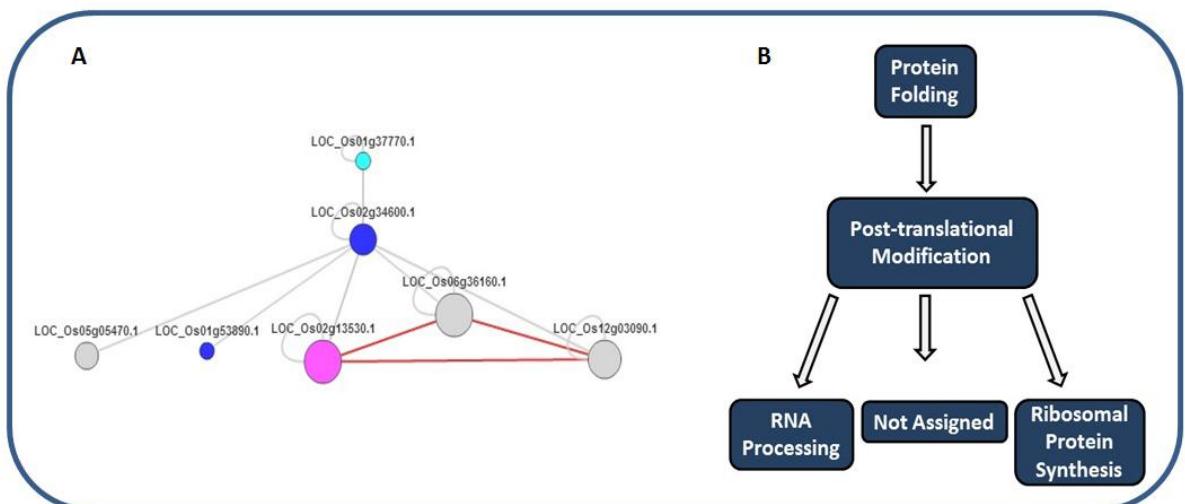


2727 **Figure 1** Alternative splicing analysis in leaves of rice seedling stage (*Oryza sativa* ssp. *indica* cv. BRS
 2728 Querência) after 24 hours of iron excess exposure. (A) Types of alternative splicing junctions sites. (B) Pie chart
 2729 showing the percentage distribution of alternative splicing events in control a stress condition ($300 \text{ mg L}^{-1} \text{ Fe}^{+2}$).

2730 **Table 01** Genes related to post-translational modifications which are differentially expressed in rice (*Oryza*
 2731 *sativa* ssp. *indica* cv. BRS Querência) under iron excess (300 mg L⁻¹ Fe⁺²).

Gene-ID	Locus	Description
<i>Os01g0631700</i>	LOC_Os01g44110	Similar to Ser Thr specific protein kinase-like protein
<i>Os04g0660500</i>	LOC_Os04g56530	Armadillo-type fold domain containing protein
<i>Os02g0777800</i>	LOC_Os02g53750	Protein kinase, catalytic domain domain containing protein
<i>Os07g0693000</i>	LOC_Os07g49240	Similar to Ser-thr protein kinase
<i>Os03g0125600</i>	LOC_Os03g03410	Ser Thr specific protein kinase-like protein
<i>Os04g0487200</i>	LOC_Os04g41030	Serine/threonine protein kinase domain containing protein
<i>Os07g0150700</i>	LOC_Os07g05620	Serine/threonine protein kinase
<i>Os12g0203000</i>	LOC_Os12g10190	Similar to Cyclin-dependent protein kinase-like protein
<i>Os11g0207200</i>	LOC_Os11g10100	Similar to MAP3Ka
<i>Os05g0318700</i>	LOC_Os05g25450	Similar to Resistance protein candidate
<i>Os04g0691100</i>	LOC_Os04g59450	Serine/threonine-protein kinase SAPK5
<i>Os04g0490500</i>	LOC_Os04g41310	Protein kinase-like domain domain containing protein
<i>Os02g0551100</i>	LOC_Os02g34600	Serine/threonine-protein kinase SAPK6
<i>Os07g0283125</i>	LOC_Os07g18240	Similar to lectin-like receptor kinase 7
<i>Os01g0155500</i>	LOC_Os01g06280	Protein kinase, catalytic domain domain containing protein
<i>Os02g0787300</i>	LOC_Os02g54600	Similar to MAP kinase kinase
<i>Os01g0759400</i>	LOC_Os01g55450	CBL-interacting protein kinase 12
<i>Os01g0960400</i>	LOC_Os01g72990	Protein kinase, core domain containing protein
<i>Os03g0634400</i>	LOC_Os03g43440	Serine/threonine protein kinase domain containing protein
<i>Os01g0583100</i>	LOC_Os01g40094	Similar to Protein phosphatase 2C
<i>Os01g0818700</i>	LOC_Os01g60280	Leucine-rich repeat, N-terminal domain containing protein
<i>Os03g0772600</i>	LOC_Os03g56160	Similar to Lectin-like receptor kinase 7;2
<i>Os01g0655500</i>	LOC_Os01g46720	Protein kinase, core domain containing protein
<i>Os02g0799000</i>	LOC_Os02g55560	Similar to DNA-binding protein phosphatase 2C
<i>Os03g0339900</i>	LOC_Os03g22050	Similar to Serine/threonine protein kinase

2732


2733

2734 **Figure 2** Gene ontology of differentially expressed genes related to post-translational modifications in rice
 2735 (*Oryza sativa* ssp. *indica* cv. BRS Querência) under iron excess ($300 \text{ mg L}^{-1} \text{ Fe}^{+2}$).

2736

2737

2738

2739

2740 **Figure 3** Interactions between genes involved in post-translational modifications in rice leaves at seedling stage
 2741 (*Oryza sativa* ssp. *indica* cv. BRS Querência) after 24 hours of exposure to high concentrations of iron ($300 \text{ mg L}^{-1} \text{ Fe}^{+2}$). (A) Protein-protein interaction networks. Gray lines represent co-expression less or equal to 0.5 and
 2742 red lines represent co-expression above 0.8. The circle of colors representing their possible subcellular
 2743 localization: navy blue to mitochondria, dark blue for the nucleus, pink for cytoplasm and gray for unknown
 2744 localization. (B) Co-expression metabolomics network.

2746 **5 DISCUSSÃO GERAL E PERSPECTIVAS**

2747

2748 O alagamento do solo pode promover a solubilização do ferro,
2749 desencadeando em um acúmulo de Fe(II) na solução do solo, podendo atingir níveis
2750 tóxicos (Becker e Asch, 2005). A toxidez por ferro pode ocorrer na planta de duas
2751 formas distintas: por absorção excessiva (toxidez direta ou bronzeamento) ou por
2752 deficiência nutricional múltipla (toxidez indireta ou alaranjamento). Por mais que se
2753 tenha estudos com a finalidade de identificar a resposta da planta frente a este
2754 estresse, analisando tanto os efeitos morfológicos quanto as alterações no
2755 transcriptoma, ainda existe uma carência de informação em relação ao mecanismo
2756 de homeostase de ferro. A resposta da planta depende da cultivar analisada, das
2757 condições de estresse, do estádio de desenvolvimento e do tipo de tecido. Sendo de
2758 grande relevância entender como o excesso deste metal afeta o metabolismo e o
2759 transcriptoma das folhas.

2760 A cv. de arroz BRS Querência foi caracterizada como tendo bons níveis de
2761 tolerância ao excesso de Fe e sob as condições adotadas neste trabalho foi possível
2762 verificar alterações no perfil transcracional das folhas, ocorrendo tanto a ativação
2763 quanto a repressão de uma grande quantidade de genes, observando-se assim,
2764 mudanças em um grande número de vias metabólicas. Ao longo desse trabalho foi
2765 realizada uma interpretação dos dados e de como essas alterações desencadearam
2766 uma possível resposta de tolerância.

2767 Dos genes expressos diferencialmente, obteve-se uma alta ativação dos que
2768 codificam proteínas relacionadas à homeostase de ferro, responsáveis
2769 principalmente, pelo transporte, quelação e armazenamento. Dentre os vários
2770 mecanismos de tolerância que se conhece atualmente, tem-se que a ativação deste
2771 conjunto de genes pode estar relacionada ao mecanismo do Tipo II, no qual, o Fe(II)
2772 é absorvido e armazenado numa forma menos reativa. A BRS Querência elevou em
2773 aproximadamente 12 vezes a expressão do gene que codifica a proteína
2774 VACUOLAR IRON TRANSPORTER 1 (VIT1), um transportador de membrana
2775 envolvido na captação e translocação de Fe para o vacúolo, sendo que esta
2776 elevação também foi encontrada em outros trabalhos sobre excesso de ferro (Quinet
2777 et al., 2012; Finatto et al., 2015). O gene que codifica a proteína FERRITIN teve sua
2778 expressão elevada em torno de quatro vezes. Sua função está relacionada ao
2779 armazenamento de Fe, podendo tanto fornecer Fe para síntese de novas proteínas

2780 quanto armazenar o Fe numa forma menos reativa, evitando possíveis danos
2781 causados por radicais livres (Goto et al., 1999).

2782 Além disso, foi possível observar a ativação tanto do gene codificador à
2783 proteína FERRIC REDUCTASE DEFECTIVE 3 (FRD3), que é responsável por
2784 quitar o Fe e disponibilizá-lo para a parte aérea em uma forma utilizável, quanto do
2785 gene que codifica a METHYLTHIOADENOSINE NUCLEOSIDASE (MTN), uma
2786 enzima reguladora do ciclo da metionina, no qual, está associado com a biossíntese
2787 de etileno, um importante hormônio que atua na resposta ao estresse (Bürstenbinder
2788 et al., 2010; Wang et al., 2013). Todavia, é necessário mais análises, principalmente
2789 uma confirmação em laboratório, para assim, permitir a compreensão detalhada da
2790 ação da expressão desses genes nas folhas, verificando se não ocorre também um
2791 aumento da expressão de outros genes relacionados à homeostase de Fe. Vale
2792 ressaltar que diferentes mecanismos de tolerância podem ocorrer na planta,
2793 dependendo do tecido analisado e do estádio de desenvolvimento. Desta forma,
2794 seria de grande valia analisar os perfis de expressão de diferentes tecidos
2795 submetidos à condição de estresse em diferentes estádios de desenvolvimento, para
2796 assim, ter-se um entendimento mais completo de como é desempenhada a resposta
2797 de tolerância nesta cultivar.

2798 A resposta da planta ao estresse envolve vários rearranjos de processos
2799 metabólicos e fisiológicos que devem adaptar o organismo vegetal ao ambiente
2800 alterado. Os resultados obtidos neste experimento demonstram uma grande
2801 quantidade de metabolismos que foram afetados, reforçando a ideia de uma
2802 complexa rede de resposta, ocasionando uma expressão diferenciada de diversos
2803 genes. Entre essas alterações, temos a importante classe de genes diferencialmente
2804 expressos que codificam as HEAT SHOCK PROTEINS (HSPs), nas quais,
2805 encontraram-se nove genes diferencialmente expressos que codificam essas
2806 proteínas, sendo cinco ativados e quatro reprimidos. Além disso, foi analisado os
2807 genes responsáveis pelas proteínas sinalizadoras, observando-se uma repressão
2808 dos que codificam as receptoras de quinase. Estas duas classes de genes fazem
2809 parte do grupo de proteínas reguladoras responsáveis por desencadear um rearranjo
2810 nos diferentes metabolismos da célula, auxiliando na resposta ao estresse. As HSPs
2811 desempenham um importante papel na resposta da planta aos estresses abióticos,
2812 possuindo interações com diversos processos celulares, auxiliando na proteção da
2813 planta (Iba, 2002; Pegoraro et al., 2011). As proteínas sinalizadoras possuem a

2814 função de perceber estímulos extracelulares e transmitir sinais de resposta a estes
2815 estímulos, desencadeando a expressão ou repressão de diferentes genes (Shiu &
2816 Bleecker, 2001; Morris & Walker, 2003). O perfil transcrional obtido no experimento
2817 sugere uma resposta que pode ser única da cultivar analisada, onde se tem a
2818 repressão dos genes associados às proteínas receptoras de quinase e a ativação de
2819 um conjunto de HSPs específico. Desta forma, mais estudos são necessários para
2820 se obter uma maior compreensão de quais metabolismos foram alterados devido a
2821 resposta destas duas classes de genes.

2822 Outros grupos importantes de genes que foram afetados pelo estresse são
2823 os que codificam proteínas da fotossíntese e do metabolismo hormonal. A
2824 fotossíntese é descrita como um dos metabolismos mais sensíveis aos estresses
2825 abióticos. Isso ocorre devido à importância que este metabolismo tem para a planta
2826 e pela diversidade de proteínas que estão envolvidas neste processo. Dentre os
2827 diversos componentes, o Fotossistema II (PSII) é um dos mais sensíveis, tendo
2828 grandes danos proporcionados pela geração de espécies reativas de oxigénio
2829 (ROS), no qual, pode resultar em uma fotoinibição (Wargent et al., 2013; Gururani et
2830 al., 2015). Assim, analisar as alterações deste mecanismo pode auxiliar na
2831 compreensão de como é realizada esta resposta para preservar as funções das
2832 proteínas envolvidas. Os resultados obtidos demonstram que na cultivar BRS
2833 Querência ocorre uma ativação dos genes relacionados às subunidades do PSII e a
2834 repressão dos genes que codificam o LIGHT-HARVESTING COMPLEX II, indicando
2835 um possível reparo na maquinaria do PSII, protegendo contra os danos promovidos
2836 pelas ROS. Contudo, para reforçar essas afirmações é necessário realizar-se mais
2837 análises em laboratório verificando essas alterações e suas consequências para a
2838 sobrevivência da planta.

2839 Ademais, tem-se a grande relevância do metabolismo hormonal na resposta
2840 ao estresse, sendo responsáveis por prováveis alterações no perfil de expressão
2841 gênica e nos processos celulares. No presente estudo, obteve-se mudanças na
2842 ativação dos genes relacionados ao etileno e a repressão dos genes relacionados ao
2843 ácido abscísico e às auxinas. Parte dessa resposta pode ter ocorrido devido à
2844 expressão similar dos fatores de transcrição desses genes. O aumento da síntese de
2845 etileno pode estar relacionado a uma resposta adaptativa, ajudando na
2846 sobrevivência da planta em condições adversas, tendo a influência dos fatores de
2847 resposta de etileno, os quais, são elementos de resposta primária e atuam também

2848 como reguladores de outros genes (Dugardeyn et al., 2008; Santos et al., 2013).
2849 Com isso, mais estudos deverão auxiliar no entendimento de como estas alterações
2850 hormonais podem promover uma resposta de sobrevivência da planta e quais as
2851 classes de genes são reguladas por estas modificações na expressão.

2852 Considerando a importância de estudos de expressão gênica com suas
2853 associações as diferentes respostas fisiológicas da planta, é de grande relevância
2854 ter avanços na área de bioinformática, para auxiliar no manuseo dos dados e no
2855 entendimento das alterações dos diversos metabolismos. Dentre os avanços obtidos,
2856 tem-se o desenvolvimento da tecnologia do RNA-Seq, o qual, além de fornecer
2857 dados da expressão diferencial dos genes também é capaz de auxiliar nas análises
2858 de *splicing* alternativo que estes genes podem realizar.

2859 Diversos estudos indicam que alterações no ambiente podem desencadear
2860 mudanças no padrão de *splicing*, sendo que as consequências dessas alterações
2861 podem proporcionar uma regulação na expressão dos genes e na formação de
2862 proteínas que fazem parte da resposta de tolerância (Reddy, 2007). Os resultados
2863 desta análise demonstram que a BRS Querência teve uma diminuição tanto na
2864 quantidade do tipo de junção do *splicing* alternativo quanto nos principais tipos de
2865 eventos de *splicing*. Essas mudanças podem estar diretamente relacionadas como
2866 sendo uma resposta adaptativa típica desta cultivar, do tecido e/ou do estádio de
2867 desenvolvimento analisado, promovendo mudanças específicas e pontuais, não
2868 tendo assim, perdas de energia na produção de novos variantes de *splicing*, no qual,
2869 não possuem função direta com a resposta ao estresse. Contudo, maiores estudos
2870 voltados para análises de bioinformática deverão ser realizados para determinar
2871 quais proteínas ou RNAs contribuíram para esta diminuição, podendo assim,
2872 determinar-se se houve a ação de algum fator de regulação, proporcionando estudos
2873 mais detalhados no laboratório.

2874 Compreender as respostas das plantas aos estresses abióticos é um tema
2875 importante e desafiador. Com base nos diversos progressos alcançados através de
2876 pesquisas, obteve-se como consequência primordial as melhorias na tolerância das
2877 plantas aos estresses, tendo a identificação de importantes genes e sua utilização
2878 nas transferências genéticas e seleção assistida por marcadores.

2879 Os resultados decorrentes deste experimento representam um passo
2880 importante para a compreensão dos mecanismos de tolerância da planta ao excesso
2881 de ferro, despertando um interesse para maiores estudos das consequências que

2882 esses genes diferencialmente expressos aqui mencionados podem promover na
2883 célula e sua relação com o processo adaptativo da planta, podendo futuramente,
2884 determinar possíveis genes alvos para uma caracterização no laboratório e sua
2885 utilização nos programas de melhoramento.

2886 **6 CONCLUSÃO GERAL**

2887

2888 Os resultados obtidos neste estudo evidenciam que a tolerância ao estresse
2889 por ferro na cultivar de arroz BRS Querência parece estar associada à expressão
2890 diferenciada de um grande número de genes, dentre esses o aumento na expressão
2891 dos genes que codificam proteínas responsáveis pelo transporte, quelação e
2892 armazenamento de ferro, genes que codificam proteínas de choque térmico e do
2893 fotossistema II. Obteve-se também a repressão de genes que codificam proteínas
2894 associadas ao metabolismo hormonal, relacionados ao ácido abscísico e às auxinas,
2895 e de sinalização, tendo em destaque os que codificam proteínas receptoras de
2896 quinases. Além disso, ocorreram alterações no padrão de *splicing* alternativo, tendo
2897 uma redução tanto a quantidade de sítios de junção quanto de eventos de *splicing*.
2898 Este estudo proporcionou a identificação de diversos genes que estão envolvidos na
2899 resposta de toxicidade de ferro em arroz, e que apresentam um potencial para
2900 futuros estudos de transformação genética.

2901 7 REFERÊNCIAS

2902

- 2903 ALI, M.L., SANCHEZ, P.L., YU, S. B., LORIEUX, M. & EIZENGA, G.C. (2010). Chromosome
2904 Segment Substitution Lines: A Powerful Tool for the Introgression of Valuable
2905 Genes from *Oryza* Wild Species into Cultivated Rice (*O. sativa*). *Rice*. 3(4). p.
2906 218–234.
- 2907 BARBAZUK, W.B., FU, Y. & MCGINNIS, K.M. (2008). Genome-wide analyses of
2908 alternative splicing in plants: Opportunities and challenges. *Genome Research*.
2909 18(9). p. 1381–1392.
- 2910 BAUTISTA, N.S., SOLIS, R., KAMIJIMA, O. & ISHII, T. (2001). RAPD, RFLP and SSLP
2911 analyses of phylogenetic relationships between cultivated and wild species of
2912 rice. *Genes & Genetic Systems*. 76(2). p. 71–79.
- 2913 BECANA, M., MORAN, J.F. & ITURBE-ORMAETXE, I. (1998). Iron-dependent oxygen free
2914 radical generation in plants subjected to environmental stress: toxicity and
2915 antioxidant protection. *Plant and Soil*. 201(1). p. 137–147.
- 2916 BENITEZ, L.C., RODRIGUES, I.C. DA S., ARGE, L.W.P., RIBEIRO, M.V. & BRAGA, E.J.B.
2917 (2011). Análise multivariada da divergência genética de genótipos de arroz sob
2918 estresse salino durante a fase vegetativa. *Revista Ciência Agronômica*. 42(2). p.
2919 409–416.
- 2920 BENNETZIN, J.L. & FREELING, M. (1993). Grasses as a single genetic system: genome
2921 composition, collinearity and compatibility. *Trends in Genetics*. 9(8). p. 259–261.
- 2922 BOSSDORF, O., RICHARDS, C.L. & PIGLIUCCI, M. (2007). Epigenetics for ecologists.
2923 *Ecology Letters*. 11(0). p. 106–115.
- 2924 BRAR, D.S. & KHUSH, G.S. (1986). *Wide hybridization and chromosome manipulation
2925 in cereals*. Evans DH, Sharp WR, Ammirato PV. Handbook of plant cell culture,
2926 vol 4, Techniques and applications. Macmillan.
- 2927 BECKER, M. & ASCH, F. (2005) Iron toxicity in rice - Conditions and management
2928 concepts. *Journal of Plant Nutrition and Soil Science*. 168:558–573.
- 2929 BRAR, D.S. & KHUSH, G.S. (1997). Alien introgression in rice. *Plant Molecular Biology*.
2930 35(1/2). p. 35–47.
- 2931 BÜRSTENBINDER, K., WADUWARA, I., SCHOOR, S., MOFFATT, B. A., WIRTZ, M., MINOCHA,
2932 S.C., OPPERMANN, Y., BOUCHEREAU, A., HELL, R. & SAUTER, M. (2010). Inhibition
2933 of 5'-methylthioadenosine metabolism in the Yang cycle alters polyamine levels,
2934 and impairs seedling growth and reproduction in *Arabidopsis*. *Plant Journal*. 62.
2935 p. 977–988.

- 2936 CARNEY, J.A. & ROSOMOFF, R.N. (2009). *In the Shadow of Slavery: Africa's Botanical
2937 Legacy in the Atlantic World*. 280 pp. University of California Press, Berkeley,
2938 CA, USA.
- 2939 CHANG, T. (1976). The origin, evolution, cultivation, dissemination, and diversification
2940 of asian and african rices. *Euphytica*. 25. p. 425–441.
- 2941 COMPANHIA NACIONAL DE ABASTECIMENTO - CONAB, <http://www.conab.gov.br/> (5 de
2942 janeiro de 2016).
- 2943 CONNOLLY, E.L. & GUERINOT, M. (2002). Iron stress in plants. *Genome biology*. 3(8). p.
2944 REVIEWS1024.
- 2945 DEVOS, K.M. (2005). Updating the “Crop Circle.” *Current Opinion in Plant Biology*.
2946 8(2). p. 155–162.
- 2947 DOBERMANN, A. & FAIRHURST, T. (1977). Nutrient Disorders & Nutrient Management.
2948 *Handbook Series*. 11(3). p. 149–152.
- 2949 DUGARDEYN, J. & VAN DER STRAETEN, D. (2008). Ethylene: Fine-tuning plant growth
2950 and development by stimulation and inhibition of elongation. *Plant Science*.
2951 175(1-2). p. 59–70.
- 2952 EMBRAPA CLIMA TEMPERADO. *Sistemas de Produção*, 3 ISSN 1806-9207 Versão
2953 Eletrônica Nov./2005 EMBRAPA. Origem e História do Arroz;
2954 <<http://www.cnaf.embrapa.br/arroz/historia.htm>> - Acessado no dia 10 de
2955 janeiro de 2016.
- 2956 FAGUNDES, P.R.R., JÚNIOR, A.M.M., FRANCO, D.F., RANGEL, P.H.N., CUTRIN, V. DSO A.,
2957 NEVES, P. DE C.F., NETO, F.P.M. & SOARES, R.C. (2005). *BRS Querência:
2958 precocidade, produtividade e qualidade para a orizicultura gaúcha*. Ciruclar
2959 Técnica 47. EMBRAPA. Pelotas – RS.
- 2960 FAOSTAT - Food and Agriculture Organization of the United Nations Statistics.
2961 <http://faostat.fao.org/>. Acessado em janeiro de 2016.
- 2962 FINATTO, T., DE OLIVEIRA, A.C., CHAPARRO, C., DA MAIA, L.C., FARIA, D.R., WOYANN,
2963 L.G., MISTURA, C.C., SOARES-BRESOLIN, A.P., LLAURO, C., PANAUD, O. & PICAULT,
2964 N. (2015). Abiotic stress and genome dynamics: specific genes and
2965 transposable elements response to iron excess in rice. *Rice*. 8(1). p. 13.
- 2966 GIBAS, C. & JAMBECK, P. (2002). *Developing Bioinformatics Computer Skills*. First
2967 Edition. United States of America: O'Reilly & Associates.
- 2968 GOTO, F., YOSHIHARA, T., SHIGEMOTO, N., TOKI, S. & TAKAIWA, F. (1999). Iron
2969 fortification of rice seed by the soybean ferritin gene. *Nature biotechnology*.
2970 17(3). p. 282–286.
- 2971 GROTZ, N. & GUERINOT, M. L. (2002). Limiting nutrients: an old problem with new
2972 solutions? *Current Opinion in Plant Biology*. 5(2). p. 158–163.

- 2973 GURA, T. (1999). Biotechnology: New Genes Boost Rice Nutrients. *Science*.
 2974 285(5430). p. 994–995.
- 2975 GURURANI, M.A., VENKATESH, J. & TRAN, L.S.P. (2015). Regulation of Photosynthesis
 2976 during Abiotic Stress-Induced Photoinhibition. *Molecular Plant*. 8(9). p. 1304–
 2977 1320.
- 2978 HAKEEM, K.R., AHMAD, P. & OZTURK, M. (2013). *Crop Improvement: New Approaches
 2979 and Modern Techniques*. 1st ed., India: Springer.
- 2980 IBA, K. (2002). Acclimative response to temperature stress in higher plants:
 2981 Approaches of Gene Engineering for Temperature Tolerance. *Annual Review of
 2982 Plant Biology*. 53(1). p. 225–245.
- 2983 JHA, U.C., BHAT, J.S., PATIL, B.S. & HOSSAIN, F. (2015). *PlantOmics: The Omics of
 2984 Plant Science*, New Delhi: Springer India.
- 2985 KALISZ, S. & KRAMER, E.M. (2008). Variation and constraint in plant evolution and
 2986 development. *Heredity*. 100(2). p. 171–177.
- 2987 KODAMA, Y., SHUMWAY, M. & LEINONEN, R. (2012). The sequence read archive:
 2988 explosive growth of sequencing data. *Nucleic Acids Research*. 40(D1). p. D54–
 2989 D56.
- 2990 KOLE, C. (2014). *Genome Mapping and Molecular Breeding in Plants*. Volume 1.
 2991 Springer Berlin Heidelberg New York.
- 2992 LAMESCH, P., BERARDINI, T.Z., LI, D., SWARBRECK, D., WILKS, C., SASIDHARAN, R.,
 2993 MULLER, R., DREHER, K., ALEXANDER, D.L., GARCIA-HERNANDEZ, M., KARTHIKEYAN,
 2994 A. S., LEE, C.H., NELSON, W.D., PLOETZ, L., SINGH, S., WENSEL, A. & HUALA, E.
 2995 (2012). The *Arabidopsis* Information Resource (TAIR): improved gene
 2996 annotation and new tools. *Nucleic Acids Research*. 40(D1). p. D1202–D1210.
- 2997 LEINONEN, R., AKHTAR, R., BIRNEY, E., BOWER, L., CERDENO-TARRAGA, A., CHENG, Y.,
 2998 CLELAND, I., FARUQUE, N., GOODGAME, N., GIBSON, R., HOAD, G., JANG, M.,
 2999 PAKSERESHT, N., PLAISTER, S., RADHAKRISHNAN, R., REDDY, K., SOBHANY, S., TEN
 3000 HOOPEN, P., VAUGHAN, R., ET AL. (2011). The European Nucleotide Archive.
 3001 *Nucleic Acids Research*. 39. p. D28–D31.
- 3002 LEVIN, J., ADICONIS, X., YASSOUR, M., THOMPSON, D., GUTTMAN, M., BERGER, M., FAN,
 3003 L., FRIEDMAN, N., NUSBAUM, C., GNIRKE, A. & REGEV, A. (2010). Development and
 3004 evaluation of RNA-seq methods. *Genome Biology*. 11. p. P26.
- 3005 LIU, L., LI, Y., LI, S., HU, N., HE, Y., PONG, R., LIN, D., LU, L. & LAW, M. (2012).
 3006 Comparison of Next-Generation Sequencing Systems. *Journal of Biomedicine
 3007 and Biotechnology*. 2012. p. 1–11.
- 3008 LONDO, J.P., CHIANG, Y.C., HUNG, K.-H., CHIANG, T.Y. & SCHAAAL, B. (2006).
 3009 Phylogeography of Asian wild rice, *Oryza rufipogon*, reveals multiple

- 3010 independent domestications of cultivated rice, *Oryza sativa*. *Proceedings of the*
 3011 *National Academy of Sciences*. 103(25). p. 9578–9583.
- 3012 LU, J.J. & CHANG, T.T. (1980). Rice in its temporal and spatial perspectives. In: Luh,
 3013 B.S. (Ed.), *Rice Production and Utilization*. AVI, Westford, CT., USA, pp. 1–74.
- 3014 MANTOVANI, A., FÁVERO, A.P., MARIOT, A., JUNIOR, A. DO N., LORENZ-LEMKE, A.P.,
 3015 DORNELLES, A.L.C., OLIVEIRA, A.C. DE, JÚNIOR, A.M. DE M. & CASTRO, C.M. (2008).
 3016 *Origem e evolução de plantas cultivadas*. 1^a edição ed. R. L. Barbieri & E. R. T.
 3017 Stumpf, Brasília, DF.
- 3018 MASULLI, F. & TAGLIAFERRI, R. (2010). Advances in Computational Intelligence and
 3019 Bioinformatics. *Soft Computing - A Fusion of Foundations, Methodologies and*
 3020 *Applications*. 15(8). p. 1–2.
- 3021 MOCHIDA, K., YOSHIDA, T., SAKURAI, T., YAMAGUCHI-SHINOZAKI, K., SHINOZAKI, K. &
 3022 TRAN, L.S.P. (2010). LegumeTFDB: an integrative database of Glycine max,
 3023 Lotus japonicus and Medicago truncatula transcription factors. *Bioinformatics*.
 3024 26(2). p. 290–291.
- 3025 MONGON, J., KONNERUP, D., COLMER, T.D. & RERKASEM, B. (2014). Responses of rice
 3026 to Fe²⁺ in aerated and stagnant conditions: growth, root porosity and radial
 3027 oxygen loss barrier. *Functional Plant Biology*. 41(9). p. 922–929.
- 3028 MORRIS, E.R. & WALKER, J.C. (2003). Receptor-like protein kinases: the keys to
 3029 response. *Current Opinion in Plant Biology*. 6(4). p. 339–342.
- 3030 NAYAR, N.M. (2014). *Origin and Phylogeny of Rices*. First published. Elsevier Inc.
 3031 Waltham, USA.
- 3032 QUINET, M., VROMMAN, D., CLIPPE, A., BERTIN, P., LEQUEUX, H., DUFÉY, I., LUTTS, S. &
 3033 LEFÈVRE, I. (2012). Combined transcriptomic and physiological approaches
 3034 reveal strong differences between short- and long-term response of rice (*Oryza*
 3035 *sativa*) to iron toxicity. *Plant, Cell & Environment*. 35(10). p. 1837–1859.
- 3036 REDDY, A.S.N. (2001). Nuclear Pre-mRNA Splicing in Plants. *Critical Reviews in Plant*
 3037 *Sciences*. 20(6). p. 523–571.
- 3038 REDDY, A.S.N. (2007). Alternative Splicing of Pre-Messenger RNAs in Plants in the
 3039 Genomic Era. *Annual Review of Plant Biology*. 58(1). p. 267–294.
- 3040 ROUT, G.R. & SAHOO, S. (2015). Role of iron in plant growth and metabolism. *Reviews*
 3041 *in Agricultural Science*. 3. p. 1–24.
- 3042 SABLOK, G., KUMAR, S., UENO, S., KUO, J. & VAROTTO, C. (2015). *Advances in the*
 3043 *Understanding of Biological Sciences Using Next Generation Sequencing (NGS)*
 3044 *Approaches* G. Sablok et al., Cham: Springer International Publishing.

- 3045 SAHRAWAT, K.L. (2004). Managing iron toxicity in lowland rice : the role of tolerant
 3046 genotypes and plant nutrients. *Rice is life: scientific perspectives for the 21st*
 3047 *century*. p. 452–454. Philippines: International Rice Research Institute.
- 3048 SAHRAWAT, K.L. (2005). Iron Toxicity in Wetland Rice and the Role of Other Nutrients.
 3049 *Journal of Plant Nutrition*. 27(8). p. 1471–1504.
- 3050 SAKAI, H., LEE, S.S., TANAKA, T., NUMA, H., KIM, J., KAWAHARA, Y., WAKIMOTO, H.,
 3051 YANG, C.C., IWAMOTO, M., ABE, T., YAMADA, Y., MUTO, A., INOKUCHI, H., IKEMURA,
 3052 T., MATSUMOTO, T., SASAKI, T. & ITOH, T. (2013). Rice Annotation Project
 3053 Database (RAP-DB): An Integrative and Interactive Database for Rice
 3054 Genomics. *Plant and Cell Physiology*. 54(2). p. E6–E6.
- 3055 SANI, E., HERZYK, P., PERRELLA, G., COLOT, V. & AMTMANN, A. (2013). Hyperosmotic
 3056 priming of *Arabidopsis* seedlings establishes a long-term somatic memory
 3057 accompanied by specific changes of the epigenome. *Genome Biology*. 14(6). p.
 3058 R59.
- 3059 DOS SANTOS, R.S., KRÜGER, M.M., PEGORARO, C., MADABULA, F.P., DA MAIA, L.C.,
 3060 ROMBALDI, C.V. & COSTA DE OLIVEIRA, A. (2013). Transcriptional regulation of
 3061 seven ERFs in rice under oxygen depletion and iron overload stress. *Tropical*
 3062 *Plant Biology*. 6(1). p. 16–25.
- 3063 SHARMA, S.D. (2010). *Rice: Origin, Antiquity and History*, 1st ed., Science Publisher.
- 3064 SHIU, S.H. & BLEECKER, A.B. (2001). Receptor-like kinases from *Arabidopsis* form a
 3065 monophyletic gene family related to animal receptor kinases. *Proceedings of the*
 3066 *National Academy of Sciences of the United States of America*. 98(19). p.
 3067 10763–8.
- 3068 STAIGER, D. & BROWN, J.W.S. (2013). Alternative Splicing at the Intersection of
 3069 Biological Timing, Development, and Stress Responses. *The Plant Cell*. 25(10).
 3070 p. 3640–3656.
- 3071 TOYODA, T. & WADA, A. (2004). Omic space: coordinate-based integration and
 3072 analysis of genomic phenomic interactions. *Bioinformatics*. 20(11). p. 1759–
 3073 1765.
- 3074 TRAPNELL, C., WILLIAMS, B. A., PERTEA, G., MORTAZAVI, A., KWAN, G., VAN BAREN, M.J.,
 3075 SALZBERG, S.L., WOLD, B.J. & PACHTER, L. (2011). Transcript assembly and
 3076 abundance estimation from RNA-Seq reveals thousands of new transcripts and
 3077 switching among isoforms. *Nature Biotechnology*. 28(5). p. 511–515.
- 3078 TYAGI, A.K., KHURANA, J.P., KHURANA, P., RAGHUVANSHI, S., GAUR, A., KAPUR, A.,
 3079 GUPTA, V., KUMAR, D., RAVI, V., VIJ, S., KHURANA, P. & SHARMA, S. (2004).
 3080 Structural and functional analysis of rice genome. *Journal of Genetics*. 83(1). p.
 3081 79–99.
- 3082 VAUGHAN, D.A. (1994). The wild relatives of rice: a genetic resources. *International*
 3083 *Rice Research Institute*, Manila, p 137.

- 3084 VAUGHAN, D. A, MORISHIMA, H. & KADOWAKI, K. (2003). Diversity in the *Oryza* genus.
3085 *Current Opinion in Plant Biology*. 6(2). p. 139–146.
- 3086 WANG, F., CUI, X., SUN, Y. & DONG, C.H. (2013). Ethylene signaling and regulation in
3087 plant growth and stress responses. *Plant Cell Reports*. 32(7). p. 1099–1109.
- 3088 WARGENT, J.J., PICKUP, D. A, PAUL, N.D. & ROBERTS, M.R. (2013). Reduction of
3089 photosynthetic sensitivity in response to abiotic stress in tomato is mediated by a
3090 new generation plant activator. *BMC Plant Biology*. 13(1). p. 108.
- 3091 WHEELER, D.L., BARRETT, T., BENSON, D. A., BRYANT, S.H., CANESE, K., CHETVERNIN,
3092 V., CHURCH, D.M., DICUCCIO, M., EDGAR, R., FEDERHEN, S., FEOLO, M., GEER, L.Y.,
3093 HELMBERG, W., KAPUSTIN, Y., KHOVAYKO, O., LANDSMAN, D., LIPMAN, D.J., MADDEN,
3094 T.L. & MAGLOTT, D.R. (2007). Database resources of the National Center for
3095 Biotechnology Information. *Nucleic Acids Research*. 36. p. D13–D21.
- 3096 ZHANG, D., YUAN, Z., AN, G., DRENI, L., HU, J. & KATER, M.M. (2013). *Genetics and*
3097 *Genomics of Rice*, New York, NY: Springer New York.
- 3098 ZHANG, M., PINSON, S.R.M., TARPLEY, L., HUANG, X.Y., LAHNER, B., YAKUBOVA, E.,
3099 BAXTER, I., GUERINOT, M. LOU & SALT, D.E. (2014). Mapping and validation of
3100 quantitative trait loci associated with concentrations of 16 elements in unmilled
3101 rice grain. *Theoretical and Applied Genetics*. 127(1). p. 137–165.

3102 **8 ANEXOS**

3103

3104 **Anexo A – Additional file 1 (Artigo 2)**

3105

3106 **Additional file 1.** List of genes differentially expressed in rice (cv. BRS Querência) under excess of
3107 Fe.

Locus-ID	Log ₂ FC	Description
Os08g0520000	-2.670	Protein brittle- chloroplastic amyloplastic-like
Os12g0569500	-1.749	Thaumatin family expressed
Os12g0580600	-1.625	Conserved hypothetical protein
Os01g0708350	-1.571	Non-protein coding transcript
Os01g0855200	-1.538	Peroxidase-like protein
Os03g0402800	-1.519	Tify domain containing protein
Os07g0412100	-1.489	Granule-bound starch synthase II
Os03g0667100	-1.472	Transposon pong sub-class
Os01g0719800	-1.451	Hypothetical protein
Os03g0701200	-1.441	Similar to sugar-starvation induced protein (fragment)
Os02g0306401	-1.441	Nicotianamine aminotransferase
Os04g0547900	-1.407	Mutt domain
Os01g0123900	-1.332	Bowman birk trypsin inhibitor
Os05g0508400	-1.329	Jacalin lectin family protein
Os01g0695700	-1.325	Mdr-like abc transporter
Os04g0585200	-1.281	Glutamate receptor 3
Os06g0591400	-1.266	Unnamed protein product [<i>Oryza sativa japonica</i> group]
Os05g0429900	-1.252	Similar to mybhv5 (fragment)
Os09g0106700	-1.217	Similar to myb proto-oncogene protein (c-myb)
Os09g0509700	-1.185	Zinc finger, b-box domain containing protein
Os01g0600900	-1.185	Chlorophyll a-b binding protein 2
Os03g0339900	-1.178	Similar to serine/threonine protein kinase
Os01g0389700	-1.176	Protein of unknown function duf679 family protein.
Os03g0806600	-1.168	Conserved hypothetical protein
Os04g0623300	-1.168	Probable polyamine oxidase 2-like
Os05g0537100	-1.167	Wrky7 - superfamily of TFs having wrky and zinc finger domains
Os02g0799000	-1.157	Similar to DNA-binding protein phosphatase 2c
Os12g0493900	-1.130	Armadillo-like helical domain containing protein
Os04g0670600	-1.128	Exostosin family domain-containing protein
Os06g0606700	-1.112	Tetratricopeptide-like helical domain containing protein
Os07g0421932	-1.108	Tetratricopeptide repeat-containing protein
Os10g0536400	-1.097	Similar to oxidoreductase, 2og-fe oxygenase family protein
Os07g0185900	-1.092	Conserved hypothetical protein
Os07g0142900	-1.089	Aldo/keto reductase family protein
Os08g0111200	-1.080	Beta-glucosidase, gba2 type domain containing protein
Os04g0136700	-1.059	Cystathionine beta-synthase, core domain containing protein

... continuation

Locus-ID	Log ₂ FC	Description
Os08g0434300	-1.035	Nad-malate dehydrogenase
Os01g0872000	-1.034	Peptide transporter
Os09g0271100	-1.026	Conserved hypothetical protein
Os06g0180666	-1.024	Hypothetical gene
Os02g0124866	-1.013	Hypothetical gene
Os01g0810300	-1.005	Cam61, calmodulin_61; similar to calmodulin-like protein
Os01g0822800	-0.996	Similar to ring-h2 finger protein atl3c
Os01g0655500	-0.990	Protein kinase, core domain containing protein
Os02g0674233	-0.986	Hypothetical conserved gene
Os08g0249900	-0.980	Similar to gibberellin 20 oxidase 2
Os01g0138900	-0.975	L-ala-d l-glu epimerase-like
Os03g0741050	-0.970	Non-protein coding transcript
Os03g0140200	-0.960	Cytochrome p450 family expressed
Os12g0225150	-0.952	Hypothetical protein
Os07g0615200	-0.951	Tify domain containing protein
Os11g0208900	-0.942	Irr receptor-like kinase
Os04g0531750	-0.938	Salutaridine reductase-like
Os03g0766500	-0.936	Similar to two-component response regulator arr1
Os05g0453500	-0.926	Guanylyl cyclase domain containing protein
Os03g0184100	-0.926	Conserved hypothetical protein
Os07g0572100	-0.914	Copper amine oxidase
Os10g0524600	-0.914	Subtilisin-like protease sdd1-like
Os07g0137000	-0.914	Myb transcription factor domain containing protein
Os03g0772600	-0.905	Receptor kinase lecrk
Os12g0601800	-0.896	Similar to bzip transcription factor family protein
Os09g0251800	-0.889	Calcium-dependent lipid-binding domain-containing protein
Os05g0231700	-0.889	Similar to Tonoplast intrinsic protein.; K09873 aquaporin TIP
Os01g0717000	-0.888	Similar to gmck1p
Os02g0277700	-0.878	Probable Irr receptor-like serine threonine-protein kinase at4g08850-like
Os04g0282400	-0.873	Similar to fpf1 protein-like (raa1)
Os04g0671100	-0.872	Adenylate kinase
Os10g0479500	-0.866	Cytokinin riboside 5'-monophosphate phosphoribohydrolase log3
Os07g0534700	-0.866	Serine/threonine protein kinase-related domain containing protein
Os05g0110000	-0.864	E3 ubiquitin-protein ligase ring1-like
Os08g0508500	-0.864	Similar to predicted protein
Os02g0164000	-0.863	Peptidase c48, sumo/sentrin/ubl1 domain containing protein
Os03g0766800	-0.863	Conserved hypothetical protein
Os07g0164900	-0.861	Aldehyde oxidase
Os10g0574700	-0.860	Protein of unknown function duf597 family protein
Os01g0818700	-0.856	Retrotransposon line subclass
Os01g0583100	-0.849	Similar to protein phosphatase 2c
Os07g0273900	-0.848	Disease resistance protein domain containing protein
Os01g0922700	-0.834	Conserved hypothetical protein
Os10g0389500	-0.833	Conserved hypothetical protein

... continuation

Locus-ID	Log ₂ FC	Description
Os09g0346500	-0.825	Chlorophyll a-b binding chloroplast precursor
Os05g0589200	-0.825	Sigma factor
Os05g0513100	-0.820	Similar to plcyc4 protein (fragment)
Os01g0665900	-0.815	Conserved hypothetical protein
Os03g0348200	-0.814	Retrotransposon unclassified
Os07g0290200	-0.813	Pvr3-like protein precursor
Os01g0305200	-0.801	Lg106-like family protein
Os03g0110900	-0.801	Stress responsive alpha-beta barrel domain protein
Os02g0286933	-0.798	Conserved hypothetical protein
Os08g0434632	-0.797	Glucosidase 4-beta-mannosyltransferase 9-like
Os07g0619600	-0.797	Homeobox domain containing protein
Os03g0634400	-0.795	Cbl-interacting serine threonine-protein kinase 7
Os07g0476900	-0.789	Thioredoxin-like protein cdsp32
Os01g0730500	-0.785	Similar to ferredoxin
Os03g0766600	-0.781	Conserved hypothetical protein
Os11g0104350	-0.780	Hypothetical conserved gene
Os01g0678100	-0.779	Protein of unknown function duf2921 domain containing protein
Os03g0707250	-0.779	Non-protein coding transcript
Os08g0249300	-0.776	Cell wall integrity protein scw1
Os01g0819466	-0.770	Non-protein coding transcript
Os05g0127500	-0.769	Similar to leucoanthocyanidin dioxygenase-like protein
Os12g0556200	-0.767	Calmodulin binding protein-like family protein
Os01g0711400	-0.761	Glycine dehydrogenase
Os03g0411800	-0.758	Zinc transporter
Os05g0406150	-0.756	Inosine-uridine preferring nucleoside hydrolase
Os01g0202500	-0.752	Probable salt tolerance-like protein at1g78600-like
Os12g0104300	-0.751	Abc-1 domain containing protein
Os02g0704000	-0.749	Neoxanthin cleavage enzyme-like protein
Os09g0532500	-0.745	Pentatricopeptide repeat-containing protein
Os05g0508300	-0.741	Cysteine proteinase
Os01g0102850	-0.739	Similar to nitrilase 2
Os12g0569700	-0.735	Similar to heat shock protein 70
Os09g0287000	-0.734	Similar to ethylene-responsive transcription factor 5
Os08g0356500	-0.733	Protein of unknown function duf247
Os04g0448900	-0.730	Zeaxanthin epoxidase
Os01g0736900	-0.730	Seed maturation protein
Os10g0422300	-0.724	Pentatricopeptide repeat-containing protein mitochondrial-like
Os03g0741100	-0.720	Helix-loop-helix dna-binding domain containing protein
Os10g0501500	-0.709	Protein of unknown function duf607 family protein
Os10g0510500	-0.708	Auxin-responsive family protein
Os01g0960400	-0.707	Probable Irr receptor-like serine threonine-protein kinase at1g06840-like
Os07g0622200	-0.706	2-dehydro-3-deoxyphosphoheptonate aldolase 3-deoxy-d-arabino-heptulonate 7-phosphate synthetase
Os02g0550600	-0.698	Plant neutral invertase family protein

... continuation

Locus-ID	Log ₂ FC	Description
Os11g0634200	-0.696	Conserved hypothetical protein
Os02g0254550	-0.695	Zinc finger, bed-type predicted domain containing protein
Os08g0480200	-0.691	2og-Fe(II) oxygenase domain containing protein
Os12g0507500	-0.689	Similar to swib/mdm2 domain containing protein
Os07g0684100	-0.689	Thioredoxin-like 1-1
Os04g0475200	-0.689	G-type lectin s-receptor-like serine threonine-protein kinase rlk1-like
Os02g0513800	-0.688	Uncharacterized protein loc100844763
Os02g0661800	-0.686	Presqualene diphosphate phosphatase-like
Os09g0434500	-0.684	Ethylene response factor
Os05g0100366	-0.682	Non-protein coding transcript
Os08g0374000	-0.681	Bet v i allergen family protein
Os06g0542150	-0.674	RNA-binding protein
Os01g0818600	-0.671	Probable Irr receptor-like serine threonine-protein kinase at1g06840-like
Os01g0316600	-0.671	Similar to pre-mRNA-splicing factor sf2
Os10g0396666	-0.666	Hypothetical conserved gene
Os04g0492500	-0.664	Rwd domain containing protein
Os03g0145900	-0.661	Ring finger and chy zinc finger domain-containing protein 1
Os07g0684400	-0.661	Hypothetical protein
Os07g0569600	-0.658	Chaperonin-like rbcx domain containing protein
Os11g0300400	-0.658	Similar to catalytic/ hydrolase
Os01g0717400	-0.652	Tryptophan aminotransferase-related protein 4-like
Os01g0759400	-0.652	Cbl-interacting serine threonine-protein kinase 11
Os04g0623600	-0.652	Peroxisomal glycolate oxidase
Os11g0157600	-0.650	Similar to cct motif family protein
Os03g0732100	-0.648	Bel1-type homeodomain protein
Os06g0186400	-0.646	Serine carboxylase ii-2
Os09g0380000	-0.645	Acetyl-coenzyme a synthetase-like
Os02g0299300	-0.642	Hypothetical protein
Os07g0660100	-0.642	Similar to predicted protein
Os03g0197100	-0.641	Polyol transporter 5-like
Os02g0575700	-0.640	Loricrin-like protein
Os03g0805600	-0.637	Iron-sulfur cluster-binding protein
Os04g0105400	-0.636	Unc93-like protein
Os02g0167600	-0.633	Saur25 - auxin-responsive saur family member
Os12g0514000	-0.632	Sugar transporter family expressed
Os10g0492900	-0.630	Alpha-galactosidase 1
Os05g0183100	-0.630	Similar to wrky transcription factor 16 (fragment)
Os07g0595700	-0.627	Hypothetical protein
Os06g0125800	-0.624	E3 ligase
Os07g0180300	-0.623	Protein of unknown function duf594 family protein
Os01g0279400	-0.623	Major facilitator superfamily antiporter
Os01g0708900	-0.623	Graves disease carrier
Os04g0493000	-0.622	Zinc finger protein
Os09g0456200	-0.621	Similar to bzip transcription factor abi5

... continuation

Locus-ID	Log ₂ FC	Description
Os07g0628900	-0.615	Receptor-like protein kinase 4
Os03g0146300	-0.614	Similar to cyclin-dependent kinases regulatory subunit
Os08g0190200	-0.609	Rna binding protein 45
Os03g0586500	-0.606	Chloroplast post-illumination chlorophyll fluorescence increase protein
Os11g0195500	-0.606	Lipase family expressed
Os07g0182200	-0.605	Transcription factor une12
Os09g0549450	-0.602	Similar to nin-like protein 1
Os04g0442800	-0.598	Similar to phragmoplast-associated kinesin-related protein 1
Os07g0558300	-0.598	3-bisphosphate nucleotidase
Os01g0871500	-0.598	Oligopeptide transporter
Os01g0871800	-0.596	Tgf-beta receptor, type I/II extracellular region family protein
Os01g0645900	-0.595	Sulfate transporter
Os03g0168200	-0.594	Similar to f16a14.21
Os04g0606200	-0.593	Similar to osigba0113i13.1 protein
Os03g0646800	-0.592	Similar to dna-directed RNA polymerase
Os01g0772700	-0.591	Armadillo beta-catenin-like repeat-containing protein
Os03g0616400	-0.588	Calcium-transporting atpase plasma membrane-type
Os03g0169600	-0.586	Dof zinc finger
Os01g0847700	-0.585	Similar to aldose reductase
Os10g0330000	-0.584	Conserved hypothetical protein
Os08g0295100	-0.582	Ubiquitin domain containing protein
Os10g0447900	-0.581	Transmembrane expressed
Os12g0580700	-0.581	Similar to ring-h2 finger protein atl2n
Os02g0787300	-0.581	Map kinase kinase
Os03g0411100	-0.574	Ccaat-box transcription factor complex expressed
Os02g0475400	-0.572	Uncharacterized sodium-dependent transporter yocs-like
Os11g0130200	-0.569	Protein of unknown function duf309 family protein
Os05g0548900	-0.569	Phosphoethanolamine n-methyltransferase 3
Os03g0388500	-0.568	Similar to anther ethylene-upregulated protein er1
Os06g0686700	-0.566	Non-protein coding transcript
Os11g0197400	-0.565	Magnesium transporter nipa2-like
Os01g0128800	-0.558	Plant synaptotagmin
Os05g0298200	-0.556	Ankyrin repeat containing protein
Os04g0685300	-0.556	Harpin inducing protein
Os08g0191150	-0.554	Aconitate hydratase
Os07g0628700	-0.553	Receptor-like protein kinase 4
Os07g0170200	-0.553	Hnh endonuclease
Os01g0558850	-0.551	Chloroplast processing enzyme-like protein
Os07g0160400	-0.549	Glyoxalase bleomycin resistance protein dioxygenase
Os02g0618200	-0.547	Signal transduction response regulator, receiver region domain containing protein
Os12g0288400	-0.547	Retrotransposon ty1-copia subclass
Os07g0173100	-0.546	Hsp20-like chaperone domain containing protein
Os05g0142400	-0.544	Conserved hypothetical protein
Os11g0433600	-0.544	Tetratricopeptide-like helical domain containing protein

... continuation

Locus-ID	Log ₂ FC	Description
Os08g0558200	-0.542	Auxin-regulated protein
Os02g0187100	-0.539	Metal-dependent hydrolase-like protein
Os02g0793700	-0.538	Membrane steroid-binding protein 1
Os07g0619700	-0.537	Hypothetical conserved gene
Os04g0337201	-0.535	Similar to osigba0137o04.8 protein
Os01g0971800	-0.534	Similar to two-component response regulator arr11
Os01g0190000	-0.533	Clavaminate synthase-like protein
Os06g0558766	-0.532	Nuclear poly polymerase
Os03g0807000	-0.531	Conserved hypothetical protein
Os01g0930200	-0.524	Conserved hypothetical protein
Os01g0537250	-0.524	Antigen-like protein
Os01g0856600	-0.523	Structural constituent of nuclear pore
Os07g0479300	-0.522	Carboxypeptidase c cbp31
Os06g0187950	-0.521	Probable cyclic nucleotide-gated ion channel 17-like
Os09g0250700	-0.520	Uncharacterized protein sll1770-like
Os02g0642300	-0.515	Cytochrome b561
Os09g0548400	-0.512	Dimethylaniline monooxygenase, n-oxide-forming domain containing protein
Os01g0155500	-0.511	Receptor-like protein kinase herk 1-like
Os07g0661500	-0.508	Hypothetical conserved gene
Os03g0411300	-0.508	Ef hand family protein
Os03g0265900	-0.508	Conserved hypothetical protein
Os03g0690000	-0.505	Similar to costars family protein
Os04g0194500	-0.503	Abc transporter g family member 28-like
Os07g0283125	-0.503	Receptor-type protein kinase lrk1
Os06g0638200	-0.499	Uncharacterised protein family upf0047 domain containing protein
Os02g0506600	-0.499	Drought-induced protein
Os03g0592500	-0.499	Chlorophyll a b binding protein
Os02g0541325	-0.495	Histidine decarboxylase
Os08g0278900	-0.495	Stromal cell-derived factor 2-like protein
Os06g0694800	-0.493	Protein of unknown function duf1517 domain containing protein
Os03g0128100	-0.490	Callose synthase 3-like
Os02g0301100	-0.488	Bidirectional sugar transporter sweet4-like
Os03g0758100	-0.488	Similar to phosphorylase (fragment)
Os02g0551100	-0.485	Serine threonine-protein kinase
Os05g0539900	-0.485	Uncharacterized protein ycf36-like
Os07g0618700	-0.482	Conserved hypothetical protein
Os12g0256000	-0.479	Probable carboxylesterase 11-like
Os10g0534900	-0.478	Similar to prep (fragment)
Os07g0539700	-0.477	Serine threonine kinase receptor precursor-like protein
Os03g0726200	-0.475	Inositol-tetrakisphosphate 1-kinase 2
Os09g0465600	-0.473	Glucose-6-phosphate isomerase
Os04g0634400	-0.468	Receptor-like serine threonine-protein kinase sd1-8-like
Os09g0471100	-0.466	Similar to peroxidase 17 precursor
Os02g0828200	-0.466	Tpr-like domain containing protein

... continuation

Locus-ID	Log ₂ FC	Description
Os10g0445400	-0.462	Zinc finger, ring/fyve/phd-type domain containing protein
Os02g0180800	-0.462	Non-protein coding transcript
Os06g0316300	-0.461	Glycine rich family protein
Os04g0490500	-0.452	Protein kinase-like domain domain containing protein
Os01g0618100	-0.452	Similar to in2-2 protein
Os05g0475300	-0.451	Vhs domain containing protein
Os11g0533100	-0.448	Similar to card-like transcriptional regulator family protein
Os02g0741900	-0.448	Similar to t23e23.20
Os08g0497600	-0.446	Transducin wd40 domain-containing protein
Os02g0564400	-0.444	Atp-dependent clp protease atp-binding subunit -like
Os05g0579600	-0.442	Homeodomain-like containing protein
Os10g0462600	-0.441	Conserved hypothetical protein
Os02g0437200	-0.438	Snap25 homologous protein snap33
Os11g0116000	-0.437	Nonspecific lipid-transfer protein expressed
Os04g0691100	-0.436	Serine threonine protein kinase sapk4
Os05g0318700	-0.434	Protein kinase
Os12g0164800	-0.433	Hypothetical conserved gene
Os06g0476200	-0.432	Retrotransposon ty1-copia subclass
Os09g0363500	-0.432	Conserved hypothetical protein
Os02g0712000	-0.430	Protease do-like 7-like
Os06g0209300	-0.427	phd finger
Os07g0143200	-0.427	Helix-loop-helix dna-binding domain containing expressed
Os07g0562950	-0.423	Sphingosine kinase
Os01g0303000	-0.420	Calvin cycle protein cp12
Os04g0623100	-0.418	Bromodomain containing protein
Os11g0207200	-0.417	Mitogen activated protein kinase kinase kinase
Os03g0271400	-0.416	Hsp70-binding protein 1-like
Os07g0452500	-0.415	Ormdl family protein
Os02g0816900	-0.410	Myosin xi (fragment)
Os12g0203000	-0.407	Probable serine threonine-protein kinase at1g54610-like
Os07g0150700	-0.405	Cbl-interacting protein kinase 23
Os11g0158832	-0.404	Similar to associated with hox family protein
Os08g0191100	-0.401	Similar to iron-responsive element binding protein
Os12g0507200	-0.400	Similar to eukaryotic translation initiation factor 5a-2 (eif-5a-2)
Os04g0487200	-0.392	Serine/threonine protein kinase domain containing protein
Os09g0442300	-0.392	Cysteine protease
Os05g0156800	-0.390	Conserved hypothetical protein
Os06g0603000	-0.389	Heme oxygenase 1
Os08g0425200	-0.387	Chaperonin-like rbcx domain containing protein
Os04g0620066	-0.380	Abc transporter c family member 2
Os08g0191000	-0.374	Auxin efflux carrier family protein
Os01g0633000	0.373	50s ribosomal protein l31
Os02g0510200	0.373	Acetolactate synthase
Os06g0109000	0.380	Phosphoglycerate mutase domain containing protein

... continuation

Locus-ID	Log ₂ FC	Description
Os04g0539000	0.385	Protein of unknown function duf2485 domain containing protein
Os03g0587000	0.389	Myo-inositol monophosphatase
Os03g0134300	0.391	Retrotransposon ty1-copia subclass
Os03g0234350	0.392	Ubiquitin fusion protein
Os05g0303000	0.393	Stromal 70 kda heat shock-related chloroplastic-like
Os01g0973400	0.393	Radical sam domain-containing protein
Os03g0815400	0.394	Ribosomal protein l17-like protein
Os01g0558300	0.399	Rwd domain containing protein
Os06g0112200	0.403	5 -methylthioadenosine s-adenosylhomocysteine nucleosidase
Os07g0601000	0.403	Nadph hc toxin reductase
Os10g0498300	0.404	Epoxide expressed
Os06g0623300	0.405	Cinnamoyl reductase
Os03g0284400	0.406	50s ribosomal protein l10
Os01g0338600	0.406	Cysteine sulfinate desulfinate cysteine desulfurase and related enzymes
Os08g0515800	0.407	Mitochondrial transcription termination factor family protein
Os10g0502000	0.409	Thylakoid luminal protein
Os06g0283400	0.411	Probable phosphatidylinositol 4-kinase type 2-beta at1g26270-like
Os11g0544800	0.412	Aspartyl-trna glutamyl-trna amidotransferase subunit b
Os01g0905700	0.413	Ring finger protein
Os03g0452300	0.415	30s ribosomal protein s5
Os10g0445600	0.416	Conserved hypothetical protein
Os09g0505300	0.417	Fata acyl-acp thioesterase
Os03g0219900	0.417	Similar to 50s ribosomal protein l15, chloroplast precursor (cl15) (fragment) k02876 large subunit ribosomal protein l15
Os12g0480100	0.417	One helix protein
Os03g0769100	0.418	Ribosomal protein s9
Os06g0715200	0.420	Conserved hypothetical protein
Os03g0100200	0.422	Transcriptional coactivator/pterin dehydratase family protein
Os05g0497675	0.422	Ribosomal protein l11 methyltransferase
Os09g0460500	0.422	Gibberellin receptor gid1l2
Os02g0822600	0.425	50s ribosomal protein l9
Os03g0595300	0.427	Conserved hypothetical protein
Os04g0412500	0.427	Carbonic anhydrase
Os01g0144100	0.430	Thylakoid luminal protein 1
Os03g0125600	0.434	Probable serine threonine-protein kinase at1g01540-like
Os03g0135300	0.435	Similar to glutathione s-transferase gst 10
Os03g0758900	0.436	Similar to predicted protein
Os01g0662300	0.437	Ribosomal protein l12
Os05g0490800	0.437	Similar to proteasome subunit alpha type
Os06g0683200	0.437	50s ribosomal protein chloroplast precursor
Os02g0784900	0.438	Rmlc-like jelly roll fold domain containing protein
Os07g0158300	0.438	RNA-binding protein cp33
Os02g0138600	0.442	Protein of unknown function duf1677
Os12g0175500	0.444	Monothiol glutaredoxin-s16

... continuation

Locus-ID	Log ₂ FC	Description
Os03g0196800	0.444	Esterase lipase thioesterase family
Os10g0547900	0.444	Short chain dehydrogenase reductase family expressed
Os02g0804400	0.444	Conserved hypothetical protein
Os07g0189700	0.445	Similar to jhl07k02.7 protein
Os01g0212400	0.446	Drought-induced protein rdi
Os01g0802100	0.447	Similar to 4-diphosphocytidyl-2-c-methyl-d-erythritol kinase, chloroplast precursor
Os05g0490900	0.447	Conserved hypothetical protein
Os11g0703900	0.447	Heat shock protein 70
Os07g0133700	0.447	Immunophilin fkbp-type peptidyl-prolyl cis-trans isomerase-like protein
Os01g0337900	0.448	Dihydrolipoyl dehydrogenase
Os05g0198400	0.448	Zinc transporter
Os02g0600200	0.449	Iq calmodulin-binding region domain containing protein
Os06g0134000	0.450	40s ribosomal protein s20
Os08g0524200	0.454	Auxin-induced protein
Os01g0952500	0.456	Response regulator
Os03g0177500	0.457	Elongation factor 1
Os02g0652600	0.459	50s ribosomal protein l19
Os04g0462300	0.460	Conserved hypothetical protein
Os05g0420600	0.460	Cytochrome c
Os05g0337400	0.461	Hypothetical protein osj_18112 [<i>Oryza sativa japonica</i> group]
Os11g0526200	0.461	Cofactor assembly of complex c
Os02g0833100	0.461	Mate efflux family protein chloroplastic-like
Os08g0558000	0.462	Similar to ribosomal protein
Os04g0438300	0.464	Uncharacterised protein family upf0090 domain containing protein
Os11g0220800	0.465	Similar to 60s ribosomal protein l10 (qm protein homolog)
Os02g0606000	0.467	Glycine-rich protein
Os01g0805000	0.467	50s ribosomal protein l34
Os04g0461100	0.467	Plastid-specific 30s ribosomal protein 3
Os01g0896800	0.468	Ribosomal protein l18/l5 domain containing protein
Os02g0798200	0.469	Ring-h2 zinc finger
Os03g0756000	0.471	Similar to 60s ribosomal protein l13a-4
Os12g0534200	0.472	Acyl carrier protein 3
Os02g0750400	0.472	Pentatricopeptide repeat-containing protein
Os03g0699300	0.472	Adenylosuccinate chloroplast expressed
Os07g0662500	0.473	Elongation factor 1-beta
Os07g0523100	0.474	60s ribosomal protein l44
Os07g0510100	0.475	Methionine aminopeptidase 1b
Os02g0503400	0.476	Similar to 60s ribosomal protein l35
Os09g0551600	0.477	Similar to hmgd1 protein
Os03g0745550	0.477	Conserved hypothetical protein
Os02g0754300	0.479	50s ribosomal protein l29
Os07g0139600	0.479	Non-protein coding transcript
Os03g0122200	0.480	50s ribosomal protein l11
Os03g0781000	0.480	Gtp-dependent nucleic acid-binding protein engd-like

... continuation

Locus-ID	Log ₂ FC	Description
Os04g0508200	0.481	Isocitrate/isopropylmalate dehydrogenase domain containing protein
Os10g0466700	0.482	60s ribosomal protein l23
Os10g0499600	0.482	Similar to predicted protein
Os04g0250700	0.482	Uncharacterised protein family upf0307 domain containing protein
Os01g0511600	0.483	Lrgb-like family protein
Os02g0220400	0.483	Gata transcription factor, chloroplast development, plant architecture
Os01g0266000	0.485	La rna-binding protein
Os06g0729650	0.486	Photosystem ii stability assembly factor hcf136
Os02g0831200	0.487	Protein of unknown function duf177 family protein
Os06g0555400	0.487	Similar to 40s ribosomal protein s19-like
Os09g0556500	0.488	Cysteinyl-trna synthetase
Os08g0561700	0.488	Superoxide dismutase
Os06g0704700	0.489	Nad(p)-binding domain containing protein
Os04g0493100	0.490	Er33 protein
Os12g0541000	0.490	Riboflavin synthase alpha chain
Os04g0118100	0.492	Glutamyl-trna amidotransferase subunit a-like
Os06g0133800	0.493	Transketolase 1
Os02g0614200	0.495	Conserved hypothetical protein
Os02g0821200	0.497	Ribosomal protein l28e domain containing protein
Os07g0109700	0.498	Conserved hypothetical protein
Os03g0263900	0.499	Ef-hand 2 domain containing protein
Os01g0938100	0.500	Photosystem ii reaction center psb28 protein
Os07g0160300	0.505	Shikimate kinase domain containing protein
Os03g0794700	0.505	Ribosomal protein s18
Os08g0116500	0.505	Similar to 60s acidic ribosomal protein p1
Os06g0332800	0.507	Bundle sheath defective protein
Os08g0433200	0.508	Conserved hypothetical protein
Os11g0158400	0.508	Similar to digalactosyldiacylglycerol synthase 1
Os08g0156800	0.508	60s ribosomal protein l34
Os01g0574600	0.513	Oxidoreductase glyr1-like
Os03g0563300	0.514	Magnesium-chelatase subunit chloroplastic-like
Os04g0476800	0.516	Similar to ta5 protein (fragment)
Os01g0127300	0.516	Sufbd family protein.; k09015 Fe-s cluster assembly protein sufcd
Os12g0618800	0.516	Protein of unknown function duf266
Os03g0333400	0.517	Photosystem ii 11 kd protein
Os03g0704000	0.518	30s ribosomal protein s13
Os03g0356300	0.519	50s ribosomal protein l6
Os12g0209100	0.520	Pinus taeda anonymous locus cl2503contig1_03 genomic sequence
Os01g0742000	0.520	Trna rRNA
Os03g0376600	0.521	RNA-binding protein
Os09g0378300	0.522	Similar to leucyl-trna synthetase
Os12g0527301	0.522	Hypothetical gene
Os02g0162500	0.522	Similar to 40s ribosomal protein s14
Os07g0546700	0.524	Similar to 60s ribosomal protein l38

... continuation

Locus-ID	Log ₂ FC	Description
Os03g0408300	0.524	Similar to 60s ribosomal protein l27a-3
Os01g0739500	0.525	Conserved hypothetical protein
Os09g0252000	0.526	Exosome component 4
Os01g0281000	0.526	F-box protein at2g32560-like
Os01g0279100	0.528	Magnesium-protoporphyrin ix monomethyl ester
Os10g0364600	0.537	Non-protein coding transcript
Os02g0802200	0.539	Heparanase-like protein 3-like
Os03g0234200	0.540	Similar to ubiquitin fusion protein (fragment)
Os04g0602100	0.541	Thylakoid luminal 29 kda chloroplastic-like
Os03g0315800	0.545	30s ribosomal protein chloroplastic-like
Os04g0303900	0.547	Aminoacyl trna synthase complex-interacting multifunctional protein 1-like
Os03g0807800	0.547	Similar to 40s ribosomal protein s2 (fragment)
Os10g0170200	0.549	40s ribosomal protein s20
Os02g0137200	0.551	50s ribosomal protein l3
Os05g0541900	0.551	Similar to 60s ribosomal protein l28
Os02g0709900	0.551	Nuclear matrix constituent protein 1-like
Os03g0781501	0.552	Non-protein coding transcript
Os07g0677400	0.552	Root peroxidase
Os02g0699600	0.553	Similar to 60s ribosomal protein l12
Os03g0343400	0.553	Similar to photolyase/blue-light receptor phr2
Os11g0601700	0.554	Helix-loop-helix DNA-binding domain containing expressed
Os05g0585900	0.554	Mitochondrial substrate carrier family protein b-like
Os06g0132400	0.555	Magnesium-protoporphyrin ix methyltransferase
Os07g0180900	0.557	60s ribosomal protein l4-1
Os03g0190100	0.557	Ubiquitin prenyltransferase family protein
Os04g0456700	0.559	Elicitor-inducible protein eig-j7
Os08g0148600	0.568	Endoribonuclease dicer homolog 3a-like
Os12g0124200	0.570	Similar to 40s ribosomal protein s16
Os09g0116900	0.570	Conserved hypothetical protein
Os09g0327400	0.572	Aldose 1-epimerase family protein
Os08g0440900	0.572	Chloroplast omega-6 fatty acid desaturase
Os08g0504500	0.575	Thylakoid luminal 19 kda protein
Os09g0380200	0.575	Dnaj domain containing protein
Os01g0896700	0.578	Similar to 60s ribosomal protein l5
Os01g0662700	0.580	Naphthoate synthase
Os02g0533800	0.582	Conserved hypothetical protein
Os02g0125700	0.583	Lil3 protein
Os08g0308700	0.587	Dcl protein
Os01g0638600	0.587	Glucosyltransferase is10a-like
Os05g0477300	0.590	40s ribosomal protein s26
Os03g0730000	0.591	Lecithin-cholesterol acyltransferase-like 1-like
Os05g0388600	0.592	Protein of unknown function duf3411 domain containing protein
Os12g0167900	0.593	Ribosomal protein l3
Os01g0111100	0.593	Peptidyl-prolyl cis-trans isomerase

... continuation

Locus-ID	Log ₂ FC	Description
Os02g0814700	0.594	60s ribosomal protein l23
Os02g0192700	0.600	Peroxiredoxin-like protein
Os02g0665250	0.603	Conserved hypothetical protein
Os08g0559200	0.604	Similar to ribosomal protein s25 (40s ribosomal 25s subunit)
Os05g0573700	0.605	Ketol-acid reductoisomerase
Os09g0258600	0.605	Similar to 60s ribosomal protein l17-1
Os03g0350300	0.606	Probable nucleolar protein 5-2-like
Os03g0736600	0.606	Similar to atp synthase
Os09g0530500	0.607	Hypothetical conserved gene
Os08g0234000	0.609	60s ribosomal protein l7-1
Os05g0445500	0.609	60s acidic ribosomal protein p2b
Os01g0328500	0.610	Bucentaur or craniofacial development family protein
Os03g0776900	0.614	Mitochondrial import inner membrane translocase subunit tim14
Os06g0593800	0.615	Udp-glucuronosyl/udp-glucosyltransferase family protein
Os11g0644600	0.615	Conserved hypothetical protein
Os06g0187500	0.616	Hypothetical conserved gene
Os03g0337800	0.617	60s ribosomal protein l19-3
Os03g0299900	0.617	Ll-diaminopimelate chloroplastic-like
Os07g0181500	0.618	Protein of unknown function duf506
Os02g0804500	0.618	Molecular chaperone hsp40 -like protein
Os09g0507800	0.621	60s ribosomal protein l7a
Os02g0321900	0.622	Similar to ribosomal protein l1
Os04g0608600	0.623	Nucleoredoxin 3
Os03g0812000	0.625	Dna gyrase subunit a
Os08g0505300	0.626	Similar to 60s ribosomal protein l31
Os01g0193600	0.630	Rna methyltransferase family protein
Os07g0467200	0.631	Unknown protein [<i>Oryza sativa japonica</i> group]
Os04g0175600	0.632	Probable inactive methyltransferase Os04g0175900
Os07g0674200	0.633	Similar to 60s ribosomal protein l22-2
Os05g0459900	0.634	Similar to 60s ribosomal protein l36-1
Os04g0523000	0.634	Oxygen-evolving enhancer protein 3- chloroplastic-like
Os01g0191100	0.635	Similar to acidic ribosomal protein p2a-4
Os02g0704800	0.637	Ornithine carbamoyltransferase
Os08g0542100	0.637	Similar to 60s ribosomal protein l7
Os09g0474300	0.638	Chaperone protein htpg family protein
Os01g0621300	0.647	Hypothetical conserved gene
Os08g0531300	0.647	Translation factor-like
Os08g0326400	0.647	60s ribosomal protein l7a
Os05g0552300	0.648	Guanine nucleotide-binding protein subunit beta-like protein a-like
Os07g0693000	0.649	Similar to ser-thr protein kinase
Os03g0564200	0.649	Protein of unknown function duf952 family protein
Os12g0597400	0.653	Fad nad -binding oxidoreductase domain-containing protein
Os08g0440800	0.655	Nadp-dependent glyceraldehyde-3-phosphate dehydrogenase
Os03g0761000	0.656	Brg-1 associated

... continuation

Locus-ID	Log ₂ FC	Description
Os06g0225900	0.661	P-loop containing nucleoside triphosphate hydrolase domain-containing protein
Os09g0382400	0.663	Conserved hypothetical protein
Os03g0179000	0.664	Tubulin-tyrosine ligase
Os01g0742100	0.665	Trna rRNA
Os03g0841700	0.666	Similar to prohibitin
Os03g0255500	0.670	Similar to phosphoenolpyruvate carboxykinase 4
Os05g0147400	0.672	T-complex protein 1 subunit zeta
Os10g0566700	0.673	Chaperonin cpn10 family protein
Os03g0826500	0.673	Anthranilate synthase alpha 1
Os02g0682600	0.675	Mitochondrial import inner membrane translocase subunit tim13
Os03g0425000	0.676	Similar to predicted protein
Os07g0638100	0.677	Protein tolb
Os05g0593000	0.679	Phospholipase a2, active site domain containing protein
Os02g0714200	0.680	Pyrophosphate--fructose 6-phosphate 1-phosphotransferase alpha subunit
Os03g0126000	0.682	Anthranilate phosphoribosyltransferase
Os02g0159700	0.683	Protein sco1 homolog mitochondrial-like
Os12g0592200	0.684	Conserved hypothetical protein
Os06g0145800	0.685	Dna-binding protein p24
Os07g0109500	0.687	Ribosomal protein l13 family protein
Os08g0529100	0.687	Proteasome subunit beta type 1
Os08g0104600	0.691	Ferredoxin I, chloroplast precursor (anti-disease protein 1)
Os08g0127600	0.692	Heat shock protein dnaj
Os07g0567400	0.694	Similar to cytochrome c6
Os01g0834500	0.697	Similar to 40s ribosomal protein s23 (s12)
Os01g0100700	0.699	40s ribosomal protein s5
Os03g0834050	0.701	Similar to predicted protein
Os01g0348700	0.702	60s ribosomal protein l23a
Os01g0841600	0.703	Triosephosphate isomerase
Os07g0534000	0.708	Permeases of the major facilitator superfamily
Os01g0535900	0.710	Trna (guanine-n -)-methyltransferase-like
Os04g0605900	0.712	60s ribosomal protein l7-1
Os12g0586300	0.712	Myb-like dna-binding domain, shaqkyf class domain containing protein
Os03g0563100	0.712	L-gulonolactone oxidase-like
Os03g0332700	0.712	Abc transporter atpase
Os12g0406200	0.713	40s ribosomal protein s3a
Os07g0614500	0.713	Elongation factor 1-delta 1
Os09g0297400	0.715	Triose phosphate phosphate non-green precursor
Os01g0823300	0.716	Similar to ribosomal protein s26
Os07g0687500	0.717	Peptidyl-prolyl cis-trans isomerase c
Os05g0528900	0.720	Ribosomal protein l9 family protein
Os02g0189000	0.721	Similar to chloroplast 30s ribosomal protein s21
Os03g0831500	0.722	Phosphoribosylformylglycinamide cyclo-ligase
Os03g0713200	0.723	Conserved hypothetical protein
Os07g0520800	0.724	Ankyrin repeat family protein

... continuation

Locus-ID	Log ₂ FC	Description
Os04g0413600	0.726	Similar to 40s ribosomal protein s14
Os02g0788500	0.726	Nuclear transport factor 2 -like protein
Os01g0860300	0.732	Similar to ribosomal protein l1
Os06g0320200	0.733	Similar to osiga0135c13.7 protein
Os04g0690800	0.735	Chloroplast chlorophyll a b-binding protein
Os02g0777800	0.736	Protein kinase, catalytic domain domain containing protein
Os01g0642900	0.736	Single-stranded dna-binding protein
Os07g0448800	0.739	Aquaporin
Os03g0721300	0.747	Protein of unknown function duf946
Os03g0762900	0.748	Ac090713_7 proteophosphoglycan
Os10g0442100	0.748	3-phosphoglycerate kinase
Os02g0591700	0.764	60s ribosomal protein l6
Os07g0622100	0.766	Similar to ribosomal protein s6 rps6-2
Os02g0612000	0.766	Protein grpe
Os04g0598200	0.785	Similar to 60s ribosomal protein l12
Os12g0516000	0.789	Conserved hypothetical protein
Os07g0191000	0.797	Inositol monophosphatase - like protein
Os05g0215000	0.802	Dehydration-responsive contains burp pf03181
Os11g0521500	0.806	Acyl carrier protein
Os03g0424500	0.810	40s ribosomal protein s19
Os05g0568300	0.813	Ribosomal protein l12
Os02g0749300	0.815	Shikimate kinase
Os02g0815600	0.825	Diphthamide synthesis, dhp1 domain containing protein
Os03g0332600	0.827	Non-protein coding transcript
Os05g0360400	0.839	Zinc c3hc4 type family protein
Os04g0660500	0.841	Serine threonine-protein kinase sepa-like
Os12g0459300	0.843	Helicase-like protein
Os01g0899500	0.846	Hypothetical conserved gene
Os02g0567900	0.856	Similar to h0818e04.14 protein
Os03g0760700	0.862	Aspartate-semialdehyde dehydrogenase-like
Os01g0205200	0.869	Pentatricopeptide repeat-containing protein
Os07g0434500	0.876	Snf2 domain helicase domain-containing protein
Os02g0285800	0.881	Elongation factor family protein
Os02g0202200	0.882	Spx domain-containing protein 1-like
Os03g0337600	0.883	Uroporphyrinogen decarboxylase
Os03g0751400	0.886	50s ribosomal protein l6
Os08g0269700	0.892	Conserved hypothetical protein
Os09g0485900	0.893	Similar to 60s ribosomal protein l9
Os02g0762100	0.911	Similar to regulator of ribonuclease-like protein 2
Os01g0757900	0.948	Haloacid dehalogenase/epoxide hydrolase domain containing protein
Os09g0277800	0.952	Enoyl-acp reductase
Os02g0229000	0.956	Similar to 40s ribosomal protein s19-like
Os12g0438600	0.967	Chloride channel
Os01g0940000	0.973	Cytokinin dehydrogenase

... continuation

Locus-ID	Log₂FC	Description
Os03g0246500	0.985	Protein of unknown function duf869
Os01g0844300	0.992	Peptidylprolyl cis-trans isomerase
Os08g0240000	0.998	Flavonol 3-sulfotransferase
Os10g0529300	1.012	Glutathione s-transferase
Os04g0161100	1.017	Similar to osigba0102o13.5 protein
Os08g0469700	1.045	Phosphatidylinositol-4-phosphate 5-kinase
Os02g0755600	1.089	Udp-glucuronosyl/udp-glucosyltransferase domain containing protein
Os01g0631700	1.110	Similar to ser thr specific protein kinase-like protein
Os06g0217700	1.111	Threonine endopeptidase
Os01g0118400	1.120	Similar to hga6
Os02g0131050	1.120	Hypothetical gene
Os07g0616600	1.164	40s ribosomal protein
Os10g0355800	1.273	Atp synthase cf1 beta subunit
Os05g0363500	1.318	Transducin wd-40 repeat-containing protein
Os10g0356000	1.322	Ribulose- -bisphosphate carboxylase oxygenase large subunit
Os03g0764600	1.391	Homeodomain-like containing protein
Os01g0284700	1.393	Peptidyl-prolyl cis-trans isomerase
Os03g0399800	1.550	Mannose-binding lectin domain containing protein
Os10g0214132	1.634	Ribosomal protein l2
Os09g0537700	1.797	Rnase s-like protein precursor
Os05g0227600	1.906	Proline-rich glycoprotein, aba-dependent inhibition of root growth
Os12g0106000	2.174	Similar to ferritin 1, chloroplast precursor
Os03g0251000	2.901	Plant lipid transfer protein/seed storage/trypsin-alpha amylase inhibitor domain containing protein
Os09g0396900	3.594	Vacuolar iron transporter

3109 **Anexo B – Additional file 2 (Artigo 2)**

3110

Cellular component	Up regulated	Down regulated
Mitochondrion	57	39
Plastid	54	39
Cytoplasmic membrane-bounded vesicle	23	48
Membrane	23	35
Chloroplast stroma	37	6
Nucleus	16	17
Chloroplast envelope	25	4
Cytosol	15	10
Chloroplast	23	0
Ribosome	22	0
Chloroplast	8	12
Plasma membrane	8	8
Chloroplast thylakoid membrane	13	2
Cytoplasm	3	7
Nucleolus	8	1
Chloroplast thylakoid lumen	7	0
Plasmodesma	6	1
Vacuolar membrane	5	2
Thylakoid	5	1
Transcription factor complex	3	3
Extracellular region	1	5
Cytosolic large ribosomal subunit	5	0
Cell wall	3	1
Golgi apparatus	2	2
Vacuole	1	3
Cytosolic small ribosomal subunit	3	0
Apoplast	2	1
Chloroplast thylakoid	1	2
Peroxisome	1	2
Plant-type vacuole membrane	1	2
Intracellular membrane-bounded organelle	0	3
Chloroplast photosystem II	2	0
Eukaryotic translation elongation factor 1 complex	2	0
Nucleoid	2	0
Plastid chromosome	2	0
Plastid large ribosomal subunit	2	0
Small ribosomal subunit	2	0
DNA polymerase complex	1	1
Heterotrimeric G-protein complex	1	1
Mitochondrial inner membrane	1	1
Plant-type vacuole	1	1
Cytoplasmic part	0	2

... continuation

Cellular component	Up regulated	Down regulated
Endoplasmic reticulum	0	2
Integral component of membrane	0	2
Intracellular part	0	2
90S preribosome	1	0
Beta-galactosidase complex	1	0
Chloroplast inner membrane	1	0
Chloroplast part	1	0
Chloroplast ribulose bisphosphate carboxylase complex	1	0
Chloroplast stromal thylakoid	1	0
Chloroplast thylakoid	1	0
Cytosolic ribosome	1	0
Fatty acid synthase complex	1	0
Large ribosomal subunit	1	0
Mediator complex	1	0
Mitochondrial large ribosomal subunit	1	0
Mitochondrial respiratory chain	1	0
NAD(P)H dehydrogenase complex (plastoquinone)	1	0
Nuclear lumen	1	0
Nuclear membrane	1	0
Photosystem II reaction center	1	0
Plant-type cell wall	1	0
Plastid stroma	1	0
Proteasome core complex	1	0
Proton-transporting two-sector atpase complex	1	0
PSII associated light-harvesting complex II	1	0
Riboflavin synthase complex	1	0
Sarcoplasmic reticulum	1	0
Stromule	1	0
Cell part	0	1
Cell plate	0	1
Chloroplast membrane	0	1
Cul4-RING E3 ubiquitin ligase complex	0	1
Cytosol mitochondrion	0	1
Endoplasmic reticulum membrane	0	1
Filiform apparatus	0	1
Glycine cleavage complex	0	1
Glycolate oxidase complex	0	1
Integral component of plasma membrane	0	1
Integrin complex	0	1
Intracellular	0	1
Nuclear envelope	0	1
Plastoglobule	0	1
Trans-Golgi network	0	1

3112

Molecular function	Up regulated	Down regulated
Structural constituent of ribosome	30	0
Protein binding	9	7
ATP binding	9	6
DNA binding	5	4
RNA binding	6	1
Copper ion binding	5	0
Protein serine/threonine kinase activity	1	4
Translation elongation factor activity	4	0
Sequence-specific DNA binding transcription factor activity	2	2
Peptidyl-prolyl cis-trans isomerase activity	3	0
Oxidoreductase activity	2	1
Zinc ion binding	2	1
Calcium ion binding	1	2
Protein tyrosine kinase activity	1	2
FK506 binding	2	0
GTP binding	2	0
5'-3' exonuclease activity	1	1
Atpase activity	1	1
Atpase activity, coupled to transmembrane movement of substances	1	1
Calmodulin binding	1	1
Catalytic activity	1	1
Flavin adenine dinucleotide binding	1	1
Methionine adenosyltransferase activity	1	1
Peroxidase activity	1	1
Ribulose-phosphate 3-epimerase activity	1	1
Transcription factor binding	1	1
DNA-directed RNA polymerase activity	0	2
Oxidoreductase activity, acting on a sulfur group of donors	0	2
Transporter activity	0	2
1,4-dihydroxy-2-naphthoyl-coa synthase activity	1	0
3-chloroallyl aldehyde dehydrogenase activity	1	0
ACP phosphopantetheine attachment site binding involved in fatty acid biosynthetic process	1	0
Acyl-[acyl-carrier-protein] hydrolase activity	1	0
Amidase activity	1	0
Anion channel activity	1	0
Anthranilate phosphoribosyltransferase activity	1	0
Antioxidant activity	1	0
Aspartate-semialdehyde dehydrogenase activity	1	0
Beta-D-fucosidase activity	1	0
Beta-galactosidase activity	1	0
Beta-gentiobiose beta-glucosidase activity	1	0

... continuation

Molecular function	Up regulated	Down regulated
Beta-L-arabinosidase activity	1	0
Calcium:sodium antiporter activity	1	0
Calcium-transporting atpase activity	1	0
Carbonate dehydratase activity	1	0
Chlorophyll binding	1	0
Cysteine-trna ligase activity	1	0
Cytokinin dehydrogenase activity	1	0
DNA topoisomerase activity	1	0
DNA-dependent atpase activity	1	0
DNA-directed DNA polymerase activity	1	0
Double-stranded telomeric DNA binding	1	0
Electron carrier activity	1	0
Electron transporter	1	0
Glucan exo-1,3-beta-glucosidase activity	1	0
Glutaminyl-trna synthase (glutamine-hydrolyzing) activity	1	0
Glutathione transferase activity	1	0
Glyceraldehyde-3-phosphate dehydrogenase (NADP ⁺) (non-phosphorylating) activity	1	0
Glyoxylate reductase (NADP) activity	1	0
Hydrolase activity	1	0
Indoleacetamide hydrolase activity	1	0
Iron ion transmembrane transporter activity	1	0
Kinase activity	1	0
L,L-diaminopimelate aminotransferase activity	1	0
L-ascorbate peroxidase activity	1	0
Magnesium ion binding	1	0
Magnesium protoporphyrin IX methyltransferase activity	1	0
Metalloexopeptidase activity	1	0
Methylthioadenosine nucleosidase activity	1	0
NADPH binding	1	0
Nitrate:proton symporter activity	1	0
Nucleotide binding	1	0
Omega-6 fatty acid desaturase activity	1	0
Oxidoreductase activity, acting on single donors with incorporation of molecular oxygen, incorporation of two atoms of oxygen	1	0
Phosphatase activity	1	0
Phosphoenolpyruvate:phosphate antiporter activity	1	0
Phosphogluconate dehydrogenase (decarboxylating) activity	1	0
Phosphoribosylformylglycinamide cyclo-ligase activity	1	0
Poly(U) RNA binding	1	0
P-P-bond-hydrolysis-driven protein transmembrane transporter activity	1	0
Protein homodimerization activity	1	0
Riboflavin synthase activity	1	0

... continuation

Molecular function	Up regulated	Down regulated
Ribulose-bisphosphate carboxylase activity	1	0
RNA methyltransferase activity	1	0
Sequence-specific DNA binding	1	0
Shikimate kinase activity	1	0
Sugar:proton symporter activity	1	0
Superoxide dismutase activity	1	0
Transferase activity, transferring hexosyl groups	1	0
Transketolase activity	1	0
Triose-phosphate isomerase activity	1	0
Triose-phosphate:phosphate antiporter activity	1	0
TRNA binding	1	0
Tubulin-tyrosine ligase activity	1	0
UDP-glycosyltransferase activity	1	0
Unfolded protein binding	1	0
Uroporphyrinogen decarboxylase activity	1	0
Xanthophyll binding	1	0
3-deoxy-7-phosphoheptulonate synthase activity	0	1
ARF guanyl-nucleotide exchange factor activity	0	1
ATP-dependent helicase activity	0	1
Auxin:proton symporter activity	0	1
Carboxy-lyase activity	0	1
Cysteine-type endopeptidase activity	0	1
D-erythro-sphingosine kinase activity	0	1
Endonuclease activity	0	1
FAD binding	0	1
Glycine dehydrogenase (decarboxylating) activity	0	1
Glycolate oxidase activity	0	1
Heme binding	0	1
Heme oxygenase (decyclizing) activity	0	1
Indole-3-acetaldehyde oxidase activity	0	1
Molybdate ion transmembrane transporter activity	0	1
Molybdopterin cofactor binding	0	1
Nicotianamine aminotransferase activity	0	1
Nucleotide kinase activity	0	1
Nucleotidyltransferase activity	0	1
Phosphatidic acid binding	0	1
Phosphoacetylglucosamine mutase activity	0	1
Phosphoethanolamine N-methyltransferase activity	0	1
Plastid sigma factor activity	0	1
Poly(A) binding	0	1
Polyamine oxidase activity	0	1
Primary amine oxidase activity	0	1
RNA-directed DNA polymerase activity	0	1
Serine-type carboxypeptidase activity	0	1

... continuation

Molecular function	Up regulated	Down regulated
Serine-type endopeptidase activity	0	1
Serine-type endopeptidase inhibitor activity	0	1
Serine-type peptidase activity	0	1
SNAP receptor activity	0	1
Sphinganine kinase activity	0	1
Sugar transmembrane transporter activity	0	1
Sulfate transmembrane transporter activity	0	1
Zeaxanthin epoxidase [overall] activity	0	1
Zeaxanthin epoxidase activity	0	1
Zinc ion transmembrane transporter activity	0	1

3113

3114

Biological process	Up regulated	Down regulated
Translation	27	0
Ribosome biogenesis	25	0
Isopentenyl diphosphate biosynthetic process	23	2
rRNA processing	16	0
Thylakoid membrane organization	16	0
Chlorophyll biosynthetic process	13	1
Pentose-phosphate shunt	12	2
Photosystem II assembly	13	0
Embryo development ending in seed dormancy	10	0
Response to cadmium ion	6	3
Chloroplast relocation	8	0
Ovule development	7	0
Positive regulation of transcription, DNA-templated	7	0
Regulation of protein dephosphorylation	7	0
Carotenoid biosynthetic process	6	1
Defense response to bacterium	5	2
Response to cold	4	3
Starch biosynthetic process	4	3
Response to salt stress	3	4
Iron-sulfur cluster assembly	6	0
RNA methylation	6	0
Transcription from plastid promoter	6	0
Stomatal complex morphogenesis	5	1
Maltose metabolic process	3	3
Proteolysis	1	5
Response to abscisic acid	1	5
Chloroplast organization	5	0
mRNA modification	5	0
Protein folding	5	0

... continuation

Biological process	Up regulated	Down regulated
Phosphatidylglycerol biosynthetic process	4	1
Positive regulation of catalytic activity	4	1
Oxidation-reduction process	2	3
Serine family amino acid metabolic process	1	4
DNA-templated transcription, elongation	4	0
Pyrimidine ribonucleotide biosynthetic process	4	0
Regulation of translational elongation	4	0
Vegetative to reproductive phase transition of meristem	4	0
Cellular cation homeostasis	3	1
Cysteine biosynthetic process	3	1
Divalent metal ion transport	3	1
Hydrogen peroxide catabolic process	3	1
Leaf morphogenesis	3	1
Ubiquinone biosynthetic process	3	1
Unsaturated fatty acid biosynthetic process	3	1
Photosynthesis	2	2
Regulation of transcription, DNA-templated	2	2
Transport	2	2
Golgi organization	1	3
Jasmonic acid biosynthetic process	1	3
Protein phosphorylation	1	3
Cellular metabolic process	3	0
Glucosinolate biosynthetic process	3	0
Indoleacetic acid biosynthetic process	3	0
Photosynthetic electron transport in photosystem I	3	0
Protein targeting to chloroplast	3	0
Purine nucleotide biosynthetic process	3	0
Response to blue light	3	0
Response to far red light	3	0
Response to red light	3	0
Aromatic amino acid family biosynthetic process	2	1
Carbon utilization	2	1
Cation transport	2	1
Cell differentiation	2	1
L-phenylalanine biosynthetic process	2	1
Response to oxidative stress	2	1
Tryptophan biosynthetic process	2	1
Tyrosine biosynthetic process	2	1
Defense response to fungus	1	2
Glycolytic process	1	2
Response to water deprivation	1	2
Response to wounding	0	3
Arginine metabolic process	2	0
Calcium ion transport	2	0

... continuation

Biological process	Up regulated	Down regulated
Electron transport	2	0
Electron transport chain	2	0
Ethylene biosynthetic process	2	0
Gluconeogenesis	2	0
Glyoxylate metabolic process	2	0
Metabolic process	2	0
Methylglyoxal catabolic process to D-lactate	2	0
Negative regulation of transcription, DNA-templated	2	0
Oligopeptide transport	2	0
Peroxidase reaction	2	0
Photosynthesis, light reaction	2	0
Plant-type cell wall organization	2	0
Plastid organization	2	0
Production of miRNAs involved in gene silencing by miRNA	2	0
Production of ta-sirnas involved in RNA interference	2	0
Proline metabolic process	2	0
Protein peptidyl-prolyl isomerization	2	0
Regulation of proton transport	2	0
Response to heat	2	0
Response to karrikin	2	0
Response to stimulus	2	0
Response to zinc ion	2	0
Single-organism metabolic process	2	0
Tryptophan catabolic process	2	0
Ubiquitin-dependent protein catabolic process	2	0
Cell wall modification	1	1
Cellular aromatic compound metabolic process	1	1
Cellular response to abscisic acid stimulus	1	1
Coenzyme biosynthetic process	1	1
Determination of bilateral symmetry	1	1
DNA recombination	1	1
DNA replication	1	1
Glycosphingolipid metabolic process	1	1
Iron ion transport	1	1
Lipoate metabolic process	1	1
L-serine metabolic process	1	1
Meristem initiation	1	1
Methionine metabolic process	1	1
Protein autophosphorylation	1	1
PSII associated light-harvesting complex II catabolic process	1	1
Purine nucleobase metabolic process	1	1
Response to auxin	1	1
Response to cyclopentenone	1	1
Response to jasmonic acid	1	1

... continuation

Biological process	Up regulated	Down regulated
S-adenosylmethionine biosynthetic process	1	1
Salicylic acid biosynthetic process	1	1
Secondary metabolic process	1	1
Seed germination	1	1
Systemic acquired resistance	1	1
Threonine metabolic process	1	1
Tryptophan metabolic process	1	1
Vacuole organization	1	1
Vitamin metabolic process	1	1
Biosynthetic process	0	2
Golgi vesicle transport	0	2
Hyperosmotic response	0	2
Positive regulation of flavonoid biosynthetic process	0	2
Protein targeting to membrane	0	2
Response to fungus	0	2
Response to mechanical stimulus	0	2
Response to temperature stimulus	0	2
Water transport	0	2
Abscisic acid-activated signaling pathway	1	0
Acetyl-coa biosynthetic process from pyruvate	1	0
Acyl-carrier-protein biosynthetic process	1	0
Anion transport	1	0
Anther development	1	0
Aromatic amino acid family metabolic process	1	0
ATP synthesis coupled proton transport	1	0
Benzoate metabolic process	1	0
Biological regulation	1	0
Calcium ion homeostasis	1	0
Carbon fixation	1	0
Cell death	1	0
Cell-cell signaling	1	0
Cellular amino acid biosynthetic process	1	0
Cellular biosynthetic process	1	0
Cellular component organization	1	0
Cellular component organization or biogenesis	1	0
Cellular macromolecule metabolic process	1	0
Cellular process	1	0
Cellular protein modification process	1	0
Cellular response to cold	1	0
Cellular response to phosphate starvation	1	0
Cellular response to salt stress	1	0
Cellular zinc ion homeostasis	1	0
Chlorophyll biosynthetic process photosynthetic electron transport in photosystem I	1	0

... continuation

Biological process	Up regulated	Down regulated
Chloroplast RNA processing	1	0
Chromatin silencing by small RNA	1	0
Chromosome organization	1	0
Circadian rhythm	1	0
Cotyledon vascular tissue pattern formation	1	0
Cristae formation	1	0
Cuticle development	1	0
Cysteine metabolic process	1	0
Cysteinyl-trna aminoacylation	1	0
Cytochrome b6f complex assembly	1	0
Cytoskeleton organization	1	0
De-etiolation	1	0
Defense response	1	0
Defense response to virus	1	0
Defense response, incompatible interaction	1	0
D-gluconate metabolic process	1	0
DNA repair	1	0
DNA topological change	1	0
DNA-dependent DNA replication	1	0
Drug transport	1	0
Endonucleolytic cleavage in ITS1 to separate SSU-rRNA from 5.8S rRNA	1	0
Endonucleolytic cleavage to generate mature 3'-end of SSU-rRNA	1	0
Ethylene-activated signaling pathway	1	0
Fatty acid biosynthetic process	1	0
Flower morphogenesis	1	0
Fructose metabolic process	1	0
Galactolipid biosynthetic process	1	0
Galactose metabolic process	1	0
Gene silencing	1	0
Glucosinolate metabolic process	1	0
Glutamate metabolic process	1	0
Glutamyl-trna aminoacylation	1	0
Glutathione conjugation reaction	1	0
Glutathione metabolic process	1	0
Glycerolipid metabolic process	1	0
Glycine catabolic process	1	0
Glycine metabolic process	1	0
Glycosaminoglycan catabolic process	1	0
Granum assembly	1	0
Histone H3-K9 methylation	1	0
Inositol metabolic process	1	0
Intracellular sequestering of iron ion	1	0
Intracellular signal transduction	1	0

... continuation

Biological process	Up regulated	Down regulated
L-ascorbic acid metabolic process	1	0
Leaf development	1	0
Leaf vascular tissue pattern formation	1	0
L-methionine biosynthetic process from S-adenosylmethionine	1	0
L-phenylalanine metabolic process	1	0
Lysine biosynthetic process	1	0
Lysine biosynthetic process via diaminopimelate	1	0
Mannose metabolic process	1	0
Meiotic nuclear division	1	0
Meristem maintenance	1	0
Methylation-dependent chromatin silencing	1	0
NADH dehydrogenase complex (plastoquinone) assembly	1	0
Ncrna metabolic process	1	0
Negative regulation of DNA recombination	1	0
Nitrogen compound metabolic process	1	0
Nonphotochemical quenching	1	0
N-terminal protein amino acid modification	1	0
Nucleic acid metabolic process	1	0
One-carbon metabolic process	1	0
Organelle organization	1	0
Organic substance biosynthetic process	1	0
Organic substance metabolic process	1	0
Organonitrogen compound metabolic process	1	0
Oxidoreduction coenzyme metabolic process	1	0
Oxylipin biosynthetic process	1	0
Phloem or xylem histogenesis	1	0
Phosphoenolpyruvate transport	1	0
Phosphoenolpyruvate-dependent sugar phosphotransferase system	1	0
Photosynthetic electron transport chain	1	0
Photosystem II repair	1	0
Plastid translation	1	0
Polar nucleus fusion	1	0
Pollen development	1	0
Positive regulation of cellular response to phosphate starvation	1	0
Positive regulation of respiratory burst	1	0
Primary metabolic process	1	0
Proteasomalprotein catabolicprocess	1	0
Protein import into chloroplast stroma	1	0
Protein transport	1	0
Protein ubiquitination	1	0
Pyruvate metabolic process	1	0
Regulation of cellular process	1	0
Regulation of gene expression, epigenetic	1	0
Regulation of lipid metabolic process	1	0

... continuation

Biological process	Up regulated	Down regulated
Regulation of programmed cell death	1	0
Regulation of timing of transition from vegetative to reproductive phase	1	0
Removal of superoxide radicals	1	0
Response to brassinosteroid	1	0
Response to chlorate	1	0
Response to deep water	1	0
Response to endoplasmic reticulum stress	1	0
Response to ethylene	1	0
Response to gibberellin	1	0
Response to high light intensity	1	0
Response to nematode	1	0
Response to reactive oxygen species	1	0
Response to salicylic acid	1	0
Response to sucrose	1	0
Riboflavin biosynthetic process	1	0
Ribosomal small subunit assembly	1	0
RNA metabolic process	1	0
RNA modification	1	0
RNA processing	1	0
Root development	1	0
rRNA export from nucleus	1	0
rRNA processing thylakoid membrane organization	1	0
Shikimate metabolic process	1	0
Shoot system development	1	0
Single-organism biosynthetic process	1	0
Single-organism cellular process	1	0
Single-organism organelle organization	1	0
Single-organism process	1	0
Small molecule metabolic process	1	0
Starch metabolic process	1	0
Styrene catabolic process	1	0
Sucrose metabolic process	1	0
Sulfur amino acid metabolic process	1	0
Sulfur compound biosynthetic process	1	0
Systemic acquired resistance	1	0
Toxin catabolic process	1	0
Transcription factor import into nucleus	1	0
Triose phosphate transmembrane transport	1	0
Tyrosine metabolic process	1	0
Vegetative phase change	1	0
Very long-chain fatty acid metabolic process	1	0
Virus induced gene silencing	1	0
Vitamin K biosynthetic process	1	0

... continuation

Biological process	Up regulated	Down regulated
Xylem and phloem pattern formation	1	0
Abscisic acid biosynthetic process	0	1
Acetyl-coa metabolic process	0	1
Amino acid import	0	1
Ammonium transport	0	1
Anthocyanin-containing compound biosynthetic process	0	1
Basic amino acid transport	0	1
Calcium-mediated signaling	0	1
Carbohydrate transport	0	1
Cell morphogenesis	0	1
Cell redox homeostasis	0	1
Cell-matrix adhesion	0	1
Cellular amino acid metabolic process	0	1
Cellular response to light stimulus	0	1
Cellular response to UV-C	0	1
Cellular response to water deprivation	0	1
Cellulose biosynthetic process	0	1
Chlorophyll metabolic process	0	1
Chloroplast-nucleus signaling pathway	0	1
Chlororespiration	0	1
Chorismate biosynthetic process	0	1
Cytokinesis by cell plate formation	0	1
Cytokinin biosynthetic process	0	1
Detection of biotic stimulus	0	1
Detection of calcium ion	0	1
DNA-templated transcription, initiation	0	1
Endoplasmic reticulum unfolded protein response	0	1
ER to Golgi vesicle-mediated transport	0	1
Ethanolamine metabolic process	0	1
Glycine decarboxylation via glycine cleavage system	0	1
Heme oxidation	0	1
Inflorescence development	0	1
Jasmonic acid mediated signaling pathway	0	1
MAPK cascade	0	1
Modulation by virus of host morphology or physiology	0	1
Multicellular organismal water homeostasis	0	1
Negative regulation of programmed cell death	0	1
N-terminal protein myristylation	0	1
Nuclear-transcribed mRNA catabolic process	0	1
Nucleotide transport	0	1
Peroxidase reaction response to oxidative stress	0	1
Photoinhibition	0	1
Photoperiodism, flowering	0	1
Photorespiration	0	1

... continuation

Biological process	Up regulated	Down regulated
Phytochromobilin biosynthetic process	0	1
Polarity specification of adaxial/abaxial axis	0	1
Pollen germination	0	1
Pollen tube reception	0	1
Polyamine catabolic process	0	1
Post-embryonic development	0	1
Protein catabolic process	0	1
Protein glycosylation	0	1
Protein targeting to vacuole	0	1
Pyrimidine nucleobase metabolic process	0	1
Red, far-red light phototransduction	0	1
Regulation of gtpase activity	0	1
Regulation of hydrogen peroxide metabolic process	0	1
Regulation of ion transport	0	1
Regulation of meristem growth	0	1
Regulation of multi-organism process	0	1
Regulation of photomorphogenesis	0	1
Regulation of photosynthesis	0	1
Regulation of plant-type hypersensitive response	0	1
Regulation of RNA biosynthetic process	0	1
Respiratory burst involved in defense response	0	1
Response to chitin	0	1
Response to desiccation	0	1
Response to fructose	0	1
Response to insect	0	1
Response to ozone	0	1
RNA polyadenylation	0	1
RNA-dependent DNA replication	0	1
Root hair elongation	0	1
Second-messenger-mediated signaling	0	1
Signal transduction	0	1
Sodium ion transport	0	1
Sulfate transport	0	1
UDP-N-acetylglucosamine biosynthetic process	0	1
Vesicle-mediated transport	0	1
Xanthophyll biosynthetic process	0	1
Zinc ion transport	0	1
Cellular cation homeostasis	0	0

3116 **Anexo C – Additional file 3 (Artigo 2)**

3117

3118 **Additional file 3.** List of possible candidate genes the iron homeostasis in the cell found both in our
3119 experiments in comparison the literature.

Metabolism	Gene-ID	log ₂ FC	Description
Amino acid activation protein	Os09g0556500	0.488	Cysteinyl-tRNA synthetase
Amino acid metabolism	Os02g0306401	-1.441	Nicotianamine aminotransferase
Abiotic stress	Os12g0569700	-0.735	Similar to heat shock protein 70
Abiotic stress	Os02g0833100	0.461	Mate efflux family protein chloroplastic-like
Abiotic stress	Os03g0776900	0.614	Mitochondrial import inner membrane translocase subunit tim14
			2-dehydro-3-deoxyphosphoheptonate aldolase
Amino acid metabolism	Os07g0622200	-0.706	3-deoxy-d-arabino-heptulosonate 7-phosphate synthetase
Amino acid metabolism	Os06g0112200	0.403	5-methylthioadenosine s-adenosylhomocysteine nucleosidase
Amino acid metabolism	Os03g0126000	0.682	Anthranilate phosphoribosyltransferase
Biodegradation of xenobiotics	Os09g0460500	0.422	Gibberellin receptor gid1l2
C1-metabolism	Os02g0762100	0.911	Similar to regulator of ribonuclease-like protein 2
Cell wall	Os08g0434632	-0.797	Glucomannan 4-beta-mannosyltransferase 9-like
Co-factor and vitamine metabolism	Os01g0662700	0.580	Naphthoate synthase
Cycle cell	Os01g0111100	0.593	Peptidyl-prolyl cis-trans isomerase
Degradation protein	Os06g0125800	-0.624	E3 ligase
Degradation protein	Os06g0283400	0.411	Probable phosphatidylinositol 4-kinase type 2-beta at1g26270-like
Degradation protein	Os04g0476800	0.516	Similar to ta5 protein (fragment)
Degradation protein	Os08g0529100	0.687	Proteasome subunit beta type 1
Development	Os02g0301100	-0.488	Bidirectional sugar transporter sweet4-like
DNA	Os11g0533100	-0.448	Similar to card-like transcriptional regulator family protein, expressed
Folding protein	Os05g0147400	0.672	T-complex protein 1 subunit zeta
Folding protein	Os01g0844300	0.992	Peptidylprolyl cis-trans isomerase
Gluconeogenesis	Os08g0434300	-1.035	Nad-malate dehydrogenase
Glycolysis	Os09g0465600	-0.473	Glucose-6-phosphate isomerase
Glycolysis	Os06g0476200	-0.432	Retrotransposon ty1-copia subclass
Hormone metabolism	Os10g0536400	-1.097	Similar to oxidoreductase, 2og-fe oxygenase family protein
Hormone metabolism	Os07g0164900	-0.861	Aldehyde oxidase
Lipid metabolism	Os11g0116000	-0.437	Nonspecific lipid-transfer protein expressed
Major CHO metabolism	Os02g0550600	-0.698	Plant neutral invertase family protein
Metal handling	Os12g0106000	2.174	Similar to ferritin 1, chloroplast precursor
Metal handling	Os09g0396900	3.594	Vacuolar iron transporter
Minor CHO metabolism	Os01g0847700	-0.585	Similar to aldose reductase
Miscellaneous enzyme families	Os03g0140200	-0.960	Cytochrome p450 family expressed

... continuation

Metabolism	Gene-ID	log ₂ FC	Description
Miscellaneous enzyme families	Os01g0138900	-0.975	L-ala-d l-glu epimerase-like
Miscellaneous enzyme families	Os04g0623300	-1.168	Probable polyamine oxidase 2-like
Miscellaneous enzyme families	Os10g0547900	0.444	Short chain dehydrogenase reductase family expressed
Miscellaneous enzyme families	Os04g0531750	-0.938	Salutaridine reductase-like
Miscellaneous enzyme families	Os02g0755600	1.089	Udp-glucuronosyl/udp-glucosyltransferase domain containing protein.
Miscellaneous enzyme families	Os06g0187500	0.616	Hypothetical conserved gene
Not assigned	Os06g0606700	-1.112	Tetratricopeptide-like helical domain containing protein
Not assigned	Os09g0271100	-1.026	Conserved hypothetical protein
Not assigned	Os03g0184100	-0.926	Conserved hypothetical protein
Not assigned	Os12g0601800	-0.896	Similar to bzip transcription factor family protein
Not assigned	Os10g0389500	-0.833	Conserved hypothetical protein
Not assigned	Os01g0665900	-0.815	Conserved hypothetical protein
Not assigned	Os02g0286933	-0.798	Conserved hypothetical protein
Not assigned	Os01g0678100	-0.779	Protein of unknown function duf2921 domain containing protein
Not assigned	Os10g0501500	-0.709	Protein of unknown function duf607 family protein
Not assigned	Os07g0569600	-0.658	Chaperonin-like rbcx domain containing protein
Not assigned	Os07g0660100	-0.642	Similar to predicted protein
Not assigned	Os04g0442800	-0.598	Similar to phragmoplast-associated kinesin-related protein 1
Not assigned	Os03g0168200	-0.594	Similar to f16a14.21
Not assigned	Os02g0506600	-0.499	Drought-induced protein
Not assigned	Os05g0475300	-0.451	Vhs domain containing protein
Not assigned	Os03g0271400	-0.416	Hsp70-binding protein 1-like
Not assigned	Os08g0425200	-0.387	Chaperonin-like rbcx domain containing protein
Not assigned	Os01g0558300	0.399	Rwd domain containing protein
Not assigned	Os01g0338600	0.406	Cysteine sulfinate desulfinate cysteine desulfurase and related enzymes
Not assigned	Os10g0445600	0.416	Conserved hypothetical protein
Not assigned	Os03g0100200	0.422	Transcriptional coactivator/pterin dehydratase family protein.
Not assigned	Os07g0189700	0.445	Similar to jhl07k02.7 protein
Not assigned	Os11g0526200	0.461	Cofactor assembly of complex c
Not assigned	Os02g0798200	0.469	Ring-h2 zinc finger
Not assigned	Os02g0802200	0.539	Heparanase-like protein 3-like
Not assigned	Os08g0148600	0.568	Endoribonuclease dicer homolog 3a-like
Not assigned	Os07g0181500	0.618	Protein of unknown function duf506
Not assigned	Os03g0812000	0.625	Dna gyrase subunit a
Not assigned	Os03g0425000	0.676	Similar to predicted protein
Not assigned	Os07g0520800	0.724	Ankyrin repeat family protein
Not assigned	Os03g0762900	0.748	Ac090713_7 proteophosphoglycan
Not assigned	Os03g0332600	0.827	Non-protein coding transcript
Not assigned	Os02g0131050	1.120	Hypothetical gene

... continuation

Metabolism	Gene-ID	log ₂ FC	Description
Organisation cell	Os03g0179000	0.664	Tubulin-tyrosine ligase
Ortho-phenylphenol	Os01g0574600	0.513	Oxidoreductase glyr1-like
Photosynthesis	Os10g0442100	0.748	3-phosphoglycerate kinase
Photosynthesis	Os10g0356000	1.322	Ribulose- -bisphosphate carboxylase oxygenase large subunit
Photosynthesis	Os07g0567400	0.694	Similar to cytochrome c6
Postranslational modification protein	Os02g0799000	-1.157	Similar to DNA-binding protein phosphatase 2c
Postranslational modification protein	Os01g0655500	-0.990	Protein kinase, core domain containing protein
Postranslational modification protein	Os07g0283125	-0.503	Receptor-type protein kinase lrk1
Postranslational modification protein	Os04g0490500	-0.452	Protein kinase-like domain domain containing protein
Postranslational modification protein	Os04g0691100	-0.436	Serine threonine protein kinase sapk4
Processing RNA	Os09g0537700	1.797	Rnase s-like protein precursor
Redox	Os04g0602100	0.541	Thylakoid luminal 29 kda chloroplastic-like
Redox	Os08g0561700	0.488	Superoxide dismutase
Regulation of transcription	Os08g0515800	0.407	Mitochondrial transcription termination factor family protein
Regulation of transcription	Os05g0183100	-0.630	Similar to wrky transcription factor 16 (fragment)
RNA binding	Os07g0158300	0.438	RNA-binding protein cp33
Synthesis protein	Os07g0614500	0.713	Elongation factor 1-delta 1
Synthesis protein	Os03g0452300	0.415	30s ribosomal protein s5
Synthesis protein	Os03g0769100	0.418	Ribosomal protein s9
Synthesis protein	Os02g0652600	0.459	50s ribosomal protein l19
Synthesis protein	Os03g0704000	0.518	30s ribosomal protein s13
Synthesis protein	Os02g0162500	0.522	Similar to 40s ribosomal protein s14
Synthesis protein	Os03g0315800	0.545	30s ribosomal protein chloroplastic-like
Synthesis protein	Os02g0137200	0.551	50s ribosomal protein l3
Synthesis protein	Os05g0477300	0.590	40s ribosomal protein s26
Synthesis protein	Os08g0559200	0.604	Similar to ribosomal protein s25 (40s ribosomal 25s subunit)
Synthesis protein	Os04g0605900	0.712	60s ribosomal protein l7-1
Synthesis protein	Os02g0591700	0.764	60s ribosomal protein l6
Synthesis protein	Os05g0568300	0.813	Ribosomal protein l12
Synthesis protein	Os03g0751400	0.886	50s ribosomal protein l6
Tca / org	Os08g0191100	-0.401	Similar to iron-responsive element binding protein
Tca / org	Os01g0337900	0.448	Dihydrolipoyl dehydrogenase
Tetrapyrrole synthesis	Os03g0563300	0.514	Magnesium-chelatase subunit chloroplastic-like
Tetrapyrrole synthesis	Os06g0132400	0.555	Magnesium-protoporphyrin ix methyltransferase
Transport	Os09g0250700	-0.520	Uncharacterized protein sli1770-like
Transport	Os01g0127300	0.516	Sufbd family protein
Transport	Os08g0520000	-2.670	Protein brittle- chloroplastic amyloplastic-like

... continuation

Metabolism	Gene-ID	log ₂ FC	Description
Transport	Os01g0708900	-0.623	Graves disease carrier
Transport	Os01g0871500	-0.598	Oligopeptide transporter
Transport	Os12g0514000	-0.632	Sugar transporter family expressed
Transport	Os01g0279400	-0.623	Major facilitator superfamily antiporter
Transport	Os02g0475400	-0.572	Uncharacterized sodium-dependent transporter yocs-like

3120

3121

Anexo D – Additional file 4 (Artigo 2)

3122

Node1	Node2	Node1_external_id	Node2_external_id	Homology	Coexpression	Textmining	Combined_score
4337689	4333065	LOC_Os05g03640.1	LOC_Os03g28940.1	0	0.554	0	0.554
4349831	4345848	LOC_Os11g05930.1	LOC_Os08g37456.1	0	0.595	0	0.595
4345848	LOC_Os07g38440.1	LOC_Os08g37456.1	LOC_Os07g38440.1	0	0.402	0	0.402
4348743	4345848	LOC_Os10g30850.1	LOC_Os08g37456.1	0	0.595	0	0.595
4345848	4326612	LOC_Os08g37456.1	LOC_Os01g43090.1	0	0.504	0	0.504
4345848	4330000	LOC_Os08g37456.1	LOC_Os02g40510.1	0	0.753	0	0.753
4345848	4332353	LOC_Os08g37456.1	LOC_Os03g15920.1	0	0.554	0	0.554
4345848	4339778	LOC_Os08g37456.1	LOC_Os05g51150.1	0	0.48	0	0.48
4338354	4334737	LOC_Os05g23740.1	LOC_Os03g62490.1	0	0.52	0	0.52
4338354	4326593	LOC_Os05g23740.1	LOC_Os01g44210.1	0	0.589	0	0.589
4338354	4329960	LOC_Os05g23740.1	LOC_Os02g39870.1	0	0.81	0	0.81
4349426	4338354	LOC_Os10g41710.1	LOC_Os05g23740.1	0	0.568	0	0.568
4338354	OsJ_05302	LOC_Os05g23740.1	LOC_Os02g04460.1	0	0.515	0	0.515
4347356	4338354	LOC_Os09g29840.1	LOC_Os05g23740.1	0	0.63	0	0.63
4351208	4329960	LOC_Os11g47760.1	LOC_Os02g39870.1	0	0.68	0	0.679
4346927	4336056	LOC_Os09g21250.1	LOC_Os04g38750.1	0	0.458	0	0.457
4346927	4332868	LOC_Os09g21250.1	LOC_Os03g24020.1	0	0.4	0	0.4
4346938	4346927	LOC_Os09g21460.1	LOC_Os09g21250.1	0	0.621	0	0.621
4349426	4346927	LOC_Os10g41710.1	LOC_Os09g21250.1	0	0.401	0	0.4
4346927	4344571	LOC_Os09g21250.1	LOC_Os08g03380.1	0	0.438	0	0.438
4346927	4333815	LOC_Os09g21250.1	LOC_Os03g49220.1	0	0.451	0	0.451
4346927	4331442	LOC_Os09g21250.1	LOC_Os03g03020.1	0	0.416	0	0.416
4346927	4331189	LOC_Os09g21250.1	LOC_Os02g57670.1	0	0.403	0	0.403

... continuation

Node1	Node2	Node1_external_id	Node2_external_id	Homology	Coexpression	Textmining	Combined_score
4346927	4330740	LOC_Os09g21250.1	LOC_Os02g51480.1	0	0.541	0	0.541
4346927	4330964	LOC_Os09g21250.1	LOC_Os02g54710.1	0	0.421	0	0.42
4346927	4332957	LOC_Os09g21250.1	LOC_Os03g25960.1	0	0.541	0	0.541
4346927	4346032	LOC_Os09g21250.1	LOC_Os08g40430.1	0	0.621	0	0.621
4346927	4331249	LOC_Os09g21250.1	LOC_Os02g58450.1	0	0.586	0	0.586
4346927	4335917	LOC_Os09g21250.1	LOC_Os04g35760.1	0	0.66	0	0.66
4347356	4331058	LOC_Os09g29840.1	LOC_Os02g56040.1	0	0.609	0	0.609
4331058	4329960	LOC_Os02g56040.1	LOC_Os02g39870.1	0	0.459	0	0.459
LOC_Os05g41800.1	4331058	LOC_Os05g41800.1	LOC_Os02g56040.1	0	0.695	0	0.694
4347356	4329960	LOC_Os09g29840.1	LOC_Os02g39870.1	0	0.515	0	0.515
4331058	4329960	LOC_Os02g56040.1	LOC_Os02g39870.1	0	0.459	0	0.459
4349426	4329960	LOC_Os10g41710.1	LOC_Os02g39870.1	0	0.807	0	0.807
4338354	4329960	LOC_Os05g23740.1	LOC_Os02g39870.1	0	0.81	0	0.81
4351208	4329960	LOC_Os11g47760.1	LOC_Os02g39870.1	0	0.68	0	0.679
VIT1.2	4329636	LOC_Os09g23300.1	LOC_Os02g34690.1	0	0.067	0.563	0.574
4351264	4333317	LOC_Os12g01530.1	LOC_Os03g38260.1	0	0.065	0	0.916
4345926	OsJ_09011	LOC_Os08g38720.1	LOC_Os02g58620.1	0	0.079	0.616	0.631
4339898	4337347	LOC_Os06g02220.1	LOC_Os04g57400.1	0	0.113	0.62	0.648
4339898	4331707	LOC_Os06g02220.1	LOC_Os03g06620.1	0	0.142	0.548	0.595
4346803	4333359	LOC_Os09g17740.1	LOC_Os03g39610.1	0.981	0.749	0	0.748
4333359	OsJ_01305	LOC_Os03g39610.1	LOC_Os01g17170.1	0	0.487	0	0.487
4333359	4329439	LOC_Os03g39610.1	LOC_Os02g30320.1	0	0.475	0	0.475
4341930	4333359	LOC_Os06g47970.1	LOC_Os03g39610.1	0	0.465	0	0.465
4344439	4333359	LOC_Os08g01380.1	LOC_Os03g39610.1	0	0.538	0	0.538
4333359	4324599	LOC_Os03g39610.1	LOC_Os01g41710.1	0.982	0.991	0	0.99
4346803	4333359	LOC_Os09g17740.1	LOC_Os03g39610.1	0.981	0.749	0	0.748

... continuation

Node1	Node2	Node1_external_id	Node2_external_id	Homology	Coexpression	Textmining	Combined_score
4344439	4324599	LOC_Os08g01380.1	LOC_Os01g41710.1	0	0.485	0	0.485
4333359	4324599	LOC_Os03g39610.1	LOC_Os01g41710.1	0.982	0.991	0	0.99
4345971	4332745	LOC_Os08g39430.1	LOC_Os03g21560.1	0	0.547	0	0.547
4345971	4333370	LOC_Os08g39430.1	LOC_Os03g39830.1	0	0.464	0	0.463
4337500	4326537	LOC_Os04g59440.1	LOC_Os01g71190.1	0	0.4	0	0.4
4328558	4326537	LOC_Os02g09590.1	LOC_Os01g71190.1	0	0.526	0	0.526
4331442	4326537	LOC_Os03g03020.1	LOC_Os01g71190.1	0	0.483	0	0.484
4340015	4326537	LOC_Os06g04150.1	LOC_Os01g71190.1	0	0.49	0	0.491
4351015	4326537	LOC_Os11g42490.1	LOC_Os01g71190.1	0	0.481	0	0.481
4326537	4327541	LOC_Os01g71190.1	LOC_Os01g59060.1	0	0.429	0	0.429
4337500	4326537	LOC_Os04g59440.1	LOC_Os01g71190.1	0	0.4	0	0.4
4339170	4326537	LOC_Os05g41190.1	LOC_Os01g71190.1	0	0.607	0	0.607
4343402	4326537	LOC_Os07g33660.1	LOC_Os01g71190.1	0	0.424	0	0.424
LOC_Os02g03330.1	4326537	LOC_Os02g03330.1	LOC_Os01g71190.1	0	0.407	0	0.408
4341612	4326537	LOC_Os06g43140.1	LOC_Os01g71190.1	0	0.582	0	0.582
4340929	4326537	LOC_Os06g22690.1	LOC_Os01g71190.1	0	0.409	0	0.409
4329037	4326537	LOC_Os02g18450.1	LOC_Os01g71190.1	0	0.916	0	0.916
4329888	4326537	LOC_Os02g38820.1	LOC_Os01g71190.1	0	0.527	0	0.527
4326537	OsJ_01305	LOC_Os01g71190.1	LOC_Os01g17170.1	0	0.6	0	0.6
4334555	4326537	LOC_Os03g60100.1	LOC_Os01g71190.1	0	0.424	0	0.424
LOC_Os03g52660.1	4326537	LOC_Os03g52660.1	LOC_Os01g71190.1	0	0.415	0	0.415
4332466	4326537	LOC_Os03g17580.1	LOC_Os01g71190.1	0	0.453	0	0.453
4350622	4326537	LOC_Os11g32320.1	LOC_Os01g71190.1	0	0.533	0	0.533
4332652	4326537	LOC_Os03g20100.1	LOC_Os01g71190.1	0	0.642	0	0.642
4344439	4326537	LOC_Os08g01380.1	LOC_Os01g71190.1	0	0.664	0	0.664
4345686	4326537	LOC_Os08g34220.1	LOC_Os01g71190.1	0	0.838	0	0.838

... continuation

Node1	Node2	Node1_external_id	Node2_external_id	Homology	Coexpression	Textmining	Combined_score
4333370	4326537	LOC_Os03g39830.1	LOC_Os01g71190.1	0	0.822	0	0.822
4342069	4326537	LOC_Os06g50130.1	LOC_Os01g71190.1	0	0.476	0	0.476
4338460	4326537	LOC_Os05g27100.1	LOC_Os01g71190.1	0	0.569	0	0.569
4343582	4326537	LOC_Os07g37230.1	LOC_Os01g71190.1	0	0.462	0	0.461
4326537	OsJ_09047	LOC_Os01g71190.1	13114.m00116	0	0.442	0	0.442
4331189	4326537	LOC_Os02g57670.1	LOC_Os01g71190.1	0	0.478	0	0.478
4334247	4326537	LOC_Os03g55930.1	LOC_Os01g71190.1	0	0.482	0	0.482
4326537	4326593	LOC_Os01g71190.1	LOC_Os01g44210.1	0	0.447	0	0.447
4333370	4332745	LOC_Os03g39830.1	LOC_Os03g21560.1	0	0.682	0	0.682
4339170	4332745	LOC_Os05g41190.1	LOC_Os03g21560.1	0	0.508	0	0.508
4344439	4332745	LOC_Os08g01380.1	LOC_Os03g21560.1	0	0.577	0	0.577
4345971	4332745	LOC_Os08g39430.1	LOC_Os03g21560.1	0	0.547	0	0.547
4342069	4332745	LOC_Os06g50130.1	LOC_Os03g21560.1	0	0.664	0	0.664
4340015	4332745	LOC_Os06g04150.1	LOC_Os03g21560.1	0	0.626	0	0.626
4336886	4332745	LOC_Os04g51300.1	LOC_Os03g21560.1	0	0.655	0	0.655
4352215	4333370	LOC_Os12g29570.1	LOC_Os03g39830.1	0	0.429	0	0.429
4343634	4332868	LOC_Os07g38000.1	LOC_Os03g24020.1	0	0.4	0	0.4
4343634	4338460	LOC_Os07g38000.1	LOC_Os05g27100.1	0	0.487	0	0.487
4343634	4327541	LOC_Os07g38000.1	LOC_Os01g59060.1	0	0.46	0	0.46
4343634	4331189	LOC_Os07g38000.1	LOC_Os02g57670.1	0	0.447	0	0.447
4343634	4341869	LOC_Os07g38000.1	LOC_Os06g46930.1	0	0.44	0	0.44
4343634	OsJ_07762	LOC_Os07g38000.1	LOC_Os02g43600.1	0	0.652	0	0.652
4343634	4331442	LOC_Os07g38000.1	LOC_Os03g03020.1	0	0.525	0	0.525
4343634	4340015	LOC_Os07g38000.1	LOC_Os06g04150.1	0	0.425	0	0.424
4343634	4334247	LOC_Os07g38000.1	LOC_Os03g55930.1	0	0.507	0	0.507
4343634	OsJ_22993	LOC_Os07g38000.1	LOC_Os07g04160.1	0	0.446	0	0.446

... continuation

Node1	Node2	Node1_external_id	Node2_external_id	Homology	Coexpression	Textmining	Combined_score
4344439	4326593	LOC_Os08g01380.1	LOC_Os01g44210.1	0	0.565	0	0.565
4344439	4338460	LOC_Os08g01380.1	LOC_Os05g27100.1	0	0.405	0	0.405
4344439	OsJ_01305	LOC_Os08g01380.1	LOC_Os01g17170.1	0	0.783	0	0.783
4344439	4334247	LOC_Os08g01380.1	LOC_Os03g55930.1	0	0.435	0	0.435
4344439	4332652	LOC_Os08g01380.1	LOC_Os03g20100.1	0	0.486	0	0.486
4344439	4333370	LOC_Os08g01380.1	LOC_Os03g39830.1	0	0.797	0	0.797
4344439	4332745	LOC_Os08g01380.1	LOC_Os03g21560.1	0	0.577	0	0.577
4344439	4329037	LOC_Os08g01380.1	LOC_Os02g18450.1	0	0.425	0	0.425
4344439	4340015	LOC_Os08g01380.1	LOC_Os06g04150.1	0	0.46	0	0.46
4344439	LOC_Os03g52660.1	LOC_Os08g01380.1	LOC_Os03g52660.1	0	0.502	0	0.502
4344439	4326537	LOC_Os08g01380.1	LOC_Os01g71190.1	0	0.664	0	0.664
4344439	4329888	LOC_Os08g01380.1	LOC_Os02g38820.1	0	0.48	0	0.48
4344439	4324599	LOC_Os08g01380.1	LOC_Os01g41710.1	0	0.485	0	0.485
4344439	4342069	LOC_Os08g01380.1	LOC_Os06g50130.1	0	0.568	0	0.568
4344439	OsJ_05302	LOC_Os08g01380.1	LOC_Os02g04460.1	0	0.463	0	0.463
4344439	4333359	LOC_Os08g01380.1	LOC_Os03g39610.1	0	0.538	0	0.538
4344439	4339170	LOC_Os08g01380.1	LOC_Os05g41190.1	0	0.815	0	0.815
4344439	4328558	LOC_Os08g01380.1	LOC_Os02g09590.1	0	0.684	0	0.684
4344439	4334555	LOC_Os08g01380.1	LOC_Os03g60100.1	0	0.469	0	0.469
4344439	4343219	LOC_Os08g01380.1	LOC_Os07g29410.1	0	0.419	0	0.419
4340015	4336886	LOC_Os06g04150.1	LOC_Os04g51300.1	0	0.559	0	0.559
4345686	4336886	LOC_Os08g34220.1	LOC_Os04g51300.1	0	0.583	0	0.583
4336886	4331189	LOC_Os04g51300.1	LOC_Os02g57670.1	0	0.55	0	0.551
4339170	4336886	LOC_Os05g41190.1	LOC_Os04g51300.1	0	0.549	0	0.549
4336886	4334555	LOC_Os04g51300.1	LOC_Os03g60100.1	0	0.527	0	0.527
4336886	4332745	LOC_Os04g51300.1	LOC_Os03g21560.1	0	0.655	0	0.655

... continuation

Node1	Node2	Node1_external_id	Node2_external_id	Homology	Coexpression	Textmining	Combined_score
4336886	4333233	LOC_Os04g51300.1	LOC_Os03g34040.1	0	0.466	0	0.465
4336886	4331442	LOC_Os04g51300.1	LOC_Os03g03020.1	0	0.507	0	0.507
4336886	OsJ_01975	LOC_Os04g51300.1	LOC_Os01g32830.1	0	0.428	0	0.428
4336886	4333370	LOC_Os04g51300.1	LOC_Os03g39830.1	0	0.411	0	0.411
4336886	OsJ_07762	LOC_Os04g51300.1	LOC_Os02g43600.1	0	0.632	0	0.632
4343402	4328586	LOC_Os07g33660.1	LOC_Os02g09940.1	0	0.405	0	0.405
4332868	4328586	LOC_Os03g24020.1	LOC_Os02g09940.1	0	0.419	0	0.418
OsJ_07762	4328586	LOC_Os02g43600.1	LOC_Os02g09940.1	0	0.508	0	0.508
4340015	4328586	LOC_Os06g04150.1	LOC_Os02g09940.1	0	0.65	0	0.65
4338460	4328586	LOC_Os05g27100.1	LOC_Os02g09940.1	0	0.603	0	0.603
4328586	OsJ_01975	LOC_Os02g09940.1	LOC_Os01g32830.1	0	0.431	0	0.431
4336056	4328586	LOC_Os04g38750.1	LOC_Os02g09940.1	0	0.435	0	0.435
4352413	4328586	LOC_Os12g34890.1	LOC_Os02g09940.1	0	0.5	0	0.5
4331442	4328586	LOC_Os03g03020.1	LOC_Os02g09940.1	0	0.559	0	0.559
4332652	4328586	LOC_Os03g20100.1	LOC_Os02g09940.1	0	0.42	0	0.42
4345686	4328586	LOC_Os08g34220.1	LOC_Os02g09940.1	0	0.454	0	0.454
4334247	4328586	LOC_Os03g55930.1	LOC_Os02g09940.1	0	0.612	0	0.612
4334555	4328586	LOC_Os03g60100.1	LOC_Os02g09940.1	0	0.463	0	0.463
4340929	4328586	LOC_Os06g22690.1	LOC_Os02g09940.1	0	0.517	0	0.517
4334131	4328586	LOC_Os03g54040.1	LOC_Os02g09940.1	0	0.438	0	0.438
4331189	4328586	LOC_Os02g57670.1	LOC_Os02g09940.1	0	0.523	0	0.523
4346329	4331442	LOC_Os08g44770.1	LOC_Os03g03020.1	0	0.658	0	0.658
4346329	4333233	LOC_Os08g44770.1	LOC_Os03g34040.1	0	0.451	0	0.451
4346329	4334247	LOC_Os08g44770.1	LOC_Os03g55930.1	0	0.446	0	0.446
4343987	4333342	LOC_Os07g43570.1	LOC_Os03g38950.1	0	0.468	0	0.468
4343987	4331358	LOC_Os07g43570.1	LOC_Os03g02020.2	0	0.492	0	0.491

... continuation

Node1	Node2	Node1_external_id	Node2_external_id	Homology	Coexpression	Textmining	Combined_score
4343987	4339778	LOC_Os07g43570.1	LOC_Os05g51150.1	0	0.73	0	0.73
4343987	4343219	LOC_Os07g43570.1	LOC_Os07g29410.1	0	0.437	0	0.436
4345611	4343987	LOC_Os08g32930.1	LOC_Os07g43570.1	0	0.57	0	0.57
4347775	4343987	LOC_Os09g37620.1	LOC_Os07g43570.1	0	0.518	0	0.518
4343987	4343986	LOC_Os07g43570.1	LOC_Os07g43560.1	0.943	0.992	0	0.992
4343987	4326612	LOC_Os07g43570.1	LOC_Os01g43090.1	0	0.409	0	0.408
4343987	4341038	LOC_Os07g43570.1	LOC_Os06g28194.1	0	0.628	0	0.627
4343987	4330451	LOC_Os07g43570.1	LOC_Os02g47510.1	0	0.758	0	0.758
4349671	4343987	LOC_Os11g03580.1	LOC_Os07g43570.1	0	0.464	0	0.463
4343987	4343652	LOC_Os07g43570.1	LOC_Os07g38230.1	0	0.597	0	0.597
OsJ_34121	4343987	LOC_Os11g32880.1	LOC_Os07g43570.1	0	0.428	0	0.428
4347775	4343986	LOC_Os09g37620.1	LOC_Os07g43560.1	0	0.42	0	0.42
4343986	4339778	LOC_Os07g43560.1	LOC_Os05g51150.1	0	0.41	0	0.409
4343986	4343219	LOC_Os07g43560.1	LOC_Os07g29410.1	0	0.423	0	0.423
4343987	4343986	LOC_Os07g43570.1	LOC_Os07g43560.1	0.943	0.992	0	0.992
4343986	4343652	LOC_Os07g43560.1	LOC_Os07g38230.1	0	0.634	0	0.634

3123