Show simple item record

dc.creatorCunha, Danúbia R.
dc.creatorVila, Roberto
dc.creatorSaulo, Helton
dc.creatorFernandez, Rodrigo Nobre
dc.date.accessioned2025-05-13T13:11:44Z
dc.date.available2025-05-13T13:11:44Z
dc.date.issued2020
dc.identifier.citationCUNHA, D. R. ; GABRIEL, R. V. ; SANTOS, H. S. B. ; FERNANDEZ, R. N. . A General Family of Autoregressive Conditional Duration Models Applied to High-Frequency Financial Data. Journal of Risk and Financial Management, v. 13, p. 1-20, 2020.pt_BR
dc.identifier.urihttp://guaiaca.ufpel.edu.br/xmlui/handle/prefix/15920
dc.description.abstractIn this paper, we propose a general family of Birnbaum–Saunders autoregressive conditional duration (BS-ACD) models based on generalized Birnbaum–Saunders (GBS) distributions, denoted by GBS-ACD. We further generalize these GBS-ACD models by using a Box-Cox transformation with a shape parameter l to the conditional median dynamics and an asymmetric response to shocks; this is denoted by GBS-AACD.We then carry out a Monte Carlo simulation study to evaluate the performance of the GBS-ACD models. Finally, an illustration of the proposed models is made by using New York stock exchange (NYSE) transaction data.pt_BR
dc.languageengpt_BR
dc.publisherMDPIpt_BR
dc.rightsOpenAccesspt_BR
dc.subjectGeneralized Birnbaum–Saunders distributionspt_BR
dc.subjectACD modelspt_BR
dc.subjectBox-Cox transformationpt_BR
dc.subjectHigh-frequency financial datapt_BR
dc.subjectGoodness-of-fitpt_BR
dc.titleA general family of autoregressive conditional duration models applied to high-frequency financial datapt_BR
dc.typearticlept_BR
dc.identifier.doihttps://doi.org/10.3390/jrfm13030045
dc.rights.licenseCC BY-NC-SApt_BR


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record