• português (Brasil)
    • English
    • español
  • português (Brasil) 
    • português (Brasil)
    • English
    • español
  • Entrar
Ver item 
  •   Página inicial
  • Centro de Desenvolvimento Tecnológico - CDTec
  • Pós-Graduação em Computação - PPGC
  • PPGC: Dissertações e Teses
  • Ver item
  •   Página inicial
  • Centro de Desenvolvimento Tecnológico - CDTec
  • Pós-Graduação em Computação - PPGC
  • PPGC: Dissertações e Teses
  • Ver item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Uma nova abordagem baseada em modelos do tipo encoder-decoder para segmentação semântica de lesões de fundo associadas à retinopatia diabética

Thumbnail
Visualizar/Abrir
Dissertação_Alejandro da Silva Pereira.pdf (4.839Mb)
Data
2025-07-07
Autor
Pereira, Alejandro da Silva
Metadata
Mostrar registro completo
Resumo
O diabetes é uma doença crônica que compromete a capacidade do corpo de produzir ou utilizar insulina de forma adequada. Atualmente, estima-se que aproxi madamente 537 milhões de adultos em todo o mundo sejam afetados pela doença, o que representa 10,5% da população entre 20 e 79 anos, com projeção de atingir 783 milhões até 2045. Nesse contexto global, o Brasil ocupa a quarta posição em preva lência, com cerca de 13,7 milhões de casos. A Retinopatia Diabética (RD) é uma das principais complicações microvasculares do diabetes e constitui uma das principais causas de cegueira em adultos em idade produtiva. Como o diagnóstico da RD é geralmente realizado por meio da análise de imagens do fundo de olho – nas quais se identificam lesões como Exsudatos Duros, Hemorragias, Exsudatos Algodonosos e Microaneurismas –, é possível empregar abordagens baseadas em aprendizado profundo para a segmentação dessas lesões. O objetivo deste trabalho é propor uma nova abordagem para aprimorar a precisão na segmentação dessas lesões, contribuindo para um diagnóstico mais eficaz da doença e facilitando o processo de anotação de imagens em novos conjuntos de dados de RD. A abordagem proposta tem como base as arquiteturas U-Net++, Attention U-Net e R2U-Net, integradas por meio de ensembles. Além disso, foram aplicadas etapas de pré-processamento, aumento de dados e pré-treinamento com o objetivo de melhorar a extração das características das lesões. Os experimentos utilizaram dois conjuntos de dados públicos de RD. O conjunto DDR foi empregado para treinar, ajustar e avaliar os modelos que compõem a abordagem proposta, alcançando mDC de 63,75% e mIoU de 83,18% na etapa de validação, e mDC de 66,47% e mIoU de 81,15% na etapa de teste. O conjunto IDRiD foi utilizado para avaliar a capacidade de generalização da abordagem proposta em diferentes bases de dados de RD, apresentando mIoU de 84,36% na etapa de validação e 82,84% na etapa de teste. Os resultados obtidos superaram os apresentados em trabalhos relacionados, evidenciando que a integração de ensembles de modelos do tipo encoder-decoder, combinada às etapas de pré-processamento, aumento de dados e pré-treinamento, constitui uma estratégia eficaz para a segmentação de lesões no fundo de olho.
URI
http://guaiaca.ufpel.edu.br/xmlui/handle/prefix/17064
Collections
  • PPGC: Dissertações e Teses [230]

DSpace software copyright © 2002-2022  LYRASIS
Entre em contato | Deixe sua opinião
Theme by 
Atmire NV
 

 

Navegar

Todo o repositórioComunidades e ColeçõesData do documentoAutoresOrientadoresTítulosAssuntosÁreas de Conhecimento (CNPq)DepartamentosProgramasTipos de DocumentoTipos de AcessoEsta coleçãoData do documentoAutoresOrientadoresTítulosAssuntosÁreas de Conhecimento (CNPq)DepartamentosProgramasTipos de DocumentoTipos de Acesso

Minha conta

EntrarCadastro

Estatística

Ver as estatísticas de uso

DSpace software copyright © 2002-2022  LYRASIS
Entre em contato | Deixe sua opinião
Theme by 
Atmire NV