Show simple item record

dc.creatorColpo, Miriam Pizzatto
dc.creatorPrimo, Tiago Thompsen
dc.creatorAguiar, Marilton Sanchotene de
dc.creatorCechinel, Cristian
dc.date.accessioned2025-11-24T09:17:45Z
dc.date.available2025-11-24T09:17:45Z
dc.date.issued2024
dc.identifier.citationCOLPO, M. P.; THOMPSEN PRIMO, T.; AGUIAR, M. S. de; CECHINEL, C. Mineração de Dados Educacionais na Predição da Evasão Estudantil: Tendências, Oportunidades e Desafios. Revista Brasileira de Informática na Educação, [S. l.], v. 32, p. 220–256, 2024. DOI: 10.5753/rbie.2024.3559. Disponível em: https://journals-sol.sbc.org.br/index.php/rbie/article/view/3559. Acesso em: 10 nov. 2025.pt_BR
dc.identifier.urihttp://guaiaca.ufpel.edu.br/xmlui/handle/prefix/18646
dc.description.abstractToday, we face academic, social, and economic losses associated with student dropouts. Several studies have applieddata mining techniques to educational datasets to understand dropout profiles and recognize at-risk students. Toidentify the contextual (academic levels, modalities, and systems), technical (tasks, categories of algorithms, andtools), and data (types, coverage, and volume) characteristics related to these works, we performed a systematicliterature review, considering institutional and academic degree dropout. Internationally recognized repositories weresearched, and the selected articles demonstrated, among other characteristics, a greater exploration of educational,demographic, and economic data of undergraduate students from classification techniques of decision tree ensembles.In addition to not having identified any study from underdeveloped countries among the selected ones, we foundshortcomings in the application of predictive models and in making their predictions available to academic managers,which suggests an underutilization of the efforts and potential of most of these studies in educational practice.pt_BR
dc.languageengpt_BR
dc.publisherSociedade Brasileira de Computação - SBCpt_BR
dc.rightsOpenAccesspt_BR
dc.subjectStudent dropoutpt_BR
dc.subjectDropout predictionpt_BR
dc.subjectEducational data miningpt_BR
dc.subjectSystematic literature reviewpt_BR
dc.titleEducational data mining for dropout prediction: trends, opportunities, and challengespt_BR
dc.title.alternativeMineração de dados educacionais na predição da evasão estudantil: tendências, oportunidades e desafiospt_BR
dc.typearticlept_BR
dc.identifier.doihttps://doi.org/10.5753/rbie.2024.3559
dc.rights.licenseCC BY-NC-SApt_BR


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record