Assimilação 3DVAR no WRF e a Previsão do Tempo no Sul do Brasil
Abstract
O procedimento de combinar modelos matemáticos com dados imprecisos e que apresentam ruídos, para melhorar a previsão do tempo por método estatístico, constitui uma importante e desafiadora linha de pesquisa em meteorologia, conhecida como assimilação de dados. O método 3DVAR, que é uma das técnicas que representam o estado da arte em assimilação de dados, é aplicado neste estudo. O objetivo do presente trabalho é avaliar os resultados da assimilação dos dados observados das estações automáticas do INMET e de radiossondagens da Região Sul do Brasil na previsão do modelo WRF com assimilação 3DVAR, analisando em cada caso processado, se os prognósticos reproduzem o cenário sinótico observado e melhoram a previsão do WRF sem assimilação. O objetivo específico é avaliar o procedimento de assimilação em dois eventos de precipitação ocorridos no ano de 2012. O estudo é especialmente importante, visto que os dados das estações automáticas do INMET não são transmitidos no GTS; portanto, não são assimilados pelos sistemas de previsões geradas por modelos globais, como o GFS, que proporcionam as condições iniciais e de contorno de modelos regionais, como o WRF. Os resultados mostram que o WRF com assimilação de dados reproduziu satisfatoriamente o cenário sinótico observado nos dois casos analisados e produziu prognósticos melhores do que os do WRF sem assimilação. As análises termodinâmicas mostraram que o WRF com assimilação de dados produziu perfis verticais de temperatura do ar e temperatura do ponto de orvalho bem próximos dos perfis observados, com pequena melhora na previsão em relação ao WRF sem assimilação. Experimentos adicionais indicam que a assimilação de dados de outras fontes, além das estações automáticas do INMET e radiossondagens, bem como o aumento da resolução espacial na integração do WRF com a inclusão de um subdomínio, resultam em melhora significativa na previsão dos campos meteorológicos.