• português (Brasil)
    • English
    • español
  • português (Brasil) 
    • português (Brasil)
    • English
    • español
  • Entrar
Ver item 
  •   Página inicial
  • Centro de Desenvolvimento Tecnológico - CDTec
  • Pós-Graduação em Computação - PPGC
  • PPGC: Dissertações e Teses
  • Ver item
  •   Página inicial
  • Centro de Desenvolvimento Tecnológico - CDTec
  • Pós-Graduação em Computação - PPGC
  • PPGC: Dissertações e Teses
  • Ver item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Desenvolvimento de Abordagens Baseadas em Redes Neurais Profundas para Detecção e Segmentação de Instância de Lesões Retinianas

Thumbnail
Visualizar/Abrir
[06]-2673964_Tese_CARLOS_ALEXANDRE_SILVA_DOS_SANTOS.pdf (13.53Mb)
Data
2023-12-15
Autor
Santos, Carlos Alexandre Silva dos
Metadata
Mostrar registro completo
Resumo
A Retinopatia Diabética (RD) é uma das principais causas de perda de visão e apresenta em suas fases iniciais lesões de fundo, como microaneurismas, hemorra gias e exsudatos duros e algodonosos. Modelos computacionais capazes de detectar essas lesões podem auxiliar no diagnóstico precoce da doença e prevenir a manifes tação de formas mais graves de lesões, auxiliando também no processo de triagem e definição da melhor forma de tratamento. Entretanto, a detecção de microlesões por meio de sistemas computacionais é um desafio por inúmeros fatores, como o tamanho e formato destas lesões, a presença de ruído e contraste ruim das imagens, a pequena quantidade de exemplos rotulados nos conjuntos de dados públicos de RD, e a dificuldade de algoritmos de aprendizado profundo em detectar objetos muito pequenos em função da dissipação de gradiente durante o treinamento. Assim, para contornar estes problemas, este trabalho propõe duas novas abordagens baseadas em técnicas de processamento de imagens, aumento de dados, transferência de aprendizado e redes neurais profundas, com o propósito de auxiliar no diagnóstico médico de lesões de fundo. As abordagens propostas foram treinadas, ajustadas e avaliadas usando diferentes conjuntos de dados públicos de Retinopatia Diabética. Para a realização dos experimentos os datasets foram particionados em conjunto de treinamento (50%), validação (20%) e teste (30%). Utilizou-se uma etapa de validação para realizar o ajuste fino de hiperparâmetros, e uma etapa de teste para aferir a capacidade de generalização dos modelos. A abordagem para detecção das lesões de fundo alcançou mAP de 0,2630 para o limite de IoU de 0,5 na etapa de validação utilizando o conjunto de dados DDR e otimizador Adam. Já a abordagem para segmentação de instância das lesões de fundo alcançou mAP de 0,2903 para o limite de IoU de 0,5 na etapa de validação utilizando o conjunto de dados DDR e otimizador Adam, sendo, portanto, 10,38% mais preciso que a abordagem proposta para detecção. Os resultados obtidos nos experimentos demonstram que as novas abordagens apresentaram resultados promissores na detecção de lesões de fundo associadas à RD.
URI
http://guaiaca.ufpel.edu.br/xmlui/handle/prefix/13587
Collections
  • PPGC: Dissertações e Teses [230]

DSpace software copyright © 2002-2022  LYRASIS
Entre em contato | Deixe sua opinião
Theme by 
Atmire NV
 

 

Navegar

Todo o repositórioComunidades e ColeçõesData do documentoAutoresOrientadoresTítulosAssuntosÁreas de Conhecimento (CNPq)DepartamentosProgramasTipos de DocumentoTipos de AcessoEsta coleçãoData do documentoAutoresOrientadoresTítulosAssuntosÁreas de Conhecimento (CNPq)DepartamentosProgramasTipos de DocumentoTipos de Acesso

Minha conta

EntrarCadastro

Estatística

Ver as estatísticas de uso

DSpace software copyright © 2002-2022  LYRASIS
Entre em contato | Deixe sua opinião
Theme by 
Atmire NV