• português (Brasil)
    • English
    • español
  • español 
    • português (Brasil)
    • English
    • español
  • Login
Ver ítem 
  •   DSpace Principal
  • Centro de Desenvolvimento Tecnológico - CDTec
  • Pós-Graduação em Computação - PPGC
  • PPGC: Dissertações e Teses
  • Ver ítem
  •   DSpace Principal
  • Centro de Desenvolvimento Tecnológico - CDTec
  • Pós-Graduação em Computação - PPGC
  • PPGC: Dissertações e Teses
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Desenvolvimento de Abordagens Baseadas em Redes Neurais Profundas para Detecção e Segmentação de Instância de Lesões Retinianas

Thumbnail
Ver/
[06]-2673964_Tese_CARLOS_ALEXANDRE_SILVA_DOS_SANTOS.pdf (13.53Mb)
Fecha
2023-12-15
Autor
Santos, Carlos Alexandre Silva dos
Metadatos
Mostrar el registro completo del ítem
Resumen
A Retinopatia Diabética (RD) é uma das principais causas de perda de visão e apresenta em suas fases iniciais lesões de fundo, como microaneurismas, hemorra gias e exsudatos duros e algodonosos. Modelos computacionais capazes de detectar essas lesões podem auxiliar no diagnóstico precoce da doença e prevenir a manifes tação de formas mais graves de lesões, auxiliando também no processo de triagem e definição da melhor forma de tratamento. Entretanto, a detecção de microlesões por meio de sistemas computacionais é um desafio por inúmeros fatores, como o tamanho e formato destas lesões, a presença de ruído e contraste ruim das imagens, a pequena quantidade de exemplos rotulados nos conjuntos de dados públicos de RD, e a dificuldade de algoritmos de aprendizado profundo em detectar objetos muito pequenos em função da dissipação de gradiente durante o treinamento. Assim, para contornar estes problemas, este trabalho propõe duas novas abordagens baseadas em técnicas de processamento de imagens, aumento de dados, transferência de aprendizado e redes neurais profundas, com o propósito de auxiliar no diagnóstico médico de lesões de fundo. As abordagens propostas foram treinadas, ajustadas e avaliadas usando diferentes conjuntos de dados públicos de Retinopatia Diabética. Para a realização dos experimentos os datasets foram particionados em conjunto de treinamento (50%), validação (20%) e teste (30%). Utilizou-se uma etapa de validação para realizar o ajuste fino de hiperparâmetros, e uma etapa de teste para aferir a capacidade de generalização dos modelos. A abordagem para detecção das lesões de fundo alcançou mAP de 0,2630 para o limite de IoU de 0,5 na etapa de validação utilizando o conjunto de dados DDR e otimizador Adam. Já a abordagem para segmentação de instância das lesões de fundo alcançou mAP de 0,2903 para o limite de IoU de 0,5 na etapa de validação utilizando o conjunto de dados DDR e otimizador Adam, sendo, portanto, 10,38% mais preciso que a abordagem proposta para detecção. Os resultados obtidos nos experimentos demonstram que as novas abordagens apresentaram resultados promissores na detecção de lesões de fundo associadas à RD.
URI
http://guaiaca.ufpel.edu.br/xmlui/handle/prefix/13587
Colecciones
  • PPGC: Dissertações e Teses [230]

DSpace software copyright © 2002-2022  LYRASIS
Contacto | Sugerencias
Theme by 
Atmire NV
 

 

Listar

Todo DSpaceComunidades & ColeccionesPor fecha de publicaciónAutoresAdvisorsTítulosMateriasKnowledge Areas (CNPq)DepartmentsProgramsDocument TypesAccess TypesEsta colecciónPor fecha de publicaciónAutoresAdvisorsTítulosMateriasKnowledge Areas (CNPq)DepartmentsProgramsDocument TypesAccess Types

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

DSpace software copyright © 2002-2022  LYRASIS
Contacto | Sugerencias
Theme by 
Atmire NV