• português (Brasil)
    • English
    • español
  • English 
    • português (Brasil)
    • English
    • español
  • Login
View Item 
  •   Home
  • Instituto de Física e Matemática - IFM
  • Pós-Graduação em Modelagem Matemática - PPGMMat
  • PPGMMat: Dissertações e Teses
  • View Item
  •   Home
  • Instituto de Física e Matemática - IFM
  • Pós-Graduação em Modelagem Matemática - PPGMMat
  • PPGMMat: Dissertações e Teses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Simulação com o método Monte Carlo: uma ferramenta para análise de risco no gerenciamento de projetos

Thumbnail
View/Open
Dissertacao_Lusianny_Herzog.pdf (1.995Mb)
Date
2023-12-22
Author
Herzog, Lusianny Pereira
Metadata
Show full item record
Abstract
O gerenciamento de projetos é um processo complexo e crítico que envolve colaboração, conhecimento técnico e investimentos. Em um ambiente competitivo as organizações buscam constantemente oportunidades de melhoria e reavaliam seus modelos de negócios devido aos desafios que enfrentam. Com isso, o risco em projetos surge da incerteza em relação aos resultados esperados, como prazos e custos. O gerenciamento de riscos visa minimizar esses riscos para garantir que as atividades atendam às necessidades do projeto. A análise de risco é uma ferramenta do gerenciamento de riscos e pode ser qualitativa ou quantitativa, dependendo dos recursos disponíveis. Dentro da análise quantitativa, a Simulação de Monte Carlo (SMC) é um método muito utilizado, especialmente em riscos relacionados aos atrasos no cronograma e estouros de custos. Neste contexto, o presente trabalho se concentra no estudo de caso de uma análise de risco aplicando a SMC no gerenciamento de riscos em cronogramas de projetos. Com isso, os objetivos incluem contextualizar a importância da análise de risco, analisar a fundamentação teórica do método de Monte Carlo realizar uma análise de risco em um projeto e desenvolver um programa de análise de risco em Python. Definido os objetivos, a justificativa para este estudo está na necessidade de melhorar a taxa de sucesso de projetos de construção, que muitas vezes ultrapassam prazos e orçamentos, visto que o gerenciamento de riscos é fundamental para lidar com a incerteza inerente a esses projetos. No geral, o estudo contribui para uma abordagem mais eficaz e precisa na gestão de projetos, adaptando-se às demandas do mercado em constante evolução. Os resultados incluem a verificação do modelo para validação do algoritmo e um estudo de caso. Pode-se observar que considerando o somatório das fases onde existe a probabilidade de 5% do projeto finalizar em 590 dias e 95% de finalizar em 669 dias. Além disso, uma análise da convergência garantiu que o número de amostras estava suficiente para o estudo e uma breve comparação das principais distribuições utilizadas na análise de risco. Estas informações permitem às partes interessadas entender melhor como o cronograma pode ser afetado por riscos e tomar medidas para mitigar esses impactos com antecedência.
URI
http://guaiaca.ufpel.edu.br/xmlui/handle/prefix/14183
Collections
  • PPGMMat: Dissertações e Teses [52]

DSpace software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of RepositoryCommunities & CollectionsBy Issue DateAuthorsAdvisorsTitlesSubjectsKnowledge Areas (CNPq)DepartmentsProgramsDocument TypesAccess TypesThis CollectionBy Issue DateAuthorsAdvisorsTitlesSubjectsKnowledge Areas (CNPq)DepartmentsProgramsDocument TypesAccess Types

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2022  LYRASIS
Contact Us | Send Feedback
Theme by 
Atmire NV